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GENERATION OF GENERALIZED RUNGE KUTTA INTEGRATION METHODS :
FOR n-th ORDER SYSTEMS OF p-th ORDER
ORDINARY DIFFERENTIAT, EQUATTIONS
Elon Ryder Close
- Lawrence Radlatlon Laboratory

University of California
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Débember-ll, 1968

ABSTRACT
We treat the genefatibn of schemes for the numerical integration
_ of the initial value problem DPx = X o ¢, t(a) = b where x ¢ R - R",

Xp

= (D%, ..., x) e RoR™P, xc RXP 5 R®, be R7F, ac R, R is the

real line, R™XP

and R" are real nXp.andTn dimensional vectér spaces.
Scheme definitions are.proviaéd that‘include the claséical Rﬁhgé—Kutta
(RK) and finiteldifferénce schemes and, at the samé time, are general-
izations which ?rovide scﬁéﬁes 6utside this clasél Use is made of the
firsﬁ derivative DX.:}A global viéw of the scheme generatibn problem is
provided by developing a fbrmalism that makes use of the‘concept of
differentials. It is shown that all basic results can be obtained from
one recursiﬁe definition of a generic operator Y and thevgeneric z and'y
which lie in its domain and range. A constructive means for'obtaining
specific schemes isTdevelbped aﬂd aﬁ ALGOL 60 program which performs
this work is presented. The use of these results is iilusfrated“on a
plaésical éxample (fourth order RK) and on the simplest cla#s,of
generalized RK schqmés.‘ The generalized RK schemesvpreéented are

believed to be new.



I.  INTRODUCTION

The WOrk presghted in the following chapters‘and their associated
_appéndices has as its objective the obtaining of schemes for the numeri-
cal integration of n-th order systems of p<th order ordinary differential

equations written as an,initial value problem in the form¥*

- (1)
t(a) =1 .
where x € R> %, £ = (0P"lx, ..., x) ¢ Ro>R?, xe B°F 58",
be P, and a € R. We take R to be the real line and R™P ana 8" to

be, respectively, n X p énd'n—dimensionél vector spaces. Since our’
principal téol used in the analysis is the classical Téylor's series,
we shall alwaYé'implicitly assume that the funétioﬁs discussed possess
enough derivatives to carry out the anélysis._ |

The schemes considered are giveﬁ precise definition as they are
introduced. However, they can loosely be déscribed as follows. Given
an interval of integration, we have, of will construct in the manner
. described below, a set of approximations E; to the true solution E(t;).
We also have, or can obtain, thg function &alues Xi = X(gi) and»if we wish,
' we can aiso obtain derivatives of X; for example, here we consider |
DX(&i). Wé‘define our schemes by saying that any:approximation is ai‘
iineér combination of these Quantitiés or of quantities derivable from

them. Thus,

e
il

pes ) o . | . '
5 §j + Bj Xj , (2)

or

&i—Zajéj+Z_Bij+Zvjnj o B (3)

*Hee Appendix V.



where the coefficient matrices are, of ceurse, assumed to be suitablyv
defined. 1In the second-case, the nj are, essentielly, defived by'
muitiplying the derivative matrix DX(éj) times some previously constructed
~ quantity.

The first of these we call generalized Runge-Kutta (RK) schemes

since they contain those c¢lassical schemes and the second of these we

call generalized Runge-Kutta-Frey (RKF) schemes since they make use of

the fifet derivative DX ofiX as introdueed by Frey._ Both of these
. schemes lead to farameter defining equations thef are similer in form
to those associated with the classicel Runge-Kutta schemes.

In eur work, we sayenothing about . the accuraéy of any approximation.
We simﬁly aesﬁmelthat to fhe set of appfoximations there is associated
a lower bouﬂd such that a;l appreximations.are at>leaet that accurafe
and it is impLicitly assumed ‘that there is at leaet one appreximation
for which we shall try aﬁd minimize ﬁhe efrof.éo - &(to) = éo. This
unrestricted approach to the specifieation of the‘accuracy of an ap;
proximation alloWs the inclusion of finite differenee schemes (allvéi
have an equal'order_of accuracy) and classicai'RK schemes (we build
from thesloweet'order l_tovthe highest order desired at each step) in
our definitioﬁ. | |

