
Lawrence Berkeley National Laboratory
Recent Work

Title
GENERATION OP GENERALIZED RUNGE-KUTTA INTERGRATION METHODS FOR n-th ORDER
SYSTEMS OP p-th ORDER ORDINARY DIFFERENTIAL EQUATIONS

Permalink
https://escholarship.org/uc/item/56g0130m

Author
Close, Elon Ryder.

Publication Date
1968-12-11

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/56g0130m
https://escholarship.org
http://www.cdlib.org/

UCRL-18650

GENERATION OF GENERALIZED RUNGE-KUTTA
INTEGRA TION METHODS FOR n-th ORDER SYSTEMS

OF p-th ORDER ORDINARY
DIFFERENTIAL EO UA TIONS

Elon Ryder Close
(Ph. D. Thesis)

December 11, 1968

TWO-WEEK LOAN COpy
l

This is a library Circulating Copy
which may be borrowed for two weeks.
For a personal retention co.Py, call
Tech. 'nto~ bioision. Ext. 5545

c::
, ,()

LAWRENCE RADIATION LAB()RATOR~;
UNIVER§ITY of CALIFORNIA BERKELEY g;

DISCLAIMER

This documerit was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or .
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof,.or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.

,'.

UNIVERSITY OF CALIFORNIA

Lawrence Radiation Laboratory
Berkeley, California

AEC Contract No. W-7405o.eng.,.48

UCRL-18650

GENERATIONOF GENERALIZED RUNGE-KUTTA INTEGRATION
. METHODS FOR n-th ORDER SYSTEMS OF p-th ORDER

OR DINAR Y DIFFERENTIAL EQUATIONS

Elon Ryder Close'
(Ph. D.' Thesis)

December 11, 1968

-Hi-

TABLE OF CONTENTS

. Abstract· e' '. • •

Introduction. I

II An Analytic Derivation of Generalized Runge-Kutta

Methods for Systems of First-Order Differential

Equations < .• • •••
III GeneralizedS,RICF Methods by Means of Successive

Substitution .•..

IV Generalized RK Methods for Systems of p-th Order

Differential Equations • . ..

V Utilization of Error Harmonics in Generalized RICF

Schemes ..

VI Generation of Generalized RICF Schemes by Means of

an ALGOL 60 Procedure. • .

VII

VIII

Examples of Generated Schemes

Comments.

Acknowledgments

Appendices .

T Tables .•

• • it . . ~

II Procedure RKMI Source Listings ...

III Results of the Examples of' Chapter VI .

IV Use of ProcedureRKMI

V Notation.

References. '.

iv

1

11

44

117

150

164

198

221

225

226

261

340

394

415

417

-:i:v-

GENERATION OF GENERALIZEDRUNGE-KUTTA INTEGRATION METHODS
FOR n-th ORDER SYSTEMS OF p~th ORDER

ORDINARY DIFFERENTIAL EQUATIONS

Elon Ryder Close

Lawrence Radiation Labo::ratory
University of California

Berkeley, California
.,
December 11, 1968

ABSTRACT

We treat the generation of schemes for the numerical integration

of the initial value problem lfx == X 0 ~, ~ (a) == b. where x E R -7 Rn,

~ ==(DPx, ... , x) E R-7RrlXP, XE RrXp~ Rn, bE Rr'XP, a E R, R is the

real line, RPJ<P and Rn are real rXpand n dimensional vector spaces.

Scheme definitions are provided that include the classical Runge-Kutta

(RK) and finite difference schemes and, at the same time, are general-

izations which provide schemes outside this class; Use is made of the

first derivative DX A global view of the scheme generation problem is

provided by developing a formalism that makes use of the concept of

differentials. It is shown that all basic results can be obtained from

one recursive definition of a generic operator Yand the generic z and y

which lie in its domain and range. A constructive means for obtaining

specific schemes is. developed and an ALGOL 60 program which performs

this work is presented. The use of these results is illustrated on a

classical example (fourth order RK) and on the simplest class of

generalized RK sch~mes. The generalized RK schemes presented are

believed to be new.

I. INTRODUCTION

The work presented in the following chapters and their associated

appendices has as its objective the obtaining of schemes for the numeri-

cal integration of n-th order systems of p",th order ordinary differential

equations written as an,ini tial value problem in the form*

DPx = X 0 ~

Ha) = b

where x E R -) Rn , !: (_p-l) E R -) Rr1xp , X r. RrXp -) Rn , s = if x, ... , x '"

b E Rrxp, and a E R.
nXp n

We take R to be the real line and R and R to

be, respectively, n X p and n-dimensional vector spaces. Since our

principal tool used in the analysis is the classical Taylor's series,

we shall always implicitly assume that the functions discussed possess

enough derivatives to carry out the analysis.

The schemes considered are given prectse definition as they are

introduced. However, they can loosely be described as follows. Given

an interval of integration, we have, or will construct in the manner

(1)

described below, a set of approximations ~i to the true solution ~(ti).

We also have, or can obtain, the function values Xi = X(~i) and if we wish,

we can also obtain derivatives of X; for example, here we consider

DX(~i). We define our schemes by saying that any approximation is a

linear combination of these quantities or of quantities derivable from

them. Thus,

L
l

L:a.~. + L: t'. X.
J J J J

(2)

or

1

where the coefficient matrices are, of course, assumed to be suitably

defined. In the second case, the ~j are, essentially, derived by

multip~ying the derivative matrix DX(~j) times some previously constructed

quantity.

The first of these we call generalized Runge-Kutta (RK) schemes

since they contain those classical schemes and the second of these we

call generalized Runge..;.Kutta-Frey (RKF) schemes since they make use of

the first derivative DX of X as introduced by Frey. Both of these

schemes lead to parameter defining equations that are similar in form

to those associated with the classical Rurige-Kutta schemes.

In our work, we say pothing about the accuracy of any approximation.

We simply assume. that to the set of approximations there is associated

a lower bound such that all approximations are at least that accurate

and it is implicitly assumed that there is at least one approximation

for which we shall try and minimize the error ~o - ~(to) = EO. This

unrestricted approach to the specification of the accuracy of an ap-

proximation allows the inclusion of finite difference schemes (all ~i

have an equal order of accuracy) and classicalRK schemes (we build

from the lowest order 1 to the highest order desired at each step) in

our definition.

Since the obtaining of anyone integration scheme of any compiexity

can become a formid~ble task when working with systems of equations, we , .

have devoted a consid'erable amount of our effort to formalizing and

systematizing this task to such a degree that in using our:results we

can easily obtain the parameter defining equations for any given scheme

in the class of schemes considered and, further, for generalized RK

schemes, we can obtain an overall· view of what these equations will

look like without defining a specific scheme.

2

We thus, as a result of this work, have at our di sposal a global

view of the parameter e<luations, a view that allows us to anticipate the

character of the e<luations that we must solve for any particular scheme.

We also have a local, direct constructive approach to these e<luations.,

Using this latter approach, we have built ,procedures that will actually,

perform the algebraic work involved and present the investigator with

the e<luations associated;wi th a specific scheme.

Since the formal structure that we derive and the associated

procedures which preserve this structure are valid for a whole class of

schemes, we speak of the generation of integration schemes. We mean

this in a sense <luite analogous to what one means when speaking, say,

,of the generation of a value of the sine function. In the context of a

machine-oriented calculation, orie does not look up the value of the Sine,

nor does one derive the expansions and calculate the value of the

function (one doesn't derive the result); 1instead, the'value is generated

by.a well-defined algorithm that is preserved in the form of a system

procedure.

One of our basic results is that, to a large degree, our work has

this character; it is preserved in the form of suitably defined ALGOL

procedures that are presented here and the degree to which this is true

can be readily increased.

Our work, as presented here) can be considered as an extension of

the work presented by Butcher(1), Ceschino-Kuntzmann (2), and

R. DeVogelaere(3). It will be obvious to anyone familiar with Butcher's

work that much of our theoretical development is influenced by what he

has done. His work has been the principal inspiration in the presentation

of our results in terms of rec:ursive definitions of <luantities which are

3

then proved to be the coefficients of the expansions that we wish to

have. The work of Ceschino-Kuntzmann has proved invaluable in suggesting

the form and ·direction that our scheme definitions and results should

take. In fact, in their work and the way in which it is presented,

they have come extremely close to presenting the generalized schemes

that we present here. I am <lui te indebted to Professor DeVogelaere

for the assistance his work has given us. The notation*that is used

here for the exransions of the vector-valued functions is principally

due to him and without the help of such a concise, precise notation,

it would not have been possible to arrive at our results. Also, the

basic list procedures along with a good suitable list structure which

he made available have been invalUable in constructing intbe program RKMI.

Our results are thus built upon the work of others • We would

characterize our contribution here as follows:

1) Scheme definitions are provided that include the classical

RK schemes and finite difference schemes and, at the same

time, are generalizations in that they provide us naturally

wi thschemes olltside this class. Ceschino-Kuntzmann almost

did thiS, but for the class of schemes considered, we have

a more general definition than they give.

2) An extension has been made to the work of Butcher which deals

only with Dx = X 0 x and classical RK schemes. We, thus,

are able to define <luantities analogous to hiS, but for

generalized RK schemes. This leads to an overall global

view of the scheme generation problem.

3) It is shown that the differentials and the various harmonics

that we define after the fashion of Butcher are, in reality,

:X'See . Appendix V.

4

all obtainable from one recursive definition of a generic

operator Y and the generic zand y which lie in the domain

and range of. Y.

4) The basic algorithms of R. DeVogelaere have been used to

build procedUres that actually carry out the stibstitutions

needed to generate generalized RKF schemes and, thus, extend

his basic work.

5) The application of these results has been illustrated by

applying them to some recently obtained generalized schemes

presented by Butcher(4) and it is shown that if ,one is

willing to remember a function value rather than perform

an intermediate substitution, one can obtain the same orders

of accuracy with one less substitution.

6) From a formal viewpoint, we have tried, and we hope to some

degree succeeded, to show how one 'can develop a formalism

for the expreSSion of these schemes that leads naturally

to their development and, at the same time, is expressed in

such a manner that it can be reflected and preserved in pro­

cedures that will then free the investigator from having to

reperform the derivation for each specific example. In ,short,

we have attempted to generate schemes.

There is a rather logical ordering to the chapters that follow.

Chapter II deals with the simplest schemes, the generalized RK schemes

for Dx = X 0 x and, thus, serves as an introduction to the remaining work.

Chapter III develops a different, constructive approach to obtaining

schemes and does so starting with the slightly mare complicated case

of generalized RKF schemes for nPx = X 0 x. Although it is, in a sense,

5

6

a separate work and can stand alone, the ideas used in the proofs

presented there are quite similar in character to Chapter II. Chapter IV

generalizes the work of Chapter II to generalized RK schemes for

DPx = X 0 x and relies, to some extent, on.the work and ideas presented

in Chapter III. Chapter V re-expresses our result s using a new basis·

and the harmonics associated with this basis. Surprisingly, the results·

of Chapters::III and IV simplify tremendously in this basis. Chapter VI

explains ,how we represent the work of Chapter III in such a manner that

we can build procedures to carry out the successive substitutions.

Chapter VII presents illustrative examples of hew these results can be

obtained. Chapter VIII indicates some omissions and some possible

directions that future work might take. The appendices are fairly well

summarized by their titles. The appendices form an integral part of

the work; however, they can be consulted only as needed and then only

to the depth required.

In each chapter and ,each appendix of this work, the first few

paragraphs contain a short introduction to the work. It seems rather

pointless to repeat those· remarks her e; .we simply indicate that an over-

all view should be obtainable by reading only these introductions. We

shall, therefore, in the remainder of this Introduction make some rather

general.remarks about. the work presented in the various chapters.

The original idea that this investigation of integration schemes
i ..

containing data.from the past be carried out was made by Professor

R. DeVogelaere shortly before taking his sabbatical leave in Europe.

At that time,very little progress was made. Upon his return, the

project was again resumed and he very kindly made available the basic

ALGOL list procedures that appear here. Following the ideas of his

work in this field, a large portion of Chapter III was built into a

procedure. However, while it was obvious,~hat needed to be done (that

is, it was necessary to express the operations of substitution X(~j) and

and multiplication DX(~ j) . S in the coeffic ient space of t,he deri vati ve s

of X), the author had no suitable means of obtaining these quantities other

than actually laboriously car~ing out these expansions and extracting

the terms.

The author finally deCided, almost out of desperation, that there

must be some other way to obtain the needed quantities, and Butcher's

work with differentials seems to hold the key to the desired results.

However, in view of the work presented by Ceschino-Kuntzmann and that

of Professor DeVogelaere with which the author was familiar, it was

equally obvious that in order to arrive at usable results, it was

necessary to follow their lead and split the solution s = u + v where

u is a finite number of terms of the Taylor expansion of ~ and v is the

remaining infinite set of terms. This, together with the fact that we

wished to treat J)Px rather than Dx,along with our insistence in using

points from the past, caused much difficulty in obtaining a definition

for the differentials. However, with the aidaf a very systematic,

concise expression. for the Taylor's expansion of a vector valued function

and by restricting ourselves to Dx = X 0 x, an appropriate definition

was arrived at and out of this grew the work of Chapter II. This, how­

ever, turned out to present a global view to the parameter defining

equations. Once having seen how the pattern of generation was established

and how the proofs were to be constructed, it became an easy task to

develop the appropriate differentials and the corresponding harmonics for'

Chapter III.

We, thus, arrived at a position where instead of carrying out a

laborious expansion for a few terms and extracting the coefficients, we

could now define a basis, 'define the harmonics of interest (for all the

basis elements), and then p:tave that these expansions were those that

we wanted. Thus, the work of Chapter III has as its basis the later

work of Chapter II although, in a sense, it is more fundamental and is

more easily generali zed than that of th e other chapters.

Chapter IV arose because having once done the work of Chapter II

and the work of Chapter III dealing with' DPx = X 0 x, it seemed possible

to extend the- results of Chapter II to p-th order differential equations.

The two Chapters, II and IV, are redundant; one need only present

Chapter IV. However, the work of Chapter II was already completely done
, '

and it serves"as a good introduction to the quantities which we have ,

defined, the definitions of which are not obvious as given in Chapter IV.

The development of the results of Chapter IV, along with the ap-

plication of the results of Chapters II, III, and IV to known examples

lead to the restatement of the results in terms of error differentials

and error harmonics as presented in Chapter V. The simplicity of the

results when expressed in this form was an unexpected bonus; we were

simply seeking to equate our work to the examples of Butcher(4). In

fact, the results are so simple that we would never have found a basis

bad we started in this fashion.

The d:iirect connection that exist s between the work of Chapters III

and IV, though rather obvious once noted, went unnoticed for along time.

During this time, all the work of the various harmonics of Chapter IV

W1.S deveJoped and these quantities were tabulated and used on various

8

examples. We present these results even though they may seem somewhat

redundant. They have a significant place in our work and the relations

of these harmonics one to another can help serve as a check on the

validity of the presented results.

Since one of the principal aims of our work has been to present a

means by which schemes can be generated, we present in this work the

ALGOL 60 procedUre, RKMI, which is a direct reflection of the constructive

approach that has been developed in Chapter III. This procedure, as

built, should prove capable of obtaining the parameter defining

equations of generalized ~unge-~utta schemes with ~emory including the

first derivative DX. The decision to present this algorithm has lead

to the inclusion of Chapter VI and. Appertdices II and IV, all of which

are devoted to various apects of RKMI.

The original intent, \iwith respect to ex8.ni.ples, was to investigate

schemes pertaining to second order differential equations for which the

first derivative did not appear explicitly •. There seems to be good

prpmise of obtaining mdre~: effici ent or mar e accurate schemes for this

class of ;equations provided one uses some data from the past. The works

of R. DeVogelaere(5) and R. E. Scraton(6) give some irrlication of

this. However, this has not been done, principally because of the scope

of the results obtained. These schemes are certainly still of high

interest. However, we now have at our disposal the means of carrying

out a systematic investigation of a large class of schemes, but we do

not presently have the time for such a task.

Theref~re, a different set of illustrative examples has been pre­

sented.. We noticed that Butcher IS work(4) ,·With a slight modification,

furnishes examples of schemes that aretruely generalized RK schemes

9

with memory. In Chapter VII,~we present one classical example (the

fourth order RK process) that will serve as a familiar introduction to

how our results are applied. We then present four examples derived

from a class of schemes that are' the very,.simplest generalized RK,

processes with memory. These examples can be contrasted with those of .

Butcher and serve to illUstrate what can be done with our results •

. These schemes are, we believe, new and their characteristics and worth

have yet to be evaluated.

10

II. AN ANALYTIC DERIVATION OF GENERALIZED RUNGE-KUTTA METHODS FOR
SYSTEMS OF F.[RST ORDER DIFFERENTIAL EQUATIONS

In Chapter II, we treat the case of a system of first order,

ordinary differential equations written as Dx = X 0 x, x(a). = b, where

x E R ~ Rn and X Rn ~ Rn. Our principal aim in this chapter will be

to define a scheme, called a generalized Runge-Kutta scheme, for the

numerical solution of this problem and to derive the nonlinear equations

that define the parameters appearing in that scheme. This scheme is'

such that it will contain the Runge-Kutta and finite difference methods

as special cases and, more generally, any mixture of these methods.

11

In order to effect this derivation, we define a number of functions.

These are the approximations s. E R'~ Rn, the weighted differentials

W E R ~ .Rn , and the elementary differentials A E R ~ Rn. Along with

these functions, we also introduce the weight ed polynomials <I> , the

elementary polynOmials r, the polynomial weights -y, and the derivative

harmoni cs a.

Since the apprOximations S and the solution x are functions, we can

carry out a Taylor I s expansion using a common origin. Using Theorems 1

and 4, we show that the derivatives of S are expandable into a series

~ aiw where a are derivative harmonics. Using Theorems 2 and 5, we show

that the derivatives of the solution x can be written as ~ ai~ where

a. are a suitable subset of the derivative harmonics. The connection be­
l

tween these series is obtained from Theorem 3 which shows that W = <I>A •.

At this stage, it is possible to directly compare the series far S and x

and thus obtain the parameter defining equations, since <I> is a function

of the scheme parameters. It is, however, convenient to factor the

polynomials <I> = -yf, using Theorem 6, where the polynomial weights -yare

numbers and the elementary polynomials r consist entirely of scheme

parameters.

In the course of our analysis, it is ass,uni.ed that there is a lower

bound £ to the order of accuracy of the approximati ons S i obtained ~'

~ generalized Runge-Kutta scheme and this leads to further conditions

(Condi tion A) that the parameters must satisfy.

At the end of Chapter ~I, we collect together our results and pre-

sent the problem, the solution scheme, and the nonlinear equations that

define the parameters appearing in the solut ion scheme. These nonlinear

equations consist of two sets; the set associated,with Condition A

which arises from a lower bound on the accuracy of the approximations,

and the set associated with OonditionB which arises when we equate the

components of the Taylor's series development of x and the Taylor's

series development of the approximation ~ after the series have been re-

expressed in a common basis consisting of the elementary differentials A.

12

The results derived here are an extension of the work of Butcher(1) • ,

In his paper, Butcher treats the case of a system of first order dif­

ferential equations Dx = X 0 x, X E R -4 R~\ X E Rn
-4 Rn and using the

derivatives of X/ defines functions which he calls elementary differentials

which enable him to. cpmpare the Taylor's series of the true solution

x(ti) and the approximate solution~. The coefficients of the approxi-

mate solution lead to polynomials in terms of the parameters of the

method under consideration. In his work, he is able to define these

polynomials and their numerical coefficients in such a way that they

can be generated from the definitions without recourse to carrying out

the expansions. In effect, he has define~ a basis of a space in which
,',

both the solution and the approximation are contained and given a means

of generating their harmonies in this space. This: he has done for

Runge-Kutta methods. It is our intent to extend the se re sults to

methods that use information from ,previous integration steps. These

methods shall be called generalized Runge-Kutta type integration

methods. The derivation of tlie results will be a rather straight­

forward application of the Taylor's series expansion and it is, of

course, assumed that the function X has a sui table number of '

derivatives. The notation used will, be explained as it is intro-

duced.

The problem to be solved is stated as follows: Let X E Rn
,-7 Rn

be sufficiently differentiable and let it be desired to find th~

solution x E R -7 Rn of the system of first order ordinary differential

equations
'"i'

Dx=Xo x

(1)
ixCa) == -b.

It is, or course, well known that for such an initial value problem a

solution does exist locally and can be extended throughout an interval.

It is assumed here that the problem is well posed, that a solution does

exist and that it is desired to find an approximation Xi to the

solution x(ti). This approximation is to be a constructive one and

shall exist as a series of points in Rn. To effect the construction of

such an approximation, it is, however, convenient to stay in a function

space in order that the usual tools of analysis may be applied.

With this in mind, the following set of functions S E R -7 Rn is,

defined.

/

Definition 1:

S E

S =

u =

1) =

R~ Rn is an approximation if, and only if

u + n where

£
~

r=o

ex:>

~

r=£

rr
Drx(O)

r!

rr + 1

(r +l)!

g .. 1)
~J

+~
j

(r + 1) (Dr or)(O)

f. X 0 s.
~J

Note that u, 1), and or are all functions that map R ~ Rn, that

r is the identity function, ret) = t for t E R. Also, while gij and
r

f ij are, in general, undetermined parameters in R~ no more is specified

other than that l' inay (or may not) depend on the ;fndex . r. Defini ti on 1

is recursive in nature and does,' indeed, define a set of functions,

approximations, since for each choice of gijor.fis,there .is defined a

different function. More will be sl3.id about these IErameters shortly.

Now let ¢i := tit'·· I I: and denote for any function y

; ."'
y. =.y 0 ¢i. ,. ~ . . i·

\

There is then, associated to (2), t'he 'Set bf equations

£ rr
u~ = ~ Dr xi(O)
~ r! r=o

m ,-r + 1
TJi ~

J. (r + l)(If o~)(o) =
1'=1' (1' + I)!,

o~ .. '
~

j
g 'I) +
ij j

r
~ f ij X 0 S j
j

I

(3)

This ~ssentially amounts to evaluating each of the approximations at a
j .

14 '

sep~rate point ti and then requiring that there be a dependence in the

form ti = Bit. Thus, (3) are also referred to as approximations.

Actually, to be completely precise, more notation is needed for the

functions defined by (2) and then new symbols should be used in (3).

But this would only confuse the presentation and since it is not

needed to keep track of the particular function of the set,this has

not been done.

Writing out Si explicitly gives

Before proceeding further, the special case of Si == ui should be con­

sidered. This implies that the quantity in the braces in (4) is

identically zero. Since, however, there is no guarantee that

r
it must be true that gij = fij= 0 in this instance. Thus, if it is

determined that S i
r

= ~, then gij and f ij are to be set identically

to zero.

If in (4) the following choice at' parameter's is made

then

00

u. + :E
1

which can be written as

= 0 for i :j:. j and- f:. = u.

Ir + 1

(r + 1)1

B.j(r + 1),
- 1

15

(4)

00

::: u(etI) + ~
r:::£ (r + l)!

On the other hand, ifDx X 0 x, then

00
e.r + 1

-x(e i) u(e i) +
l if(x x)(O) . ::: ~ 0

r:::£ (r + l)!
(6)

A comparison of (5) and (6) shows that

in this particular case. That (5) and (6) do, indeed, produce (7) can

be proved inductively by noting that t and x have the same derivatives

at zero provided the order is less than £ + -1. Their higher order

derivatives can be expressed in terms of those of lower order. Thus,

the derivatives are the same for all orders at 0 and, hence, they have

the same Taylor's series at zero. We state these resul·ts as

Property 1: If t. is an approximation defined by (3) and if
l

x is a solution of Dx -::: X 0 x, then

t i (1) ::: t (e i) ::: x(e i) p-rovided gij == 0 and

r r
f ij 0, i ~ j, fii ::: ei/(r + 1).

That is, with a suitable choice of parameters, the approximation reduces

to the solution. Or to put it another way, the solution exists in the

set of approximations; that is, the solution is an approximation.

If, on the other hand, the parameters are chosen with g. . E R
lJ

-yo

and fij ::: a ij E R independent of r; then t i can be written as

00 Ir+l
ti ~ {L: r

+L: Dr(X 0 ~ j)} (0) . ::: ui + : gij D Tlj a ..
r:::£ - r! j I j lJ

(8)

16

However,

where

and

00

= .6
r=£
£-1

R. = .6
J r=O

00

1') = .6
j

r=!
IY 1').,(0) •

J

This last relation is obtained from (3). Substituting these into (8)

gives

~; = u; + I {.6 g. . (~ J~ - u.) + .6 a.. (X 0 ~. - R.)}.
-'- -'- j J..J J j J..J J J

(10)

Up to now, nothing has been s.aid about the type of schemes that are

to be used in the solution of (1). As was previously mentioned, it is

desired to find points in Rn that are constructive approximations to the

solution x(ti) at the point ti in the interval of interest. There are

a large number of methods for step~by-step solution of ordinary dif-

ferential e<luations and no attempt is made here to cover all of tl'em.

A convenient reference to many such methods and a guide to literature

can be found in Ceschino-Kuntzmann(2). We shall here consider a class

of methods that is sufficiently large .to contain Runge-Kutta methods,

finite difference methods, and methods that can be considered as a

mixture or generalization of such methods.

In the following work, ~i will be considered to be an element of

the vector space Rn and since it is to be an approximation to x(ti)

where t. is in the interval of interest, it too will be referred to as
J..

an approximation. There should be no confusion with the previously de-

fined approxim~tions since the former are functions and the latter are

points in a vector space. A generalized Runge-Kutta type scheme is now

defined as follows:

Definition 2: The approximation ;i is said to be obtained by

means of ~ generalized Runge-Kutta type scheme if, and only if

; i = 2: g, , ;, + 2: a, , X(;,),
, ~J J J' ~J J J.

(11)

where X E Rn -') Rn is that of .(1): g a E R, . and ; J' is an approxima-, ij' ij

tion obtained in the same fashion.

In short, any scheme which .createsapproximations using a linear

combination of function values and other approximations is called a

generalized R. K. scheme. Obviously, any Runge-Kutta method or fin:i.te

difference method can be written in this fashion; equally obvious is

the fact that there are methods that use higher order derivatives that

are not included> here • However, it is not our intent to try and cover

all known m~thods and the class defined by (11) is sufficient large to

be .of interest.

A few words are in order conqerning the interpretation of (11).

As is usually the case, it is assumed that the :solution is desired in

some interval and that this interval has been subdivided into discrete

18

points tie It is also implied that ;i will be an approximation to x(ti).

At the moment, nothing further is said about trie orderin& of the point s or

the starting . .0f the method. These details are discussed iIi Chapter III

where schemes of a more general nature are defined. They are not needed

for the present work and,. thus, are omitted. The schemes defined here

are contained itl the class of schemes discussed in Chapter III and it

is implicitly assumed that the details presented there concerning the

actual ordering of the approximations are to also be used

here. The present aim is to show how the parameters g;J.' a .. are to be ... lJ .

obtained so thats i ' ",=,x(ti).

Equation (11) can be rewritten as

~i ::: u(e i) +2:: gij [S j - u(e .)] + 2:: a .. [X(S) - If.]
j J j lJ . J

(12)
+ L: g. . u(e j) + 2::, a .. R. - u(G .).

j lJ j lJ J . l

In most schemes, it is possible to state that for all approximations Si

there is a lowest order of accuracy. That is, ~i ::: x(tJ + .0(112+1) where .e

has some lower bound. This means that the value Si must equal the

Taylor's expansion u(e i) + •••• Thus, it, is reasonable to require that

this approximation can be written as

S·· ::: u(e.) +L: gij [S j - u(e-.)] +2:: a .. [xC ~ .) - Rj] (13) l l
j J j ,lJ J

with 2:: g .. u(e.) - 2:: a .. R. - u(e i) = o· (13')
j lJ J j lJ J

Equation (12) is an identity. The requirement that (13') be satisfied

. ~J.) _
forces ~i ::: x(t i) + o(li)provided x(~ j - Rj is of high enough order.

This will be the case if Rj :::R/l) where Rj is defined by (9). It is'

noW' easily seen that if gij' aij satisfy (13'), then from (10) and (13)

comes ,the fact that S . (1) ::: ~ .•
l l

We state this as

Property. 2: If S i E R -7 Rn is an approximation defined by (3)

and if ~i is an approximation obtained by means of a generalized R. K.

scheme, then S . (1) = ~. provided the parameters g .. , f~. :::: ~.. common
. l l lJ lJ - lJ

to both approximations satisfy (13') which are referred to as the conditions

on the par8.1net.ers •. '

Fro}.'ertiet1 1 nnd. ') (;how that, in t11et~et of ~1pproximations S i' there

exist approximations that are the solution x and there exist approxi-

illations that have the value of approximations obtained constructively.

It is thus possible to work with these functions in determining the

parameters of the scheme.

The problem of finding a correct scheme can be stated as follows:

Let x E R ~ Rn be the solution of the differential equation Dx = X 0 x.

Let Si(l) be the desired approximation. Choose an origin and write the

Taylor's expansion of x and S. as
1

x(e.)
1

20

(14)
oci

Si(l) = ui(l) + L:
r=£

(l{+l

(r-t-l) !

Choose the parameters that appear in S. so that these two ser ies match
. 1

to a given order.

It is thus seen that the principal problem is the calculation of

the derivatives of S. and of X ox in such a fashion that it is possible
1

to compare the series. Theref'ore, a common basis rrust. be found for these

two series. Equation (5) shows that it is only necessary to calculate the

derivatives of X 0 Sl' since a proper choice of g .. and f~. will give the lJ lJ

expansion of x(e i) = xi(l). We now proceed to construct an expansion

formuia that will allow the derivation of the necessary equations.

The derivatives nrS i are to be calculated for r ~ i + 1. Equation

(3) shows that this is equivalent to calculating ff 11 i for those values

of r. That is, lY+~.(O) = Dr +l 11.(0) = (r + 1) if 0~(0). Thus, the
1 1 1

derivatives of o~ will first b'e calculated. In the follOWing, the super":'.
1

scrip on 0i and fl' . will be dropped; however I it is necessary to remember
J '.

the:i.r d.ependence, particularly if the sUIlJmation indices are changed.

21

By definition O. = Z g .. Tl. + Z f .. X 0 t.
l j lJ J j lJ J

which leads to*

0l· = Z g .. Tl . + Z f -iJ. X 0 (u. + Tl .) . lJ J J J
J J (15)

o.=Zg .. T].+Zf .. [XOU.+ ~
l . j lJ J j lJ J s=l

~,(TL N X 0 u·)T]J·N ••. T] 'N ~.I.
. -11J1 ··· s J .. 1 J J

Differentiate (15) to obtain

(r) (i 1) (ir - l\ where a. -.. = . i i'" i).
rll···ls 1 2 s,

However, Dr+l Tj i (0) = (r + 1) DrO i (0)

as ff+ ~ . (0) == Z (r + 1) f~. Dr (X 0 u.) (0) +
l j lJ J

(16)

so that (16) can be written

OJ [1 .
Z .. -, Z··· ~ a . - . s.. . rll"'l s=l II lS S

~(r + 1) f~j Dr-il(~l •.• Ns X 0 uj)(O) • D
il

-
i2

TljNl(O)."
J

DiST] .N (()~ + 2;(r + 1) g .. DrT] .(0).
J S 1 J lJ J

(16')

Before proceeding further, it is convenient to note that the range of the

. summation indices can be materially reduced. From (3) DrT} i(0) = 0

for r < R. + 1.. Thus, one can write that

i l - i >.R. + 1 2

i2 - i3·:;:: R. + 1

which enables the follOWing limit s to be set

~X-See Appendix V

o .~ s ~ r + (i. -/- 1)

i l ~ r, i2 ~ i l - (£ -/- 1), i3

(£ -I- 1) .

~ i2 - (£ . -I- 1), ..• , i s ~ i
s-l

The limits defined in (i7) will be considered as the normal range. of

22

: summation for (16') whe~ evaluating DrTj i (0). We now proceed to define

functions W· E R ~ Rn , A E R ~ Rn and polynomials <P in a fashion similar

to Butcher(l). While the work of Butcher was inspirational in suggesting

this approach, it is the expansion represent ed by (16') that has suggeste d

how to actually define these quanti ties arid (16 I) will be used repeatedly

to derive the required results.

We now proceed to define functions W E R ~ Rn of given rank R,

order r, degree s where R .~. r ~. i. -I-lare integers and the integer s

lies in the range 0 ~ s ~ (r - 1) + (£ -I- 1). The division symbol T

is used to indicate an integer divide. The functions are called weighted

differentials and it is important. to note. that for a given rank R, order

r, degree s there may correspond many of these functions ..

Definition 3: The weighted differentials of rank R, order r,

degree s = 0 with R = r are defined to be

W. = 2.: R f
R- l

1 j ij

W. is a weighted differential of rank R, order r, degree s if
1

where W. is a Weighted differeritial of rank R - 1, order r, degree s,
J

or if

(18)

(19)

where

and

. R-l
Wi = L: R f ..

j lJ

R = ro +

x 0

Rl + + Rs + 1

r = order of Wei), R. = rank
i jNi l

of W(i) •
jNi

The degree s is bounded by 0 ~ s ~ (r - 1) + (£ + 1), f and g are

elements of the real line Rl.

23

(20)

Since the parameters f ij and gij are in no way restricted in. the

definition, there will correspond for each choice of these parameters and

their associated summation ranges a set of weighted differentials. How-

ever, iri practice, the set that will be of intere'st will be those weighted

differentials for which the parameters f and g are those of the generalized

R. K. scheme under consideration.

The actual generation of the set of weighted differentials can be

carried out in many ways. We shall indicate one such pattern. Before

doing this, it is helpful to introduce some notation that will help

shorten the task of writing down the differentials. Define

E = L: R g ..
j lJ

C~ = .L: . R f~:l Dj +£ -l(X 0 u.)
J. jl lJl ... J l

C~ = L: R fR-l Dj -l(TL X 0

J j1 ijl -W1 ···Ns .

Using these operators (18), (19), (20) can be written as

Wi ::: CO , r ::: j + .£
j

Wi ::: EWj

(21)

(18 I)

(19 I)

24

j - 1 (20')

It is possible to utilize this notation quite effectively in the

generation of the weighted differentials and their related quantities.

However, it is necessary to be careful since the associative law does . .
not necessarily apply to these quantities. Their use is described much

more fully in Appendix I. At the present time, we only indicate the

pattern that is used in generating the differentials.

The first weighted differerttial is taken to be that of lowest

order and rank, c~. There is now a choice of how to proceed. The order

can be kept fixed and the function of higher rank can be generated or

the rank can be set equal to the order and functions of higher order,

with the rank equal to the order, can be generated, or the process can

be carried out as a mixture of the above two patterns. In any case,

the differentials are considered as arranged in a matrix fashion ordered

with respect to rankR and order r. This can be indicated as r rR where

.the entry r rR has order r:, rank.R. We note that E raises the rank while

leaving the order along with the degree unchanged. Th~ operator cj

creates a differential of degree 0 of given rank and order, these

latter being equal. While the operator cj raises the rank, order, and

degree. The ordering of" the sets of functions with like rank, order,

and degree is not uniQue. In fact, to do this in general requires some

careful thought to be sure all functions are obtained. The order that

is established by construction in the tables in Appendix I is to hold

for all our work. However, it will becevidentthat we have not given

a unique means for continuing this ordering to lar§ersets of functions

than have been used here. If these quantities are generated by an algorithm;

then such a pattern must be established. For the present derivation

25

the actual orderiilG of the functiOll' is of nG consequence j it is simply

asslUiled that ti::ere is some sequential positioning that is 'well established.

The reader s!:tould refer' to Table I of Appendix I and the description

of that table given there for more details on how to generate these

quantities. However, for convenience, a short table is presented here

to show how the functions can be arranged:

TABLE I

A B C 'I/J R-.e de!,. .R-.e
~-

CO
,c

ECO I 1 ° ° 1 1

2
C~

3 0
2 2 0 1 EC2

C~o EC:teO 1 ° 2 2 I 2 1 1 CIECI

3 0 3
,

CO If
EeO

3 3
EcreO

3 1 4
] CIECO 3 C21/J ° 2 1 2 I
1 EC1eO CIECO 3 3 1 5 el?fJl 1 2 1 2

3 3 1 6
1

Ci?/J2
1)2 0

E(C1 Cl CiECic~ (Cb2EC~

where A;:: R - P.

B = r - P.

'.
C = s

'I/J = sequential count of functions with R = r

def. = definition of the function.

To illustrate the proper interpretation of these entries, consider

one such entry

where Ri P. + i. This points out that the notation in. actuality does not

..

26

carry enough information-since it is necessary to know the rank of the
I

factors, here Ri • ~However, it is sufficient for the purpose of establish-.

ing a pattern of generation as we have used it. Obviously, this informa-

tion must be carried along if the functions are generated by an algorithm.·

It is omitted here for the sake of clarity in presenting the tables.

The abbreviated notation of Butcher(J.) will be used f'orthe dif-"

ferentials: Thus, (18) and (20) will be written as

Wi = (ro) (18")

w· = J. (r 0;- Wl···Ws-) (19")

where

R 1 + r ~ + Rl + + Rs

r = 1 +r 0 + rl + ..• + r s·

If there are repeated factors in the Wi' then they will be collected to-

gether as

with

While the weighted differentials have been defined as elements of

R ~ Rn and, thus, can be differentiated and can have their properties

investigated; this will not be done. Instead, we proceed directly to

obtain the desired results in terms of the functions -'1)'1 which are the

functions whose derivatives we wish to calculate. In all cases, it is

assumed that the derivatives are to be calculated for r .. ~ £ + 1 since

'the results are kri.0wn below that order to be identically zero.

27

Theorem 1

L: 0: W. (j) (0), SR+l· = (j I W(j) has rank R + I}.
jESR+l j ~

That is, the derivatives of order R + 1 of the function ~i evaluated

at ° can be expanded into the set of weighted differentials of rank R + 1.

Proof: If R = £ + 1, then from (16') is obtained

D(£+l)~i(O) = ~(£ + 1) f~j D£(X 0 uj)(O). Thus, the theorem is

.£
certainly true for R = £ + 1, the coefficient ex being CX

J
, = (£ + 1) f ..•

~J

An examination of (16') will show that the functions DR+l~. (0) of rank
~

R + 1 are obtained from those of lower order. The results of the theorem

follow by induction on R. If there is any doubt about obtainin6 all the

differentials defined in Definition 3, then a careful examination of the

. index range should convince one that no differentials are left out and

that no new ones are obtained through the use of (16').

Next will be defined a set of functions A E R ~Rn. These functions

will be called differentials of order r. These are, in fact, a subset

of the weighted differentials and can be obtained by setting gij =0,
R-l 1 f = R' and 8i = 1. It is, however, convenient to have a separate
ij

defini tion and notation for these functions since they "rill serve as a

basis for the expansions which are to be compared when determinin~ the

parrufreters of a particular generalized R. K. scheme. These functions are

defined as follows:

Definition 4:

The only elementary differential of order r, degree s = ° is
ro .

A = D (X 0 u) ,r = r 0 +·1 • (24)

A is an elementary differential of order r degree s if, and only if

~. 28

(25)

,
where r = 1 + ro + rl + ••• + rs

with rn = order of Aw' The degree s is bounded by ° ~ s ~ (r - 1) + (i + 1).
n

Again, it is assumed that r ~ i + L It .should be noted that if

~r = (Wi) where Wi are of order r, then there exists a one-to-one cor­

respondence between the sets~r and the functions Ar of order r. In fact,

if g .. == 0, then there exists a one-to-one correspondence between Wi and A
~J

since for this particular choice of gij all the Wi have equal rank and order.

With reg~d to the A, we have the following theorem:

Theorem. 2:

Let x be a solution of Dx = X 0 x. Then

Dr+iX(O) ':;' .. 2: <1j ~(j)(O) , Sr+l = {j IA(j) has order r + lJ.
'JES 1 " r+

That is the derivative of order r + 1 is expandable into the set of dif-

ferentiaJ.s of order r + 1 and all <1 J are greater than zero.

Proof: In (i6'), choose g = ° f,r - ei. This yiields ij - , ij - r+l

Dr +l , _ er+l'Dr+l _ er +l r+l():>'. 1 ~ . ('L. .
1)i - i' 1) - i D X 0 u' + s s! 1.1" '~s' "'T~l" '~s

e r+l D1-il(D .) il-is is
N N X 0 u .• D 1)Nl' • ~D 1) Ns •

i 1'" s

r+l Cancele. ,evaluate at 0, and do an inductive proof on the order r to
~

obtain the desired results.

(26)

It is convenient to have a short band, notation for the differentials

A and we shall for these functions interpret the Ci operater as j

C~ Dj-l(X)
J = Tt._ N °u·.

-~l'" s

Usin~~ this, notation, (24) and (25) can be written as

..

cj . ,::Co = j + I- - 1

c~ k_ •••• k
J -N

l
, .. -Ns

It is also usef'ul to have a brace notation

. ()Ul ua A = fro) Al .. ·As } = (ro ' Al ••• (A a) },

where s
a

= 2.: u.
i=l 1

a
r=l+r+2.:ur.

o i=l i i

Next to be defined are the weighted polynomials ¢ of rank R,

29

(24')

(25')

(28)

order r, deGree s. We shall establish a one-to-one correspondence between

the ¢ and W according to ralli{, order, degree, and sequential position

within the set of a given rank, order, and degree. That is, the pattern

of generation for ¢ andW is to be identical.

Definition 5:

The we~ghted polynomials¢ of· rank R, order r, degree s o with

R = r are defined to be:

R-l r-l
¢ i = j R f ij e j . (29) .

¢ i is a weighted polynomial of rank R, order r, degree s if

where ¢ j i.s a weighted polynomial of rank R - l,order r, degree s, or if

where r =

R ::.::

I"jtd r. .-
1

Hi .-

R-l
¢.; ="'Rf ... J ij

1 + ro + r l +

1 + ro + Rl +

order cP.
lj

ralli~ tP i ·j •
~

(31)

+ r6

+ Rs

30

The degTee s is bounded by 0 ~ s ~ (r - 1) + (l + 1), i' and bare

elements of the real line.

The reader will note .that Definition 3 and Definition 5 are identical

in form. We haye' simply factored out the coefficients of the derivatives.

\-1i th regard to shorthand notation, the following will be used:

c~
J

c~
J

E =

=

=

R",l j+l-l
.L1Rf .. e.
Jll.Jl J'l

~ R 1.-:-1 e~-l
jl' l.jl J l

~ R g
jl' ijl

The bracket notation used is

where s =

<1:> = fro; <1:>l ... <1:>S] = [ro; (<1:>l)ul ···(<1:>s)uS
]

(j

~ u .•
i=l l.

(32)

Using the weighted differential W, the weighted polynomial <1:>, and.

the elementary differential A, it is pOssible to write the Taylor's series

~~ for x i and that of .~:i. in .. terms of a common basis. In order. to accomplish

this, the following results are needed which are stated below as

Theorem 3:

Let A = fro; Al •• ;~.As} be of order r = 1 + ro + rl + ••• + rs

where r. = order of Ai • Let W E 'JI-i: = { ~ lof order r, rank R ~ r}.
l.

Let <1:> E <1:> r = {<1:>1 of order r, rank R ~ r}. Then

W =<1:> A (34).

where <1:> and W are in 1 - 1 correspond~nce according to order, rank, degree,

and sequential positio~ in the set of given order and rank. That is

~ A· • . ' l.

31

Proof': These results follow directly from the definition of the,

various quantities. Equations (18),(24), ,and (29) give

R-l ro R-l ro r OI
W :: ~ R f" D (X 0 uJ') = ~ R f 'j e, D \X 0 u) = ,<P ,A.

i J ~J j ~ J ~

Tbus for R = r, s = 0, th,e results are true. If this factorization holds

for rank Rl - 1, order r, degree s, then it is true also for rarlk R, order

r, degree s since from (19) and (30) are obtained Wi = 2i R gij <P j A = <PIA.

A similar treatment of (20) and (31) will complete the proof.

Having established this correspondence between Wand A, it is now

possible to write the derivatives of TJ i (0) in terms of A rather than W. '

Let wi j) [R, 1'J be the jth function Wi of rank R j order r. Then from'

Theorem 1

(35)

,,,here j E SR = {j I wi j) has rank R, order r). This can be rewritten as

nRTJ,(O) =,~ ~ ;~S oj <P~j)[R, rJ A (0)(36)
~ r=i. +1 a E Sr J E R Rr ~ a '

where Sr :: fa 1Aa has order, r) • What is needed is an explicit formula
j

for the coefficient, ORr' There can be obtained rather laboriously from

(16'). However, instead of calculating these coefficients one by one

from (16'), it is possible to obtain a recursive formula for their repre-,

sentation. We shall do this shortly. In what follows, it will always

, be assumed that the functions are evaluated at the origin. However, in

writing down the results this will not be indicated. The,expansion (35)

is carried out in two steps. First, coefficien'il3 called derivative harmonics

are defined and then it is proved that thes e are the coefficier..ts of (35).

Tnese coefficients are defined in

32

Definition 6:

The coefficient a is a derivative harmonic of rank R, order r,

degree s = 0 with r = R if, and only if

a = 1

a is a derivative harmonic of rank R, order r, degree s if

(38)

where o:t. is a derivative harmonic of rank R - 1, order r, degree s, .or if

a= 1

where CXj is a derivative harmonic of rank Rj' order r j , and

a
R = 1 + i~l u i Ri

a
r 1 + 2:. u.

i=1 ~
r i

s £ ui 0 ~ r ~ (r - 1) 4- (£ + 1) 0, i=l

It is assumed. that the pattern of generation of the a and the W

is identical and that this pattern establishes a 1 - 1 correspondence

(39) .

between a and I{ according to rank, order, degree, and seq,uelitial position

within a i:!et of given rank and order.

It is now possible to state

Theorem 4:
R R j (j)

D 1']. = 2: jE~R a;Rr Wi [R, r] where ~ is the derivative
~ r=£+l

harmonic corresponding to wP) That is, the coefficients of Theorem 1

are the derivative harmonics of Definition 6.

Proof: Substitute the expansion (35) into both sides of (16') and

collect terms of the function Wi.' At the moment CY~~ are riot ass1.Ul1ed to ."

be d0ri\rative harmonics; simply coefficients as yet to be determined.

Carrying out this substitution yields

~. = (R - 1) + ~
~

1
s! s

+ E (
R-l " jl (jl)[
~ .. L.. ex· W R - 1, r

l
]).

n+l . E S R-l,111' rl=.c. Jl 1 '.

The general term on the left is either

or

Noting that E and (j) are linear operators, we obtain from the first term

of ~i the coefficient of terms of degree zero of equal rank and order.

They are always 1 and, \hus, are the deri vati ve harmoni cs of degree zero

of equal' rank and order.' From the last term are obtained the

coefficients corresponding to E(W) and these are seen to be unchanged.

Hence, the derivative harmonics specified by (38) are the correct

33

coefficients. It is now ,necessary to sort out the coefficients corresponding,

The general term on the right hand si de is sele cted by placing·

ji = qi 1
i = 1. .. s

ri ri J
i l = Rl + ~ + ... + Rs

12 = R2 + .. . + R ,s

(40)

34

Thus, to each distinct permutation of the triplet (qi' Hi' r i) there

corresponds a valid index set and conversely. The coefficient for any

such choice is

when

(R- I)!
(ro)!

has been used. There are s!

(Ul)!· .. (ua)!

1
s!

(R-l)! 1

(R-l-il) (il -i2) ! (is) I .

such distinct permutations

and they all have the same coefficient. Thus, the coefficient of

the gener,al term is

(R - I)! 1
rot (Ul)!·· .(ua)!

To complete the identification with the deri vati ve harn:anics of (39)

(41)

it is only necessary to affix the rank of W(jl) to ~i and it is seen
. iri

that by induction all of our a's are derivative harmonics.

The same theorem is true for the derivatives of x. Thus,

. Theqrem 5:

'where: if .

r == 1 + ro +
a

s - L: u.
i=l 1.

then

a
L: u.r.

i==l 11

?; 1

,

S == {alA has order r}
r

r ?; £ + 1

(42)

35

a and for s = 0, arr = 1. That is, the coefficients of Theorem 2 are

derivative harmonics of equal rank and order. This implicitly assUll'es

that the pattern of generation of Wand A is identical.

Proof: Note that x is derivable from S and note that the

derivative harmonics are indepe~dent of i and of f ij or gij. The results

follow immediately from· Theorem 4; or else, one could proceed as with

the previous theorem starting from (26).

With regard to shorthand notation for the derivative harmonics,

it is convenient to define

0
Cj = 1-

(R-lt
ul lla

s 1 [(R~)!] ... [(R~)!] (44) C. = (j-l ! (ul) ! •.• (ua) ! J

,
E = l~

which will prove useful in defining the pattern of construction of these

quantities. By now. it should be evident that one need only give the

pattern of constructing the generic quantity~ by means of the operators

C and E. Then, upon properly interpreting these operators, the various

quantities p~eviously defined will be obtained.

With the use of the above results it is possible to write the

expansions for S and x in a form that allows a direct comparison of the

terms. For s i' we have

00 rR R j (j) r] A(a) s· = ui + L; L; L;. L; aRr <l>i [R, (45) ·1 R=£+l R! r=£+l jESR 8£ Sr

where SR = { j I <l> ~ j) . has rank R, order r)
1

Sr = {aIA(a) has order rJ

and it is implicitly assumed that the correspondence ¢i ~Wi ~ A

mentioned earlier has been maintained. In short, for each rank Rand

orderr, we sum over all the differentials Wi of that rank and order.

However, each differential can be factored into a weighted polynomial of

like rank and order times an elementary differential of lfke order. This
i .

factorization is carried out. We now proceed to factor out the elementa~

differentia1s and reverse the order of summation to obtain

00

ui + 2: 2:
r=i+l aESr

For the solution x" we have

00
I

r
A(a) 2: 2: a

x = u+ arr r=£+l r! aESr ,
00 I rr aa t A(a) . x ::;: u+ 2: 2:

r=£+l aESr
r! rr

Using .< 46) and (47), it is possible to write the nonlinear

parameter defining eQuations of a generalized R.K. method as

for r =

a E

r
00 I 2: c4, ¢ ~ j)[R,

8i
2:

R!
rJ r! R=r jE~ r l ,

£ + 1, £+ 2 ••• co

Sr = (aIA,h~B order r)

("I¢(j)[R rJ ~ A(a)
J i '

of order r}.

a arr

(46)

. (48)

The error terms for the local truncation error are, of course, given by

the difference of the left and right hand side of (48).

EQuation (48) allows the parameter defining eQuations corresponding

to any scheme under investigation to be written down. However, it is

possible to factor further these eQuations. The weighted polyno'1lials¢i

have a coefficient associated with them that can be factored out and ir,

practice it is easier to obtain and use these equations if we instead

use elementary polynomials r~j)[R, rJ containing no numerical factors

and numerical coefficients ~R(j). The definitions of these quantities
r

follows the same pattern as was previously used and they are given below

as

Definition 7: The elementary polynomials r of rank R, order r,

degree s = 0 with R = r,are defined to be

R-l
= 2: f ij

j

r. is an elementary polynomial of rank R, order r, degree sif
l

r. = 2: g .. r .
l . lJ J

J

(49)

(50)

where r. is an elementary polynomial of rank R - 1, order r, degree s,
J

or if

(51)

where r = 1 + ro + r l + + rs

R = 1 + ro + Rl + + Rs

and r. order of r ..
l lJ

Ri = rank of r ij -

Defini tion 8: The coeffi cient ~ is, a polynomial' weight of rank R,

order r, degree s = 0 with R = r if, and only if

~ = R. , (52)

Y is a polynomial weight of rank R, order r, degree s if

37

where)'l is a polynomial weight of rank R - 1, order r, degree s, or if

where r = 1 + ro + rl + + rs

R = 1 + ro + Rl + +- Rs

and r i = order of)Ii

Ri = rank of)'i·

Wi th respect .to the C and E operators, we have the following for

rand)" respectiveiy

o R-l j+£-i
C. =L: f .. e.

J . lJl J l ~
s R-l e· j - l

C =L: f.. .
j jl lJ1 Jl

E = L: g ..
j lJ

c~ = R • . J

E = Roo

The factorization of <P is carried out by means of

. Theorem 6:

The weighted polynomial <P (~) [R, r] of rank R, order r, degree s . . 1

can be written as

. where r(j) [R,r] is the elementary polynomial of rank R, order r, degree
. i

s, sequential position j, and),j is the polynomial weight of rank R,
Rr

order r, degree s, sequential position j. It is implicitly. assumed'that

. q" r, and'Y are all generated from the same pattern.

Proof: The proof is by induction using the definition of q" r,

and 'Y.

This theorem allows (48) to be rewritten as follows
j .

i. () SJ
:6 jRr r ~ [R, r] = i eta
jESR~r R! 1 r! rr

00

R=r

for r = £ + 1, £ + 2, ... , 00

a E Sr = {alA has order r}

. ~ = {jlr(~)[R, r] -7q,(~)[R, r] -7 A(j) of order r}

where we shall refer to the coefficients ~ as the Taylor coeffiCients,
R'

the ~r as derivative harmonics (harmonic~), the 'Y~r as elementary.

weights (weights y, and the r. as elementary polynomials (polynomials).
1

In Appendix I, the harmonics are tabulated in Table II, the weights

39

in Table III, and the polynomials in Table IV. These tables are described

in that appendix and their use is illustrated by means of examples in our

subsequent work in Chapter VII, and will not be explained here. However,

we note that having selected a generalized R.K. method, the nonlinear

parameter defining equations can easily be obtained by simply looking up

the quantities in (58) and writing down their linear combination.

In deriving the results, i t'was assumed that the conditions

stated in (13 I) hold. These conditions constitute part of the system

of equations that the paramet·ers must satisfy and need to be written out

explictly. For r < £

r+l . r . r
D x(O) = D (X 0 (u + v»(O) = D (X 0 u)(O)

40

Substituting these results into (13') 1eads to,

1 1 er +1
- • gij j

2: g .. x(0) + 2: 2: () ff(X 0 u)(0)
. ~J . r 0 r + 1. !
J' J =

(60)
1-1 er:1-1 e~+l

+ 2: 2: 0: .. -ll nr(X o u)(O) - x(O) ,.; 2: ~ Dr(X 0 u)(O} ~ O.
j r=O ~J r! r=O (r+l)!

Collecting terms in (60) and remembering that the validity of this equa~ion

f'or all f'unctions X implies that the co ef'f'i cients are separately zero,

leads to the desired conditions.

In order that the results be easily accessible, we collect and

summarize them below:

Problem

Scheme

Condition A

Dx ~ X 0 x, x(a) = b

So = 2: g. . L + 2: a4 J. xC ~ .) , i, j E S = {O, ••• , e x q}
. ~ j ~J . J j J

~ i -' u(e i) = O(hi + 1)

f'or all i leads to

2: gi. - 1 = 0
j J

er +l er. e r +l
~ i 2: g.. + 2: a. j -ll - ...--~_ = 0

j ~ J (r+ 1) ! j ~ r! (r+ 1) !

r = 0, 1, ... , 1 - 1, i E S .

(61)

. Condition B~i -'u(e i) = O(hm) , i = io .E S leads to

00
j

2: j'YRr

jE 8:R CXRr R!
(62)

f'or r = i + 1, 1 + 2, ... , m - 1

41

R-l
where in the elementary' 'polynomials f ij = a ij for constructed approxi-

mations. F t '. "t'· fR-l 0t. fR-l or exac approx1.ma 1. ons ..." =, , 1. I J, ..
1.J' 1.J

and g .. == O.
1.J

The actual use of these results is comparatively easy once they

have been tabuiated in a general form. The real problem is to be quite

precise in knowing what the scheme is and to understand in what sense

one is asking for parameters. That there is an interpretation problem

can easily be shown by means of a simple example. Consider the scheme

In the use of the results, values for gli' f li , and ~i' f2i must be

supplied. Usually, ~l and ~2 are considered as exact approximationsj

that is, x(81), x(82) and then the parameters gli' g2i' fli' f2i are

those which make Sl (1) = Xl (1) and S2(1) = X2(1). However, the results

are not limited to such an interpretation. ~l and ~2 could be considered

as constructed approximations and, in that case, fli and g2i are equal,

respectively, to fOi,gOi; and the results give the error after two

st eps. What is essential for the present development is that some of the

points be considered as exact approximations or else the infinite sum
00

L: will be just that ,;,;.:. infinite. Otherwise, it is self-limiting and
R=r
in reality a finite, sum.

It also becomes apparent upon use of these results that the origin

has never been ~ecified, but must be specified to determine 8 i . Naturally,

the results should not be origin dependent. That this is true is shown

rather e~sily for the condition (61). In fact, it turns out that the

equations associated with degree s = 0 are the same ones obtained if r

is permitted to increase to m - 1 in (61). That is, the equations (61)

for r ::: .e, p, + 1, ... , m- 1 are the equations of degree s = 0 • Thus,

· 42

it can be shown that for any value of r(61) is origin independent. We

state ·this as

Theorem 7:

The solution to the system of equations (61) for a given arbitrary

r is origin independent.

Proof': Let r be given and let (61) possess a solUtion 90 , e l , ., .•. ,

e i , •.. . Choose a reference e, say eO. , Any e can be expressed as

e. = 8 + o. when o. is a constant. Now eo = eo(t) is a function of where
l 0 l l

the origin is set. For r = m, the maximum valu~we have

Thus,

(m) r+l
e~ e:+l

e.
fee 0) =2: J +~ -.J.. .l = 0 r = m ···(r+l)l Cr+l)!

,

,
Df'(e) = 0

Djf(e)
o

f(m)(e o) == 0

j j
r!

(m-l)
f(eo) = 0

= 0 , all j < 00.

as a function of e =e (t) since the function value o 0

and all derivatives are zero. The results are obviously the same for

r < m; hence, the theorem follows;

Corollary: The principal error term for degree s = 0 is a cons tant '.

independent of the origin.

These result s are necessary to have since, in comparing the present work

with that of others, it may appear that the results disagree because for

higher order error terms the location of the origin enters into the

coefficients. It must be remembered that these coefficients multiply

derivatives that are evaluated at the selected origin.

For the general set of' equations, it is not so obvious that these

re suIts are actually independent of the choice of origin. However, all

results are polynomials in e. and since the result is not yet proved,
, ~

in genera~ it can be explicitly verified for each case by taking a

suitable number of. values fore and noting that a polynomial of d~gree o

n that has zeros are more than n + 1 points is the zero polynomial.

44

III. GENERALIZED' RKF' Ml!.THODS
BY MEANS OF SUCCESSIVE SUBSTITUTIONS

In Chapter III, we shall treat the case of a system of p-th order

ordinary differential equations written ,as

p _p-l 0
D x = X 0 s, s (a) = b ,s = (IT x, .•. , D x).

Our goal will be to define for these systems a generalized Runge-

Kutta-Frey (RKF) scheme that includes the previous definition when p =1,

and includes the methods using the derivatives of X as introduced by Frey,<7)

and to furnish a direct means by which the nonlinear parameter defining

equations may be obtained for a given scheme.

In order to arrive at the desired results, we introduce functions A;

called differentials, which reduce to the previously defined differentials

, when p = 1.

These differentials are used to establish a generic, pattern-

establishing set of symbols y which, when properly interpreted, furnish

all the quantities needed to obtain our results. Derivative harmonics

~i are derived from the generic y, Definition 4, and we show by means

of Theorem 4 that the derivatives of x can be written as ~ ~i ~. Using _ _ 1

the Taylor's series expansion of x, this result allows x to be written

as ~ ~i ~. We show, Theorem 6, that the operation of substitution X(s)
1

can be represented in the coefficient space of the differentials by

means of substitution harmonics a which are also derived from the generic

y. The operation df multiplicati'on DX(s) • S can also be represented in ,"

the same coefficient space by means of multiplication harmonics obtained

from the generic y,Theorem 7. It turns out that to use our results, we

must be able to make a change of basis in the space of differentials.

This is accomplished by means of the translation harmonics, ~(t),

Defini tion 9. These, too, are obtained from the generic y.

With the ability to multiply andsubstitu:te,wecan actually carry

out in a direct, manner the generation of any scheme and obtain its

representation in the coefficient spac'e of the differentials A. The

class ,of schemes that are treated is given in Definition 10 which defines

the generalized RKF scheme. The parameter defining equations are obtained

by equating the components of the exact solution ~(ei) and the corre..;

sponding approximation ~i'

Again, an assumption is made concerning the lower bound of the

accuracy of all approximations ~i and the resultant equations are

given as Theorem 10 where parameter conditions are stated.

These results are collected and summarized at the end of the

chapter whe~e we indicate how to actually go about obtaining the

parameter defining equations from the scheme definition.

In Chapter II, we developed a formalism which, in effect, generates

all the parameter defining equat ions for all the methods tha t are en­

compassed by Definition 2 of that chapter. When a particular scheme is

conSidered, this formalism actually sele cts from the complete set of

equations those that pertain to the chosen scheme. The approach might,

thus, be characterized as a global approach to the nonlirear parameter

defining equations associated with generalized R.K. schemes. It allows

us to seethe form of these equations and thereby 'enables us to discuss'

them; to investigate the various properties that they may have and, in

general, furnishes a means by which they can be treated analytically.

In short, it sets before us the whole collection of equations associated

with the schemes and in such a fashion that we can, if we wish, talk

about them mathematically and see what they are like.

In this chapter, we shall develop a formalism that is distinctly

'different from the previous work in that the results can be 'characterized

as local; that is, givert any scheme, we shall shawl haw this scheme, can be

used to generate the parameter defining equations associated with it.

These equations will, in essence, belong to that scheme. Given any

number of schemes, we can generate the equations associated with this

8et of schemes, but, again, they are only for this set. We have no

information as to what the equations may look like for a scheme that we

have not specified in detail. That is, we must specify the scheme to

obtain the equations and we will only have equations for those schemes

that have been written down; before we had all the equations, the

specification ofa scheme merely selected those which were of interest

to us. This approach is, thus, not in itself very helpful if one wishes

to understand the character of the equations associated with the genera­

lized schemes. However, it is a very straightforward way of obtaining

these equations and it will be seen that it can be extended rather simply

to more general methods than have been considered here; whereas, the

previous global approach is not as easily extendable. The present work

is patterned after the work of R. DeVogelaere(3) and since the desired

equations are derived by actually carrying out, in a very systematic

fashion, the substitutipns indicated by the scheme, we shall refer to

this as a successive ,substitution approach. The previous chapter treated

systems of first-order differential equations. We shall now consider

systems of p-;-th order differential equations. The treatment of higher

order differential equations requires that the notation used be more

precisely defined than was previously done and that the problem under

consideration be stated very precisely and explicitly.

46,

The general case of higher order differential equations can be
...

set forth as follows:

Let R be the real line, t E R. Define the sets

N = {a, 1, ... , n - l}, P = {a, 1, ... , P - l},

L = {a, 1, ... ,. m, ..• , nXp - l}

where m = i + 1m with i ~ N,k E P. Let Rn and RnXP be respectively

real nand nxp dimensional vector spaces. Define x E R --) Rn ,

X E RnXp -7 Rn, ; E R -7 RnXp. More explicitly, define

;(t) [in] = nP- l - k x(t) [i]

where k = m .. n, i = m - kXn. It is desired to solve the ordinary

differential equation initial value problem

nPx = X 0 ;

This can be written,more explicitly as
i,

where i, j E N, k E P

mEL, k = m .;- n

i=m-1o<n

tEE c R 3 ° E E.

(2)

(4)

In order to carry through the analysis, it is necessary to be

precise about which elements we are dealing with. We shall use the

following notation

'"

Using this notation, equation (4) can be written as

s(o) = ~.

It is also convenient to carry through the convention df summing on

double indices in the following manner. Let

KLN E (1. X N) ~ R;

that is, a matrix with values I<LN [m, i]. We write

WL [m](t) = WL(t) [ffi] =KLN [m] • TN(t) = i;N KLN [m, i]

• TN[iJ(t)

48

(6)

which is a consistent set of natation. We will, in general, make no

distinction between the various functions that can arise by permuting

the arguments; thus

W [m](t) = W(t) [m].

Also, the matrices

W [m, i] ::: W [m] [i]

will be considered equivalent. Of course, when both arguments of a

function come from an index set, then we have that, in general,

W 1m, i] i W [i, m].

Upper case subscripts are the sets defining the domain of

definition of the arguments. They are usually omitted when this domain

is the real line and usually included when the domain is an index set.

Lower case subscripts and all superscripts are indexing quantities;

ihat is, the names of the items. That is, we shallwritee~i) or e
iN

as convenient to indicate the i-th eN in the set of all eN" Whether or

not an element is a function defined on R or a vector space point in Rn

will be clear from the context or will be explicitly stated. In general,

we shall use

as all being equivalent ways of writing the solution x of (3). We have

used some of this natation in the work in Chapter II; however, for our

present work, it is necessary that these quantities be precisely defined

so that there will be no misinterpretation of' the results .

We proceed much as before. Now, however, our starting point is

the approximation. The work that follows is patterned after that of,

;Chapter II so that the results can be easily checked for the special

case p= 1 of' systems of first order dif'ferential equations in those

areas that._are common to both derivations. This also is a convenient

way of contrasting the differences.

Thus, in the case of generalized R. K. schemes for systems of

higher order differential equations, we again consider elements

~ i E RnxP which are approximations to ~ (ti) Yiiere ti is in' the';. interval of.

interest. A generalized R. K. scheme is now defined as:

Definition 1: The approximation ~i is said to be obtained by

means of ~ generalized R. K. scheme if, ,and only if

L = L: A(i,j) ~(j) +L: B(i,j) X(~.)
~ jIlLl L 1 . j. LN J N

(8)

where ~L E (L X L ~ R), Em E (L X N -7 R) and ~ j is an approximation

obtained in the same fashion.

In short, any scheme that uses a linear combination of approxi-:-

mations and of function values obtained at approximations is called

a generalized R. K. scheme. At the present time, we say nothing further

about the coefficient matrices A and B; however, it is obvious that a

"sensible" choice of non-zero coefficients must be made when specifying

a scheme. We shall say more about this later. It is easily seen from (8)
','

that Definition 2 of Chapter II is contained in our present definition.

As was previously done, equation~(8) can be rewritten as

(i,j) (j) . (i,j) (j)
~ i = u(e i) + L: A LL [~ L - u(e . J J + E B LN [X(~ ,) - R N]

j 1 1 J j J N

(j)
. - where R N will be specified later , and

with m = i + kn

i E N, k E P

I
r

DP-l-k+rx(O) [i]
r!

(10)

is the Taylor's expansion of the solution ~ up to and including the

p - 1 + £ derivative. If the assumption is made that there is a lower

bound £ for the lowest order of accuracy among the approximations ~i' .

then (9) which is an identity can be legitimately written as

(i,j) (j). (i,j) (j)]
~ i = u(e .) + L: A LL [~ L - u(e .)] + L: B LN [X(~ J') - R N

1 j 1 1 J j N
(11)

(i,j) (i,j) . (j)
L: ALL ~ (e.) + L: B LN R N - u(e i) = O.
j 1 1 J j

(11')

Equation (11) will be considered as the general farm of the scheme and

equation (11') will be considered as the conditions attached to the

parameters A and B. Later we shall add another term to (11) when the

s~heme is. generalizedj that can, however, be easily done once the

51

.results are established for (11). To actually get started, consider that

A(i,j)= O. Then (ll) reduces to
LL

~. = uce.) + L: BCLNi,j) [X(~.) - R(Nj)] .
1. , J N

.L j .
(i2)

Equation (12) includes all Runge-Kutta schemes and their generalization

to a scheme with memory,provided one uses only function evaluations from

the past. Equation (12) will be used in a very straightforward fashion

to obtain the desired equations. We simply choose an index value for

which the solution is desired, say t i , and evaluate Hti) = u(e i) + v(e i)

and evaluate the approximation S i = uce i) + 1) i by actually carrying out

the indicated substitution.

where

It is seen that the principal problem is to satisfy.

00

L:
r=k+l+1

DP-l-k+rX(O) [i] I
r

r!
(14) .

52

and r is maximUm in some sense. As was previously done, we must represent

. the derivatives of x and the expans:Lon of T]. = s.- u(e.) in the same
1 1 1

basis so that a direct term-by-term compartson can be made. From (~4)

+r
is seen that we need the derivatives rJ x= Dr (X 0 s) for r ~ £ •

This task is accomplished in the same manner as before.

Let
s = u + v. (15)

Then X 0 s- can be written as

00

X 0 s = X(u + v) = X 0 u + 2: ~ (Dr. ... L X 0 u)vi. ,vL
s=l s. 1 s 1'" s

.. (16)··

which when differentiated with respect to t ~ives rise to

53

(11)

where

We note that

, r < k + £ + 1.

De:fine
(18)

and
I(k) [m i] = 5
LN' in,i + kn

(19)

where 5 is the usual Kroneker delta.
.r

Then D vL can be written as.

(kl) [] r-k1-l
I LN . m~. • (20)

The substi tut:i,on o:f (18) and (20} into (1'7) yields

The range. of the indices inthe,ihdex sets of (21) is excessive.

By noting that r' ~ k + £ +1, which can also be written as k ~ r - £ - 1,

we see that it is possible to write

i l -i2 -£-1
-~

i 2 -:i3 -£:"1 is-£-l

~ ~

kl==O ~==O ks==O

which in turn implies that is ~ £ + 1, ... ,
s(£ + 1) ~ r. This allows us to write the summations using the i indices

as

Thus,

[i -(£+1)
~

i 2 ==(s-l)(£+l) i ==£+1 s

the normal range of the indices will be

0 ~ kl ~ i l - i2 - (£ + 1)

0 ~ ,~ ~ :1.2 - i3 - (£ + 2)

0 ~ ks ~ i s _
l - (£ + 1)

s(£ + 1) ~ .
~ 11 ~ r

(s - 1)(£ + 1) ~ ~ ~ i l - (£ + 1)

(£ + 1) ~ is ~ i - (£ + 1) , s-l

1 ~ s ~ r+ (£ + 1)

considered to be

(22)

This set of indices will be referred to as the normal index set. 'We note

that i l - i2 ranges from (£ + 1) to r and, hence, 0 ~ kl ~ r - (£ + 1).

However, kl E P is always implicitly assumed, so kl ~ P - 1 is to be

used should r-(£ + 1) be larger than p - 1. Similarly, ki E P is

implicitly assumed for all i == i, ... , s. In all our subsequent reference

55

to (21), we shall as'surile that the indices are in the normal index set.

Forrrrula (21) is analogous to (16') of Chapter II where we derived

results for the case of systems of first order equations. We shall again

proceed to define differentials of given order and degree and prove that

the derivatives of x evaluated at zero have expans ions into these functions

evaluated at zero. We will then derive explicity recursive formulae for

the coefficients of these expansions.

We now define a set of functions A E R ~ Rn
called differentials

of given order r and degree s where rand s are intege:tssuch that

r ~ p. + 1 and 0 ~ s ~ (r - 1) + (£ + 1).

Defini tion 2: A is a differential of order ~, degree s if; and

only if

where A(i) is a differential
,Ni ' ,

of order ri, r

k j E P and we define

(ro,kl,··· ,ks)
C [no' n NoNl .. oNs l'

o 0 0 , n] s

s
= 1 + ro + ~ (kj + rj),

j=l

ro (kl) (ks)
D(D X 0 u) [no] I [nl] 0 0 oI , [ns]

Llo 0 oLs No LINI LsNs

with P = {kl k, E P 1\ ~ [m] appears explicitly in X 0 s}. For degree 0,

C is to be interpreted as

It is necessary in the use of the differentials A to be sure that

all of these quanti tie s are actually identified and used. The questions

that ar ise are concerned mainly with the generation of the A and the

identification of distinct A. We shall treat the latter first since in

the generation of theSe quantities it is absolutely necessary to identify

only the distinct A.

The identification of distinct A reqUires that we be able to

determine the effect' of permuting the k' s and the A's in the definition

) of ~. Let us, consider the general term A"'; (ro' kl' ... , ks ; A(l) ... A(s)}
o

(ro,kl, •.. ,kg) (1) (s) '.
C N'N N ANl .•. AN where we have agaln employed the shortened

o 1'" s s '

notation of the braces 'after- the fashion of Butcher(1) . We wish to

consider what happens when we derive another function A =

(
_ _ ~(l) _(s) (_ _)

r o ' kl , ... , ks ' A .•. A'} where the se(l)kl , ... ,(~)iS a

permutation of (kh ... , ks) and the set (A , ... , A) is a '

permutation of (A(I), ... , A(s)). The question to be answered is the

following: When is A == A? Since any permutation can be arrived at by

the repeated permutation of only two items, we shall examine in detail

This can be written as

A = (0, kl'~; A (1) A (2)}

L: L:(Dr, L [nl + kl n][~ + ~n] X 0 u)N A~l)[nl] A~2)[~]
nl ~l 2 0 1 2

i

A = (0, ~, k
l

; A (1) A (2) 1 ==

L: L:(DL L [nl + ~n] [~ + kln]
(1) . A(2)[~] X 0 u)N AN [nl]

nl ~ 1 2 - o 1 N2
ii

A == [0, kl' ~; A(2), A(l)} =

2: Z(DL L [n1 + kIn] [n2 + l~n] X 0 u)N ~~)[~] A~~)[nl]
nl ~ 1 2 0

iii

"

Now i i can be written as

since the sets NI and N2 are identical and we sum over all indices of

these sets. If the order of differentiation is reversed, then the

de;ivative element will be that of i, but the value of ~1)~2) is in-
1 2

correct. Tn fact, we see that i and iii are the same provided it is

permissible to interchange the order of taking the derivative. We shall

assume that this is justified .. The same procedure applied to iv shows

that iv and'i are equivalent to each other. If we' ask ourselves when

are i and ii equivalent, we see that this is so if kl = ~ or if

In either case, i and ii are the s~. We summarize these

results as

Property 1: In the definition of the differentials A, a permuta­

tion of the {ki } with fixed (A(j)} is equivalent to a permutation of the

{A(i)} with fixed {kj } and, in general, a new function will arise from

this operation.

Property 2: In the definition' of the differentials A, a permuta-

. tion of the {ki.J followed by an identical permutation of the corresponding

{Ai} does not lead to a new f1lllction. That is, any permutation of the

couples l(kl' A(l», .•.. , (ks ' A(s»} gives rise to the same A.

Combining Property 1 and ,2 leads to

Property 3: If ki = kj' then the permutation of Ai and Aj does

not give rise to a new A. If A. = A . ., then the permutation of k.; and k
J
.

1 J .I-

does not give rise to a new function.

We use property 1 and 3 to obtain

Property 4: ... , (1) (s)} , "
ks ; A ... A of order r"

d~gree s, we obtain all distinct Aof order r" degree s with the same

factors by considering all the distinct permutations of (kl' ... , ks)

with A(i) fixed with the Understanding that i:f A(i) = A(j) then that

permutation is not distinct.' That is , we associate to the couples

(k
i

, A(i)) the integer ni . Two couples are considered identical if at

]e ast one of the components are equal; ki = k. or A(i) = A(j) or both.
J '

Distinct couples have distinct integers~ We form the distinct permuta-

tions of {ni);then the correspondence n i ,-7 ki or ni -7 A(i) will furnish

all the distinct A with the same factors.

As before, we can collect together the repeated A(i) ,and write

C1

with R = (ro ' kl' ' ... , ks), s = .L. lJ.i. However, we must be careful
1=1 ' .

to permute (ki' A (i)) together when arriving at this form. which we shall

refer to as the normal form of the differentials. We note~by appropriate

indexing changes, we can always consider the indices as sequentially in-

creasing. It is also convenient to use the Same notation for A when all

the A's are evaluated at a point; for example, in the expansion of

rf+r xC 0) we will evaluate them at o. Whether they are to be considered

as functions or points of Rn will be clear from the context. As was

previously the case, the operator {; lis linear and {R; ~ a; A.) =
1 ... 1

, L.a. {R; A.), a fact which is needed in collecting terms in expansions
ill

subsequently used.

With regard to the establishment of a pattern of generation for

these different ials, we refer the reader to Table V of Appendix I and

the description of that table. However, a few conirnents can be given

here. As with our previous work of Chapter II, we proceed to order the

differentials starting with those of lowest order and lowest degree.

In fact, if P = (O}, then our pattern of generation is identical with

that of the elementary differentials previously defined in Chapter II.

If P {O, ... ; p - l}, then we introduce the differentials with lowest k

values and their permutations working from lowest degree to highes"t

degree. As before, we have not established how the pattern of generation

is to be continued beyond the orders and degrees that we have given in

Table V. If these quanti ties are generated by an algorithm, as they

can be, this pattern must be established in some fixed fashion and

preferably in a manner that is consistent for all the different functions

that we define, including the work of Chapter II, this chapter, and that ..

of the following chapter.

Since the A's are functions of R ~ Rn , it is possible to differentiate

them and we have the following:

Theoreinl

The differential coefficient of any differential A of. order r is a

linear combination with non-negative integer coefficient s of the dif-

ferentials of order r + 1. That is,

DA = ~ 0i Ai where Sr+l = (il~ has order r + l}.
iESr +l

Note that we only claim that 0i ~ O. In fact, it turns out that

many of the coefficients ar e zero.

Proof: Consider the function A of order r = £ + 1, degree O.

£+1
DA = D (X 0 u) and the theorem is true for the

lowest order and degree. Now let A = (R; Al ·· .As }'

DA == {rO + l,kl) ... , k s ; Al ·· .As) + {R,' DA1 ... ~) + .•. +

{R; Al ... DAs) .

where, luinduction hypothesi~Ai is of order ri + 1; thus each term has

its order increased by one and the theorem is proved.

Corollary 1: The degree of A is invariant under differentiation.

These derivatives of A are relatively simple to calculate. The

first few A's and their derivatives are given below:

A(O)

A(i)

A(2)

A(3)

(4)
A

==

==

==

==

==

(.e)

{£:+ l}

{ 0, 0; A (O)}

{l + 2}

[1, 0; A (O)}

A(5) == to, 0; A(l»)

A(6) == to, 0: A(2)}

A(7) == to, 1; A(O»)

DA(O) == A(l)

DA(l) == A(3)

DA(2) == A(4) + A(5)

It is possible to develbp a recursive formula for the derivative

coefficients. Although the simple case given here has all coefficients

equal to 0 or 1, this is.not 80 when more derivatives are taken. With

respect to high~r order derivatives, the corresponding theorem is -true.

Theorem· ,2

The j-th derivative of the differential A of order r, degree s is

a liner combination with non-negative integral coefficients of the dif-

ferentials of order r + j, degree 8.·

60

Proof:, That the degree is preserved is obvious from Corollary 1.

The theorem is already true for j ::: 1. For larger values of j, we have

that DjA ::: D(Dj-1A) and the results follow by induction on j along with

the application of Theorem 1.

We now state and prove the following theorem about the derivatives

of x at zero; that is, DP+rx(o) ::: Br.

Theorem 3:

Br of' order r + 1 is the sum of the differentials A of order r + 1
N

evaluated at O. That is

-R!. ::: 2: ex. A (i) where ex. > O.
-11J • 1 1

1

Proof: ,The proof is an inductive one using (~l). It is obviously

f i
i since BN ::: D (X 0 u) ::: 1 . {fl. Now examine the second true for r :::

61

term of (21) and look at the sum of the orders. The order of the general

term is 1 + r - i l + kl + ... + ks + (11 - i2 kl) + ... + is - ks ::: r + 1-

Hence, the order is r + 1. The only question is whether using the

definition of the differentials A, we will have a one-to-one correspondence

between those A of order r + 1 and the quantities appearing in (21).

Sinc,e the indices of (21) stay in the normal index set, all the A of

order r + 1 appear in (21) and only these At s appear.

This theorem allows us to use the A as a basis for the derivatives

and we now need to show' how to obtain the coefficients ex. It is possible

to formulate a definit ion for the se quantitie s that is almost identical

to our previously derived derivative harmonics and, in fact,reduces to

that definition when p ::: 1. However, since it is important to keep

track of the distinct couples (k., A(i» in the generation of the dif­
,1

ferentials and likewise in the generation of the coefficients exi' it is

more natural to define a generic set which establishes the pattern of

generation and from which the quantities of interest can be easily

derived by establishing a proper correspondence to this generic set.

This has, in fact, been done in Table VIII of Appendix I which is the

extension of the work of Chapter II to higher order differential equatinns .

. For our present work, the most convenient reference set is the set. of

differentials. Therefore, all our definitions will be referred to the

A which will be used to establish a generic set. There will be no

problem making the connection with the work of Chapter IV sirice there

the AI s are themselves easily identifiable with a generic ,pattern

establishing set of quantities. We emphasize this point because it

seems quite natural that one concise algorithm could be used to generate .

all the quanti ti es we have dis cussed and will subsequently discUSSj pro-·

vided it is kept in mind that they are all special cases of a basic

generic set which establishes their pattern of generation.

In order to use the A as a generic set, we rewrite Definition 2

as

Defini tion 3: The symbol y is a generic l.. of order r, degree s,

posi ti on I if

The symbol y is a generic y of order r, degree s > 0, position a if

where ~~ri' a i] are generic z of order r i , position ai'

r
s

I + r 0 + 2: (ki +ri), ki E P.
i=l ..

I

By convention, it' the quantities generated do not depend on k, then the

superscript k'is suppressed.

It is assumed that the patterns establishing y and A are identical

and that properties 1 - 1+ are in effect here. In short, we have that

if P = lklk EPA ~ [m] is explicit in X 0 ~} and if

z [r - 1, 0] :::;: 1, z [r i ' ai] ,:::;: y' [r i ' a i], . ai f: 0

(r -1)
:::;: CN . •

o
Y [r] 0

[]
_ (ro, kl,···,ks)

Y r o ' kl , ... , ks 0 = CN N . N •
o 1'" s .

then the differentials A of Definition 2 will be generated. The index

a is the se~uential position of y [r, a] in the set of order r with

the assumption that some order has been established.'

We now establish the coefficients ex by means of Definition 4 and

Theorem 4.

Definition 4: Define

z [r - 1, 0] :::;: 1, z [ri , ail :::;: y [ri , ail, a i f: 0

Y [rJ 0 == 1 • (29)

where wi is the number of times that the triplet (ki , ri' ai) appea~s in

y [r, aJ. Then the generic y has as i tsrealization the derivative

harmonics. ~ra = y [r, a].

,Theorem 4:

Let Br -1 = Dr-l(X 0 ~)(O). Then we have that
N

"N"here ~ is the derivative harmonic of Definition 4 and ra

Sr = (a\A(r,a) has order r}. '

64

DP+r:-lx(O) (r a)() Corollary: = 2: f3 A' O. ra
aESr

Proof: This theor em is proved, as was its analogue in the p =1 case,

by substituting the expansions into both sides of the equation giVing

B.N; equation (21), and collecting. the ;coefficients of Ij,ke terms. Let

Br - l = 2: ~ra A(r,a) where the order of A is r. The substitution of N aESr N

. this into (21) gives

1
-s.' ex. .

ril·;·~6

C(r-~l-l,kl, ... ,kS)
NNl·· .Ns

(32)

2: (il-i2-kl,al) (is-k~,as)
f3il-i2-kl'al ••. ~is-ks,as A Nl ... A Ns .•

ale .. a s

Le' t A(Nr ,a.) = (. -k
r o ' l' ... , We wish to

, determine the coefficient of the term on the righthand side of (32) cor-

responding to this term. The general term of the right member is

(r - il' k
l

, k
s

'· A(il-i2-kl,al) ... A(is-ks,as)J. . • . .. , It must, therefore,

be true that i l - i2 - kl = r l , ... , is - ks = rs which can be written as

i = 1, ... , s

Thus, the factors of the term A(r,a) determine uniquely an index set

(i, a, k).Property 2 tells us "how to find all the terms corresponding

to A(r,a). We write the set of triplets [(k
l
·, r., a.) }:= {n.} where we

l l i l

associate distinct ni with distinct triplets. Writing the repeated marks
())i . . ())l me

as ni allows us to write the set ((nl) ... (no) } where s = ())l -I- ••• -I- ())o·
,

Any permutation of the (nil corresponds to a permutation of the set of

triplets and leads to a new set of indices and conversely. However,

since we are permuting the whole triplet, this does not lead to any new

differential A. s!
The---­

())l! .. ·())o!
permutations of [nil give us all the terms

corresponding to A£r)a). That we get all the terms this way is evident

if we consider (33) with the left member known and the right member un-

known; the solutionis uniQue.

The general coefficient of each term is

1 (r - l)! (t3rla,l)fll ... (t3ra8-crtcr
S! (r -1 - ill! (il - i 2)!··· (is _l - is)! (is)!

Replacing i j _l - i j by its value rj + kj and multiplying by the multi­

nomial coefficient gives rise to (29). In Obtaining the index (i, a, "k),

one might wonder whether it is possible to choose A(r,a) such that the

derived set (i, k, a) was not within the bounds of the normal index range

(22). A careful examination of (22) and df Definition 2 will shw that

for any valid choice of (k, r, a) we will derive by means of (32) a set

(i, k,a) that is within the normal range. It is obvious that the t3ra

that we have used here are simply the· derivative harmonics of Definition 4 ,

and could just as well have been stated as an integral part of the theorem;

however, it is convenient to isolate the generation of these harmonics.

Definition 4 furnishes an explicit, recursive definition of the

derivative harmonics. These coefficients will be used later to obtain

the expansions of the derivatives of the solution x and then are tabulated

in Table VI of Appendix I.

It is possible to give an analogous result for the coefficients of

Theorem 2. We state the results as

Theorem 5:

Let A(r,a) = fro' kl' ... , ks ; A(rl,al) ... A(rS,aS)} be the a-th

differential in the set of all differentials of order r. Let

A(r+j,i) _ {"'- -k . -k·' (AFl,al)l-il (ArO',aO')I-iO'} - ro' ·1' ... , s'
0'

with q = '~l I-i, be the i~th differential in the set of all differentials
~= ~

of orderr +j. Define the coeffi cients 8 by means of Theorem 2 to be

wh S {ilall A(r+j,i) of order J'+ r}. ere r+j =.

ficients of this expansion are given by setting

o(a) = j!
r+j,i· (ro-ro)!

o

Then, the non-zero coef";

66

where Q = {all permutations of So = U Si .. such that after any permutation
i=l

ri ~ ri ~ ri + j}. The sets Si are described below by equation (40). The

set Q. is essentially the set of distinct permutation of the set of couples

{Cri , ai)} corresponding to repeated kr' The coefficients 8 in the right

member of (35) are defined as the coefficients in the expansion of

(36)

This theorem, in effect, states that if we know the derivatives.

of the lower order differentials, we can then find those of the higher

order differentials.

Differentiate to obtain

il i s _l

2: ••. 2: CX.. .{ro + j - i l , kl' ... , ks ;
i

2
=0 i =0 J~l·· ·1:2 ..

. s

We know from Theorem 2 that Dt(A (ri,ai» is a linear combination with non-

negative integral coefficients of the .differentials of order t + rio

Thus, we can replace each derivative in (37) by its expansion. This leads.

to

2:
·ES). r+j

j
2:

i
l

i
s

_
l

2: ••• 2: CX •••
. 0 J).l···). i 2 =0 ~s= s

(38)

(rl+ir i 2 , cxl) (rs+is'cxs)
{R; A •.. A }

where R = (ro ' kl' ... , kq) and R = (ro:tj - il' kl' ... , ks);

A look at (38) shows us that many of the terms lr+j,i) of order r + j

are missing .:. that is, have zero coefficients. We are interested only in

the non-zero coefficients and this leads immediately to requiring that

q = s

-~ ~ r r· r + j
0 0 0

r i ,~ ri ~ r·
~

+ j

which are the ranges stated in .the theorem; and that .

{59)

i = 1, ... , s .

We note thatA(r,a) determines the ki and we are not allowed to

change them in (38). This, in turn, means toot ki are fixed in value.

We wish to find permutations of (ri , ail that will lead to new index sets

through the use of (39). However, we know from our previous work that we

must permute the triplets (ki , ri' ai) in order that the resultant dif-

68

ferential not be changed. For the ki = ki that are alike, we can permute

'the (r
i

, a
i

) without changing the differential A(r+j,i). Thus, we collect

together the sets (ri' a i) into sets of like k. That is, we define

81 = {(rl' al)' •.. (~l' ~l)} ,

where (r
J
., a.) E 8i ifi' k

J
. = k i . ,We let 8

0
== {(rl' al)' (r2i ~), ... ,

Jo

(40)

(rs , as)} = .U 8i • We define Q to be the set of all distinct permutatiC?ns" ,
~=l

of 8 where, by a permutation of 80' we mean we permute the elements of
0, (.) (")

each of the 8i . Let us write 8i = {(rl' al»)'i ~ (":rs .' ~.)'Y~ ~).
~ ~

Then we have

, '(",(i) 1 ' ' ('V (1) 1
'1 ' IS' .

, ~

permutations or 8i and, th~refore,

((1)1 (, '(I» '((0)) «0)'
)' 1)'Sl !"')'l '! ...)'SO !

pennutations of 8
0

, Unfortunat~ly, we cannot simply multiply the generat '

coefficient by this factor since

a :::: (j) (il) •.• (\-1) :;:
jil···is i

l
i
2

· is

., J.

and, in general, this coefficient. changes as we permute the ri while

leaving the ri fixed. Also, it is necessary to restrict the set further

• < - < . t al b t Slnce r i = ri~= r i + J mus ways e rue. Thus, Q :::: {all distinct

permutatiqns of So ~ r i ~ r i ~ r i + j}. Equation (35) arises when the

general term coefficient is extracted from (38).

As a biproduct of thisthebrem, we have the following

Corollary: Let A :::: {Rj Al 000 As}. Then R is invariant under

differentiation.

Theorem 5 seems to be of little practical interest unless one is

69

considering the generation of these expansions using a suitable constructed

algorithm. In that case, it furnishes an explicit recursive definition

that enables nne to obtain the coefficients of the higher order derivatives

provided all the coefficients of the lower order ones are known. The

corollary is of interest because it assures us that if ki E Pc P, we

need only concern ourselves with the differentials in the restricted set

determined by P. In actual practice, it is rather easy to obtain a

reasonable number of these coefficients by actually carrying out repeated

differentiation. It turns out that these differential coefficients are

not the ones of interest to us and we shall make no further use of these

resultsj they have been presented here for the sake of completeness.

Before turning to the task of generating the approximate solution

by successive substitution, we first use our results to write the true

solution ~ in the desired formj that is, in the form of an expansion in

terms of the differential A evaluated at the origin.

70

We have that

00 er

(e) [] ".2 r-k-l [.]
-~jm+ L.J BN ~

r=k+£+l r! (41)

where m = i + kn, i E N, k E P. We substitute into (41) the expansion

for B~ and use the matrices I~~) to obtain

where

r+l k(),
r(j,r,a) = ~e~j~ 2: e j r+l . ~ I(k)

LN (r+l)! kEp (r+l+k)! ra, LN

(42)

and Sr = {al A (r, a) is of order rJ • Equations (42) and (43) furnish the

desired representation of ~L at e j' We shall return to these later after

obtaining a representation for the approximate solution.

We shall take equation (11) as our starting pOint. In order to

determine the parameters in the matrices ~L and~, it is sufficient

tha't it be possible to write ~i in terms of the differentials A. With

regard to this, we observe the following fact. If, in the constructi on

of ~i' it is true that all ~j used in that construction have the form

~ . = u(B.) + 2: ••• 'A(a); then ~. = u(B.) +2: ... A(a) will be true provided
J JaN ~ ~ a N

thatX(E) - R~j) =~ ... A~t)and the .condition established by (11') hold.

We use this to our advantage by simply stating that any ~j which we use

must have an expansion. How this expansion was obtained is,for the

moment, irrelevant. We, of course, must at some stage of the development

explicitly display the expansion coefficients or a means of obtaining

them, but that will come later. For the present, we simply assume they

exist. We note that many times when determining the parameters some of

the ~ i are chosen as exact values ~ (e i) . In particular, for Runge-Kutta

71

methods the initial value ;0 = ;(8
0

) is chosen exactly, while the rest

are constructed. With finite difference methods, all ;i except the fin~l

one can be chosen as ; (8 i) • This is not, however, essential for our

development and by simply assuming expansions exist, we gain a generality

that will allow us to connect the development of 'a scheme by successive

substitutions with the global scheme development. Also,this furnishes

us with results that are easily extendable to other classes of methods

and should give an insight on how to handle a global error analysis. We

shall say more about these matters later.

We note from (11) that to proceed with the construction of ;., we
J

must be able to carry out the substitution X(;i) and that the result

X(;i) - R(~) must be expandable into the differentials A. We shall thus

define R(~) . as that part of X(; i) which . does not possess such an expansion.

To carry out the substitution, we shall define substitution harmonics

as follows:

Definition 5: Let there be given an element TL E RllXp written as

TL = 2: 2: 2:_ OTka I(k) A(r,a) where
rES aESr kEP ~

P == (kl;(k) is explicit in X 0 ;}. Define

k:,
z [r - 1, 0] == 1, z 3..[r i ' ai] = ex kJ. "at 0 r· ·a. ~-r II

8r - l

(r- I)!
Y [r]o

... ,

where Wi is the number of times the triplet (ki , ri' ai) appears in

(44)

o
y [r, a] and s = ~ ro .• Then the generic y has, as its realization the

i=l ~

substitution harmonic ~ra= y[r, a] corresponding toTL•

We can then carry out the substitution using

Theorem 6:

Let zN =

where

~ =

TL =

x(u(S) + TL) - RN

£-1 Si,
Di(X 0 u)(O) ~

i=o
. ,
~.

~ ~ ~
(k) (r ,a)

a rka TLN AN .
rES aESr kEl?

~ ~ra A(r,a) where ~ra are the substitution harmonics
aESr

corresponding to TL.

~us, given the harmonics of the element TL we can find, in terms

of these harmonics, the corresponding harmonics ()f zN. It is interesting

to note that with the particular realization given in Definition 5, we

can consider the operator Y c:i z to be the substitution operator in a space'

whose bases consists of the Differentials A.

Proof: The proof is straightforward. We can write

z = X(u(S) + TL) as

Substitute into (45) the expansion for TL' This gives

z = ~
tEro

72

(46)

where m, (0, ... , lX'} , wl =: (1, 2, ... , ~}. As usual, we write the general

73

_ (:rl,al) (:rq,aq)
term on the right side as {ro ' kl' ... , ksj A ... A } and look

for the coefficients of this term on therighthand side. The terms on

the right are found by forming all the distinct permutations of the

triplets (ki' ri' ai)·

If the process is carried out, it ~ill be seen that to each A(r,a)

there corresponds a coefficient ~ whose pattern of generation is identical
ra

to that of the A. The problem is simply to identify the correct realization

of y and z in Definition 4. This is seen to be Definition 5.

We note that to stay within the set of differentials that have been

defined, it is necessary to subtract off

£-1 er £-1 er
L: {r} -= L: Dr(X ou)(O) =

r=O r! r=O r!

We now use this to define

Definition 6: . R(j)
N

the R(j) of (11) and (IIi).
£_IN er:·

= L: Dr(X 0 u)(O) ~l
r! r=O

£-1
L:

r=O

r

p+r () ~ D x 0
r!

RN•

We shall need these explicit resUlts when, actually Writing out the

condi ti ons that (11') repre sent.

It is now actually possible to carry out any substitution that a

particular scheme may require. The result of that substitution is in the

space spanned by the differentials. That is, the space spanned by the

differentials A is closed under the operation of substitution. At this

point of the development, it is natural to consider another operation,

that of multiplication by the Jacobian matrix associated with X. We shall

deve lop a multiplication theorem and show that the space spanned by the"

differentials A is also closed under' multiplication.

What we have in mind is the following. We wish to be able to treat

schemes that make use of the Jacobian matrix (Dr,X)N associated with X.

This will allow us to treat schemes that are of the Frey(7) type and

generalizations of these schemes.
, nXp

To be more precise, define (DLX)N E R ~ ((LXN) -~R) and then

(48)

where m = i + kn, i E N = {O, •.. , n .;.. I}, k E P = {O, ... , p - I}, j E N

is the matrix of partial derivatives of X evaluated at same point. We

can multiply JNL times any element of RnXP and we propose to create new

approximations by using the products JNL SL where the SL are constructed

in a manner to be described shortly. This idea is not in itself new(7) ,

but its full utilization is complex and while we will not attempt to use

all the variants of the schemes it suggests,we will set up the necessary

formalism for obtaining any particular scheme that one might wish to

investigate. What is needed is a multiplication theorem and this is

arrived at in a fashion quite similar to the substitution theorem.

Definition 7: Let there be given the elements TL and SL E RrlXp'

written as A(r,a)
N

A(r,a)
N

where P = {kl ~ (k) is explicit in (Dr,X)N) C P = (0, ••. , p - I). Define

kl
z·[r- 1,0] == 0, z [rl' all = -ex 'k' , k,l' E P

r 1 1a1 '

k·
z 1r1., a.J

,1
"V , k. EO P, i ,= 2, ••• , s "r.k.a. 1 1 1 1

Y [r - 1]0 == 1 •

Y fro' k1' •.. , ks] 0 (tlfr1 , a1 J, ... , zks-frs ' as]) -

(49)

where Q = {ali distinct permutations of the triplets (ki , r i , a i)}.

Then the generic y has as its realization the multiplication harmonics

~ra = y [r, a] corresponding to TL and'SL·

We can carry out the desired multiplication using

Theorem 7:

Let TL and SL be as defined by (49). Let JNL = DLX (u(e) + TL)

and WN = JNLSL. Then, WN = ~S· ~ ~ A(r,a) where ~ra are the
rt a Sr ra N

multiplication harmonics corresponding toTL and SL.

Proof: This is proved in a straightforward fashion by performing

the expansions and collecting the terms. Since we have carried through

in detail the other proofs, we shall be quite brief here.' Start with

Substitute for TL and multiply by SL to obtain

L: L: L: L: {s, k; A(r,a)} eS

WN = a: +
SEW rES kEP s! rka

75

aESr (51)
L: L: L: L: L: a: k "I ~ ... "1 k

SE~ qEW r l •· .rs al·· .as kl ·• .ks
r l lal r2. a2 ,rs sas

eq 1 ---
q! (s-l)!

As was previously done, we isolate the general term of the righthand side

and an examination of the pattern of construction of the ~rawill show

us that they are as defined by Definition 7.

It is interesting to note that, to a certain degree,the multiplication

by JNL is equivalent to a substitution •. This seems encouraging until

we note that all zero degree terms have I3rfl = O. This proves unfortunate

since in trying to obtain higher order methods we find that the zero degree

terms are exactly those that cause difficulties by being inconsistent

for a fixed number of e j. The evaluation of JNL does not overcome this

difficulty since the point eat which the evaluation is carried out does

nat enter into these terms, nor likewise do any of the JNL~ that we

create help us for these zero degree terms.

Again, we see that the space spanned by the differentials is closed

under multiplication by JNL and that,as defined in Definition 7, the

realization of Y 0 z is the multiplication operator in the coefficient

space.

The substitution and multiplication harmonics along with the

derivative harmonics have been tabuiated in Table VI of Appendix 1.

We are now in a position to describe a constructive approach to the

generation of the nonlinear parameter defining equations associated with

any particular scheme we may wish to investigate. Thus, we choose a

. scheme and actually carry out the indicated operations of substitution,

linear combination, etc., thereby generating the associated equations.

Since the work is actually carried out by an explicitly defined algorithm,

this turns outto.be an extremely easy way to obtain these quantities.

We shall describe this generating alorithm later. We proceed now to

explicitly define. hCM the approximations should be ordered so that we

will have a common systematic arrangement for all schemes. The ordering

and definitions that appear below are to b~ considered to hold for all

our workj in particular that of Chapter II and IV.

The interval of the independent variable, here considered to be t,

is discretized. The points of the discrete set are indicated as t i • It

is convenient to classify some of these points as major points and some

as minor points. This is schematically shown in Figure 1 which we shall

refer to at various times to help describe our organization of the

apprbximations.

Figure 1:

h 3-1- hz:-.. l~hiH' . _-,-__ +--+'_~. I I - I -
8 7 .. ·5 4· 2 1 .

9 6 3 0

t

In Figure 1, the major points have been indicated by a large mark

77

and consist of to' t3' t6' t 9,while the minor points are t l , t 2 , t4' t s'
t 7, and tS' In general, the name rank is assigned to the number of points

in one major interval. This is not quite true for the last major interval

since if we count the last point, we have one extra point~ but, in

general, there are q points per major interval where q is the rank of the

method. Conceptually, the difference between major and minor points

is characterized by the fact that the minor points are constructed;

that is, they are assumed to have a constructive representation, while

the major points are assumed to have "known" expansions. For example,

when deriving the parameter defining equations for a particular scheme,

it is sufficient to take the major point s t q, t
2q

, t
3q

•.. as points

for which the approximation is exact , ~ i -~ (e i) , while at the minor

point s the. approxima ti on is constructi ve ~ i == .z:; ••• ~. + ,6 ••• xC ~ .) • For
. J . . J
J J

the exact approximations, the. expans ion is known to be the usual Taylor 's

exparision when we replace the derivatives by their expansions into the

basic set of differentials A(a).

We do not, in general, require that the sequential ordering of the

tj will correspond to the actual ordering by magnitude When the position

is allowed to be a parameter of the method and is then solved for~ In

fact, the minor points may actually lie outside the major interval with

which they are associated. Witness Chapter VII, wh~re an example

is given for which this happens. We simply state that we have approximate

solutions Snq' n = 0, 1,2 ... which are associated with major points

is an approximation to S (tnq),

and that there are other apprOximations ;i = u(t j) + .•. ,which are

approximations to H t .), associated with the minor points t. where
. J J

nXq < j< (n + l)Xq means that tj is associated with the major interval

n + 1. With regard to Figure 1, the rank q = 3, the first major interval,··

consists at' the points to' tl' t 2 ; the second major interval of the,

points t 3, t4' t5; and the last major interval of the points t6' t 7, ta.

While t9 actually belongs to the next major interval, it furnishes a

natural boundary to the number of intervals and is included in the scheme.

In practice, it is usually the case that the major points are the most

accurately known and are all of equal order of accuracy with regard to

their local truncation error, while the minor points are the constructed

approximations that are at' varying degrees of accuracy. We shall see

this in more detail later.

Now to any scheme there is associated a period after Which the

scheme is repeated. We call this the period and by definition the period

is the number of major intervals after Which the scheme is repeated. That

is, to any approximation Si outside the interval defined by pXq where

p == the period and q == the ra.rlk, there is an identically .defined approxima-

tion ~j within the period. For example, with regard to Figure 1, if p=2 and q=5,

79

then ~7 = ~l in the sense that the constructive representation of ~7

and ~l are identical; that is, the coefficients and index sets defining

~7 = ~ ... ~j + ~ ... X(~j)

~ ... X(~ j)'

are identical to those defining ~l = ~ ... ~, + . J

For schemes that have used previous approximations; that is,

generalized R.K. schemes with memory, there must be a way of indicating

how far back the scheme extends. We define the extent of the scheme to

be tre number e such that eXq, where q is the rank, is the totality

. of point s considered in the scheme.

Lastly, far the present, we have associated with each major interval

the distance hi = (t(i_l)q - tiq)·whiCh we define as the major intervaL

We collect together here these definitions for future reference

and shall refer to them as scheme interval parameters. These are·a sub-

set of the totality of parameters which define a particular scheme.

Definition 8: We define for a: particular generaliz ed R. K. scheme

(approximation)::=(anyapproximation from the generalized R. K. scheme)

(point) :: = (any ti for which there is an approxirn8.tion)

(major point) :: = (a point for which the approxiIlR tion has a: "known"

expansion)

(minor point) :: (a point for which the approximation is constructed)

Then, the scheme interval parameters (SIP) are

i) (maJ'or 'interval 1-.,::= (the distance (t(, 1) - t.) between two , I.t}j 1.- q l.q

major points)

2) (period) = (the number of distinct major intervals)

3) (rank q) = (the number of point s (approx imati ons) in one major interval)

. 4) (extent e):: = (number of major intervals in the SCheme)

In practice, the major interval hi is usually fixed -at h:, the step

size, throughout the extent of the.scheme, the period is usually 1 and

the minor points usualiy lie within the closed major interval. There is,

of course, nothing new in organizing the scheme in the fashion we have
\

indicated. The- scheme interval parameters are written out explicl tly so

80

that we will have a consistent, systematic approach with which to classify

schemes. The workers in this field have, to-date, been somewhat undecided

in their various use of terminology for the same ideas using such terms

as rank, height, stage, etc. In the foregoing, we have strived to

present the simplest set that will serve our purpose.

Before furnishing some simple examples, we note that the major

points can be interpreted in a variety of ways. We shall, when obtain-

ing the parameter defining equations, assume that these points are ~xact

solution values. However, suppose that one were interested in obtaining

the cumulative error after, say, two steps.' Then this could be accomplished

by considering the scheme to have the same formal construction, carrying
\ ..

out the construction for two major steps and,thus, letting the "known"

expansion at ~ q be the constructed expansion. Such a scheme would have

an extent of e = 2. The same results could also be obtained by consider-

ing a scheme with a major interval twice as large as the first and then

letting one of the constructed minor points be the intermediate solution

value.

Suppose one wished to simply consider that the major points had

approximations ~i= u(e i) + E(e i , h) when Ei is the error. -Then our

formalism should carry through provided that one can obtain an expansion

of the error term dei' h) .. We shall.say more later on how this could

be taken care of.

81

We illustrate our classification using three simple examples.

First, note that purely Runge-Kutta schemes all have an extent e = 1,

a rank qof various values, and a period = 1. While finite difference

methods always have a rank q = 1, a period = 1, and an extent e of various

values.

1. For Euler's method, we would have

SIP 1) h

2) period == 1 I 1 "
10

3) rank q == 1

4) extent e == 1

Scheme T)o == X(~l)

~o = ~l + BoT)o·

The parameter Bo is chosen so that ~o - ~(eo) = O(h2).

2. A .simple Runge-Kutta scheme would be as follows:

SIP 1)

2)

h

period == 1

3) rank q == 2

4) . extent e = 1

Scheme ~o == X(~2)

~l = g2 + BoT)o ; T)l = X(~l)

~o == ~ + B1T)0 + B2 T)l o

1
2

I
o

t

The parameters Bo' 131 , B2 are adjusted so that ~o - ~(eo) = O(h3):, that

is a second order method. We see immediately that Euler's method is

contained in the scheme, Bo == B2 = o.

3. A simple finite difference method of the Adams type is given as

SIP 1)

2)

hi == h

period = 1 I I I ..
2 1 0

3· contd.

3) rank q ;:: 1
<.:

4) extent e = 2

Scheme T)o = X(~2); T)l = X(~l)

~ 0 = ~ i + BoT) 0 + Bl T) 1

The F!').r.~eters Bo and Rl are adjusted so that ~o - He o) =0(h3).

With this type of classification there is no real distinction between,

Runge-Kutta methods, finite difference methods, or predictor corrector

methods provided the last mentioned ones.are used with only a few iterations,

as is usuallY the case in practice.
)

Our basic approach in this ahl3.pter is, as we have already mentioned,

to construct the parameter defining equations by actually carrying out

the substitutions. Using example 2, we would write

~2;:: u(e
2

) + L: t3~2) A(i)
i' ~

= R + ~ 5 (2) A (i)
T),o 2 ~ i .

~l = u(8 l) + 1 (t3i2
) +

TIl = R +'L: 5(1) A(i)
'I 1 i i

'a major point has a "known" expansion

,by the substitution theorem

with conditions on B
o

by the substitution theorem

~ = u(e) +~ (t3(2) + B 5(2)
o 0 i i 1 i

with conditions on BJ..' 32

which is to be matched with

. An examination of this example shows immediately that while the

scheme itself is easy to write down, it would be extremely tedious t.o

carry out the actual computation in all its detail. However, it can be .

carr:i.ed out systematically with the aid of a set of appropriate substitution

tables..We take advantage of this fact and write the defining algorithms

,
as ALGOL 60 preceduresse that all we need ever de is write dewn the

scheme, in seme manner to. be defined later, and having furnished the

tables, the results ef the substitutien are furnished to. us as eutput.

The next thing to. netice is that an erigin must be chesen fer

u(8
2

) and A(i). The cheice nermally made is, fer this example, 82 = 0

since we censider the selutienknown at 82 = t2 and we wish to. advance

ene h interval, ene majer step, using one intermediate calculatien. How-

ever, since we are censidering peints frem the past, it turns eut that

it is mere cenvenient to. cheese 80. as the erigin. That is; the erigin

is set at the next peint ferward where we wish to. know the selutien. The

principal advantage in such a cheice is that all the 8 i ' s are the same

sign and this helps in censtructing the program. If we wish to. cempare

eur results directly with these efthe glebal appreach, then nene ef

the 8i IS sheuld be set to. zero. befere the equatiens are generated. The

best precedure is to. leave the actual cheice ef the values ef 8 i epen

until such time as the equatiensdefining the parameters are to. be selved.

At that time, the 8. I S are made explicit. If this is dene, then the
~

results are easily cemparable with eur previeus werk and also. the full

symmetry ef the ,equatiens presents itself and this, in itself, may preve

useful in finding a selutien. The disadvantage to. this is that eur results

are net directly cemparable with the werk ef others unless we make the

same chei ce ef erigin as they have made. This, however, is a miner

detail since we need simply ch.eese the appropriate 8 i = 0 er else directly

verify the results by substitutien ef the values of the parameters. This

latter precess helds enly threugh the principal errerterm since higher

erder terms are erigin dependent.

(2)
We see that ,we are immediately in need of the ceefficients~. •

~ ,

84

We have chosenS2 = ~(e2) so these are the product 6:r the Taylor coefficients

and the derivative harmonics. However, for all schemes with memory this

problem will present its-elf j we shall need the coefficients in the expansion

and they will not necessarily be available.

Therefore, we now address ourselves to the problem of finding the

expansion parameters for those approximations ~j that are used in con­

structing ~i' but do not themselves have a constructive expansion, or

do nat yet have a constructive expansion. We might note that the global

approach of Chapter II seems to have side-stepped this problem entirely.

We say "seems" because it will subsequently be shown that a direct CDn­

nection can be made between the global and substitution approach.

The solution to our problem is deceptively simple. The expansion

is simply written down with undetermined parameters and the corresponding

approximation is used as if the coefficients were well known. Thus, the

problem becomes a new one. We need to be able to eventually establish the.

values of the undetermined parameters. The solution to this problem can

best be obtained by- looking further at Example 2 and examining ~2 more

closely. Once we have established what it is tha.t needs to be done, we

shall derive the results in general and in detail. For.the .time being,

we shall continue to use the abbreviated notation that has been used in

Examples 1 .:. 3; not-ation that is correct for p = 1 and which is stiJ,l

correct for p> 1 provided the elements are interpreted to be in the

correct spaces.

Let us return to the definitions of u and v, equations (10)' and (14),

respectively. We see that they have been written down as if ~ were

expanded about the origin. If an arbitrary origin .. had been chosen, >­

then they would have been written as

(52)
00

[]. () ,,_t, _p-I-k+rx("")[~]. vL m -r, t = LJ !T
r=k+£+l r. .

Then Ht) = uL(-r, t - -r) + VL(-r, t - -r) would have been the case. All

the differentials A·would then be A(-r, t) and we would be talking about

expansions of r! (X 0 ~)(-r) in terms of A(-r; 0). We have developed all

our results with -r = 0, but they hold eClually well for any other value

of -r •

There are essentially three ways of treating the ~~2) of Example 2.

We can write

-=-< 2) where the f3 i are undetermined parameters and use ~2 as it is. Then we

transla te the origin and write

where ~i = T('§") are functions of the i3'iand the translation interval,

while 82 = ~ - -r. In the present example, ~2=~(e2) the real solution;

but, ~(e2) always has an expansion

.. . (i)
u(-r ,82) + ~ 'Y. A (-r, 0). . ~

~

The coefficients 'Yi are "known". In the casewbere -r= :"h,we have

'Yi = 0 in our present example. Thus, the undetermined parameters ~ are

defined by the eCluations

T(t3) = 'Y ~.

This is what we .call a backward translation and we indicate it sche-

mati cally as·

Figure 2

; .
...,.------~-....

We could equally well have done the reverse process. That is, define

the undetermined parameters l:Ii by setting them equal to)'i

t). =)'.
~ ~

and then perform a forward translation to obtain the parameters

t3i = t3i (~) which are functions of ~i and thenuses2 as usual. Again

if '[= h, then), iare all zero and ~i = 0, but the fact thatf3i are zero

does not mean that all t3i are zero. We indicate this schematically as

Figure 3
l: e.
~i~----~-'~--~

e T t

i solve ~i =)'i

ii uset Ti(~) Ai

In a sense we have the least number of undetennined parameters in our

system if we doa forward translation in this fashion; or, we coUld

proceed in the same manner as with the first case using ~i,but, instead,

we apply the tran~lationto ~ and solve

We indicate this s chenati cally as

~ ... '

86

Figure 4

i use Z ~. A.
~ ~ ~

ii solve t3i = "i

t iii solve f3i =,Ti (t3)

Each of these approaches has its advantages and disadvantages. In

the first case, the nonlinear parameter defining equations have a form

directly related to those derived in Chapters II and IV. However, the

solution for t3i may not be obvious. In the second case, the solution'

for t3i is obvious, straightforward, but the parameter defining equations

may look different than those derived globally. The third approach has a

direct obvious solution for t3i and also for t3i; the results for the

parameter equations are the same as the first case and, thus, directly

related to the work of chapters II and IV. However, it bas the disadvantage

that i.t is, in general, necessary to translate a fully constructed vector

component "i and this may cause the storage capacity of the machine to

be exceeded. If it were not for thiS, the third approach might well be

the best.

For any particular scheme, the following approach will be used.

Whenever the constructive representation of an appr'oximation S i is not

available for use in constructing the approximati on S j , write a repre­

sentation of Si in terms of undetermined parameters.

'i ()
'~ 1.' = u(0, e i) + 2.: t3 a A a (5" 0) . '

, a
(59)

Translate (59) to the poiIlt where all the substitut ions are to be performed,

'(60)

and use this translated representation in the same manner as any other

appro:x:imation •. Note that this translation may, in reality, be the

identity translation analogous to Figure 3 or Figure 4, or it could be

a translation corresponding to 5 - s which would correspond to Figure 2.

To determine the undetermined parameter, either translate (59) to a place

where the expansion is known or translate the known parameters to the

point 5. Then solve for the parameters by equating the appropriate

one of the two representations

88

T(~) = 'Y

~i = T('Y)
(61)

where T is the translation operator.

In order to carry out the translations, we see that it is necessary

to be able to write

. (a) ...
u(5, e) = u(s, ¢) + 2: •••. A (s, 0)

. a·

A(5, o} = 2: ••• A (a) (S, 0).
(62)

a

The translation of ~ is carried out by means of

Theorem 8

Let u(k) [i] = uri + kn] where i E N, k E P. Then

U(k)(5, e) = u(k)(s, ¢) + ~ (63)
r=£+l

where A(r,a) has order r, position a in the set Sr = (all A of order r).

The coefficients a are given as

. (k) k+£
a = 2:
ra j=O

a(k+r- j) ej

(k+r-j)! j! ~ra (64)

where ¢ ::" 5 + e -s, a = 5 - S, and ~ are the derivative harmonics of
ra

Definition 4.

Proof: Define u(k)[i] = uri + kn]. Use (52) to write

k+£
= L: e

r
p-l-k+r () D x 5 •

r! r=o

But, we have that

00

DP-l -k+r x(5) = L: DP- l - k+i x((:) ,/ i-r)

. (i-r)! i=r

where cr = 5 - (:.

This result is substituted in the previous equation to obtain

k+£
u(k)(5, e) = L:

r=o

00

L:
i=r

Break the sum in (65) into two sums

k+£ k+£ 00 k+ £
L: 2~+ L: L:

.r=o i=r i=k+£+l r =0

interchange the order of summation in the first term, note that

(0+8/
" l.

=
i
L:

r=o (i-r)! r!

and the following result is obtained

00

u(k)(5, e) = u(k)«(:, ¢) + L:
i=o

k+£ p+£+i (k+£ +l+i-r) er
L: D x«(:) .;;..o~. ---

r=o (k+£+l+i-r)! rl

where ¢ = 5 + e - (:, ·0 = 0 - (:. We are able to expand the deri vati ves

89

(66)

Djx(!:) into the basis A«(:, 0) using the derivative harmonics of Definition 4.

When this is done (63) and (64) will be obtained.

In order to effect the translation of the differential A, we shall

define functions·-y E R --) R called translation harmonics. The translation

harmonic "lis ass:)ciated with two differentials A and A which we write

A
(r,a) -;:(A F,:a) . (r,a:)

as . , . The corresponding ''I is wr~ tten as -y • Since
r,a

the definition of these harmonics is rather involved, we present first

the following translation theorem.

Theorem 9

Let the differentials A be sequentially indexed as A (j). Let the

differentials A(i)(o, 0) and A(j)(s, 0) be given along with their

i
associated translation harmonics "I.. Then

J

90

A(i)CO, 0) ~ 2: 'Y~ (0 -.s) A(j)(s, 0), i E S. = s. (67)
jES. J ~ J

J.

where we have evaluated the translation harmonics at the point 0 - ~

corresponding to the interval of translation and S j = {set of all dif­

erentials}.

Corollary: A(j)(S, 0) - i "Ii (~ -8) A(i)(o, 0)
iESi

i
0) "I k (0 - S) = 0 jk that is

where o ,. = 1, 0 'k = 0 if j"/- k.
JJ . J

Thus, the translation harmonics allows us to express A(O, 0) in terms

(68)

of A(S, 0), effectively a change of basis, and if we wish to obtain the

inverse transformation, we need simply replace 0 - S by -(0 - S). It

is implicitly assurtJ.ed that the A are independent.

In the following definition of the translation harmonics, we

shall assume that we are generating two sets of differentials

-A.= A(F, a:) = {- . k­
ro'- l' ... ,

(- :a)
and their corresponding translation harmonic "I r,.

. r,a

defined in

Then the "I are

(69)

91

Definition 9: Let ~ be the translation harmonic corresponding

to A, A of (69). Then we have that for

i) s < s ~(t) = 0 (70.1)

-
s = s

a) (k1' ... , ks) I(kl' · .. , ks) ~(t) = 0

b) (kl' ... , ks) = (kl , · .. , ks)

1) ro < ro ~(t) = 0

2) ro .~ ro

~(t) (70.4)
(r -r)! o 0

where Si = (r., a)lkj = ki' 1 ~ j ~ s =S) =
J

(ri .' a.)1 j = 1, · .. , (l)i}
J. •

S(i)
J J

= the repetition factor of (ri j , ai .) E S·
j J .J.

cr·
o\i)

1.

'mi = L:
j=l J

ai)ji
g

S = ((ri' = 1, ... , s} = U S.
0 i=l J.

iid -s > s, s - s = q

a) (kl , . ' .. , ~) ci,(kl , · .. , ks) ~(t) = 0 (70·5)

b) (kl' ' ... , k-)c ·s (kl' , ks) = (k1 , ... , ks' kl , ... , kq)

1) 3~ =<;P ~(t) == 0 (70.6)

2) ~~ =<;P

Cl
where j = r 0 - r 0 + .6. (ki + r i)

i=l

92

~ = {ilmax (0, il-(klH» ~ i ~ illS J2 = (0, ... ,i1)

(70.8)

MCl = filmax (0, iCl_l-~Cl_l'+-l») ~ i' ~ min (kCl+l,i Cl_l)} s:
JCl ~(O, ... ,iCl_l)·

(r. ,a.)'
The)'r.~.·~ are translation harmonics corresponding to

~ ~

A(ri,ai)and.A(ri,ai).

Q = {the set of all distinct permutati ons of So that

leave (kl , ... , k
Cl

) unchanged}.

So = (ki = kCl+i' rq+i' aCl+i}1 i = 1, ..• , SJ U {ki , ri' ai) I
i = 1, ... , Cl)

and the ~r.a. are the derivative harmonics, corresponding
~~

to A(ri,ai) that are defined in Definition 4. ,. -

Having defined the translation: harmonic s)" it is necessary to

interpret the definition corre£tly in the special cases given below.
- ro-ro

If s = s = 0, then)'(t) = (), provided ro ~ roo This is case ii)b)2~
_ ~o-ro .

That is, the empty multiplier is considered to be 1. In case iida), we

see that the set (kl , ... , ks) is not a subset of (kl , ... , ks). If only

93

some of the ki appear in (kl , ... , ks), then we still have case uda).

In case iii)b), we have that the set (kl , ... , ks) is completely contained

in (kl , ... , ks) . Before using (70.6), we permute the ~riplets (ki' ri' a i)

of A(r,a) so that we have, after a suitable re-indexing, (kl , ... , ks) =

(kl , ... , ks' kl' ... , kq). We are then ready to use (70.8). It is

'Jossible that the sets M. =Q:J, the null set. That is, while it is
J

implicitly assumed that i
J
. E J., it may not be true that the conditions J .

defining Mj make sense. For example, ° ~ i - (k + £) ~ min (k + £,
q q q

i q_l) may be true. In the cases where the conditions defining the Mj

do not make sense, Mj = Q:J, the null set. If SOIre Mi = Q:J ,then the cor­

responding)'(t) =0, this is (70.5). To obtain Q, we permute the set

So = {(ki' r i , ai)) and then ask whether the permutation is a new one and

whether the set (kl , ... , 'k;) is the same as before. In this permutation,

the letters establish the position and the numbers are permutted into

the positions. If the permutation'is new and (kl , ... , ks) is unchanged,

then it is accepted as a valid permutation to be included in the set Q.

If s = 0 and s > 0 is the case, then we consider that case iii(b) holds

Which is consistent wi~h the fact that (k
l

, ... , ks) = Q:J C (kl , ... , ks)'

There are, of course, no)' since s = O.

Proof of Theorem 9: The results of Theorem 8 permit us to write

u(o, t - 0)

where a,(k) = a,(k)(t) is a function of t.
ra ra

By hypothesis, we assume that'

for the lower order A we,can write

co

(72)

where the coefficient "I. depend· only on ° -I; and not on t. At the moment

we do not assume that the y are ~ranslation harmonies, although it will,

of course, turn out that the definition of the translation harmonics is

precisely the constructive definition of the above "I.

We noif write

DL ••• L- X(u(o, ,t -0»= DL ••• L-x(u(l;, t -S» + q:;l··!q!
1 s 1 s

D X(U(I;, t - s» .;. ~
L L L T r· .•• r

1 ••• 1° •.• ~ 1 q . s q

r a
qq

~ ~
al···aq kl···kq

(r ,a)
0) ••• A q q (I; I 0)

N
q

which has been obtained by substituting (71) into DL L X(u (0, t -0»
.1··· s

94

and expanding into a Taylor's series about u(s, t -1;). To avoid unnecessary

complexity of notation, we shall simply write the index sets of the partial

derivatives of X 0 u using the same L. since the interpretation should be
J.. .

clear from the contect in which they appear. We now differentiate (71)

and evaluate at t ~ ° remembering that'the coefficients a are themselves

functions of t. However, before carrying. out the differentiation, we write

(73) as

DL1•••Is X(u(o, t -0» = J.~o (t~~)j Dj(D,. .••• L- X(u(t;" 0») +
J. -1 s

co
~

q=l q!
1. co (t-s)j j

j:o --;j! D(DL ••• LL ••• L X(u(l;, 0») L. •••
·1 6 1 q

After carrying out the differentiation, we obtain

co
~

j=o.

1 (o_l;)j-ro+il

q! (j-ro+il):

(continued)

The coefficient a are given in Theorem 8 as

= ~£ (o-s {+r- j

j=O (k + r -j)! ~ra (75)

where the ~ra are derivative harmonics. We see from (75) that the a(k)
ra

are polynomials of order k + £ and, thus,' their higher order deri vati ves

are identically zero. We, thus, limit the index ranges to

o ~ i l - i2,~ kl + £

o ~"i2 - i3 ~ ~ + £

'. (76)

O~i ~k +L
q q

since for values outside these ranges the derivatives are zero. Dif-

ferentiate (75) and evaluate at t = 0 to obtain

We now write

(0- ~)k+r;"j
~-"-.:...--~ 0 ~ j ~ k + L~
(k+ r _ j)! ra

(~,a])
X(u(T , 0») A (0 , 9)

(k) '(k-) ,
1, I' ' S

IL N ••. ' 1 . ..,N •
lIs's

(77)

. (rs-,ai) ,
A . (,0')

(78) ,

Substitute (77) into (74), then substitute toot results along wi th (7~ r
into (78) to obtain the desired expanions.

95

o,r

A(o, 0) = . ~ ~ . ~

j=o r I ·· .r'S aI" ,as

(ri,as) (~ (o-~) j
A. , 0) 'Y

" J.

(k~1+rS+I-(iI-i2»
i (o-~)

(ks+I+rs+l-(il-i2»!

where s = s + q

j = ro - ro + i l

(ri,aI)

r-B-
s s

(r + 0 j, kI ,·· . ,k'S;

(rs,as) 00

... 'Y + ~
r-a.- r =0 s s 0

. (k +r -i)
(0-0 s s q

(ks+rs-iq)!

t3r a
s s

in the second term of the right number of (79). We write

(F,a:) 00

A (0, 0) = 2:
r=£+l

(F,a-) (r,a)'
2: 'Y A (LO)

aES r,a
r

96

(rl'aI)
A (~ , 0) ...

00

2: ~ 2:
q=l iIEJI i EJ q q

and let the general term on the right side of this relation be represented

by

(80)

\{e wish to find this term and its coefficient on theright side of (79).
(r,a) _

An exanrination of (79) shows us that 'Y = 0 if s < s, since there are
r,a

no terms in (79) with s < s and hence an identification.of' the'Y with the

tJ:'anslation harmonics is correct in this case. For s = s, we need only

consider the first term of (79). Let ro = Ro = ro + j. We see that if

ro < ro then again'Y = ° and the translation harmonics are correct. For

j ~ 0, we will, indeed, have-the translation harmonics provided the co-

efficient is correct. We have that

R = r = r + j o 0

Ki ='ki = ki

b1.' = r ..
1.

i = 1, ••. , s = s (81)

We can find the valid index sets ·of (79) by considering permutations of

(81) that leave the differential unchanged. In general, k. are fixed
1.

by the definition of A(o, 0), that is by (78). However, if k. = k.
1. J

then we can permute the, couples (bi , ci) and (bj~ c j) to arrive at

another valid index set through the use of (81). Thus, we proceed as

before in Theorem 5. Collect into sets Si the couples (ri , ai) of like

ki· The couple (rj' a j) E Si if, and only if,
(i)

O ..
S1.' = {(r1.. :, a.) 1. , ••• ,

1 1.1

(i)
where o. is the repetition factor

J
indicating the number of times

(ri ' a.) appears in S.. We have the (1). =
j 1. j 1. g 1.

(Ji (i)
~ O. is the total number

j=l J

97

of terms in S.. Define S = U S.. Again, let Q be the set of all distinct
1. 0 i=l 1.

permutations of So where bya permutation we mean that for each Si we

permute its elements and then take the union of the permuted ',set s. The

general coefficient

,

appears in all of these permutations and may be ,factored out. The co-

effi cient left is the number of such permutations' that lead to distinct

permutation sets and this is

(0- (11))! ... (5 (1))! ... (.s l(g))! ... (5 (g)) !
cr cr .

(- -) g r. ,a.
and again.we see that if~ 1 1 are defined as the translation coef­

r.a.
11 (r. a.) (r·,a·)

ficients ~(5 - s) corresponding to A 1'.1, All , then we have

(r, a). th tIt· ff .'. t (~ I') nd . t A' (r, a:)
~ 1S e rans a lon coe 1C1en ~ 0 - ~ correspo1ng' 0 ,
r,a
(r ,a)

A .

For 'terms of degree s > s, we proceed as follows. We have that

R = ro

Ki = ki = k t , i = 1, ... , s

98

ki
- 1, Ki = , i = s + ... , s + <l = s (82)

b i = r i , i = 1, ... , s + q = s.
ci = ai

The indexing above is slightly different than that used in the definition

of the translation harmonics; however, this is immaterial since we can

suitably re-index the items provided that we are consistent and keep the

triplets (ki' ri' ai) with the same common index.

Equation (82) establishes one valid index set. To Obtain all other

valid sets, let So be defined as

So = ((kV rl, al), ..• , (ks ' r s ' as)' (k'S+l' rs+l' as+l) ,

(ks ' r s' as)}

with s =s + q. Let Q be the set of all permutations of So that ,are

distinct and leave the set (kl , •.. , ks) unchanged. It is important to

99

understand that we really mean that the set is identically the same before'

and after the permutation. Cons ider (78) when A is defined and also (79).

We see that kl' ..• ; ki do not enter into any sums and, therefore, are

fixed. From (79), we notice that we must be careful to keep the i indices

within their bounded range indicated in (76). In general, we have that

o ~ i l ~ r o ' 0 ~ i2 ~ iI' •.. , 0 ~ iq ~ i q_l and for any choice of k i

the indices will take on all values. The problem is that some of these

values correspond to terms that are identically zero. One way to over-

come this difficulty is to apply the following bounds to the indices.

Define the sets ~ as in (70.8). That is, the set s are def ined, :in the same way

as they are used in, Defini tion 9, but because of our indexing we interpret

ki as ks +l ' Now if Mi is a set for which the bounds are unattainable;

that is, the bounds are contradictory; then ~' = ¢, the null set. We

consider ¢ C J i and then we make the convention that if i E J i -~

then the term we are looking for on the right-hand side has a zero

coefficient. This is, of course, true sin.cefor i outside these ranges

the derivatives of a are zero.

In general, we do not have an identical coefficient for each of

the permutations, so we do not need to establish the multinomial

coefficient for the set Q. We write the general coefficient for this

case as

l - L:
qJ iEQ [(::-i1)! {11-i2 j! ... (1q)! {ks+1 +rS+l-{ i l -12))1 ... (ks +r s-iq)!

. (o-s)j
(ro-ro+il)J

s
where j = ro - ro +;:;~ (ki + r i), s = s + q . and again we' ,see that

(- -) i=s+l
'Y r ,a._ 'Y(o 1') where'Y is the translation harmonic corresponding to r,a, - . -"

, (83)

100

A(F,a), A(r,a) provided we make the analogous interpretation of)'(Fi,ai).
riai

Thus, given A Cr:, 8:\ 0 ,0) we are able to write this in terms of

(r,a) (~,~)
the differentials A«(:, 0) by means at' the)' (0 - (:) evaluated . r,a

at the interval of translation provided we knoo the expansion of the
. (T i , ai) (r, 8:)

factors A (0, 0) that appear in A • These factors are all of

lower order r i , so an induction on order ri can be applied and we need

only show that we can get started. Since the start is with order r = £ + 1

and degree s = 0, we have actually to do an induction on order and degree.

However, ~ consideration of how the differentials are constructed will

show that if we carr write the results for r = £ + 1, S = 0, then we can

obtain all the terms since we will, at each step, have already obtained

the .necessary lower order expansions. The lowest order r = £ + 1, S = 0
r.,;.l

term is D (X 0 u) where r = £ + 1. This term is obtained by setting

s = 0 in (74), or equally in (79). We then check that Definition 9

equations (70.4) and (70.7) do give the right coefficients when evaluated

at t = 0- (:, s = O. This then establishes Theorem 9 and although the

proof is somewhat involved, the generation of the)' should be a strai~ht-

forward operation that can be systematically carried out.

The corollary to Theorem 9 follows quite easily since we never

said what· 0 and (: were to be .We give the necessary steps below. We

can write

A(j)(O, 0) j(o i
0) A(k)(0, 0) = ~ ~ S))'k«(:

i€Si kESk
)'i

A(j)(s,O) = ~ ~)'~((: - o»)'i(o - (:) A(k)«(:, 0)
iESi kESk 1- k

where Si' = ~ = {set of all differentials A}. If the A are independent,

then it follows that

101

(84)

where 5 jk is the Kroneker delta. It is irrt ere sting to not e that the "I

are independent o~ the function x or X 0 x that define the differentials

A and, hence, of the set S., The results of ~he corollary must be true
1.

no matter how many elements we have in the set Si' This could prove

useful in checking the 'Y.

As a fUrther aid in chec.king these harmonics, we note that they

have the following.

Property 1: Lety be the translation harmonic of Definition 9

corresponding to the differentials A, A of order r and r, respectively.

Then
'Y(t) == c t(r-r)

where c is a constant independent of t.

That this must, indeed, be the case can easily be seen by considering

the physical units 'that might be associated wi th A arid t in a particular

case; say, for example, when t is a time variable. That it does follow

from Definition 9 can be shown by an inductive proof on the· order r.

The statement is trivially true for ali "I that are identically zero. It

is also true for the case of lowest order and lowest degree '1(.£+1)" since
r

for these functions s == 0 in C70.3) and C70.7). In the case of (70.3),
. ro~Fo l+ro-CFo+l) r-Y
wri te t == t== t and in the case of C 70.7), write'

~ ~

j - ro - ro + i~lki + r i == ro + 1 + i~l ki + ri -(ro + 1) == r - r. Thus,

the induction can be started. Referring to the definition· of the "I, we

see that, as was true for the differentials A, any "I of orders r, r is

formed from 'Yof orders ri' r i where r i < r, r i < r. Therefore, we

assume that the results hold for these lower orders and write for (70.4)

)'(t)
s S

where j = i~l(ri + ki) + ro + 1 - (i~l Ti + ki + ro + 1) = r - r

since s = sand ki = ki., For (70.7), we write

)'(t) = L.:
I rq+l-rl r q+'S'-r'S' (rO-rO+i~l

(ci t ~w.t t
iEQ

)'(t) = L.: (c i t
ji

)
iEQ

k.+r.)
~ ~)

~s q ~s
= . L.: 1 r; ;1- .L:l(r; + k;) + . L.: 1 k. + ro + 1

~=q+ .L ~= .L .L ~=q+ ~

s
L.: (ki '+ r i) + ~ + 1) = r - r

i=l

since ki = kq+i. Noting that ji is independent of the permutations, we

can factor t out and obtain the desired result that)'(t) = c t r - r where

c is independent of t.

We can also prove inductively in the same fashion

Property 2: Let)' be' the translation harmonic corresponding to

A, A of order~, r, respectively. If r < r, then)'(t) = o. Thus, if we

102

think of A as forming the rows and A the columns of the matrix of harmonics

)" this matrix is lower triangular.

Since the derivation of these harmonics is rather involved, there

is the possibility of propagating mistakes. These harmonics can be

checked to any order by performing a translation on an approximation

~i = L.: ~ p! a) to obtain L.: 13 A (a) when the .~ are treated as undetermined
a a a a

parameters. Then we consider ~i= ~(8i) for which the expansion is known

in terms of Taylor coefficients and derivative harmonics. The relation

l3a = T(~a) should hold when the appropriate coefficients replace the l3a

andl3a. Since the translation represents a change of basis for the A

and u(8 i) ,it is sufficient to check only this special tase.

103

The translation harmonics have been tabulated for arbitrary £ in

Table VII of Appendix I. This table is then used to obtain t he various

particular results needed to treat the various examp+es.

It is now possible, by combining the results of Theorems 8 and 9,

to obtain the required representation of any ~j in our scheme. To actually

carry out the required work, it is necessary to specify the expansion origtns

and translation intervals that are used. The following approach has been

taken. The major intervals are considered to be half open intervals with

uniform length hi = h. Thus, the first major interval contains the points

to, t l , ... , t q_l ; the second major interval, the points t q, tq+l, ... ,

t 2q_l ; and from the last major interval, we use only the point t exq.

shall consider Bi to be the distance of the point ti from the origin.

actual location of this origin is immaterial, although it is possibly

We

The

advantageous when solving the parameter defining equations to choose it

at Bq 0. To each major interval, we associate a local origin which is

located at -ajh for the major intervalj. The coefficient a j is a non­

negative integer with a o = 0. In effect, if Bo = 0, then the local origins

are Bo' Bq, •.. , Bexq' Given any approximation ~j' we have two repre­

sentations for it; one with respect to the origin and one with respect to

the local origin. These are respectively written as

00 (j,r,a) ~r,a)(O, ~j = u(0, B.) + :z: :z: BLN 0)
J r~£+l aESr

(86)
00(j,r,a) A(r,a)(_a.h, ~ '. = u(-ajh, B) + :z: :z: B 0) . J

r=£+l aES LN N J
r

where 9j = e j + ajh, with h ~ 0, and ° ~ a j ~ e, is the distance from the

local origin of the point tj corresponding to ~j and

104

are the coe~~icients o~ the expansion. Since these are simply two di~~erent

representations o~ the same approximation, th,e coe~ficients (87) are

related through the use o~Theorems 8 and 9. I~ we have done a forward

translation, then the B are the undetermined parameters, while Bare

functionso~ B and the translation interval. Whereas, for a backward

translation, the situation is reversed. Just how these translations are

selected and carried out will be described in detail in the description

o~ the ALGOL procedure that carry out the substitutions. We have chosen

to use the backward and forward translations of Figure 2 and 3.

The defining equations for these parameters are determined in a

straightforward fashion. ·If there is a point at which the expansion is

"known", then we carry out one of the previously ment ioned translations

to obtain equations that define these unknown parameters; otherwise, we

assunie that for any approximation that has undetermined parameters there

exists either a constructed representation of that approximation, or an .

approximation that is assumed to be the same as the one which has only

a repre sentation in terms of undetermined ,parameters. That is ~ if we us~ ,

Sj in constructing si and if Sj is not yet constructed (implicit methods -

closed methods), then we generate such an expansion and when S j is finally

constructed, we then have a constructive representation; or i~ Sj is from

memory, then since the scheme is periodic there will be found among the

S1 that we are constructing a similar S i and since S i and S j are identically

constructed approximations, they must have identical expansions about their

local origins and we can consider the constructed si to be the constructive

representation ofs j . Hence, for every s j for which there exists an

expansion into undetermined parameters and for which we do not "know"

the harmonics, there also exists a constructive representation. When

considered to be expanded about their local origi rls, these expansions

must be ident ical and we thus obtain the defining equations for these

parameters by equating the harmonics of these expansions. In general,

we see that since all our construction is done with reference to the

.origin, we might, in principle., have to translate both the constructed

representation and that with respect to undetermined parameters, called

here an implicit representation, to their respe·ctive local origins. In

practice, however, unless the period is greater than one, most of the

construction takes place in the first major interval and, thus, the

constructed representations are already with respect to their local

origin e . o

Using the above results, we now indicate how we shall carry out a

105

constructive approach to developing schemes and their associated parameter

de;fining equations.

Define the scheme interval parameters consisting of the major interval,

period, rank q, extent e. Define a scheme constructively as

i E S;, h E S.
... JI (88)

j2 E S.
- J2

where Si US. U SJ. C S ::: . (j I 0 ~ j ~ exq}.
J I 2

Consider the i to be sequentially ordered in Si and proceed to carry out

the operations of the construction using the representation

(r,a) .
S j ::: u(0 , e) + ~ 2: •.• A (0, 0)

r a

to obtain the construction

(i,r,a)
~. = u(0, e.) + 2: 2: rLN
~ ~

r a

106

where it has been assumed that· any ~ j without a constructive representation

has been expanded using .undetermined parameters and that an appropriate

translation has been e,ffected so that there exists the representations

with respect to the local origin and wit'h respect to the origin. This is

carri-ed-'out using the substitution theorem and where necessary the

translation theorem. Continue the construction until the exhaustion of

the set S. at which time choose a particular ~, say ~ , of that set to
~ 0

be equal to the corresponding H t) • Equate the harmonics which are

obtained whem these two quantities are expanded about their'local origin,

e , to obtain the nonlinear parameter defining
o

\ er +l +k
()

(io,r,a) J.' k r = 2: ~ . .
. LN kEP ra (r+l+k)! ILN

equations

(89)

Finally, for each~ J' j E Sjthat has an implicit representation and

is not a major point, equate the harmonics of the implicit representation

expanded about its local origin to the harmonics of the constructed

representation expanded about its local origin.

_(j,r,a)
B =
LN, .

r(j,r,a)
LN • (90)

Remember major points have a known expansion and we carry out one of the

previously mentioned translations to obtain the appropriate equations.

Solve (89) and (90) to obtain the parameters of the scheme as defined

by-(88). Below in Figure 5, we illustrate schematically the layout for

the case q = 3, e = 2, period = 1 where we have taken the origin to the

right of to.

Figure 5 '

.Q..(' I < -e-" !
(• et I :6J I

(• ~ •
I

1

$;,1

I
t:,s- t'S' -tt ~ -t:

I

-1:, I t"s I -to
1 -&i = 6, -0(,1. tv J l =0) .") 6

- a(lh- -o<.h. -0<"-
0(, = 3-;-l

I 0

Since the period is 1, we have that £ 4 is constructed in the same manner

as ~l and that the expansion of ~4 about -Oih is the same aS,the expansiqn

of £1 about O:oh, 00 ::;: O. Similarly, for the point £5 and £2·

The various quantities needed to carry out the construction have

be,en presented in Appendix I where we have. tabulated the differentials,

the results of doing one substitution, and of doing one multiplication

along with the translation of one major interval. The translation has

been normalized to one interval since be repeating the translation, any

number of intervals can be obtained and in this fashion the table does

riot change for each interval. The other alternative is to use one

arbitrary interval and let the correct number be inserted when the

translation is carried out.

At this pOint, we shall turn ou~ attention to the generalization of

the scheme to include the matrix of the derivatives of X> the matrix whose

determinant is the Jacobian and ,."hich ,."e shall refer to as the Jacobian

'matrix J
NL

• Theorem 7, the multiplication theorem, allows us to use this

qLmntHy, but we have Given no scheme definition indicating how it is 1.lsed.

108

It is possible to introduce another free parameter by evaluating Dr, X(S j)

where e j is to be included in our set of free parameters. We are actually

free to use any S from our set of approximations. Whether the inclusion

of the new term will be of any practical value must be determined by

examining various schemes that make use of Dt X(Sj)' However, to do thiS,

we need a way of characterizing the schemes. For that purpose, we shall

introduce some more terminology since schemes that use JNJ.,are able to

generate many more items to be used in the construction·of approximations

than the previously considered schemes.

We define generalized Runge-Kutta-Frey type integration methods using

Definition 10: The approximation Si is said to be obtained by means

of a generalized . Runge-Kutta-Frey type integration method (RKF), if and

only if

where i E So. The approximators TiN are defined to be either

or as

with

- R .. ,
1.

(i) = /j) SCi)
TiN NL L

,

(i) ()
JNL = DL X Si ,

and the sums S are defined to be

SCi) =
L

j E S·
3

i E S3

constructed using approximations sand Ti. The index sets are such that

i~l' Si c S· = {O, 1, ... , exq } where e is the extent and q the rank

(92)

(94)

109

of the scheme.

In the foregoing definition, it should be kept in mind that there

are actually two different spaces that are of interest; the vector space

Rn and Rn)(P and the coefficient spaces that contain the harmonics of the

expansion with respect to the differentials. In describing the scheme

and in its actual use, it is the vector spaces that are of interest, while

in the actual construction of the parameter defining equations, it is the

coefficient space that is used. Definition 10 is, e'ssentially, given in

the coefficient space since ~i - u(8 i) and XC 8 i) - Iti have expansions

2: ••• Aha) . Thus, we shall; when constructing the scheme, interpret the
a

definition as being in the coefficient space and use the re sults of the

" translation, substitution, and multiplication theorem which are given in

that space. We can multiply the matr:ix JNL times any element of Rnxp ;

this operation" is, however, to be carried out in the coeffi cient space

and, therefore, we restrict ourselves to previously constructed approxima-

tions or approximators. I~ the case p = 1 of a system of first order

differential equations, it does not really make sense to take the sums

S as linear combination and then to again form linear combinations after

multiplying by JNL, since the coefficient factors out, one linear combination

will suffice; however, if p > 1, then the parameters do not factor out

and it does make sense to take both linear combinations to introduce more

parameters. Whether this is helpful in achieving higher order methods

must be found out by constructing the scheme and examining the equations.

In describing and us ing the scheme, we wish to work in the vector

spaces Rn apdRllXP. It is implicitly assumed here that the conditions

(11') hold and, thus, we can replace ~i - u(G i) by ~i and X(Si) - Ri by

X(Si) in Definition 10. The fact that some of the approximators ~i are

"I

110

obtained by substitution and some by multiplication means that we must

keep track of those that are obtained by substitution since their parameters

enter into the conditions (11').

To complete the work of generating a scheme by means of successive

substitutions, it is necessary to give explicitly the coefficient matrices

A, B, E, F and to display explicitly the conditicn s of (il'). After.

doing this, we shall summarize our results so that they maybe more

conveniently applied. Before doing this, we comment here that in any

systematic search for new methods using schemes-such as are defined by

Definition 10, it would be necessary·to create a more complete set of

scheme defining parameters. Some of these parameters, the interval scheme

parameters, have been given here; but there will be needed some measure

of the work we will have to do versus the accuracy (or some other criteria)

that is achieved. For schemes that do not use the matrix JNL, this is

handled in a fairly satisfactory manner, but the introduction of the use

of JNL gives such a wealth of possible combinations that some thought

should be given to a suitable classification. We give here only a very

general scheme definition; a definition which enables us to construct

schemes but which does not contain in itself an effective strategy for its

use.

The definition <;>f the parameter matrices bas, up until now, been

left . open. We bave simply, mentioned that the choice should be sensible.

It is assuined tbat the schemes are independent of the vectors; that is,

, independent of n where n is the dimension of Rn, the space in which X,

AN' and the various 'derivatives lie. However, they can depend on the

order of the differential equation, that is on k E: P == {O, ••• , p - IJ.