Since the obtaining of any one integration scheme of.eny compiekity
ean_become a fermida?le task when Werking with.systeﬁs Of.equations, we
have devoted a eonsi&erable amouﬁt of our effort to formalizing and
systematiiing this task to such a degree_that-in,usihg*oui;results we
can easily obtain.the perameter_defining equations for any given scheme
in the class of schemes coneidered and, furtﬁer, for generalized RK
scheﬁes, we can obtain an overall view of what these equations will

look like without defining a specific scheme;



We thus, as a resﬁlt of;this work, have at our disposal a global
view of the parameter equations, a View that allows us to anticipate the
- character of the eqﬁations that we mu;t éqlve for any particular schemé.
We also have a local, direct’conétructivé approach to these equations.
Using’this-iatter'approach, we héve built=pr0cedures that will actually_?
perfdrm the algebraic.ﬁork involved and present the invéstigator ﬁith -
‘the equations associated with a'sp¢Cific scheme.

Since the formal structure that we derive and the associated
précedﬁres which preserve this structure are valid for a whole class of
schémes; we speak of the generation of integration schemes. We mean
'thisvin a sense qﬁite'analogous to what one means when speaking, say,
of the generation of.a value of the sine function. In the context of a
machine -oriented caléulation, one does not look up the value of the sine, -
nor does one derive thevexpénsioﬁé'and calculate the value Qf the
function (one dpesn‘t derive the fesult);¥instead, the  value is generatéd
',‘by\a well-defined algorithm that is preserved in thg form of a system
procedure. |

One of our basic¢ results is that, to a large degree, oﬁr work has
this charaéter; it is preserved in>the form of spitably defined ALGOL
procedures that are presehted here and the degree‘to which this‘is true
can be readiiy increaséd.

. Our work, és presented here, can be considered as aﬁ extension of
_ fhe work preSented_by Eﬁtcher(lv), Ceséhino—Kunthénn( 2), and
R. DeVQgelaefe(5 ). It will be obvious to.anyone familiar ﬁith Butchgr‘si
work that much of our fhedretibal developnent is iﬁfluénééd»by what he :
has doné.’ His work hés been the brincipal inspiration in the presentatiéﬁ
of ourufesuits in terms of recﬁrsive definitioﬁs of qpantities whichvaré

i



theﬁ proved to be the coefficients of the expansions that we wish tb
have. The work ofrCeschino-Kuntzmann has proved invaluable in suggesting
the form and .direction that our.scheme definitions ana results éhoﬁld
take. In fact, in their work and the way in which it is presented,
they have come extremely close to presenting the generalized schemes
that we present here. I am quite indebted to Professor DeVogéléere
for the assistance his work has given us. Thé notation®that is used
‘here for the.expansions 6f the vector-valued functions is prihcipally_
due to him énd without thé help‘of such a concise, precise ﬁotation,~
it'would not have been possible to arrive at our results. Also, the
basic list procedures along with a good suitaﬁle list structure which
" he mads available have been invaluable-_in constructing in ‘the .program RKMI .
Our results are thus built upon the work of othefs. We would
characterize our contribution here as follows:
1) Scheme'definifions are provided that include the classical
RK schemes and finite diffefence séhemes and, at the same
time, are genérélizations in that they provide us natufally
with schemes outside this class. Ceschino-Kuntzmann almost
did this, but for the class of schemes considefed, we have
a.more general definition thanithey give.
2) An extension has been made to the work of Butcher which deals
only with Dx = X o X and classical RK schemes. We, thus,
are able to define éuanfities analogous to bhis, but for
generalized RK scheﬁés. This leads to an overéll'gldbal
view of the schgme generation problem. |
5) It is shown. that fhe differentialé and the various harmonics

that we défine after the fashion of Butcher are, in reality,

ke

*bee Appendix V.



all obtainable from one recursive aefinition of a generic
operstor Y and the generic Ztand_y which lie in the domain
and range of Y.

4)  The basic algorithms of R.vDeVogelaere have been used to
build procedures that actually carry out the substitutions
needed to generate generalized RKF schemes;and, thus, extend

' his basic work. |
5) The application of these results has been illustrated by
” applying them to some recently dbtained.geheralized schemes
presented by Butcher(u') and it is shown that if,one is
willing to.remeMber a function value rather than perform
an intermediate substitution, one can obtain the same orders
.of accufaey with one less substitution.