Keeping in mind these simple requirements we wish to introduce, or at least

to have the ability to introduce, at each step as many new parameters as

is possible. We, thus, define the B andF matrices of Definition 10 to

be of the form

(k)
b ..

1.J

where IL(k
N

) is defined as usual and b(k) Eo Rl is a scalar, a parameter of
ij

the scheme. The coefficients of ~i

We might iI!lIrediately nOte that ~ik)

are defined sl j,ghtly differently.

_p-l-kx(e.) IT 1. and that, therefore,

it would not necessarily be the "sensible" thing to do if we used a

linear combination of lower order derivatives when approximating a higher

order derivative. For example, one does not usually write

unless A = B = O. We will, however, not require,for the present, any

such set of conditions since it is easier to work with square matrices

and then later to impose the condition that some coefficients are zero

for one reason or another. We say this in this fashion because it turns

out that the condition established by (11') will actually serve to help

establish this "sensible" choice. The A and Ematrices are defined to be

of the form

111

Z
k EP

2

a (kl) . I(kl) I(k2)
i~j LIN ~N

(96)

where I(k) have their usual meaning and a(kl) E Rl is a scalar parameter.
~ i~j

of. the scheme. As usual, we sum over the repeated index sets N. Using

the notation ~(k)[i] = ~[i + knJ, the approximtion ~i is written explicitly

as

or if one wishes to think in terms of the vector space representation,

replace ~~k) _ u(B1..)by ~~k) in the above equation.
1. 1.

Knowing the specific representation of the parameter matrices, it

is now possible to develop the conditions that we intend to impose on

these matrices. These allow us to represent ~i as either~i - u(B i) =

~ ... A (a) or use ~i = L: ••• ~ j + by means of (11'). The results are

pre sented as

Theorem 10

In order that it be possible to represent the approximation ~i

in the two forms

~ i= L: ••• ~ . + L: ••• x(~.) + L: ••• Dr, x(~ .) S
. Jl· J2. J

. Jl J2.

112

~i = u(B i) + L: ••• A(a)
(98)

a

thus allOWing the construction and utilization of'generalized RKF schemes,

it is necessary and sufficient that the elements of the parameter matrix

A multiplying ~jl and the elements of the parameter matrix B multiplying

X(~j2) satisfy the follOWing relations
r

t (k) B·
L: L:

J l
0 ai,(r-t+p-l),h =

hESl r=o r!
(99)

t =.O~ 1, ... , p - 2 - k

k = 0, ~ .. , p - 1.

113

t e~ e~-p+l+k

2: 2: (k) Jl ~

ai,(r_t+p_l) ,jl =
(t-p+l+k)1 r! (100)

jlESl r=o

t =p - 1- k, ... , p - 1

k = 0, ... , p - 1.
r

t (k) eh
2: 2:

hESl r=t-p+l ai,(r-t+p-l),h r!
(101)

t-p
e~-p+l+k e.

2: (k) J2 ~
+ b .. =

j2ES2
~J2 (t-p)! (t-p+l+k)!

t = p, P + 1, "" P + £ - 1

k = 0,1, A", P - 1

where we interpret values of t < Oas being empty conditions; that is,

the quantities referred to are non-existent and e. is the distance of s.
J J

from the origin,

These results can be presented in a slightly different form and

since it is advantageous to have them, th~ are given below as

Theorem 10'

In order that it be possible to represent the approximations Si

in the two forms given in (98), it is necessary and sufficient that the

'polynomial in e

pI: (A, B, e) =
~

p-l
2: 2:

jlE. Sl r:;::o

e~+r
Jl

---+
(£+r)1

be the zero polynomial for k = 0, "" p - 1,

£-1
e· ~.

(£ -I)!

That is, when we replace e j by, say, eo - ajh, then we obtain a

polynomial in eo' The coefficients must be such that as a function of

(102)

11.4

. eo the polynomial be identically zero. Since this in turn implies that
. k

all the derivatives DJ(P i)(e 0) == 0, we obtain the equations (101), (100),
. . '. .

and (99) simply by dif'f'erentiating (102) and setti ng the deri vati ve to

zero. This, then, is an easy way to obtain equations that establish the

condi t ions on the parameters. In the case of' fi nite dif'f'erence· methods ,

we can obtain all the necessary parameter def'ining equations in this
,

manner. The equations obtained can easily be seen to be exactly those

1hat arise by requiring that the method be exact f'or polynomials of a

certain order and then using the polynomials 1, t, t 2 , ...

It is immediately obvious that we have the f'ollowing

Corollary: The solution to the system of' equations (99), (100),

and (lOl),is origin independent f'or arbitrary 1.

Proof' of' Theorem .10: The proof' is very straightf'orward and simply

consists of' substituting the def'ini tions of' the terms into (11') and

properly collecting terms. Upon dOing this, (Ill) becomes

kl +1
r r·

p-l
(k)

e· . 1-1 e·
~ ~ ~ Jl DP-l-kl+rx(O) +~ .~ k ,n DP+rx(O)

aikljl
b~ .

jl kl=o r=o r!
j2 r=o lJ2 r!

k+1 e~
nP-l-k+rC) ~

l
. X 0 = 0

r=o r!

. where k.E P = to, ... , p - I}, jl E 81 ,. j2 E. 82 , We require that the

conditions hold indeperident of' the function x; theref'ore, we collect

the coef'f'ici"ents of' the derivatives .of' like order and set these terms

separately to zero. When this is done, equations (99), (100), (101)

will be obtained.

The proof' of' Theorem 10' is trivial; we have already stated it.

Simply differentiate and set all derivatives to zero. The eq~J.ations

obtained are (99), (100), and (101). Likewise, the corollary is obvious.

A few comments are in order considering these conditions established

by ~i. If we use ~i in a substitution X(~i)' then in reality all that

is recessary is that the conditions hold for kE P whenP = {kl ~(k) is

explicit in X(~)} since only these ~ must have the representation

~~k) = u(k)(8 i) + .•. , k E P.
1

We now have all that is necessary to carry through the construction,

of the parameter defining equations by means of successive substitutions

for any generalized RK or RKF scheme. The necessary results are sum-

marized below.

Summary: To determine the nonlinear parameter defining equations

by means .of successive substitutions, we proceed as follows:

1) Problem nPx = X o~ , ~(O) = b

2) SIP Definition 8 of the scheme interval parameters

3) Scheme Definition l' (RK), Definition 10 (RKF)

4) Creation Carry out the scheme using as required

Theorem 6 - Substitution

Theorem 7 - Multiplication

Theorem 81 _
Translation

Theorem 9

Condition A ~ik) -)k)(8
i

) = O(h£+k+l)

Use Theorem 10.

6) Conditi.on B ~ (k) _ S (k) (8) = O(h m+~)
o 0

Equate the harmonics of the created approximation

and of the solution (Theorem 4).

7) Condition C Carry out the necessary translations to obtain the

definitions of any harmonics that have been used as

undetermined parameters. ,

116

The equations defining the parameters of the scheme are the totality

of Conditions A, B, C. The work necessary to actually carry out the

above is' formidable; however, this work is preserved in an ALGOL 60

program described in Chapter V and given in its entirety in Appendix II.

Using this program, we need only supply steps 1 - 3; Step 4 is done for

us and the conditions appear as the result of carrying out Step 4.

Bec;ause there is much flexibility in thedefiriition of any particular

scheme, we must in reality specify· somewhat more than is indicated here

, .
to obtain a set of equations, but not much more, and the generation of

S~6 and their associated parameter defining equations is quite simple;

the solution of these equations and the systematization of a search for

new schemes is another problem.

We thus have all the equations necessary for the definition of the

parameters of any constructed scheme. We have

i) Equations that arise by requiring that all approximations be

. of at least a given minimum order of accuracy.

i i) Equations tr:at arise by matching the Taylor I s series of the

true solution with the coefficients of a chosen apprOximation,

this approximation having been obtained constructively.

Equations that arise by equating the appropriate implicit

,:representation to the appropriate constructive representation,

or to the approprai te "knoWn" expansion.

Note that ii are the basic Runge-Kutta type equations, . iare the

finite difference methods equations, and iii are the result of using

closed methods or else of mixing the two methods; that is, generalized

RK or RKF methods.

IV. GENERALIZED R. K. METHODS FOR SYSTEMS OF
p-th ORDER DIFFERENTIAL ~UATIONS

117

In Chapter IV, we treat the case of a system of p-th order ordinary

differential equations written as nPx = X 0 ~, ~(a) = b, ~ = (nP-lxl···'

DOx). This is the same system treated in Chapter III; howevier, the

development here will allow us to obtain an overall, global, view 6f;·the

parameter defining equations. This chapter, thus, is an extension of the

work of Chapter II to the p > 1 case and follows the development of that

chapter to a large extent. In Chapter III, once a particular scheme was

chosen, the results developed there enabled one to obtain the equations

for that scheme. In this chapter, we obtain the totality of equations

that are associated with the general scheme definition. The choice of

a particular scheme simply selects from that set those equations that

define the scheme parameters. This is, however, done at an expense ~-

our schemes are generalized Runge-Kutta (RK) schemes and not generalized

Runge-Kutta-Frey (RKF) schemes.

In order to arrive at our results, we ~ain, as was done in

Chapter II, introduce approximations ~ E R ~ RDXp
, approximations ~i

obtained from a generalizedR.K. scheme, and a generic set of functions

y. Using the generic y, we obtain from them weighted differentials W,

derivative harmonics a, differentials A, weighted polynomials ¢, elementary

polynomials r, polynomial weights ~, product coefficients IT, generalized

RK harmonicsH.

In a manner similar to Chapter II, we show that the derivatives

of S = LaiWi , Theorem 1. Theorem 2 shows that Dr-l(X o ~) = ~ aiAi.

We again have the factorization of W =¢A, Theorem 3. Using the results of

Theorem 4, a general factorization theorem with respect to the generic y,

we have from Theorem 5 that a!P =CX'y T' := ITr = H. Equation (45) then shws

us that the parameter defining equations for all ~i have the form

ej
L: Hi = t3 - where on the left side we have the stun of generalized

j!
RIC harmonics of the approximation ~i and on the right side the Taylor

harmonics of the exact solution ~(e). We finally conclude the chapter

with a definition of approximation harmonics, again ,denoted by a,

118

derived from the generic z ahd use these harmonics to establish a direct

connec~ion between this chapter's work and that of Chapter III by means

of Theorem 6 showing that ~i = L: ai~ where the a's are approxiination

harmonics.

This chapter will be developed in a manner analogous to Chapter II.

There the special case p = 1 was treated; here, the value of p is arbitrary.

This will lead to a profusion of equations; essentially a new set for

every value of k E P = (O, ••• , p- 1). However, while this limits the

actual use of the 'approach, in practice it is manageable for small values

of p and,particularly so if the first derivative is missing from X; that

is, if k E P = (1) c P = (O', 1) is the case. In general, when the k = 0

terms of ~ (k) are not explicit in X, there is a great simplification of

the re sul ts. Thus, the work of this chapter will f'urni sh nat only a

global view of the parameter defining equations, but also a means of

checking some of the cases of' the previous chapter. We shall also see

that there is another way of viewing the work of Chapter III that could

possibly lead to a simpler, or systematic development than has been carried

out there. Since much of the work presented here is either an obvious

extension of the analogous results of Chapter II or an obvious use of the

work in Chapter III, we shall br briefer in our presentation and wherever

possible simply indicate the appropriate section from which results come.
. I

The problem to be solved is the same as that of Chapter III. lie

restate it here for convenience.

Let R be the real line, t E R. Define

N = [0, ... , n - l}, P = [0, ... , p - l}, L = [0, ... m ... ,

where m = i + kn, i E N, k E P. Let Rn and RIlXp be respectively real n

and nxp dimensional vector spaces. Define x E R -7 Rn , X E RIlXp -7 Rn ,

~ E R -7 RIlXp. We wish to solve

119'

(1)

This problem is identical to that of Chapter III and a complete, explicit

definition is given there.

To help carry out the analysis, we shall define functions ~ E R -7 RDXP

using the notation SCm] = S (k) [iJ, m = i + kn where i E N, k E P.

Definition 1:

S E R -7 R
nxp

is an approximation if, and only if

~ u + TJ where

uCk) £+k
I:r: nP-l-k+rx(o) =2: -

r=o r!

TJ (k)
00 I r +l

(r+l)! br - k 5(k)(0) = L::
r=£+k (r+l)! (r-k)! r

DT
-
k o(k) = 2: (k) (ko) + 2: f~~) (Xo S)

r . k gikoj TJ J' lJr
J, 0

(k) (k) (k)
where k, ko E P = [0, ... , p-l}; g. ., f.. ,E R are constants; S ,

lkoJ" lJr
:u(k), TJ(k), 5(k) are E R -7 Rn and I E R -7 R such that I(t) :=: t.

r

(2)

As was previously done, define ¢ i = e i I E R -7 R and for any function
,

y define Yi = Y 0 ¢i' Then associated with (2) is the set of functions

which can be written as

~. = u. + T) 1·
1 1

(IBi)r DP-I-k+rX(O)
r!

T)~k) = i I
r
+

l
(r+l)! Dr-~~k)(O)

1 r:::£+k (r+l)! (r-k)! l.r

120

In the work below, we shall, occasionally, omit the r dependence

on 5 and f. It should never be forgotten that such a dependence exists;

especially when changing the range over which that index is summed.

When ~~k) is written out explic~tly, we obtain
1

~(k) = u(k)"+
00

i i r=£+k

(k) (k) . ·(k) (r;.k)r B k+l'
Let g . == 0, f = 0 for i"l j and f .. = () " l."

ikoj ijr . iir r+l !

Substitute these into (4) to obtain

(4)

() () 00 (IB)r+l ..
~ k (BiI) = u k (BiI) + 2: (i·)r Dr~k(x 0 ~)(o). (5)

r=2+k r+l"

We also have that nI'x = X 0 s wheres = u + v and· v is defined as

. (k)
v =

Thus

00

r=k+£

r+l
I

(r+l)!

A comparison of (5) and (6) shows that

These results are summarized as

Property 1: If ~ i is an approximation defined by (7) and if

x is a solution to ifx = X 0 ~, then

~ .(1) = ~(e.) provided t~t g(k) = 0 and
~. ~ ikoj

f(k) = 0, i l j
ijr

f(k) = (r-k)! e k+l

iir (r+l)! i

121

That is, with a suitable choice of parameters, the approximation ~ reduces

to the vector ~ = (nP-Ix, •.. , DOx) derived from the true solution x.

In the present development, we shall not use the Jacobian matrix'

JNL and will treat only generalized R.K. schemes the definition of which

is given in Definition 1 of Chapter III and which we repeat here in a

slightly more convenient form.

Definition 2: The approximation ~i is said to be obtained by

means of ~ generalized R.K. scheme if, and only if

(k)
~ . (8)
~

XE RIJXp_'Rn () where ~ is that of 1 ~ the g and a are elements of R,and ~ .

is an approximation obtained in the same fashion.

Our previous comments in Chapter II concerning ~. are reI event
J

J

here. However, now ~ . E
J

Rr.xP . . t· t ~s an approx~ma ~on 0 ~(e.) = (DP-Ix(e.),
J J

... , DOx(eJ) consisting of all the derivatives of order lower than the
J

order of the ·differential equation. Also, we shift back and forth

between Rn and Rnxp using ~(k) and ;, respectively. We shall do this

repeatedly and the meaning should be clear from the context.

~. .

..............

We know that if the conditions established by Tqeorem 10 of

Chapter III hold, then we can write any approximation as

(x(~ J - R J.
.. J J.

We can, by means' of' a proper choice of coefficients, write ~ lk) in the

same form. Writ~ ~ ~k) as
~',;

~ik) .~ uik) = T)ik) = i
r=o \ . ;'

122

(9)

(10)

',For r < I., the derivatives of T)tk) evaluated at zero ~re equal to zero •

. Thus (10) becomes

00

(11)

, • By expanding X ,0 ~ i in a Taylor I S series and defining

(12)

we obtain

00

Now take (4), factor out Ik+l and substitute ell) and (13) to obtain

~ ~k) = u~k) + I k+l [L: g~~) .{~ (.k) _ u\k)}
~ . ~ j ,k

o
~ oJ J . J

(14)
(k) .. _]

+. L: f... {X 0 ~. - R.).
j ~JrJ J

. The evaluation of (14) at 1 shows that if we use the previous

Cl.efini tion of R. in (9), that is (49)
c J

of Chapter III, then we h~ve

. that r(k) = ~(k) provided·f(k) =a(k)
c, . ..' i . . i ' ijr ij for all 1', provi p.ed we are

l~om;:~.stent in match inc,: all the ~i and r. i' and provided

123

r r
Dr(X 0 Si)(O) == 8 i D (X 0 u)(O). This last requirement is true since

Si == ~ + TJi and for r < £ we have that DrS i == Dui , DrTJi == O.

We summarize these results as

Property 2.
nXP

If S i E R ~:R "' is an approximation defined by (3)

and if Si is an approximation defined by means of a generalized R. K.

scheme, then Si(l) == Si prbvided the parameters g\kk)", f~kJ"f == a~~) common
l oJ J

to both approximations satisfy the conditions of Theorem 10, Chapter III

referred to here as Conditions A.

The problem of finding a generalized R. K. scheme can then be stated

as follows: Let S ER ~ RDXp
be the solution vector of the differential

equation nPx == X 0 S. Let S i (1) as defined by (3) be the desired approxi-

mation to s(8 i)· Write the Taylor expansions of S and Si as

r+l+k
s(k)(8

i
) ==u(k)(8

i
) +

00 Ai r
s) (0) 2: D (X 0

r==£ (r+l+k)!

00

1

(r+l+k)!

Choose the parameters g and f that appear in S i so that these .two series

agree to a given order. When the parameters are chosen, then Property 2

establishes the explicit representation of the scheme.

Note that in practice we usually will find ourselves working from

the schemedefini tion, by means of Property 2, back to the parameter .de-

fining equations.

We see that, as was the case in Chapter II with p== 1, we are again

in the position of having to find expansions for .the derivatives in (15)

and that we must do so in such a fashion that the two series can actually

be compared term by term. Although this tasle is more complicated than for

tJ\8 l' :=: 1 ease, we ('t'tn easily outline what the results will be. The

124

basic set of functions that we use for the derivatives of X 0 S we already

have; they are the differentials of Chapter III. ' As was done before,

we shall define weighted differentials arid all the related quantities

that went with them. However, we shall have more functions than previously;

all these quantities will now depend on k E P = {O, ... , p - I}. The

actual manner in·which we define·these quantities will be made clear

later, but we have the result that unless k = 0, or some small number

(unless PcP is "small"), the multiplicity of functions and resultant

equations soon becomes unmanageable when they are actually written out.

In the development that follows, we shall use a mixture of the

ndation that has been previously defined. However, if one ascertains

from the context the space in which a function li~s, then there should

be little confusion. In short, X is consistently the right side of the

differential equation; S the solution vector (#x, ... , DOx); s an

approximation in the function space; Si are approximation in the vector

space. The parameter k is always an element of P, orP c P, where

P = {O, ... ,.P - I}. Functions, or vectors, with a superscript k that,

lie in Rnca~ always bewri tteri as being in Rn><P by dropping the k; for

. example·, I'(k) = .. 1' [].' knJ d·· 1 W h lIlt d ~ ~ + an converse y. e s a a ways sum on repea e

capital subscripts; incidentally, this means that A =

~ ~ [il J ~ [ill ~. [il J where all factors have the same index value.
].1 1 . 1 l

On the other hand, we shall never use lower case subscripts to denote

components, only to denote elements of a set. Thus, as was the case

in Chapter III, S ~~) is the i-th element in the set of all S ~ k) and these

have components in the set N. We make no distinction between S Land S
. . (k) (k)

and will likewise use such notations as S Nand S as be,ing equivalent.

As we have said, the context in which the items appear should identify

the space of which they are an element.

125

Referring to (15), we see that it is necessary to calcUlate the

deri vati ve~ of t ~ k) starting with D£+ It :i (0 \ 0) . This is equivalent to

evaluating D,j Tj ~ k) (0) for .j = r + k + 1 > £ + 1. More specifically, we
1

have that

(16)

for r > £. By means of (3), we can write

(ko) () = L: ••. T}.. + ~ ... x u. + 11 ..
'k J J' J 1 J, 0

which when the expansion of the second term is carried out becomes

(ko) . [
L ... Tj; + L. .. X 0 u. + L
'k J ' J s

1
n... L' X 0 u Tj ••• Tj] •

s! -Ll ··· s jjLl jLs
J, 0 J

We now differentiate

of the matrices I~~)

, , (r+l+k)!
(18), multlply both sldes by , ' make use

, r.

and equation (16) to obtain the following result

r
D (X 0 u.)(O) +

J

\ole have deliberately put in the extra va:.lue of ki and as usual

CXri1 ... is = (~l) (~~) ... (~:-l) . Equation (19) will serve for this

(18)

126

chapter the same central pos i tion that (16') did for Chapter II and, in

fact, for p = 1, P = (O}; this reduces to that equation as may easily be

verified.

Since Dr~tk)(O) = 0 for r < £ + 1 +k, the range of the indices in

(19) can be materially ~educed. This leads to the same normal index set

that was given in equations (22), Chapter III. We write this normal index

range here for reference

o ~ kl ~ il - i2 - (£ + 1)

o ~ ~ ~ i2 - i3 - (£ + 1)

"
o ~ ks ~ J s - (1 + 1)

O.~ ko ~ r - (£ + 1)

s(~ + 1) ~il ~ r

'(s - 1)(£ + 1) ~ i2 ~ il - (1 + 1)

(£ + I) ~ is ~ i s _1 - (£ + 1)

1 ~ s ~ r ... (£ + 1)

where it is assumed that ki E P, i = 0, 1, , •. for all k, Thus, the

, (20)

uppe~bounds on k i will not be achieved if the upper bound is not in the

set F.We also have the following bound.s

(1 + 1) ~ ~1 - i2 ~ r + (1 6)(1 + 1)

(£ + 1) ~i2 - i3 ~ r + (i 6)(£ + 1)

(£ + 1) ~ i6 ~ ~ + (1- s)(£ + 1)

and these,. in turn, give

(21)

,
127

° ~ kl ~ r - s(£ + 1)

° ~ ~ ~ r - s(£ + 1)
(22)

° ~ ks ~ r -s(£ + 1).

It is useful to have these bounds when determining whether all the weighted

differentials and their related quantities have been obtained.

We see that (19) eXpresses' Dr+l +k. TJik)(O), for any k € P, in terms

of lower order derivatives; therefore, if we know the lowest order derivative,

we can, indeed, calculate the next higher one and thus proceed to obtain all

the necessary derivatives.

Aswa's previously done, we shall define functions W € R ~ Rn which

are again called weighted differentials of given rank R, order r, degree s

where R ~ r ~ £ + 1 are integers, s ~ ° is an integer, and we assume that

ki E P == {kl ~(k) is explicit in X 0 ~}. We shall, however, make use of

a generic definition to do this since this will help simplify the presenta-

tion and, at the same time, illustrates that all these quantities are

obtained in, essentially, the same manner. To do this, we need only

extend slightly the quantities defined in Definition 3 of Chapter III.

We are thus lead to

Definition 3: The symbol ~ is a generic y of rank R, order r,

degree s = 0, position 1, with R = r if, and only if

'!k
y. [R, r, 1]

l
= yk [R] 0 (z~ [R-l, r-l, OJ)

, i J

k
where Zj is a generic Z of rankR - 1, order r - 1, position 0, degree O.

The symbol yt is a generic yof raril\. R, order r,degree s, position a if

li: k ko
Y [R, r, a] = Y[R, ko] 0 (z. [Ro' r o ' ao])

i i J
(24)

128

ko
where R = 1 + Ro + ko' r ='ro' and Zj i'S a generic Z of rank Ro ' order

TO' degree s, position ao i: 0, or if

r, aJ = Y~ [R, ., (kl ... , y~ fR, kl' ... ,ksJ [Rl' all, ~ r o' Zj rl'
ks

a;])
(25)

z. [R , r,
J s s s

S
where R = 1 + ro + .L: (k. + Ri)

. 1 ~ J=
s

r = 1 + ro + L: (k. + r i)
. 1 ~ J=

k·
and Zj~ are generic zof rank Ri' order r i , position ai i: 0. In all cases,

Yo is the generic operator of the definition.

In the work that follows, we shall assume that Properties 1 - 4 of

Chapter III are true here. This is not inherent in our definition; how-

ever, the pattern of generation is to be identical for all af the quantities

that are the specific reali.zation of Definition 3 and, in particular, the

weighted differentials. ' Because of the way that they are defined, we are

lead to Properties 1 - 4 which are st'ated here in terms of the generic y

andz.

Property 1: In the definition of the generic y, a permutation of

the set (ki) is equivalent to the same permutat'ion of the set [(Ri , ri' ai)J

and, in general, a new generic y will arise from this operation.

Property 2: In the definition of the generic y, a permutation of

the (~}followed by an identical permutation of the corresponding

(Ri , r i , a i)} does not lead to a new generic y. That is, any permutation

of the' set (ki , Ri,ri' ai))'= (ni } gives rise to the same generic y.

Property 3: If ki = k j' then the permutation of (.Ri , r i' ai) and

(R j , l:"j' a j) does not give rise to a new y. Likewise, if (Ri , r i , ai) is

identical to (Rj , rj' aj)' then the permutation of ki andk j does not give

rise to a new y.

129

Property 4: Giveny defined by (25) of rank R, order r, degree s,

position a, we obtain all distinct y of rank R, orderr, degree s with·

the same factors by considering all the destinct permutations, of (kl , ... ks)

with the understanding that if (Ri , r i , a.) = (R., r., a.) then that
~ J J J

permutation is not distinct. That is, we associate to the couples

(ki , (Ri,·ri , a i)) the integer ni' Two couples are considered identical

if either ki = k j or (Hi' ri'ai) = (Rj , rj' aj) or both. Distinct couples

have distinct integers ni' We form the distinct permutations of the set

{ni}; then the correspondence ni -7 k i or ni -7 (Ri' ri, ai) will furnish all

th e di stinct ,y with the same factors.

We can, if we wish, again arrive ata normal form

cr
y = y 0 «zl)fll ... (Zs)flcr), with s = i~l' by suitable

permutations and r&-indexing. In the above definition and subsequent

realizations, it is always assumed that R ~ r!1; 1+ 1 and ki E P = [kls(k)

is explici t in X 0 sJ.

where

We now proceed to define the weighted differentials.

Definition 4: Define

y~ [R] L:
(R + k)! (k) (R-1)

0 - f" R C'N . ~ (R - 1)! j ~J J 0

k
[R, koJ 0

~R + k)! (k)
y. - L: g'k .
~ j (R - 1)! ~ oJ

(rN kl1' .. ,ks) r (.k1) (ks)
C . . = D 0 (D X 0 u j) IL N ••• IL N

JNON1' .. Ns . Ll · .. Ls lis s.

k'
Then the generic y. has as its realization the weighted differentials"

~

v{ [R, r, a] of rank. R, order r, position a, degree s.

Af3 was done before, we make use of the shortened notation and

write W as (R - l)(k) for (23), E(k)(w(ko» for (24) and

(ro ' kl' ... , ks ; WI'" Ws)(k), or {K; (Wl)lJ.l ... (wa)lJ. a), for (25).

130

'l'he quantities are tabulated in Table VIII of Appendix I using a

slightly different, shorter notation' than that which defines the generic

y. This table is actually a generic table in which we have, essentially,

identified the z to be the same as the y. The construction of that

table is completely' described in Appendix I. However, a few comments

will be made here. The pattern of generation of the genericy is the

same as we previously used in Chapters. II and III. We start with lowest

order and rank, degree zero, and work upward in degree and order; but,

now we have the possibility of items with rank R greater than the order.

It is convenient to envision the elements of constant order rand in-

creasing rank R to form the rows and the elements of const-ant rank Rand

increasing order r the column of a square array when generating these functions.

This is what has been done in Table VIII.' The best way to become familiar

with how to generate the$e quan'tiities is to actually carry out some examples.

We give below a short table to show how this can be done. It will

immediately be noticed that we have implicitly assumed a one-to-one

correspondence between the yand the z, except for zk [R - 1, r - 1, 0].

This is not inherent in Definition 3, but since, in fact, we shall have this

correspondence in all our realizations of the generic y, we shall assume

that this is the situation. A comparison of Table I with Table VIII of

Appendix I will show that this is just a very short section of that table.

The notation of Table VIII has been shortened to aid in its construction;

bowever, if these qua.ntities are generated by means of an algorithm, their

complete identification is needed; this is furnished in their definition.

TABLE I

Name Definition Name

yk [R, r, 1] yk [R] 0 (zk [R-l, r-l, 0]) yk [R+l, r, 1]

yk [R+l, r+l, IJ yk [R+IJ ° (zk [R, r, 0].) yk [R+2, r+l, 1]

yk [R+ 1, r+ 1, 2] yk [R+l, 0, 0] 0 (zO [R, r, 1]) yk [R+2, r+l, 2]

yk [R+2, r+2, 1] yk [R+2] 0 (zk [R+l, r+l, 0]) yk [R+3, r+2, 1]

yk [R+2, r+2, 2] yk [R+2, 1, 0] ° (zO [R, r, 1]) yk [R+3, r+2, 2]

yk [R+2, r+2, 3] yk [R+2, 0, 0] 0 (zO [R+l,r+l,lJ) yk [R+3, r+2, 3]

yk [R+2, r+2, 4] yk [R+2, 0, 0] ° (ZO [R+l,r+l,2]) k y [R+3, r+2, 4]

yk [R+2, r+2, 5] . k 1
Y [R+2, 0, 1] ° (z [R, r, 1]) yk [R+3, r+2, 5]

Definition

yk [R+l, oJ 0 (zo [R, r, 1])

yk [R+2, 0] 0 (zo [R+l, r+l, I))

yk [R+2, 0] 0 (zo [R+l, r+l, 2])

yk [~+3, 0] 0 (zo [R+2, r+2, 1])

yk [R+3, 0] 0 (zo [R+2, r+2, 2])

yk [R+3, 0] 0 (zo [R+2, r+2, 3])

yk [R+3, 0] ° (zO [R+2, r+2, 4])

yk [R+3, 0] o. (zO [R+2, r+2, 5J)
~

>-"
\.).J
......

It is possible to expand the derivatives Dr+l +k ~ik)(O) into these

differentials. However, the fact that k E P and not simply zero, as was

previously the case, requires that we modify our results. In the work

132

which follows, we shall always assume that there is established a one-to-one

correspondence between the various items that are generated as specific

realizations of the generic y. Thus, when we write Jk~ and if.: [R, r, j],
RrJ 1.

we implicitly assume that these items were generated in the same manner.

The generic y establishes a pattern for all quanti ties derived from them

and this pattern, once established, remains fixed.

The expansions of the derivatives Of'~~k) are carried out using
. ' 1.

Definition 5 of the derivative harmonics and Theorem 1. We state the

theorem first.

Theorem 1

Let R .~ 1 -+ 1, k E P = {kl~(k) is explicit in X 0 51, ~= (jIWlk)

k
[R, r, j] has rank R, order r}. Let ~ . be the derivative harmonic

.H.rJ
k

corresponding to the weighted differential Wi [R, r, j]. Then

"
R
L:

r=£+l

(k) . W. [R, r, J](O).
1.

The derivative harmonics are non~negative, rational coefficients

independent of i and are defined in

Definition 5: Define

k k k
Zj [R-l, r-l, 0] == 1, Zj [R, r, a] == Yj [R, r, a], a oj 0

y~ [R] 0 =
1.

1
(R+k)! •

(Ro + 1\,0)!

(R + k)!

1

(28)

where fii is the number of times that (ki' Ri' ri, ai) appears as a factor

133

in ~ [R, r, a]. Then the generic Y~ [R, r, a] has as its realization the

, derivative harmonic cl:. ., We note that when R = r these derivative harmonics, ---------,rtra.

when multiplied by (R + k)!, are identical to those of Chapter III.

Proof of Theorem 1: The proof of this theorem is essentially the

same as that of the constructive case in Chapter III where we found the

expansion of the derivatives of x. Consider first the case R = 1 + 1.

From (19) we have that

(29)

where we have used the fact that, because the indices lie in the normal

set, there are no terms other than the first term. Now, we assume the

results are true for all ranks less than R and substitute (27) into (19)

to obtain

= (R _ l)(k)(O) + ~ ~
s i l ·· .is

_ .1
,
s!

1 where we have left out the scaling factor in the definition of
(R+k)!

the a. We see that the derivative harmonics furnish the correct coefficient

for the degree zero terms and for the last term obtained using the E

operator. The only question is the general coefficient of the second

term in the right member of (30). We proceed exactly in the same manner

as previous1y. ,The expansion (27) is written for the left side (30) and

134

then we establish the valid choices of indices for the right side by

permutting the couples.(~, Ri , ri' ji) that appear in the factors of the

general term. We will obtain as the general cOefficient
kl ks .

k (R-l)! 1 DRlrljl ~ r j ••• s s s
(31) CX

Rrj
=

((J)l)! ... «(J)o)! rot (Rl tkl)! (Rs+ks)!

where (J)i is the number of times that (ki' Ri , ri' ji) appears as a factor

inwf [R, r, j]. If we now mUltiply (31) by (R+~)! and :refer to the

definition of the derivative harmoniCS, we see that they are indeed the

correct coefficients.

Since we eventually plan to use the differentials A of Chapter III

as our basis, it is convenient to have them defined directly in terms of

the generiC y. It is possible to actually consider the A as a subset of

the W by using a proper choice of the parameters g, f, and e that appear

in W. If we set all g = 0, f~i = ~~~~~:, f~j = 0 if i~ j, ei = 1, then

we can write A [r, a] = W [r, r, a] and have the desired differentials.

This, however, is not a convenient way to generate the differential A

and we give below an explicit definition of these quantities.

Definition 6: Define

k k k
zJ' [R -1, r -1,0] =1, z. [R, r, a] =y. [R, r, a], a ~O

J J

where

ro (kl) (ks)
= D (1),. L X 0 u) IL N ••• IL N

~~l··· s 1 1 s s

then the generic y~ [R, r, aJ has as its realization the differential

A [r, aJ = yf [r, r, a] and the trivial set zero for those y with R > r~

By convention, we ignore this set of zeros and for each set·

(yk [R, r, aJlk E p), since all items are identical and independent of k,

we choose one of these items as arepresemtati ve and any subsequent reference

to yk [R, r, aJ refers to this representative.

will be used and also its normal form where v er convenient 0 This has been

previously described in Chapter III

. We next define the weighted polynomials <P of given rank R, order r,

position a, degree s. There is established by the generic y a one-to-?ne

correspondence between the Wand <PW'bich we write as <p(k) [R, r, aJ­

W(k) [R, r, aJ.

Definition 7: Define

k k k
Zj [R - 1, r - 1, oJ =1, Zj [R, r, a] =Yj [R, r, a], a ~o

k [R] L:: (R+k)! k R-l y, . 0 - f ijR e j l
j (R-l)!

k [R, koJ =L::
~R+k)! (k)

Yi
0

(R-l) ! g'k . .
j l oJ

Y
k
, [R k
l ,ro ' l' ... , (R+k)! f(k) ro

(R-l)! ijR e j

then the generic y~ [R, r, a] has as its realization the weighted polynomial

k
<Pi [R, r, a] 0

Again, we use the abbreviated notation [r _ l](k) for (23), G(k)(<p
ko

).

for (24), and fro' kl' .'0, ks ; <pikl) ... <p~ks)] for (25).

We note that there exists a one-to-one correspondence between the

differentials A [r, a] of order r, degree s and the set of all ~ [R, r, a]

of' order r, rank R ~ r, degree so This is the same correspondence previously

encountered in Chapter II; however, now k E P.

With regard to the derivatives of x, we already know that they can

be expanded into the derivative harmonics t3ra of Chapter III; these

harmonics are, however, the same as (R + k)! ~ra which can easily be

verified. We restate that fact here for reference.

Theorem 2:

where t3ra = (r + k)! a~ra for any k E P arid Sr= (al AfT ,a) has' order r).

The connection between the Wand A is easily made by

Theorem 3:

W(k) '[R oJ - cp(k) [R oJ . A [r, aJ i' , r, J - i , r, J

where W, ¢, and A have their usual meanings. This leads to the explicit

relations

(k)
(r - 1) = [r IJ(k) • {r - 1)

(K . A(rl) A(r S ») , 1 ... 1

where K = (ro ' kl' ... , ks)' the correspondence w~ki) = cp(loki) A(ri) is
, 1

'assumed,(k, ki) C P, and j E SR = (jlW has rank R, order r).

,,'Note that the use of the generic definition without a change in its

pattern of creation ~nsures that the proper correspondence in sequential

position is maintained between all terms of (35). We are thus able to

factor out theA in any expansion in which W appears.

137

Proof': The proof' is an inductive one using the def'iriitions of' the

W, ~, and A. It is true f'or s = 0, R = r so the inductive process can

be start~ If the results are true for degree s, order r, rank R, then

they are likewise truef'or degree s, order r, rank R + 1 as can easily be

verif'ied. Thus, if' the results are true f'or any R = r element,then they

are true f'or the whoJ:e row with R > r. On the other hand, if' they are

true f'or any row, then they are true f'or the appropriate row with higher

rank and. order . Thus, they are true f'or all element s.

We are now in a position to rewrite our expansion (27) of the

derivatives of ~i' Upon substituting into (27) the factorization of W

into CPA, we obtain

where

R
L:

k (k) (r a)
(R + k)! ex... . CPo [R, r, j] A ' (0) --.KrJ ~

r=£+l aESr jESRa

Sr = (aIA(r,a) has order r}

SRa = (JI W(k) [R, r, j] has rank R, order r, and corresponds to

A (r, a) of or der r}.

If, in equation (15), we now replace the derivatives by their

expansions into the dif'ferentials A(O), the f'ollowing equivalent ex-

pansions are obtained.

00

L: L:
r:d +1 aE S r

00

(3ra
(r+k)!

where the order of summation of Rand r has been interchanged.

Equation (38) gives us, ess.entially, the desired expansion into the

(37)

basis A. However, it is possible to factorCP into a numerical coefficient

138

-y and an algebraic tenn r allowing us to write ex~ = ex -y r ~ We can, if

we wish, collect the productex-y = nand writeinsteadnr where there

are only two types of quantities in the summationj the numerical coefficie~t

n and the algebraic coefficient r. We can also go the other way and

collect together the factor to write H = <Xc!>.. These various representatiuns

have their advantage depending on what we are interested in and how the

quantities are to be obtained. We give below the definition of the

coefficients that are necessary to effect these different representations.

Definition 8: Define

z~ [R - 1, r - 1, 0] = 1, z~ [R, r, a] = y~ [R, r, a], a i 0
J J J

(k) R-l
f ijR e j

. ~ . , (k) e~6.
f ijR J

then the generic y~ [R, r, a] has as its realization the elementary
l

k
polynomial r i [R, r, a] of rank R, order r, position a, degree s.

Definiti on 9: Define

k k k
Zj [R - 1, r -1,0] =1, Zj [R, r, a] =Yj [R, r, a], a 1-0

~ 'rR, k]
0

0 [R, r
l 0'

·0

(R+k)! •
(R-l)!

(R+k)!
- (R-l)t

kl , kJ s

.

0 =
(R+k)!

(R-l)!

(40)

then the generic y~ [R, r, a] has as its realization the polynomial weight
l

-yk [R, r, a] of rank r, order r, position a, degree s, independent of i.

139

Definition 10: Define

k [zi R - 1, r - 1,0] =1, z~ [R, r, a] =y~ [R, r, aJ, a:l 0

Y~ [R] 1
0 -l.

(R - I)!

it [R, ko] 0 =1' l.

(41)

1

where (l)i is the number of times that (ki , Ri' r i' ~) appears as a factor

in y~ [R, r, a]. Then the generic y has as its realization the product

coefficient nk[R, r, a] of rank R, order r, position a, degree s,

independent of i and k.

Definition 11: Define

z~ [R - 1, r - 1, oJ =1, z~ [R, r, a] =y~ [R, r, aJ, a 10

k
[R] Y. 0

l. (R

;t fE, ko] 0 -l.

1 (k) R;.,l
L: f. 'R 8.

I)! j l.J J

(k)
L: g'k . .
j l. oJ

... , 1
k s] 0 - ---~------

(rul)! ... (ru~:)!
L:
j

f~~R) l.J

(42)

where rui is the number of times that (ki , Ri' ri' I"i) appears as a factor

in y~ [R, r, a]. Then, the generic y has as its realization the generalized l.

R.K. harmonics Hik)[R, r, a] of rank R, order r, position a, degree s.

In order to obtain the various representations of (37) using these

definitions, we appeal to the following result.

'I'heorem 4:

Let the generic y be generated as y = Yz1 ••. zs where Y = UV and

zi = ui vi are permissible factorizations of Y and zi' respectively. Then

y = YlY2 is a permissible factorization of y where Yl = UUl"'us ,

140

Y 2 = Vv 1· •. Vs are the generations of the factor s y 1 and y 2 provided the

necessary commutation of the terms in UVulvl ••• usvs can be carried out.

The converse is also true. That is, given the factors Yl and Y2 generated

using the operators U and V, then y = Y1Y2 can be generated using the

operator Y = UV provided the necessary commutations can be carried out.

Proof: The proof is inductive. Starting with y [R, r, 1] of lowest

rank, order, and degree, we show that the inductive process can be started

and is, in fact, true for all degree zero terms. Equation (24) shows

that if it is true for a given rank R, order r, degree s, then it is true

for rank R +1. Equation (25) will be true provided it is true for

quantities of lower rank and order.

Using this result, we can write the coefficient of A in (37) as

follows:

Theorem 5:

Let a and ¢ be respectively a derivative harmonic and weighted

polynomial of rank R, order r, degree s,position j; then we have that

~rj <p~ [R, r, j] _ k k r(k) [r, j]
~ - ORrj 'YRr ji R,

k r~k) [R, r, j] (43) = 7TRrj ~

(k)
[R, j] == H. r,

.~

where 'Y, r,7T, and H are respectively the polynomial weights, elementary

polynomials, product coefficients, generalized R.K. harmonics.

We nOW make use of our results to restate the definition of the

generalized R.K. scheme, but now in terms of the harmonics of the basis A.

To define a generalized R.K. scheme for the solution of

141

specify the rank q, the extent e, and the scheme definition

s~k) = (k) (k) (k)
X(S j) L: L: gikoJl

s·o + L: a .. l
h ko Jl lJ2

j2
(44)

where
. E S. , . E S. i E Si Jl J l

J2 J2
,

with
S. U S. U S. cS = {jlO ~ j ~ exq} l "Jl J2

ko' k E P = CO, ... , p-l}.

To determine the parameters of (44), choose a point within the extent

and require that the corresponding Si shall match the true solution s(ei)

to a

that

where

certain order r. This leads to the parameter defining

can be written in the following equivalent forms.

00

L:
R=r

00

L:
R=r

00

L:
R=r

00

L:
R=r

(k)
r+k

e i L: Hi [R, r, j] I3ra (r+k)! jES
Ra

r+k
r~k) e. k

L: 7TRrj [R, r, j] I3ra
l

l
(r+k)! jE~a

r+k
k k (k) e i L: ~rj 'YRrj r. [R, r, j] I3ra jESRa

l (r+k)!

k W~k)
"e~+k

L: ~rj [R, r, j] = I3ra jESRa
"l (r+k)!

l+l~r~r

k E P

a E Sr = {aIA(r,a) has order rJ

= {jIY~ [R, r, jJ has rank R, order rand
l

corresponds to A(r,a)}.

equations

(45)

In the layout of the interval we have assumed that we proceed in a fashion

identical to that of Chapter III using major points and minor points,

142

the meaning of which are well defined there. Here, all thee i are

measured from the origin. It will be recalled that the expansions of the

major -points were assumed "known". FQrour present development, we use

property 1 which, when suitable attention is paid to the re-indexing that

has taken place, becomes

f (. k'R) = ° '--I-, 1 I j lJ (46)
(R.l)!

=
(R+k)!

when

Along with these parameter. defining equations, we have conditions

equivalent to those of Theorem 10, Chapter III, which arrise when a

mini'mum order s~k) - sCk)(e.) = 0(h1+1+k) is required. These are given as
1. 1. -

Conditions A: Let e. = e1.,(t) and define , 1.
1+k o

(k) e jl (k)
.L: g + .L:a. ,
k ikojl (1+ko)! , 1.J2

o - J2
~(t) = L: 1. ,

JI

the polynomials

1-1
8j2

(1-1) !

thEm in order that slk) - s(k)(e i) = 0(h1+1+k), it is necessary and

suffic ient that

fOr-

r = 0, 1, ••. , 1 + P - 1.

. . . , p -I}, i E S = (0 , ••. , exq} •

Given that equations (47) and (45) are satisfied, then the local

:truncation error is

s~ k) _ s (k) (e ,)
00. 00

H(k) = .L: .L: (.L: .L: [R, r, j] 1. 1.
aESr - R=r .~ i r=r JE a

e:r+k
A(r,a)(o) t3ra

1. }
(r+k)!

(48)

or any of the equivalent representations obtained by replacing H by its

factorizations.

In order that these constructions can easily be carried out, we

143

have tabulated in Tables VIII-XII of Appendix I the various realizations

of'the generic y that have been used here. Since the generalized R.K.

harmonics are easily derivable from the quantities, these have been omitted.

A detailed explanation of these tables is given in that Appendix. Their

use is illustrated later in Chapter VI where variOUs examples are treated.

At the beginning of this chapter, we indicated that there is a

complete equivalence between the present global approach and the previously

developed substitutive approach to the non-linear parameter defining

equations., ,. At first sight this is not apparent j however, the connection

can be obtained quite easily. In Chapter III, each individual approxima­

tion 5i has harmonics, which we shall call approximation harmonics that

are obtained by carrying the indicated substitutions and linear combinations.

The substitutions are, in practice, effected by means of a substitution

table the elements of which can be generated by a realization of a

formally defined generation scheme. We nate that this scheme is not used

in obtaining the, harmonics, only the elements of the substitution table.

In our present work, we have obtained quantities, the generalized R.K.

harmonics or any of their factorizations, using a formally defined

generation scheme (a scheme which can also generate the substitution table .'

as one of its realizations) and a linear combination of the appropriate

R.K. harmonics yields the approximation harmonics. Now, it is possible.

to obtain a realization of this latter scheme for which the generated

elements are the approximation harmonics. In the process of arriving at

the appropriate definition for the quantities in Definition 3, we shall

\:.

see the connection between the two different approaches "that have been

used to obtain the parameter equations.

We know that we can write any approximation Si as

. and further that

S~ k) - u(e.) ==
1. 1.

00

[(k)
Sj

k
a. Jra

If we substitute (50) into (49) and use the substitution harmonics of

Definition 5, Chapter III, then we obtain

S (k)
i

+

u(e") =
i

00

144

(49)

(51)

" " where (J.)i and 0 have the reaning assigned to them in the definition of the

derivative harmonics.

k
Now, if we substitute for a jra, its representation as

00
k a = L:
jra R==r

and collect the coefficients ~f' A(r,a) to obtain the approximation harmonics

k k
atra corresponding to the approximation Si' we shall find that aira also

has the representation (52). This is, indeed, the obvious result that must

be true if the derivations are correct; hooever, this allows"us to see that

for each approximation that we construct, the constructed harmonics are

identical to those obtained using the generalized R.K. harmonics and that

145

by a rather simple extension of the definition of the substitution

harmonics, we can obtain from the generic generator a realization which

will give us these harmonics. This is done in

Defini tion 12: ,Define

z~ [R - 1, r - 1, 0] = 1,

z~ [R, a] :6
k

[1 + R + ko' a] k [R, aJ, R a:/:O r, - Yi r, + Yi r, = r,
~

kOEP

k
zi [R, r, a] = 0, R > r, ajtO

R-l
Y~ [RJ :6

k ej
(53) 0 = f ij ~ j (R-l)!

k
[R, koJ

k
Y. 0 - :6 gOk .
~

j ~ oJ

k
[R, ksJ

1 1 k ro Y. r o ' kl' ... , 0 - (col)! ... (ill5)!
:6 f .. e. •

~ ro! j ~J J

where illi is the number of times that (ki' Ri' ri' ai) appears as a factor

'k
in Yi [R, r, aJ. Then the generic z of rank R= order r has as its

realization the approximationharmoni¢ ~ra'

Associated with this ,definition, we have

'Theorem 6

If Si is an approximation defined by a generalized R. K. scheme,

then

00

:6
r=R.+l

:6
aES , r

k (r,?-)()
exira A 0

where the ex are approximation harmonics. This, in particular, includes

the solution values He.).
~,

Proof: The proof at' this result follows by induction from (51)

where we proceed as we have done many times before to substitute the

expansion for ~~k) _ u(e i) into the right side and isolate the general

term. This will lead to coefficients which are those of Definition (12).

We note that there is little difference between the definition of

the generalized R.K harmonics and those we have just defined. There the

146

generic y turned out to be the quantity of interest, while here the generic

z are the items we want.

The definition of these quantities is rather abstract and is given

in the foregoing fashion to enable us to obtain all the harmonics using

the same formal pattern of generation. However, they have a simple

pattern that can be obtained directly from the approximation and it is

convenient, in practice, to have this explicitly displayed. Thus, given

k k
the approximation (49), we simply note that the harmonics CXira = zi [r,r,a]

are the coefficients of (51). We may now, if ~e wish, use (52) in (45)

and (48).

We thus see that we can, in general, tabulate the equations with

no specific reference to the index sets and then the particular realization

Of anyone scheme arrises by specifying the appropriate index sets. How

thiS. actually is carried out will become clear when we treat various examples

in Chapter. VII. For the present, we restrict ourselves to mentioning a few

rather obvious facts. It is evident that the choice of origin is imma-

terial; conditions A are origin independent and the results up through the

prin<?ipal error term should be origin iridependent. We lack a general

theorem concerning the latter fact; however, the results can be directly

verified since the equati ons are polynomials in e. The choic e of £ deperids

on the desired method; for self starting methods £ = 1 while for finite

difference methods of order r, £ = r - p. For mixed methods of a given

order r,then m = r - p - £ is a measure of the complexity of the set of

147

equations (45) that must be solved. We are rather vague here about the

precise definition of order, but, for the present, it suffices to take

p = land for higher p we shall be more precise later on when dealing

wi th examples.

A further remark is that when comparing .our present results with

those obtained by the constructive substitution approach,we must remember

that we are essentially dealing with what was then called the backward

translation case. We know, however, that if our work is carefully arranged,

we should be able to make a direct comparison of the .results.

We should also say a few words about the infinite sum on rank R.

If the R.K. harmonics H are generated (we have seen that we c'an instead,

if we wish, generate the approximation harmonics), then while it is true

that we cannot a-priori state exactly when the illfinite sum or the rank R

will terminate, the sum can be drastically limited provided we limit

slightly the class of methods we wish to investigate. To be more precise,

note that for any giyen scheme the appearance of a term of rank R > r

implies that the coefficient g appearing in the scheme are non-zero. We'

know that for purely R.K. schemes allg can be considered as identically

zero. Hence, we need never consider R > r for these cases. Incidentally,

for R =r and purely R.K. schemes our results should agree identically,

when £ = 0, p = 1, with those of Butcher(l) and with £ = 1, p '= 1 with

those of Ceschino - KUntzmann (2). . For Runge-Kutta schemes. with memory

where only function evaluations are used, we note that again we need never

consider cases with R > r. However, this is a severe restriction and we

do not limit ourselves to tbat extent. Instead, for convenience in pre-

senting some complete tables, we limit ourselves to scheme whose parameters

are to be determined with the assumption that the major points have "known"

expansions vThose harmonics are the Taylor harmonics. That is, we consider

148

major points to have approximations ~i = ~(ei)' This then implies that

g~koj == O. This, in effect, simply says that in determining the approxima­

tion ~i' we shall consider ~ j to be a true solution value if j = nXq where

q is the rank of the method •. Since, in practice, the major points ~j

all have an order equal to thatof'~i' the determination of the parameters

will not be affected. In contrast to this, we consider ~j = ~(ei) + ~

where Ei is an error term. We know that this case can be easily treated

provided we "know" the appropriate expansion of Ei and therein lies the

difficulty .. We have indicated in the substitution case how this difficulty

can be treated using urldetermined parameter expansions. This approach is

still valid if we generate the approximation harmonics using Definition 12,

b.ut1.t becomes more difficult to apply directly using the R. K. harmonics

H. Since it will not, in general, change the parameter defining equations,

we consider ~j = He j). The limitation imposed here does, indeed, become

a restriction if we are concerned with global error terms and correct

starting values of the scheme,but we shall say more about that later.

With thlBrestriction we are able to forget about all functions far.

those cases where there appears two or more g coefficients. Referring to

Table VIII of Appendix I, we have eliminated all cases where there are two"

or more E factors. This allows the tables to be reduced to a reasonable

working size.

To illustrate with an example, consider

where g31 = g32 = I and all other g are zero. An examination of the

meaning of the higher powers of E shows us that we will have terms such

as g31 gl····' but since ~l is an exact value~(el) we have that gl'" = O.

These ideas become clearer when specific examples are treated. In

short, it turns out that we need only consider terms that contain one

or less factor E when treating generalized R.K. methods in which we

determine the parameters using one major step. If we use two major

steps, consider the case of -the truncation error after two steps, then

we need terms with two or less factors and, in general, the pattern

persists. Should one wish to utilize the tables presented for these

149

more complicated schemes, then these tables must be extended. We comment

that if these <luantities are generated, then there is no problem; we

get all the <luantitieswe need simply by specifying the index sets and

the "known" expansion at major points.

Having limited the table of functions needed, it turns out that

we can further limit the sum on R. The rank R can be written as

R :=: r + 1 -I- k1 when kl E Ii c P :=: (0, ... , ,p - 1). Thus, we need only

consider those kl .that appear explicitly in X 0 s.

> ,

V. UTILIZATION OF ERROR HARMONI CS IN
GEl.'iIER.ALIZED RKF SCHEMES

In Chapter V, we present results that are, to a large extent,

simply a re-interpretation of the earlier work of Chapter III. It is

shown that if we evaluate the differentials not at u(O), but, instead,

at Ho) where ~ is an exact solution tonPx = X 0 ~,then many of the

harmonics that were previously non-zero become zero and no new non-zero

harmonics are introduced. We thus, in a sense, have found a canonical

set for a basis. We are . lead to this set by considering the errors

Ei == ~i - ~(ei) of the generalized scheme. These errors are defined

in Definition 1. In ord~r to carry out the required expansions, we

define, Definition 2, ~ differentials E (the canonical basis) and

then proceed to show that most of the work of Chapter III has a parallel

150

development in terms of these functions. We can calculate the derivatives

of E, Theorem 1. The derivatives of x cari be expanded into the set E,

Theorem 2, and, in fact, those harmonics are mostly Zero. Again, it

is possible to define derivative, substitution, multiplication, and

translation harmonics. In fact, it turns out that the substitution and

multiplication harmonics are identical to those previously defined.

Once again, we are able to extend the definitions to the gener ..

ali zed RKF schemes. This is given in Definition 5 which is merely a

restatement of that given in Chapter III, but now in terms of the

errors E and the error differentials E. This allows us to show that

there is relatively little to be done before the program RKMI can construct

schemes in the coefficient space of the error differentials. Finally, we>

s~ow, Theorem 6, that there is essentially ·no distinction to be made

between the approximation harmonics a given in Chapter IV and the error

' ..

151

harmonics e developed here. That is, a table of approximation harmonics

is also a table of error harmonics.

In the work that has been presented in Chapters II - IV, extensive

use has' been made of the.fact that any solution ~ of the differential

equation nPx = X 0 ~ can be represented as ~ = u + v where the first

term is a finite number of terms of the Taylor's series expansion of ~ and

v is the remaining part of that series. This has caused all of our

functions, in particular, the differentials A and weighted differentials

W, to be evaluated at u. For example, we have D(X 0 u)(O). This has

been a fortunate choice in some respects. In particular, it has forced

us to find an expansion formula for the derivatives Dr(X o~) = Dr(X(u + v))

which has been the prime source of inspiration in obtaining the definitions

for the differentials which in turn has lead to a definition of the

generic y. However, it also leads tb results .that do not necessarily

compare directly with other work. Our previous work can be directly

compared with that presented by Ceschino- Kuntzmann(2) and for the

p = 1, £ = 1 case does agree with their results; but the work presented

. (4 8)
by Butcher ' has caused us to ask, what is th e direct connection

between his results and those derived here? The overly simple answer

is that the point of evaluation of the derivatives is different from our

choice, so there mus~ be a difference in our error terms. Ho..rever, what

about the equations that determine the undetermined parameters? If we

look closely, we can identify all the derivatives that he uses and find

the correspondence between these functions and ours, but the number of

equations that he sets forth to solve area subset of those that we

w"llld ol'tnln. Alf.o, hls equat.ions contain error terms 01' the approxi:-

lIIat.l ut'w.; ours never do. In short., his res1Llt s 1001, simpler and the question

152,

a:rises:what caused the simplification'? This is an important point be-

cause:

1) Far higher order RKF schemes in which the difference

between the order of accuracy of the mirior and major

points is more than three or foUr, the nonlinear parameter

equati,ons soon become quite complicated and, thus, ;any

simplification in the results'will aid in understanding
.~

and solving these equations.

2) The storage requirement of RKMI can easily become

excessive and it is necessary that the problem be

simplified or'theprogram modified to take advantage

of certain properties of the parameter equations.

We shall presep.t below a development that connects our work to

that of Butcher,simplifies the equations, and, at the same time, raises

some interesting questions. To do this, we shall use the result s of

Chapters III and IV We shall, however, use the natation of Chapter IV.

In Chapters II - IV, we have worked with approximations ~i which

were constructed in a well-defined manner and we obtained our parameter

equations by requiring that these approximations agree to a certain

order of accuracy with the true solution ~(ei)' We shall, in this

<h apter, work with the errors Ei which are a measure of how well the

approximations and the true solution agree. These are defined as:

Definition 1: The error Ei is said to be a generalized R.K scheme

error if, and only if

(k))k)(e ,) L:
(k) [E(ko) +)ko)(e.)] E + = g'k . i ' ~

j,ko ~ oJ j J

(k) [xC £ (e .) + E.) - R.]
(1) ,"

+ L: a ..
j , ~J J J J

"I'

where ~ (e) is an exact solution of nPx = Xo ~

R. =
J

£-1
L:

r=o

p-l-k+r () e i
D x 0

r!

and Ej is an error obtained in the same fashion. We immediately have

that

153

which follows directly from (1) upon substituting (3) into (1), recalling

that ~ = u + v, and referring to equations (11), chapter III,cir

equation (9); Chapter IV. We shall assume that equation (11') of

Chapter III always holds. That is, condition A is in effect for all

valid choices' of the parameters in (1).

We now define differentials exactly as was done in Detinition2

of Chapter III except we replace u by~. We give that definition as

where

Definition 2: Define

z [r - 1, 0] = 1, z [r, a] = y [r, a], a i 0

Y [r]o = C(r-l)
No

.. '. ,

and ; = (rf-lx, ... , DOx) is an exact solution t,o DPx = XO s.

(4)

154

Then the generic y [r,aJ has as its realization the error differen~ials

E [r, a].

We have given these differentials a different name, E. instead of

A, because they really are different functions since they contain a
r

composition with the function s, instead of u as was the case with the

differentials A. However, the resuits proven using the differentials A

carryover directly to the E and the proof. of these results is carried

out in the same manner. We shall, therefore, only give the results

that we wish to use.and the reader can refer to the appropriate previous

work if he wishes to carry out the proofs.

Theorem 1

The j-th derivative of the differential E of order r, degree s

is a linear combination with non-:negative integral cbefflcientsof the

differentials E of order r + j, degree s.

Proof: See Theorem 2, Chapter III.

Theorem 2

nP+rx(o) = Br of order r + lis a linear combination of differ-

entials E of order r + 1 evaluated at O. In fact, the only non-zero

coefficients are those of the degree 0 terms.

Proof: Notice that nP+rx(O) = nr(X " ;)(0) which is the differ-

ential of degree zero, order r + 1.

If we compare this with Theorem 3 of Chapter III, we immediately

see that we have a much simpler case here .. Previously, the coefficients

were greater than zero for all the order r + 1 terms We went to a

considerable amount of trouble to calculate the derivative harmonics

in Chapter III. They are trivial to obtain here; they are all zero

except tl1e degree 0 terms which have coefficient 1.

155

Definition 3: Define

z [r - 1, 0] = 1, z [r, a] = y [r, a], a 10

Y [r]o = 1

then the ,generic y [r, a] becomes the derivative harmonic ~ra'

These results allow us to expand v(e i) into the error differentials

as

<Xl

Z
r=£+l

p+r-l () D x 0
e~+r

_ .::.1. __ =

(k+r)!

<Xl e~+r z _1. __

r=i+l (k+r)!
~r,o)() EO.

It turns out that the operations of substitution and multiplication

have the sane form in the coefficient space of the error differentials E

as they did in ,the coefficient space of the differentials. We, thus have

Theorem 3 (Substitution)

Let

where £-1
~= Z Dr(X 0

r=o

TL = Z Z
rES aES r

Then
Z Z zN .:::;::

rES aES . r

~)(O)

Z Clrka
I~) ~r,a).

kEP

~ra E
(r, a) ,

where ~ are the substitution harmonics corresponding to TL . These ra

harmonics are defined exactly as in Definition 5, Chapter III.

Proof: The proof is carried out exactly as was done for Theorem 6,

Chapter III, except we start with z = X(~ (e) + T) and we note that

156

In a similar fashion, we have

Theorem 4 (Multiplication)

Let TL and SL be defined as

TL = L: L: L:)'rka .
I(k) 4r ,a)

kEP
LN

rES aESr

~ = L: L: L: Ctrka
(k)

ILN 4r ,a) .
rES aESr kEP

Let

Then
t3ra

where t3ra are the multiplication harmonics corresporrling to TL and SL

as defined in Definition 7, Chapter III.

Proof': See Theorem 7, Chapter III The starting point is, how-

It will be recalled that one of our big difficulties has been to

obtain the translation harmonics that allowed us to change the origin

of evaluation of the differentials. These can now easily be obtained

using Theorem 5, Chapter III, which gives the derivatives of A. In

that theorem, we need simple replace A by E to obtain the derivatives

of E. However, it is easier, in practice, to obtain these quanti ties

by actually carrying out the differentiation. This was indicated in

Chapter III where we gave a few of the derivatives of A; again, we

need simply replace A by E.

Once we know the derivatives of E, we can obtain the corresponding

translation harmonics as follows:

Let

Then, we have

Definition 4:

E, E are defined as

i) s < s

ii) -s = s

a) (kl'

b) (kl ,

1)

2)

... ,

(F a:) .
The translation harmonics ~ , corresponding to

ra

~(t) = 0

... , ks) -I (kl' ... , ks) ~(t) = 0

... , ks) = (kV ... , ks)

ro < ro ~(t) = 0

ro ~ ro ~ ro + j

a) ri I [ri, ri + j] ~(t) = 0

b) ri E ["ri, ri + j]

t
ro-ro (ml)! ... (m€j)!

~(t) =
(5 (1))! ..• (5 (1))! ... (5 (g))! ... (5 (g))! (r -r)!

1 01 1 g o 0

where

and

. (F.,a:.)
- 1 1
~
ri,ai

is independent of t

157

O\i) = the repetition factor of (r. , a.) E Si J ~. ~j J
O'i

o\i) ())i = L:
i=l

J. ;

So = {(:t;i' ai)! i = 1,
g

... , s} U Si
i=l

iit) s > s 'Y(t) = 0
.'

Once again we can state the translation results as

Theorem 5

Let the differentials E be sequentially indexed as E(j), 'Let the

differentials E(i)(o, 0) and E(j)(O, 0) be given along with their

. i
associated translation harmonics 'Y j' Then'

158

E(i)(O, O}, = L: 'Y~ (0 - U E(j)<t, 0), i E Si = Sj (6)
jESj

when ° - S corresponds to the interval of translation and Sj = {set of

all error differentials}.

This is the same as Theorem 9, Chapter III, and the corollary

stated there giving the orthogonality conditions on 'Y is also applicable

here.

Proof: . We write E(F,a)(t) = i and then use
j=o

Theorem 5 of Chapter III, as applied to error differential E, to obtain

.. (r a)
the expansion of DJ(E ')(0). The reader will see that .this leads

directly to the harmonics given in Definition 4 above.

We have purposefully stated Definition 4 in the same format as was

used to define the translation harmonics in Definition 9, Chapter III.

It is seen that there is a tremendous simplification when we use

the error differentials E. We also note that Properties 1 and 2 are

still true.

.\

We, thus, can carry out the construction of the scheme using the

error differentials E and we will have the non-linear parameter defining

equations as error harmonics. In Chapter III, we devoted considerable

space to explaining how that process was to be effected. There is no

need to repeat it here; the overall approach is the same when using the

functions E as 'a basis. However, it is important. that Definition 10,

Chapter III, be correctly interpreted and we restate it here,' Remember,

this definition was given in such a manner that it could be interpreted

either in terms of points in RIlXP or as coefficients in the coefficient

space of the differentials. It, therefore, is this definition that is

reflected in the program RKMI. Such will also be the case here and it

159

will, thus, be easy to see what has to be done to utilize error harmonics

in,RKMI.

Definition 5: The error ci is said to be obtained.by means of ~

. generalized Runge-Kutta-Frey type integration method(RKF) if, and only

if

+ L:
j

where the approximatbrs 1] are ·defined to be either
N

or as

with

and the sums S are defined to be

t.

-Ck)
a.. TJ J' lJ

constructeu using the errors E and approximators TJ. 'The index sets are

such that any element lies in the set So :::{O, ... , E:Xl} where e is the

extent and q the rank of the scheme.

160

This is nothing more than 'the restatement of the previous definition

by using ~i ::: Ei+ ~(ei)' There is a complete equivalence and, thus,

the discussion of Chapter III pertains alqo to thi.s work.' In particular, see

the summary of that· chapter.

We point out that the great saving with respect to storage in the

use of RKMI comes from working with Ei' or Ei + v(e i) ::: ~i - u(e i); we

have lots of zero harmonics. For any major point, we have that E:i ::: °
. for all harmonics, and v(e i) .has non-zero harmonics for only the degree

zero terms. We also note that in the coefficient space, u(eJ has all

zero harmonics, so, in reality,Ei + v(e i) .::: ~i and we are able to use

Definition 10, Chapter III, as it stands provided we:

1) Think of this as being in the coefficient space of

error differentials, and

2) Remember to subtract off v(e i) from ~ i before performing

a substitution.

To state it quite plainly, if we use the translation and derivative

harmonics presented in this chapter, and if we always substitute

~i - v(e i) instead of ~i' then the work of Chapter III and the program

moo which arises from Chapter' III can be interpreted directly in terms

of error differentials and error harmonics as presented here. We:see

that the only modification necessary to RKMI is the ability to perform

the subtraction Si -' v(e i) before substituting. The implementation of

this is, however, relatively easy; although not completely trivial since

161

we probably would not want to store separate v's for each e i . Wi th

regard to this, the reader should refer to how this problem was solved

for the translation tables (remember, they depend on the translation

interval). The description of procedure translate will be found in

Appendix II.

We now turn to obtaining the harmonics directly. It will be re-

called that using the differentials A asa basis, the approximation

harmonics could, with the aid of the substitution table, be directly

obtained for generalized RK schemes and that this was done at the end

of Chapter IV. This is also true when using the error differentials E.

To distinguish these harmonics from those previously defined, we shall

refer to them as error harmonics. This seems natural since the local

error can be expressed as E = S - v where s has as harmonics those which

we call error harmonics and v has mostly zero harmonics. Thus, in

reality; most of the error harmonics are, indeed, the harmonics of the

local error when expanded into the space of error differentials.

In fact, referring to Equations (49), (50), and (51) of Chapter IV,

we see that if we interpret the results using the error differential E,

the equations are still true. We, thus, arrive at

Theorem 6

The approximation harmonics defined in Definition 12, Chapter IV,

can also be interpreted as error harmonics e provided we change the

previous definition (Definition 12, Chapter IV) to read

2:
j

k k) f .. e.o
~J J

where

and

s
IT

i=l

ks) z [r, a] =
s s.

A k · E(r,a)(O).
I-'jra

If Si is an approximation defined by a generalized R.K.scheme, then

00

Si = 2:
r=£+l aE,Sr

when the e are error harmonics. In particular, this trivially includes

the solution values SCSi) for which all ei of degree greater than zero

are identically zero.

Thus, we see that much of our work carries over directly to ex-

pressing the problem in terms of the local error between the true

solution and the constructed approximation. There is an advantage in

such a presentation, and it is this set of functions that leads to the

same results as Butcher. All of his derivatives are evaluated at Hs.) an
I

exact solution point. However, we should note that while it seems

162

natural to define and use the set of function {A} as a basis, it is not at

all obvious that the set of functions {:E:} are' the appropriate basis.

There are just too many zero harmonics for the derivatives in the latter

set of functions. Thus, the evaluation of X at u(e) has, through the

use of formula (2l)(Chap.ter III), lead us to a definition for the set

of differentiaJp {A} that have in turn suggested the correct de0-nition

for the set of error differentials (E}. We have, . in a sense, found a

canonical set of functions to use for a basis. The set is certainly

large enough; however, while the set fA} is a minimal set (we need all

the functions) and we made it that way by restricting all indices to

the normal index set, it is in no way obvious that the set (E} is

minimal. It probably iSj it would be nice to show this.

Also, there is the question of whether the work of Chapter IV

applies to this set of functions. How to fonnulate the definition of

the approximation S so that we are in the coefficient space of the error

differentials is an open questions; those definitions that the author

has tried so far lead to diffi cuI ties tha twill not be discussed here.

VI . GENERATION OF GENERALIZED RKF SCHEMES BY
MEANS OF AN ALGOL 60 PROCEDURE

Chapter VI is devoted to a description of various parts of the

program RKMI that carries out the successive substitutions. ,The author

164

is of the opinion that it is impossible to "describe" a program in detail;

the user must do this for himself by means of the source listings. On

the other hand, it seems to be just as impossible to read a source

_listing if there are no hints as to why things are done the way they are

and what certain quantities mean. We try to give here, in this chapter,

a guide to the rationale be1Ii..nd the construction of RKMI. We present

a rather detailed, and yet, at the same time, rather sketchy description

of how the program goes about performing the necessary operations. The

list structure is explained; the procedures that create, store, and

fetch from the list are described; and an attempt is made to describe

heM the operations of addition and multiplication are performed using

lists and how the ability to perform these elementary operations on the

lists enables us to carry out the successive substitutions and arrive

at a scheme and its associated parameter defining equations.

This chapter is meant .to be read in conjunction with Appendix II.

Ideally, the reader has before him a complete listing of whatever pro-

cedure is being discussed along with the appropriate variable declarations

and procedure descriptions. Sinc e this is, i,ndeed, rather ideal, it

is hoped that those who want, or need, to know more about the how and

why of RKMI will find in this· ch,apter and in Appendix II enoUgh material

for them to answer their own questions. There is no attempt made here

to be exhaustive; as we have said, we believe it to be impossible and

actually unprofitable.

165

The procedures that follow below.will not necessarily appear in

the order that they appear in the program. Instead, we shall present

them in an order which illustrates how the program carri es out the suc-

cessive substitutions.

In order to carry out the algebraic manipulations that are required,

a list structure is developed and procedures are built that perform

certain elementary operations on the list. The list itself is stored

in t~e array V [0: list length]. This array is divided into two parts;

the first being a permanent storage section from [0: temp 0 - 1], and

the second being a temporary storage part from [temp 0: list length].

Temporary storage is essentially a scratch area and .is continually over­

written starting at the temporary storage origin temp 0, wher~as the

permanent part is never overwritten except to restart a new problem.

With respect to the array V, there are three global variables that are

consistently used as pOinters; they are last, last 1, last data, list

length. The description of these variables appears in the Variable list

given in Appendix II. Figure 1 shows the storage layout:

Figure 1

_ dat. a. _ +-. permanent stor.age. -. _. temporary storage. -,

f f .·t I. f ..
o last data last 1 temp 0 last list length

The pOinters last and last 1 may, of course, point to anywhere in the

array; their particular positio~ depends on the procedure being.executed.

There are other pOinters used to keep track of the status of the array V,

but. they are of a temporary nature and are local to the procedure in

which they are used.

166

The basic procedures used to create and manipulate the lists

stored in the array V are: father, son, get atom, atom, collection,

Bncollection, and sum. The first five of these procedures were made

available to the author by ProfessorR. DeVogelaere and have been changed

hardly at all, except that a packed version of atom and get atom were

constructed. The other procedures have been constructed by the author

as needed. It is, of course, obvious to those familiar with Professor

DeVogelaere's work that these procedures are strongly influenced by his

work which is only natural since the basic list structure that he proposed

has not been modified.

Before describing these procedures and hav they are used, we first

describe the list structure and how it enables us to carry out the

substitutions. We recall from Chapter III that the actual creation of

the parameter defining equations by 'means of successive substitutions was

to be carried out by means of Theorems 6, 7, 8, and 9. We have pointed

out that all the necessary operations can be performed in the coefficient

space in the sense that if we know the coefficients of one element, we

know how to obtain the coefficients of the derived element in terms of

the first element. See, for example, the substitution theorem of

Chapter III, Theorem 6.

The coefficients are, however, never known numerically, only

algebraica.;Lly. We must, therefore, be able to identify and manipulate

the algebraic quantities that we have previously been writing as t3~a'

e i' etc. Any such c oeffic ient 'c will have the following structure:

a el 'en c en+: 1 em
C = [(b- X B x ... X B } + b· X B X ... X B }+ ..•]

1 n U n+l m

where a ,b, c, d, ... are integers; el , e2' . .. 'are Lnteger s ;

(1)

Bl' ~, ... are the various parameters that appear iIi the

parameter defining equations .. For example, the expansion of an

approximation s(8i) into a Taylor's

:1
8i

~(O) + Ds(O)
1

which has the coefficients

. Cl
1 .

=
1

~
1 8: =
1 1-

C3
1 8

2
=

2 i

series gives rise to

2

D2~ (0)
8i

+ + ...
2!

(2)

Thus, our basic lists, identified as a list of level 0 (list 0),

is composed of the individual terms of the sum of terms that make up

the coefficient C. Our secondary list, identified as a list of level 1

(list 1), is the coefficient C, that is the sum of the terms. We

vi.sualize C as

C = ~I list 0

~ I list 0
list 1 (3)

~x I list 0

in which list 0 has as its elements the atoms consisting of (a, b,l,

168

el' 2, e2' ... , n, en) where we identify Bi by means of the index i,

while list 1 has as its elements the-lists (list 0, list 0, ... , list 0).

It is quite obvious that any approximation ~i = ~ ai Ai can be represented

as a list Of level 2 (list 2) with the elem~nts (list 1, list 1, .. "

list 1) and that the totality of all such approximations would be a

lis t (list 3) comprised of (list 2, list 2, , list 2). It has, how-

ever, proved convenient to give the second lists, list 2, names by which

they can be identified. We shall be more explicit about this shortly.

Each list~ listi, has an identical structure. Associated with

the array V are two quantities; the name (position of) the array element

and the contents of that element. We shali, for the present, denote the

name of the element by i where 0 ;§; i ;§; list length and we shall denote

the contents as 'V[i]~ Each list can be visualized as shown below in

Figure 2 where we see that the first entry is the last list item + 1

which, if there are succeeding lists, is the name of the next list which

mayor may not be of the same level as list i. This next list will,

however, not be of a lower order than list i.

Figure 2: General List Structure

i v[i]
entry to list i = j last list item + 1

j + 1 first list item

j + 2 next list item

· .
· " .
·

j + n last list item

entry to next list k = j + n + 1

j + n + 2

·
·
· ..

169

We can easily illustrate these ideas using the general term C of' (1)

which, if' we assume th.at the current position of' last was 200 at its

time of' creation, would look like Figure 3.

Figure 3: Equation (1) in List Form

i V[iJ

200 215

201 208

202 a

203 b
list 0

204 1

205 el

206 2

207 e2
list 1

208 215

209 c

210 -d

211 3
list 0

212 e3

213 4

214 e4

./ 215

The order that we have used in (1) is what we shall call the

normal f'orm of' the list and all lists will be assumed to exist as normal

f'orm lists if' these elements are atoms. That is, a nar-mal f'orm list is

a list of atoms arranged in the order (numerator, denominator, index 1,

exponent 1, ... , index i, exponent i, ... , index n, exponent n) where i··

170

appears to the left of index j if i < j. Repeated indices are stored in

the exponent as powers so there are no repeated indices in a normal form

list.

In the procedure RKMI, the subscrip~ed variable B is consistently

used when printing the parameters of the scheme. Internally, the

parameters are identified by their index value. There is a well-defined

ordering of these parameters; some are reserved for interval parameters

and then free parameters are simp~y added as needed in constructing schemes.

We shall describe that ordering in detail shortly, but for the present

discussion, it is sufficient to state that any approximation ~i = ~ ai Ai

has as its coefficients ai = ci where ci has the form given in (1).

If we reflect for a moment, it becomes evident that we shall be

. able to manipulate the quanti ties ~ i in an algebraic fashion provided we

can add and multiply their harmonics. The addition is necessary since we

wish to form linear combinations ~l' =~"\J. ~. and the multiplication is . 'J J

necessary because operations such as substitution require the multiplica-

tion of harmonics •. These harmonics are represented as lists so we need

to· be able to add and multiply lists. These operations can themselves

be reduced to operations that store and fetch from exi sting lists and

that create new lists.

We shall describe first that procedure which creates . lists,

actually any list i since all lists have the same structure. This is the

procedure father. The reader should consul t Appendix· II for a concise·

description of father and also to obtain the parameter declarations.

Schematically, father works as pictured below in Figure 4.

171

Figure 4: The Creation of a List by procedure father.

i n
father:= copy vL copy J:= .. last

name of son:= son °
,

name of son·:= son 1
while B = true
-- --

· .
. ·

· J

name of son:= son

last next free location

We see that the actual parameter son should furnish a name

(name of son) and a list item (son). We nate that father is, itself,

a suitable candidate for the actual parameter son. If no list items

are created, . then (copy = last - 1) has ialue true and last is returned

to copy, the list with name father is nil; that is, empty. The global

variable-nil-is consistently used to indicate a non-existent item. The

counter n indicates the sequential number of the next list item to be

created.

The procedure father, thus, furnishes the basic tool needed to

create lists. The creation of the list given as an example in Figure 3

would entail the use of

father(nol,B01,nol<l,father(no,BO,no<6,A,son))

where we have yet to specify the actual parameter son. The above call

illustrates the typical use of the global variables that appear as

actual parameters. It is,. of course, immediately evident that the list i

can be created by a call father(... ,father(... , ...)) where there are i + 1

calls to father.

172

To complete the creat ion of a li st , it is necessary to store the

atoms. This is accomplished using the procedure atom. We shall always

assume that the reader is familiar with the procedure descriptions given

in Appendix II and that he will also refer there for variable declarations

and descriptions that are not given here. Thus, the reader will see

from the listing of RKMI that atom is, itself, a suitable candidate for

the parameter son in the procedure father. When atom is used as an

actual parameter in this position, the elements of the lists are atoms

stored in the array elements of V and their names are the current value

of last when they were stored.

There are presently two versions. of atomj one which stores one

atomic value of i in each array element, and another which stores two

atomic values of i in each array element. The fundamental purpose of

each procedure is identicalj however, the packed version is necessarily

more complicated. As presently constructed, both routines are completely

interchangeable in RKMI. Note, however, that if atom is packed (unpacked)

then get atom ~ust also be packed (unpacked).

The operation of the packed version of atom can easily be under­

stood in terms of the unpacked version by means of Figure 5 given below.

In the packed case, the first atom is left adjusted, the second atom

right adjusted; the global Boolean BA2 is true if we are in the left

half of the word, false if we are in the second half.

Figure 5: Packed and Unpacked Version of atom.

i

0

1

2 I atom 1) Tatom ~ I Fatom 2J

3 I atom 2 1 Tatom 31 I Fatom 41
4 I atom 3

5 I atom 1+ .

6
.

The actual word structure is quite simple and we illustrate it on

a six-bit word, the generalization ton bits b~ing obvious.

The bits a and d are sign bits. The bit d is on for negative W2, the

sign of W is set to the sign of Wl. A check is made to see that Wl

ani W2will fit, in this case, less than 22 - 1. We also note that -0

is stored in the second half of the word to indicate an empty second

half. It will be seen later that the procedure get atom.needs to know

when it has run out of atoms. The procedure atom als 0 performs a check

before staring to see that there is room in the list to store the atom,

This is done using procedure check.

The list of Figure 3 could now be built by calling

father(nol,B01,nol<1,Al,father(no,BO,no<6,A,atom(if

nol =O.then (if no -0 then a else

if no = 1 then b else ...))))

173

where this is the "brute force" application of atom. We have quite

often built small local procedures named store to accomplish this storage.

We, of course, implicitly assume all the atoms are numbers and,

as will become evident later on, we also assume that if a list of level

o is non-empty, then there exists at least two atoms (a, b) the

numerator and the denominator.' This, in actuality, implies that zeros

are represented as empty lists and, in turn, prevents the formation of

coefficients that are identically zero. This, in effect, eliminates

idem ically zero terms since the c oeffi cients are algebraic quantities

composed of sums of products.

Having built the lists, it is now necessary to be able to extract
!

atoms from these lists. The next procedures described will enable us to
;

do just that. The first of these described is procedure son.

The action of this procedure is easily understood from FigUre 6

where we have shown a list of level i whose elements are lists of

level 0. We note that the procedure son is, itself, a suitable candidate

for the parameter father entry so we have the abiiity to find sons in

lis ts of level i by calling son(son(son(.. ;))), where the innermost' son

is the father entry of the list of highest level .

• Once we have located the son whose items are atoms, it becomes

necessary to pick up these atoms. This is' accomplished using procedure

get atom.

The manner in which atom works can be easily understoOd by

consul ting Figure 6 and the source listing for RKMI in Appendix II. We'

note that get atom effectively considers all lists to be of level 0.

Thus, a list of level i can be dumped completely using get atom. This

is, however, not true for the packed version since only the atoms are

.packed.

'. ~I

Figure 6: A Pictorial Representation of procedure son.

father entry next father entry

son-------+. next son =. last atom name + I

atom name list 0

atom
list 1

son---~--~~last atom name + I

atom name list 0

atom name

father entry

With respect to the packed version of get atom, we note that its
,

purpose is identical to the unpacked version, and both versions are

completely interchangeable in RKMI provided the correspording version

of atom is also used.

We now have at our disposal the ability to create lists, to store

them, and to fetch them. There is, however, one more basic procedure

that will be needed. This procedure, will, as does father, create a

list; however, the elements of the list it is creating will depend on

elements of another list. This is the procedure collect-ion. The manner in

which colle ction operates can b~ easily understood with the help of

Figure 7. We see from Figure 7 that collection is a mapping whose

domain of definition consists 'of the sons of set j and whose range of

values consists of the elements of the lists of level i that are the

elements of collection.

, ,

list

Figure 7: The Creation of a List'by procedure collection.

collect~on

set f

son 1/
son 2_f

j

" son i '
~f

f(son 1)

f(son 1)

f(son 2)

f(son 2)

f(son i)

f(son i)

.

list i

list i

n=O,1,2 ...

list i

It will ,be seen in the source listing that we have implied that list

i is list 0 for which th€ elements are atoms. This is, however, not in-

heretit in the construction of collection. The only requirement is that

list j be of at least level 1 since it is assumed that there exists sdns.

Note also that set may be a nil list.

The first operation that we shall treat is that of swmnation. It

is desired to form in the coefficient space the vector sUm S ;, 2: ai Ai ::='

2: B,i l) ,1 where TJ j ::= 2: t'i Ai. That is, we wish to take a linear combination

of quantities whose components are represented by lists the general form

of whicll is given by (1). The reader should refer to Chapter III,

~. ~

Definition 10, Equations (91), (94), and also (97), It is seen there

that it is sufficient to carry out the sum for each individual component

and then repeat this for all values of k E· P ::: {a, ... , p - I}. In the

Program RKMI, we have consistently that

order ::: p ::: order of the differential equation

im[O] == the number of basis functions Ai

. and we usually have that

der == k == E { ° , ... , p- I} is the derivative counter

no2 E {a, ... , im[O] - I} is the component counter and

also the list 2 counter since a list of level 2

represents the vector s(k);

The quantities that are to be summed are assumed to be represented as

lists that are ordered as. shown below in Figure 8:

·Figure 8: List structure Used in RKMI.

der list 2

° no2 list 1

° nol list 0

° no

i x
i x

i i x
x

order-l ;. x
im[O]-l

S(k) vector component coefficient term factor

It is immediately evident that it would be natural to include the lists,

list 2, as elements of list 3. However, the element s of list 2 are

directly accessible by means of names rather than the list structure

and the procedure sum has been constructed wi thou t this extra level.

177

, 178

The resultant sum is, itself, of the same form since, in reality, all

we have done is sum component by component.

The actual summation is carried out by procedure sum. In creating

the linear combination, it is, necessary to' introduce parameters which

we :call B[£] where R. is the global variable of RKMI that is consistently
I

used to indicate the next free parameter.

The actual manner in which the summation is accomplished by

procedure sum can be easily understood by ~eferring to Figure 9 below

where the components of two vectors areadq.ed together to form the cor-

responding component of the resultant sum.

Figure 9 : Creation of a Sum by procedure sum.

v[1,der,no2] + v[2,der,no2] v[j,der,ho2]

no2 no2 no2
nol nol nol

a c

+ +
+

d +

1 d

coeff.icientterms coefficient terms coefficient terms

We see that in 1;;his particular case the procedure collection has

been used to collec.t the separate terms a, b,c, d and write them as

one level 2 list. The addition of these two vectors is accomplished

by writing sum(v[j,der,no2], i, 2, vfi+l,der,no2]). If a linear combination

has been reCluested, then each term has the extra factor B[R.] attached.

179

Since £ is continually increased, the normal form lists will remain in

normal form. We would then have that (n, d, B[...], e[...], . .. , B[...],

d ...]) becomes (n, d, B[. ..], e[...], ... , B[. ..], e[...], B[£J, 1). If
/

temporary storage is desired, then the resultant sum is written into V

starting at temp 0.

We now turn to a description of how RKMI effects a substitution

~.= X(~i)' We know from Chapter III that this operation can be carried
J

out in the coefficient 'space by means of a substitution table. The

manner in which the multiplication _DX(~i) . S is carried out is quite

mmilar and will be easy to understand when we understand how to substitute.

Basically, we wish to construct an element.~ j =.L; (Xi Ai that has

the list structure indicated in Figure 8. We note that der does not

enter into the development since the vector constructed has components

(Xi that are independent of der = k E P = {a, ... , p - I}. The results

are based on Definition 5 and Theorem 6 of Chapter III. We start out

with the following call to father

father(no2,B02,no2 < im[O],name,Ze)

which is used to construct a level 2 list, list 2, for each component

° ~ no2 ~'im[O]- 1. In RKMI, the name of these lists will always be de-

riotedbyZn or Zp depending on whether the created quantities are stored

in permanent storage or in tanporary storage. Thus, the quantities ~,

~, S of Definition 10, Chapter III, are identified in RKMI as Zn or Zp.

It,is immediately evident that Ze must be an integer procedure that

completes the construction Of list 1 and list '0.

'We see from the source listing of Ze in Appendix II that

W[type,no2] is used as the name of a lis t of level 1 the entries of

which are sons which in turn have elements composed of atoms .If we

examine a typical term of Definit ion 5 of Chapter III, we see that these

180

terms can be conveniently represented as

(numerator, denominator, Bi , exponent, derl' nl' ... , derj' njl

. . . , der max' ~) + •..

which alm~st looks like a normal form list. What we really do is to

break up the information into a number of sons that appear as

(numerator, denominator) I (exponent), (d~rl' nl' ... , der maxl'~) ,

... (derJ" nJ" ... , der., n ,), ... (der, n, ... , dermax'
maxJ maxJ

In this form, the first son is a normal form list giving the fraction

multiplier, the second son gives the exponent of Bi , and the remaining

sons give the k value and the sequential position of the lRrmonic appearing

in the substitution, or multiplication. We see from Definition 5 that

there are needed only three sons to represent a sUbstitution while for

a multiplication. more sons may be needed. As a concrete example,

consider from Table VI of Appendix I the table entry I ela which is
00

represented as (1,1),(1),(0,0).

RKMI consistently denotes the name of the list specifying Bi as

T[... ,i]. The actual substitution, or multiplication, is carried out by

list multiplication. If we desire to obtain the coefficient correspond-

ing to a particular component no2, then we look up the first son of the

list W[type,no2], called here son 0. We obtain from the second son,

son 1" the exponent for the list T[. .. , j L We locate the lists corre-

. sponding to the factors specified by son i, 2 ~ i ~ ... '. These are

lists with name j[der,no2J; remember that, in reality, all such lists

have name Z or Zp. Then we perform the list multiplication

(son 0) X (T[O,jJ) X ... X (T[O,j]) X name j[der,no2] X

as often as required to construct the resultant coefficients

(n\ e C = a) x j
n

(exponent) X

+ (d) x e j (exponent) X

x···
X ••• + •••

which is the internal representation of Defini ti ons 5 or 7 depending on

whether we are substituting or multiplying. We nate that j = num[oJ is

the name of ~ . at which either X or DX is evaluated.
,]

In the procedure Ze, these lists are denoted by B2[.••]. After

collecting together all factors B2[0], ... ,B2[n] of the product, the

product is formed by setting

Ze:= father(nol, ... ,father(no, ...)).

The source listing for RKMI shows that to complete this discussion we

must understand the actions of two procedures that appear as actual

parameters in the above call.

181

Each list B2[i] that appears as a factor in the product is composed

of a number of sons. To form a product of these lists means that we

must form the individual products of all n-tuples (son 1, ... , son i,

... , son n) where son i is .taken from B2[i] and we must be sure that all

sons are included. That is, we must form all cross products that appear

when we take the product of sums of items. The procedur'e Bncollection

obtains these individual n-tuples. The procedur'e JPn performs the

actual mul tiplicati on of lists in each n-tuple; each item being a normal

form list.

The operation of Bncollection is very straightforward. The lists

are laid out like a counter as is· shown below in Figure 10. The first

row is taken as the first n-tuple. Thereafter, the columns are indexed

separately through each son in the manner of a digital sequential

counter, starting \vi th the units in the left column, until the n-tuple

containing the last row is obtained. A suitable check is made on k to

"freeze" the first k columns at the first row. We note that a nil list

corresponds to a zero factor which in turn corresponds to a zero term

and that setting Bricollection to~ causes father to skip this factor;

in effect, a nil list is stored.

tile re suits.

Thus, zero factors never appear in

Figure 10: List Layout for procedure Bncollection.

son 1

son 2

son 1 son 1

son 2 son 2

son ji son. jn-l

JPn which carries out the actual mult±plication of the elements

of the n-tuple operates in a manner similar to Bncollection in that the

li'sts, which are now lists of atoms, are laid out in the same way. See

Figure 11 below:

Figure 11: List Layout for procedure JPn.

Bll[i]

nl

dl

index

exponent

index

exponent

Bll[i]

ni

di

index

exponent

index

exponent

Bll[n-l]

n

d

index

exponent

index

exponent

182

JPn first obtains the fraction multipliers c/d = 7fni/7fdi' Then,

each list is read until all lists are exhausted. The local counter

n2 keeps track of the number of lists that.have been read completely.

When following the operations of JPn, it should. always be kept in mind

that in each lists the indices, imex, increase in sequential order,

since the list is in normal form, and that we always have to fetch at

least two items, the index and the exponent. We desire to have the

~sultant product list in formal form; thus, we must search the lists

Bl[i] for the smallest index and be careful to have only one index for

each parameter. The exponent is then increased to take care of the

product of like factors.

To accomplish thiS, JPn stores the index from each list in

v:= (index 1, •.• , index i, •.• , index n-l) and then uses a'small pro-

cedure minimum to furnish some needed information about these indices.

We see from Appendix II that the call m:= minimum(v,n,w) furnishes the

smallest index from the lists Bl[i] and also furnishes the number of

factors with that index, thus, allOWing us to perform the multiplication

After this multiplication, each list is positioned at the next index

. provided its current index is the current minimum index. When all

lists are exhausted, a normal form list has been stored. Note that

B~ is not stored which is consis~ent with the interpretation B~ = 1.

The Boolean BAl is properly set for the packed version of get atom,

two atoms/word. If a different packing denSity greater than two atoms/

word was to be used, then some consideration would need tc? be given to
. .

this variable. The procedure normalize is to be used to create a

rela ti ve prime fraction multiplier; . however , since most of the numerators

are small, this procedure has nat presently been implemented.

We have, then, that the multiplication of' the lists 132 whose

elements are sons BII, the elements of' Which are in turn normal f'orm

lists of' atoms, can be accomplished'by means of' the call

f'ather(nol,BOI,Bricollection(B2,BII,n,BOI,k) ,AI,

f'ather(no,BO,BO,A,JPn(I,I,n,BII))) (4)

;where ° .~ ,k ~ n - I is appropri/:l.tely selected. In the particular case

at hand, since we desire only son 0 f'rom W, we set k = I thus causing

the n-tuples to be' s.elected f'rom the lists 132[1], ... ,B2[n-l] wit):1 only

the f'irst son f'rom B2[1] appearing in all the n-tuples.

Equation (4) represents the operation of' multiplication in the

coeff'icient space and we shall use it in other procedures of' RKMI. It

seems natural that a multiplication procedure should be built, although

we have not yet done this.

Up until now, we have simply assumed that there exists an

expansion f'or any item that we choose to use. That is, there exists a
'.

list of' the f'orm indicated in Figure 8, and that any summation, substi-

tutton, etc., is to beperf'ormed on these lists. This, of course, is

not the case. These lists must be appropriately created bef'ore they

can be used. The next two procedures that we shall describe accomplish

this task. In order to carry out a descripton of' these procedures,

184

procedure create E and procedure translate, it is necessary that we first

present a detailed description of how we organize the interval sub-

division and the parameter indexing. It will be recalled that we

def'ined in Chapter III, Def'inition 8, the quantities involved. In

particular, RKMI uses the variable listed below to represent these

quanti ties.

185

period:= the pericd of the scheme

q

e

.­.-

.-

.-

the rank of the scheme

the extent of the scheme

the .scheme parameters which may be the

interval parameter s e i or the undetermined

parameters t3. of an implicit represent ation 1 .

of some approximation, or the scheme parameters

previously (Chapt er III, Defini t ion 1) denoted

by A and B.

The manner in which intervals are subdivided is indicated in

Figures 12 and 13 which illustrate the two cases considered by RKMI. It

will be recalled that in Chapter III we indicated that there are different

ways in which the expansion into undetermined parameters may be handled.

We have in RKMI made the follOWing choice:

1) Expand about a local origin and translate the expanded vector

to the point where all subs~itution~, multiplications, etc.,

are to take place. We consistently indicated this by setting

the variable mode:= -1. Determine the undetermined parameters

by equating their local origin expansion to a constructed

expansion.

2) Expand about the point where all substitutions take place and

translate this expansion to the local origin. We consistently

indicate this by setting mcde = O. Determine the undetermined

parameters by equating the translated (local origin) expansion

to a constructed expansion.

These two .cases are called a forward translation (mode = -1) and a back-

ward translation (mode = 0) and are illustrated schematically in

Figures 2 and 3, Chapter III.

Figure 12: Scheme Parameter ;Determination for a Fo:rward Translation (mode = -1)

q = 3 first free parameter B[73]

period = 2

extent = 4

order =p = 2

im[O] = 4

I­ I I l

Interval 6 5 4 .) 2 1
Parameters 21~ 23 22 21 20 19

Approximation I 12 11 10 9 8 7
Points

6
18

6

72 68
71 67
70 66
69 65

5
17

5

4
16

4

56 52
55 51
54 50 .
53 49

I J

3 2
15 14

3 2

1
13

1

32 28
3127'
30 26-
29 25

0
12

0

Undetermined
parameter
expansions

-t)

€.i= B[i
Bi= B[i

~i

1--'.

co
0\

\
\

Figure 13. Scheme Parameter Determination for a Backward Translation (mode=O).

q=3 ~~r p=2

period = 2 im[O] = 4

extent = 4· f:irst free parameter B[i]

Interval
Parameters

128 124
127 123
126 122
125 121.

5
J 2~ 23

APproximation\12 11
Points

4
22

10

3 2 1 ·6 5
21 20 19 18 17

9 8 7 6 5

J29

56 52
55 51

. 54 50
53 49 •

4 3 2 ,1'
..1...0 15 14

4 3 2

1
13

1

·32 28
31 27
30 26
29 25

0
12

0

Undetermined
parameter
expansions

t

~ = B[i]
. = B[i]
~

~'i

......
(X)
--.l

Figure 14: Interval Parameters Returned by procedure index.

12 9
_j=2~

6
I

3
.-j=2-

q = 3

period = 2

extent = 4

--il=3-----,r-------------------~----~

l~i2=1--------------------~

I ---jl=3----1

I , I
~--------~·~----------~~I'~ __ ----~~~P--------____ J'

1 period 1 period

In order-that we.can easily locate any approximation ~i'

o

i E M = (0, ... , eXl), there is in RKMI an integer procedure, procedure

188

index, which when called as index (i) returns a number of useful quantities.

These are illustrated in Figure 14 above. The most obVious and nost

frEOquently used quantity is the value of index which is the corresponding

point within the period. For example, referring to either of the

Figures 12 or 13, we have that index (5) has value 5 since ~5 is within

the period while index (11) also has value 5 since ~11 and ~5 represent

the same approximation. The rest of the values are returned in global

variables. These are:

11: = the number of· h interval s away from ~O

,j:= the fraction of the h interval. = the distance from the

local origin.

i2:; the number of period intervals away from ~o

jl:= the local origin within the period that corresponds

to the local origin S i. ~.

189

We see from Figure 13 that the local origin of ~ i and its corres­

ponding potnt within the period; ~ j whe~e ji = ind~x(i), are not de­

pendent on the manner in which the undetermined parameter expansion is

carried out. On the other hand, the Significance of B[i], the parameters

of the method, is directly connected with this choice. If mode = -1 and

a forward translation is performed, then the following situation exists

for 0 ;§; i ;§; 2 X (period X q) + eX'l.

We have that

B[0] : = to which is the distance from the origin to the

point where all substitutions, etc., are carried out.

B[q]:= h which is the distance between major points

B[i]:= if index (i) 1:- 0 then T[-l,i] which is the distance

of ~i from the local origin else

if(ind~x (i) = 0 1\ i < period X q) then B[i] is un­

defined, provided i 1:- q, and never appears in any of

the equations. However, T[-l,i]:= 0 since the distance

from the local origin is zero.

tf (period X q < i < 2 X period X q) then B[i] is

undefined else

if (2 X period X q ~ i ~ 2X period >~ q + eX'l) then

T[O,i] which is the distance of ti from the origin.

The undetermined parameters B[i] are reserved, im[O] X order of

them for each point, starting with i = (2 ~. period + e) X q + 1 and

stopping when we reac:', i= (2 X period +. e + order X im[O] X period) X. q.

Those points outside of the first period have the same undetermined

190

parameters as their corresponding point within the period. This latter

fact arises becallse the expansions are carried out about the local origin

and the approximations si and Sindex(i) are the same distance,

B[index(i)J, from ~heir local origins and because we assume that Si

and Sj were constructed in the same fashion.

HaVing reserved the necessary parameters B[i] to represent 8 i ,

8i , and the undetermined parameters, the next free parameters available

for use as a scheme parameter is B [2 X period X q + ex(! + 1 + im[0] X

order X period xq]. All parameters introduced into the scheme by

taking linear comb ina tions of various quanti ti.es are sequentially indexed

starting with this value.

If mode = ° and a backward translation is to take place, then the

parameter indexing is slightly different. We see from a comparison of

Figures 12 and 13 that we have reserved undetermined parameters for all

ih e approximations. We do this because e~ch undetermined parameter

expansion is with respect to the origin and since each point is a dif­

ferent distance from the origin, the harmonics are different. This

causes the next free parameter index to be

i - 2 X period X q + eXl + 1 + order X im[O] X (exCl + 1).

This, however, is the only difference in the' interpretation of the

parameters.

The above discussion shows that each approximation has a well­

definedexpa:nsion and all we need is to create it and to translate it

suitably. We do this using the procedures create Eand translate. For

each;i referenced, we have two representations, Z[-1,der,i,no2] and

Z[0,der,i,no2], which respectively refer to the expansion about the

local origin and about the origin, taken to be to' With respect to the

latter, we note that Z[O, .•.] references the undetermined parameter

expansion until a constructed representation is obtained at which time.

it then references that constructed representation. Note that the

location of the list representation is forgotten when a constructed

representation exists. This is consistent with the fact that in a

substitution, etc., we wish to use the undetermined parameter expansion

only as long as there is not available a constructed represent~tion.

This at least was what was first, thought. It has proved advantageous

to revise,this philosophy and this is a question that is still to be

completely resolved. With respect to substitutions, there is no real

problem; we can perform all substitutions first and this forces the use

of undetermined parameters. However', when performing a multiplication,

we use the current representation referenced by the name Z[O, •••]

when we evaluate DX(~i) and cannot easily force the program to use the

undetermined parameter expansion. A solution is to increase the family

of names, but this is at the expense of requiring more storage. The

reason for wishing to use undetermined parameters as long as possible

191 ,

is that this simplifies the equations enormously because all distributed

products, arising because the components are sums of products, disappear.

More thought should be given to the solution of this problem.

The actual manner in which create E carries out this creation of

an approxirmtion is easily obtainable from the source listing in

Appendix II now that it is known what is to be constructed. We simply

note a few details here. The local Boolean B indicates the special case

of a forward translation with i a major point or a backward translation

with i the first point; that is i = to = 0. The quantity E[,] is

originally set to nil, then E[O,i]:= ° implies that their existsT[-l,~ . .l

and T[O,iJ while E[-l,il:= ° implies that an expansion into undetermined

192

parameters has been made. Note that major points have all zero coef­

ficients when mode = -1 and that we store zero values as nil lists,

thus, we presently ignore the parameters of Si when this special case

exists. RKMI needs to know which approximations exist and which don It

because to save space we only create those approximations that are used

and the se only opce. 'We also note that these quantities are stored

'permanently and are always available once created with the exception we

noted above about our reference to the undetermined parameter expansion

using the name Z[O, ••• J. With regard to that, note that we still have

the expansion, only its name is forgotten.

Once a full expansion of E is created, it is necessary to

translate it appropriately. This is carried out using the procedure

translate.

We should point out that RKMI has evolved through many editions

and that the formulation of the problem has also evolved. These two

processes have gone hand-in":p:and as more experience was gained in what

can or cannot be done with the program and what the output generated

looks like when presented from different viewpoints. This is, of

course, natural, but the two processes are separate and when both

change considerably, as has happened here, there is bound to be dead­

wood in the program and procedures are never' going to be as neat and

elegant as they could be. This is especially true of the procedure

translate.

We will not trouble the reader with past history, but do mention

that translate originally was to translate a single h interval repeatedly,

thus enabling it to translate a number of h intervals by doing the

same thing over and over again. Also, the interpretation of the interval

parameters '<'las different • The remnants of these ideas are still in

193

translate; therefore, this procedure shoUld be rewritten. With regard to

this, we mention that thought should be given to freeing the origin;

t:tat is, letting the origin be completely arbitrary. This will allow

the full symmetry of the equations to become apparent.

There are a number of details in translate that need to be clarified

in order that the source listing given in Appendix II can be easily

followed. Before doing this, we illustrate the typical use inRKMI

of the procedures create E and translate.

if E[O,i] = nil then

begin create E(i,true);

translate(i,Z[mode,der,i,n02l,

Z[mode 1,der,i,n02l, i

end;

q,mode 1)

A check is made to determine whether it is necessary to. create the

approximation; if it is, then the procedure create E does so, the vector

is appropriately translated, and the two representations of Si are now

available to be used as required.

Translate can be easily understood once we display the actual

manner in which a translation is performed. We have already furnished

in Theorem 8, Theorem 9, and Definition 9 of Chapter III the necessary

means for carrying out the translation. We must, however, collect

these results together into one easily understood process. The reader

should refer to Figures 2 and 3 of Chapte~ III which give, respectively,

a schematic representation of the backward and forward translation.

For any approximation, we have the two representations

(k) (k)(ei) s-l (~(k) () mode = -1
s. =U , + L: ei~~ AN: [sl

(4)
1 ° e. s=o mode = ° 1

r· (L + 'T) 1.

194

where the upper raw of arguments and coefficients is to be used when

mode = -1, forward translationj and the lower row is to be used when

mode = 0, backward translation. Equation (4) represents the untranslated

approximation. The corresponding translated approximation can be written

as,

(k)
~i = u(k) (0, Bi)' + ~~l [S+~~ll kif ('C) a . (Bi'r _1 \.

'C B J=l n=s m=o -'C, Bi! at m! ,
, '

• a[type 2, n - 5, j] + S~l 'Y a[type 1, n, j]]. A(:)[j]
n=O n ,

a = k + £ + n + 1 - m - s

where again the upper argument are for mode = -1 and the lower ones are

for mode = 0. The results given here in (5) are equivalent to Theorem'

(8), Chapter III; however, to arrive at (5), it is mare convenient to

start 'With equation (66) of Chapter III, expand the derivatives as

, - s-l
nP+£+n-sx(s) = 2:: a[type 2, n-s, s] A(s)[s], n=s, ••• ,s + n - 1,

s=o
and then (5) is easily obtained.

The coefficients a[type 2, i, j] are derivative harmonics of

:r:f+£ +ix and ~a~e readily available from the tables of Appendix I. The

'coefficients a[type 1, n, j] are the translation harmonics that represent

the change of basis

=L:
j

a[type 1, n, 0] A (:) [j]

and these too are available from Appendix I.

The key formula to the und.erstanding of the translation process

is (5). The coefficients of interest are·

I /. s[tn>e 2, n - s, j 1

and

~ • a[type, n, j].
n

Each of these is represented as a list of level 1. See Figure 8 with

regard to this representation. The array elements of a are stored in

the appropriate list structure by data. The harmonics ~n of the un-

translated vector are already in a list structure and the procedure

translate creates the lists that represent the coefficient (). Thus,

to obtain C j' the coefficient of the translated vector, we need only form

the sum of lists that are obtained as the products of lists. Weknow

how to do this using the already described procedures sum and JPn.

The first thing done upon entry into translate is to check whether

v is far enough away from the origin. If the origin turns out to be the

local origin of v, then we perform the identity translation. If the

vector requires an actual translation, then storage is reserved for some

temporary arrays. The appropriate coefficients are stored in lists with

names vs[der,no2], first the coeffiCients of v and then the bracket

coeffici ents. The translation harmonics and the derivative harmonics

are located by storing the names of their lists in al[no2, j2] • We note

here that the translation table depends on the rank q and the direction

of the translation. Translate takes care of this since at the same time

that it is locating the names of the translation table, it is also using

the procedure collection to insert in the table the value of q and the

appropriate sign of the coefficient. Note that the initial manipulation

of k3 and k4' just prior to obtaining vsis to insure that normal form

lists will be constructed.

195

Since the correspondence of the indices used in (5) and in translate

is not necer:;sarily obvious, we give below the correspondence for the

bracket coefficient which we denote as a-

k+£ (.. l)a l (ei)m a a= L: -- (1")
m=o -1 al m! 8i

kl
= L: (num2) t jl

i=o

1

(jl)!(i)!

i
• -B

j

196

where we note that the array b is used to. store the list items temporarily

for this sum of terms.

To complete the translation, it: is·necessary to form the products

indicated in (5) and carry out the ~uffimations. The result has name 2

and is stored permanently~

We have described, in some detail, all the procedures of RKMI that

are concerned with actual list manipulation. The rest of the procedures,

with the exception of data, are concerned with the output of information.

Of these, the onlY ones that are of. interest here are those that help

construct the parameter equations. The other procedures can be easily

understood With the aid af the listings in Appendix II. Procedure data

has a special description given in Appendix IV since it pertains to the

use of RKMI and this procedure is an input procedure.

The two output procedures that concern us here are procedure print

sum and procedure conditions E. The first of these, print sum, is almost

self-explanatory with the aid of Appendix II. However, it helps to

remember that

length 1= the number of approxirra tions E in the sum

length ~ order X length 1 = the number of approximators N in

the sum.

197

vs[O,i]= the names of the approximations E in the sum.

vs[l,i]= the names of the approximators N in the sum.

Procedure conditions ,is a little more interesting. It has as its

sole purpose the printing of equations (99), (100), (101) of Theorem 10,

Chapter III. Each approximation consists of a linear combination of

apprOximations, approximators obtained from a substi tut ion, anq.

approximators obtained from a derivative multiplication. Of these three,

only the parameters appearing in the first two have conditions attached

to them. Thus, when the sum is created, and when the approximation is

created, certain information must be stored that will allow us to now

identify which parameters appear in the approximation and which of these

parameter s have conditions attached to them. For this, we have

E[O,i]:= the minimum value of all Bj appearing in ~i

E[l,i]:= the number of approximations in ~i

E[2, i] : = the number of approxima tors 1'] = X(S j) in S i

E[3, i] := the total number of items summed to obtain ~i

v[O,i,j]:= the names of ~ j appearing in ~i' thus allowing the

identification of ej

v[1, i, j]:= the names of ~ j appearing in 1'] = X(~ j)' thus allOtTing

the identification of ~j

Since it knows the first parameter appearing in ~" the length of the
l

sums and, the manner in which ~i was constructed, conditions E can calculate

the appropriate indices for the parameters that appear in the conditions

associated with this approximation. These conditions are printed exactly

as they appear in Theorem 10 of Chapter III.

198

VII. EXAMPLES OF GENERATED SCHEMES

This chapter is devoted to 'the treatment of five examples all of

which have been genera,ted using the ALGOL procedure,- RKMI, based on the

work of Chapter III. We first present a classical 4th order Runge-Kutta

scheme. This scheme is verified on four sets of well-known coefficients •.

We then proceed to present four simple generalized Runge-Kutta schemes

that actually make use of data from the past; that is, have a memOry.

These example, which are the simplest cases of the class of generalized

schemes treated in the previous chapters, are believed to be new. They

are analogous to the k-step methods presented by Butcher; however, they

make use of only one intermediate function evaluation and, therefore,

re~uire one less function evaluation.per step than do his examples.

The results' lead to k-step methods of accuracyO(h2k+2) that have stable

correctors. For each of these schemes, a start is presented for the

intermediate point since it re~uires a correct start·; For Examples 1

and 2, a complete starting procedure is also . provided, and for Example 2,

a complete presentation of the RKMI results is given.

This chapter contains the discussion of these example sand

Appendix III contains all the tables and graphs which pertain to these

examples. For each example, we give error terms and,' where applicable,

determine the range of a qtable corrector.

As an introduction to the .generation of schemes using the ALGOL

program, RKMI, we give, in complete detail, the classical fourth order

Runge-Kutta process. This process was selected for various reasons. In

particular', it is a well-known method that is sufficiently complicated

t~) be interesting while, at the, same time, it is not too complicated. We

gain nothing b~{ presenting' a fifth or higher order process and \ a third

199

order process is rather simple. Because this process is well-known and

has a variety of solutions, we have at our disposal a number of sets of

test coefficients. This-is an extremely important point to remember when

creating schemes using RKMI. It is of the utmost importance to try and

verify the output on known coefficient sets; otherwise, all feeling for

the validity of the results is completely lost.

The results of this example are used later in the development of

a starting scheme for Example 2 and thus we have some continuity in our

presentation and some confidence that the material which we use to

generate the starting scheme is accurate.

How one actually organizes the problem to obtain input data for

RKMI is of little importance; however,' we have presented one approach

in Appendix IV where we used RK4 as an example.

If the reader will refer to Example RK4 in that appendix, he will

see that we:

1) define the problem,

2) establish a scheme to be generated,

3) layout the interval division,

4) set forth the interval parameters of interest which are

the rank, period, and extent,

5)' extract the data for RKMI consisting of the order, upper,

rank, extyrit, number of basis functions, and the number

of derivatives included in this choic e of basis functions.

Note that we have purposefully left out the scheme parameters that

multiply the right hand-side of 2). This is convenient and ~uite natural

since RKMI will supply us with these coefficients. We see that there

are only fom' points in one ma,jor interval ·for RK4, thus, th e rank = 4;

200

the scheme repeats after one major interval, thus the period = 1; there

is a totality of one major interval, thus the extent = 1. Also, since

this is a classical RK scheme, we know that the lower bound for the

order of accuracy for all points is not greater than 1 and that the

greatest lower bound for this accuracy is R. = 1. This setting of the R.

value and the extent e to 1 is one of the characteristics of classical

RK schemes. As we have mentioned earlier, finite difference methods

have R. equal td the order of the method minus 1 and have an extent equal

to the number of points incompassed by the method.

If we were dealing with an unknown scheme, we would, at this point,

have to decide how accurate we were going to force the intermediate

points to be. For example, in oUr k-step examples that follow, we do

as Butcher has done and say that the intermediate points (minor pOints)

are of· O(h2k) and the major points have accuracy O(h2k+2). We also knw

to what order of accuracy we can match the derivatives of x for this

example. If we let l' k = s~k) - s (k)(to) be the local error in the p-kth

derivative, then we have· that 'fo = 0(h5), 'f k = O(h5+k- l) fork = 1, 2, •.• ,

P - 1. We write this as 'f k = o(5,5, ••• , p + 3).

Since we haveR. = 1, we have that DX is the first derivative that

we have expanded into the set of differentials A. Referring to Table V,

Appendix I, which gives these differentials, we see that we must decide

hw many orders to use in the expansion or, equivalently, how many

derivatives of X are matched and how many error terms of 'f k we wish to

look at. For the RK4 process, we see that in order to include the

4 principal error term, we must examine through D X and, thus, we have all

the terms from the orders 1. + 1, •.. , 1. + 4 corresponding to these four

derivatives. This would be 22 functions meaning im[0] = 22 ..However,

we must actually specify p; we choose p = 1 for this example. Once this

is done, we have that k E [0, 0] and from Table V, we see that there are

only 16 functions 7/J 0' ••• , 7/J15'

201

The reader should also refer to Table I, Appendix III, and examine

the actual input used to generate this example. There isa direct

con:p.ection between 5) and the data input that .particularizes the problem,

and also between 2) and the scheme that generates the output. We suggest

that any integration scheme in the class of schemes considered in this

work can be characterized in a simple, straight-forward fashion. similar

to that presented here. When this is done, the data needed to generate

the scheme will be readily available for input int'o' RKMI.

We will not discuss the actual:d.a.ta'setup that is presented in

Table I. Appendix IY contains a description of how to prepare the data

for the procedure data which inputs the harmonics, and also a general

description on how to use the program. ThiS, along with a good under­

standing of the Tables VII and VIII of Appendix I, should enable the uSer

to prepare data.

Given the input of Table I, Appendix III, the program RKMI generate s

the output given in Table II. The fir st section af output shows what

type of language the equations are printed in (FORTRAN for this particular

run) ,how much storage we have allowed for various items, and how we have

set SOme internal output parameters. In particular, we have 70 characters

per card (line) on the equation output~ 6000 words for permanent storage,

and 1000 words for temporary storage giving a total of 7000 words in the

list storage array. The maximum number of approximators Tj, (N), or

sums S that may be created is ten; the maximum number of items in a

sum is ten; the maxim-tun number af'lists that we may multiply together

at anyone time is ten.·

We then specify the problem that is to be solved. Here a first-

order differential equation Dx = X ox. The value of upper which lS

actually the value of the lower bound £ determines the order of the

derivative of X that appears first in the basis functions A. Here it

i~ ifx which is correct for RK processes. We note, as an aside, that

we could have used £ = 0 as does Butcher< 1); however, this leads to an

. unnecessary profusion of equations and our tables in Appendix I are not

valid for £ = 0 j they are missing terms of degree s ;;; 2 and need to be

expanded if' one wishes to consider such cases. However, since 'ire can

always set £ = 1, we shall pay no mare attention to this.

Since the rank is 4, there are four points in one h interval; the

period is l,and we have 16 basis functions and the corresponding four

derivatives of X.

We have input the data tables with no output so we simply receive

the message to this effect. There is a procedure scheme to output the

202

problem being solved, essentially as it has been stated in Equations (1) -

(4) and (91)'- (94) of Chapter III; we have not used it here. Our comment

is then echoed on the output,medium.

The rest of the ,output constitutes the scheme and the parameter

equations associated with that scheme. At this point, we should make

a general comment on that output. Originally~ it was planned to present

the totality of output in reference ALGOL letting all the transliteration

be done by machine. .This would ultimately lead to output that had both

the character and quali tyof typed work and the dependability of machine

generation and translation. In principle, this is simple to do and.RKMI

can generate all output in CDC ALGOL. In practice, however, it turned

203

out that much of the actual computations done to verify the results and

generate the new processes were done in FORTRAN becaus e of the availa-

bility of those facilities. We, thus, at the present time, have a

mixture of languages in our output. We do not recommend, or even approve

of this; however, practicalities have dictated the form of the present

results. It would be a pleasure to see ,these results in reference ALGOL.

There is no lower and upper case type available on the printers

and so we must remember that we have the follOWing transliterations in our

output for the examples presented here.

Text Reference RKMI Output

'Tli N[i] N(/i/)

X X X

~ (k)
1

E[i,kJ E(/i,k/)

~i B[il E{/1../)

~(ei) E(i) E(i)

k 'k K

Bi B[i] B(/i/)

u(k)(5,t.)
, 1

u[5](ti)[k] u(15 I) (B(I ~ .. I) (/k/)

~(5) A(5)[i] A(5)(/i/)

The RKMI output above refers to the examples pre sented in this

chapter and Appendix III. For different values of type set, a slightly

different transliteration will be obtained.

The scheme is developed exactly as specified by the input. The

substitutions are performed and then the linear combinations are made.

In order to understand the sums, recall equation (97), Chapter III and

note that in the double sum the first sum on i corresponds to ~
. . jlE 81

that the second sum on j corresponds to k~EP; and that the parameters B
1

1;"

204

correspond to the a(kk).' The second term corresponds to the second.
. l lJl

term of tquation (97). Below the summation we identify the'index sets
i.

v[O,i] and v[l,i] that tell which E and which N appear in the sum., For

example, v[0, i] = v[0] [i] which is the i-thelement in the set v[0] •

This notation, althoUgh a little obscure for elementary schemes, has

advantages in that it does not change in size or form as the complexity

of the scheme increases. In actual practice, it usually suffices to look

at the sets v[O] and v[l].

The scheme generated can easily be identified by presenting the

coefficients as in Figure 1 below:

Figure 1. RK4 Parameter Table

~ ~ X
{ i 4 4 3 2 1

3 77 78

2 ,79 80 81 (

,

1 82 83 84 85

0 86 87 88 89 .90

where we write as. entries in the table the indices of the ~i'~' and

Bi that appear in the scheme. For example, ~3 = B77 ~4 + B78 X4' This

presentation is essentially the same as that of Ceschino-Kuntzmann; how-

ever, from a practical viewpoint, it is convenient to present all the

scheme data.

Below the scheme, we output all the parameter equations associated
,". ,

with that 'scheme. The interval parameters are defined, Bois not

specified fince it is the distance of to from the origin, and the
.. -.:

location of the origin is essentially arbitrary.

The conditions on ~O'~l' ~2' ~3 are those given in 5) Copditioij A,

. of the s~ary at the end of Chapter III. These are origin independent

as presented here. They should all evaluate as zero.

The equations following next are those given in 6) Condition B of

the summary. Note that if ~o has not been used in a substitution X(~o) .

. or DX(~ 0), then these equations are origin independent in the following

sense: they represent the harmonics of ~o expanded about the origin.

To obtain an integration process, .we match these to the harmonics of

He 0) and if the origin is selected at to' then all harmonics of ~ (e 0)

are zero. If use has been made of X(~o) or DX(~o)' then it is necessary

205

to locate the origin at Bo = 0, that is at to' in order that the equations

of this section remain valid.

These first two sets of equatt·ons corresponding to Conditions A

and B are the parameter defining equations of the scheme. We note,

however, that we have used each approximation before it waS constructed;

thus, it has been represented as an expans ion in terms of undetermined

parameters. These are defined at the end of the output. For example,
15

~l = u(O,Bl) + 2: B29+i ~(o). The actual definition of thes.e para­
i==o

meters is given in the section entitled, "Comment equations which define

the undetermined parameters used in. the expansion of •.. ". In any

actual use of the equations, care must be exercised to insure that all

parameters are defined before they are used.. This can necessitate the

reordering of the presentation of the output. However, because of the

recursive nature in which the quantities appear in proceeding from lower

to higher order, it should always be possible to do this. For this RK4

example, it is necessary to actually calculate the parameters as S3' S2"

~l' whereas, they have been presented in the reverse order.,

At the end of the output, We have a short dump shOwing hO'1l much

storage was used and how many parameters were used. It is evident that

206

we could have used considerably less storage when generating this scheme.

In Table III of Appendix III, we specify the results on four sets

of coefficients. These are taken from Ceschino-Kuntzmann(2) and the

er.ror terms can be compared directly with those he presents.

We note that the array C[i,k,n] appearing in the output from RKMI

is meant to have its indices start from zeroj however, since this is not

possible iil. the FORTRAN language, we have started the indices from one.

This causes the index sets mentioned just before the interval parameters

to be off by one. If type set is set for ALGOL output, the indices do

start from zero in the output.

We shall now present a set of simple generalized Runge-Kutta

methods that have all been obtained using the procedure RKMI. These

examples are the simplest generalized RK schemes using data from the

past. ',They are characterized by having a rank q = 2, and an extent

e = 2, 3, 4, We recall that classical Runge-Kutta processes have

extent 1 and rank ~ 1 and finite difference methods have rank 1 with

extent e ~ Ij thus, ;t;he-.examplE! given are indeed generalizedRK schemes.

There is one intermediate point and we require that the approximation at

this point have an order of accuracy at least 2 orders less than that at

the major point; otherwise, we shall have a classical predictor-corrector

scheme.

The work that we present to a large extent parallels that of Butcher

and his work has proved very helpful in providing a method(8) for the

solution of th~parameter equations and in furnishing examples(1) that

can be use.d to check the correctness of the results generated by RKMI.

A comparison of our results with his will show that·for each example we

present there is corresponding scheme of Butcher I s and that because we

use an approximation from the past, we have one less function evaluation

in each case.

We shall treat the following:

Problem Dx=Xo x

Scheme
k

~ 1 = 2: a j ~2j+ h
j=l
k

~ = o 2: A, ~2' + h
j=l J J

Intervals
tk t k- l

k

{2: b j X2j + ~lX3}
j=l
k

{,2: Bj ~j + b2X
3

+ b1Xl }
J=l

t2 tl to

I, j .•.. I
1"2

I
1"1

1
2(k-l) 4 0 ~ 2k 3 2 1

(1)

origin t

We have 2k + 1 coefficients in (1) and 2k + 2 coefficients in (2). Thus,

we shall seek a solution to (2) such that ~o..; Hto) =0(h
2k

+
2

) and

~ - ~(1") = 0(h2k). This leaves one free parameter in (1) plus the
1 , 1 .

interval parameter 1"1' We shall assume ti+l - ti = h = 1 and

1"1 - t2 = h = 1 •.

207

Since the order of accuracy of the intermediate point ~l is more

than one order. iower than ~ 0' we shall have error terms from ~ 1 appearing

in ~o. Schematically, we shall have with £ = 2k - 1 the situation given

in Figure 2.

The equations corresponding to '1/10,'1/11' are what we call finite

difference type equations and 'arise by requiring that the approximation

be exact for polynomials of degree less than or equal to 2k + 1 (see

Condi tion A of the work of Chapter III and set £ = 2k + 1). The equation

corresponding to '1/12 arises from the substitution of ~1 a~d is what we

Shall call a Runge-Kutta type equation. This latter equation will be

satisfied using the free parameter of (1). The interval parameter 1" 1,

will then be available for use in obtaining a stable corrector with a

~inimum principal error term.

Figure 2. Differentials and their
Corresponding Orders for Examples 1 - 4

7/J Order

0 h2k , ,

1
h2k+l

2

3

4
h2k+2 Principal Error Terms

5

6

There .are a number of ways to obtain the parameter values that
., I

will make ;1 - ;(tl) = 0(h2k) and ;0 - ;(to) = 0(h2k+2). Since, however,

both ;3 and;l represent points not on the standard interval steps, we

cannot easily use a derivative interpolation' formula to find these

parameter values. We shall find it convenient to use the complex

analysis approach used by Butcher(8) and refer the reader to his work

for a slightly more detailed description than we give here.

To obtain a solution to (2) , we choose a polynomial

'¢(z) = (z - to) K (1 r Ml 1
M 2]

k 2 (z - " 1) + (z - "y:E - (z - "2) - (z - "2'f
IT (z - tj)

j=o

where K, Ml , ~ are parameters as yet to be determined. We shall re quire

that ¢(z) =¢(z) where ¢(z) is determined by (2) to be

208

(3)

¢(z) =
1

z - t o

209

+

+ (z _ b~ 2)2\ :
, (4)

Now let R(S) be the residue of ($(z) at the point z = S • Then we

shall require that

o

giving three equations for the three unknowns K, M1' and~. When this

is done ¢(z) == ¢(z) and we can solve for ~, Bi , and bi in terms ofK,

Ml,and ~.

Similarly, to obtain the solution to (1), write

[

L·

-z 1 +
- '(1

+ (6)
1

= k
IT (z -
j=l

and

¢(z) = _____ 1_

z - '(1

We then have that ¢(z) == ¢(z) provided

o (8)

which furnishes'two equations for the three unknowns L1' ~, L3, thus,

leaving one free parameter.

Let us now defin~

,

k
c i = .2: 1

j=l tj - l' .
l.

i = 1, 2

k
di = ZI 1

j=l tj - ti
i = 0, 2, .•• , k

k 2
e. = TI (t j - " .) l.

j=l
l. i = 1, 2

k
t.)2 fi = TIl (t j - l.

j=l
. i = 0, 2, •.. , k

vmere the prime indicates the usual sum (product) with j = imissing.

We. can then write the ·solution to (1) as

Ll = -e1

~ = -2 c2 L3

L = L3

Ei = 2 d
i

+ _1 __
j "j - ti.

E~ = E~ +

U. l.

1

1

, j = 1, 2

Qi = (;2 ~ ti)2 fi [E3 + 2("2 - t i) c2 ~]

Rl.' = -V. Ei .l. 1

a i = Qi L + Hi

1
i = 1, 2, , k

hb· == lit L + v· l. ,l.

ht32
L

= e2

.210

(9)

(10)

211

and the solution to (2) as

1 1 2 °2 Ml
=

1"1

1 1
2

~
= - c2 1"2

1 1 [1 1 +
Ml ~ 2] if =

(to - 1" 1)2 fo to - 1"1 to - 1"2 (to - 1"2)

KMi
hbi

1
=

(1"1 - to)
, i = 1,2 (11) e i

Ai = -K [ti 1 1][Ml
1" 1)2 +

M2 T2)2] (ti - to)fi - 1"1 ti - 1"2. (ti (ti -

+ hBi [2 di -
1 1 1 tal ti - 1"1 ti - 1"2 t. -

1

.,

We see from (10) that we have a free parameter Land that the free

interval parameter 1"1 appears in both solutions. We also note that it

is implicitly assumed that 1" i i- t j.

Now that we have a general solution to the scheme represented

by (1) and (2), we proceed in much the same fashion as Butcher to obtain

schemes for the k = 1, 2, 3,· 4 cases which are Examples 1, 2, 3, and 4,

respectively, as presented in Appendix III.

Tables VI, 'VII, VIII, and IX give, for each of these examples, all

the parameters plus the harmonics of the intermediate approximation

expanded about its local origin and the final approximation. expanded

about the origin. For example, referring to Table VI which treats

Example 1, we have the interval parametersBl' ... , B7,; the harmonics

• B16,· .. , ~2 of ~l expanded about to which are also the harmonics of" ".

~2i-l, i=2,3, ... , expanded about t 2(i_l)· Note that here we simply count-

the points starting from to and make no distinction between t and 1" l'

a distinction which was convenient in deriving a solution but is not

convenient in general. Next come the scheme parameter values, B
23

, •.. ,

~9 where we give also the scheme in which they are used. Finally, we

give the results of sub~tituting the parameter values into the equations

that represent cond.:i. tions A and B as given in Chapter III. As output

from RKMI, condition A equations should evaluate to zero; condition B

should evaluate to the Taylor harmonics of ~(to) expanded about the

origin. Since the origin was chosen at to' these too are zero. And,

. ffnally, we have the principal error term coefficients.

The k = 1 case is, of course, stable. This is nat, however,

necessarily true for the ~ = 2, 3, 4, ... cases and we give for these

212

cases the roots of' .the stability polynoinial associated with the corrector •

. For example, in Table VII; the polynOmial is

2
z- B28 z - ~9 = 0

and thus appears as

in the stability check.

For Examples 2, 3, and 4, we have presented two values of tl = Bl'

The first value is the usual one where tl is in the interval between ~2'

the last approximation calculated, and ~o' the next approximation we wish

to obtain. The other value lies outside this interval and is. presented

mainly for comparison. It will be seen that in all cases the principal

error terms are considerably larger for this non-standard choice.

For each of the examples, we present a graph of the principal error

term coefficients versus the free interval parameter t l . Where appli­

cable, we also give the stability range of the correctar. These are

given in Figures 1 - io of Appendix III. An examination of these graphs

shows why we have chosen the tl values that are presented. We note that

the values of tl are given as unreduced fractions even though they can

213

be reduced. This is purposefully done to indicate the resolution. For

example, in Figure 2, we have that -56/256 is within 1/256 of the minimum

of the maximum root.

For each scheme presented, there is an analogous scheme given by

Butcher. We note that the only difference between our examples and

Butcher's is the scheme. That is, we can, simply by changing the scheme

and no other data, use RKMI to generate either our examples or Butcher,' s.

Thus, his work can serve as a check on the validity of the results of

RKMI. We have run the k = 1, 2, 3, 4, cases that he presents and the

coefficients he presents all check. Since our basis functions are

different from his, our error terms will have different numerical values;

however, when error differentials.E are used, we should have the same

error terms and thiS, indeed, is the case for k = 2 which the author

checked in this fashion. In Table XIII, we present a summary of the

principal error term coefficients for each of our examples and the

analogous case of Butcher.

We have presented in Tables IV and V the complete generation of"

Example 2 using RKMI. The format of the input and output is identical

to RK4 and the description given previously shoUld suffice for under­

standing these tables.

In order to correctly use the generalized Runge-Kutta schemes, it

is necessary to start correctly. In particular, a start in which all

214

approximations match a Taylor's series to a certain order is not, in

general, the correct start for these methods. If we refer to Table XIV

of Appendix I which gives the approximation harmonics, we see that the

, _k 0
7fJ 2 "term has .l!r- 7fJ 0 wrere 7fJ~ refers to the harmonics of ~l about the origin.

However, referring to Figure 1 of this chapter, we see that the 7fJ o

harmonics of ~l are the principB;l error terms of ~l and there is

absolutely no immediately apparent reason why these should be Taylor

harmonics. As a matter of fact, for Example 2, it turns out these are

very close to Taylor harmonics and it would be very enteresting to know

whether or not the7fJo term of ~l is a Taylor harmonic. '

To obtain a start for Example 1, we can proceed as follows:

Knowing ~2' we use an elementary Runge-Kutta start to obtain ~3

(12)

where the coefficients are obtained from

a12 = B3 - e2

a12 + a
13

= e3 - e2

a13 83
2

a12 e2 + = ex ~ e2/2

with e2 = -1

e3 = e2 - 35/128

ex = B16 Table VI, Appendix III

B3 = a free parameter

. .~

and h is the step size to - t2 used in the Example 1 scheme. NOW' that

we know ~3 and ~2' we can proceed using the scheme as given in Table VI.

We could also proceed in an alternate fashion. Use an RK3start with

interval h to obtain ~o - ~(to) = O(h4). Then find

to find ~l where the coefficients are obtained from

= 1

with

e o = o

a = B16 of Table VI, Appendix III

and h is the step size to - t2 used in the Example 1 scheme.

We have used the latter starting scheme for Examples 3 and 4. In

Example 3, we assume that ~i .- SCti) = O(h2k+2) for i = 2,4, 6.. ~6 is

originally known and any suffiCiently accurate starting scheme may be

used to obtain ~4 and ~2. Once these values are known, we have suf'-

ficiently many points to obtain the intennediate point ~3" The scheme

and coefficient set are given in Table XI, Appendix :tIl. We obtain an

intermediate approximation ~ 1 and a final approximation 3 = ~ o. Once

215

216

this is done, there are enough known values to continue with the regular

scheme. We note that in reality the scheme to obtain ~3 = ~o is the

same as the regular scheme presented in Table VIII; only the parameter

set is different. We also check that the starting predictor is stable.

The start for Example 4 is the same, except that we have one more point

to obtain before obtaining ~ 3 .

The starts presented here for these examples are, in general, not

the best. There is· no question that one can find more efficient starts.

These are presented to illustrate .that some thought must be given to

. calculating the intermediate points correctly when starting. The

obtaining of efficient, correct starts for generalized Runge-Kutta

schemes needs to be investigated thoroughly as more schemes are obtained.

We also point out that the same problems must be considered when

changing step size.

In Examples 3 and 4, we have not actually given any explicit means

of obtaining the approximations at the major points when starting the

scheme. We do, however, give in Table X a complete start for Example 2. -

In order to do this, we proceed as in the start for Example 1. Assuming

that ~4 is the initial value, we use coefficient set 1 to obtain an RK4

type start for the intermediate point ~o' We now set~6 = ~4' ~5 = ~o

and use coefficient set 3 to obtain the next approximation ~o at a major

point. Then we set ~4 = ~6' ~3 = ~5'· ~2 = ~ o' There are now enough

apprOXimations to continue with the scheme as presented in Table VII.

We note first that we could have saved one substitution if we had

used RK5start for the approximation ~2 and then proceeded as in

Examples 3 and 4 to evaluate the intermediate point. We did not do this

because we wished to illustrate a point that can stand further investi­

gation. When trying to obtain RK starts for higher order methods, one

always ·eventually obtains too many eCluations to solve effectively. One

way of avoiding this is to work with approximations for which the order .

. of accuracy is known to be greater than 1. This effectively increases

the value of P. in the tables of Appendix I. As the value of P. increases,

we can. see from those tables that the eCluations that we need to solve

217

are subsets of the eCluations obtained for lower values of P.. The manner

in which this process takes place must be carefully examined in each case

of interest, but it appears that by choosing a good strategy, we can

effectively "boot strap" our way to higher orders. The subject needs

much more work, but the possibility does seem to exist. For our starting

scheme of Example 2, we have used S5 in coefficient set 3 and an RK5

type start. However, since S5 and s6 both had a sufficientlyhigh ord~r

of accuracy, we did not need to solve all the RK type eCluations. Of

the 16 eCluations appearing in Table XIV, with k = 0, we solved only

7fJ0' 7fJl' 7fJ3' 7fJ5' 7fJS, 7fJIO, 7fJ12' 7fJ14· The solut ion for these aut omatically

satisfies the remaining eCluations.

Another point to keep in mind is that the coefficients for the set

of examples that we considere here are rational numbers. it is true

that we choose L to satisfy the 7fJ2 eCluation; however, L enters linearly

in that eCluation. It would be nice to have these coefficients presented

as rational numbers, but because of the fact that we do have a rather

involved calculation when obtaining.L, this has not been attempted.

What is more interesting is to establish whether the free parameter

Bg appearing in .the RK4 type start is in reality Bg = BS. This parameter

is a polynomial root and need not be rational. We would also like to

know whether the principal error term of Sl. , the intermediate point

of these examples, is or is not Ii Taylor harmonic. From our calculations,

218

we can only say it is quite close in Example 2 for the values of tl

that we have given here.

Since all our results are presented in floating point format, there

is a question of significant figures. The numerical calculati ons were
.

performed on the University of California, Lawrence Radiation Laboratory's

CDC 6600 Computer located at Berkeley, California. We can expect about

twelve significant figures for single precision. However, a close

examination of the numerical results leads to the conclusion that, in

reality, we may have only 10- 11 significant figures. There is a

feeling that the corrector coefficients are well calculated to 12

significant figures, but that the predictor coefficients may'well have

only ten si~cant figures of accuracy. It is possible that accuracy

has been lost in the calculation of the correct value of L or that

accuracy is lost in the calculation of the coefficients themselves. In

the interest of accuracy, we have not, however, transcribed the output

and present it as it was obtained .

. We have not, at the present time, had an opportunity to evaluate

these schemes on any examples. This is, of course, necessary before

coming to any conclusion about their worth. At the moment, we can only

say that for the same order of accuracy they require one less substitution

than Butcher's, thus putting them in the class of predictor corrector

schemes, and that they have a stability range similar to, but much more

restricted than, his work. It is, in fact, questionable whether the five

step scheme has a stable range.

This -chapter deals with examples and yet the reader will note that

.we have pre~ented no examples using the results of Chapters II, IV, or V.

The reasons for this are twofold. The first and most obvious one is

219

space re~uirements. It requires a fair amount of discussion to present

such examples and we wish to limit our presentation to a reasonable size.

The second is that our examples have not actually been obtained in this

fashion. Since the schemes can be generated by RKMI and the output so

obtained is almost immediately available for use in other programs, we

have not generated our examples "by hand" and then prograrmned them.

This does not, however,meanthat these results have not been useful.

They have proved invaluable in that they allow us to easily check the

validity of the program generated output and they provide ail insight

into the structure of the equations we are dealing with. It is in this

manner that the results of those chapters have been used. Of cOlirse,

not everyone has computing facilities at their disposal and those re-

sults should allow an easy investigation of some rather complica.ted

schemes.

In addition to the results presented here, we have used the

program RKMI to generate a.number of well-known schemes on which we

could check the results .. These are the classical RKl, RK2, RK3 schemes

using the coefficients as presented in Ceschino-Kuntzmann and the

. schemes of R. DeVogelaere(5) and R. E. Scraton(6) which can truly be

considered a. generalized RK scheme since they use data from an inter-

mediate point. However, since in these two latter schemes the inter-

mediate point approximations have an order of accuracy only one lower

than the final approximation, these coefficients are derivable by finite

difference methods.

We would like to emphasize that we have presented a wealth of raw
I

data in this work. A sincere attempt has been made to eliminate mistakes

and sheer blunders, but it is always necessary to somehow find checks

for the results obtained. With regard to the Examples 1 - 4 that we

have presented pere, we have that

1) The solution derived by means of residue theory yields

coefficients that satisfy the parameter equations as

generated byRKMI.

2) A simple variation of the scheme given from RKMI gives

Butcher's schemes and his coefficients satisfy the

parameter equations.

3) The starting schemes for Examples 3 and 4 are s imply a

re-interpretation of the main schemes for those. examples

and require no new generation.

4) The starting scheme for Example 2 is obtained from the

RK4 example, the scheme is identical; we simply match a

different set of coefficients. Since we include the

error term in the RK4 example, we can also use those

results to obtain the RK5 type start. This requires a

different scheme for RKMI,but no ather new data. The RK4

scheme, as generated by RKMI, checks completely on known

coefficients.

5) At every step, all parameters have been substituted into the

parameter equations to check whether a solution has, indeed,

been found.

6) The results can be used to integrate known polynomials to

check the order of accuracy; this last step has naG been

performed and, of course, should be when time permits.'

220

221

VIII. COMMENTS'

The work that we have presented in the preceding chapters and the

accompanying appendices, though rather voluminous, can only be considered

as an introduction to the investigation of generalized RKF integration

schemes. We have, hopefully, laid some foundations; our work is

characterized as much, if not more so, by what has been omitted than

what has been presented. We shall give 'in this chapter a few comments

on some of these omissions and shall also indicate some directions that

future work might take.

We note first that although we have devoted a large amount of

effort to the development of a descriptive formalism which can be

directly reflected, preserved, and implemented by means of suitably

defined procedures, the class of schemes we treat is, in reality, not

large. One need only look at a reference such as Ceschino-Kuntzmann(2)

to realize that there are many we have left out. However, their work also

suggests that it should be possible to include this work; that is, it

should prove possible to considerably extend the class of schemes treated

and include most common integration processes. This is probably most

easily done along the line s of the work of Chapter III and hopefully one

could also eventually arrive at a global viewpoint similar to that

given by the apprOximation or error harmonics.

This leads immediately, however, to another topic that we have not

treated in sufficient detail; this is the classification of schemes. We

have given what we believe to be a fairly adequate claSSification of th e

relevant scheme parameters for generalizedRK schemes. . It immediately

becomes evident, however, that we must obtain a good systematic classi-

fication for the generalized RKF schemes if any serious investigation

222

and comparison of schemes is to be undertaken. We point this out ,

because not only is a good, systematic 'classification necessary for

practical reasons, it also leads naturally to (and from) a, good scheme

definition.

However, these problems can probably best be resolved by first

obtaining some solid practical experience using the results so far

obtained to carry out a thorough investigation of th e schemes1(hat are

contained in the work presented here. It is the author' sopinion that

the present work has progressed to a stage where it should be thoroughly

used and evaluated. Our work presents results that are usable; there

is a wealth of unbroken ground, as well as known examples, upon which

it can be tested and carrying out such an investigation will no doubt

suggest modifications and improvements' that will better help us under-

stand the theoretical aspects of the generation and solution of the

parameter equations associated with these integration. schemes.

We might comment that we are arriving at the point where integration

schemes can be generated and the associated parameter defining equations

completely solved simply by presenting a rather small set of data that

characterizes the process. How well this can be done depends to a high

degree on understanding the equations that are created when ,we generate

s scheme and, thus, it is necessary to actively pursue not only the

obtaining of a specific scheme, that is, the local approach, but also

the global approach that yields the total view of our problem. If this

attack could be carried to a successful completion, one can see that

there would be the possibility of tayloring the scheme to fit the

"

differential equations being integrated.

This latter comment points out the fact that we have made no

223

mention of two important aspects of these schemes. One is the subject

of stable schemes. With regard to this, we comment that any scheme

search should be carried out within the. context of stability, however"

very little has been done or said about the stability of generalized

RKF schemes. The other subject is a global error analysis. R. DeVogelaere

has suggested to the author the possibility of. handling that problem ;in

such a fashion that it too could be treated by means of suitably defined

procedures.

One aspect of our work that requires some explanation is our use of

tables for the quantities that are used in the program RKMI. This is

really not the way to do it. All the quantities of interest can, and

should be machine generated. The use of tables externally input is

subject to too many errors and is only a temporary means of obtaining

these quantities. One of the first, parallel tasks of any investigation
,

of generalized RK schemes using RKMI is to program not only the generation

of there quantities, but also the checking of the .. generated quantities. This

can be done and will relieve the user of an enormous amount of needless

preparatory work.

In the same spirit, the generic definition given in Definition 3',

Chapter IV, should be built into a procedure so that we. can investigate

at will the quantities so laboriously tabulated in Appendix I.

The examples that we have presented in Chapter VII and Appendix In

can only be considered to be illustrative of the type of work that can be

done with the results presented. It is immediately obvious that no Frey

type schemes have been presented.

RRiMI is, we believe, quite capable of handling these schemes and

also schemes for higher order differential equations. Their omission

here has been caused mainly by the lack of space and time to adequately

treat their generation. We trust that in the future there will be an

opportunity to undertake the scheme investigation that appears as the

next natural step of this work.

224

ACKNOWLEDGMENTS

This work derives from a suggestion by Professor R. DeVogelaere

that I investigate integration methods that make use of information

from the past and also the first derivative DX after the fashisn. of

Frey. During the past four years that we have worked on this project,

various examples of schemes with memory have appeared. Because of his

foresight in insisting that this work be as general as pOSSible, we are

able to handle such schemes as special cases. I must thank him for

suggesting such a rich field of study and for his untiring patience

and understanding in dealing with the problems of developing this work.

Thanks are also due to the Mathematics and Computing Division of

the Lawrence Radiation Laboratory. Without their liberal support, this

work would not have been brought to completion. Most of this work was

written there. I wish to acknowledge my indebtedness to'Mrs. A. Rutan

who not only has patiently typed this manuscript, but also has drawn

the figures included in the text.

The ALGOL program was developed using the University of California

Computer Center facilities and was supported by funds made available by

the Committee on Research at the University of California, Berkeley, and

225

by the State of California. The actual numerical calculations were

performed using the.computer facilities of the Lawrence Radiation Laboratory

at Berkeley, . California.

All of this work is dedicated to my wife, Tsuru, for her patience

and understanding.

The work presented here was partially supported by the United

States Atomic Energy Commission.

Appendix I

TABLES

Appendix I is devoted to the presentation of tables of which the

items represent the various quantities discussed in Chapters II - V.

We give below a short description of each of these tables. The first

226

. set of tables, Tables I - IV,pertains to Chapter II; the next set,

Tables V - VII, to Chapter III. Tables VIII - XII came from Chapter IV,

while Tables XIII and XIV come from Chapter V. There is· a dependence

among the tables that we shall describe before proceeding to the

individual table descriptions. Tables II, III, and IV can be derived

from Table I. Tables IX, X, XI are derivable from Table VIII. Tables I

and VIII are in a certain sense equivalent . They represent the same

items in that for k= 0 Table VIII would reduce to Table I, except for

the fact that we have left out the terms with more than one E; whereas,

in Table I, we have extended the table to the terms with two E factors.