6)7 From a formal viewpoint, we have tried,'andfwe hope to some
degree suceeeded,'te show;how‘one'Can develop a formalism
for the expressipn of these schemes tﬁat leads natufaily

_.to their develoPmehtAand,.at the saﬁe time, is expressed in
such a mannef that it can be reflected and preserved in pro-
cedures that will then free the investigator ffom hating to |
reperform the derivatioﬁ for each specific'example. In short;.

" we have attempted to generate schemes.

There is a rather logical ordéring to the ch.apters'ths‘t follow.
Chapter II deals with the simplest schemes, thexgeneralized'RK schemes
for Dx = X » x and, thus, serves as an ihtroductjon'te the remeining work. .
Chaﬁter IIT develops a-different, cOnstructive approach to obtaining
schemes and does’so'starting.withtthe slightly mare coﬁplicated case

ef.generaiized RKF schemes'for DPx = X o X Although it is, in aeSense,



a separaté work and can stand alone, the‘ideas used in the proofs
presented there are quite similar in‘character to Chapter II; }Chaptef Iv
generalizeé the work of Chapter II to generalized RK schemes for

Dpx = X o x and relies, to some extent, én.the work and ideas presented
in Chapter III. Chapter V ré;e#presses our results using a new basis’
and the harmonics associated with this basis. Surprisingly, the reSulfs '
of ChaptersZIII.and IVISimplify tremendously in this basis. Chapter VI
explaihs.how we represent the work of Chapter III in such a manner that
We cen build procedures to carry out the successive subétitutions.
Chapter VII presents illﬁstrative examples:bf how_these fesults can be
obtained, Chapter VIII indicates’some omiésioné and some possible
directions that future work might téke. 'The'éppendices afe fairly well
summérized by their titles.: The appendices form an integrél parf of

the work; hoWever, they can be consulted only as heéded and then only

to the depth requirgd. ‘

In eaéh chapté¥ andleachvappendix Qf this work,'the first few
‘paragraphs éonfain a short introduction to the ﬁork. It seems rather
poiﬁtless'to repeat those remarks here; we simply indicate that an over-:
all view shouldvbe thainaﬁie by reading-pnly these introductions. We
shall, thereforg, in the remainder of this Introduction make some rather
general.rémafKS'about,fhe.work presented_in the various chépters.
| The origihal idea that this investigatioh of.intégfation schemes
vébntaining daté;from the'pgst be carried:out was made by“Professor
R. DeVogelaere.éhbrtly béfore taking his'sabbatical leavé in Europe.

At that time; veiy little progress was made. 'quﬁ his fetu;n, the
project Qas égé&n resumed:and he very kindly'made available the basic

CATGOL listvprocedpres'that-appear here. Following the ideas of: his
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.work in this field, a large portion of Chapter III was built into a
procedufe.‘ However, while it was obvious what needed to bé done (that -
is, it was necessary to éxpreés theAOpefations ofvsubstiﬁution X(éj) aﬁd
and multiplication DX(& J) - S in the coefficient space of _the derivatives
of X), the author had no suitable means-of obtaining these.quantities othéf-
than actually laboriously'carrying'out these expansions and extracting
fhe terms. ‘

The author finally decided; almost out of desperation, that theré,
musfjbe'sbme other way to obtain the neéded‘quantities, and Butéher's'_»

‘ workvwith differentiais seems to hold the key to the deéirea fesﬁlts.
ﬁowever, in view of the work presehted b& CeSChinq—Kuntzmanh aﬁd that
Of'Prbfessor DeVogelaere with which the,auﬁhor was familiar, it was

~equally obvious that in order to arrive at usable: results, it was
necessary to follow their lead and split the'sblution £ = u+ v where
u is a finite number of terms of the Taylor expansion.of € and v is the.

'rémainingvinfinite set of terms. Thié;'together with the fact that we'.
wished to tréat DPx rather than Dx,along with our insistence in using
points ffom the past, caused much difficulty in thaining a definition
for the differentials. Howevér, with fhe_aid"af a very systematic,
’cOncise expression for the Taylor's expansion of a vector valued‘function .
and by restricting ourseives'to-Dx = X o X, an appropriate definition
was arrived at and out of this grew thé work of Chapter II. This, hoﬁ-
ever, turned out to present a global view to th¢ parameter.defining | |
equatioﬁs. Once having éeen hqw.the pattern of generation was established'
and how the proofs were to be conétructed, it became an eas& task to

‘develop the apﬁropriate differentials and the corfesponding harmonics fOr&;

Chapter ITI.



We, thus, arrived at a position wﬁere instead of carrying out a
laborious e#pansion for a few terms and éxtracting the coefficients, we
couid now define a basis, ‘define the harmonics of interest (for all the
- basis elements), énd then pfove that these expansions were those that
we wanted. Thus,’thefwork of Chapter IIT has as its basis the later
work of Chapter II although, in a sense, it.is more fundamental and is
more easily generalized than'that of the other chapters.

Chapter IV érose_because having once done the work of Chapter II
and the work of Chapfer'III dealing With4DPx =Xo x, 1t seemed possible
to extend the results of Chapter II to p-th order differential equations.
The two Chapteré; IT and IV, are redundanf; one need only present
véhapter Iv. HOWever,.the work of Chapter IIrwas élready pompletely done
and it servesjas a goo? introduction to the quantities which we have
defined, tﬁe definitions of which are not obvious as given in Chapter IV.

The dévelopment of the results of Chapter IV, along with the ap-
A_plication éf the results of Chapters II, III, and IV to known examples
lead to the restatement of the fesults in terms of error differentials
‘and efror harmoniés as presénted.in Chapter V. The simplicity of the
results Wheh expressed in thié form was an unexpected bonus; we were
simply seekiﬁgbfo equate our work to the examples of Butcher(u). In
fact,'the resul%s are so simple thaﬁ we would never have found a basis
had we started in this fashion.

The df?ect connection that exists between the work of Chapters I1T
and IV, though rather obvious once notéd, went unnoticed for a,long.time.
During this time, all the work of the various harmonics of Chapter IV

ws developed and these quantities were tabulated and used on various



examples. We present these resultsvevenbthoughvthey may seem soﬁewhat
redundant. They have a significant plece in our work and the relations
of these harmonics one to another can help serve as a check on the
validity of the presented results.:

Since one of the principal aims of our work has been to present a
heans by whlch schemes can be generated we present in this work the
ALGOL 60 procedure, RKMT, Wthh is a direct reflection of the constructlvel
approach that has been developed in Chapter III. This procedure, as
built, should prove capable of obtaining the_parameter defining
equations of generalized Runge-Kutta schemes with ﬁemory including the
tirst derivative DX. The decision to present this algorithm has lead
to the inclusion of‘Chapter VI and Appendices II and Iv, allvof which
are devoted to‘various epects of RKMI.

- The original intent,wwtth respect to examples, was to investigatef‘
schemes pertaining to second order differential equations for which the’
first derivative diﬁ-not appear»ekplicitlj;, TherevSeems to be good
promise of obtaihihg more. efficient or mare accurate schemes for this
class of equations proVided one uses some data frou the past. The works
of R: DeVogelaere(5‘) and R. E. Scraton(6 ) give some indication of
this. Howeuer, this hss not been done, principally because of the scope
of the results Obtaihed. ~These schemes are certainly still of high
interest. However, we now have et our disposal‘the means of carrying’
out a systematic investigation of a large class of schemes, but we do
not presently have the'tlme for such a task.

Therefore, a different set of illustrative exemples has been pré-
sented. We notlced that Butchex's work(h'), with a sllght modlflcatlon,

furnlshes examples of schemes that are. truely generalized RK schemes



with memory. In Chapter VII,fwe present one classical example (the
fourth order RK process) ﬁhat will serve as a familiar introduction to
how our results are applied. We then preéent four examples derived_
from a class of schemes that are the veryysimplest generalized RK
‘processes witﬁ.memory. These examples can be contrasted with those of .
Butcher and serve to iliﬁstrate what can be done with oﬁr results. :
'Theée schemes are, we believe, new and their characteristics and worth

have yet to be evaluated.