Table XII is equivalent to Tables IX and X since 7r = a:y. Table XIV,

likewise, is equivalent to IX, X, XI, and XII since, if we combine the

quantities to obtain the parameter equations, we will arrive at the

results presented in Table XIV. We give below in Figure 1 the relation­

ship of the tables and the chapters in which they are used or defined.
\

Tables I - IV will be discussed first. These tables are used to

tabulate the various quanti ties mentioned in Chapter II. Table I is a

generic table from which Tables II, III, and IV can be generated. We

shall show how this is done shortly. Table II gives the derivative

harmonics ex that are defined in Definition 6 of Chapter II; Table III

gives the polynomial weights ~ (Definition 8); and Table IV gives the

elementary polynomials r (Definition 7). Referring to Condition B,

Figure l. Relationship of Tables and Chapters

Chapter·

II

III

IV

~

V

Table

I

V

VI

VII

VIII

V

VI

VII

XIII

XIV

II

j XII
III

IV

IX

j XII
X

XI

227

XIV

XIV

Equation (62), Chapter II, we see that these are precisely the quantities

needed to write down the non-linear parameter def'ining equations f'or any

generalized RK scheme as developed in that chapter. It should be kept

in mind that Chapter II has as its generalization the work of Cha.pter IV

and that the corresponding tables f'or that chapter (in particular, we

ref'er to Tables VIII, IX, X, and XI) should reduce when k = 0 to the

Tables I, II, III, and IV. It is realized that there is a certain . .

amount of' redundancy in the work as presented herej however, we have

presented only a small, but representative, section of' the tabulated

work and the redundancy along with the interrelations of' the tables

should help provide a check on the material.

It is possible to give a rather complete description about how

to systematically construct the generic table, Table I, and such a

d:iscussion is necessary if' one considers the generation of' these

quantities using suitablydef'ined procedures. Since we have nat built

such procedure, we shall aVDid any lengthy description of' that process.

However, it is very helpf'ul to visualize this table as a two-dimensional

228

array Aij where i = order;j = rank, and the A are blocks of' elements

containing tl:,e items of' given order and rank. Then, ref'erring to Theorem i,

to Equation (16'), and to Equation (14) of Chapter II, we are able to

see why the various quantities in that chapter have the same recursive

def'inition. We shall limit ourselves here to the use of these tables.

In Table I, every item has a set of quantities associated with it

that uniquely specif'y that item. These are the order r, rank R, degree

s, value of £ (see Equation (2), Chapter II), and sequenti al position a

of the item within the set of' all items of given order, rank, degree,

arid l' value. Tlms, for RrW i tem</i in 'J,'able I, we have

229

'I/J = 'I/J [;£, R, r, s, a].

It will be seen that these quantities are tabulated in the first

few columns of the table. We have, however, specified the rank as R

in,the upper left corner of each block of order R and we have not

sequentially ordered all the functions, only those ,with rank = order

~nd for these, we have also found it convenient to sequentially count the

functions. For example, the reader will find.

, and he will find that

'I/J[oo, I. + 5, I. + 4, 1, 2]

has not been give a sequential count.

'In order to have before us a concrete example of the items of

Table I, we imagine that the 'I/J represent the weighted differentials W

of Definition 3, Chapter II, and also recall that we gave there a short

introduction to this table. The first item 'l/Jo is then the weighted

differential W[oo, I. + 1, I. + 1, 0, 0] of rank I. + 1, order I. + 1,

degree zero, position zero, and this function will appear for all values

of I. which is indicated by setting 00 into the I. position. Keep in mind

that if we picture a table for each value of I., then all items of degree

zero or degree 1 will correspond identically for each table; that is,

we could overlay the tables and see no change. This is not true for

items of degree greater than one. Thus, 00 as an I. val ue im~lie's that

the item appears for all values of I., whereas, a numerical value such as

1, 2, etc., imply that this item appears only for that particular value,

of I.. We also point out that the blank spaces in the first three columns

of Table I are to be filled in by the number appearing above in that column.

See, for example, our reference above to 7/110 where we have supplied the

missing quantities.

We have as our first item 7/10' the item of lowest order and degree;

then we write 7/11' the next item of degr~e zero; and then, 7/12 which is

derived from 7/10. Once we have. all the items af a given rank and order,

here rank £ + 2, order £ + 2, we write the degree zero item of next

higher order and rank. Note that we write all the ra,nk R = order r

items first. Thus, we have 7/13 and then 7/14, 7/15' .7/16 and we proceed on-

'ward in this fashion to as high an order as necessary. We raise the

rank R by 1 by applying the E operator and then proceed again from the

lowest order to generate all the function of rank R = order r + 1.

Having once obtained all of these, we again apply the E operator to all

230

ct these items and proceed as before. The reader can best become familiar

with these items by generating the tables himself using Definition 3

of Chapter II as a guide. He will see that one must be quite careful in

obtaining the terms of degree· greater than 1. We point out that the items

of rank R = order r are the same as presented in Table V which proceeds

to a higher order (refer .to the discussion immediately preceding

Definition 6, Chapter IV), and, thus, the results obtained can be verifie~

for higher orders than given in Table I.

To use Table I, we replace the operator in Table I by the quantities

defined in Chapter II and presented again in the Supplement to Table I .

. Using CiEcic~,we illustrate with one example for each case:

1) Weighted Differential W

C1EC1Co ~
:ft.4-1

DO(~ X 0) ~ R3g· . ~ ~
R2-l

= R4 f' .. u. f .. 111 jl lJ1 1 J l j2
J1 J2 j3 ~J3

DO(~ X 0 u·)N ~ Rl
Rl-l

D£ (X 0 u·)N • f ..
. 2 J3 1 J4 J3 J 4 J4 2

2) Elementary- Differential A.

where we choose for A any function from the set of all

functions of order r since all functions are the same.

3) Weighted Polynomial q,.

4) Derivative harmonics a. (Table II).

1 1 0 (R4-1)! 1 (~-l)!
C EC C =
1 1 1 O! (R3.)! O!

5) Elementary- Polynomial r. (Table IV).

110
CECC = 2:
III

6) Polynomial Weight~. (Table III).

1

(Rl)!

where, in each case, Ri = £ + i is the rank of the item.

We remind the reader that care must be taken when interpreting

quantities of degree greater than 1. Consider, for example, the

weighted differential

231

and we note that both the second and third factors depend on h. This

is seen in Equation (20) of Chapter II.

We have written trese quanti ties out in detail here once to

illustrate the notation; however, in general, it is not necessary to do

this except with the elementary polynomials and then only when we wish

to write down the equation for a particular scheme.

For the W, A, and~, it is more profitable to utilize Table I

only as a pattern establishing table. For the 0: arid "I, it is easy

'enough to generate them from their immediate factors rather than re-

expressing these factors in terms of the succeeding factors and the

232

same is true for the generation of the elementary polynomials in Table IV.

As a check on our work, we note that each of the quantities W, A,

<P, 0:, "I, f has a separate definition. However, we know that W = <PA,

<P = "If, and will subsequently see that C!'/ = 7Twhere 7T are product
R!

coefficients defined in Table XII.

In Table II, we note that we have consistently used an abbreviated

factorial type notation a i = a(i) = (a + .e)(a + l- 1) ... (a + £- i + 1)

along with the fact that we also have consistently left out the value of

£ for these terms .. Thus, 3121/2! '';' (£+ 3)(£ + 2)/2! which could just

as well be also ;ri tten as 32/2! •

Table III also uses this notation; thus, 43 = (£ + 4)(£ +3)(£ + 2).
. £+.

Table IV has as its first column cpJ = e J and the Taylor harmonics

233

e£+j
we are trying to match are (l+j)!a where a is the derivative harmonic

corresponding to that position. For example, for the 4th harmonic, we
e£+3

have (£ + 2) () . The G and F are essentially the E and C of Table I.
£+3 !

We have, however, appended the appropriate order to F as a subscript;

thus, Fi has order r = £+ i. We have that

It will be recalled that exact points have a special set of scheme

coefficients and these are indicated in Table IV. We have used the

order r as a subscript for the F instead of the rank R since it suffices

for the purpose of identifying the f'ij for exact points. This turns out

to be the case sinc e g. . == 0 for such point s • The use of r gives us then
~J .

a Simpler table that can more easily be checked for mistakes.

The use of these tables to generate the equations given by

Condition B, Equation (62), Chapter II, is quite easy. We simply multiply

the corresponding table entries of Tables II, III, and IV together to

obtain ayr, divide by R!where R is the corresponding rank, sum up a row

of given order and set it equal to the corresponding Taylor harmonic

multiplied by the derivative harmonic of that rank and order.

There is, therefore, no problem to obtain the parameter defining

equations. However, they can be obtained even more easily using approxi-

mation or error harmonics presented in Table IX. This result was not at

first apparent and, thus, the need for Tables I - IV. They are pre~ented

here, however, because they furnish explicit examples of the quanti ties

discussed in Chapter II and are possibly in themselves of some interest

if one wishes to study the development of the equations, rather than

generate schemes.

. .'

Tables V - VII pertain to the work of Chapter III. Again,our

first table of this set is, in a sense, pattern establishing. We have

defined here the differentials A of Chapter III, Definition 2. These

quantities depend on the value of E, the order r, degree s, index set

kl' ... , .ks' and are sequenti~lly positioned wi thin that set.

The first five columns bf Table V give this information. We have

actually included an extra piece of inf~rmation in the index set kl , ... ,

ks ' For example, 7fJ19 is of degree 1 and should thus have only one value

of k, kl = O. However, we have added a~so the values of k that appear

in the factors of 7fJ19 that are nat equa~ to 0. Therefore, the first s

values of kl' •.. , ks are the k values and the remaining set of values

are the other values of k that appear in the factor of 7fJ. In this way,

234

we can see at a glance what value of k 7fJ actually depends on. This is

rather useful because if we were to delete all 7fJ terms depending on k = 1;

that is, we consider a first order differerrtial equation, then we would

certainly delete 7fJ20' but might forget to delete 7fJl9'

The items tabulated in the columndefinit ion are the same Ain the

same notation as those given in Chapter III. We note, however, that

since for degree zero i:P..nns, we have r 0 = order - 1 and s inc e the order

·.depends on E·, we have used not r o' but ro - E • For example (3l is

actually (£ + 3}. This is not true for terms of degree higher than O .

Thus, (3, 7fJ o} is really (3, 0; 7fJ o} .

The rest of the columns give the sequential count of~where k is

in the closed set heading that column. For example

'1/1
22

is1/J8 if k <:: [J., 00], 7fJ
S

if k E [2, 00]' etc.

Note that·this pertains also to the column definition.' In particular,

we change both the k set and the reference, indexing column when order-£

/

becomes 6. The reason for this is obvious, there are too many functions.

However, it is easy enough to fill in this table if that proves desirable

as indeed it may for higher order Runge-Kutta starting schemes.

One of the most interesting things about Table V is th at it makes

quite evident the tremendous simplification that takes place when

k = 0, that. is, when the term of highest ~erivative, is missing from

the right':'hand side of the differential equation. The disappearance

of the k = 1 term again simplifies the table in the same fashion and, of

course, this continues as we move up in order.

235

Tables VI· and VII are numbered in the same fashion as Table V. The

harmonics, as labled in Table VI, are those of Definition 4, Defintion 5,

and Definition 7 of Chapter III. It is these harmonics that the procedure

RKMI uses. These derivative harmonics are the same as those with rank R -

order r in Table II provided we limit ourselves to k E [0, 0]. The

factorial type notation is again used a i = (£ + a)(£ + a - 1) ... (£ + a

- i + 1) for the derivative harmonics.

The substitution harmonics are presented exactly as defined in

Defi'ni tion 5. We have, however, omitted the index r spec ifying the

order. Thus, ~16 = aO,6 is the 16th harmonic of x = X(u + T) where a06

.is the m =(6 + ° .n)th component of T; that is, the 6th component of the

k = ° set.

The multiplication harmonics are defined exactly as in Definition 7;

we have that ~ corresponds to Tand a corresponds to S. Again, the order

r index is omitted.

Table VII gives us the translation harmonics corresponding to

the differentials A. We indicate their use at the top of th~s table.

We have factored out of each block of harmonics tj/j! . and this is

indicated by the Q) at the left corner of each block. We have also

used the factorial type notation a j = (£ + a)(£ + a - 1) ... (£ + a - j + 1)

for those quantities that depend on £. This table is obtained from

Definition 9 of Chapter III.

It is always nice to have checks for the tables that are constructed·.

and, to a certain extent, this is possible. We note the following:

The first column' of Table VII shoilldbe the derivative harmonics

f' presented in Table VI. We also have the following check sum for

Table VII.

Hule: Take any row i with element)' ij. Factor out the term h
j

j!

(that is, use the table entries as presented in Table VII); then

the translation harmonic corresponding to ~i. Note that j is restricted

to the set of coefficients with order r. 'l1}1is result is true for all

orders in a given row.

For example, =

)l9H)'10 +)'92 '120 = f'9

)'93)'30 +)'94)'40 +)'95)'50 +)'96)'60 +)'97)'70

f'9·

The elements given in Table vII should be orthogonal as stated in

the corollary to Theorem 9 in Chapter III. It is possible to check not

only the table, but its use by performing an expansion S i = L: 0i Ai'

translating to obtain Si = .L: ai Ai and then substituting Taylor harmonics

fbr 0i; that is, assume Si = Hei) is an exact ~solution and has a Taylor's

expansion. We then know the expansion harmonics of S with·respect to

both origins and can evaluate 0i(Oi) to see if the results are correct.

The substitution harmonics prove slightly more troublesome. The

derived eQuations can be checked on known examples. This is to be

considered a necessary check, but certainly not sufficient. Another

check is to realize that if all points of a scheme are exact ,solutions

S (Si), then each set of harmonics that _,is constructed should reduce to

Taylor harmonics and whether this is, indeed, the case can be easily

check numerically by a machine.

Tables VIII - XII are obtained from the work of Chapter IV. The

work of that chapter is a generalization of the work of Chapter II.

Therefore, the tables here are simply a generalization of Tables I - IV

and, thus, do nat reQuire a very detailed explanat ion. We nate that an

explicit dependence on k has been introduced. Since the fact that

k E P = (0, ... , p - I}, there can be a profu~ion of terms in the

equations for higher order eQuations. We have limited the number of

terms present ih the tables by tabulating only those for which one E

appears and omitting those for which there is more than one E.

The application of the C and E operators to obtain the Quantities

given in the supplement to Table VIII is done in the same manner as

previously with Table I. However, now we must also pay attention to

the value of k. We should mention that for t 21, the (6 +kl + ~) terms

can be arrived at as follows. Consider ~ E P = (0, ... , p - I}. For

0 each k, there is at = Eo Clk = t k · We, thus have to' ... , t 1· p-

Because A= (0, 0, 0, Al ~} has kl = ~~. there are no permissible

permutations. Therefore, we get new fUnctions for the sets

(to'- 'iflo), (tl , t 1), ... , (tp-1' -tp -1)

(to' ·"l{jl) , (tl' t 2), . " ..

237

,/

and having chosen 7/J.7/J., we cannot choose 7/JJ.7/J1..' 1. J

We have again used the factorial type notation and omitted the

value of £ when tabulating the quantities of Tables IX and X. The

elementary polynomials of Table XI are also easily understood in terms

of those previously described. We should, however, note a couple of

things. One is that the derivative harmonics defined iIi Definition 5

of Chapter IV are not what has .been tabulated. We have, as indica~ed,

factored out (R + k)! and to obtain eX- . of Chapter IV, we must divide
. .HrJ

the table entry by (R + k)! Also, we note that we have not tabulated

. -1
the product coefficients 7T of Chapter IV, but instead 7T .

The relations between the various quantities are given in

Theorem 3 and Theorem 5 where we show that W = <PA, oW = ayr = 7Tr = H. We

see that we have the previously mentioned check7T = ay. The use of

these table entries is defined in Equation (45) of Chapter IV.

The last two tables, XIII and XIV, contain, in a certain sense, the

most interesting and pleasing results. Table XIII presents the trans-

lation harmonics as they pertain to error harmonics E. There is no

difference between the interpretation of this table and, the previously

described translation table. There is, however, a tremendous simpli-

fication of the results. These results are, in fact, so simplifedthat

the only check left to us is the orthogonality check; the check sum is

trivially true.

Table XIV gives the approximation harmonics as defined in

Definition 12 of Chapter IV br equivalently the error harmonics given

in Chapter V. Our ordering is that of Table V; we simply interpret

the 7/Ji as either approximation harmonics or error harmonics. For any

238

. :.' ..

239

appro~~ti6n, we write its expansion in these barmonics and thenmB.ke.

the appropriate s1.lIJlli1ations alj'! shown to the right of the table. ':Chis is,
. " '. \-" '. .' . .' i.:~

.of c6wse; n()thing more than what RKMI does for RK schemes; however, we

. havebeforeus:here the totality of equations and can see their inter-
"

d~pendence. Since Table x;rV is closely related t,o RKMI, it can furnish
I

~a meansbywh:l.ch':wecan check, the reasonableness of theanswe~sgenerated'
,.

by,tbat "program. This 'is quite a necessary task because both 'people
,; , "'" ", ,

and machines make mistakes.

, ,'.<

.' :.1

,"i
,.'

, .

·r
"

r.

" /

, ..

SUPPLEMENT TO TABLE I

r----------;r--------- ,,------, --------._-.-------. -----.--.------- .. -- .. ---.. -- -... ------._------- - -- --------

NAME OPERATOR -DEFINITION R = RANK

I
'-1' -

0 S I

CJ. CJ. S~I
i E

i !
\

w· I-

A
!

o
; --.------ -------------"---+--.-. ----. --------r--------------- --- .. --,,--------

I j-+i-I J-I [
~ ~i.J -&i. ~ l. tfJ i ~ Q ' •
J I ,0-. d. Ti. J " ! J. d" J

1------.. - -.-----.----.------.. --1-----.

r
L

R R

----.--+----~---+-------+------___1

1
,_----,._-:-_.L.. ______ _

GENERIC FUNCTIONS
T·

"'1.00.\ V> z: w., -0
;:t I w. H
..J:c¥ W t­
~IUI ~
~ P <.!J U)

~ ~ ~ I ~ ~ I'¥ jaANK-.t)

TABLE I

(X) I , i 0 I 0 I 0 [<U. c ~ ~ EC.~ pr E~C~
CO ECo

a ~ -r e', 't6 .. Ecl Cf T-r- _. 0 .

(X) 13 I 0 0 3 C3 EC~
Ill' \.1 E I 0 I I I 0, C~1"'o Ci). L,

! i I· , 0
! ! 's C,tr/ EC'Ca 1 I

1 I ~ 6 C:~ ECC~i'C~
100 14 1 0·] ~7 C~ J'S}

I, I ! J I 0 ! ~ C~~
I II ! q C~ 'M I: I:! i 10 cl. 'i{

! '\ 1,3 '," II C~ 'Y3
! Y I~ C; f¥

'I' I l S 113

I
i I I 6 j 1'1 " I .
. I ! l/ ! ~ 0 liS"

C! IPS"

C.'lf6

C~('¥oj

EC~

EclC~
EC~C~
EC~ C:C~

EC: c~
EC~C1C~
E(C!t-C: .
E(C:)~C~
EC:(C~t

• 0
C.I Ee,

c~ EC~
el. Eel
c: EC:C~

c' EC
o

3 •

c~ EC~
c~ E.c:c~

c~ E C3
e', E.C!('~

(W E ~C~
° E~C:C,

(.1)2 c> le, Ee,

'I 0 Col C, EC,

c'e' ECl) , ~ I

c: EC;C~ (C,,)'lEC~
, (')~C1 f,,)-l 10 C, E C, Col \C, EC,C,

c; C~(EC~)

E c: [;c~
I~E'lC;

E~C~ c~

E'C'ICO~
E\C:tc~,

(C I
I)3 E c~

c' "E\.C.° ,.\

E.C~ EC~

ECIECo , ~

ECLEC:C~
®E~CO

'I

~l.c~ C~

'E~C~C~

E"lC.~C:C;
E~C.: c~

E~C'C'cO , ~ ,
, EXC:)~c~
E\C~)3C~ .
E~C: (C~)·

[\)
+" -

'TABLE I CONT.

\f' ~ANI'\-!)

0 ,
",

f

<.
3

(r>

, 4 ~~ E~C~ I

I S I C:, E~<:~
i I

E.(CD~EC~ 'C',E\C~C~ L , I c: EC: EC.~ ee')~El. c~
, .,~ i

8- EC.~ EC~ c~ E~C.~

~ E c' E CO ,~ ~ c~ E~ct
i

E cl EC:C~ 10 t Ee~c: EC~ c~ ElC', c~ e' E ' '0 0\' Co, EC I C 'e' El.CO
.l. I ,

1/ E. c: E c.~ c: El.C~
I~ EC: EC~C~ Ee' c ' Ec

Q

, I 1. I
C'E~C'CO , ~, C!E~ EC~ C,' C~EC~

13 £C:EC~C~ E (C:)\EC~ c' E~C' CO , "I ~ C:~C:EC: (C:)~E~C~

1'1 E C: E. (c:)~ E (C:)~E c:c~ E (C!)3EC~ , c~ E~(C~)~c~ C: E C: E.C: c~ c!~ (C:)~EC; (C:)tE~C;C;
I

E c~ C~{EC~l_~~~~(E~C~) C~(Ect)~_ I~ !
I

~
f\)

/'

,...:
,Z
o
u

H

LLJ
.:...J
CO

~.',

~" .'

o

>,"

I
I

/

o

/ l

/

,<J
'-J

o
CJ
UJ

CJ
I.JJ

" "'"'
~,

,,~ ..

<f)
u
z
o
~
a::
~
I

lLJ
>
'i--
«
>
ex:
UJ
o

_.
-.~

';;'
+.,.J
~

II/
· ... d

f7.

~I
~
%

~
;>.

7:-'d3Q1l0
L-_______ .•.. -.

I

i

-
~

-
a-
- -

I~ IGlI

- -
IG kM

0 ---
- C"'6

.. .'

-

-,

-
-::r - -
-- ~ - -

- - t"'I --kiN

- -
- 'in - -

- - -cv - -
k~

- - -r(- -
1(rWl)

(1S (Y) .::r- "" ~

"') -- .. -',-._--.-.... -.. ~- .--........ ~ .. -

244

-

-

-

-
- -
~ :::r- - -
- -
~ ~ - -

r - N - - ~ -.
.." ~ - - -~~

. "> '-' -.
~ - tl~ .." - M
~ ::r- - - -_.
~ - - - rv,1C: ,.., ~ :)- - N - --::r- :::t-v

-.
~ - -~JOf - M I'r) - N '- - t"'Y _.

k;!)
~ - -/'W') ~-10.

-
-:r ~ - -

. _.
~ - f..I "Ml?-:to ::I- - - - - -:r ..:t- '-"

-'
C"1 -I~ - ~. -(\') C\') - rt - - _rl C'

I~ in .- IYlv
... -.--_.

1--~ -~.

_ rot

- -t,r) m - - - n':::::

I~ m "
in::;

-.... ----
&-- ~ 0- 0 - 1"'1 M ~ L,

'--' - - - --

:::t--_ .. _-._•... _-._ ... , "., -- .------

W
...J
£D
« r-

-' «
~
o
z
>­
...J
o
Cl.

-~

-..,g

.~

245

...,
!'l ---...0

--i;

~)~~(;

-1= W ~ -OIlOr If-.t
'" -4= c:;:;)oJ - '0 ...0 OQ -..J 0'" V, ..s:: W P - O-€

~ oS -& -& oS -& -e- -e- ~'C -e- -&,~. ~. ~ ~ -&\!:) -&-0 ~ PJ
.e ~ -r:' ~....f:..c -I='.z:: ~ 4.U - w p,., -zm

~ ~. @ e Z ~
~ ..,. "TJ .z: ~. ..,..., .E'1:i.'1 .J:., 001<"'" . -f=-r1 14"" w"TI ","""'1 WI"! ,...-" ... <1 _ -n Z

-""T1 ~ ... -T1 ... ~ "TI 41_ 41 4> -&- p-rJ ,.,-., 4>_ -e-- _"T"1 -&- -e- -i -&-." ... -r1 - -e- ... " - ~ "" _..." -e- _-r"I ,., ~ - • » _~ _-rI -e- _"TT ~ _""" .,..-" - -& - -e, 0 ...,..,
-&0 - -&" -&- -&_ -6-0 0 0 .v

o ~

~ ~ q.J::) q..O0 <J:) ~Q J 0,.0 q...O oJ:) 4'i!; ...0 0.0 f!t!, aD~
~ "';~ ~~ ..,"'11 ~:T1 ..J:-T'I ~-; ~-rr .#=""T1 w..., WT1 ~ WT1 ... "T1 ;;rr:n -u
-&. :...". ":~ ",,1'1 "TT (1)_ .,,- ell,.. oS ,.,-n ,.,-rJ _...,- ~ ~ ~ -eo 0
--..3. _""1'1" 4>_ -& N"" P . _"Tl ... _"" -e: -e- 0 r

p -& -6-_ -..... ~ -~ -&-_ ~ -e- - 0 ~
o -e-o """'0 0 0 Z

..." -rt ;.c -rt ..,."'T1 .1:'" ..,""T1 ... -T'I oC -., oC ""T1 :;rJ ~" jiTI ~ 0
--:::rl ~ ~ co::: q.C 4>- cD_ <!>N ~,....:O (J) ~ ... ~
__...r<T W'O m 4'00s::J a..O Q,.O- _'0 _""'1 -
~ ,.-T'I ~ 4>_ ':...,.,,," :'1'1 _,.. ,.."TI,.."TJ _-rJ -eo -eo»

0:...0 -..." _ _.....'-',.. _TI ~ -& _"T1 ~ -& r
:;!o -e-.. -&. -e-o -&- 0 ~o - 0 (J)

"-../ a.D cc .• .-." ...,.......,-rr~..., ",,"TJ ",,::---,
.... ..." ... -.1 ... -rr <b .:;11 .oJ"TJ ~ .I
ca.O...o <b - - _-Tl "" ,......,....0- ~ Q.Q ~ ... "T1
-:::;:;! -e- -"Tf ~ -..., " 4-
~" - -e- - -& -

o ~o 0

~t1 Q.Q ... ~op q..06 Q.Q., ~A> 0,..0 .. _ ",€i ~
... Tf oC"TJ :-r'I.J:."T1 IU w-" ... "TJ ... -n P...o
.... "TI of:J:."" ..:5T1 .IT! <I> _~"T1 :"TI
....c;> - '" \&IN ~ - _" -." p-rr ..., - _"TT w _-n -6:. -e- -e- ~
-::e, --n "'-e- -e- "'1:t- 0 ~ 0

o -&0 - 0 " "1-0

q.O ~,. <>-0 0.0 G-Q Q..&) q..O q.Q ~ -0 "II'" :;T"1
..,....,,-t1 ..,...," :;f.r"T1 _-n ~-n ~'1 ",,11 ~ ¢I_ .~
--' ... ~ w"l1 ... -n..,., cP - 4l 4>.., Q.D::Y1 ~ ~
-rT -n ... "T! ¢> -& ... ~ -r;,- ~ .oJ..",., _" .:r)
-e 0 -.on -&_ -""TI ~"TT"'''' _"TJ _11 -6;.. ~ ~ /II -&-
-... -e.o -&0 -& -eo -e- -& . 0 0 >c A

o - 0 0 J> III
~

coQ q.O0 o.D 0.0 oJ:) ~"" ~" ~ oijTI W'1 -! ,
~.....<1 ~-rT .,., -rr.l:-., <b -rr.,...Q CD ,..
9 ~ 40 ~ Q..Q (J)_ - 't'N ,..11 ., - ~). -=e- ... -;1. WI1 ~. ...,., N-rr ~,.D,.. 4.0,.,"T1 q..O.., ...

.... ..".... - ~ P _'"T1 """"'"""- ;T'I
>-<. -"T1 ,",'0 - -e-.., _"Tl p"" ~ _-rr"""",,",= - ?j
~ ~o ~_ "&0 ~ -e:. 0 -&0 -eo \II