10



1"

II. AN ANALYTIC DERIVATION OF GENERALIZED RUNGE-KUTTA METHODS FOR
SYSTEMS OF FIRST ORDER DIFFERENTIAT, EQUATTONS

Iﬁ Chapter II, weltreat'the case of a system of first order,
ordinary differential equations written as Dx = X o X, x(a)t= b, where
X € R‘->Rn and X R*- R Our-principal'aimvin this_chaptér will be
to define a scheme, called a generalized Runge—Kuttavséﬁeme, for thé
nﬁmerical sblution of this problem and to de;ive the nonlinear equations
- that definé the parameﬁeré appearing in that scheme. This scheﬁé is-
such that it ﬁill contain the Runge-Kutta and finite difference methods
as speéiél cases and, more generally; any mixtﬁre of these methods.

In order to effect this derivation, we define a number of functions.

These are the approximations §: € R - Rn, the weighted differentials

‘"W e R—RP, and the elementary differentials A € R — R®. Along with

-+ these functions, we also introduce the weighted polynomials @, the

elementary polynomials I', tHe ?olynoﬁial‘weights Y, and the derivative

harmonics .

Since the approximations { and the solution x are functions,'we.can
cérry out é Taylor's expansion using a common origin. Using Theocrems 1
.and h; we show that the derivatives of { are expandable into a series.

% 0;W where o are derivative harmonics. Using Theorems 2 and 5, we show

that the derivatives of the solution x can be written asv% a4 A4 whefe

Q; are a suitable subset of the derivative harmonics. 'The cdnneétion be-
tween these series is obtained from Theorem 3 which'shows that W = ®A..
At this stage, it is pdssible to directiy compare the serigs fdr € and x »
and thus obtain the parameter defining eqﬁations,'since ® is a function
of the scheme parameters.':It’is, however; convenient to factor the:

polyncmials ® = ', using Theorem 6, where the polynomial weights ¥y are’
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numbers and the elementary polynomials I' consist entirely of scheme
parameters.
In the course of owr analysis, it is assumed that there is a lowver

bound £ to the order of accuracy of the approximations &5 obtained from

a generalized Runge-Kutta scheme and this leads to further conditions i

( Condition A) that the parame‘tervs must satisfy.

At the end.of Chapter II; we collect tégether our resulté andvpre-
sent the problem, the solution scheme, and the nonlineaf equations that
define the parameters appearing in the solution scheme. These'nbnlinear
equations consist of tﬁo sets; the set associatedﬁwith Conditioan
which arises.from a iqwer bound on the aécuraéy of the apﬁfoximations,
and the set associated ﬁithbcondition_B which'ariges ﬁheh we equate the
compohéhts of the Taylor's series dévelopment of x and the Taylorfs
series development of the épproximation ¢ afte; the séries have been re-
exﬁreésed in ab¢ommon basis consistiﬁg of the -elementary differentials'A;.

ThéAfesults derived-hefe are an eitension of the work of Butcher(l). 
In his paper,.Butcher treats-the'case of a system of first order dif- |
ferential equations Dx = X o X, x € R—> R, X ¢ R" - R" and using the
defivatives of X,sdefiﬁeé functions whicﬁ he cails elemeﬁtary differentials
which enable him torcpmpare the Taylor‘s‘series_of the trﬁe solution
x(ti)'and the approximate éolution xi.‘ The coefficients of the approxi-.
mate solutibn lead to polynomials in tems of the pararﬁeter's of the
metﬁod under considefatioﬁ. In his work, he is able to défine these
polynomials aﬁd their numerical cbefficients iﬁ such a way that they
VCan be generated from the defiﬁitions without recoufse to carrying out
tﬁe expaﬁsiOns. In effect, he has defined a basié of a space in which

both the solution and the approximation are contained and given a means



of generating their hérmonies in this space. This'he has done for
Runge-Kutta‘methods. It is our intent to extend these results to
mefhods that use inférmation fromrprevioﬁs integration steps; Thesé
methods shall be cailed generalized Runge-Kutta type integration
vﬁethods. The derivation of tle results will ﬁe a rafher straight-
forward‘application of the-Taylor's series expansion and it is, of
course, assumed that the function X has a suitable number of .
derivatives. . The notation used willibewexplaiped as it is intro-
ﬁ‘,duced.

The problem to be solved is stated as follows: Let X ¢ R? —» R?
be sufficiently differentiable and let it be desired to find the
solution k € R - R% of the system Qf first Qrder ordinary differential

eguations

» (1)
x(a) = b. '
- It is, or course, Well known that for such an initial value problem a
solution does ekist locally and cén be extended throughout an interval{-
It is assumed here that the problem is well posed, that a solution does
exist‘andvthat it is desired to find an approximation X3 fo the
sélﬁtion x(tij. This approximation is to be a constructive one and
shall exist as a series of points in R%. To effect the cénStruction'of
such an approximatiqn, it is, however,ICOnvenient fd'stay in a-funétion
space in order théﬁ the usual tools of analysis may be applied.

With this in mind, the following set of functions t E_R-ﬁ R" is..

defined.

1%
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Definition 1:

R — R" is an approximation if, and only if

t e
£ = u+ ﬁ where
u= X I D"%(0) : - o
r=0 T! I
5 r+ 1 ) » (2)
ne s = (r+1) (D5 87)(0) -
r=f (r + 1) - S

&% S og,.n +3 fz,xog,
g g
‘Note that u, n, and d¥ are all functions that map R — R", that

- I is the identity function, I{(t) =t for t € R.- Also, while gij and -
fij are, in general, undetermined parameters in R;vno more is specified

other than that f ﬁay (or hay ﬁot) depend on the?fndéX'r. Definition 1
is recursive in'nature and doés,iindeed, define a set of functions,
appfoximéfioﬁs, sincé'forneach chbice of gijvor;fﬁj,ythereAig:defined‘a
different fﬁhcﬁioﬁ..‘More.will‘be_saidﬁabéut_these parametéfs shortly.
i-

Now lét ¢i = é%"fl?and denote for any function y

L R Yy =Y e ¢i' ot

There is_then,assdciated to (é),%hé set of équations

£ = ui.+ N4
iy | !
‘ w o= 2 L p" %.(0)
= ! L : '
=0 _ : S
o R O S | (3)

= i - LY
T B ‘:_EJ {r + 1f).gl' .(r'.+ 1).(])1” 83(0)

S:E‘ o :‘: g l]. + Z fr. X ° . ‘ |
i 5 i 3 j.' ij =~ CJ

This essentially amounts to evaluating each of the approximaticns at a
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sepazaté point t; and fhen requiring'that there be a deﬁendence iﬁ the ;
form.ti = Git. Tﬂus, (3) are also referred tovas approximations.
Actually, to be complgtely precise, more‘ﬁotation is needed for the
furictions defined by (2) and then new symbols should be used in (3).
But this would only confuse the presentation and sinée it is not |

" needed to keep track of the particular function of the set, this haé
not been done. |

Writing out §; explicitly gives

o) r+l1 . : . ’

. I T T r,
LE o b S —— 1) Eg,,Dn,+2F D(Xot, )}0). (b
£y = w 2 G (r + 1) j 85D Ny FaEe) ( : QJ)}( ) (i)

Before proceeding further, the special case of {; = u; should be con-
sidered. This implies that the quantity in the braces in,(h)Ais

identically zero. Since, however, there is no guarantee that

T ' :
D" 1,(0) =D (X £,)(0) =0
v _ , v S
it must be true that gij ='fijw= O in this instance. Thus, if it is

‘ . .r ’ . :
. determined that Ci = Uy, then gij and fij are to be set identically
to zero. ’

If in (L) the following choice of parameters is made

&y, =0, fij'= O for i #j and £, = 6 /(r + 1),
_then
‘ © ,II'+l Y'I‘
t. =u, + & ~—————— 6, D(X5° t,)(0
i 17 (ro+ l){ 1‘ ( Cl )

which can be written as -



‘ (9 )r+l

£(6,T) = u(6,T) + 5 —— TF(x - £)(0). (5)
' : r=L (r+ 1)1

On the other hand, if Dx = X o x, then

_ o 0.7 +1 ' ,
x(6;) = u(6,) + = — - D(x e x)(0).  (6)
' Coor=t (r+ 1) '
A comparison 0% (5)_and-(6)‘shows that
£,(1) = x(85) (7

in this particular case. That (5)'and (6) dé,iindeed, producev(7)'can
be proved inductively by noting that § énd X héve the same derivatives
at zero provided the order is less than.2_+'l.vaheir higher order
derivatives can bé expressed in terms df those bf lower brdér. Thus,
the derivatives are the same for all ofdérs at O and, hence, they have
the same Taylor's series at zero. Welstafe fﬁésé results as