e~ :r
<>0 ..0 0.0 ..,"T' £,., WTJ ,. ...,-rr .l:"TJ . ..,." ... -rr ...c cP_ Q..Q ...

~~~~J~ ~m -eo <>.0 QO ..:£,- "0: ,.," _..... ____ 
">-0( ... -n .. -rr _""1'1 ,.. -TI -e, , . "' 
~~ -""1'1 -&_....... -& 0 :-r1 '-'> 
_TJ -e- 0 0 Jl I 
~o 0 ~ '" 

:T1 ~ ..,." .. -rr ~ .." ..,jI1 
oF,"", ::-n ~ -ON <boO ~ "'" ..0 
~ ;T/ ",-TT ,.m q...O,.,..... ,,:;. . .;: 
_"TI" ;TI 4> m...c . -0 ...0 '" -.,.,- ~ - lL- _"'"TI 1 IIi _ -"T"I -&_ -e- _"TJ .r. r'- -&. 0 

~ --&.0 0 -&- 0 

o nl!J .. ,n ...,""T1..,"" .... ,.. :i"'1 ..un ~ 
6D 4.Q ...0 ¢J _ ",1'1 ...,-" ..I...~ 

..... AJ w"Tl w-n ~" CJ.CIJ q..O ~ .... . 
W'O ..0 d> ~p . .".u ..... . 
... -rr ;"T\"':{;'- --rJ .. -" II II 
~ ~ . -n ~ ~ 
-0-0 -6_ :e.o ~o -Ero o· ~~ 0 

<'" ~ ...,"" ~-rt ,.. ..... 
~ ~. ~ ~ ~ 
...c ~ <b "..., • 
.. .." ~ co.O- ....0 

-..." ... " :"'1" :;: 
~G ~_ :e.

o 
0 

. ~....,. ..,-rf 
...0 .... ." 
.. .." .rrr 
~ o.D 
-"TI -~ 
-9- 0 -&0 

~ 
o:l 
r 
rrt 

1<1 



TABLE Y 

DIFFERENTIALS A AND E --- -- --
">I "> z: lu: ro,eo] 

~ 
w'" 0 

• w .... n ~ r-t r-t 
IX t- 8 8 9 9 S 8 ........ ,...., r-;:; " ,...., r-t 
UI Q& 

H l>EF:tHt'T XOH 0 .., ::J- ~ ....... .--. 

~ 
U> (I) 0" .... N~ ti\" :;: ~ (j' <5 0 0- "" "" .t 1M U ~ 

.... --
~1l'''J "s 0 L..J I...J ..... ...... ~ J-,J L-.I ..... "'"-' .::. <> ~" C). ....... 1-1 

00" I 0 0 fo1 0 0 0 0 0 0 0 0 C> 0 0 0 0 q-
ClO ~ " 0 0 til , I I I , 1 I , I , , 1 I ( 

1 0 0 Fe> II)" 1 ~ ~ ~ ~ l.. ~ --
CD 3 0 0 l~l 3 ~ ~ .<. ~ ~ 3 3 3 3 3 ~ ~ :t 

I 0 0 {I)ll'o} I.f 4 Lf 4 it 4 

0 1 {o) 'fI.l 5 S" !i S S S' 

0 .1 {o) 4'~ 1 6 b (, 6 b b 

I 0 f 0, \1)0 1 - ; 3 7 ? ., 7 3 :1 3 
(X) '-I 0 0 [3 J 8 '-I 3 3 3 3 ., S' g- &'. i' 4 4 4 

1 () 0 l~) 'fo} q g q <t ~ 1 
0 I { ') Itl.] (0 'f (0 /0 10 (0 

0 .2. [I) ~~l 
" 

(o /I II " " 0 3 {o) 'fill" (< /I I~ I~ 1:< 1'< 

0 'I {o) 1fI1f} 13 Il- 13 13 U 13 

0 ~ f 0) If'sl Itt Ij I~ I~ N Ilf 

0 {, - {o) ~f,! IS" 1'1 IS' IS' IS"' IS' 

I 0 l '> ~ol ,(, S- It II:, '" II. S" S S-, I fo) ~I} 17 b 17 17 17 17 6 ~ , 
~ 0 {O) ~ol I&> 7 ~ Ii" Ii' It 7 7 
0,1 0 [0) 1;'1 I~ I~ 11 ''7 19 

'J~ _ () _ f~)"'~l_ a., 0 ,q . .).0 ~o ~o 
~- - - - - - - - - - - - - - -

I I.f .1 0,0 () f 0 IV}} .1.1 IS <0 II ~I ~, 

co s- o 0 { if} H 8 S 4 ~ If 16 ~I .2~ .U ~< 1 r B' 

I 0 0 {3)tpol -<.j "" 1'1 .2~ 11 l~ .l:t 

0 1 {lj 41,1 ~~ IS' ~3 ll( ~~ =>.y 

0 ~ l~ ),/J.J <S' 19 ~~ ~$' 2S .:lS 

0 3 [I j If/31 ~l. ~D ~5" ~& :u. H 

0 4 £I} It'-tl n J./ H J? l? J? 
0 S [I) 4"s} .lei ~.( J..? ~, ~t ,.; .. 



co ~ I 0 

o 
o 

o 
o 

o 

o 
o 

i 0 

7 ~ r (5 -

~ S I I 

f- --
~ S ~ 

I 
I 

I 

~ 

~ 

3 
0) , 

0)1 

0,1 

0) , 

0,1 
IJ 0 

',0 
1,0 

1,0 

O,l 

~o_ 
0)0 

6 r' J lp,,} 
7 lo) ljJa-l 
8 i01o/q} 
q {O, 4'lol 
/0 io)<illl 

'/I { 0\ 1f'14! 
H. fo) \fll} 

I~ f oJ 'ti,,,} 
14 {OJ4',sl 

TABLE ][ CONT. 

30 

31 

33 

3'1 

35" 

36 

J.S" ~o· 3) 3, 31 

.H. 31 3, j~ 3:t 

l"l H 33 3J 3J 

'J.t n 3'i '11.( 3"1 

~o ~S"' 36 'jI, 16 

31 ]' 3' s'1 ~'l 

"0 - ro)i7~lf - - 3&' - - - - - ~» 3~ lk 18' - - 1-
o - f~) %f - ]q q - - - - - ii "jet 1'1 39 g' ~ q 
1 {'I'll,} . '10 10 ]~ LjD *10 lfo ~ (0 10 

.{ {a) 'l'3l 'II " 

3 f 0) If.,} 42 !~ 

() [/ l l(lol 43 13 b I' 

I' f O)Ifl,} 4'1 lif 7 
i 

o. :1 D,tfol ~S" IS 8 is' 

o ! ') 11''11 4, I 
1 f 0) 'I',,,J ~, Ii, 

.l lo,4','11 4g 
3 ~ 0) 'f/'ll 
4 {OJ £flo} 
o nj lI'~l 
1 Co) yJ.,J 
~ {o) ty,d 

3 (o, 'I'd 
() {o)IY,.} 

so 
.5"1 

s~ 

S'3 

'10 414, 41 10" " 
41 4<. Lfl. l,~ II It (~ 

41 43 ttl 

41( 44 44 
'-IS" 4! 

~~ 4!: 4~ 'f' 
43 4t. 4~ 47 
4~ 4? '1f'iff 

~r 4B' 4' 49 
4(' 49 S"o S-o 

4'1 !:o S"I S"/ 

~1.$"1 s< s~ 
4~ S'ol 5" J .!"J 

13 13 

Itt Il.f 

~ _f o)!~J _ _ Sb _ _ _ _ _ 5"!": Sl. S"& ; 

o lO)tf/o<J S7 __ . ____ +_._ i3 SI.t& n s-, - - 1 

24El 



TABLE Y CONT, 
--

a:. Vl r 
k. ( ColroJ 

~ 
- '0 

~ 
I&J H 

'8 s.: S 9' 8' I&J ... ,....., ,...., --. ,..... -.. 
uJ QI: H DEFINITION e <:) tV 'J. ::I- ,.-, 

7J ...-. 
A (9 en d ::;: .., c) 0- 6 O- M 

c5' C. C"( ..... 
1- 01.- uJ ~')"~~$ 

0 ....... '-' ~ "--' ....... 
0 Q a.. ....-.. '-" ...... ..-.. L-I '-' , S- ~ 0,0 0 [ I) 4'0 ~ ! 58 3'1 SJ.. S? S"r S8 

! 0,0 1 {O) y~ If'.! .~~ 3S" 5"3 S"8 s9 ~ 

0,0 ~ f 0) '1'0 ~~J (,0 31, S"4 S"'1 bO bO 

I) 0 0 f 0 , 'f1a~ J (." SS" ~o!'" ('I 

\c1. € (I) ooJ 
DEH~ITIOH 

r 

00 , 0 () { S" J ,,'- If. q b S" S n .)"6 
'" bJ. b.l Il. IS" /6-

I I .' 0 {3 l 4lo1 . ,.., 13 III I? 

1 I {:2\4J.) , ,,~ 1'1 1'1 IT , ~ t/JIf~J 19 If; lfi' 19 , s [ 'I \jJ31 ~o /6 1'1' l.l 0 

I 4 t OI4''t j ~I I? 20 ~I 

I -s [o,4'sl ~~ I~ ~I ~~ 

1 ~ f 01 It'd ~j III .n ~3 

~ 0 [~I4'oJ ~8 10 2J :J'I 

~ , - {I,4'd .1S' " :li( ~.r , 
fO\4I~t < 2 J.I. I~ ~S- ~6 

3 0 [I) If'o} ~7 13 7 ~7 

3 I Lo\ 0/,1 ~~ 14 Jl ~e 

4 0 to)"'o} ~q IS" 'r 6 
I,~ 0 { 0 I 1.f/'1l 30 :26 ~q 

f-
:t I I 0 .:.~~) ~3J _ 31 ~? 3~ - -. - - - - - - - - - - - - - - -

I b l. Ij I 0 {Ol \fo~} 3~ =lo ~8' ]/ 

00 ., 0 0 {.6} 33 /h /0 ? (, .21 J.'l ]~ 

I ' I 0 £4) iVa I 3¥ ~:t sO JJ 
I I (3) IfI.J 3S :2.1 '1' 1'1 

1 2. f ~I Ifd 3(' J,l( $< 3S , .'3 i2,4131 37 :).f" 11 16 

f/lifli } 
I 

I il{ 39 1 <6 'il( J? , 



250 

TABLE Y CONT 
! 

--,..--. --,'--
~ 

11'1 z: 
k£ t', DOl ~ ~ ~ ~ ~ _ ~ IJJ" 0 

~ W tot 
". 8 8 9 8 9 e - ~ ~ 

,..., ..., .-. .-. .-. l- N .,., ~ - '" W 0&: DEFINITION . . O~ ~ rv- ,.,,- ;:r" 11)- ~" 0' 
,.., ... 0 0- 0- -- --~ "<9 VI -

i w ~')"'Jks 0 "_ 4' ~ "--'~. ..... LJ L.o ..... ..... L.J o-J LJ ..... ...... 
0 &3 Q.. 

00

1

7 , !, s [ 1,'I'rJ 3tI n "3~ 58' 

I, (, il) 1f'6} 40 ~8' 3& 39 
i 

I 
., to)t¥gl 4/ Io<'t 3'l 40 , ~ {o)'P,J LtJ. 30 311"4 , , q { O)'f',ol 43 31 ~9 ~.( 

I 10 {oJ ~IfJ !4lf 3< 40 43 
I I II {o )O/.~\ 14~ 3.3 41 44 ! 
i 
I .:t 0 l3) 4' o} 11ft. 17 4J. 4s 
I I 

I .l I f~J ,+,.1 147 III 43 46 
! 

I~ < t I ) '¥~ ~ 4'1 ,~ 4"14? 
I Il. 3 fO\~ld Lf9 ~o 4s '-18 

!~ 4 tOI'fl~J S"o ~, 4b 49 
I 

!3 0 t<) ~o} S'I ~~ Il S-o 

13 I {I} ~I} in ~3 I~ SJ I 
13 <. f 0) ljI~ ! SJ J..'i 13 s-~ 

14 0 { I) \t'ol Sit ~5" 14 g I I III I { °llYd ss .<(, IS". q I 
ls-

I 

{o) 4'01 I 
0 S-~ <'7 II:. 10 '7 I 

i I,l 0 { I) 'fJ'11 57 47 S"3 
I 
! I,~ I fo, \jI/3} I S8' 49 Sl( 

1/.( < { 0) \fl~ I S, 49 5"~-
I 

{ I) '1-'3 1 I ~,' 0 bO 5"0 S-6 

I :l, I I i 0\ 4'sl U 5"1 S'') 
I 

~ io\~d {,~ s~ J ~ll S? 
I 

{ 0) 'fi,S] I I 1,3 0 b3 
I ~I -I ~(-, ~ {o) ~31 6'1 

- - - {ollfJl- =I~ 
- - - - - - - - - - - - :, i ~ 

., -l !J f _ i ~" 6S" 3'1 S"3 - - fi) ~:tf - - - - - - - - - - - -
~I ,f '7 ~ I J I 0 

I 
66 3s S'f 

1,1 1.1 lo) ~o""l 67 l' S"s- b3 . 
'. :{ 10 t 0) lVo~J h&' ~(, 'I( 

00 ~Io 0 i 71 ,1,9 H 17 1/ g- n S"l I.s 
-



, 251, 

TABLE ~ 

~ ~E. DERIVATIVE SVBSTITUTloM MULTIPLICATION 
~ ro,~ IU HARMONICS HA~MotflCS H~'RMONICS Q 

~ 
, 

0 y 'fi (1, ($1 

1 0 I -sf/£. I 0 

~ I I e3'+Y(t~I)! 0 
I 

~ I c( o} 0 O<OjO 

3 3 , -e-t"'Y(R+ ~).l '0 

4 :J.' o{o)o-tr O<oJo -e- ' 
s , ol. 0, , olo) I 

b I 0{ o,~ «'o',~ 

7 I ollJ 0 o(~o ' 

4 g I -e-..L -+'l(! +3)! 0 

~ 3~/J. J a< 0,0 -e/J.', '~ 0<0,0 -e- .:l. I. 

/0 3' 0( D) I -e- 0<.0,1 .e-
li 3' «0101. ~ 01. 0, ~ 'it-

I~ 1 0( 0,3 C<oj3 

13 2.' 0(0, if 0( 0, 'f 
Itt I a(o)s oL.o,S' " 

IS" I o(o,~ ~o,EI 

Jt 3' O(IJO e- oll,o -e-., I o<.'j' 0( I,' 
Ig , o{~)o ol.2,O 

I~ I o(O,? o{0J' 

~Q I 0( '):a.. eJ. II~ 

.<.1 3 ~~O_f)/< " o(0Jo '>'0)0 

) 

; , 



" 0 
0-

• ...,\....J 

« 
""' ....., 

•. ~\....J 

~-. 

V'J . ., 
II 

" 0 
Y" 
+ 

'i-.J 

\....J .... « 

" 'iJ 
:..:.'-" 

),..-. 

(f) 
0 
z 
0 

~ 
::?! a: 
« 

w :r: 
-l 
CO Z 
« 0 
~ I-« 

---1 
(f) 
Z « a: 
I-

-
rI 

0 
rt 

0"--
110 -
to-
'-

..., 

..... 

~ -
.::r-.... 

<I? 

I 
~I 

0 -
er . 

lID 

to-

'" 

1.0 

,-

@ 

-I 

1 

I 

I 

1 

- ~ - - 1 I~- -- ... , -- (Y) _10' 
I- _. ~ .... 9. ---.-.------- (L.~.--------------___ ....:....___l 

0-- - -<-1- - ... ~-I\')-;'" -C'i -0., - - - _1(") 

~.po~e~___1~~~--~~le~..,...· __ -'---____ . __ . __ ... _____ ._._._._._ ......... L .. _ 
~o ~~~~~~~r~ ~~~~~~~~~I~ 

252 



253 

SUPPLEMENT TO TABLE VIII , 

.. ,....--_.-,.-----------_ •.. __ . __ .. _-_._ .. " .. __ ._. __ .. - -------. 

NAME OPERATOR DEFINI TION 

~~oE\>cP=fOJ''') p-'1 

R= RANK 
~--~----~------~--~---------~,~-------.---

t----' .---~.------.--,-, .... ,-- -....... -.. , ..... " ."'''' .. 

j(~) 1+.£-1 ~(k) -j.-' 
.' ... ... .... . -" .. '" .. " ............. '.' •.. -. -----;-

(~ . 

~Q' 'L . 

i. d''''''o~ • f "u"' i, ~, 1. "D"';~ ~i, 
... --... ---- , ...• __ .... ". . .... _ .................. " .... , .. ,,----- --.. --.---,.---~ 

1 

1 1 
(R.-I) ! 

.. 

.. 

I . 



TABLE ·IDlI 
GENERIC FUNCTIONS 

~ 
en z: RC "4i. 'R.efl::.to)I) ••. -p-I) ""~ 0 

r~ tl,~ cI. w ;:. _ . J 
w ~ ~, E,1> c. 1> 
~ cD u; 

<v: 4'c:. t ~ w 
k')"'JRs 0 ®lMK:Y 0 A "" 

CP 1 0 0 0 0 [CD. 0 

C, .It i@ EIo.C~~ I ! 

to ~ 0 0 I I @ 
C~" [~ 0 

Ell. C.t,lt, 

2. C"k if: ' 0 
, 0 

I 0 0 CII.C· .. k,C, 0 e'l" E"e" ", 
GO 3 0 0 3 < i@ C;,k [~ 0 EkCl,k, i 

4 ' 0 
, .. , 0 

1 0 0 . C~lk ~o E" Col,'" c"o Ca, "- EoC"it, , 4' c) 
, 0 , 0 

0 I S e"kl E" e'l", c"o c\\~, Eo C~,~, 

J 6 .C;_~,_, ~: c' 1 CO , 1 0 C 'e I. 0 0 __ Ell "~~'!> ')'L __ C"~ ~,,!_CIJ~'c..,)Q. ___ .. 'J"_-,,.o_Eo~I'" ._._ - -- . - -- "._, 

0 7 3 c'.1t 4'! . '0 c' 0 f EkC, " C,.l '.lit E,C,_, 
CD If 0 0 g If [® o· 1C!!9 E~ C:'''I C.,k 

q ch \jJ~ 1 0 I 0 
I 0 0 e" C3,~, C ~o c!)~ Eo e'JIt, 

10 ' 'flo Ell C!,k, C:,o . C~; ... Eo C~I~' 0 I C~l' , 
l. 1/ I '1'0 \ , CO , ' ,. 0 

C!J"c.~o EoC;It\ 0 Ca, k :t ~k C.()~C"o ~o Ca)~ Eoe'l k,C,) 0 

3 12 ' 'flo I I) C' 0 0 C "k .a EIIC~", C~o " h. EoCl,'" 
13 ' 0 , I CO , '0 1 I 0 

0 'i Ci)1t 41." EIIC"k,Ca,o ',0 C~k Eo C~ltl C ~o C"II C",o EoC~h, 
III Cl. \i-'0 , I CO , C' CO C~1t. cI,o Eo C~)It, 0 ~ "k so E"C"II,C"o ~IO C"k Eo 'Ik, l,o 

b IS ' ~o , (I ~ 0 , " CO " '0'" ( ')~E 0 0 C"k , elte,/It, C',o C'/O C~h:Ee C,,"IC~O ~o e'l" C~oEoC" ... C\O C~'" C~o 0 C~It, 
1 l~ 5 ' 'fI' , CO C' 0 0 Ca,k' 0 E"Ca,It, ',I ~I" E, C Ijlt. 
1 I 1'1 6 • ,+,' , '0 

C:,k E, C~JIt, C,,\t. , E~C~",C~JI 
~ 0 I~ '7 ' 4{~ , 0 C' 0 e"" 0 

Elte,,~, C 'I \ ',Il ~ e'llt, 

" 
C' ° • I CO , '0 i 'C l CO ~, 0 "k 'ti7 EItC.,k,C"o ',I . C'I" ioC"", C 'JI ! Cilk '.oE, ~kl , 

1,0 ~o c: ~ I¥, , I '0 j c' 'Co ' " 0 i 0 ____ Ek C'/it'C'JIC'J O · 'J"E,C'/k, 110 C, Ii! C. , Eo C, '" - - - - - - - - - - - C~a. (\fI:)~- ~ . 0 0) 
~I ~lt.c: ... (Co)~ ~ 0 (. 0 ) r a+1a+1i;) i e.,,, (c. C".,XEo C" Ita, I '-I ~ 0,0 0 C"" C.,o EoC .,It, 

-

f\) 
CJ1 
oF 



TABLE IX 
(It) 

DERIVATIVE HARMONICS 0( X (R,+R)! 

\f' (RANR --4) 

'0 CD I 1CillJ, I 
® ~' 

I I I 

2 

® 't1f+0 I 3 I ,~ 

4 

5 

(5 

7 

8 ~ I 

9 

10 

II 

12 

13 

14 

~I 

15 

16 

17 

18 

3 

19 I 

20 I 

, .' 

(5:+It,) 
I 

3/,z! 
)' 

3' 

I 

~' 

r 
I 

I 

I 
I--~ ___ '-

21' 3 3 

l. 

(If t ~,)~! 

(4 -+ ~,) 
, 
I , 

(4 + ~,) (4 + kt) 

I 

J.' 

I 

I 
I 

I (4 + ~,) . 

.1 

I 

I 

(3 + 'p..)' 

. 
) (. ~ 0 

255 



, 

TABLE X 
POLYNOMIAL WEIGHTS 'riCk) 

~II\I c;;ct>",(o)"'Jf- l} -

~ ciANK-D /'IOTE o.~';i (0.)'-= i.!(lttt) 
0 CD (I+k)k.+-I @ (~+",.,.~ )l'It lt +< ! 

I ®(~+h)R+' I~ (3+it,+It)"lI+Il+.l 
~ ... ~1-3 

~ " 
_,I " · II (3+~+~) I . 

3- IG> (3+It)It~1 ~ (1I""1I,+~)I<t,,,,~+~ '. , .,' 1l+1 .,+2. 
'I II • I .. " (~1'~I't'R ).( H~,) 

!; II . ~' " - ~' II _ (3-tbl)~+.l 
.- --.1. -.-

.' ~2. -' . ---- .,' - 'k~ ... , .... - 1t,+3 -

" " • .l. 1/ " • /I ., ('l+~,+ • (?+It,) --

• 2.~ · J..~ )~T3 
'1 " /I 

" . (h~, 

11 ®(~+Irt)Il"'1 ~ (S+RI+ k)~'+l..-+~ 
~-+, Itl+~ 

<'f ·'1 • II 1/ · )' , (~+~,+k) • (2;..R,) 
,I) II • .l.' II · i II • (3+ ~I )111"'~ 

\11+' It +3 I, 'U · .(~ 1/ · 21- 'I · I, . 
" 

(s--+II,+It)· (3+~1) I 

I~ " • 3
1 

" · 3' II • ('tTkl)~+.t 
.3111 · i,' " II . R.,I "1+1. 

13 ' /I " II .. (S"+R,i-It) • (4+"1)·(.t+~1) . 
I~ , • 3~ " • 33- " /I ~' " • ('I+It,)hl~3 

11.+, ~,+If 
IS " · 3

3 

" · 3
3 

" · " <2. '( . " . , , ( ~ +it,+It)·( If+ It,) 
~+3 

II> " · ~~ " • .(4 If · ("3t-~) 
17 " • 3~ " · i~' . If · (If+ k,i,+f 
Ii " · 3

3 
/I · 33 

II · ('t+ R,) k,+1f 

· 3
3 

· 3
3 · (4TIt,)k,;< 'J..~ "-1'1 'R,+'t 

I~ /I /I " (S-:"k,-tk) • ('1+k,) 
~o /I · 3

3 
11 · 31 

II • (~+R, )k,1;3 I' II • II 
I- - -

·1" 
- - - - - - --

--: (2+ki)1I1",:~ I' ('.+h,-r.~ ~j, ... \tl+\ll+,,)h+':(;+",)h,-t~. (~:-Itlr."'l.-, ~ ~I " 1/ · I '.,1 II 

\ 

\ 
i 

f\) 
CJl 
0\ 



257 

TABLE XI 
ELEMENTARY POLYNOMIALS r(k) 

h It) ~I E: pc 1>= ~O)' ")f-.} {r I"· .' 
to)o>J 

-t iltol = 0 0 ) t.:t: J 
FO. EXACT VOZOYS f' t· ----'> {" •• -oli",,:, i=j 

'V RANK-'£') 
-t L~(g... )1 L ) , t(+k • 

° 
~t/J~I F,'ltcpD @ ~--F."\r ! 

~ ¢k+t \t.~' " <§t~~lf 
: 

I F. . 
~ 

2 " ElI.fo~o 911~ltlf~o ~~~0F.~I~O 
1 I 

3 ~¢~+3 ~k~l I®,k" ~ 9 Fa I~ 

4 II 1i~F.°f ~k~~F.0~o Fi~~°F.\llf 

tkF: $' ~"'~'RIF~o~o ~Rr~'RI~' I 
5 " , 

" 
F,:lF,0Eo 0 

3 a,IP ~~~lt,((¢O ~~f~~I(f rtFa°~O~iI,~o 

7 II F,kF.l~o 
3 I ~r:'F.'f F/~F,k'f 

" 

8 ~¢kt't F:~3 "~~~F,k, ~3 

9 II It 'l. ° 0 ~lF.:1t1 :l o~o f.,l ~fF.""~o FIf~F.CP If &f, 

1O " F."-a. E 
0 
~ I 

It ~ 
~~t:,l~F;0~' ~\~O~"'$' 

II 
, It 00 0 ~iElt~f(f TR ~ofk'F.°f (~rfs~'~o II ~~~~. ~ If & 1. I 'I .\ I 

12 II EkF,D ~a. ~*~~'F; ~~ F:r~It,~~ 
~ 3 

13 " 
~ 0 0 0 ~~~lt'F;&F,O f ~ltr~~I~f.°f ~tt ~o&f~'hl f 
~ ~~~~ 

14 " F.*f,0 0 ~' qk~"~Q(f' f.~~oE~1 F.0~' F.~ FO fF~' ~' 
.'1 3 fa. It ~ a Ij 3 ~ 

I 

l:\t~DF:~1 ~DF.°f f.1tf.0fF.~lfO ~o r.; k~0F.~0F.Ia~o 15 
l 0 0 0 ° g~F.k((F.0~o /I F..~FlF,~ ., 3 ~ , 'I 3 t I "3 :l I If 3 l I 

1(0 II 
It I~O 

~f}F, .. q'fl~It~f.lf ~.~~IF,IrI~O 

17 /I E~ I~I ~ttf:'F~' ~I F..k9'~kl~1 
'I F:t :.. .. 

18 " f~£'f ~k~ltlF,af f:~).~"'~o -¥ I '. 

19 " f."f.°F.'f 
~ 1 I. 

g"E"'[°F.' f ~ 3 I ~RfF:' F.'~D F.~t;°91 FlI, f 
If 3 I 

20 " f.k 1:' rOcpo 9~ f~f.'F.° ~o E"~' F.:~I F. 0 ~ Q EkF,'rf~lf '; 

II ~ I If J. I 'I a I' 'I. J I 

21 " (F:).((ft ~-(~J,{F,o~O)~ ,~~(F,°~·1~°F.~~4~~ ~(HtI,+ .. ~) (~")I(fF.ItI~°J.(ff,\') 



258 

TABLE XII 

PRODUCT COEFFICIENTS (11(,,))-1 

, 

1t)~1 ~ 'PC 'P= £0) .. 'J?-'} I 

~ (RAN 1<>.1) NOTE (0.)=(1-+0...) 

0 <D (0)1. ~ (O)! 

I ® (!)! ~ (I) ! 

2 (0 )! (O)! -( o)! 

~ (l)! 
.~ i 

3 (~)! 

4 (0 )! (0) ! (0) I, 

5 ( I )! (J)! . ( I ) ! 

<D . CO)! (0) ! (O)! . (OH 

7 CO)! (0)1, (0) ~ 

S W 0)\ ~(3)! 

~! (0)\ ~! (o)! 
I 

9 ~I,(O)! 

10 ( I)! .( I)J (I) ! 

II (o)! (OH . (O)! ce)! 

12 (~)! (~)! (:()! 

13 (O)! (0) ! ( o)! (0)1 

14 ( I)! ( I )! (J) ! (I) ! 

15 (0)1, (o)! (0) ! (0 )! (0) ! 

16 (0 )! CO)! (O)! -

17 . ( I)! (., )! ( , )! 

18 (0 )! (0 )! (0)1 

19 (0)1 (OH (O)! (0) ! 

20 (() )! (O)! (0).1 (0L' 
r- - - - - - - - .- -~+ftj+lrv - - -; - -. - -
21 -<! ~! I I lr~,.~,l.'2! f~,=It~l 



r'\ 
o 

"-

..... 

I 

""' 

~ 

<f) 

u 

l­
e::( 
-.J 
<f) 
Z 
e::( 
ex: 
I---' 

-rl 

0 
t'( I 

0--
cIo -
~ -
..0 --
'" 

, 
~ i -
,., -
~ 

--
0 -

cr 

00 
I 

, 

t--
1 

-D 

, 
lI) r 

::r-

,., 

" 
-

0 -
@ 

~ 0 

., 

-
-

-

-

~ 

- - -

~ -
Ie .. 

- -
e 8 

- ('i I"t'l 3- It, ~. r-

259 

, 
,-
I -
I -
I - I 

I - I 
! 

I - ! 

I 

I - I 
I -
I 
I -
I 

- I 

I 

I -
I 

- I 

I 

I -
I 

I - I 
-

I -
@ I 

- - I 
I 
I 

- - - I 

I - ....;.. 

I 

I 
- - I 

I 

Is I 

I - n -
I 

I -
@) I 

I -
1ft I 

Oo IT £. ::: ...t !!! ~ ~ ~ !:: 110 ~ ~I -- rt N 



260 

T AS L E :xnz:: 
APPROXIMATION/ERROR HARMONICS 

, 

"'~ ~E ~~ RE ?Cl'= ioJ ... )p-,J 
D,cri [0] [~II)] i 

OR1>EP--Jt) 
i 

0 0 0 
<D qll.~o + fit f 

, 

I I 1 ® .~~ \fl' + FIt~' 

2 ctv~ + F ~ 'fJ: 
2 3 3 

® Cj'a. \JI~ + Fit. ~l. I 
i 

VII. ~'~: 
I 

4 ~~ 'iJ'f + 

~II. '" S" + " ~o 
I 

5 F 1 
I 

6 gil 'flo + fl\ 0/: i 
F It. Ifl~ 

I 

q" 'I' '1 + 
I 

3 7 

4 7 8 
® q~ 'Y!( + Ftt ~3 . 

! 

g~ 't'~ + Fit f~: 
I 

8· 9 

~k 'rIC + f\'{ ~',¥,O , 

9 10 I 
: 

10 1/ q'R 'I'll + f~ ~' ''fJ:. 
1/ 12 qk '1',:)' t- Fit. '¥; 
12 13 (tv + Fil.q'Q 

13 . If 

13 14 qky,~ + F k 'fI; i 

14 15 qR't',s-+ f ~ tp~ I 

5. 16 ~h. 't',~ + F'" ~'4J! 

6 17 q~ 't' + 
11 

fR 1 \JJ, 

7 18 ~h. 't' If t- Fkll'~ 

19 ~~ 't' ,q +' f~'I'; 

20 ~l '" .20 + FI\\fJ: 
15 21 g" 't'~, + d, F~ l \foO)~1 

. I 



261 

Appendix II 

PROCEDURE RKMI SOURCE LISTINGS 

In this appendix are presented two schematic source listings, a 

list of procedure descriptions for all the main procedures, a list of 
·i 1 

variables, and a complete source listing of RKMI. The first s()UI'ce 

'listing gives an :overall view of the structu:r;e of RKMI; the se,cond , 
! 

source listing gives declarations of all the variable::; of the procedures. 

The procedure descriptions give short descriptions of the task that the 

procedure is to perform. The list of variables gives a description of 

most of the global variables. The last source listing is the program 

RKMI given in reference ALGOL. 

It is hoped that these listings, along with those of Appendix III 

and along with the discussion of Chapter V, will serve as a guide for 

the reader that wishes to understand how the program works. These 

listings and discussions can, however, only serve as a guide 6.Ild, as is 

unfortunately always the case with programs, the interested reader must 

address himself directly tbthe program and the problem it solves. 



'-, 

Schematic Source Listing 1 

The following is a schematic source listing of RKM1 in which all 

the procedures end the global variables are declared. This listing 
. I 

provides en overall view of the 'structure of the program. 

Program. RKMl 

begin integer field,dec1ma1.,n for print, nil, line length,le:tt margin, 

right ma.rg1n,colmt',height,heightl,:pDBX,last,lastl, 

last data,l,lastl,tempO,type,der,order,upper,q,e,per1od, 

or1gin,mode,model,length,lengthl,length2,control,list 

lerigth,n,no,nol,no~,aO,A,Al,i,il,i2,J,Jl,name,type set; 

'Boolean temp,tempS,print sCheme,l1near comb, lDl,BJ, BJl ,1D2,BA1, 

BA2,left adjust,in~ut; 

integer array tm[O:l],pring length[O:12]; 

begin comment input-output proceduresj 

procedure dump( a); ; 

procedure lines(n); ; 

procedure spaces (n ) j ; 

procedure page; ; 

procedure s( string) ; j 

procedure sr( string) ; ; 

procedure ps(i,string); ; 

procedm-e check margin(a)j: ; 

procedure piCa); ; 

procedure pfi(a,c); ; 

integer procedureioi(strtrg)j 

integer procedure iob( str~)j 

procedure title; ; 

. , 
; 

262 



Source Listing 1 Cont. 

begin: comment There appears here a section whIch inputs data that is 

used to set computer parameters; 

begin COJllDent Variable array declarations followed by procedure 

declarations; 

integer array num,no3[-1:2],cond[0:helght-l];T[-1:0,0:exq], 

E[-1:3,0:exQ],V[0:1Ist length],Z[-1:2,0:Order-l, 

O:exq,O:tm[O]-l],Zp[O:order-l,O:tm[O]-l), 

v[0:1,0:exq,0:heIght1-1],vs[0:1,0:height1-1], 

W[l:2,0:tm[0]-1],D[0:tm[0]-1,0:tm[0]-1], 

a[-l :0,0: tm[O]-l ,0:tm[O]-1 ],Bl1 ,B2[O:JIIBX]; 

procedure check; ; 

procedure normalize(a,b); ; 

Integer procedure index(i); ; 

integer procedure faet(n); ; 

procedure debug(orgIn,al,a2,a3); ; 

integer procedure father(n,BO,B,name of son, son); 

integer procedure son(father entry,sonl,B)j ; 

. , 

integer procedure get atom(father entry,atom:1c set,atom,B); 

integer procedure atom(i); ; 

integer procedure collectlon(n,B,set,f); . , 
Boolean"procedure Bncollection(B2,Bl,n,B02,k); 

procedure sum(name,i,length of sum,na.me of list); 

procedure print sum( name); . , 
integer procedure mintmum(v,length,w); ; 

integer procedure JPn(cn,bd,n,B1); ; 

integer procedure Ze; . , 

. , 
; 

. , 



Bga1nl : 

again: 

fin: 

end 

Source Listing 1 Cont. 

procedure create E( i,BB); ; 

prOceduretranslate(v,namel,name2,num,type); 

. procedure list(name of list,BB); . , 

. , 

procedure conditions E(~ of vector,name); ; 

procedure data; ; 

procdeure check list ( first ,last) ; . , 
procedure scheme; . , 

. , 

comment All declarations have been made. The following section 

constitutes the control section; 

if control == -1 then ; 

if control = 0 then begin end else --
if control = ~ begin end else --
if control = 2 ~ begin end else .--
if control = 3 ~ begin end else --
if control == 4 ~ begin .~ of control; 

of program; 

end of computations: 

end 

end of RKMl 

264 



265 

Schematic Source Listing 2 

In t~e following listing there appear the declarations of all 

formal par8l1leters I all variables and all procedures used by each procedure. 

In order.to declare the global variables we have introduced the type 

d~clarat1on global. The procedures are listed in the order of their 

appearance in RKM1. 

procedure dump(a); integer a; 

begin integer array B[O:l]; end dump; 
. -

procedure l1nes(n}; value n; integer n; 

~ integer 1; 

global procedure output; 

global integer count; 

~ lines; 

procedure spaces(n)j value n; integer n; 

begin integer 1; 

global procedure outcharacter; 

global integer count; 

end spaces; 

procedure page; 

begin global procedure outpUt; ~ page; 

procedure s ( string); striIl§ string; 

begin integer i,length; 

global procedure chlength,outcharacter; 



Source Listing 2 Cont. 

global integer count; 

end s; 

procedure sr( string); string string; 

begin global integer line length; 

global Boolean inout; 

global procedure spaces 

end sri 

procedure ps(i,strlng); integer i; string string; 

begin global integer array print length; 

global procedure check margin,s; 

end pSi 

, 
procedure check margin(a); value a; integer a; 

begin integer i; 

global integer count,right margin, left margin; 

global procedure lines, spaces,s; 

~ check margin; 

proCedure pi(a);. value a; integer a; 

begin procedure layout; 

begin global integer :field; 

global procedure format; 

~ layout; 

. procedure list(item); procedure item; ; 

global integer count, field; 

266 



Source Listing 2 Cont. 

global procedure spaces,s,outlistj 

~pij 

procedure pfi(b,c); value b,c; integer b,~; 

begin integer a,n,nl; 

global integer right margin,lett margin; 

global procedure s; 

begin procedure layout j 

begin global procedure format; ~ layout; 

procedure list(item); procedure itemj 

global integer count, typeset; 

global procedure check margin,outlist; 

end 

~ pfi; 

integer procedure ioi(string); string string; 

begin integer n; 

global Boolean inout; 

global procedure input; 

begin global integer line lengthj 

global Boolean left adjust; 

global procedure lines, spaces; s, output j 

end 

end ioi; -

. , 



Source Listing 2 Cont. 

Boolean procedure iob(string);string strtng; 

begin integer i,jj 

Boolean bj 

global integer line length; 

global Boolean inout, left adjust; 

global procedureeof,incharacter,lines,spaces,s; 

~ iob; 

procedure title; 

begin integeri,j,left margin1; 

globallnteger count,left margin; 

global procedure eof,incharacter,check margin,s,equiv, 

input ,output; 

end title; 

procedure check; 

begin global integer last, tempO, field, list length; 

global Boolean temp; 

global procedure lines,s,pi,check list; 

global lableend of computations; 

end·checkj 

procedure normalize (a, b ) ; integer a, b; ; 

procedure index( 1) ; integer i; 

begin global integer q, i 1 ,12, j, j 1 , :period ~ index; 

268 



- . , 
Source Listing 2 Cont. 

procedure fact(n); valUe n; integer n; 

begin integer i,j ~ fact; 

procedure debug(origin,al,a2,a3); integer origin,al,a2,a3; 

begin integer i,fieldl; 

global integer n for pring,field,no,nol,no2,last,nll; 

global integer ~ no3,V; 
; 

global Boolean right adjust; 

global procedure lines,s,pi; 

~ debug; 

integer procedure father(n,BJ,name of son, son); 

integer n,name of son, son; Boolean B,BJ; 

begin integer copy,sonl; 

global integer last,nU; 

global integer array V; 

global procedure debug; 

end father; -

integer procedure son(father entry,sonl,B); 

integer father entry,sonl; Boolean B; 

begin global integer nil; 

global integer array V; 

. global procedure debug; . 

~ son; 



Source Usting 2 Cont. 

integer procedure get atom( father entry, atomic set, atom, B); 

integer father entry, atomic set, atom; Boolean B; , 

comment unpacked; 

begin global integer nil; 

global integer array V; 

global procedure debugj 

~ get atom; 

integer procedure get atom(father e.ntry,atomlc set,atom,B); 

integer father entry, atomic set,atomj Boolean Bj 

comment packed 2 atoms/word; 

begin integer nl,n2; 

global integer nil; 

global integer ~ Vj 

global Boolean BA1; 

global procedure abs,debug; 

~ get atom; 

integer procedure atom(l); value ij integer i; 

comment unpacked; 

begin global integerlast,nili 

global integer array V; 

global procedure check,debug,lines,s,pfi,check list,abs; 

globai lable end of computations; 

end atom; 

270 



Source Listing 2Cont. 

integer procedure atom( i); value i; integer i; 

comment packed 2.atoms!word; 

begin global integer last,no,nil; 

global integer arrary Vi 

global Boolean BA2j 

global procedure abs, lines,s,pfi,check list, check, debug, dump; 

begin integer copy,nl,n2 ~ 

end atom; 

integer procedure collection(n,B,set,f); 

integer n,set; Boolean B; integer procedure f; 

begin integer copy,sonlj 

Boolean BB; 

global integer last,nil,no,A; 

global Boolean BO,BOO; 

global procedure father,son,debug; 

~ collection; 

Boolean procedure Bncollection(B2,Bl,n,BD2,k); 

value n,k; integer n,kj integer array B2,Bl; Boolean BD2j 

begin integerjj 

~ integer arrary Bll [0:20]; 

~ Boolean array BOl[O:20); 

global integer nil; 

global procedure son; 

end Bncollection; ---

271 



Source.Listing 2 Cont. 

procedure sum( name, i ,length of sum,n8me of iist); 

value length of sum; 

1nteger name,i,length of sum,name of list; 

begin integer 11; 

integer procedure addend( u); integer u; 

begin global integer nl1,i,no,aO,Al,l; 

global :Boolean BJ,:ooo, linear comb; 

global procedure get atom, atom; 

~ add end; 

global inte~r last, last 1, tempO ,1, der ,order ,no2; 

global integer array ~; 

global :Boolean temp,BJ2,linear comb; 

global procedure father, collection; 

~ sum; 

procedure print sum( name); integer name; 

begin integer n,nl,n2,n3,n4,n5; 

global integer field,lengthl,length,order,count,left margin, 

der,order,control,l; 

global integer array vs; 

global :Boolean BJ,linear comb; 

global procedure lines,s,pi,spaces; 

en~ print sum; 

272 



Source Listing 2 Cont. 

integer procedure min1mum(v,length,w); 

integer length; integer array v,w; 

~ integer j,k,m,min; 

; global integer length,nilj 

~ minimum; 

integer procedure JPn(cn,cd,n,Bl)j 

integer cn,cd,n; integer array Bl; 

begin integer j,c1,c2,nl,n2,m; 

integer array B,v,w[O:n.l]; 

global integer nU,last,aO,no; 

global Boolean lD,BAl j 

global procedure get atom,atom,normalize,mintmum; 

end JPn; 

integer procedure Ze; 

begin integer n,n1,j,typeOj 

global integer type,nil,no,nol,no2,A,Al,aO; 

global integer array W,B2,T,num,Zp,Z,Bl1; 

global Boolean lD,lDl,lD2,temp<3; 

global procedure father, son, get atom, Bncollection, JPn; 

~ Ze; 

procedure create E(i,BB); value i; integer i; Boolean BB; 

begin integer 11; , 

integer array: element [.1 :0,0:3]; 

273 



Source Listing 2Cont. 

Boolean Bj 

global integer mode,e,penod,q,der,order,no,nol,no2, 

A,Al',j,jl,nil; 

global integer array tm,E,T,Z; 

global Boolean BJ1,ID; 

global procedure index,father,atomj 

end create E; 

procedure translate{v,name1,name2,num,type); 

. value v,num,typej integer v,neme1,name2,num,type; 

274 

begin integer t,i,j,j1,j2,kl,k2,k3,k4,smaxl,nlDlll,num2,tempOO,temp1,temp2; 

Boolean B1,BB1,BB2; 

~nteger array vs[0:order-l,0:smax1-1],b[0:6Xkl-l], 

a1 [0:smaxl-1 ,0: im[ 0]-1], Vs[O:order-l ,0:sDIBX1-1 ,0:tm[Ol-1] j 

integer procedure store { u); integer Uj 

begin global integer i,k1,type,t,nO,A~aO,nil; 

global integer array bj 

global Boolean BJ,lDJ; 

global procedure abs,get atom, atom; 

~ store; 

global integerorigin,q,der,order,upper,last,lastl,tempO,nil,no, 

nOl,no2,A,A1,i1; 

global integer array tm,D,Zp,B2,Bl1,a; 

global Boolean linearcomb,temp,ID1,BO; 

global procedure index,fact,atom,father,Bncollection,JPn,sumj 

~ translate; 



:~; . 

Source Listing 2 Cont. 

procedure print list(i,lellgth,name,name of list,sign)j 

~ length; integer i,length,name,name of list, sign; 

begin integer line,left margin,j,jl~nl,n2,n3; 

global integer left margin,field,der,order,aD,A,Al,no2,count,nil; 
. i 

global integer array 1m; 

global Boolean Bal,ED; 

global procedure lines,spaces,pfi,pi,ps,son,get atom; 

~ print list; 

procedure list (name of list,BB); 1ntegern&me of list; Boolean BB; 

~ integer j,B2j 

global integer field,nilj 

global integer ~ V; 

global procedure lines,spaces,s,pi; 

end list; -
procedure conditions E(name of vector,name)j 

integer name of vector,name; 

begin integer kmax,tmin,tmax,smin,i,t,left margin,nlj 

procedure B(i,j)j integer i,ji 

begin global procedure ps,pfi end Bj - -
procedure theta(i,el)t1mes B:(j,e2)j integer i,el,j,e2;· 

begin global integer no2,il,q; 

global procedure ps,pfi,fact,B; 

~ theta; 

275 



'.', 

Source Listing 2 Cont. 

I 

global integer field, left margirt,eount,n,no,nol,no2,length,lengthl, 

length2,der,order,upper,e,q,il,pertod,type set; 

global integer array B, v, cond; 

global procedure index,ps,pi,lines,spaces; 

end conditions E; 

proced~ data; 

begin procedure table(j,length,name); value length; 

integer j,length,nBme; 

begin integer procedure store; 

begin global integerno,A,i1; 

global Boolean EO; 

global procedure ioi,father,atom; 

~ store; 

global integer nol,Al,i2,nU; 

global Boolean EO,E01; 

global procedure ioi,iob,lines,s,list,father; 

~ table; 

global integer control,type,i,no2,iast,last data; 

global integer array im,a,D,W; 

global Boolean temp, left adjust; 

~ data; 

procedure check l1st(f1rst,last); integer tirst,last; 

begin integer i,11,j,k,type,der,no2,fieldl,lO,ll,l2,l3,col,num col; 

procedure fields(n2,nl); integer ni,n2; 



Source Listing 2 Cont. 

~ global integer l2,ll,lO,num col,ltne length ~j 

global inte§er e,q,order,field,last,nilj 

global integer array ~,V,T,Zj 

global procedure page,lines,s,sp8ces,p1,chlengthj 

~ check list; 

procedure scheme j 

begin global procedure page,lines,s ~ schemej 
.. 

277 



Procedure Descriptions 

Each procedure in RI<Ml performs a well defined task when it is 

called. We give belOW a concise description of this task. 

procedure dump(a); ; 

cOJlBllent dump is used to obtain a stack dump by violating the bolmds of 

the local array B[ a] ; 

procedure lines(n); ; 

278 

comment A new line, carrege return is performed n t1meson channel 2 using 

the global procedure output; 

procedure spaces(n); . , 

. cOJlBllent n SpaC€5 are written on channel 2 using the global procedure 

outcharacter; 

procedure plge; . , 
! . , 

comment A new line, carriag;e return is· performed on channel 2 and a new 

page is started using the global procedure output; 

procedure ·s(string); ; 
. . 

comment Using the global procedures chleltgth and outch8.racter, procedure 

s outputs the string -string- on channel 2; 

procedure sr(string); ; 

cODll1ent .!!: inout ~ sr outputs on channel 2 a right adjusted string 

-string-. The global Boolean -inout- indicates whether the user 

desires to have data read lmder an input - output mode; .mil.ess 

ioout is ~, there will be no output from this procedure. The 

program RI<Ml is designed to give as output text, the totality of 

which constitutes a meaningful description of the integration 

scheme and the parameter defining equations associated with that 

scheme. When input - output of the data is desired, for example 



279 

when checking data, it is helpful to have the data output separated 

from the program output. This is accomplished by using procedure 

sr to right adjust the data out put; 

procedure ps (i, string); ; 

comment ps is used to output text on channel 2. It is used principally 

in the printing of equa:tions. The integer i identifies the actual 

string parameter, the global variable print length[ i] furnishes 

the length in characters of the string, and the global variable 

type set chooses the transliteration that will be used when the 

string is printed. By means of this procedure, it is IX>ssible to 

obtain the output of the parameter equations in different program 

languages. Presently there is a choice of CDC Algol and Fortran 

using either subscripted or simple variables; 

procedure check margin(a); ; 

comment Using the character ~ount specified by the global variable • cOUnt- , 

a check is made whether the qUantity (count + a) exceeds the right 

margin. If so, a new line - carrage return is performed on 

channel 2 and the print IX>Sition is set so that the next character 

printed will be at the margin position specified by the global 

variable left margin. An elementary exit procedure is provided to 

avoid an infinite loop should the field width be to large; 

procedure piCa); ; 

comment The integer a is output on channel 2 using the field width 

specified by the global variable -field-. The character counter 

-count- is increased by the field width, however no margin checking 

is perfo~d; 



280 

procedure pfi(a,c)j ; 

comment The integer c is output on channel 2. The field width used is 

determined from c. Margin checking is performed. If type set is 

equal to 2, thus indicating Fortran output, periods are inserted 

. in column 6. and' the integer c is printed asa fixed point real 

number; 

integer procedure ioi(string); j 

comment 10i: = n wh~re n is an integer input from channel 1 using standard 

format (10). if inout th~~ n is output on channel 2 as -string:= n-. - - ' 

The output begins at (if le'ft adjust' then left margin + 5 else ---- _. -
right mgin - 30). Note that' th~ output can be omitted by setting 

inout : = false; 

integer' procedure .iob(string); ; 

, . comment iob: = b where b ls a Boolean input from channel 1 us 1ng standard 

format,.!! ioout ~ b is output on channel 2 as -string:= b-. 

The output begins at (.!! left adjUst ~ left margin + 5 ~ 

right ,'margln - 30). 'The vaiue ~ is identified by the letter t, 

false by the letter f, all other characters are ignored. After 

accepting the Boolean value, a delimeter consisting of a blank or 

a comma. is looked for. Thus the value true can be represented as -
t, or ~, or anything with a t in it. After recognizing the t 

the only other characters recognized are the comma. or blank. 

Output can be omitted by setting inout::= false; 

proceduretitlej ; 

comment title inputs from channel l' 8.nd outputs on channel 2 an Algol 

comment. The first set of characters on channel 1 shoUld be 

< comment > followed by <: any text for which there is an lntemal_ 



281 

representation > followed by < ., >. Margin checking is performed 

using the procedure check margin. .An error message is furnished 

if an end of fiie is incountered on channe11; 

* 
integer procedure index(i); ; 

comment index:: (if jl + j.~ 0 mod(q) then 0 else jl +j) where j = i mbd(q) - --
and jl ~ (i - j) mod(period xq}; 

integer procedure fact(n}; . . , 
comment fact: ,= n factorial for n an integer ~. 0; 

procedure ,debug(origin,al,a2,a3);; 

comme~ debug furnishes an elementary monitoring of the list elements which 

is useful in debugging a program using the procedures father, son 

get atom collection, and atom; 

integer procedure father(n,:SO,B,name of son,son); . , 

comment This procedure upon entry first, sets :so: = true. It then·creates a 

list with name -father- the elements of which are sequentially 

ordered with n :: 0, 1, 2, •••• Th~se eleli:lents are named and created 

by setting name of son:= son. Elements are added to the list 

until B: ~ false. If the list - father- is empty, then the value 

father:= nil is returned; 

integer procedure son( father entry, sonl ,B) ;' . , 

comment Given the non-empty list with name -father entry-, the procedure 

. son furnishes in succession son1:= son:;;: the name of the next son 

in the list. For a given father entry, the first call to son 

should be indicated by previously setting B:=~; 

'. integer procedure get .atom(father entry,atomic set,atom,B}; ; 

.coRnt father entry is the name of a list the elements of which are atoms. 

The first entry to this list is made by calling get atoin with B = true • 

-"'See Page 286 for a description of 'the procedure check and normalize. 



282 

It then furnishes in succession atom:= get atom:= the atomic 

value. When the list is exhausted, atom furnishes nil.' At each 

call atomic set := the atom name. If father entry is nil, then 

the procedure furnishes nil; 

integer procedure atom(i); . , 
comment This procedure stores a non-nil atomic value 1 in the array element 

V( last] and returns the value atom: == last, values of i which are 

nil are simply not stored; 

integer procedure collection(n,B,set,f); . , 
cODlDent collection creats a list with the nmne -collection- the ,elements 

of which are themselves lists which are sequentially ordered with 

, n = 0, 1, 2, ••• • Elements are added to collectionmtil B:= false. 

The parameter -set- is the name of a list with elements son1, son2, 
. 

••• , soni, •••• Given a value of n, then to each son of set there 

corresponds an element of collection with name -list- and the 

elements of list are obtained as f(soni); 

Boolean procedure Bncollection(B2,Bl,n,B02,k); ; 

comment Given the lists B2(0], .•• ,B2(n-1], Bncollection furnishes from 

these lists at each call one n-tuple of sons, (Bl[O], ••• ,Bl[n-l]), 

and the value Bncollection:= true. When all n-tuples have been 

obtained, Bncollection:= false. If any list is an empty list, 

that is, a nil list, Bncollection:= false. BD2 must be set to 

~ to indicate the first call to Bncollection, it is returned 

as false and therea:f'ter is to remain false. The parameter k is 

the number of lists, starting with B2[O], for which only the first 

son is to appear in the n-tuple; 



, 283 

procedure sum( name , i, length of sum, name of list); ; 

comment Vectors of d~nsion order x im[OJ are summed •... The elements of the 

vectors are lists •. The parameter i is the' summation index starting. 

with 0, name of list is the current component of the vector being 

added to the sum, length of sum is the number of items summed, 

name is the name of the current component of the sum. The cODlp)nent 

indices are the glob8.1. variables der and no2, .!! linear comb then 

the sum represents a linear conbinat,ion of the vectors in which the 

coefficients are B[ ••• ], if temp ~ the sum is stored in temporary 

storage~ in permanent storage; 

procedure print 'sum( name) ; , . , 
comment print sum defines t~e' sum S[name,k], the approximations E[na.me,k], 

and the associated undetermined parameters B[ ••• ] by printing their 

algebraic representations. In order that parameter indexing 

remain consistent with that ~ed in procedure sum, it is necessary 

that print sum be Called-immediately preceeding the call to sum 

which actually constructs the sum; 

integer procedure minimum(v,iength,w); ; 

comment This procedure finds min: = the minimum of the elements of v. It 

sets minimum:= m which is the number of elements of v which are 

equal to min. The arrayw, (w[O], ••• ,w[m-l]), contains in an in-

creasing order the subscripts of those elements of v which are equal 

to min. A nil element is ignored. If all v[j] are nil, then 

minimum: = nil; 

integer procedtire JPn(cn,cd,n,Bl)j ; 

- comment JPn creates a normaJ. form list of atoms corresJ;xmding.to the product, 

c XBl [1] X.;... X B[n-l] where c is a constant cn/cd and Bl [j) are 



284 

lists of atoms in normal form. A normal form list is of the form 

(c1 ,c2, index(O],exponent(O], ••. , ind.ex( i] ,exponent(i], ••• ,index[p], 

exponent(p]) with c1,c2 relatively prime integers, and index[i] < 

index [ j] if i < j. Note, at the present time the constants c 1 

and c2 are not made relatively prime since this has not been 

necessaryj 

integer procedure Ze; ; 

comment Ze perlorms .!! type ::: 1 ~ a substitution X(E[. ~.]) ~.!! 

type = 2 ~ a multiplication DX(E[ ••• ]) x S( ••• ]. The work 

is carried out in the coefficient space of the ftmctions A( 0)[ i] 

using tables W[type,no2] to represent the sUbstitution and multip11-

cation operators; 
. . - . 

procedure create E ( i, BB ) ; ; 

comment The approximation E[i] is created with tmdetermined p8.I'ameters~ 

if mode = -1 then 

. . 

(if BB then sum(i,O,1.m[O]-1,B[ ••• +i] X A(-i1Xh)[:f.]) else nil) - - "-
else if m:>de ,= 0 then 

E[i]:::: U[O](T[O,i]) + 

(if BB then sum(i,O,1.m[O]-1,B(. •• +i] x A(O)(i]) else nil); - - ---
procedure translate(v,name1,name2,num,type)j ; 

comment The procedure translate is used to translate' a vector with rtame -v­

of dimension ( 1.m[O] X order) the elements of which are lists. 

The 'original component name is-name1 '", the final component name is 

name2, the number of intervals is -num-, the translation is re­

presented by a table aI type, ••• , ••• ] • This table nominally represents 

a translation of one h interval, the procedure substitutes the, 



285 

eorrect value. The translation is carried out in the coefficient 

spa.ce of the functions' A( 0 ) [ ••• ] • Note tha.t .!! type = -1 ~ 

the translation is in the -h direction else if type = 0 then the --
translation is in the +hdirection; 

procedure print list(i,length,name,ne.me of list,sign); ; 

comment For ( '0 ~i < length) print listo¥tputs in algebraic form 

( order x im[O] ) normal form lists which have the struCtUre 

father( ••• , father( ••• ». The parameter -name of list- is the name 

of the list to be printed, -name- identifies the output, -sign­

determines the sign of addition between lists, 0 for - and 1 for +. 

A nornal form list is defined'in the description of procedure JPnj 

procedure list(name oflist,BB); . , 

comment The procedure list outputs on channel 2 the list with name -name of 

list-, .!! 1m ~ ahee.ding 1s provided; 

procedure conditions E(name of vector,name); ; 

comment In 'order that E[naiDe of vector];::: ~[oJ( ••• ) + smn(i,O,1m[O],B[ ••• 

+ i] x A(O)[i]), where A(O)[i] are the basic functions, be a valid 

representation of the approximation it is necessary that the 

parameters B( ••• + i] satisfy certain conditions. The procedure 

conditions E prints these conditions' in algebraic form as C[name, 

der, t]:::: ( the equations arrising from these conditions). 

procedure data; ; 

cODlDent data reads from channell a data table and stores it in a list with 

structure father( ••• , father( ••• ) ), 'that is, a list with father, 

sons, atoms. . The table is a.ctue.lly stored by the procedure table 

which makes the list. The nmnber of fathers. is -length-, the 

number of sons is -12-, the number of atoms is -il-. ·The table 



286 

represents if control = 0 then derivative harmonics else if 

control = 1 then translation harmonics else if control = 2 " type 
~ --

= 0 then a substitution table else if contro.l = 2 A type = 1 then - -- -
a multiplication table. Note that ifBO then the list representing 

the table is output on charmel 2; 

. procedure checklist( fJrst ,last); . , 

comment When called, check list prints the 'list storage arr8YV( i], i= 
, ' 

first, (1-) ,las~ - 1, an(i the names of the lists Z[ type ,der ,no3[ type] , 

no2] and T[type,no3[typeJ]. This procedure can by called at any 

time without changing any of the local or global parameters of 

RKM1 ; 

procedure scheme; . , 

comment scheme defines the problem considered and fUrnishes, definitions 

'which along 'With ~he program output define a method of solution j 

procedure check; 

comment if last ~ tempO A '1 temp v last ~ list length then a message is printed, 

the li st elements V[ i l, 0 ~ i ;g last are dumped and the-program RKMI 

is stopped; 

procedure normalize(a,b); .* , 

comment given the integers a,b,the procedure normalize returns them as 

relatively prime integers a,b; 

*See the description of JPn on page 284 and also the bottom of page 183. 



Variable List 

The following is a list of the principal variables used, in RKMl. 

It is not inclusive; it shoUld, however, prove helpful to the reader who 

wishes to understand how the program works. 

Global Variables 

integer 

identifier comment 

field 

decimal 

n for print 

nil 

line length 

left margin 

right margin 

last data 

1 

lastl 

tempO 

The field width used in printing a numerical quantity. 

The number of decimal digits in a printed number. 

After n for print approximations E[no3[O]] have been 

created, the procedure debug will be activated and will 

print. 

Consistently used to indicate the empty set or zero.* 

The length in characters of a print line. USed principally 

to determine the print line length of the printed (punched) 

parameter defining equations. 

The position of the left margin. 

The position of the right margin. 

A list pointer pointing to the first available storage 

location8!ter storing all the data tables. 

The next free parameter index for the parameters B. 

Many parameter values B[i] are reserved for interval 

parameters and, undetermined parameters, lastl is the first 

free parameter available for'the schemel parameters. 

The beginning of temporary storage. 

*Presently nil is represented by -2 T 48. 



identifier 

type 

der 

order 

-upper 

q 

e 

count 

height 

height1 

-pmax 

288 

'Variab1e List Cont. 

comment 

Usually used to determine_ the type of a quantity in the 

following sense: there are approximations, approx1mators, 

and sums, and the approximations can have local origin 

expansions or origin expansion.- See the table in Appendix 

III, Source Listing I and note the various references to type. 

A counter rather consistently used to re~sent the 

derivative index kin P = (O, ••• ,p-l) associated with E[i,k]. 

The order of the differential equation. Refered to as p 

in the text. ~p x = X 0 E, order = p. 

The lower bolmd 1 of the lowest order approximation, 

upper '"= 1, see Chapter II, equation (3). 

The rank of . the s~heme which is the number of approximations 

in one h interval.. 

The extent of the scheme which is the total number of h 

intervals considered. 

A pointer indicating the current print position. 

The value of the dimension limiting the number of approximators 

N or sums S that -m.ay be constructed. One cannot construct 

m:>re than height sums S or approximators N. 

The value of the dimension limiting the maxtmum"number of 

items that may appear in asUDl S. One cannot construct a 

sum that contains m:>re than height 1 items. 

The value of the dimension limiting the ms.xiinum number of 

lists thatm.ay be multiplied together. Note that a sub ... 

stitution (multiplication) requires e j 
= eix. ,.x9 i which 



identifier 

last 

lastl 

period .. 

origin 

mde 

mdel 

length 

length 1 

length2 

control 

list length 

.- " 

Variable List Cont. 

comment 

is j multiplications and that the 8i are stored as lists. 

However, the dimension is input data and can easily be set 

as large as needed. 
. . 

A list pointer pointing to the next available storage 

location. 

A list pointer usually used to remember where last was when 

last is temporarily shifted. 

The period of the scheme. 

The location of the origin, presently set to 0 with the 

understanding that zero corresponds to B[O] = O. Remember 

that the developnent of the results of Chapters II, III, 

IV, and V never fixed the origin, 'but. presently RKMl does. 

The type of translation, mde = -1 implies a forward 

translation (undetermined parameters created about the 

local origin), mode = 0 implies a backward translation 

( undetermined. parameters created about the origin). 

The variable mde is in the set (0, -1 ). The variable mcle 1 

8.lways has the other value of JOOde. 

The number of items appearing in a sum S. 

The .number of approximations E appearing in a sum S. 

The number of approximators N appearing in a sum that 

were created by means of asubst1tution. 

A simple variable used exclusively by the user to control the 

action of the progr~. 

The dimension limiting the maximum length of the list 

storage array. This includes the temporary storage • 



identifier 

n 

no· 

nol 

no2 

aO 

A 

. Al 

i 

il 

i2 

j 

jl 

type set 

Boolean 

temp 

print scheme 

linear comb 

roo 

Variable List Cont. 

comment 

A counter 

Usually sequences the elements of a list of level O. 

Usually sequences the elements of a list of level'. 

Usually sequences the elements of a list of level 2. 

Usually the value of an atom from the list. 

Usually the name of an atom. 

Usually the namedf an element of a list of level 

Very often simply counters. Remember that these are 

global variables here. Beware, when the procedure 

index is used, it sets il, i2, j, jl to values with 

a particular significance~ See Chapter V. 

Selects the language of the· equation output. See· 

ApPendix III. 

The value ~ means that storage in the list will 

290 

take place in the section reserved for temporary storage. 

The value true means that the scheme description will be 

- printed. 

·The value true means that the procedure sum will perform 

a linear combination of the given items. Thus new 

parameters wUlmultiply each item of the sum. The 

value false means that the procedure sum will simply 

sum the items. 

Global Boolean available for general use. See, however, 

procedure collection. 



identifier 

BO 

B01 

BAl 

BA2 

left adjust 

inout 

integer array 

im 

no3 

291 

Variable List Cont. 

connnent 

Used principally as an actual parameter of the procedure 

father for lists of level O. 

Used principally as an actual parameter of the procedure 

father for lists of level 1. 

Used exclusively in the packed version of atom and get 

atom to indicate whieh half of the word we are cUrrently 

working in. A change in the numbe;r of atoms per ward 

requires thought about the use of BAl and BA2. The 

unpacked versions of atom and get atom make no use of 

these variables. 

The value true means that output .will be left adjusted, 

otherwise it is right adjusted. 

The value true means that all input will be output on 

channel 2. The value false means no input will be output. 

im[O] is the number of fasis functions. We impliCitly assume 

that we will choose all the harmonics corresponding to 

some order ;r of the tables given in Appendix I. This is 

not absolutely necessary for RKMI but is necessary if the 

output is to contain all the equations. 

im[1] is the number of derivatives we attempt to match in 

v[m] 
im[ 0]-1 

2: if+k+rx 
r=O 

I k+£+1+r 

(k+£+1+r)! 
. . 

Sincer corresponds to the order mentioned above vith 

regard toim[O], we see that there is one derivative for 

each order of the differentials that are the basis functions .. 

The names of various quantities. This is usually used as 

no3[type] where type indicates what quantity we are 



292 

Variable List Cont. 

identifier comment 

cond 

T 

E 

V 

z 

zp 

refering to. See the description of type. 

The names of approximators that have conditions attached to 

their ~ters. They have conditions when they have been 

uSed in a sum and the approximator was created by means of 

a substitution. 

Theriames (list entry points) of the -intervai parameters e. 
1 

in the quantities U(ei ). 

If an approximation ~i has been created then E[O,i] is 

zero. If undetermined parameters have been uSed to create 

this approximation, then E[-l ,i]ls zero. The quaritity 

ETo, i] is the smallest index of the parameters appearing 

in .~ i. E[ 1, i] is the' number of approximations appearing 

in h, E[2,i] is the number of approx1mators appearing 

in ~i that have been created by a substitution, E[3,i] 

is the total number of items in the sum. 

This is the list storage array. All list values are stored 

in V. 

Names of the lists. We usually have Z[type,der,i,no2]. The 

variable type gives the quantity we are identifying. See 

. the description of tyPe. 

Names of the lists. Used in the same fashion as Z except 

that these lists are stored in temporary storage. The name 

is valid for an item only as. long as temporary storage is 

not uSed again. Remember, translation may use temporary 

storage.. Thus a sum that is stored temporarily may be 

destroyed if one subsequently creates an approximation with 



identifier 

v 

vs 

w 

D 

a 

Bl1 

B2 

293 

Variable List Cont. 

comment 

undetermined parameters before using S. 

The quantitiesv[O;no3[O],i] are the names of the approxima­

tions appearing in the construction of s. , j = no3 [0] • J . 

The quantities v[1,n03[O],i] are the names of the 'approxi-

mators appearing in the construction. 

Temporary storage of names. 

The quantities W[ 1, i] are entry points to the substitution 

table, W[2, iJ are entry points to the multiplication table. 

See procedures data and Ze. 

The quantities D are derivative harmonics. See procedures 

data and translate. 

The quantities a are translation harmonics. See procedures 

data and'translate. 

Global storage for names when multiplying lists. See 

procedures Ze and translate. 



294 

RKMI ALGOL 60 SOURCE LISTING 

The following source listing has been prepared from a flexowriter 

tape that contains the program RKMI. The only nOh-standard ALGOL symbol 

is the use of -I- for the string space characterJ,J. In order that this 

listing be as accurate as possible, the flexowriter tape was translated 

by machine to CDC ALGOL card 'images and that source deck was then compiled 

and run on the two examples, Example 1 and 2, :for which we have presented 

complete data. The results obtained agree with those presented here. 

The few errors that were detected during this process were then corrected 

on the flexowriter tape. 

At the end of the source listing, we have present~d a list of 

known restrictions and omissions. These are of a minor nature and have 

not affected our use of the program. 

The source listing presented on pages 295 through 336 is the 

. program RKMI. The versions of atom and get atom which appear in this 

listing are packed two atoms per word. To obtain an unpacked version 

of RKMI, replace these two procedures by the procedures atom and get atom 

that are given on page 337. 



begin comment The foilowing program, ~, is a generator of generalized Runge-Kutta-Frey type schemes 

begin 

with memory including 1 st derivative DX to be used in the numerical solution of n-th. 

order systems of p-th. order ordinary differential equations. All parameter defining equations. 

are output along with the scheme definition; 

integer field,dec1ma.l,n for print,nil,lin,e length,le:f't margin,right margin,count,height,heightl,pnax, 

last,last1,last data, 1, lastl,tempO, type, der,order,upper,q,e,period,origin,lOOde,mode1 ,length, 

lengthl,length2 j control,list length,n,no,no1,no2,aO,A,Al,1,i1,i2,j,jl,name,type set; 

Boolean temp,tempS,print scheme, linear comb,IDO,ID,BJ1,ID2,BAl ,BA2,left adjust,inotrt; 

integer array m[ 0: 1] , print length [ 0: 12]; . 

procedure dump(a)jinteger a; 

begin integer arrBl B[O:ll; B[a] := 1 ~ dump; 

I'\) 
'-0 
()l 



procedure title; 

begin integer ilj,klleft margin1j 

eo:f( 1 ,exit h left margin1:= left marginj j:= i:= 0; 

:for j:= j + i while j + 24 do incharacter(1 1
I coment',i)j lines(1); s(lcommen~')j k:= j:= OJ - --

!2!: j:= i while (i + equiv( t I') V k + equiv( I .'» ~ 
begin k:== ij input(l, la' ,i)j check margin(1)j count:= count + 1; output(2, ta.' Ii) ~j 

~endj 

exit: s( teo:f,Lincountered,Lin,Ltitle')j 

end: left margin:= left marginl 

~ titlej 

procedure lines(n); value n; integer nj 

begin integer ij :for i:= 1 step 1 until n ~ output (2, ,/,); count:=l ~ lines; 

procedure spaces (n ); value nj integer hj 

begin integer i; !2!: i:= 1 step 1 until n ~ outcharacter(2, t,L" 1); count:= count + n ~ spaces; 

procedure page; out:Put (21 I,f\' ); 
f\) 
\{) 
0\ 



procedure s(string); string string; 

begin integer i,length; 

length:= chlength(string)j 

for i: = 1 step 1 until length .9:2 outcharacter( 2, string, i) ; count: = count + length 

~ S; 

. procedure sr( string); str1pg string; 

g inout ~. begin lines(l); spaces(line length - 30); s(string) end srj 

procedure ps(i"string)j integer i; stringstringj 

begin check margin(print length[i])j 

g, typeset = 1 ~ begin g cotmt = left. margin ~ spaces(l)j s(string) ~ ~ 

g typeset = 2 theri 

begin g count = 6.~ s ( t .' ); if i = 1 V i = 3 ~ s ( t ( ,,) ~ 

if i = 2 Vi = 4 then S(I)I) else if i = 9 then s(~") else - - -- - -
if i = 10 ~S(I=') ~ g i f 12 ~ s(string) 

end else 

g typeset = 3 ~ 

'begin . .!! count = left margin ~ spaces(l); if if 1 "i + 2 A i + 11 ~ s(string) ~ ~ 
f\) 
\0 
-..J 



!!tYPeset =4 ~ 

begin if count = 6 ~ s( '."); !! i = 3~ sU(') ~ 

if i = 4 then s(')") else if i = 9 then s(txx") else - -- - -
if i::: 10 then s('=') else if i + 12/\ i + 11/\ i + 1 Ai + 2 then s(string) - --- -

end 

~ PSj 

procedure check margin(a); value aj integer a; 

begin integer i; i:= 0; 

again: i:= i + 1; .!! i :> 2 ~ go to exit; 

if count + a > right margin then - .-
begin lines(1)j spa.ces(le:rt margin - 1 );go to again ~; 

~f1n; 

exit: s( 'check,Lmargin"); 

fin: 

~ check margin; 

" 

rv 
\0 
CD 



'~ 

.~ .. ~. 

"-"~.-~~.~ 

procedure piCa); value a; integer a; 

begin procedure l~out; f'ormat(' -xzd' , f'ield - 2); 

procedure list(item); procedure itemj item(a); 

count:= count + f'ieldj 

if' a = ° ~ begin spaces(field - l)j s( '0') ~ ~ outlist(2,layout,list) 

end pij 

procedure pfi(b,c); value b,c; integer b,c; 

begin integera,n,nlj 

n:= Cj a:= 2; 

f'or nl:= a + 1 while n I ° ~ begin n:= n + 10; a:= nl ~; 

.!! (right margin - left margin) < a ~ s( 'line.Llength.L~field..t.'Width') ~ 

begin procedure layout; f'ormat( '-xd',a - 2); 

procedure list(item)j procedure item; item(c)j 

check margin(a/+ 1 )j 

if count = 6 /\(typeset = 2 V typeset = 4) ~ s('.'); 

" 

if c ....... 

if' b 

° ~ s( '.L0') ~ begin outlist(2,layout,list); count:= CO'lmt + a - ~; 

= 100 /\ (typeset = 2 V typeset = 4) ~ s( '.') 

end 

~ pfi; 
\ 
\\ 

IU 
\.0 
\0 



integer procedure ioi( string); string string; 

begin integern; 

~put(l,,11 ,n}; 101:= n; g 1nout ~ 

begin l1nesel )jspaces(.!! left adjustthell 5 ~ line length - 30); s(str1ng); s( ',L:='); 

!f n = 0 ~ s( '0') ~ output(2" '-4zd" ,n) 

end -
end ioi; 

Boolean-procedure 10b(string);string stringj 

begin Boolean bj integer i,jj 

. j:= 0; eof(l"exit); 1:= OJ 

!2!: .1:= .1 + 1 while i + 1/\ i + 2~incharacter(1,'tf'"i)j b:= (1 =1); .1:= 1:= OJ 

~ .1:= j + 1 while i + 1 /\ i + 2 ~ incharaeter(l,",L'ii)j 

if inout. then --
begin lines( l)j spaces(.!! left adjust ~ 5 ~ line length - 30);. 

sCstrlng)j s(t,L:=.L')j.!! b then s('~') ~ s('fal.s~') 

~; .go to end 10bj 

exit: s( 'eof,Lread.£,in,Lprocedure.£,iob'); 

end iob: 1ob:= b 

~ iob; 
\>I 
o 
o 



begin: inout:::; left adjust: = ~; count:= OJ field: = 3; decimal: = 0; page; 

.!! ioi( 'control') < 1 ~ go to end of computations ~ lines(2); 

s ( I.z. datB:L input.z. that,L sets,L computer.z. variables' ); lines (2 ) j 

s('i:=.z.0j,for,print.z.length[i]:='}; inout:= false; 

f2!: i:= ° step 1 ~ 12 .ge c 

begin print length[i]:= ioi("}; pi(print length[i]); .!! i f 12 ~ s( I,' ) ~; 

s('~i:=i+l;'}; inout:=~; typeset:= ioi('typeset'}; 
. . 

n for print:= ioi("n,Lfor.z.print'); li:ne length:=. ioi( 'line,Llength'); left margin:: 2; 

right margin:= line length -2; tempO:= ioi( 'or:l.gin.z.0f.z.temporary.z.store' ); 

. list length:= ioi( Ilist.z.lengthl ); height:= ioi( Ima.x1mum,Lnumber,Lof.z.vectors.z.N.z.0r,Lsums~S'); 

height1:= ioi(/max1mum,Llength.z.0f,La.z.sum'); pmax:= ioi( Imax1mum,Llength.z.0f.z.a.z.list.z.product')j 

define problem: lines(2); 

lefta.dJust:= true; s( Idata,Linput.z.that.z.particularizes.z.the.z.problem'); lines(2); 

order:= ioi( IOrder.z.0f.z. the,Ldifferential.z.equation'); upper:= ioi( ID,f-,(order.z.+.z.upper )X.z.is.z. the.z. 

first.z.neg1ecte~Taylor.z.term'.z.upper');q:= ioi('number.z.0f~ints.z.in.z.0ne.z.h.z.1nterval'); 

e:= ioi('number.z.0f.z.h.z.intervals'}; period:= ioi('per:l.o~of.z.scheme'}j im[O]:= ioi(/number.z. 

of.z.basic.z.i'unctions'}j im[l]:= loi( 'number,L0f,Lderivatives.z.we.z.attempt,Lt0.z.match'}; 

left adjust:: ~; . 

VI 
o 
I-" 



begin comment variable array" declarations followed "by procedure declarations; 

integer arra;y; num,no3[ -1 :2] ,cond[O : height - 1] ,T[ -1 :O,O:exq],E[ -1 :3,0:exq], V[O :list length]", 

Z[-l:2,0:order.;; 1,O:exq,0:m[0]- 1l,Zp[O:order - 1jO:im[0] -11, 

v[0:1,0:exq,0:height1 - 1], vs[O: 1,0:height1 - 1] ,W[l :2,0:im[01 - 1], 

n[o: m[ 1] -1,0 :im[O] -1] ,a[ -1 :O/O:m[O]-l ,0: im[ 0] -1l/B11 ,B2[0 :pmax]; 

procedure check; .ll last ~ tempO 1\ 1 temp V last ~ list length ~ 

begin l1nes(1)j s( t,L0verlaP.LLlast,L:='); field:=5; p1(last); 

check l1st(0,last); ~ end of computations 

~ check; 

procedure normal.ize(a,b); integer a,b; ; 

integer procedure 1ndex(i); integer i; 

beg1n i1:= i + q; j:= i - 11 x q; i2:= 11 + per1od;j1 :=(i1 - i2 x period) x q; 

index:= if (j1 + j) - «j1 +j) + q) x q = 0 then 0 else jl + j -. --
end index; 

!'-~ '. 

\>J 
o 
f\) 



integer procedure _ faet(n); value n; integer n; 

begin integer i"j; if n :: 0 thenfact:=l else - -
begin j:= 1; .!2!: i:= 1 step 1 until n ~ j::: i x j; fact:= j ~ 

~ fact; 

procedure debug (origin"al "a2"a3); integerortg1n"al "a2"a3; ; 

integer procedure father{n"EO"B"name of son"son); integer n"name of son"son; Boolean B"ED; 

begin integer copy"sonl; 

n:= 0; copy:= last; last:= last + 1; m:= ~; 

again: 1! B ~ begin name of son:= sonl:=son; debug{l"sonl"nil"nil); n:=n+lj go to again ~ 

~ g copy == last-l ~ beg1n father:= n1l; last:= last-l ~ 

~ begin father:= copy; V[copy]:= last; debug(2"copy,n1l"n1l) ~ 

~ father; 

integer procedure son(father entry"sonl"B); integer father entry" sonl; Boolean B; 

begin if-B-then 

begin gfather entry = nil th.en _ begirt sonl:= son:= nil; go to end ~; 

B:= false; sonl:= son:= father entry + 1 VI a 



end else 

begin son1:= son:= g V[sonl] <V[father entry] then V[sonl] ~ nil ~j 

end: debug(3 l father entry, son1 1 V[sonl] ) 

end sonj 

integer procedure atom(i)j value i; integer i; 

comment packed two atoms/word; 

begin atom:= last; if no :: ° then BA2:= true; if i f nil then 

begin if abs(i) > 8 388 607 ~ 

begin l1nes(1); s( tatom,Ltoo,Llarge:=I); pfi(011); 

checklist(Ollast); ~ end of computations 

end else 

begin integer copy,nl l n2; 

check; n1:= 16 777 216; n2:= 8 388 608; 

if BA2 then 

begin V[last]:= ahs(i) x nl + n2; g 1 < ° ~ V[last]:= -V[last]; 

BA2:= 1 BA2; last:= last + 1; 

end else 

begin last:= last - 1; copy:= ahs(V[last]) + abs(1)j 

gi ~ ° then copy:=copy - n2; .!! V[last] < ° ~. copy:= - copy; 

\.N 
o 
+" 



V[last]:= . copy; last:~ last + 1; BA2:= 1 BA2 

end 

~; debug(6,1,nll,nil) 

end 

end atom; 

integer proced.ure get atom(father entry,atomic set,atom,B); 

integer father entry J atomic set, atom; BOolean B; 

comment packed two atoms/word; 

begin integer n 1 , n2; 

n1:= 16777 216; n2:= 8388608; if B then 

begin.!! father entry = nil ~ begin get atom:= atom:= nil; go to end ~; 

B:= 1 B; atomic set:= father entry + 1; BA1:= ~ 

~ ~ .!! BA1 then atomic set:= atomi~ set + 1; 

. .!! atomic set < V[ father entry] then 

begin .!! BA 1 ~ 

begin get atom:= atom:= V[atomic set] .. nl ;BA1:= 1 BAl end else --
begin atom:= abs(abs(V[atomic set]) - abs«V[atomic set] .. n1} X nl»; 

if atom = n2 then begin get atom:= atom:=.nil; go to end ~; \J.j 

o 
(J1 



end 

gatom > n2 then atom: = -(atom - n2 ) ; 

get atom:= atom; BA1:= 1 BA1 

~ ~ get atom:= atom:= nil; 

end: debug(4,father entry, atomic set,atom} 

~ get atom; 

I 

integer procedure collection(n,B,set,f); integern,set; Boolean B; integer procedure fj 

begin integer copy, son 1; Boolean BB; 

ri:;" -1; copy:= last; last:= last + 1; BB:= true; . 
. -

for n:= .n + 1 while B ~ 

begin.!! set + nil~' 
.!2:: n:= n while son(set,sonl,BB) I, nil ~ 

begin roo:= true; father (no,IDjBXJ,A,f(sonl» ~; 

BB:=true 

~; .!! coPY" = last - 1 

~ begin collect1on:"=nil; last:= last- 1 ~ 

~ begin collection:= copy; V[copy]:= last; d~bug(5jcopy,nil,nil) ~. 

~ collection; \>I 
o 
0\ 



BoolelIDProcedure Bncollection(B2,,Bl,,n,:0O2,k); value n"k; 

integer ri"k; integer· arrN" B2,Bl; Boolean ::002; 

begin integer j; ~ integer array Bl 1 [0: 20]; ~ 'Boolean arrN" B:ll [0: 20] ; 

if ::002 then 

end: 

begin :002:= false; !2:: j:= 0 step 1 \mtil n-1 2e 

begin !! B2[j]= nil ~ begin Bncollection:= false; go to end ~; 

::OOl[j]:= ~; Bl[j]:= son(B2[j]"B11[j],,::OOl[J]) 

~; Bncollection:= ~; ~ end 

.endelse !! n = 1 ~ begin Bncollection:= false; ~ end end 

~B1 [k]:= son(B2[k] "B11 [k] ,,::001 [k] );. 

for j:= k step 1 until n-l do 

begin !! B1 [j]= nil ~ 

begin!! j = n-1 ~ begin Bncollection:= false; go to end ~; 

Bl[j+l]:= son(B2[j+ll "Bl1 [j+1] ,,:001 [j+l]); ::OOl[j]:= true; 
. -

Bl[j]:= son(B2[j],Bl1[j],,:OOl[j]) 

end 

end; Bncollection:= true; - -

~ Bncollection; \>I 
o 
~ 



procedure sum(name"i"length of sum,name of list); value length of sum; 

integer name,i,length of sum, name of list; 

begin integer 11; . 

integer procedure addend(u); integer Uj 

begin IDO:= (get atom(u,A1,aO,ID) + nil); 

£! Boo ~ add end:= atom(aO) 

else if linear comb ~ begin add. end·:= atom{i+l)j add. end:= atom(l) end 

end add end; - . 

.!! temp ~ begin last1:= last; last:= tempO~; 11:= i; der:= -1; 

for der:= der + 1 while der < order do 

begin 1:= 11 + derX length of sum; 

fathe~{no2"B02,no2 < im[o],name,C~llection{i"i < length of sum,name of list, add end»; 

. end; l:~ if linear comb then 11 + order x length of sum else 11; - - - -
.!! temp ~ begin 11:= last; last:= last1; lastl:= 11 end 

end sum; 

\.)J 
o 
co 



procedure printsum(name); integer name; 

begin integer n1,n2,n3,n4,n5; 

n4:= 3; n5:= 4; field:= n4; nl:= !! length1 to ~ 0 ~ '; 

n2:= g length - order x length1 + 0 ~ 1 ~ OJ 

'In:,,;, true; lines(2}j COtmt:= left margin; 

f2!: der: = 0 step 1 tmtil order - 1 .92 

,begin:!! control = 2 ~ s('S') ~ s('E'}; S(I[I}; pi(name); sC",}; pi(der}; s(']:=.L'}; 

for n:= n1 step 1 tmtil n2 do - --
begin lines(l}; 

L 1.: s ( 'sum( , ); .!! 00 ~ s ( 'i' ) ~ s ( '.1' ); s ( , , 0,' ) j 

pi(if n=O A 00 then lengthl-1 else if n=O A 1 00 then order-1 else _. - -- --
length-order.xlength1-1); 

s( ','); !! 00 An = 0 ~ begin 00:= false; go to Ll ~; 

if linear comb then 

begin field:= n5; 

s ( 'B[ , ); pi (1 + der.xlength + (if n = 0 then 0 else order.xlength 1 »; - --
field:= n4; s( '.L+.Li'); .!! n = 0 ~ begin s('.LX'}; pi(order)i s( ',L+.L.1'} ~i 

s( '],LX,L') 

end; if n = 0 then s('E'} else s(IN'); s('[v['}; pi(n}; s(',i]'); -- - --
if n = 0 ~ begin s( I,' ); s( ',L.1') end; s( ,]},}; 

\>I 
o 
\0 



g n = 0 then s ( I )+' ); 

00:= t:ru.e; if n = n2 then lines(2)j -- -
end' 

~j lines(l)j field:= n5j 

.!2£ n:= nl step 1 until 1 ~ 

begin s{lwhere~v[l)j pi{n)j S{I]:=(I)j. 

n2:= (g n '= 0 ~ lengthl ~length-orde~engthl) - 1 j 

!2!: n3:= 0 step 1 until n2 ~ 

begin pi{vs[n,n3])j .!! n3 fn2 ~ S{I,I ) ~ s{ 1)1 ) ~j 

S(I~ and~v[')j pi{n)j s{',i]:=,LV[I)j pi(n)j s('][i]')j lines(1) 

end 

~ print sumj 

integer procedure minimum(v,length,w)j integer lengthj integer array V,Wj 

begin integer j;k,m,minj 

k:=length-l; m:= Ojm1n:= 9999; 

!2:: j,:= 0 step ,. tmtil k ~ g v[j] < min A v[j] t nil then min:= v[j] j 
. .' . 

.!2! j :=0 step 1 until k .221! v[j] = rilin then begin w[m]:= jj m:= m + 1 ~; 

min1muin:= if min = 9999 then nil else m - -
~ miniIrri.uJlj 

\.)J 
...... 
o 



"., 

integer procedure JPn(cn,cd,n,Bl); integer cn,cd,n;integer array Bl; 

begin integer j,cl,c2,nl,n2,mj integer array B,v,w[O:n-l]; 

if n = 0 V n = nil then begin JPn:= last; EO:= false; eo to fin ~; 

cl :=cn; c2:= cd; nl:= n-l; n2:= 1; 

.!2!: j:= 0 step 1 until nl do 

begin BJ:= ~; cl:::: cl_X get atom(B1[J],B[J],aO,EO); c2:= c2 X get atom(B1[j],B(j],aD,ID) ~; 

normalize(cl,c2)j JPn:= atom(cl)j no:= 1j JPn:= atom(c2); 

!2! j:= 0 step 1 ~ n 1 ~ 

begin BA1:= ~j II get atom(Bl [j],B[j],aD,ID) = nil then 

begin II n2 = n then go to fin ~ n2:= n2+1 ~; v[j]:= ao 

~j 

. again: m:= mln1mum(v,n,w);atom(v[w[O]]); cl:= 0; 

!.2! j:= 0 step 1 until m-l do 

fin: 

~ JPnj 

begin BA1:= false; c1:= cl + get atom(B1[w[j]],B[w[j]],aD,ID); 

g get atom(Bl[w[j]],B[w[j]J.,aO,ro) = nil then n2:= n2 + 1; v[w[j]]:= ao 

~j .!! cl = 0 the_n last:= last - 1 else JPn:= atom(cl); 

II n2 ~ n ~ ~ again; 

VJ 
~ 
~ 



integer procedure Ze; 

begin integer n,nl,j,typeO; 

~ Ze; 

:002:= ~; 

if son(W[type,no2],Al,BD2) =-nil ~ Ze:= nil else 

begin B2[0]:= W[type,no2]; nl:= 0; j:= 0; 

. end 

!2!: J:= j + 1 while son(B?[0],Al,ID2) f nil do 

begin :00:= ~; typeO:= g J = 2 /\ t~ = 2 ~ type ~ 0; 

for n:= nl + 1 while get atom (Al,A,aO,ro) + ~il /\ aO ~ 0 .9£ 

begin 1! j ~ 1 then 

end 

begin .!2! nl:= n step 1 until n + aO - 1 ~ B2[nl]:= T[O,num[O]]; 

nl:= n + aO -

end else 

begin B2[n]:= 1! j = 2 /\ tempS /\ type = 2 ~ Zp[aO,get atom(Al,A,aO,OO)l 

~ Z[typeO,aO,num[typeO],get atom(Al,A,aO,BO)l; nl:= n 

end 

~; n:= nl +1; 

Ze:= father(n~l,rol,Bncollection(B2,Bll,n,rol,l),Al,father(no,BO,BJ,A,JPn(l,l,n,Bll ») 

'-11 
0-

f'.! 



procedure create E(i,BB)j vaJ.ue i,BBj BooleanBBj integer ij 

begin integer 11 j integer array element [ -1 :0,0:3] j Boolean Bj 

11:= index(i); B:=(ll = 0 A mode = -1) V (~= 0 A mode = 0); 

element[O,l]:= element[O,3]:= element[-l,l]:= element[-l,3]:= element[O,O]:= 1; 

element[O,2]:= 2 X period X q + i; element[-l,O]:= .!! 11 = 0 then 0 else 1; element[-l,2]:= 11; 

for 11 := -1,0 .22 

T[ll"i]:= father(no1"ID1"no1 < l,Al,father(no,ID,no < 4,A,atom(if element[ll"O] = 0 then 
. . . --

nil ~ element [11 "no] » h 

E[O,i]:: OJ 

if BB then 

begin der:= -1 j element[O,O]:= 1 j .,~ .. ~::.-: 

forder:= der + 1 while der < order do 

for no2:= 0 step 1 until m[O] -1 ~ 

begin element[O,2]:= 1 + 2 X period X q + e X q + (if mode = -1 then (.1 + .11) else :1) 
. - - ---

X im[O] X order + der X im[O] + no2; 

Z[mode,der,i,no2]:= if B then nil else father(no1"ID1,no1 < l"Al,father(no"ID, - - -
no < 4,A,atom(element[nol,no]») 

end; if 1 B then E[-l"i]:= 0 -- -
end 

end createEi 

Vol .... 
Vol 



... 

"'-

procedure translate(v,name1 ,name2,num,type); ~ v,num,-type; ·integer v,namel,name2,num,type; 

begin integer t,i,J,Jl,j2,kl,k2,k3,k4,smax1,num1,num2,tempOO,temp1,temp2; 

Boolean B1 ,BEl, BB2j 

if (v > origin /\ v < origin· + q) then - - -
begin !2! der:= ° step 1 until order -1 do 

begin !2! rio2:= ·0 step 1 until lm(O] -1 ~ name2:= namel ~j ~ end translate 

~; temp1:= last1; last1:= ·last; last:= tempOO:= tempO; sIilaX1:= 1m(O] + lm(l]; 

B1 := (type = -1); BB2:= linear comb; linear comb:= faJ.se; BB1:= temp; temp:= ~; 

k1:= order + upper; 

if B1 then begin k1:= (k1.t2 - k1) .. 2 + k1; num2:= -1 ~ ~ num2:= 1; 

begin integer array vs[0:order-l,O:smax1-1],b[0:6xkl],al[O:smaxl-1,O:1m[0]-l], 

Vs[0:order-l,O:smaxl-1,O:1m[O]-1]; 

integer procedure store ( u) j integer u; 

begin.!! BJ ~ 

begin kl:= -1; 

~ kl:= kl + 1 while get atom(u,A,aQ,BJ) f nil ~ 

begin i:= kl; b[l]:= SO end 

~; BOO:= (no ~ 1); 

\)I ..... 
+=-



if· :000 then store:= atom(if(no=O A type =-1 A 1=3) th~n (abs(b[O] )X({ -1 )~b[3] » - - -. ,-
else if (no=O A type=O) then abs(b[O]) -- -
~ .!!no=2 ~ t ~ b[ne]) 

~ store:= nil 

end store; 

j :=index(v) j t:= (2 x period + i 1) X qj 

.!f type = -1 ~ j:= 2 X period X q + V; 

.!f j < t ~ begin k3:= 2; k4:= 4 ~ ~ begin k3:= 4; k4:= 2 ~j 

.!2! no2:= 0 step 1 until sma.xl - 1 .9:2 

begin .f.2! der:= 0 step 1 until order - 1 do 

begin kl:= der + upperj k2:= 0; 

.!f no2 < ilD.[O] ~ vs[der,no2]:= namel 

~ begin .f.2! i: = 0 step 1 until kl .9:2 

begin jl:= no2 .J im[O] + upper - i + der + 1; 

b[k2]:= (nUIn2.N1) ~ 

b[k2+1]:= fact(jl) X fact{i); 

b[k2+k3]:= j; b[k2+k3+1]:= ij b[k2+k4]:= t; 

b[k2+k4+1]:= jlj k2:= k2 + 6 

VI ... 
CJ1 



end; vs[der',no2]:= father(nol ,BJ1 ,no1 < k2i-6,A1 , father(no,BJ, no < 6,A, .-
atom(!! (b[6xno1+2] = 0 /\ b[6xno1+3] t 0) v 

(no-2X(n0+2) = 0 /\ b[6xno1+no+1] = 0) V 

'(b[6xno1+nO] = O) then nil - ' 

end 

~; jl:= last; 

!2! j2:= 0 step 1 until im[O] - 1 do 

gno2 < im[O] ~ 

begin last:=,a[0,no2,j2]; 

else b[6xnol+no]») -

a1 [no2,j2]:= .!! last = nil ~ last ~ 

collection(no1,no1 < 1,a[O,no2,j2],store) 
, ' 

end else al[no2,j2]:= D[no2 - im[0],j2]; last:= jl -- ' 

end; temp2:= last; last:= lastl; ,tempO,:= te~; num:= 1; ---- ' , 

!2! num1:= 0 step 1 until num-l do 

begin last1:= last; last:= tempO;_ temp:= ~; Bl:= (mmil < num -1)j 

for der:= 0 step 1 until order-l ~ 

for no2:= 0 step 1tmtil if B1 ~ im[O]- 1 else smaxl -1 do 

~ 
I-' 

0\ 



.f2! j:= 0 step 1 until im[O] -1 do 

begin B2[O]:= !f no2 < im[Ol A num1 +0 ~ Zp[d.er,no2] ~ vs[d.er,no2] j 

:82[1]:= al[no2,j]; ID1:= ~j 

~; 

Vs[der,no2,j]:= father(no1,ID1,Bncollection(:82,B11,2,ID1,O),A1, 

father(no,ID,BO,A,JPn(l,l,2,Bll») 

jl:= lastl; lastl:= tempo:= last; last:= j1; 

temp:= false; sum(name2,j,smaxl,Vs[der,j,no2]) 

end;tempo:= tempOO; lastl:= temp1 ....... 
end; temp:= BB1; linear comb:= BB2; - . 

end translate: 

~ translate; 

VI ..... 
--.J 



procedure print list (1" length"name" name of list"sign); ~ length; 

integeri"length"naIne"name of list"sign; 

begin integer line"left margin 1 "j"jl "nl "n2"n3; 

left marginl:= left margin; lines(l); 

if type set = 2 V type set = 4 then n3:= 1 else n3:= 0; - - -
1! type set = 2 V type set = 4 ~ lett margin:= 6; 

nl:= 3; n2:= 4;, der:= -1 ;j:=O; 

forder:= der + 1 while der < order do 

~ rio2:= -1; for no2:= no2 + 1 while no2 < im[ 0] do 
, -

t' 

begin 'lines ( l); spaces(left margin); field:=n1; line:= 1; 

ps(O,,'c,"); ps(l,,'["); pi(name)j ps(ll,,',"); pi(der + n3)j 

ps(ll,,',,"); pi (no2+ n3)j ps(2,,']"); ps(10,,':=")j jl:= 0; i:= -1; 

!2::i:= i + 1 whilei < length do 1! n~ of list + nil then 

begin :001 := ~j j:= J + 1; 

Ll: ID:=true; 1! son(nanie of list"Al "ID1) = nil ~ go to end of list; 

1!lirie < 3 ~ begin line:= line + 1 j lines(1)j spaces(left margin - 1) ~; 

1! si~ < ° ~ ps(5" '.l.-.l.;) ~ ps(6",~+.l."); 

ps(3" ,("); pfi(lOO"getatom(Al"A"aO"ID»; ps(8" , /' ); 

pfi(100"get atom(A1,A,ao,BJ»; ps(4,,')"); field:= n2; J1:= OJ 

!2!:,j1:= jl +1 while get atom(A1 ,A"aO,:OO}1 nil Ee 
\jJ 
...... 
CD 



begin ps(7,t,LX,L'); ps(O,tb'); ps(1,'['); pfi(O,aG); ps(2,t]'h 

g get atom(Al,A,aG,OO) + 1 ~ begin ps(9,t~'); pfi(O,aO) ~ 

~j ~L1j 

end of list: 

~; .!! J = 0 then pi(O); ps(12, ti'); lines(1) 

endj lines(2) -
~; name:= name + 1; left margin:= left margin1 

e!ld print list; 

procedure list(name of list,BB); integer name of listj Boolean BB; 

" begin integer j,B2; B2:= name of list; 

. .!! BB ~ begin lines(2); BB:= false; s( tLLLi'); spaces(4)j s( tV[i]'); lines(1 )~; 

.!! B2 =, nil then s( '.LLnil.LL') ~ 

begin 12:: j:= B2 step 1 until V[B2] - 1 do 

begin lines(l); field:= 4j pi(j); spaces(4); field:= 18; pi(V[j]) end -
end 

~ list; 

\>I' 

"'"'" \0 



,~{ .. 

- procedure-conditions E( !lame of . vector, name) ; inte§er 'n$Jle _ 'of vector, name; 

begin integer kmax,tmin,tmax,smdn,i,t,left marginl,n1i 

procedure Bl(i)j integer i; 

begin ps~~, t'b~); ,g: 1 = ° A type set = 2 ~. pf1(O,1) ~ 

begin ps(l,t[,); pf1(O,1); ps(2,']') ~ 

end Bj -
procedure B(1,j); integer i,jj,!! j + ° ~ 
begin ps(7,t,LX,L')j ps(O,t'b')j ps(l,t[,); pfi(O,i); pS{2,t]')j 

II j + 1 ~ begin ps(9,t~'); pf1(O,j) ~ 

end B; -
;J2rocedure theta( 1, e 1 )times B: (j, e2 ) ; integer 1;e 1 , j, e2 j 

begin ps{3, t('}j pf1(l00,ll no2 = o~ 1 ~ (- 11) ~ no2); , 

ps{8,' /'); pf1{100,fact{no2) X fact(e1-no2»; ps(4,' P ); 

.!! i <.q ~ begin B(1,el-no2); B(q,no2) ~ 

~ begin B{q,no2)j B(i,el-no2) ~; 

B(j,e2) 

~ theta; 

1::; name of vector j field: = 3 i left margin 1 : = left margin i 

.!! type set = 2 V ~ype set = 4 ~ left margin:= 6; , \>I 
f\) 
o 



i~ type set = 2 V type set = 4 then nl:= 1 else nl:= 0; _. --
i~ i = 0 ~ .!2!: t:= 0 step 1 until e x q E:? 

i~ E[O,t] tnil then - - <. 

begin lines(l); spaces(le~ margin); 

end· -' 

Bl(t + 2 x period X q); ps(lO,':='); Bl(O); 

if 1ndex(t) + 0 ~ begin ps(6,'.l,.+.l,.'); B1 (index(t» ~; 

i~ i 1 f 0 ~ begin pi( -i1); B(q,l) ~j 

ps(12,';') 

if E[O,name o~ vector] > 0 then - -
beg1n l1nes(2); 

s('comment,condit1ons.l,.on.l,.E['); p1(1); s('];'); lines(2); 

lengthl:= E[l,i]; length2:= E[2,i]; length:= E[3,1]j 

!.2!der: = 0 step 1 until order - 1 .22 

~ n:= 0,1,2.22 

beg1n tm1n:= .!! n = 0 ~ 0 ~.!! n = 1 ~ order-der-1 ~ orderj 

tmax:= i~ n = 0 then order-2~der else i~ n = then order-1 else order-1+upperj -- ~- - -
!2:: t: = tm1n: step 1 unt 11 tmax .22 

\.).I' 
f\) 
I--' 



begin lines(2)jspaces(leftmargin); field:= 3; 

ps(O,tc')j ps(l,'[')j pi(name)jps(ll,t,')j pi(der + nl)j 

ps(l1,','); pi(t +n1); p8(2,t]')j ps(10,':=');11nes(1); 

spaces(left margin -1); field:= 4; smin:= if n = 2 then t - order + 1 ~ OJ. 

~ no:= 0 step 1 until length1 -1 do 

if v[O,i,no] + nil then _. -
begin!2! no1:= smin step 1 until t do 

for no2:= 0 do 

begin .!! no2. + 0 V no1 + smin V no + 0 ~ ps(6, ',L+,L'); 

theta( 2XperiodXq + v[ 0 j i ,no] ~ no 1 )timesB: 

(E[O,i] + de~ength + nOXorder + (no1-t+order-1),1); 

end 

~;.!!n= 2~ 

begin.!2! no:= 0 step , until length2 - 1 . .92 . 

.!! v[1,i,no] + nil then 

for no2:= Odo 

begin.!! lengthl = 0 /\ (no + 0 V no2 + 0) V length' f 0 ~ 

ps(6,',L+,L'); theta(2XperiodXq +cond[v[l,i,no]], t-order) 

UI 
I\) 
I\) 



end 

~; .!! n t 0 then 

f'or no2:::: 0 do 

timesB:(E[O,i] + de~length + lengthlxorder + no, 1) 

begin.!! (lengthl = 0 1\ length2 = 0 1\ no2 f 0) V 

~; 

(lengthl + 0 V length2 + 0) ~ ps(5, '.z,-.z,'); 

theta(2XperiodXq + i, t-order+l+der)t1mesB:(n1l,0) 

!! count = left margin -1 ~ pi(O); ps(12,';') 

~t; 

~n; name:= name + 1 

~; leftmargin:= left marginl; 

end condi tons E; 

VI 
.f\) 
VI 



:." 

procedure data;" 

begin procedure table (.1,length,name); value length; integer .1,length,name; 

begin integer procedure store; 

begin i 1:= ioi( tnum.L0f.LatomsJ); store:= father(no,BO,nD<i 1 ,A,atom(ioi( tatom'») end store; 

.. ..!2!: j:= 0 step 1 until length -1 do 

begin i2:= ioi(tnum.L0f.Lsons'); 

name:= if 12 = 0 then nil else father(nol~B01,nol<i2,Al,store) - ---.-
~; 

.f! iob(tdata.Llist.L0ut') ~ 

begin lines(2); s( t.Ldata'); lines(1); s( l.u.generati~tables.LL')j 

lines(2); BO:=~; 

..!2!: .1:= 0 step 1 until length - 1 E:2list(name~BO); lines(4) 

". end 

~ table; temp:= left adjust:= false; lines(2); s( tdata.Ltable.Linput'); 

again: co~troi:= ioi( ttype.L0f.Ltable'); lines(l)j 1! control = 0 then 

begin sr( tharm:mics.L0f.Lderivat1ves'); 

.!2! i:= 0 step 1 ~ im[1] - 1 E:2 table(no2,im[O],D[i,no2]) 

end else if control 1 then 

\).I 
f\) 
+=-



'---

begintype:= ioi(ttype')i 

sr{ttranslation~table'); 

. g type = -1 ~ sr{ '-,h') ~ g type ::: 0 ~ sr( '+~h'); 

for i:= 0 step 1 ~ 1m(a] - 1 do table{no2,1m[O],a[type,i,no2]) 

~ ~ g control = 2 then 

begin type:= ioi('type'); 

g type = 1 ~ 

~; 

~ data;. 

sr( 'substitution,Ltable') else.!! type = 2 ~ sr( tmultiplication~table'); 

table (no2, im[O] ,W[ type,no2] ) 

g control + -1 ~ go to again ~ last data:= last 

VI 
f\) 
CJl 



procedure check 1ist( first, last); integer first, last; 

begin integer i,i1,j,k,type,der,n02,fie1d1,co1,num co1,10,11,12,13; 

procedure fie1ds(n2,n1 ); integer n1,n2; 

begin 12:= n2;, 11:= n1; num co1:= line length ... (11 + 10) end fields; 

10:= 7; 11:= 16; fie1dl:= field; i1:=first; 13:= chlength('Y"[:;l.]')j 

fie1ds«11 - 13)'" 2,11)j co1:= num col -1; 

again: . page; for i:= ° step 1 until. col ~ 

begin spaces(10 .:. 2); s( liL '); spa.ces(12); s( 'V[i]'); spaces(l.l - l.2 - 13) ~; lines(1); 

.!E! i:= i1 step 1· until if col = ° ~ last ~ i1 + 49.22 

begin lines ( 1 ); !2!: j:= ° step 1 until col do 

if i + jx50 < last then 
-I -

begin k:= i+ jx50; field:= 10; piCk); fie1d:= 11 i pi(V[k]) ~ 

~ col:= col - 1 

~j :!! col = num col - 1 ~ begin' i 1 :=. k+l; go to again ~; 

page; s( 'Z[t~,der,n03[typel"n02]'); lines(2)i k:= 1; 

fie1ds(12,12 + chlength( 'Z[",]:=' »; 
1:2:: type:= -1,0,1,2 ~ 

fori:= ° step 1 until,!! type < 1 ~ e X q ~ n03[type] do 

!2!: der:= ° step 1 until order - 1 .22 V,J 
f\) 
0\ 



.!2!: no2:== 0 step 1 until im[O] :-1 ~ 

begin!! k ~ num col ~ begin lines{l}; k:= 1 ~; 

~; 

field:= 3;S{I.z..Z['); pi{type}; S(I,'); pi(der); S{I,'); 

piCi); sC",); pi{no2); s(']:=.z..'); field:= 10; 

. !! Z[type,der,i,no2] = nil ~ begin s( I.z..nil'); spa.ces(lO - 4) ~ ~ 

pi(Z[type,der,i,no2]); k:= k + 1 

lines( 5); s{ fT[ type, i]' ); lines(2); k:= 1; 

fl,elds (6, 6 + chlength{ 'TL ] : =' ) ) ; 

!2.!: i:= 0 step 1 until e X q ~ 

!2!: type:= -1,0 ~ 

begin!! k ~ num col ~ begin linesCl); k:= 1 ~; 

~; 

field:= 3; s( '.z..T['); pi{type); sCt,'); pi{i);s{ I] :=.z..'); 

field:= 10; .!! T[ type,i] = nil ~ begin s{ I.z..nil'); spaees(lO -4) ~ ~ 

pi(T[type,i]); k:= k + 1 

field:= fieldl 

end check list; 

\.>J . 
II) 
-..J 



procedure scheme; 

comment this is a dummy version of scheme; 

begin page;.!! print scheme ~ 

begin s( tsolution,L scheme • .LL This,L is ,La,Ldummy,L scheme,L routine. ,Lprint,L scheme: = ,true' ) ~ 

else 

begin s( tdummy,Lprint,Lscheme.uprtnt,Lsc.heme:=,false" ) ~; 

page 

~ scheme; 

comment All declarations have been made. The following section constitutes the control section; 

nil:= -(~); last data:= 0; print scheme:= false; last 1:= nil; linear comb:= 1!:!!!; 

inout:= iob( tinout"); origin:= 0; 

again1: last:= last1:= last data; !2!: i:= -1 step 1 until 2 2:2. no3[i]:= -1; -1:= last 1; 

!2! n:= 0 step 1 tmtil eX q do 

begin f2!: type:= -1 step 1 until 3 .2:2 

beg1n.!! type < 1 ~ T[type"n]:= nU; E[type"n]:= nil; 

1f (type> -1" type < 2) then - -". -
.!2! no2 :.= 0 step 1 until height 1 

if type + 3 then - -
- 1 do v[type"n"no2]:= nil; 

\>I. 
f\) 
co 



. " .. J ~<~ 

begin !2! der:= 0 step 1 until order - 1 ~ 

begin .f2!: no2: = 0 step 1 until 1m( 0] -1 !!2, Z [ type, der, n, no2] : = nil ~ 

end 

end 

end; .f2!: n:;= 0 step 1 until height - 1 !!2, cond[n]:= nil; 

for n:= last step 1 until list lehgth!!2, V(n] :=. nil; 

if last'data = 0 ~ data; scheme; lines(2); title; lines(2); 

again: . control:=ioi( tcontrol'); if control < -1 ~ gote> fin; 

"i" 

if control = -1 ~ begin print scheme:::: ~; go to againl~; 

if control = 0 then 

begin IOOde:= ioi( tIOOd.e.L0f.LmeIOOry'); IOOde1:= !fIOOde = 0 ~ -1 ~ 0; lines(1); 

1:= last 1:= 2XperiodXq + exq + 1 + orderx1m[0]x(ifIOOde=-1 then periodXq else exq + 1 ); - ---- --
end else --
if control = then -
begin comment construct a new approximator N; 

sr('new.l.N'); no3(1l:= no3[1] + 1; l1nes(1); field:= 3; 

g iob('substitution') ~ 

begi!]." nUll'!JO]:=. ioi( !E[i] ,i' J; -type.~= 1;. tempS:;= temp:=· false;· cond[no3[ 1]] :-=- num[Ol; 
.' I 

lines(2); s('N['); pi(no3[1]); s(tJ:=.l.'); 
\.>J 
f\) 
\0. 



. s(tX(E[' h pi(num[O]); s( I]}'); 

end else 

begin type:= 2; num[O]:= ioi( tDX(E[i] )'.Li'); 

num[type]:= ioi('S[j],S'); tempS:: iob{'temIX>rary.Lsum'); 

lines(2); s(tN['); pi(no3[1]); s,(~]:=.l.'); 

s('DX(E['); pi(num[O]); S(I])~.l.S['); pi(num[type]); s{t],) 

~;, temp:= ~; 

.!! E[O,num[O]] = nil ~ 

begirt create E(num[O],~); 

translate(num[O],Z[mode,der,num[0],no2],Z[model,der,num[O],no2],num[O]+q,model) 

end; father{no2,OO2,no2 < im[O],Z[1,O,no3[1],no2],Ze); - . 

end else --
if control = 2 then 

begin comment create a new sum S; 

sr( '~ew.l. sum' ); 

·,' 

no3[2]:= no3[2] + 1; temp:= iob( ttemporary.Lstore,); linear' comb ~= iob{ tlinear.Lcombinatiort' ); 

new E: length:= loi( tIEmgth.l.0f.Lsum'); num[O]:= num[l]:= 0; 

!2!: i:= 0 step 1 until length -1 .22 

begin type:= toi{ ttype.L0f.Lvector'); vs[type,num[type]]:= lot( tnum[type]'); 

num[ type]:= num[ type] + 1 

\>I 
\>I 
o 



~; 

comment begin normalization of input; length2:::: 0; 

i :::: -1; !£!: i:::: i + 1 while i < num[ 1] ~ g cond[ vs [1 "i]] + nil ~ length2: = length2 + 1; 

. lengthl:= num[O]; i:= -1; 

!£!: i:= i + 1 ~ i < num[l] do 

begin :00:= ~; g cond[vs[l "i]] = n11 ~ 

begin j:= i; !2£ j:= j+ 1 while:OO 1\ j < num[ 1] ~ 

begin :00:= (cond[vs[l "j]] ::: nil); g , :00 ~ 

begin 11:= vs[l,i]; vs[l,1]:= vs[1,j]; vs[l,j]:= i1 end 

end 

end 

endj BJ: = true; - -
!£:: type:= 0,1" 1 do 

begin n:= g.type ~ 0 ~ lengthl - 1 ~ g BJ ~ length2 .. 1 ~ num[l] - 1 j 

.f2! i:= .!! BJ .~ 0 ~ length2 step 1 unt11 n ~ 

begin jl:= i; !2!: j:= i step 1 'n.'ltil n do 
/ 

begin.!! j = i ~ 11.:= vs[type,i]; .!! vs[type,j] < vs[type,i] then 

begin vs[type,1];= vs[type,j]; jl:::: j ~ 

~j vs[type"jl]:= i1; 1£ type = 1 then EO:= false 
01 
\.)J -



end ,-
~ of normalization of input; 

i:= -1; ~1:= 1 +1 while 1 < length1 do 

begin if E[0,vs[0,1]] = n1l ~ 

beg1n create E(vs[O,i],~rue); 

' .. '.' 

translate ( vs[0,1] ,Z[mode,der, vs[ 0 ,i] ,no2] ,Z[mode1 ,der, vs[ 0 ,1] ,no2], vs[ 0, i]+q,lOOdel ) 

end 

~; length:= length + length1 x (order-l); 

if control = 3 ~ 

begin for i:= 0 step 1 until lengthl-1 ~ v[0,no3[0],i]:= vs[O,i]; 

!2! 1:= o step 1 until lengtb2-1 ~ v[l,no3[0],1]:= vs[1,1]; 

E[O,no3[0]]:~ 1; E[1,no3[0]]:= length1; E[2,no3[0]]:= length2; E[3,no3[0]]:= length 

end; leftmarg1n:= 0; tYPe:= if control = 3 then 0 el'se 2; - ~ --
print sum(no3[typeJ); 

1f temp ~ sUm(Zp[der,no2],1,length,g i<lengthlxorder 

~ Z[ 0, 1-( 1+oroer )xorder, vs [0, i+order] ,no2] 

~ Z[1,O,vs[1,1-lengthlXorder],no2]) 

else sum(Z[type,der,no3[type],no2],i,length,if i<lengthlxorder - .'~ -
thenz[o,i-(1+Order)xorder,vs[O,1+Order],no2] - , 

\J-I 
\J-I 
I\) 



~~ 

~ Z[l,O,vs[l,i-lengthlXorder],no2]); 

if control :: 3. ~ ~ again 

if control = 3 then - -
begin comment construct a new approximation Eri]; 

no3[0]:= ioi( tE[i],i'); temp:= faJ.se; linear c,omb:=true; 

create E(no3[0],faJ.se); sr(tnewLE'}; go to new E 

end else· --
if control = 4 ~ 

begin comment print aJ.l parameter defining equations; 

lines(2)j name:= 1; 

s ( tE [0] : = L E( ° ) L +.&, error,L tenus • .LL All,L defining,L equations ,L are ,LpnntedL below' ); lines (2 ) ; 

s( tc[i,k,n]'LwhereLk.Lis,Lin(O, ••• ,order-1 ).&,and,Ln,Lis.&,in,L(O, ••• ,im[O]-l)'); lines(l); 

s( tcomment equations.LarisiIl8,z.from,Lreqliir1ng')j lines(1)j 

s( tE[ ••• ]:= LU[ ••• ]( ••• },L+,Lsum( i,O, im[O] -1, b[ ••• ]XA( ••• )[ 1] };' }; 

lines(2)j !2! i:= ° step 1 until eX q.2£ conditions E{i,name); lines(2); 

s(tcomment Equations~ar1sing,Lfrom,LE[Ojk]L-,LE(O)[k]:=,LO(~(k+'); pi(upper+im[l]+l); s(t»;')j 

print list{i,l,name,Z[O,d~r,O,no2],i)j lines(l); 

i:= -lj for i:= i + 1 while i < period X q do - - - ---
beg1nBO:= ~; for n:= i step q X period~· e X q ~ 

\.)J 
\.)J 
\.>J 



begin .ll BJ f\ E[-1,n]+ nil then 

begin s( tcomment Equations.Lwhich.Ldefine.Lthe.Lundetennine<i.Lparameters')j lines(l)j 

s(tuse<i.LinLthe.Lexpansio~of.LE['); pi(n); set];,); lines(l); 

print list(j1,2,name, 

Z(.!! jl = 0 ~ -1 ~ O,der,.!! j1 0 ~ n ~ i,no2],(-1 ),{\(jl+1 »; 
if roode = -1 then ro: d false -

end" -' if n = e X q then EO:= false .......... 

end 

end; lines(2)j 

comment points that are to be equated; 

n':= ioi( tnumber'); 

if n > O'then -
begin .!2!: i:= 0 step 1 untU n - 1 .ge 

begin v~[o,i]:= ioi( tname'); vs[l ,i]:= lo~( ttype')~; lines(2)j 

s( Icomment,the.Lfollo~approx1mati6ns.Lare.Lequal'); lines(1); field.:= 3; 

for i:= 0 step 2 until n - 2 .ge 

.f2! j:= 0,1 .ge 

begin s(tE['); pi(vs[1,i+j]); S(I,'); pi(vs(O,i+j] h 

.!! j = 0 ~ S(t]::I) ~ begin set],); lines(1) end 

~j sCt j' ); 
\..N 
\..N 
.j::"' 



!2.:: i:~" ° ste:p 2 ~ n - 2 E£ 

print 11st(j,2,name,Z[vs[l,i+j],der,vs[O,1+j],no2l,(-,)~) 

~; 11nes(4); 

s( 'Def1ne.L the.L undeterm1ned.Lparameters.Lb[ ••• ],LbY.Lprinting.L0ut.L' ); lines(1); 

s( Ithe.Lexpans1ons.L0f.LE[ i,k] '.Li.Lin.LM.L:=.L(1, ••• ,exq) '.Lk.Lin.LP.L :=' ); lines ( 1 ); 

s( I.L(O, ••• ,order.L-.L1 )'.Lwith.Lrespect.Lt0.Lthese.Lpa.remeters,,8,mode.L'); lines(1); 

s('=.L0,then,the1r.Llocal.L0rigins.Lare.Lthe.Lpo1nt.L0,else,'); lines(1); 

s( 'if ,mode.L=.L -1, then, theY.Lare.L-.L11.LX.Lh.L'Where.Li 1 := .Li.L+.Lq' );lines(2); 

field:= 4; 

for i:= ° step 1 ~ e X q.2£ .!! E[-1,i] + nil ~ 

begin !2!: der: = ° ste:p 1 until order - 1 .22 

begin n:=index(i); s(/E['),; pi(i); S(I,')'; pi(der); s(t]:=.Lu['),; 

.!! mode = ° V i1 = ° ~ pi(O) ~ begin pi(-il); s( tr.Lh') end; s( Il.L('); 

if n = ° ~ pi(O) ~ begin s(tB['); pi(n); s(t]')~; 

.if mode = ° 1\ i1 + 0 ~ begin pi(-i1); s('.z.X.Lh') ~; 

s(').L['); pi(der); s(t].L+.Lsum(1,O,'); p1(tm[O] - 1); set,'); 

s(tb['); p1(2xperiodXq + exq + 1 + (if mode= -1 then j+j1 else 1)xim[O] 
. --- -------

xorder + de~im[O]); 

s(t.L+.Li ]' ); 
\.).I: 
\.>I 
(Jl 



end· -' 

s( 'XA(' ); pi(if mode = 0 then 0 else -i 1); 
.. - -------

!! mode +. 0 ~s( '.LX,Lhl); s( ')[i]I); lines(l) . 

end; llnes(l) 

end of control; ~ again; - . 

:f'1n: lines(4); fiel,d:= 6; s(/gommenV); 

s( 11887:=1); pi(last)j s('.u..last1:=I); pi(lastl); s( '.i.LtempO-last:=I); pi(tem:Po~last); 

. s( '.u..llst.Ll~gth-t~:='); pi(list length-tempO); lines(l)j s( 'next.Lfree.Lparameter,Lb[ I); pi(l); s( t]; I); 

l! lob( tcheck.Lllst') ~ check list(O,last); 

£..12 .!!control = -2'~ define problem ~.!! control = -3 ~ begin ~ end of computations 

end of the program; lines (2) ; 

end of computations: lines (2) j s ( ",L en~ of.L computations. I ) 

end 

end 

VI 
VI 
0\ 



:.:",,~ 

integer procedure atom(i); value i; integer ij 

comment unpacked; 

g abs(i) > 24#8 ~ 
begin lines('); s(tatom~too~large~:~')j pfi(O,i); 

cheek list(O,last); .£J?2 end of computations 

end else --
begin atom::: last; .!! i + nil ~ begin check; V[last]:= ij last:= last + 1 ~; 

. debug(6,i,nil,nll) 

end atom; 

integer procedure get atom(father entry,atomic set,atom,B); 

. integer father entry,atomic set,atom; Boolean B; 

comment unpacked; 

begin if B then 

begin!! father entry = nil ~ begin get atom:= atom:= nil; go to end ~; 

B:~_~; atomic set:= father entry + 1 

~ ~ atomic set:= atomic set + 1; 

get atom:= atom:= if atomic set < V[father entry] then V[atomic set] else nil; - --
end: debug(4,father entry, atomic set, atom) 

~ get atom; VJ 
VJ 
--.l 



338 

RESTRICTIONS AND OMISSION'S TO RKMI 

1. The proced~e title does not handle line overflow as it should 

when the line tength of the input channel is different from the line 

length of the output channel. 

2. The procedure Bncollection has a limit of 20 as the number of 

lists it can handle. This limit can be altered by changing the upper 

bounds of the own variables B11and Bot. 

3. The procedures normalize, d.ebug, and scheme are presently "dummy" 

procedures. We have not needed normalize;*debug has been used on the 

IBM 7094 version, but for the CDC 6400 version, the l.lse of an update 

program has proved more useful; the procedure scheme exits and can be 

easily implemented. 

4. 'We have not yet completely checked out the use .of the program 

when using DX. Various parts have been individually checked. Also, we 

have a slight problem with interpreting the ~, ~, S as presently printed 

when using the derivative DX. Refer to Definition 10, Chapter III. The 

program actually operates with this definition. When JNL is never used, 

it is correct to replace all 

~i u(8 i ) ~ ~i 

n. = X(~.) R· ~n' '11 1 1·1 

. since Condition A~ (Theorem 10, Chapter III) always holds.RKMI presently 

does this. If JNL is used, then we must presently interpret its printed 

output as 
-. 

~ i ~ ~ i - 1.1(8 i) 

TJi ~X(~i) - Ri 

'X-Gee the description of the procedure JPn on page 284. 
. . I 

• _\.-



in order that the correct scheme will be written down. This is simply 

an oversight in printing the output definitions of ~, ~, and s. It 

does not affect the parameter equations. 

5. Note that procedure Ze in reality handles correctly only lists 

of the form (numerator, denominator), (exponent), (derl, nl, ... , der maxI ' 

nmax ) and, thus, will not correctly carry out a multiplication DX • J 
I 

for a term such as 7fJ6lwhich needs another son to correctly represent the 

multiplication process. The short table presented here (Table VI, 

Appendix I) does not need more than three sons. Substitution only 

requires three sons and, thus, the oversight which is rather eaSily 

corrected. 

339 



Appendix III 

RESULTS OF THE EXAMPLES OF GHAPI'ER VII 

Appendix III is devoted entirely to the presentation of the 

result.s of the examples treated in Chapter VII. Tables I - III deal 

with the classical"RK4 example. The remaining tables am graphs 

pertain to the exan:ples 1 -.4 presented in that chapter. A full 

description of these results is given in Chapter VII. 

340 



341. 

TABLE I DATA INPUt TO RKMI EXAMPLE RK4 

DATA CO'-MENT 

1, Control 

1,1,1,1,1,3,3,3,1,2,1,1,0, FORTRAN output 
2, 

,.. 

50,70,6000,7000,10,10,10, Set program parameters 

. 
1,1,4,1,1,16,4, Particularize problem . 

'FALSE' , No input-output 

,Data table input 

0, Derivative harmonics 
1,2.1,1, 

D2x 0, ° ,.0, 0,0, 0,0,0,0, 0,0,0,0,0,0, See Table VI . 
• FALSE.' 
u, 

n3x 
" 

1,2,1,1, Appendix I 
1,2,1,1, 
0,0,0,0,0,0,0,0,0,0,0,0,0, 
'FALSE' t:!" 

0,0,0, 
D4x 1,2,1,1, 

1,2,3,1, 
1,2,1,1, '" 

1,2,1,1, 
0,0,0,0,0,0,0,0,0. 
'FALSE' 
0,0,0,0.0,0,0, 

D5x 1,2,1,1, I 

1,2,6,1, 
, .' 

.1,2,4,1, ,. 

1,2,4,1, 
1,2,1,1, 
1,2,3,'1, 
1,2,1,1, ", 

1,2,1,1, . 
1,2,3,1, 
'FALSE' 

2,1, Substitution harmonics 
2,2,1.1,1.1, u 'ifJi See Table VI 
2,2,1,2,1,2, 1 
3,2,1,1,1,0,2,0,0, 2 Appendix I " 

2,2,1,6,1,3, 3 



, TABLE I' CONTINUED 

DATA COMMENT 

3,2.1,1.1,1,2,0,0, 4 1/Ii Substitution 
3,2,1,1,1,0,2,0,1, <; harmonics ./ 

3,2,1,1,1,0,2,0,2, 6 continued 
2,2,1,24,1,4, 8 
3,2,1,2,1,2,2,0,0, 9 
3,2,1,1,1,1,2,0,1, 10 
3,2,1,1,1,1,2,0,2, 11 
3,2,1,1,1,0,2,0,3, 12 
3,2,1,1,1,0,2,0,4, 13 
3,2,1.1,1.0,2,0,5, 14 
3,2,1,1,1.0.2,0.6, 15 
4,2,1,2,1,0.2,0.0,2,0,0, 21 , 

0' 

• FAlS.E· 
.,' 

1,0, Translation harmonics 
1,2,1.1, 

Ao See Table VII 1,4,-1,1,10,1, 
1,4,-1,1,10,1, Appendix I 

1,4,1,2,10,2, 
1,4,3,2,10,2, 
1,4,1,2,10,2, 
1,4,1,2,10,2, 
1 , 4, - 1, 6 , 10 • 3, 
1,4,-1,1,10,3, 
1,4,-2,3,10.3, 
1,4,-2,3,10,3, 
1,4,-1.6,10,3, 

, 

1,4,-1,2,10,3, 
1,4,-1,6,10,3, 
1 , 4, -1 , 6, 10, 3" 
1,4,-1,2,10,3, 
'FALSE' 
0, Al 
1,2,1,1. 
0, 
1,4,-1,1.10,1, 
1,4,-2,1,10,1. 
0, 
0, 
1,4,1,2,10,2, 
1,4,5,2,10,2, 
1,4,1,1,10,2, .. 

1,4,1, 1, 10,2, 
0, 
0, 
0, 

'0, 
1,4,1,1,10,2, 

.. 'FALSE' , 



TABLE I CONTINUED 

DATA CO."MENT 

0,0, ~ 
., 

1,2,1,1, 
0, 
1,4,-1,1,10,1, 
1,4,-1,1,10,1, 
1,4,-1,1,10,1, 
0, 
1,4,1,2,10,2, 
1,4,1,1,10,2, 
1,4,1,1,10.2, 
1,4,1,2,10,2. 
1,4,3,2,10,2, 
1,4,1,2,10,2. 
1,4,1,2,10,2, 
1,4.1.2.10,2, 
'fALSE' 
0,0.0, A3 
1,2.1,1, 
0, ,. 

0, 
0, 
1.4,-1,1.10, I. 
1,4,-~,1,10,1, 
0, 
0, , 
0, 
0, 
0, 
0, 
0, 
• fALSE' 
0,0,0,0, 
1,2,1,1, 

A4 

0,0, 
0, 

.. 
1,4,-1,1,10,1, 
1,4.-1,1,10,1, 

~. 

1,4,-1,1,10,1, I 
0, 
0, 
0, .; 

0, 
1,4,-1,1,10,1, 
'fALSE' 
0,0,0,0,0, A5 
1,2,1,1, 
0, 
0, 
0, 
1,4,-1,1,10,1, 
O. 



344 

TABLE I CONTINUED 

DATA '.' 

tO~f4ENT 

1,4,:-1,1,10,1, A5 
.1,4,-2,1,10,1, 
0, 
0, 
0, 
'FALSE' 
0,0,0,0,0,0, .~. 
1,2,1,1, 

0O, 
0, 
0, 
1,4,-1,1,10,1, 
0, < .. 

1,4,-1,1,10,1, , 
1,4,-1,1,10,1, 
1,4,-1'.1,10,1, 
0, 
'FALSE' . 
0,0.0,0.0.0.0, A8 

, 

.1,2,1,1, 
.0,0,0,0,0,0.0,0, 

'FALSE' 
0,0,0.0,0,0.0,0, Ag 
1,2,1,1, 
0,0,0,0,0,0,0, 
'FALSE' 
0,0,0,0,0,0,0,0,0, AlO 
1,2,1,1, 
0,0,0,0,0,0, 
'FALSE' 
0,0,0,0.0,0,0,0,0,0, All 
1,2,1;1, 
0,0,0,0,0, 
'FALSE' 
0,0,0,0,0,0,0,0,0,0,0, ~2 1,2,1,1,' 
0,0,0,0, 
'FALSE' 
O,O,O,O,O~O,O,O,O,O,O,O, Al3 
1,2,1,1, 
0,0,0, 
'FALSE' 
0.0,0,0,0,0,0,0,0,0,0,0,0, Al4 
1,2,1,1. 
0,0, 
'FALSE' 
0,0.0,0,0,0,0,0,0,\),0,0,0,0, ~5 1,2,1,1, 
0, 
'FALSE' 



TABLE I CONTINUED 

DATA COflMENT 

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, Ael 
1,2,1,1, 
• FAl SE' 
-1 End procedure data out put 

COMMENT THIS IS A CLASSICAL RUNGE KUTTA METHOD OF RANK 4 
FOR A SYSTEM OF FIRST ORDER DIFFERENTIAL EQUATIONS~, 

0,-1, Forward translation 
1,'TRUE',4, 1, • TR UE • , 3 , 
I,'TRUE',2, 1, 'TRUe' ,1. Scheme 
3,3,2, 0,4,1,0, 
3,2,3, 0,4,I,Q,1,1, 
3,1,4, 0,4,1,0,1,1,1,2, 
3,0,5, 0,4,1,0,1,1,1,2,1,3, 

" 

4,-1, Print all parameter equations 

":4,'FAlSE', Exit from program 



TABLE II RKM1 OUTPUT 

COMMENT GIVEN THE OAT A INPUT OF TABLE 1. THE BELOW OUTPUT IS GENERATED 
BY RKMI SOURCE LISTING 8090 68. 9/20/68. 

CONTROL .= 1 

DATA INPUT THAT SETS COMPUTER VARIA~LES 

I.~O., 'FOR' PRINT LENGTHC/I/I.= 1, 1. 1. I, I, 3. 3~ 3, 1. 2. 
1, 1, O. 'DO' 1.= 1+.1. , 

TYPE SET .= 2 
N FOR PRINT .= 50 
LINE LENGTH .= 10 
ORIGIN OF TEMPORARY STORE .'"' 6000 
LIST LENGTH ." 1000 
MAXIMUM NUMBER OF VECTORS N OR SUMS S .- 10 
MAXIMUM LENGTH OF A SUM .= 10 
MAXIMUM LENGTH OF A LIST PRODUCT .~ 10 

DATA INPUT THAT PARTICULARizES THE PROBLEM 

ORDER OF THE DIFFERENTIAL EQUATION .= 1 
D'POWER'CORDER+UPPERIX IS THE FIRST NEGLECTED TAYLDR TERM, UPPER 

1 
NUMBER OF 
NUMBER OF 
PERIOD OF 
NUMBER OF 
NUMBER OF 

POINTS IN ONE H INTERVAL .= " H INTERVALS .- 1 
SCHEME .= 1 
BASIC FUNCTIONS .= 
DERIVATIVES WE ATTEMPT 

OATA TABLE INPUT 

16 
TO MATCH .s " 

INOUT .a 'FALSE' 

DUMMY PRINT SCHEME. PRINT SCHEME." 'FALSE' 

'COMMENT' THIS IS A CLASSICAL RUNGE KUTTA METHOD OF RANK" FOR A 
SYSTEM OF FIRST ORDER DIFFERENTIAL EQUATIONS., 

Nil OIl." XC Ell 4111 

Nil 111.= XI Ell 3111 

Nil 2/1.= XI Ell 2111 

NIl 3/1.= XI Ell 1/11 

Ell 3, 011.= 
SUMII.O, O,SUMIJ,O. O,BII 11 + I • 1 + JII • EIIVII 0,111, JIII'+ 
SUM II, 0, a,s II 78 + III • NIIVII 1,111111 

WHERE V II 01) ." I It) AND VII 0,1/).- VII 0/11/1/1 

346 



WHERE vII 111.= ( 01 AND VII 1. ill.- V(J 111 (1111 

Ell 2., 011.= 
5UM(I.0. 0.5UMIJ.0. 0.811 79 + I • 1 + In • EIIVII 0.111. JIIII+ 
5UMII.0, 1.811 80 + III • N(JV!/ 1,111111 

WHERE VII 011.=( 41 AND VII 0.111.= V(J all (J III 
WHERE VII 111.=1 O. 11 AND V(J 1.111.= V(J 111 (JIll 

E(I 1. 0/1.= 
5UMII.0. O.SUMIJ.O. 0.8(1 82 + I • 1 + J/I • E(JY(J 0.111. J/III+ 
SU"II. O. 2.811 83 + III • N(JYII 1.111111 

WHERE V(I 011.=1 41 AND VII 0.111 •• VII on (J In 
WHERE VII In .=1 O. 1. 21 AND V(I 1.111.= VII 11111111 

Ell O. 0/1.= 
SUM II. O. 0.5U"IJ.0. 0.811 86 + I • 1 + J/I • EIIV(J 0.111. JIIII+ 
SUMII.O. 3.B(I 81 + III • N(lYII 1.111/11 

WHERE VII 011.=( 41 AND VII 0.111.= VII Ollllill 
WHERE VII 111.=( O. .1. 2, '31 AND VII 1.1/1.= VII 11111 
III 

E 11011 ." EIOI +,ERROR TERMS. ALL DEFINING EQUATIONS ARE PRINTED BELa 
w 

CIII.K.NII. WHEREKIS IN 10 ••••• ORDER-II AND N IS IN 10 ••••• 11411011-11 
'COMMENT' EQUATIONS ARISING FROM REQUIRING 
EI/ ••• /I.= UI/ ••• /I 1 ••• 1 + SUMII.0,IMI/0/'-1. 81/ ••• /'. AI/ ••• /)I/I/II .. 

81 81=8 a 
BI 9)=B 0 + BI 11 
BI 101=B a + BI 2) 
BI 111=B a + 81 3) 
BI 121=B 0 -1* BI 41 

'COMMENT' CONDITIONS ON Ell 0/) •• 

CI 1. 1. 11= 
.1 1.1 1.1 • BI 861 - I 1.1 1.1 

CI 1. 1. 21= 
• I 1.1 1.) • 8 I 121 • B i 861 + ( 1.1 1. I • B ( 811 + ( 1.1 1. I 
•• BI 88) + (1./1.1 * 81891 + 11./1.1. BI 901- 11.1 
• 1.1 * BI 8) 

'COMMENT' CONDITIONS ON Ell 11) •• 



C( 2, I, lJ= 
• ( 1.1 1. I • 8 ( 82 I - ( 1.1 1. I 

C( 2, I, 21= 
.( 1.1 1.1 • 61 121 • 81 821 + I 1.1.1.1 • BI 831 + I 1.1 1.1 
• • BI 841 + I 1.1 1.1 • B( .851 - I 1.1 1.1 • BI 9' 

'COMMENT' CONDITIONS ON Ell 2/1., 

CI 3, I, 11= 
.1 1.1 1.1 • 81 791 - I 1.1 1.1 

CI 3. 1. 21= 
.1 1.1 1.1 • BI 121 ~ Be 791 + C 1.1 I.' • BI 80' + I 1.l 1.1 
• • BI 8lJ - e 1.1 1.1 • Be 101 

"COMMENT' CONDITIONS ON E(I 311.; 

ce It. 1. lJ= 
.1 1.1 1.1 • BI 771 - C 1.1 1.1 

CI 4, I, 21~ 

'.1 1.1 1.1 • Be 121 • B( 77) + I 1.1·1.1 • BI 781 - I. 1.1 1.' 
• • BC 11 I 

'COMMENT' EQUATIONS ARISING FROM EI/O.K/I - E(O'I/K/I.- riIH"POWER'CK 
.+ 611., 

CI 5, 1. 11= 
• + I 1'.1 2.1 • 8( 121" 2 • BI 86' 
• + I 1.1 1.1 • B( 121 • BI 871 + I 1.1 I.'. Be 111 • 8( 881 
• + e 1.1 1. I • 81 101. Be 89 I + I 1.1 1.' • Be 9' • B ( 90 I 

ce 5. 1. 21= 
• + I 1.1 6.1 • 81 121 •• 3 • 8( B61 
• + I 1.1 2.1 • 81 121 •• 2 • 8( 871 + ( 1.1 2.1 • 8( 111" 2 
• • 8e 881 + ( 1.1 2.1 • 81 101" 2 • B( 891 + e 1.1 2.1 • Be 
• 91 •• 2 • B( 901 

CI 5, 1. 31= 
• • e 1.1 6.1 • BI 121 •• 3 • Be 861 
• + ( 1.1 2.1 • 81 121" 2 • 81 871 + I 1.1 1.1 •. B( 6lJ • B( 
• 881 + ( 1.1 1.1 • Be 451 • B( 891 + ( 1.1 1.1 • B( 29' • BI' 
• 901 

ce 5.1. 41= 
• + e 1.1 24.1 • B( 12'" It • BI 86' 
• + (1./ 6.1 • BI 121 •• 3 • B( 871 + I 1.1 6.1 • 8( 11' •• 3 
• • B( 881 + I 1.1 6.1 • BI 101" 3 • 81 891 + I 1.1 6.; .B( 
• 91 •• 3 • BI 901 

CI 5. 10 51= 
• + ( 3.1 24.' • B I 121" It • B I 861 
• + I i.1 2.1 • BI 121" 3 • BI 871 + ( 1.1 1.1 • B( 111 • 81 
• 611 • BI 881 + I 1.1 1.1 • B( 101 • BI 451 • B( 891+ ( 1.1 
• 1. I • B ( 91 • B I 291 • 81 90 I 

348 



.,. 

CI 5. 1. 61= 
• + I 1.1 24.1 • 81 121 •• 4 " 8( 861 

· + I 1.1 6.1 • BI 121" 3 • BI 811 + 1.1 1. I • 81 621 • 81 · 881 + I 1.1 1.1 • BI 461 • 81 89) + 1.1 1.1 • 8( 301 • BI · 901 

ce 5. 1. 71= 

· + I 1.1 24.1 • BI 121 •• 4 • Be B61 

• + I 1.1 6.1 • BI 121 •• 3 • BI 871 + 1.1 1. I • 8e 631 • 81 · 881 + ( 1.1 1.1 • Be 411 • 8e 891+ 1.1 1. I • Be 311 • Be 
• 901 

CIS. 1. 81-
• + I 1.1 120.1 • Be 121" 5 • B( 861 
• + I 1.1 24.1 • Be 121 •• 4 • Be 811 + 1.1 24.1 • B( II' •• 
• 4 • BI 881 + I 1.1 24.) • BI 101 •• 4 • BI 891 +( 1.1 24.1 
• • BI 91 •• 4 • BI 901 

CIS. 1. 91= 
• + I 6.1 120.1 • BI 121 •• 5 • BI 86) 
• + I 1.1 4.t • BI 121 •• 4 • BI 811 + I 1.1 2.1 • 81 Il, •• 2 
• • 81 611 • 81 88) + I 1.'1 2.) • 81 101" 2 • 81 451 • 81 
• 891 + I 1.1 2.) • 8 I 9)" 2 • 8 I 29 I • B I 90) , 

CI 5. 1. 101= 
• + I 4.1 120.1 • BI 12) •• 5 • 81 861 
• + I 1.1 6.1 • 81 121 •• 4 • BI 811 + e 1.1 1.1 • BI III • BI 
• 621 • Be 881 + I 1.1 1.) • B I 101 • B I 46 I • B I 891 + I 1.1 
• 1. I • B I 91 • B I 30 I • B I 901 

CIS., 1. 111= 
• + I 4.1 120.) • BI 121 •• 5 • 81 86) 
• + I 1.1 6.) • BI 12) •• 4 • BI 811 + I 1.1 1.1 • Be 11) • 81 
• 63) • B I 88) + I 1.1 1.) • 8 e 10 ) • 8 I 47 I • 8 I 891 + I 1.1 
• 1. I • 8 e 91 • B I 311 • 8 I 90 I 

CIS. 1. 121= 
• + I 1.1 120.1 • 81 121 •• 5 • BI 861 
• + I 1.1 24.1 • BI 121 •• 4 • 8e ~71 + I 1.1 1.1 • 8e 641 • BI 
• 881 + I 1.1 1.) • BI 481 • BI 89) + I 1.1 1.1 • 8e 321 • 81 
• 901 

CIS. 1. 131= 
• + I 3.1 120.1 • 8e 121 •• 5 • 81 861 
• + I 3.1 24.1. 8( 121 •• 4 • 81 811 + 11.1 1.1 • BI 651 • 81 
• 881 + I 1.1 1.1 • Be 491 • BI 891 + I 1.1 1.1 • BI 331 • Be 
• 90) 

CIS. It 141= 
• + I 1.1 120.1 • BI 12) •• 5 • BI 861 
• + I 1.1 24.t • BI 121 •• '4 • 81 811 + I 1.1 1.1 • BI 661 • BI 
• .81 + I 1.1 1.) • 81 501 • 81 891 + e 1.1 1.1 • 81 341 • BI 
• 901 

CIS. 1. 151= 
• + I 1.1 120.1 • BI 121 •• 5 • 81 861 
• + I 1.1 24.1 • 81 121 •• 4 • 81 871 + I 1.1 1.1 • 81 611 • 81 
• 881 + I 1./1.1 • 81 511 • BI 89) + I 1.1 1.1 • BI 351 • BI 
• 901 

CIS. I. 161= 



• + ( 3.1 120.' • B( 12' •• 5 • B( 86' 
• + ( 1.1 8.' • B( 12' •• It • B( 81' + ( 1.1 2.' • B( 61' •• 2 
• • B( 8a, + ( 1.1 2.' • B( 45' •• 2 • B( 89' + ( 1.1 2.' • B( 
• 29' •• 2. B( 90' 

'COMMENT' EQUATIONS WHICH DEFINE THE UNDETERMINED PARAMETERS 
USED IN THE EXPANSION OF E(I 11'., 

C( 6. 1. 1)= 
- ( 1.1 1.' • BI 29' 

• + ( 1.1 2.'. B( 12' •• 2 • B( 82' + 
• 83' + ( 1.1 1.' • B( 11' • B( 84' + 

• 85' 

C( 6. 1. 2'= 
• -.1 1.1 1.'. B ( 30' 

1.1 1.' • B( ·12' • B( 
1.1 1.' • B( 10' • B( 

• + ( 1./6.'. B( 12'''3. B( 82' + (1./2.'. B( 12' •• 2 
•• B( 83' + ( 1./2.' • B( 11'" 2. B( 84'+ ( 1./2.'. Bf 
• 10' •• 2 • B( 85' 

C( 6. 1. 3·'= 
- ( 1.1 1.' • B( 31' 
+ ( 1.1 6.' • BI 12' •• 3 • B( 82' + ( 1.1 2.' • B( 12' •• 2 

• • B( 83' + ( 1.1 1.' • B( 61' • B( 84' + ( 1.1 1.' • BC 45' 
.• • B ( 85' 

C( 6. 1. 4'= 
• - ( 1.1 1.' • B( 32' 
• + ( 1.1 24.' • B( 12' •• 4 • B( 82' + ( 1.1 6.'·. B( 12' •• 
• 3 • BI 83' + ( 1.1 6.' • B( 111 •• 3 • B( 84' .+ C 1.1 6.' • B . 
• ( 10' •• 3 • B( 85' 

C( 6. 1. 5'= 
• - ( 1.1 1.' • B( 33' 
• .+ ( 3.1 24.' • B( 12' •• 4 • B( B2' + ( 1.1 2.' • B( 12' •• 
• 3 • B ( 83' + ( 1.1 1.' • B ( 11' .. B ( 61) .. B ( .84' + ( 1.1· 
• 1.' .B( 10' • B( 45' • B(85' 

c( 6. 1, (,,= · - ( 1.1 1.' • B( 34) 

· + ( 1.1 24.' • B( 12' •• 4 • B( 82' + ( 1.1 6.' • BC 12'" 

· 3 • B( 83' + ( 1.1 1.'. B( 62' • B( 84' + ( 1.1 I.' • B( 

· 46' .. B( 85' 

C( 6. 1. 1'= · - ( 1.1 1.' • B( 35' 

· + ( 1.1 24.' • B( 12'" 4 • B( 82' + ( 1.1 6.' • B( 12'· • 

· 3 • B( 83' + ( 1.1 1.'. B( 63' • B( 84' + ( 1.1 I.' • B( 
• 47) • B( 85' 

C( 6. 1. 8'= 
- I 1.1 1.' • B( 36' 

• + ( 1.1 120.' • B( 12' •• ·5 • B( 82' + (·1.1 24.' • BI 12'.~ 
• 4 • BI 83' + ( 1.1 24.' • BIll' •• 4 • BI 84' + I 1.1 24.' 

.•• Be .10' •• 4 • B( 85' 

ce 6, 1. 9'= 
•. - I 1.1 1.' • B( 31' 
.+ ( 6.1 120.' • B( 12'** 5 • B( 82' + ( 1.1 4.' • B( 12'** 

350 



• 4 • BI B31 + I 1.1 2.1 • BI 111" 2 • BI 611 • BI 841 + I 
• 1.1 2.1 • BI 101 •• 2 • BI 451 • BI 851 

CI 6, I, 101= ' 
• - I 1.1 1.1 • BI 381 
• + I 4.1 120.) • BI 121 •• 5 • BI 821 + I 1.1 6.1 • BI 121 •• 
• 4 • B I 831 + I 1.1 1. I • B ( 11) • B I 62), • B I 841 + I 1.1 
• 1.1 • BI 101 • BI 461 • BI 851 

CI 6, I, 111= 
• - I 1.1 1.1 • BI 391 
• + I 4.1 121).1 .. ·BI 121 •• 5 • BI 821 + I 1.1 6.1 • BI 121" 
• 4 • BI 831 .. I 1.1 1.1 • BI 111 .• BI 631, • BI 841 + I 1.1 
• 1.1 • BI 101 • BI 411 • BI. 851 

CI 6, I, 121= · - I 1.1 1.1 • BI 401 

· + I 1.1 120.1 • BI 121 •• ,5 • BI 821 + I 1.1 24.1 • BI 121 •• 
• 4 • BI 831 + I 1.1 1.1 • BI 641 • BI 841 + I 1.1 1.1 • BI · 481 • BI 851 

CI 6, 1, 131= · - I 1.1 1.1 • BI 411 

· + I 3.1 120.1 • BI 121·· 5. BI 821 + I 3./ 24.1 • BI 121·· 

· 4 • BI 831 + I 1.1 1.1. BI 651 • BI 841 + I 1./ 1. I • BI · 491 • 81 851 

CI 6, I, 141= 

· - I 1.1 1.1 • BI 421 

· + I 1.1 120.1 • BI 121·· 5 • BI 821 + I 1.1 24.1 • BI 121·· 
• 4 • BI 831 + I 1.1 1.1 • BI 661 • BI 841 + I 1./ 1.1 • BI 

· 501 • BI 851 

CI 6, 1, 151= · - I 1.1 1.1 • BI 431 

· + I 1.1 120.1 • BI 121·· 5 • BI 821 + I 1.1 24.1 • BI' 121 •• 
• 4 • BI 831 + I 1.1 1.1 • BI 611 • 81 841 + I 1.1 1.1 • BI · 511 • BI 851 

CI 6, I, 161= 
• - I 1.1 1. I • B I 441 
• + 1,3.1 120.1 • BI 121 •• 5 • BI 821 + I 1.1 8.1 • HI t"2'1 •• 
• 4 • BI 831 + I 1.1 2.1 • BI 61, •• 2 • BI 84' + I 1.1 2.1 • B 
.1 451 •• 2 • BI 851 

'COMMENT' EQUATIONS WHICH DEfINE THE UNDETERMIhEO PARAMETERS 
USED IN THE EXPANSION Of Ell 2/1., 

CI 7, I, 11= 
- I 1.1 1.1 • BI 451 

• + I 1~1 2.1 • BI 121 •• 2 • BI 191+ I 1.1 l.1 .. 81 121 • BI 
• 801 + I 1.1 1.1 • BI 111 • BI 811 

CI 1, 1, 2)= 
I 1.1 1.1 • BI 461 

• + I 1.1 6.1 • BI 121 •• 3 • BI 191 + I 1~1 2.1 • BI 121 •• 2 
• • BI 801 + I 1.1 2.1 • BI 111" 2 • BI 811 

CI 10 I, 31= 
• - I 1.1 1.1 • H~ 411 

351 



-
352 

• + I 1.1 6.) • BI 121" 3 • BI 79' + I 1.1 2.) .. BI 12)" 2 
• • BI 80) + ( 1.1 1.) • B( 611 • B( 8U 

C( 7, I, 4)= 
e 1.1 1.) • Be 48) 

• + ( 1.1 24.) • Be 121 •• 4 • Bf 79) + I 1.1 6.' • Be 12)'" 
• 3 • B (80) + e 1.1 6.) • B ( 11 I •• 3 • B I 811 

C( 7, I, 5)= 
- ( 1.1 1.) • Be 49) 

· + I 3.1 24.) • Be 12'" 4 • BI 79' + I 1.1 2.' • Be 12'" 
• 3 • B( 801 + I 1.1 1.) • BI 11) • BI 611 • BI 81) 

CI 1, I, 6)= 
- e 1.1 1.1 • BI 501 

· + I 1.1 24.) .BI 12) •• 4 • BI 191 + I 1.1 6.' • Be 12'·· 

· 3 • BI 80) + I 1.1 1.) • BI 62' • B( 811 

CI 1, I, 1)= 
- I 1.1 1.) • BI 51) 

· + I 1.1 24.1 • BI 121 •• 4 • BI 791 + e 1.1 6. I • B( 121·· 

· 3 • BI 80) + I 1.1 1.) • BI 63) • BI 811 

CI 1, I, 8'= 
- I 1.1,1. ) • BI 52) 

· + I 1.1 120.' • BI12' •• 5 • B( 79' + ( 1.1 24.) • B( 12'.· 

· 4 • 81 80' + ( 1.1 24.1 • B( 11'" It • B( 811 

C( 1, I, 9'= 
- ( 1.1"1.' • B(531 

• + ( 6.1 120.1 • ~( 12' •• 5 • 81 19' + ( 1.1 4.1 • B( 121 •• 
• 4 • B I 80 I + "I Ii. I 2. I • BIll' •• 2 • B ( 611 • B( 811 

CI 1, I, 1Q,= 
- I 1 • I 1.' • B ( 54 I 

• + ( 4.1 120.1 • Be 121 •• 5 • B( 79' + ( 1.1 6.' • B( 12' •• 
• 4 • 8( 801 + e 1.1 1.' • BIll' • Be 62' • B( 81' 

C( 7, I, 11'= 
- I 1.1 1.' • Be 55' 

• + I 4.1 120.1 • BI 12' •• 5 • BI 19' + I 1.1 6.' • BI 12' •• 
• 4 • B( 801 + ( l~1 1.' • BI 111 • 8( 63' • BI 81' 

I 

C( 1; I, 12'= 
- I 1.1 1.) • B( 56' 

• + ( 1./120.' • B( 12' •• 5 • B( 19' + I 1.1 24.' • 81 '12' •• 
• 4 • 8( 80) + I 1.1 1.' • BI 64) • B( 811 

C( 1, I, 13'= 
I 1.1 1.' • B( 51' 

· + I 3.1 120.' • 81 12) •• 5 • BI 19' + ( 3.1 24.' • B( 12'·· 
• 4 • 8 ( 801 + ( 1.1 1.) • B( 651 • B( 811 

CI 1, I, 141= 
( 1.1 1.) • 81 58) 

· + I 1.1 120.' • 81 12' •• 5 • iH 79' + I 1.1 24.1 • B( 12' •• 
• 4 • 8( 80' + e 1.1 1.) • 81 66) • B( 811 

C( 1, I, 15)= 
- I 1.1 1.) • BI 59' 

• + ( 1.1 120.' • B( 12) •• 5 • BI 79' + I 1.1 24.1 • BI 12) •• 
• 4 • B I 80) + I 1.1 1.) • B I 67) • B 181 , 



CC 7, I, 161= 
- ( 1.1 1.1 • B( 60) 

• + ( 3.1 120.1 • B( 12) •• 5 • B( 791 + ( 1.1 8.1 • BI 121 •• 
• 4 • BI 801 + I 1.1 2.1 • B( 61, •• 2 • BI 811 

'COMMENT' EQUATIONS ~HICH DE~INE THE UNDETER~INED PARAMETERS 
USED IN THE EXPANSION OF E(I 3/1., 

C( 8, I, 11= 
- I 1.1 1.1 • 8( 611 

• + I 1.1 2.1 • B( 121 •• 2 • B( 771 + I 1.1 1.1 • B( 121 • BI 
• 781 

CI 8, I, 21= 
- ( 1.1 1.1 • BI 621 

• + I 1.1 6.1 • BI 121 •• 3 • Be 771 + I 1.1 2.1 • B( 121 •• 2 
• • BI 781 

CC 8, I, 31= 
- I 1.1 1. I • B I 631 

• + I 1.1 6.1 • BI 121" 3 • B( 771 + I 1.1 2.1 • B( 121 •• 2 
• • B( 781 

CI 8, 1 •. 41= 
- ( 1. I 1.·' • B ( 64 I 

• + ( 1.1 24.1 • B(121 •• 4 •• B( 171 + I 1.1 6.1 • BI 121 •• 
• 3 • B( 781 

CC B, I, 51 .. 
- I 1.1 1.1 •. B( 651 

• + I 3.1 24.1 ~ BI 121 ••. 4 • BI 771 + I 1.1 2.1 • B( 121 •• 
• 3 • B I 781 

C( 8, I, 61= 
- t 1.1 1.1 • BI 661 

• + I 1.1 24.1 • BI 121" 4 • BI 771 + I 1.1 6.1 • BI 121 •• 
• 3. B ( 781 

CI 8, I, 71= 
- 11./1.1. BI 671 

• + ( 1.1 24.1 • BI 121" 4 • BI 771 + I 1.1 6.1 • BI 121" 
• 3 • BI 781 

CI 8, I, 81= 
- ( 1.1 1.1 • BI 681 

• + ( 1.1 120.1 • BI 121 •• 5 • B( 771 + I 1.1 24.! • BI 121 •• 
• 4 • B' 781 

C' 8, 1, 91= 
- , 1.1 1.1 • BI 691 

• + ( 6.1 120.1 • B( 121 •• 5 • BI 771 + , 1.1 4.) • BI 121 •• 
• 4 • B' 781 

C( 8, I, 101= 
- I 1.1 1.1 • B( 701 

• + ( 4.1 120.1 • B(,121 •• 5 • BI 771 + I 1.1 6.1 • B' 121 •• 
• 4 • B I 781 

CI 8, I, 111= 

353 



- ( 1.1 1.1 • 8( 711 
• + ( 4.1 120.1 • 8( 121 •• 5 • 8( 771 + ( 1.1 6.1 • B( 121 •• 
• 4 • 8( 781 

C( 8,: I, 121& 
- ( 1.1' 1.1 • 8( 721 

• + ( 1.1 120.1 • 8( 121 •• 5 • B( 771 + ( 1.1 24.1 • 8( 121 •• 
• if. 8(781 

E( 8, I, 131" 
- ( 1.1 1.1 • 8( 731 

• + ( 3.1 1Z0.1 • 8( 121 •• 5 • B( 771 + ( 3.1 24.1 • 8( 121 •• 
• 4 • B ( 78 I 

C( .8, I, 141= 
- ( 1.1 1.1 • B( 741 

• + I 1.1 120.1 • BI 121 •• 5 • 81 771 + I 1.1 24.1 • 8( 121 •• 
• 4 • 8 ( 781 

CI '8, 1.' 151= 
- I 1.1 1.1 • 81 751 

• + I 1./120.1 • B( 121 •• 5 • BI 711 + I 1.1 24.1 • B( 121 •• 
• 4 • 8( 781 

CI 8. 1. 161= 
." - ( l~/·l.J·. Be 16) 
• ~ I 3~1 120.1 .8( 12' •• 5,. 81 771 + ,I 1.1 8.1 • BI 121 •• 
• 4 • 8( 781 

, -
DEFINE THE UNDETERMINED PARAMETERS 8(/ ••• /' 8Y PRINTING OUT 

THE EXPANSIONS OF E(/I,K/I. I IN M.= (l,.~ •• E.QI. K IN P.­
(O ••••• ORDER - 1', WITH RESPECT TO THESE PARA"ETERS, 'IF' MODE 
'EQUAL' 0 'THEN' THEIR LOCAL ORIGINS ARE THE POINT 0 'ELSE' 
'IF' MODE 'EQUAL'-l 'THEN' THEY ARE.- 11 • H WHERE 11.~ 1'1' Q 

E(/ 1. all •• ' U(/ 011 811 111 , (/ all .+ SUMII ,0, 
+ 111* AI O*H'''III' 

E(/ 2. 011.= U(/ 011 811 2/' , II all +' SUM( 1,0, 
+ 111* AI O*H'''III' 

E(/ 3, 011.= U" 011 811 311 I II Oil + SUM(I,O, 
+ 111* AI o • HU/III' 

15,811 

15,B(/ 

15,B(/ 

29 

45 

61 

"COMMENT~ LAST 1959lAST1.- 0 TEMPO-lAST~· 4041 (1ST LENGTH-TEM 
PO.= 1000 

. NEXT FREE PARAMETER 8(1 91/'., 

END OF COMPUTATIONS. 

354 



TABLE I II KNOWN COEFFiCIENTS 

COMMENT THESE ARE RK4 CLASSIC COEFFICIENTS 

B( 1)= ( 01 1)= O. 
Be 2)=e -11 2)=-5.0000000000000E-Ol 
B,' 3,=e -11 

" 
2)=-5.0000000000000E-Ol 

" Be 4)=( 11 1)= 1.0000000000000E+OO 
B' 77)=( 11 1)= 1.OOOOOOOOOOOOOE+OO 
B( 78'=( 11 2)= 5.QOOOOOOOOOOOOE-Ol 
Be 19)=( 11 1)= 1.0000000000000E+OO 
B( 80)=( 01 1)= o. 
D( 81)=( 11 2)~ 5.0000000000000E-Ol 
Be 82)=( 11 l)= 1.0000000000000~+OO 
B( 83'=( 01 1)= o. 
B( 84' = ( 01 1)= O. 
B( 85'=( 11 1)= 1.0000000000000E+OO 
B( 86)=( 11 1)= 1.OOOOOOOOOOOOOE+OO 
B( 87,=e 11 6)= 1.6666666666667E-Ol 
B( 88)=( 11 3)= 3.3333333333333E-Ol 
B( 89)=( 11 3)= 3.3333333333333E-Ol 

\ 

B( 90)=( 11 6)= 1.6666666666661£-01 

-

COMMENT FOR THE ABOVE COEFFICIENTS THESE VALUES ARE OBTA ItNED 

ce 1, 1, 1)= o. So Condition A 
\ 

C( 1, 1, 2)= 1.1763568394003E-15 
C( 2, 1, 1)= o. Sl " 

ce 2, 1, 2)= o. . 
C( 3, 1, 1)= o. 

s2 c( 3, 1, 2)= O. 
C( 4, 1, 1)= o. 

S3 C( 4, 1, 2)= o. 
C( 5, 1, 1)= o. be' '/flo Condition B ; SO 
C ( 5, 1, ~J= u. Ih5 1 , 
C( 5, 1, 3)= o. 2 
c( 5, 1, 4)= 2.1755515615629E-l1 3 
C( 5, 1, 5)= 4.4408920985006E-16 h4 4 

I, 

ce 5, 1, 6)= 3.3306690138755E-16 5 
C( 5, 1, 1)= 2.1155575615629E-16 6 
c( 5, 1, 8)= 3.4722222222222E-04 ,(5 

... 
C( 5, 1, 9)= 2.0833333333333E-03 9 
C( 5, 1,10)= -2.0833333333334E-03 10 !' 

ce 5, 1,11)= 8.3333333333332E-03 11 I, 

c( 5, '1,12)= -1.3888888888889E-03 12 Principal error term 
ce 5, 1,13)= -4.1666666666661E-03 13 

" 
c( 5, 1,14)= 2.d833333333334E-03 14 
c( 5, 1,15)= -8~3333333333331E-03 15 
C( 5, 1,16)= 6.25000000aOOOOE-03 21 .. 



TABLE III CONTINUED 

COMMENT THESE ARE RK4 GILL COEFFICIENTS 

B( U=( 01 1': O. 
B( 2)=( -11 Z'=-5.0000000000000E-OI 
B( 3)=( -11 2):-5.0000000000000E-Ol 
B( 4)=( 11 I): I.OOOOOOOOOOOOOE+OO 
Be '77): ( 11 1)= 1.0000000000000E+OO 
Be 18':( 11 Z)= 5.0000000000000E-Ol 
B( 79)=( 11 1)= 1.0000000000000E .... OO 
B( 8Z'=( 11 1'= 1.OOOOOOOOOOOOOE+OO 
B( 83)=( 01 U= o. 
Be 86):( 11 1'= 1.OOOOOOOOOOOOOE+OO 
B( 87)=( 11 6)= 1.6666666666667E-Ol 
B( 90)=( 11 6)= 1.6666666666667E-Ol 

B (80): (SQRT(Z.)-1.)/2. 
B(81)= CZ.-SQRT(Z.»)/2. 
B(84)= -SQRT(Z.)lZ. 
B(85)= 1.+SQRTC Z. )/Z. 
B(88)= (Z.~SQRT(Z."/6. 
B(89'= (Z.+SQRT(Z.»/6. 

COMMENT FOR THE ABOVE COEFfICIENTS THESE VALUES ARE OBTAINED 

c( It It 1)= o. ~O Condition A 
c( 1, It 2'= 5.3290705I82008E-15 
c( Z, It U= o. 

~1 C( Z, 1, 2)= O. 
--C( 3, 1, 1 J = o. ~2 C( 3, 1, Z): O. 
--C( 4, 1, I): o. 

~3 c( 4, 1, Z)= O. 
c( 5,: It 1)= -1.7763568394003E-15 h2 ?/J~- Condition B ~O 
C( 5, 1, 2) = 4.4408920985006E-16 ~. 1 
C( 5, 1, 3'= 4.44089Z0985006E-16 2 .. 

c( 5, 1, 4)= 5.5~11151231258E-17 3 
c( 5, 1, 5'= 2.Z204460492503E-16 h4 .4 
C( 5, 1, 6)= 4~1633363423443E-16 5 
C( 5, 1, 7)= 5.5511l51Z31258E-17 6 
C( 5, It 8)= 3.4722Z2222Z2Z1E-04 b 
C( 5, 1, 9'= Z.0833333333334E-03 9 i 

C( 5, 1,10)= -Z.0833333333333E-03 10 , 

C( 5, 1,lH= 8.3333333333333E-03 
~5 

11 
c·( 5, 1 tiZ) = -1.388888a888887E-03 12 Principal error term 
C( 5, 1,13)= -4. 166666666666ZE-03 13 
C( 5, 1 ti4) = Z.0833333333335E-03 14 
c( 5, 1,15)= -8.3333333333331E-03 15 
C( 5, 1,16)= 1.9352753919470E-03 21 



357 

TABLE III CONTINueo 

COMMENT THESE ARE RK4 STRACHEY COEFFICIENTS 

B( 1)=( 01 1)= O. 
B( 2)=( -11 2)=-5.000000o00000aE-OI 
Be 3)=e -11 2)=-5.0000000000000E-Ol 
Be 4)=( 11 1)= 1.0000000000000E+OO 
Be 77)=( 11 1)= 1.0000000000000E+OO 
B( 78)=( 11 2)= 5.0000000000000E-Ol 
S( 19)=( 11 1)= 1.0000000000000E+OO 
Be 80'=( -11 2'=-5.0000000000000E-Ol 
B( 81) = ( 11 1)= 1.0000000000000E+OO 
B( 82)=( 11 1)= 1.0000000000000E+OO 
B( 83)=( 01 1)= O. 
8( 84)=( 11 2)= 5.0000000000000E-Ol 
B( 85)=( 11 2)= 5.0000000000000E-01 
Be 86)=( 11 1)= 1.0000000000000E+OO 
Bf 87)=( 11 6)= 1.6666666666667E-Ol 
S( 88'=( 31 6'= 5.0000000000000E-Ol 
B( 89'=( 1/ 6)= 1.6666666666667E-Ol 
B( 90)=( 11 6'= 1.6666666666667E-Ol 

COMMENT FOR THE ABOVE COEFFICIENTS THESE VALUES ARE OBTAI~ED 

C( 1, 1, 1)= O. ~o Condition A · C( 1, 1, 2'= 3.5527136788005E-15 
C( 2, 1, 1)= o. ~1 ~ 

C( 2, 1, 2'= O. 
C( 3, 1, l)= o. 

~2 C( 3, 1, 2'= o. " 

C( 4, 1, lJ= o. ~3 C( 4, 1, 2'= o. 
C( 5. 1, 1)= -8.8811841970013E-16 ihe ~O Condition B ~O C( 5, 1, 2'= 2.2204460492503E-16 

h3 1 
C( 5, 1, 3)= O. 2 . 
ce 5, 1, 4)= 1.3877787807814E-17 3 

t' 

• ce 5, 1, 5)= 4.4408920985006E-16 h4 4 
C( 5, 1, 6)= 7.7715611723161E-16 5 " 

ce 5, 1, 7)= 9.4368951093138E-16 6 
., 

C( 5, I, 8)= 3.4122222222222E-04 ~ 
, 

C( 5, 1, 9)= 2.0833333333333E-03 9 .. 
C( 5, 1,10'= -2.0833333333337E-03 10 ", 

C( 5, 1,11)::= 8.3333333333329E-03 h5 11 ~Principal error term 
C( 5, 1,12)= -1.3888888888890E-03 12 • 
C( 5, 1,13)= -4. 1666666666664E-03 13 
C( 5, 1,14)= 2.0833333333333E-03 14 " 

C( 5, 1,15'= -8.3333333333333E-03 15 " 
C( 5, 1,16)= 1.6666666666661E-02 ' 21 

" 

" 



358 

TABLE I II CONTINUED 

COMMENT THESE ARE RK4CK COEFFICIENTS 

S( 1)=( 01 1)= O. 
S( 2)=( -21 5)=-4.0000000000000E-Ol 
B( 3)=( -31 5)=-6.0000000000000E-Ol 
B( 4)=( 11 1)= 1.00OOOOOOOOOOOE+OO 
B( 77)=( 11 1)= 1.OOOOOOOOOOOOOE+OO 
B( 18)=( 21 5'= 4.0000000000000E-Ol 
B( 7q)=( 11 1)= 1.OOOOOOOOOOOOOE+OO 
B( 80)=( -31 20)=-1.5000000000000E-OI 
B( 81'=( 31 4)= 1.5QOOOOOOOOOOOE-Ol 
B( 82)=( II 1)= 1.0000000000000E+OJ 
B( 83)=( 191 44)= 4.3181818181818E-OI 
B( 84)=( -151 44)=-3.4C9090909090QE-OI 
B( 85'=( 401 44'= 9.0Q0909090909IE-Ol 
B( 86)=( 11 1)= 1.OOOOOOOOOOOOOE+OO 
B( 87)=( 551 .360 )= 1.5277717117178E~01 
Be 88)=( 1251 360)= 3.4722222222222E-OI 
B( 8Q)=( 1251 360)= 3.4722222~22222E-Ol 
S( 90)=( 551 360)= 1~5277171777178E-01 

, 
COMMENT FOR THE ABOVE COEFFICIENTS THESE VALUES ARE OBTAINED 

C( It 1, U= o. So Condition A 
C( It 1, 2)= -8.8811B41910013E-16 
e( 2, 1,' U= o. sl e( 2, 1, 2)= 3.5521136188005E-15 
C( 3, 1, I)= o. :s 
C( 3 t 1, 2)= o. 2 
C( 4, 1, 1 J = o. 

S3 C( 4, 1, 2)= -3.5521136188005E-15 
e( 5, 1, 1)= 1.7763568394003E-15 h2 'lfJo Condition B So C( 5 t 1,. 2)= -3.3306690738755E-16 

h3 1 
C( 5, 1, 3)= 1.11156II123161E-16 2 

. C ( 5, 1, 4)= 5.1341BI4B88913E-16 ~ C( 5, It 5)= -1.1102230246252E-16 h4 
C( 5 t 1, 6)= -5.5511151231258E-11 5 
C( 5 t It 1)= 4.44089209B5006E-16 6 

. C ( 5, 1,.8)= 2.7171111711768E-04 t) I, -ce 5, I, 9)= o. 9 
C( 5, I t lO)= O. 10 
C( 5, 1,1l)= 8.3333333333329E-03 h5 11 )Principal error term 
C( 5, 1,12' = -1.1111111111110E-03 12 
C( .5, 1,13)= 1.1102230246252E-16 13 
C( 5, 1,14)= O. . 14 
C( 5, 1,15)= ~8~3333333333330E-03 15 
C( 5, 1,16'= 3.4090909090909E-03 21 ~ 

-



359 

TABLE IV DATA INPUT TO EXAMPLE 2 

DATA COMMENT ,-

" 

.-
1, Control 

1,1,1,1,1,3,3,3,1,2,1,1,0, 
FOR~ Output 

2, 

50,70,6000,7000,10,10,10, Set program parameters . 

1,3,2,2,1,7,3, Part icUlarize problem 

'FALSE', No input-:output 

Data table input 
0, Deri vative harmonic s 
1,2,1,1, D4x See Table VI 
0,0,0,0,0,0, 
'FALSE' 
~, 

n5x Appendix I 1,2,1,1, 
1,2,1,1, 
0,0,0,0, 
'FALSE' .. 
0,0,0, D6x 1,2,1,1, 
1,2,5,1, " 

1,2,1,1, 
1,2,1,1, 
'FALSE' 

Substitution harmonics 
2,1, See Table VI 
2,2,1,6,1,3, 0 7fJi Appendix I . 
2,2,1,24,1,4, 1 
3,2,1,1,1,0,2,0,0, 2 
2,2,1,120,1,5, 3 
3,2,1,1,1,1,2,0,0, 4 
3,2,lil,l,O,2,O,1, 5 
3~2,1,1,I,O,2,O,2, 6 
'FALSE' 

", 

1,0, Translation harmonics 
1,2,1,1, Ao See Table VII 
1,4,-1,1,10,1, Appendix I .. 
1,4,-1,1,10,1, 
1,4,1,2,10,2, 
1,4,5,2,10,2, 
1,4,1,2,10,2, 
1,4,1,2,10,2, " 
'FALSE' 



360 

TABLE IV CONT. 

DATA COMMENT 

0, Al 
1,2,1,1, 
0, 
1,4,-1,1,10,1, 
1,4,-4,1,10,1, 

. 0, 
0, 
'FALSE' 

,0,0, 
~ 1,2,1,1, 

0, 
1,4,-1,1,10,1, 
1,4,-1,1,10,1, 
1,4,-1,1,10,1, 
'FALSE' 
0,0,0, 

A3 1,2,1,1, 
0, 
0, 
0, 
'FALSE' 
0,0,0,0, A4 

" 

1.2,1,1, 
0,0, 
'FALSE' 
0,0,0,0,0, A5 1,2,1,1, 
0, 
'FALSE' 

, 

0,0,0,0,0,0, Af> 1,2,1,1, 
'FALSE' 
-1 End data table input 

COMMENT EXAMPLE 2, THE RANK IS 2, THE EXTENT IS 2. THIS 
CORRESPONDS TO A K= 2 FINITE DIFFERENCE SCHEME AND 
SHOULD BE COMPARED WITH THE K= 2 CASE OF BUTCHE~, 
JACM,12,1,1965, P.130., 

0,-1, Forward translation 

1,'TRUE',4, 1,'TRUe',3, 
1,'TRUE',2, I,'TRUE',I, Scheme 
3,1,'5, 0,2,O,4,I,J,I,1,1,2, 
3, 0,6', 0,2,0.4,1,0,1,1,1,2,1,3, 

4,-1, Print all parameter equations 

-4,'FAlSE', [Exit from program 



TABLE V OUTPUT FROM RKMI EXAMPLE 2 

CONTROL .= 1 

DATA INPUT THAT SETS COMPUTER VARIABLES 

1.-0., 'FOR' PRINT LENGTHI/I/).- I, I, 1. 1. 1. 3. 3. 3. 1~ 2. 
1. I, O. 'DO' 1.= 1+1 •• 

TYPE SET .= 2 
N FOR PRINT ~= 50 
LINE LENGTH .= 10 
ORIGIN OF TEMPORARY STORE.= 6000 
LIST LENGTH.= 1000 
MAXIMUM NUMBER OF VECTORS N OR SUMS ~.= 10 
MAXIMUM LENGTH OF A SUM .= 10 
MAXIMUM LENGTH OF A LIST PRODUCT .= 10 

DATA INPUT THAT PARTICULARIZES THE PROBLEM 

ORDER OF THE DIFFERENTIAL EQUATION .= 1 
O'POWER'IOROER+UPPERIX IS THE FIRST NEGLECTEO TAYLOR TERM, UPPER 

.= 3 
NU~BER OF POINTS IN ONE H INTERVAL .= 2 
NUMBER OF H INTERVALS.- 2 
PERIOD OF SCHEME .= 1 
NUMBER OF BASIC FUNCTIONS .= 1 
NUMBER OF DERIVATIVES WE ATTEMPT TO MATCH .= 3 

INOUT .= 'FALSE' 

DATA TABLE INPUT, 

DUMMY PRINT SCHEME. PRINT SCHEME.: 'FALSE' 

COMMENT EXAMPLE 2, THE RANK IS 2, THE EXTENT IS 2. THIS CORRESPONDS TO 
A K= 2 FINITE DIFFERENCE SCHEME AND SHOULD BE COMPARED WITH THE 
K- 2 CASE OF BUTCHER. JACM.12.1.1965.P.130 •• 

Nil 0/1.- XI Ell 411 I 

Nil 111.: XI Ell 311 I 

Nil 2/1.- XI Ell .211 I 

Nil 31l." XI Ell 111 ) 

Ell I, 0/1.= 
SUMI 1,0, l,SUMIJ.O, O,BII 23 + I • 1 + JII • EIIVII 0,111. JIIII+ 
SUMII.O. 2,BII 25 + III • NIIVII 1.111111 



WHERE VII Oil.'" 2. 41 AND VII 0.111.= VII 0/1(/111 
WHERE VII 111." ( O. 1. 21 AND VII 1.1/1.= VII 11111111 

Ell 0, 0/1.-
SUMII.O. 10 SUMI J.O.· O.BII 28 + I. • 1 + JII • EIIV"CI 0.111, JIIII + 
S\)MII,O, 3.BII 30 + III • NCIVII 1,111111 

WHERE VII 0/1.=1 2. 41 AND VII O,III.a VII 01111111 
WHERE VII 111.-' O. 1. 
III 

2. 31 AND VII 1,111.= VII 11111 

EIIO/I.- EIOI + ERROR TERMS. ALL DEFINING EQUATIONS ARE PRINTED BElO 
W 

C(/I.K.N/I. WHERE K IS IN (0 ••••• ORDER-11 AND N JS IN (0 ••••• IM(/0/'-11 
'COMMENT' EQUATIONS ARISING FROM REQUIRING 
E(/ ••• /I.- U(/ ••• /I ( ••• 1 + SUMII.O.IMI/O/'-l. ·B(/ ••• /I. A(/ ••• /II/I/II . , 

BI 41=B 0 
BI 51=B 0 + B( 11 
BI 61=B 0 -1 • BI 21 
BI 71=B 0 + B' 11 -1 • B' 21 
BI 81=B 0 -2 • B( ?' 

'COMMENT' CONDITIONS ON Ell 011 •• 

CI 10 I, 11= 
.11.1 1.1 • B·I 281 + I 1.1 1.1 • BI 291 - ( 1.1 1.1 

CI 10 1, 21= 
.1 1.1 1.1 • BI 61 • BI 281 + I 1.1.1.1 • BI 81 .BI 291 + ( 
• 1.1 1. I • B ( 30 I +1 1.1 1. I • B I 311 + ( 1.1 1. I • B I 321 
• +( 1.1 1.1 • B( 331 - ( 1.1 1.1 • BI 41 

CI 1. I, 31 • 
• 11./2.1. BL61 •• 2. BI 281 + 11./2.1. BI 81" 2. BI 
• 2 q I + ( 1.1 1. I • B ( 81 • B I 30 I + I 1. i 1. I • B ( 71 • B ( 
• 311 + ( 1.1 1.1 • B( 61 • BI 321 + I 1.1 1.1 • B( 51 • B( 
• 331 - ( 1.1 2.1 • B( 41 •• 2 

CI 1. 1, 41= 
.( 1.1 6.1 • BI 61 •• 3 • B( 2~1 + (.1.1 6.1 • B( 81 •• 3 • B( 
• 291 + ( 1.1 2.1 • B( 81 •• 2 • B( 301 + ( 1.1 2.1 • B( 71 •• 
• 2 • B( 311 + ( 1.1 2.1 • BI 61 •• 2 • B( 321 + ( 1.1 2.1 • B( 
• 51 •• 2 • B( 331 - ( 1.1 6.1 • 8( 41 •• 3 

'COMMENT' CONDITIONS eN E(I 111 •• 

CI 2. 1, 11" 
.( 1.1 1.1 • BI 231.+ ( 1.1 1.1 • B( 241 - , 1.1 1.1 

C( 2, 1. 21= 



• I 1.1 1. I • 8 I 6 I • 8 I 23 I + I 1.1 1. I • B I 8 I • B ( 24 I + ( 
• 1.1 1.1 • Be 251 + e 1.1 1.1 • Be 261 + e 1.1 1.1 • Be 211 
• - I 1.1 1.1 • Be 51 

ce 2. 1. 31= 
.e 1.1 2.1 • Be 61 •• 2 • Be 231 + e 1.1 2.) • Be 81 •• 2 • Be 
.241. e 1.1 1.1 • Be BI • Be 251 • e 1.1 1.1 • 8e 11 .'Be 
• 261 • e 1.1 1.1 • Be 61 • Be 271 - e 1.1 2.) • BC 51 •• 2 

CC 2. 1. 41= 
.1 1.1 6.1 • Be 61 •• 3 ~ Be 231 + e 1.1 6.) • Be BI •• 3 • 8C, 
• 241 • e 1.1 2.1 • Be 81 •• 2 • Be 251 + I 1.1 2.1 • Be 1, •• 
• 2 • Be 261 + e 1.1 2.1 • Be 61 •• 2 ~ Be 271 - e 1.1 6.1 • Be 
• 51 •• 3 

"CO~MENT" EQUATIONS ARISiNG FROM fe/OIK/I - EeOle/K/I.= oeH'POWER"eK 
+' 111 ••• 

ce 3. 1. 11= 
• + e 1.1 24.) • iH 61" 4 • 8e 281 
• • e 1.1 24.1 • 8e 81 •• 4 • Be 291 + I 1.1 6.1 • BI 81 •• 3 • 
• Be 301 + e 1.1 6.1 • Be 1, •• 3 • 81 311 + I 1.1 6.1 • Be 6' •• 
• 3 • Be 321 + I 1.1 6.1 • BI 51 •• 3 • BI 33) 

ce 3. 1. 21= 
• • e 1.1 120.1 • Be 61 •• 5 • BI 281 
• • I 1.1 120.1 • Be 81" 5 • BI 291 + I 1.1 24.) • BI BI" 
• 4 • Be 301 + e 1.1 24.1 • Be 11 •• 4'. BI 311 + I 1.1 24.1 • 
• Be 61 •• 4 • Be 32) + I 1.1 24.1 • BI 51 •• 4 • BI 33) 

ce 3, 1. 31= 
• + e 1.1 120.1 • Be 61 •• 5 • BI 281 
• • e 1.1 120.1 • 8e BI •• 5 • BI 291 + I 1.1 24~1 • BI 81 •• 
• 4 • 8e 301 + e 1.1 1.1 • Be 161 • BI 31' + e 1.1 24.1 • BI 
• 6' •• 4 • BI 311 ~ e 1.1 6.1 • Be l' • Be 61 •• 3 • Be 31) + 
• 1.1 4.1 • Be 11** 2 • Be 61" 2 • Be 311 + e 1.1 6. I • Be 
• 1, •• 3 • BI 61 • Be 311 + I 1.1 24.1 • Be 61 •• 4 • Be 321 + 
• e 1.1 1. I • 8 e 16 I • 8 e 33 I 

ce 3. 1. 41= 
• + e 1.1 120.1 • Be 61 •• 6 • Be 281 
• + e 1.1 120.1 • Be BI •• 6 • BI 29) + e 1.1 120.1 • Be 81 •• 
• 5 • Be 301 + I 1.i 120.1 • Bil'" 5 • BI 311 + e 1.1 120.1 
• • Be 61 •• 5 .' Be 32' + e 1.1 120.1 • BI 5' •• 5 • Be 331 

ce 3. 1. 51= 
• + e 5.1 120.1 • BI 61 •• 6 • Be 281 
• + e 5.1 120.1 • Be 81 •• 6 • Be 29' + e 1.1 24.1 • Be 81 •• 
• 5 • Be 301 + e 1.1 1. I • Be 11 • BI 161 • Be 311 + e 1.1 
• 24.1 • Be 61 •• 4 • Be 11 • Be 311 + e 1.1 6.1 • Be II • Be 
• 6' •• 3 • Be 11 • BI 311 + e 1.1 4.1 • Be I' •• 2 • Be 6' •• 
• 2 • Be 11 • BI 311 + e 1.1 6. I • BI 11** 3 • BI 61 • Bill 
• • BI 311 + I 1.1 24.' • Be 61 •• 5 • Be 321 + I 1.1 1.1 • BI 

51 • Be 161 • BI 331 

CI 3. 1. 61= 
+ e 1.1 120.1 • BI 61 •• 6 • BI 281 

• • e 1.1 120.1 • BI 81 •• 6. BI 291 + e 1.1 120~) • BI B) •• 
• 5 • BI 301 + e 1.1 1.1 • BI 61 • Be 161 • Bt 311 + I 1.1 1.1 

• Be III • Be 311 + e 1.1 120.1 • Be 61 •• 5 • Be 311 + I 1.1 
• 24. I • Be 11 • Be 61 •• 4 • Be 311 + I 1.1 12. I • BI 11 •• 2 
•• Be 61 •• 3 • Be 311 + e 1.1 12.1 • 81 II •• 3 • Be 61 •• 2 • 



.B( 31. + ( 1.1 120 ••• B( 61 •• 5 • B( 321 + ( 1.1 1.1 • B( 
• 171 • B( 331 

C( 3, I, 71= 
• + ( 1.1 120.1 • B( 61 •• 6 • B( 281 
• + ( 1.1 720 ••• B( 81 •• 6 • B( 291 + ( 1.1 120.1 • B( 8' •• 
• ,5 • B( 30' + ( 1.1 1.1 • B( 6' • B( 16' • B( 31' + ( 1.1 1.' 
• • B( 18' • B( 31) + ( 1.1 120.' • B( 6'" 5 • B(31) + ( 1.1 
• 24.1. B('I' • B( 61 •• 4 • B( 311 + ( 1.1 12.1 • B( 1, •• 2 
• • B( 61 •• 3 • B( 311 + ( 1.1 12.1 • B( 1, •• 3 • B( 61 •• 2 • 
• B( 311 + ( 1.1 120.1 • B( 61 •• 5 • B( 321 + ( 1.1 1.1 • B( 
• 181 • B( 331 

'COMMENT' EQUATIONS WHICH DEFINE THE UNDETER~INED PARAMETERS 
USED IN THE EXPANSION OF E(I 111., 

C( 4, I, 1)= 
- ( 1.1 1.1 • B( 161 

• + ( 1.1 24.1 • B( 61 •• 4 • B( 231 + ( 1.1 24.1 • Be 81 •• 4 
• • Be 241 + I 1./6.) • Be, 81 •• 3 • Be 25) + e 1.1 6.) • Be 
• 1)" 3 • Be 26) + e 1.1 6.1 • Be 6)" 3 • Be 211 

CI 4, I, 21= 
• - ( 1.1 1.) • Be 17) 
• + ( 1.1 120.1 • Be 6) •• 5 • Be 231 + e 1.1 120.) • Be 81 •• 
• 5 • Be 24) + e 1.1 24.) • BI 8' •• 4 • Be 25) + e 1.1 24.' • 
• BI 7) •• 4 • BI 261 + e 1.1 24.) • Be 61 •• 4 • B( 211 

C( 4, 1, 3). 
• - (1.1 1.) • Be 181 
• + I 1.1 120.1 • B( 61 •• 5 • Be 231 + ( 1.1 120.) • Be 8) •• 
• 5 • B( 241 + ( 1.1 24.1 • B( 8) •• 4 • B( 25) + ( 1.1 1.1 • B 
.( 16) • B( 26) + ( 1.1 24.1 • B( 6'" 4 • B( 261 + ( 1.1 6.1 

• B( l' • B( 61 •• 3 • B( 261 + ( 1.1 4.1 • 8( 11 •• 2 • 8( 
,. 61 •• 2 • B( 261 + ( 1.1 6.1 • B( 11 •• 3 • 8( 61 • Be 261 + e 
• 1.1,24.1 • B( 61" 4 • B( 271 

C( 4, I, 41" 
- ( 1.1 1.1 • B( 191 

• + I 1.1 720.1 • ~e 61 •• 6 • B( 231 + ( 1.1 720.1 • B( 81 •• 
• 6 • B( 241 + ( 1.1 120.1 • BI 81 •• 5 • 8( 251 + ( 1.1 120.1 
• • B( 1, •• 5 • B( 261 + ( 1.1 120.1 • B( 61 •• 5 • 8( 271 

C( 4, I, 51= 
• - 1.1 1.1 • B( 201 
• + 5.1 720.1 • B( 61 •• 6 • Be 231 + e 5.1 720.1 .' Be 81 •• 
• 6 • B( 241 + ( 1.1 24.1 • BI 8~ •• 5 • Be 251 + ( 1.1 1.1 • B 
.1 71 • B( 161 • B( 261 + ( 1.1 24.1 • B( 61 •• 4 • B( 71 • B( 
• 261+ I 1.1 6.1 .BI 11,. B( 61" 3 • B( 71 • B( 261 • ( 1.1 
• 4.1 • BIl, •• 2 • Bt 61 •• 2 • B( 11 • B( 261 + e 1.1 6.1 • B 
• ( U" 3 • B( 61 • BI 71 • B( 261 + ( 1.1 24.1 • Bt 6),. 5 • 
• B( 271 

C( 4, I, 61= 
• - ( 1.1 1.1 • B( 211 
• + I 1.1 720.1 • B( 61 •• 6 • B( 231 + ( 1.1 120.1 • B( BI •• 
• 6 • B( 241 + ( 1.1 120.1 • B( 81" 5 • B( 251 + ( 1.1 1.1 • 
• BI 61 • BI 161 • B( 261 + ( 1.1 1.1 • B( 111 • B( 261 + ( 1.1 
• 120.1 • B( 61 •• 5 • B( 261 + I 1.1 24.1 • B( 1) • B( 61 •• 



• ~ • BI 26' + I 1.1 12.' • BI 1' •• 2 • BI 6' •• 3 • B( 26' + I 
• 1.1 12.' • B( .1) .. 3. B( 6'" 2 • B( 26' + ( 1.1 120.' • B( 
• 6' •• S • B( 27' 

C( ~. 1. 7)= 

• - ( 1.1 1.' • B( 22) 
• + I 1.1 720.) ~ B( 6) •• 6 • B( 23) + ( 1.1 720.1 • B( 6) •• 
• 6 • BI 2~) + ( 1.1 120.) • B( 81 •• 5 • B(2_51 + ( 1.1 1.) • 
• B( 6) • B( 161 • B( 26' + ( 1.1 1.' • B( 18' • B( 26'+ ( 1.1 
• 120.' • B( 6'" 5 • B( 26' + ( 1.1 24.' • B( 11 • B( 6' •• 
• ~ • B( 26' + ( 1.1 12.' • BI 1' •• 2 • B( 61 •• 3 • B( 26' + I 
• 1.1 12.' • B( 1' •• 3 • B( 6' •• 2·. B( 26' + ( 1.1 120.) • B( 
• 6' •• 5 • SI 27' 

DEfiNE THE UNDETERMINED PARAMETERS B(/ ••• II BV PRINTING CUT 
THE EXPANSIONS OF EI/I.K/'. I IN M.= 11 ••••• E.Q). K IN P.= 
(O ••••• ORDER - 1,. WITH RESPECT TO THESE PARAMETERS. 'IF' MODE 
'EQUAL' 0 'THEN' THEIR LOCAL ORIGINS ARE THE POINT 0 'ELSE' 
'JF'MODE 'EQUAL'-l 'THEN' THEV ARE - II • H WHERE 11.= 1'1' Q 

Ell I, 01).: U(I 01' ( BII 
+ II'. AI O. H'I/I/', 

Ill) 1/ 011 +SUMII.O, 6.B(/ 16 

Ell 3. 0/'.= UII -1. HI' 
16 + III. AI -1. H)I/I/') 

81/ 1,') I," 0/) + SUMII.O. 6.B(/ 

'COMMENT' LAST 115~ LAST1.= 0 TEMPO-LAST.= ~B46 LIST LENGTH-TEM 
Po.= 1000 
NEXT FREE PARAMETER BII 34/' •• 

END OF COMPUTATIONS. 



366 

TABLE VI EXAMPLE 1 SCHEME PARAMETERS -35/128 

PARAMETER VALUES COMMENT 

B( 1)= -2.7343750000000E-Ol Bot : ...tv B( 2)= 1.0000000000000E+OO 
B( 4)= O. S· 1J. 7 , 5 'I hi B( 5)= -2.7343750000000E-Ol 

, 
( I I I ~ B( 6)= -1.0000000000000E+OO S'f 'to ..,. 3 ~ '·0 B( 7)= -1.2734375000000E+OO 

, 

B( 16)= 3.7384033203118E-02 0 7fJi Harmoni c s of s 1 
B( 17)= -1.0341838995613E-Ol 1 about to 
B( 18)= -1.0341838995612E-Ol 2 
B( 19)= 9.1921752008281E-02 3 
B( 20)= 2.7576525602483E-01 4 
B( 21) = 1. 8846137946288E-01 5 
B( 22)= 1.8846137946287E-01 6 

B( 23)= 1.oooooboOOOOOOE+OO Si S X 
B( 24)~ -9.6529017857132E-Ol i 2 3 2 1 
B( 25) =, '1. 6918526785713E+OO. 
B( 26)= 1.0000000000000E+OO 1 23 24 25 
B( 27)= -1.0952380952381E~OI 
B( 28)= 4.6257040450589E-Ol 0 26 27 28 29 
B( 29)= 6~4695340501791E-Ol 

FOR THE ABOVE PARAMETER VALUES THESE RESULTS ARE DBTAINEe 

C( 1, 1, 1)= O. So Condition A 
C( 1, 1; 2)= -3.5527136788005E-15 
C( 2, 1, 1)= 4.9737991503207E-14 h 

,C ( 2, ;1, 2)= -4.9737991503207E-14 
.-. 

C( 3, 1, 1)= O. h2 ?fJD Condition B So 
C( 3, 1, 2)= 2.2204460492503E-16 h3 1 
C( 3, 1, 3)= -2.6645352591004E-15 2 
C( 3, I, 4)= 6~2730577257364E-05 3 1 
C( 3, 1, 5)= 1.8819173117109E-04 h4 4 

~Principal error C( 3, 1, 6)= -5.3686135912681E-02 5 
C( 3, 1, 7)= -5.3686135912679E-02 6 ~ 

term' 



TABLE VII EXAMPLE 2 SCHEME PARAMETERS 

PARAMETER VALUES -7/32 COMMENT 

B( 1)= -2.1875000000000E-01 
Bol':: ~ B( 2)= 1.OOOOOOOOOOOOOE+OO 

B( 4)= O. 'S. g 7 (, S 

~ , I ' B( 5)= -2. 1875000000000E-Ol 
, 

I I B( 6)= -l.OOOOOOOOOOOOOE+OO I 1 
B( 7}= -1.2187500000000E+OO t· t 3 a. I o ~ t , 
B( 8)= -2.0000000000000E+OO 

B( 16)= 9.5407168007711E-05 0 7f!i Harmonics of' ~1 about to 
Be 17)= -1.8593644288477E-02 1 
B( 18)= -1.8593644287844E-02 2 
B( 19)= 2. 3451935087751E-02 3 
B( 20)= 1. 1725967543796E-Ol 4 
B( 21)= 2.1069520381382E-Ol 5 
B( 22)= 2.1069520380745E-Ol 6 

B( 23)= 8.5435638427522E+QO 
B( 24)= -7.5435638427513E+OO ~i ~ X 

.. 
B( 25)= -1.8735885620054E+OO i 2 4 4 3 2 1 B( 26)= -1.0072544642836E+Ol 
B( 21)= 5.1838193620896E+OO 1 23 24 25 26 27 B( 28)= 1.3003331746788E+OO 
B( 29)= -3.0033317467873E~01 0 28 29 30 31 32 33 B( 30)= -5.9487796120479E-02 
B( 31)= -7.7146392874144E-Ol 
B( 32)= 9.9055959747060E-Ol 
B( 33)= 5.4005895271257E-Ol 

FOR THE ABOVE PARAMETER VALUES THESE RESULTS ARE OBTAINED 

C( 1, 1, 1)= 6.3948846218409E-14 ~O Condition A 
C( 1, 1, 2)= -8.1712414612412E-14 
C( 1, ·1, 3)= 4.9293902293357E-14 

" 

C( 1, 1, 4)= -2.1260770921572E-14 
C( 2, 1, 1)= 9.0949470177293E-13 

~1 C( 2, 1, 2)= -1.1368683772162E-12 
C( 2, 1, 3)= 7.3896444519050E-13 
C( 2, 1, 4)= -4.0738939999230E-13 
C( 3, 1, 1) = 7.41665IH814600E-15 h~ 7f'0 Condition B !;O 
C( 3, 1, 2)- -3.0179851673307E-15 h5 1 
C( 3, 1, 3)= 1.2157592640949E-14 2 
CO( 3, 1, 4)= 2.7488253780019E-06 3 
C( 3, 1, 5)= 1.3744126839082E-05 h6 4 } PrinCipal error 
C( 3, 1, 6)= 4.3044447371057E-03 5 term . '" 

C( 3, 1, 7)= 4.3044447369593E-03 6 



368 

TABLE VII CONT. EXAMPLE 2 STABILITY CHECK -1132 

I I 2 3 

X (1) -2.1875E-OI 
A (I) 3.0033E-OI -1. 3003E+OO I.OOOOE+OO 

RHO (I ) 3.0033E-OI I.OOOOE+OO 
THETA(I) O. O. 

PARAMETER VALUES 177/256 COMMENT 

B( 1)= 6.9140625000000E-OI See previous case with 
B( 2)= I.OOOOOOOOOOOOOE+OO 
B( 4)= O. : tl = -7/32 
B( 5)= 6.9140625000000E-OI 
B( 6)= -I.OOOOOOOOOOOOOE+OO 
B( 7)= -3.0859375000000E-Ol 
B( 8)= ~2.0000000000000E+OO 

B( 16)= 9.5218637434513E-03 0 7fJi Harmonics of ~O about to 
B( 17)= -1.2899824826048E-OI 1 
B( 18)= -1.2899824826040E-OI 2 
B( 19) = 1.1508940408733E-OI 3 
B( 20)= 5.7544702043659E-Ol 4 
B( 21)= -3.6947052581091E-Ol 5 
B( 22)= -3.694705258106IE-OI 6 

B( 23)= 8.830400Q415720E+OO See previous case with 
B( 24)= -7.8304000415719E+OO 
B( 25)= ~2.7747193164008E+OO i l = -7/32 
B( 26)= 3.718375782190IE+OO 
B( 27)= -7.0826502573614E+OO 
B( 28)= 9.2205493921958E-Ol 
B( 29)= 7. 7945060780429E-02 
B( 30)= 1.9005618281631E-02 
B( 31)= 6.8211932288409E-OI 
B( 32)= 3.7184702411883E-Ol 
B( 33)= 4.9730954958851E-03 

FOR THE ABOVE PARAMETER VALUES THESE RESULTS ARE OBTAINED 

C( I, I, Il= O. ~O Condition A 
C( I, I, 2)= 7.5772721430667E-15 
C( I, I, 3)= -1.2059797604991E-14 
C( 1, 1, 4)= 5.1417203827953E-15 

, 

C( 2, 1, 1)= 1.1368683772162E-13 ~1 
C-, 2, 1, 2)= -2.2731361544323E-13 
C( 2, 1, 3)= 3.1263880373444E-13 
C( 2, 1, 4)= -3.1241675912952E-13 



TABLE VII CONT. 

C( 3, 1, 1)= -1.6930901125534E-15 h4 'l/Jo Condition A 
C( 3, 1, 2)= 4.9960036108132E-16 h5 1 
C( 3, 1, 3}= 1.5482840103962E-14 2 
C( 3, 1, 4)= 3.2831113151999E-05 3 

lPrinCiPal error C( 3, 1, 5)= 1.6415856515530E-04 ~6 4 
C( 3, 1, 6}= -8.9505511954445E-02 5 term 
C( 3, 1, 1)= -8.9505517954389E-02 6 

EXAMPLE 2 STABILITY CHECK 177/256 

I 1 2 3 

XU} 6.9141E-Ol 
A ( I , -7.7945E-02 -9.2205E-Ol 1.OOOOE+OO 

RHO(I) 1.1945E-02 1.OOOOE+OO 
THETA(I} 1.8000E+02 O. 



TABLE VIII EXAMPLE 3 

PARAMETER VALUES -55/256 COMMENT 

B( 
B( 
B( 
B( 
B( 

1)= 
2)= 
4)= 
5)= 
6)= 
7)= 
S)= 

-2. 1484375000000E-Ol 
1.0000000000000E+OO 
O. 

s~ =.Jv 
l>L 10 <J. B ., , ~ if 

-2. 1484375000000E-Ol 

,B( 
B( 
B( 

-1.0000000000000E+OO 
-1.2148437500000E+OO 
-2.0000000000000E+OO 

I I I I I I .~ 
t . ~ 5 't 3 a. I .. o. 1 .. 

(, 

10)= 

B( 18)= 
B( 19)= 
B ( 20) = 
B( 21)= 
B ( 22) == 
B( 23)= 
B ( 24) = 

-3.0000000000000E+OO 

1.3658533459804E-07 0 
-3.5596361412327E-03 1 
-3.5596361433155E-03 2 

6.0425894389404E-03 3 
4. 2298126075085E~02 4 
1.1208166814845E-OI 5 
1.1208166821050E-Ol 6 

3.5976231668263E+Ol 
-3.1099918878961E+Ol 

Harmonics of ~1about to 

B ( 25) = 
B( 26)= 
B <. 27) = 
B ( 28) = 
B( 29)= 
B ( 30) = 
B ( 31) = 
B ( 32) = 
B ( 33) = 
B ( 34) = 
B ( 35) = 
B ( 36) = 
B ( 37) = 
B ( 38) = 
B( 39);' 

-3.8763127892998E+OO ~i ~ X 
-9.7817667588986E-Ol 
-1.5254413783933E+Ol 
-2.9789337836564E+01 

7.9545400888260E+OO 
1.0923319157677E+OO 

i24664321 

1 25 26 27 28 29 30 31 

-1.2643169976527E-Ol 
3.4099783997631E-02 
8.9961593964621E-03 
4.7634536908740E-02 

o 32 33 34 35 36 37 38 39 

-6.5949997267148E-Ol 
1.0110443847661E+OO 
5.3359275983016E-Ol 

FOR THE ABOVE PARAMETER VALUES THESE RESULTS ARE OBTAINED 

C( 1, 1, 1)= 9.9475983006414E-14 
C( I, 1, 2)= ~1.1368683772162E-13 
C( 1, 1, 3)= 6.0840221749459E-14 
C( 1, 1, 4)= -2.1260770921572E-14 
C( 1, 1, 51= 7.5876804839226E-15 
C( 1, 1, 6)= -1.1492543028346E-15 
C( 2, 1, 1)= 2.1032064978499E-12 
C( 2, 1, 2)= -3.2969182939269E-12 
C( 2, 1, 3)= 2.5011104298756E-12 
C( 2, 1, 4)= -1.6674162051089E-12 
C( 2, 1, 5)= 8.0054539386420E-13 
C( 2, 1, 6)= -2.9013830183874E-13 

~o Condition A 

~C~( ~3.;.,.' ~1.;.,.' ~1.:-) =_-....;3~.;;...9:,..9:,.;;5~2~8:-::5:-::0:-::0:-:::5-:'6~O-:-9~I-=E_--:'-1 =7 ..... lh .... 1 o ___ 7/J .... ~'-t Condi t ion B 
C( 3, 1, 2)= 9.9261673506363E-17 h7 1 
C( 3, 1, 3)= -8.6935611941436E-15 2 

370 



371 

TABLE VIII CONT. 

C( 3, 1, 4'= -2.9878394336950E-05 3 
C( 3, 1, 5' =: -2.0914876031072E-04 

h8 4 
C( 3, 1, 6)= 4.1830494316906E-04 5 

Principal error, 

C( 3, 1, 7)= 4.~830494343131E-04 6 term 

EXAMPLE 3 STABILITY CHECK -55/256 

I 1 2 3 

X (I) -2.1484E-01 
A (I) -3.4100E-02 1.2643E-Ol -1.0923E+OO 

RHO(I) 1.8466E-Ol 1.8466E-Ol 1.0000E+OO 
THETACI) -7.5522E+Ol 7.5522E+Ol O. 

I 4 

A (I) 1.0000E+OO 

PARAMETER VALUES 189/256 COMMENT 

B( 1)= 7.3828125000000E-Ql See previous case with 
B( 2)= 1.000000000QOOOE+OO 
B( 4)= o. tl = -55/256 
B( 5)= 7.3828125000000E-01 
Be 6)= -l.OOOOOOOOOOOOOE+OO 
B( 7)= -2.617187500QOOOE-Ol 
Be 8)= -2.0000000000000E+OO 
B( 10)= -3.0000000000000E+OO 

B( 18)= 2.2490470311531E-04 0 </!i Harmonics of ~O 
B( 19)= -4.9111151787269E-02 1 about to 
B( 20)= -4.9111151785584E-02 2 
B( 21)= 6.9066665619596E-02 3 
B( 22)= 4.8346665933678E-Ol 4 
B( 23)= -2.0539578168642E-Ol 5 
B( 24)= -2.0539578167701E-01 6 

B( 25)= 5.6803094838622E+Ol See previous case with 
B( 26)= -3.6292289144468E+Ol 
B( 27)= -1.9510805694152E+Ol tl := -55/256 
B( 28)= -5.4327395775294E+OO 
B( 29)= -4.3689122954257E+Ol 
B( 30)= 5.5858992806255E+OO 
Be 31)= -3.0039656031613E+01 
Be 32)= 6.9220393663531E-01 
Be 33)= 2.7689156653732E-01 
B( 34)= 3.0904496827364E-02 

, B ( 35)= 7.1917265804906E-03 
B ( 36)= 1.4057619056241E-Ol 
B( 37)= 6.1183394188573E-Ol 
B( 38 )= 5.7737323850185E-Ol 
Be 39)= 1.7254626615661E-03 



372 

TABLE VIII CONT. 

FOR THE ABOVE PARAMETER VALUES THESE RESULTS ARE OBTAINED 

C( 1, 1, U= o. ~O Condition A 
C( 1, 1., 2)= 8.6181062286528E-15 
C( 1, 1, 3)= -1.2392864512378E-I4 
C( 1, 1, 4)= 1.316308173511ZE-14 

'C( 1, 1, 5)= -5.2410333017949E-15 
C( 1, 1, 6)= 2.7792438489493E-I5 
C( 2, 1, 1)= 2.2737367544323E-I2 ~1 C( 2, 1, 2)= -4.2064129956998E~12 
C( 2, 1, 3} =, 5.1159076974727E-I2 
C( 2, I, 4)= -4.9449333516804E-I2 
C( 2, I, 5}= 2.4159008127356E-12 
C( 2, 1, 6)= -I.304546748404IE-I2 
C( 3, 1, U= -6.1640959263948E-I6 h b '/flO lJoncn "tlOn.l::S ~O 

• C ( 3, 1, 2)= 2.669780081I098E-I6 h7 1 
C( 3, . 1, 3}= 1.8530294486341E-I3 2 
C( 3, 1, 4)= -1.3235635893351E-06 3 
C( 3, 1, 5)= -9.2649451131932E-Q6 h8 4 I Principal error 
C( 3, 1, 6}~ ~3.0148486496469E-02 5 . . term 
C( 3, I, 1)= -3.0148486495435E-02 6 

.,,-. 

EXAMPLE 3 STABILITY ··CHECK 189/256 

'1 1 2 3 

X (1) 1.3828E-Ol 
A (I) -3.090AE-02 -2.7689E~OI -6.9220E-Ol 

. RHO ( I ) I.7580E-Ol 1.7580E-OI I.OOOOE+OO 
THETA(I) -1.5110E+02 1.51IOE+02 0 .. 

I 4 

A(1) 1.0000E+OO 



TABLE IX EXAMPLE 4 

PARAMETER VALUES -13/64 

B ( 1) = -2.0312500000000E-Ol B~=~ 
1.0000000000000E+OO 

COMMENT 

B( 2)= 
B( 4)= 
B( 5)= 
B( 6)= 
B( 7)= 
Bf 8)= 
8 ( 10) = 
B ( 12)= 

o. Bi I~ /I 10 q V 7 6 S" ." 

-2.0312500000000E-Ol I I J I t+ -t hl 
-1.0000000000000E+OO -+-f--+J---II--- -c-+- 13 
-1.2031250000000E+OO ti 9' 7 , 5 "I 3 ~ I 0 If t 

B ( 20) = 
B( 21) = 
B( 22)= 
B ( 23) = 
B ( 24) = 
8(25)= 
B ( 26) = 

-2.0000000000000E+OO 
-3~OOOOOOOOOOOOOE+OO 
-4.000000000COOOE+OO 

7.1885178365427E-ll 0 
-7.5284008171891E~04 1 
-1.5284008227385£-04 2 

1.6231158189083E-J3 3 
1.4608042370796E-02 4 
4.9377922165884E-02 5 
4.9377922201086E-02 6 

9.0836146601243E+Ol 
-5.7701011723012E+Ol 
-2.8882851280867E+Ol 
-3.2462716033591E+00 

'l/Ji Harmonics of SO about to 

B ( 27) = 
B ( 28) = 
8 ( 29) = 
B ( 30) = 
B( 31)= 
B ( 32) = 
B ( 33) = 
B( 34)= 
8 ( 35) = 
B ( 36) = 
B( 31)= 
B ( 38) = 
B ( 39 ~ = 
B ( 40) = 
B( 41)= 
B ( 42) = 
B(· 43)= 
B ( 44) = 
B ( 45) = 

-7. 5385949973605E-0 1 sO s X 
-1.4751932004396E+Ol 
-5.6894706452300E+Ol 0 2 4 6 8 8 6 4 3 2 1 
-6.3432869222155E+Ol 

1.1418695084360E+D 1 1 27 28 29 30 31 32 33 34 35 
1.1417250703161E-Ol 
3.2180748571091E-Ol 0 36 37 38 39 40 41 42 43 44 45 
4.5770073285158E-Ol 
4.6319274405917E-02 
1.0452001726922E-02 
2.2680839056931E-Ol 
1.6355523090345E-Ol 

-2.7178502802622£-01 
1.1419380743356E+OO 
5.1119810512282E-Ol 

FOR THE ABOVE PARAMETER VALUES THESE RESULTS ARE OBTAINED 

C( 1, 1, 1)= 2.1316282072803E-14 
C( 1, 1, 2)= 5.6843418860808E-14 
C( 1, 1, 3)= -7.4162898044960E-14 
C( 1, 1, 4)= 1.0336176359260E-13 
C( 1, 1, 5)= -5.4678483962789E-14 
C( 1, 1, 6)= 3.0296294986631E-14 
C( 1, 1, 7)= -1.4030965245996E-14 
C( 1, 1, 8)= 5.7578180555519E-15 
C( 2, 1, 1)- 4.4906300900038E-12 
C( 2, 1, 2)= -7~332801Q330442E-12 

So Gondi tion A 

373 



374 

TABLE IX CONT. 

.1 

C( 2, 1, 3)= 7.3328010330442E-12 ~1 Condition A 
C( 2, 1, 4)= -7.3801798006201E-12 
C( 2, 1, 5)= 4.7156358679024E-12 
C( :2, 1, 6)= -2.5848360723970E-12 
C( 2, 1, 7)= 1.5251306395059E-12 
C( 2, 1, 8)= -7.2241295839177E-13 
C( 3, 1, 1)= 3.1584707763270E'15 Ihts 7/10 ,-,ondJ.'tJ.on l:l ~O 
C ( 3, 1, 2 J- ~. 30ts42'J2I00 (~ot: it) h9 1 . 

C( 3, 1, 3)= 2.8729822594551E-15 2 
C( 3, 1, 4)= -6.1688291913145E-06 ·3 
C( 3, 1, 5)= -5.5519462718045E-05 h10 4 I Principal error C( 3, 1, 6)= -1.8189154884590E-04 5 term 
C( 3, 1, 7)= -1.8189154897543E-04 6 

EXAMPLE 4 STABILITY CHECK -13/64 

I 1 2 3 

X'I) -2.0313E-Ol 
, A ( I ) -4.6319E-02 -4.5770E-Ol -3.2181E-Ol 

RHO(I) 1.0872E-Ol 6.5273E-Ol 6.5273E-Ol 
THETAfl} 1.8000E+02 -1.2332E+02 1.2332E+02 

I 4 5 

A (I) 1.7411E'""01 1.0000E+00 
RHO (l ) 1.0000E+OO 

THETA(I) O. 

PARAMETER VALUES 195/256 COMMENT 

B( 1 f= 7.6171875000000E-Ol See previous case with 
B( 2)= 1.0000000000000E+00 
B( 4)= o. tl = -13/64 
B( 5)= 7.6171875000000E-Ol 
Bf 6)= -1.0000000000000E+00 
B( 7)= -2.3828125000000E-Ol . 
B( 8)= -2.0000000000000E+00 
B( 10)= -3~OOOOOOOOOOOOOE+OO 
B( 12)= -4.0000000000000E+00 ! 

B( 20)= 2.8108456175957E-06 o 7/1. Harmonics of ~O about to 
B( 21)= -1.6157738836915E-02 1 J. 
B( 22)= -1.6751738819361E-02 2 
B( 23)= 3.2221594335501E-02 3 
B( 24)= 2.8999434901404E-Ol 4 
B( 25)= -9.8316394112856E-02 5 
B( 26)= -9.8316393976117E-02 6 



375 

TABLE IX CaNT. 

B( 27)= 2.0536983350272E+02 See the previous case with 
B( 28)= 4.3921408186741E+Ol 
B( 29)= -2. 1197688558192E+02 tl = -13/64 B( 30)= -3.6314356107544E+01 
B( 31)= -8.8063187484961E+QO 
B( 32)= -1.3314678448849E+02 
B( 33)= -2.6831348403107E+02 
B( 34)= 7.7896031546224E+QO 
B( 35)= -8.4736728436299E+01 
B( 36)= 3.7294517398069E-01 
B( 37)= 4.1772793391875E-Ol 
B( 38)= 1.9551458658608E-01 
B( 39)= 1.3812305514491E-02 
B( 40)= 2.9591527068352E-03 
B( 41)= 8.3992250276174E-02 
S( 42)= 4.2161843561475E-Ol 

. B ( 43)= 5.7085515817217E-01 
B( 44)= 7.6986036773435E-Ol 
B( 45)= 9.0865913013098E-04 ." 

FOR THE ABOVE PARAMETER VALUES THESE RESULTS ARE OBTAINED 

C( 1, 1, 1)= 7.1054273576010E-15 So Condition A 
C( 1, 1, 2)= 2.6794538809938E-14 
C( 1, 1, 3)= -5.1701698478013E-14 
C( 1, 1, 4)= 2.8249971806282E-14 
C( 1, 1, 5)= -1.6683703030207E-14 
C( 1, 1, 6)= 1.0284470757654E-14 
C( 1, 1, 7)= -4.0702169282550E-15 
C( 1, 1, 8)= 1.6216987816270E-15 
C( 2', 1, 1)= -4.5474735088646E-12 sl C( 2, 1, 2)= 1.3642420526594E-12 
C( 2, 1, 3)= 1.7280399333686E-11 
C( 2, 1, 4)= -3.1516212358923E-l1 
C( 2, 1, 5 ).= 3.0240754345101E-11 
C( 2, 1, 6)= -1.8~28844602861E-l1 
C( 2, 1, 7)= 1.1777913713762E-11 
C( 2, 1, 8)= -6.6691679305800E-12 
C( 3, 1, 1)= -4.6963466474807E-16 h b 7/Jo Condition B sO 
Cf 3, 1, 2)= 2.4597152544462E-16 h9 1 
C( 3, 1, 3)= 1.2887068716132E~12 2 
C( 3, 1, 4)= 1.3754480577628E-07 3 
C( 3, 1, 5)= 1.2379029477152E-06 4-
C( 3, 1, 6)= -9.5814672040689E-03 hlO 5 I Principal error 
C( 3, 1, 7)= -9.5814671940321E-O~ 6 term 



TABLE IX CONT. 

EXAMPLE 4 STABILITY CHECK' 195/256 

I 1 2 3 

X ( I ) 7.6172E-Ol· 
A (I) -1.3812E-02 -1.9551E~Ol -4.1773E-Ol 

RHOn) 8.4485E-02 4.0434E-Ol '4.0434E-Ol 
THETA(I) 1.8000E+02 -l.32l4E+02 l.3214E+02 

I 4 5 

A (I) -3.7295E-Ol l.OOOOE 00 
RHO(I) 1.OOOOE+OO 

THETA(I} o. 

.. / 

r 



377 

TABLE X EXAMPLE 2 START -1132 

INTERVAL PARAMETER SET 1 

B( 8'= 7.8125QOOOOCOOOE-Ol 13,;. I~ " 10 

~ B( 9)= 7.8124999816152E-Ol I I I B( 10'= 5.2083333333333E-Ol . "88' t 
B( 1U= 2.6041666666666E-01 -(;. '1 3 ~ I 0 

B( 12'= O. " 
COEFFICIENT SET 1 . 

B( 77'= 1.OOOOOOOOOOOOOE+QO si S X 
B( 78'= 2.6041666666666E-01 
B( 79)= 1.0000000000000E+OO i 4 4 3 2 1 
B( 80)= -2.6041666990549E-01 
B( 8U= 7.8125000323882E-01 3 77 78 
B( 82)= 1.0000000000000E+OO 
B( 83'= 7.8124999261592E-01 2 79 80 81-
B( 84'= -7.8124998516484E-01 
B( 85'= 7.8124999071044E-01 1 82 83 84 85 
B( 86)-= 1.0000000000000E+OO 
B( 87'= 9.7656249780499E-02 o 86 87 88 89 90 
B( 88)= 2.9296875100110E-Ol 
B( 89)-= 2.9296874796406E-01 
B( 90'= 9.1656251254341E-02 

INTERVAL PARAMETER SET 3 

8( U= 1.0000000000000E+OO 
B( 2)= 1.0000000000000E+OO ~. , S 'I 3 ~ 

~B I 
L. 

Ib 
B( 3)= 6.6666666666666E-01 I I I I ,. 
B( 4'= 1.9999999999999E-Ol 
B( 5)= 7.8125000000000E-01 t· !i 'f 3 ~ t:: , I ' 

8( 6)= O. 

COEFFICIENT SET 3 

B(115,= 1.0000000000000E+QO 
8(116)= 1.7439999999999E-Ol 
8(117'= 2.5599999999998E-02 si S X 
B(118)= 1.0000000000000E+OO 
B(119'= -2.5037037031040E-01 i 6 6 5 4 3 2 
B(120)= 6.6778176025487E-02 
B( 121)= 8.5025886101158E-01 4 115 116 117 
B(122)= 1.0000000000000E+OO 
B(123)= 9. 3599999999993E-01 3 118 119 120 121 
8(124'= ~4.0051612903211E-01 
8(125'= -i.0783410138248E+OO 2 122 123 124 125 126 
8(126'= 1.5428571428570E+OO 
8(127)= 1.0000000000000E+OO 1 127 128 129 130_ 131 132 
8(128'= 4.1666666666650E-02 
B(129'= 3.6613843203960E-14 
8(130)= 3.7202380952384E-01 
B( 131)= 4.8214285714282E-01 
8 (132' = 1.0416666666666E-01 



TABLE X CONT. EXAMPLE 2 START 177/256 

INTERVAL PARAMETER SET 1 

B( 8)= 1.6914062500000E+QO 
B( 9)= 'l.6914062499823E+OC 
B( 10)= 1.1276041666667E+QO 
B( 11)= 5~6380208333333E-01 
B( 12)= O. 

COEFFICIENT SET 1 

B( 77)= 1.0000000000000E+OO 
B( 78)= 5.6380208333333E-01 
Be 79)= l~OOOOOOOOOOOOOE+OO 
B( 80)== -5.6380208337246E-01 
B( 81)= 1.6914062500391E+OO 
B( 82)= 1.0000000000000E+QO 
Be 83)= 1.6914p62499187E+OO 
B( 84)= -1.6914062498198E+QO 
B( 85)= 1.6914062498834E+OO 
B( 86)= 1.0000000000000E+OO 
B( 87)= 2.1142578124750E-01 
Sf 88)= 6.3421734375933E-01 
B( 89)= 6.3427734373160E-01 
B( 90)= 2.1142578126158E~Ol 

INTERVAL PARAMETER SET 3 

B( 1)= 
B( 2)= 
B( 3)= 
B( 4)= 
B( 5)= 
B(6)= 

1.0000000000000E+OO 
1.0000000000000E+OO 
6.6666666666666E-01 
2.0000000000009E-01 
1.6914062500000E+OO 
o. 

COEFFICIENT SET 3 

B(115)= 
B(116)= 
B(117)= 
B(118)= 
B(119)= 
B(120)= 

,B(121)= 
B(122)= 
B(123)= 
B(124)= 
B(125}= 
B(126)= 
B(127)= 
B(128)= 
B(129)= 
B(130)= 
B(131)= 
B(132)= 

l~OOOOOOOOOOOOOE+OO 
1.8817551963056E-Ol 
1. 1824480369526E-02 
1.0000000000000E+OO 

-4.5445214267355E-01 
-1.3420485839614E-03 

1. 1224608579242E+QO 
1.0000000000000E+OO 
1.8314087759795E+OO 

-3.6018519302512E-02 
-2.3382473995335E+OO 

1.5428571428564E+QO 
1.0000000000000E+OO 
4.1666666666742E-02 

-1.7551245388849E-15 
3.7202380952380E-01 
4.8214285714277E-C1 
1.0416666666670E-01 

See previous case with 

See previous case with 

See previous case with 

See previous case with 

378 



379 

TABLE XI EXAMPLE 3 START 

START FOR -551256 

INTERVAL PARAMETER SET 1 

B( 5)= -2.1484375000000E-Ol 8· 10 , r ., , S. II 

I 
. ~ 

B( 6)= O. 
f I I I I I r~1i ~ 

S( 7)= -2. 1484375000000E-Ol t 
S( 8)= -1.0000000000000E+OO -t~ 6 !r 't J .\ I 0 

S( 10)= -2.0000000000000E+QO 

COEFFICIENT SET 1 

B( 25)= 8.0769388137674E-Ol 
S( 26)= 1.4709500246681E-Ol ~i ~ X 
S( 27)= 4.5211116156451E-02 
S( 28)= 1.2699127279347E-02 i 2 4 6 6 4 3 2 1 
B( 29)= 1.1549256053058E-Ol 
S( 30)= 6. 1 25 26 27 27 29 30 31 
S( 31)= -1.0551820303021E-Ol 
B( 32)= 1.0716125982387E+OO 0 32 ~3. 34 35 36 37 38 39 
B( 33)= -6.6416959663704E-02 
Sf 34)= -5.~956385750449E-03 
S( 35)= -1~2609701702601E-03 
S( 36)= -2.6073845525025E-02 
S( 37)= O. ... 

B( 38)= -8.7058630558552E~02 
S( 39)= -1.7725854055996E-Ol 

~ 

STABILITY CHECK OF CORRECTOR 

I 1 2 3 

X (I) -2.1484E-Ol 
All) 5.1956E-03 6.6417E-02 -1.0716E+OO 

RHO(I) 4.4678E-02 1.1629E-OI 1.OOOOE+OO 
THETA(I) 1.8000E+02 O. O. 

I 4 
\ . 

A (I) 1.OOOOE+OO 



380 

TABLE XI CONT. EXAMPLE 3 START FOR 1&9/256 

INTERVAL PARAMETER SET 1 

B( 5)= 7.3828125000000E-Ol See previo~ set with 
B( 6)= o. 
B( 7) = 7 .• 3~28125000000E-Ol t = -55/256 
B( 8)= -1.0000000000000E+OO 
B( 10)= - 2. OOOOOOOOOOOOOE+:OO . 

, . 

COEFFICIENT SET ~ 

B( 25)= -6 .• 8810B03488247E+OO See previous set with 
B( 26)= 4.0869543144945E+OO 
B( 27)= 3.7941260343302E+OO t = -.55/256 
B( 28)= 1. 1274617846823E+OO 
Bt 29)= 7.1042760544924f+OO 
B( 30)= c. 
B( 31)= 4.181749~939803E+OO 

. B'( 32)= -3.5911200522334E-Ol . . 

B( 33)= 1.0244778344542E+OO . 
B( 34) = . 3.346341707~912E-Ol 
B( 35)= B.9704991856244E-02 
B( 36)= 8.9041530527373E-Ol .. 

. B ( 37)= o. 
B( 38)= 1.2340394364734E+OO 
B( 39)= 2.1786769238911E-Ol 

STABILITY CHECK OF CORRECTOR 

I 1 2 3 

XCI) 7.3828E-Ol 
A ( I) ,-3.3463E-Ol -1.0245E+OO. ' 3.5911 E .... Q 1 . 

RHO(I} 3.2296E-Ol 1.OOeJOE+OO 1.0362E+OO 
THETA(I) 1.8000E+02 O • 1.8000E+02 

.. 

I 4 , 

A ( I·) 1.OOOOE+OO 
o· 



381 

TABLE XII EXAMPLE 4 START 

START FOR -13/64 

INTERVAL PARAMETER SET 1 

a( 5)= -2.0312500000000E-Ol ~~ 1\ ,I 10 , , ., .. , 
k 1; B( 6)= o. I I I I I I I , B( 11= -2.0312500000000E-Ol 

Be 8)= -l.OOOOOOOOOOOOOE+OO ~~ , , Co 'I 3 s 1- I 0 
B( 10)= -2.0000000000000E+OO 
B( 12)= -3.0000000000000E+QO 

COEFFICIENT SET 1 

B( 21)= 1.1132624036918E-01 
B( 28)= 5.2919044055955E-02 
B( 29)= 1.4330664890230E-Dl 
Bf 30)= 2.6448066611965E-02 ~i ~ X 
B( 3U= 6.5122405381052E-03 
Be 32)= 9.2068517451195E-02 i 2 4 6 8 8 6 4 3 2 1 
B( 33)= 2~0760548052721E-Ol 
B( 34)= o. 127 28 29 30 31 32 33 34 35 
B( 35)= -9.0494696640064E-02 
B( 36)= 1.0929348438486E+OO o 36 37 38 39 40 41 42 43 44 45 
Be 37)= -1.1409776695964E-02 
Bf 38)= -1.9655777718015E-02 '.', 

Be 39)= -1.8692894345904E-03 
, 
.. 

, B ( 40)= -4.2660791629733E-04 
B( 41)= -9.3021170399682E-03 
S( 42)= -4.7297384656830E-02 
B( 43)= c. 
B( 44)= -8.0881326187540E-02 
B( 45)= -1.8154616463513E-Ol 

STABILITY CHECK OF CORRECTOR 

I 1 2 3 

XCI) -2.0313E-Ol 
A(J) 1.8693E-03 1.9656E-02 7.1410E-02 " 

'RHO(I) 9.1087E-02 9.1087E-02 2.2530E-Ol 
" THETA CI) -1.3660E+02 1.3660E+02 O • .. 

, I 4 5 

ACI) -1.0929E+OO 1.0000E+OO 
RHO(I) 1.0000E+00 

THETACI) O. 

" ' 



TABLE X II CONT. 

START FOR 195/256 

INTERVAL PARAMETER SET 1 

B( 5)= 7.6171875000000E-Ol See previous set with 
B( 6)= O. 
B( 7)= 7.6171875000000E-Ol tl = -13/64 
B( 8)= -l.OOOOOOOOOOOOOE+OO 
B( 10)= -2.000000QOOOOOOE+OO 
B( 12)= -3.0000000000000E+OO 

, 
COEFFICIENT SET 1 

B( 27)= -1.6683029324881E+Ol See previous set with 
B( 28)= -1.1924920363082E+Ol 
B( 29)= 2.3964116341398E+Ol tl = -13/64 
B( 30)= 5.6438333465649E+00 
B( 31)= 1.4351760001959E+OO 
B( 32)= 1.7593593201836E+Ol 
B( 33)= 2.7580200429486E+Ol 
B( 34)= o. 
B( 35)= 7.0875614778907E+OO 
B( 36)= -1.9308154367946E+OO 
B( 37)= 4.2207660908586E-Ol 
B( 38)= 2.1894575618534E+OO 
B( 39)= 3. 1928126585526E-Ol 
B( 40)= 7.6049433303698E-02 
B( 41)= 1.2698494619563E+OO 
B( 42)= 3.1205991376546E+OO 
B( 43)= O. 
B( 44)= 1.8547241922324E+OO 
B( 45)= 1.9933205521152E-Ol 

STABILITY CHECK OF CORRECTOR 

I 1 2 3 

X (I) 7.6172E-Ol 
A(I) -3.1928E-Ol -2.1895E+OO -4.2208E-01 

RHO (I ) 1.4433E+OO 1.4433E+OO 1.5328E-01 
THETA(I) -1.6421E+02 1.6421E+02 1.8000E+02 

I 4 5 

A (I) 1.9308E+OO 1.OOOOE+OO 
RHO(I) 1.0000E+OO 

THETA(I) O. 



TABLE XIII 

ERROR TERMS OF EXAMPLES. ERROR X SCALE 

.- ... EX. 7.1 RK3 EX. 7.2 EX. 7.~ JCB EX. 7.3 EX. 7.3 JCB EX. 7.4 EX. 7.4 JCB ! 
I 

'sCALE 104 104 104 104 104 105 105 5 106 . 6 106 
I - 10 10 

-35/128 -7/32 177/256 -1/2 .,.55/256 189/256 --1/2 -13/64 195/256 -1/3 
I 

t I -

*3 0.627 0 0.027 0.328 1·792 -2.988 -0.123 3.473 -6.169 0-.138 - .993 I 
I 

1fJ4 1.822 416.667 0.137 1.642 89.61 -20.91 -0.926 206.6 -55.52 1.238 522.4 

*5 -536.86 0 43.04 -895.1 -8.961 41.83 --3020. -24.31 -181.9 -9581. 8.937 

*6 -536.86 -416.667 43.04 ..;.895.1 -89.61 41.S, -3020. -206.6 -181. 9 -9581. -522.4 

\>l 

&1 



FI~URE 1 

/0 EXAMPLE 1 
ERROR TERMS 

SCALE 

Y3 X 10~ 

y., X , 0< 

1 6 Vs x 'O~ ~== ~~ 

flo X 'O~ 

4 Y,+ 

0t---~~--------------------~~--------~ 

-6 

-8' 

-/0 

XBL 6"810-6071 



N 

I..&.J ~ 
t- ......I ~ 
I 

I 

0- ~ 
~ 
« x 
x « 
I..&.J ~ 

N 

W 
a: 
~ 
to? 
lJ.... 

0 -

~ 
~ rt) 
'-D 

I 

)( 
«: 
E 

Q...., 

'00 
In 

~ -Il ,-------

'" -

~ 
~ 
~ 
I 

0 

o 
...:. 

0 

o 
I"'­
o 
-.() 

I 
o ...... 
00 
-.() 

..J 
c:I 
>< 



FIGURE 3 

f()F~--r-r-r--.---r-T~--'------' 
EXAMPLE 2 

SCALE 

8 ~ X 103 

% X 10
3 

b %x /0' 

%X /0' 

-~ 

-It 

-I. 

-10 

ERROR TERMS 

t, <0 

. XBL 6810-6072 

)86 



10 

b 

SCALE 
tt{ X 103 

'1'11)( 103 

\fs X lO~ 
~,,)( IO~ 

EXAMPLE 2 
ERROR TERMS 

t, > 0. 

Or-------------~-----------=~--------------

-4 

- .b 

-10 

~_-L-~~ __ ~~~~~~~~~ __ ~~ __ ~~~~ 
.:/.5.5 .7S 1.0 

XBL 6810-6073 



':'. 

FIGURE 5 

I.S 

EXAMPLE 3 
MAXIMUM ROOT 
.t, <: 0 

I.OI----..,.---'-------------~II!-----___I 

.S 

o 
-60 

'.5 

-ss 
t, X ~56 

EXAMPLE 3. 
MAX IMUM ROOT 

t, > 0 

-so 

,.0 1------~----------------____7''---___t 

.S 

o ~~-~~~~~-~-~~~~~-~~-~-~~. 
30 '10 5"0 60 

XBL 6810-6074 

388 



FIGURE 6 

10 t-- SCALE 
LV3 x IDS" 

"'If X ,oil 
'l's x/o3 

YJ" X /fl 

EXAMPLE 3 
ERROR TERMS 

t f < 0 

-ST;'S6 
Ir----STABLE ---41 

O~-+-------~~--------4-~'-----~ 

-6 '+'3 

t, 

XBL 6810-6.075 



FIGURE 7 

10 

y SCALE 

~ )(./O~ 

< ~y X 10" 

it'S" X IOl. 

It{)( 10" 
0 

EXAMPLE 3 
ERROR TERMS 

1:, > 0 

18s/:J..~f. 

1'Irt/J.S6 

XBL 6810-6076 

··390 



I , \ 
\ 

391 

FIGURE 8 EXAMPLE L 
MAXIMUM 

-t <.0 
I 

1.5 

I.Ot------ .-_ .. -- ~~--~-~--~~ L-- . 
I ../ 

,: r mAX ., 
.5 ! 

-SJ./2.56 

.5 

o ~ __ ~~ ____ ~ ____ L-____ L-____ L-____ L-~ 

1']0 ISo ~oo ~/O 

t X ~S'6 
I 

XBL 6810-6077 



10 

FIGURE 9 

SCALE 

~ X IOL 
't''1.)(. lOS" 

Ys X IO~ 

'fJl, x 10" 

EXAMPLE 4 
ERROR TERMS 

-t:, < 0 

If----+-..,...----I- STAB LE --~ 

O~--------+-----~~+----------------r----~ 

-b 

-\? 

-10 

XBL6810-6078 

392 



393 

FIGURE 10 

10 
'EXAMPLE 4 

ERROR TERMS 

g SCALE t. > 0 
I 89/J..S6 ~ X lOb 

b 
try )('105 

IV,r )(. 103 

If 
. 1ft. X /0

3 

195/),56 

OI------------------~~-----------------4 

I I 
10 

'YS- = \(, I I 

/70 . lifO ICfo ~OO ~/O ~~O 

-t.X:;t5'"6 

XBL 6810-6079 



394 

Appendix IV 

. USE OF PROCEDURE RKMI·· 

In this appendix, we give in:formation that will enable one to use 

the procedure RKMI. ; It is assumed that the reader is familiar with the 

work of Chapter III and that he thus understands, in principle., how a 

problem is to be set up •. In order to help clarify and fix these ideas, 

we present here one complete problem work sheet showing how the RK4 

classic example was set. up, along with a discussion ·of the program control 

sections. The reader can find the actual input data in Appendix III 

where that example appears in full detail. 

We also present two source listings that are sufficient to run the 

program. Source Listing 1 gives the input-output structure of the main 

program, while, qource Listing 2 gives the input-output structure of the 

data table input procedure data. These two same listings are all that 

are necessary to runRKMI once .an example is understood. Since such is 

the case and since one usually prefers not to have an ·excess of in:formation 

around when preparing data, we shall try and limit our discussion here 

to the essentials. Remember that there are complete examples given in 

Appendix III;· there are descriptions of examples in Chapter VI; there 

are descriptions of various parts of the program in Chapter V; there is 

a. description of the problem being solved in Chapter III; and, if 

disastrous situqtions arise, there are source listings in Appendix II . 
.. 

We give first a sample problem set up using the rank 4 Runge-Kutta 

scheme. We note that we have bee~ running~der the cDc Scope system(9 ) 

using their ALGOL Compiler. Cto) . Thus, all the data that we present is 

exactly that, a data rec9rd in the job set up and constitutes the data 



395 

to the ALGOL program. 

Example RK4 ! >t 
DPx Problem = X 0 ~ 3 2 1 0 

Scheme 

'Tlo = X( ~4); ~3 = ~4 +'Tl o 

'Tl1 = X( ~3) ; ~2 ;:: ~4 + 'Tlo + 'Tl1 

'Tl2 = X( ~2); h= ~4 + 'Tlo + 'Tl1 + 'Tl2 

'Tl3 = xC ~1 ) ; ~0 = ~4 +'Tl o +'Tl1 + 'Tl2 + 'Tl3 

The scheme given above is that which one would use to obtain a 

solution to the differential equation. It is better, however, to generate 

the scheme parameter equations by dOing all the substitutions first; how-

ever, we emphasize that this is not necessary and the interested reader 

can set up the above scheme. The equations obtained will look different 

from our example, but the results are the same. We thus use instead the 

Scheme 

'Tlo = X(~4); 'Tl1 X( ~3) ; 'Tl2 X(~2); ~ = X( ~1 ) ; 

~3 ~4 + 'Tl 
0 

S2 ~4- + 'Tl 0 + 'Tll 

~1 = ~4 + 'Tlo + 'Tl1 + 'Tl2 

So = S4 +'Tl o + 'Tl1 + 'Tl2 + 'Tl3 

rank = 4 principal error "[" ( 5 5 P+3)· o h , h , ... , h· 

period = 1 

extent 1 

£ = 1 

We can matcll h4 for th~ case p ";·1 and since we wish to have the principal 

error term; we chose n9t three, but instead foUr . derivatives. Th,'s, for 



, 
RKMI, we have the following parameter values: 

order = p = 1 e = extent = 1 

upper = £ = 1 period = 1 

Q = rank = 4 im [0] 16 

. im [i) = 4 

Using field free format(lO), this translates directly to the following 

data input: A listing of this data is given in Appendix III. 

1, 

1,1,1,1,1,3,3,3,1,2,1,1,0, 

2, 

50,70,6000,7000,10,10,10 

1,1,4,1,1,16,4, 

false, 

I 

) Value of control 

I A choice of FORTRAN equations 

) Computer parameters. are set 

) Proolem parameters set 

) No input-output desired. 

Insert data table (im[I],im[O],[kJ,+~,£) 

which is table. (4,16,0, +,1) 

comment This is the classical Runge-Kutta method of rank 4; 

0,.;.1 I Use an expansion about th e Icc al origin and 

translate to the origin 

l,true,4, l,true,3, l,true,2, 1 ,true,!, 

3,3,2, 

3,2,3, 

3,1,4, 

3,0,5, 

4, -1, 

-4, false, 

0,4,1,0, 

0,4,1,0,1,1, 

0,4,1,0,1,1,1,2, 

0,4,1,0,1,.1,1,2,1,3, 

} 

) 

Scheme 

Print results 

Stop without a list dump 

396 



, 

The data input to RKMI divides itself naturally into four separate 

blocks of information. 

1. Data input that sets computer variables. 

A look at Source Listing 1 will show that these parameters are 

almost self-explanatory. If a fuller explanation is desired, see the 

variable list given in Appendix II. It is necessary to have the values 

of print length readi,ly available so they are given here. The sub­

scripted variable print length [i) gives the length in characters of 

the character with name i for a given value of type set. Table 1 gives 

the appropriate values. 

Table 1. Values of Print Length 

Type 
Set 

~-~--. -
Value of Print Length [i) , 

Capital 
Character Letter [ ] ( ) u-u U-+iJ uxu; /' t .- , ; 

i 0 1 2 3 i 4 5 6 7 8 9 10 11 12 

1 2 2 2 1 , 1 3 3 3 1 7 2 1 2 
See the 

2 1 1 1 1 1 3 3 3 1 2 1 1 0 
note , 

3 2 0 0 1 1 3 3 3 1 7 2 0 2 
below. 

1 II 4 1 0 O. 3 3 3 1 2 1 0 0 

Note: Type Set = 1 CDC ALGOL subscripted variable output. 

Type Set = 2 FORTRAN subscripted variable output. 

Type Set 3 CDC ALGOL simple variable output. 

Type Set = 4 FORTRAN simple variable output. 

2. Data input that particularizes the problem. 

At the label - define, problem -are input", the variables that 

" 
characterize the differential eCluation, and the scheme. These include 

the scheme interval parameters of Chapter III and their meaning is 

397 



discussed there. Wi th regard to upper = I., we note that it is assumed 

that ~i = u(9 i ) + 2:: aiAi is an approximation and that ~(9i) = u(9 i ) + 

v (9 i ) is the true solution. The quantity I. gives the first term ofv 
I. . rk+l.+l 

since vL Em] =.if+" x( 0) + ... This in turn gives the lower 
(k+l.+l )! 

bound for the order of accuracy of all approximations and we indicate 

this by stating that yj!+1. x( 0) = Dt (order + upper) x( 0) is the first 

neglected Taylor term. 

The number of basic functions and the number of derivatives we 

attempt to match must be consistent and will come from the tables of 

Appendix I. We will have as many derivatives as we have orders taken 

from these tables. 

3. Data table input using procedure data 

At the larel- againl-we incounter the data input procedure data.' 

We note that the only. way tables can be read in,using this procedure, 

is to pass through the statement last data:=O. Thus, again 1 furn,ishes 

an entry point that allows all the names and all the lists, except the 

data table lists, to be erased. 

The tables are characterized by. the parameters (im[l], im[O], 

k E PcP = {a, ... , p - l}, ±, I.) where Pis the set of k values that 

appear explicitly in X 0 ~, I. is the value of upper and is a lower bound 

for the order of accuracy for the minor pOints, and the choice of + 

indicates that these tables are written for a forward translation; that 

is, mode = -1 and - for a backward translation with mode = O. Note 

the program determines' internally the correct coefficient for + or -

translation and either table can be used. This, however, was not always 

the case and to remain compatible with previously verified tables,the 

classification is still retained. Which table is used depends on the 

398 



399 

problem. For example, the RK4 case requires table (~16,0,+,1). 

In order to make the use of procedure data as easy as possible, we 

have given in this appendix a schematic source listing of data. Once 

this listing is understood with the aid.of the explanation given below, 

this source listing should suffice for the inputing of tables to data. 

We first not e that all input-output can be suppressed frqm data 

by setting inout to false before entering data. Whether or not the 

internal data list is output is controlled by reading a Boolean variable 

in table, true means that this interval list will be printed out. Since 

we are inputing the various harmonics tabulated in Appendix I, we shall 

use these tables to give a short illustrative example for each case 

encountered in data. The derivative, substitution, and multiplication 

harmonic s .come from Table VI of Appendix I. Let us assume im[ 0] = 3, 

.£ = upper = 1. This means that a SUitable, though not necessary, choice 

of im[l] is im[l] = 2. 

For derivative harmoniCS, we have that 

1 
1 

o 0 
A[O] + '1 A[t] + '1 A[2] = «1,1), (0,1), (0,1» 

1 r 
A[ 0] + 1" A[ 1] + 1" A[ 2] = «0,1); (1,1), (1,1) 

where we have given above both the expansion and. the list representation. 

We recall that for derivative and translation harmonics, these 

quantities are stored as a normal form list. Data requires two additional 

pieces of information. 

i) How many sons are input 

ii) How many atoms are in each son. 

The above harmonics would appear as the following· data 



400 

0, . These are deri vati ve harmonics 

1,2,1,1,0,0, false 

} 

} 

} 

) 

(1) 
0, 1,2,1,1 1,2,1,1, false 

-1, No more data input 

'. where the data lists are not output since the Boolean is false. Note 

that for each A[i] there is a son with atoms, zero is input as a zero 

son; that is, a nil list. For each derivative, there is a separate 

list terminat~dby the Boolean true or false depending on whether.that 

data list is or is not to be output. 

For substitution and multiplication tables, the list structure is 

as given in the explanation of Ze given in ChapterVI; that is, 

. (son 1,. son 2, •.. , son i, ... , son n) = 

( (numerator, denominator), (exponent), (der l' n 1, ... , der j' n., ... 
J 

der , n ),. .. (der., n1."' ..., der ,n ) , 
~ maxI 1. maxi maxi 

(der, n, ... , der' ,n ) ) . . max max 

The reader should be familiar with the description of Ze and also with 

Definition 7, Chapter III. The values of the atoms are obtained from 

Table IV of Appendix I. The number of sons is two more t~an the number 

of terms in the sum giving the table entry. Note that for substitution, 

the number of sons is always three; whereas for multiplication, the 

higher degree terms, in general, have more. The substitution table 

entries for our example are .! e1 .! e2 .! a
O 

0' 
1 '2 '1 , 

Notice that this table 

has a: . This becomes 
der,n 

2, 

1, 2,2,1.,;1,1,1, 2,1,2,1,2, 3,2,1,1,1,0,2,0,0,false 

-1, 

(2) 



Note that only the, exponent is entered for ei. The program internally 

uses the correct e i' Also, that a missing e is input as eO = 1, that 

is the exponent is 0. 

The corresponding multiplication table input is 

, 2, 

2, 0,0, 3,2,1,1,1,1,2,0, 0, false 

-1, 

As was previously the case, a missing (zero) quantity is input with ° 
sons. 

The translation table comes from Table VII of Appendix I. We b.ave 

that 

A(-h)[O] = 1A(0)[0] -h A(O)[1] - hA(0J[2] 

A( -h)[l ] OA( 0)[ 0] +1 A( 0)[1] + 0 A( 0)[2] 

A(-h)[2] OA(O)[O] +0 A(O)[lJ + 1 A(0)[2] 

which is 'input as 

1,0, 

1,2,1,1, 1,4,-1,1,C11, 1,4,-1,1,q,1,false 

0,1,2,1,1, 0, false, 

0, 0, 1,2,1,1, false, 

-1, 

Type = ° 
+h 
mode == -1 

. (4) 

where q can be any value. 'The program internally uses the rank of the 

scheme. 

The data separately input in (1), (2) ,( 3) , ( 4) can be combined by 

omitting the '-1 from' (1), (2), (3). It is suggested that, the reader use 

the above simple ,examples as a guide to Uriderstandihg, the data input of 

401 



402 

the examples given in full detail in Appendix III. 

4. Scheme Definition and Program Control. 

The rest of the data input used will depend on the values of control 

read, and these, in turn, will depend on what the users wish to generate 

as output. 

The action of the program for various values of control should be 

obvious from Source Listing 1 of this appendix. We give below some 

comments on the section: 

a) Control = ° 
A selection is made on whether we use forward or back­

ward translation. Which is used is up to the user; the 

translation tables are internally adjusted. This section 

must be entered at least once before creating a scheme. 

A mixture of forward and backward translation is not 

recommended; it will lead to confusion. 

b ) Control = 1 

The reader should be familiar with Definition 10, 

Chapter III. In this section, the approximators lj are obtained 

ei ther as a subst it ut i on lj = X( ~ i) or by multiplying the 

matrix DL X(~i) times some previously created sum S. The 

user first makes the choice of substitution which is true 

or derivative multiplication which is false. He then chooses 

the name (i) of the vector Si at which evaluation takes place 

and if a multiplication is to be perfonned, then the name (j) 

of the. sum S[j]. Since.the sum can be stored either perma.­

nently or temporarily, it is necessary to specify this; true 

means it was stored in temporary storage, false that it vras 



403 

stored permanently. Note that if the specified approximation 

does not exist as an approximation of the scheme, then it,i::> 

created and translated. This means that temporary storage 

may be written on starting from its origin temp0. This will, 

in effect, destroy a temporary sum 8 j . This, however, is no 

real problem since any S i' i E M == (0, ... , e X::]] can be 

created by performing a substitution X(Si) and the correspond­

ing Tj need never be used. 

As the new approximators and sums are constructed, they 

are sequentially numbered starting with o. 

As a simple example, we have 

d Tjo = X(S2) 

ii ) Tj 0 = DX( S 2) X 83 

1, true,2 

1,false,2,3;fa.lse 

where we assumed 8
3 

is stored permanently. 

c . Control = 2 

It should be kept in mind that the sums 8 constructed 

here are the sums of Definition 10, Chapter III, equation (94). 

The assignment temp:=true means that the presently constructed 

sum will be stored in temporary storage and will thus be , 

available only as long as this storage is not reused. The 

value temp:=false will cause a permanent storage of 8. The 

assignment linear comb :=false means that the coefficients of 

the sum are the identity; that is, a linear combination is not 

performed and new parameters are not introduced into the scheme. 

In particular cases, it may not make sense to take a linear 

combination; in these cases, a' straight sum can be perfo:rmed. 

To actually carry out the sU1Tnnation, we must specify the 



vectors to be summed and their type; that is, are they 

approximations (type =" 0) or approximators (type = 1). 'ie 

illustrate ~ simple case as 

S = ~o + E1 + ~O + ~2 

2, false,true,4,0,0,0,1, 1,0, 1,2, 

where a linear combination of four terms has been constructed 

and permanently stored. What order the terms appear in the 

sum is of no consequence. 

d. Control = 3 

Here a new approximation e. is constructed. We recall 
1 

from Chapter III that Ei is itself a sum of the same type as 

S; however, we attach a special significance to this sum by 

404 

interpreting it as an approximation to E(ti ). This is reflected 

here in that all E. are stored permanently. Upon specifying 
1 

the name i E M = (0, ... , €X~} of the approximation being 

constructed, we simply transfer to tLe lable new E and 

form the sum. 

Therefore, the input to construct a new Ei is almost 

identical to that of constructing a sum, the difference being 

that the two Booleans are missing and we must name theE i . 

As an example, we have 

3, 4, 4~ 0,0,1,0,1,1,1,2 

where the approximators TJ o are assumed already constructed. 

It is worth noting that we have been purposefully leaving 



405 

out the coefficient matrices. This is quite natural since 

RKMI will take care of this for us. We need simply tell it 

what to do with the elements that constitute the scheme. 

e. Control = 4 

It is here that we ask that all parameter defining 

equations be printed. Note that the previous input has 

characterized the problem and defined a scheme for its 

solution. Once we have defined the scheme, we proceed to 

this section to obtain the equations. In the layout of the 

scheme it has always been implicitly assumed that ~ 0::S ~'( to) 

has been construct'2d. In general, it is assumed that it is 

~o that we wish to have as our next value, so ~o is compared 

wi th ~ (to)' We have schematically laid out the interval as if 

to were the point furthest to the right, but this is only to 

have a diagram to talk about. Thus, by an appropriate choic e 

of the value of the interval parameters, the apprOximation. ~ 0 

can be interpreted as belonging to any value of t. 

At the present, we do, however, require that the origin 

be located at to = O. This pertains to the equations repre-

senting the harmonics of ~o. Note that if ~o has never been 

constructed, by accident or intent, all zeros will be printed 

since the lists representing the harmonics of ~o are nil.. 

We also implicitly assume that for any ~. that was 
. l 

created with undetermined parameters there is also available 

a constructed representation of either ~. or ~[index(i)]. 
. l 

This is necessary so that there will be equations that define 

. the undet~rmined parameters. 



Once this section is entered, there ~re printed the 

parameter defining equations caused by requiring that in 

im[OJ -1 
~ (~i - ~i)~ = 

i=o 

im[OJ-l 
~c· A· 1 1 

i=o 

the coefficents ci = O. The number of these equations that 

can actually'be satisfied'determines theor.der of accuracy 

if 1;0. Next are printed equations that define the unde-

termined parameters that were used in the expansion of 1;i 

for those 1;i that had such implicit representation. 

There is also inhere a section that allows what can be 

406 

considered a "manual" control of the printing of th e equa ti ons. 

We can equate anyZ[type, ••. ; i, •.. J with any other 

z[ type, ... , j, •.. J where type is not necessarily the same 

in both cases. Since any unconstructed quantity has a nil 

list, we can print out any of the 1;, T], S by equating to an 

unconstructed quantity, or we can, if it is desired, actually 

equate any two quantities in the form A - B = O. These 

features allow a great flexibility in creating the scheme and 

also are helpful in constructing special schemes used in 

checking the tables and internal workings of RKMI. 

This essentially completes the discussion of usingRKMI. The 

program is quite flexible and the user will have to'experiment with it 

to have a feeling for what. will happen. under certain condi ti ons. A word 

of caution; it is not foolproof; or the contrary, it is easy to obtain 

meaningless results. A method of checking the results should always be 

devised. 



Schematic Source Listing I 

RKJ11 proi~ram control source listing 8090 689/20/68 

begin 

begin cO"llD1lent The following is an out 1 ine of the program -input. All input 

is presented here. 

begin: if i.oi( tcontrol') < 1 ~ go to end of conputations else 

s ( 'dataL input L that L sets ,L computer L varia.bles' ); 

~ i:= 0 step 1 ~ 12 ~print length[i]:= ioi( (I); 

type set:= ioi(ttype.l.set'); 

n for print:= ioi(tn,Lfor,Lprint'); 

line length:~ ioi(tline,Llength'); 

tempO:= ioi(torlgin,L0f,LtemporaryLstore'); 

list length:= ioi( 'listLlength' ); 

height:= ioi( tmaximum,Lm.nnber.l.0fLvectors,LN,L0r,Lsums.!.s'); 

height1 :'= ioi( tmaxiinum,Llength,L0f,LB:Lsum'); 

pmax:= ioi(tmaximum,Llength,L0f,La,Llist,Lproduct'); 

define problem: 

s(tdata.!.input.!.that.!.particularizesLthe,Lproblem'); 

order:= ioi(torder.!.of.!.the.!.differential,Lequatlon'); 

upper:= ioi(tD~(order + upper)x,Lis.!.the,Lfirst.!.neglectedLTaYlor,L 

tenn,,L upper' ); 

q:' ioi( 'number, of ,points,in,one,h, interval' ); 
. -. - - - --

e:'" loi( tnumberLofLh.!.intervals' ); 

period: ,= foi( tperiodLof.!. the.!. scheme' ); 

im[OJ:=ioi(tnumberLof.!.basicLfunctions' ); 

im[l J:= foi( tnumber.!.ofl.,derivatives,Lwe.!.attemp.!.toLmatch'); 

inout:= iob('fnput,output'); 

1~07 



Source Listing. I Cont. 

againl: comment .The list storage V and all names T,E,Z are initialized 

to nil. The list origin in the storage array V starts 

at last:= last data. Thus all generating tables stUl 

. exist if' entry is 'madethroughthe lable again1; 

.!! last data = 0 ~ data; scheme; title; 

comment The procedure data inputs generating tables. See source 

listing II of this appendix ,to effect this. input; The 

procedure scheme ontputs the scheme defin:i.tion if print 

scheme is true. The procedure title reads an Algol 

comment <text>, thus furnishing a means of identifying 

the outpUt; 

again: control:= ioi( "control'); !! control < -1 ~ go to fin; 

if control '-" -1 ~ begin print scheme:= ~; go to again1 ~; 

if control :::: 0 then 

4·08 

begin comment Define the undetermined parameters B, if mode = 0 then .-----
they are defined in expansions about the origin ° 
.~ !! mode = -1 ~ they are defined in expan­

sions about the local origin -ilxh where i1:= i+q, 

with i the name of the approximation and q the rank 

of the scheme; 

mde:= ioi( "mde.l.0f.l.meDDry' ); 

end else 

if control =1 then 

begin connnent Construct a new approximator B[no')[l ]], if substitution 

_ .tl1en by SUbstitution N[.i]:::: X(E[j] )of an approximation 

E[j], j ,in M = (0, .•• ,exq) ~ by multiplication 

USing the 'Jacobian matrix, J[j]:== DX(E[j]) to create 

, . , 



409 

80urce Listing I Cont. 

N[l]:= J[j] X 8(num(2]]. Note that.!! E[i] == nil 

~ E [ i] is created with undetermined parameters, 

.!! temporary ~ the sum 8 is, stored in temporary 

storage ~ it is stored in perminant storage. In 

any case, it is assumed that a constructed represe'nta­

tion of Sexists; 

if iob(tsubstitution') then ncim[O]:= ioi(IE[i],i'); - -
~ begin num[O]:= ioi( tDX(E[il),i'); 

num[2]:= ioi( t8[j],j'); 

end 

end else 

if control = 2 then 

begin comment Create a new sum 8[no3[2J] consisting of approximations 

E[i], i in M = (O, .•• ,exq), and of existing approximators 

N[j], .!! E [j] does not exist ~ it is created with un­

determined parameters. The order of the input of the 

constituents of the sum is immaterial, they are internally 

normalized to 

8[no3[1]]:= sum(i,O,lengthl-1,sum(k,order-l,O,B[ ••• ] X 

E[vs[O,l],k]» + sum(i,O,length2-1,B[ ••• ] X N[v[l,i]]) + 

sum(i,l~ngth2,length-lengthl-l,B[ ••• ] X N[v[l,i]]) where 

(vIO,i] < v[O,j] and V[l,i] < v[l,j]) if i< j. The first 

sum is the sum of approximations E'; the second sum is the sum 

of approx1me.tors N that have been formed by means of a 

substitution X 0 E,the third sum is a sum of approx1me.tors 



'.'. 

new E: 

Source Listtng I Cont. 

that have been formed by multiplication of the form 

(DX 0 E) X S. Any of the sums may be empty; 

s( 'newl.SumI); 

temp: == iob( Itemporary L store' ); 

linear comb:= iob( 'linear.zpombination'); 

length:= ioi( IlengthLof~sum');· 

!2!: i: == 0 step 1 'W1tU length-l do . 

begin type:= ioi( 'tyPel.0fl.vector'); 

end 

end else 

comment .!! type == ° ~ .. E else 

. .!! type 0: 1 ~Nj 

vs[type,num[type]]:= ioi('num[type]') 

if control = 3 ~ 

begin comment Construct a new approximation E[ i] by specifying i 

and the vectors that make up the sum, 

E(t]:= sum(t,O,lengthl-1,sum(k,.order-l,O,B[ ••• 1 X 

E(vs[O,t],k]) + 

410 

sum(i,O,length-lengthl-1,B[ ••• ] X N[vs[l,i]]»); 

no3[O]:= ioi('E(1],1'); go to newE 

end else 

if control = 4 then 

begin comment Print all parameter defining equations; 

comment Points that are to be equated. If we input a sequence 

of points a, b, c, d, e, f, ••• then the output is a = b, 

c .-= . d, e == f, ••• • Therefore, the. number of po ints must be 



Source Listing I Cont. 

an even number. The quantity printed is the list z[ type, 

•.• ,name, ••• ]. Note that names are given sequentially to 

approximators N and sums S as they are constructed. The 

names of E lie in the set M = (0, ••• ,eXq). A quantity may 

be printed even though it has never been constructed. This 

section below furnishes a means by which the user can manipu­

late the equating of constructed quantities. Note the 

following short table: 

type quantity 

-1 Eexpanded about the local origin 

o E expanded about the origin 

N expanded about the origin 

2 S expanded about the origin; 

n:= iOi('number~of~points'); 

if n > 0 then 

~ i:= 0 step 1 ~ n - 1 do 

begin vs[O,!]:= ioi('name'); 

vs[O,i]:= ioi('type') 

end 

~. of control; 

go to again; 

fin:, comment A short dump of the list pointers is given here; 

. .!! iob( tcheck~list') .~ check list(O,last); 

; go to 2! control -2 then define problem else 

L 

411 



412 

Source Listing I Cont. 

if control = -3 then begin else - --
end of conputations 

~ of program; 

end of computations; s{ 4'end, of, computations' ) - - ". 

end 



Schematic Source Listing II 

Table Input Using The Procedures data and table 

procedure data; 

I 

again: control:= ioi("control'); 

if control -= 0 then 

begin sr( "harmnics .L,of .L,derivatives' ); 

~ i:= 0 step 1 until im[l1 - 1 do 

table(n02,im[O],D[i,n02]) 

end else 

if control = 1 then 

begin type: = i01 ( "type' ); sr( "translation table' ); 

g type = 0 ~ 

.!!?! i: = 0 step 1 unt il im[ 0] - do 

table(n02,tm[O],a[type,i,n02]) 

end else 

if control -- 2 then 

begin type:= ioi( "type'); 

.!! type =: 1 ~ sr( C'sUbst1tution.L,table') ~ 

g type =:.2 ~ sr(fmultiplicationLtable'); 

table(n02,tm[O],W[type,n02]) 

end; if control =: -1 ~ go to again 

end data; 

413 



Source Listing II Cont. 

procedure table (no2 ,im[ 0], name) ; 

begin.!£:: no2:= 0 step 1 until m[b] - do 

begin i2:; io1(tnumber~of~son]); 

.!! 12 + 0 thEm 

!2!: nOl:= 0 step 1 until 12 - 1 do 

begin i1 :=. ioi( tnumber~Of~atoms' ); 

!2!: no:=: 0 step 1 until i1 - 1 do 

io1( tatom')· 

end nol 

~ no2j 

fob( tdata~list~out' ) 

~ table; 

414 



"' _./ 

415 

Appendix V 

NOTATION 

The notation that is used throughout this work is standard and 

is explained as it is introduced. We do, however, use a rather concise 

representation for the Taylor's series which we shall explain more 

fully below. 

We first note that we consistently use D as the derivative with 

respect to the single variaple t E R the real line, and DJi] as a partial 

derivative. We also sum on repeate'd index sets. Thus, we write for 

m n m X E R -7 R , U,V E R -7 R 

00 

Xo(u+v)=Xou+ 2: 
, s=1 

1 (Dr, LX 0 u)vL ... vL 
sf 1 . .. s 1 s 

which when written in detail becomes 

X(u(t) + vet»~ = x(u(t» + 

where 

and 

00 

2: 
s=1 

1 
s! 

D~ ... L
s 

[mi, ... ,msJ x(u(t» vL
1

(t)[m1 J ... 

vL (t)[Iil s ] 
s 

d~ ... d~ 
. 1 s 

Li = {1, ..., m}, i = 1, 2 , ..., s. 

In Chapter II, we havem ::::: n and. elsewhere we have m = TJX). 

, 
Throughout this work, we have repeatedly and consistently used 



.... ~~-.--

capital subscripts to indicate the index sets (the domains) associated 

with the quantities. We have also consistently summed on repeated index 

sets. The style in which this notation has been used along with the 

use of the matrices Ig), which are first used in Chapter III, was 

introduced to the author by Professor R. DeVOgelaere(3). The use of 

this notation has proved invaluable in developing this work. 

416 



'} 
t 

REFERENCES 

1. J. C. Butcher, Coefficients for the Study of Runge-Kutta 

Integration Processes, J. Australian Math. Soc.~, Part 2, (1963), 

185-201. 

2. F. Ceschino and J. Kuntzmann, Numerical Solution of Initial 

Value Problems, (Prentice Hall, I~c., Englewood Cliffs, N. J., 

1966) . 

and 

F. Ceschino and J. Kuntzmann, Probl~mes Differentiels. de 

Conditions Initiales, (Dunod, Paris, 1963). 

3. Professor R. DeVogelaere, Mathematics Dept., Univ. of Calif., 

Berkeley, Calif., private communication. 

4. J. C. Butcher, A Modified Multistep Method for the Numerical 

Integration of Ordinary Differentials, J. ACM 12, 1 (1963), 

124-135. 

5. R. DeVogelaere, A Method for the Numerical Integration of 

Differential Equations of Second Order Without Expl~cit First 

Derivatives, J. Research Natl. Bur. Standards 54, 3 (March 1955), 

119-125· 

6 R. E. Scraton, The Numerical Solution of Second Order Differential 

Equations, The Computer J . .§" 4,(January, 1964), 368-370. 

7. T. Frey, On Improvement of the Runge-Kutta-Nystrom Method I, 

Periodica Polytechnica, ElectricaL Engineering - Elektrotechnik ~, 

No. -2, Budapest (1958), 141-165. 

8. J. C. Butcher, A Multistep Generalization of Runge-Kutta Methods 

with Four or Five Stages, J. ACM 14, 1, (January 1967), 84':'99 ... 

417 



REFERENCES - contd. 

9. Control Data 6400/6500/6600 computer Systems, Scope 3;1 Reference 

Manual, Rev. A, Pub. No. 60189400A, Control Data Corporation, 

Palo Alto, California. 

10. ALGOL Generic Reference Manual, Pub. No. 60214900, Control 

Data Corp. (December 1967), Palo Alto, California. 

418 



.,' 

J 
I. 

I 
.' 

/ 

I 
~. 

LEGAL NOTICE 

This report was prepared as an account of Government sponsored work. 
Neither the United States, nor the Commission, nor any person· acting on 
behalf of the Commission: 

A. Makes any warranty or representation, expressed or implied, with 
respect to the accuracy, completeness, or usefulness of the informa­
tion contained in this report, or that the use of any information, 
apparatus, method, or process disclosed in this report may not in­
fringe privately owned rights; or 

B. Assumes any liabilities with respect to the use of, or for damages 
resulting from the use of any information, apparatus, method, or 
process disclosed in this report. 

As used in the above, "person acting on behalf of the Commission" 
includes any employee or contractor of the Commission, or employee of 
such contractor, to the extent that such employee or contractor of the 
Commission, or employee of such contractor prepares, disseminates, or pro­
vides access to, any information pursuant to his employment or contract 
with the Commission, or his employment with such contractor. 



~ .,,-t:..,.,. 

r.····-1 , 
~" .. 

TECHNIl"VlL INFORMA TION DIVISION' 
LAWRENCE RADIATION LABORATORY 

UNIVERSITY OF CALIFORNIA 
BERKELEY, CALIFORNIA 94720 

'.~7 

r~r 
t:' ... 

'-

•• • 