Property 1: if Ci isvan:approximation defined by‘(j) and if

- X is a solution.df Dx = XHO_X, then |

£;(1) =¢(6;) = x(8;) provided g; ; = O.and

r . . . r
£33=0, 1 # 3y T4 =65/(r + 1).

That is, with a.sﬁiﬁable choice of parameters, the apprOximatién reduces
to the solution. -Or to but it another way,.the solution exisfs in the
set of approximations; that is, tﬁe solution is an approximation.

If,'gn the other hapd, the parameteré aré chosenvwith gij € R

and fij = 8y € R independent of r; then Ci can be written as

J

r+1

gi = ui‘+ 5, {Z égij r ny + 3 8 Dr(X O,;J)} (o). (8)

~r=L 71! J . J *

16
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However,
. . . -
Xet,-R = 3 L p(x.t,) (0)
J r={ i . d
=1 T '
where R, = 2 I D(x. ¢y) (0) . (9)
J r=0 r! _ '
o] II‘
and : n.= = = D' n,(0).
J ey ! J.

This last relation is  obtained from (3). Subsfituting these into (8)
gives |
in= ug + I {% gij(gj - uj) + ? 8 5 (X o Cj - Rj)}. (10)

"Up to ndw,nothing has been said about the type of scliemes that are
to be used in the solution of (1). As was préviously mentioned, it’is
desired to find innté in R" that are éénstructive approximatiohs to the
solution x(ti) at the point t; in thé interval of interest. There are .
a large number of methodé”fdr step-by-step solution of ofdihary dif-
ferentiaiTequations and nb‘attembt,ié made héré to cover all of them.
A conVenient reférence t§ many such methods and a guide té literéture
can be found in Ceschino-Kunfzmanﬁ(g). We shall here éonsider a class
of methods that is sufficiently large4ﬁo'coﬂtain Runge-Kutta methods,
finite difference methodé, and methodé that can be considered as a
mixture or generalization of such methods.__ |

In the following work, Ei will bg'considered tp be an element of
the vector space R™ and since it is to be an approximation to x(t;)
where ti is in thevintefval of .interest, it too'&ill be referréd tovas'
an approximation. ‘There should be no confusion with tﬁe previously de-
fined approximatiqns since the former are‘functions énd-thé latter are

points"in a vector space. A generalized Runge—Kutta'type scheme 1s now
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defined as follows:

Déefinition 2: The approximation £y is said to be obtained by

means of g;generaiized Runge-Kutta type scheme if, and only if

[ = +%a X)),
£ ?gij £+ > 44 x(t ), (11)

where X € R® » R! is tﬁet of (1); 8157 843 € R, ‘and gj ie>an approxima-
"tion obtained in the same fashion.

In shorf, any sCBeme whiehicfeates'appfoximations using a linear
combination of function values and other.epproximations‘is'called a
generalized R. K. scheme. Obviously, any Rﬁnge-Kutta method or finife-
difference method can be written_in this fashion; edually obvious is
the fact'that there are methods thet use higher'order derivetives that'-
are not 1ncluded here. However, it is not our intent to try and cover |
Call known methods and the class defined by (ll) is sufficient large toi
be of 1nterest.

| A few words are in order concerning the_intefpietatibn of (11).
As is usually the case, it is assumed that the solution is desired in
some interval and thet this inter&al has been subdivided into discrete
vpoints Ty It is also implied that.&i will beban appfeximatien to x(ti)u.
Af-the moment, nothiﬁg further is said about the ordering of the points or
the startingﬂe% the‘method. These detaile arerdiscussed in Chapter IIT
where schemesvof'almore geﬁeral nature are defined. They éie not needed _;
fer fhevpresent work and,,thus, are omitted. The schemes defined here
are contained iﬁ fhe'claes of sehemes discussed dnvChapfer iII and it
is‘impliciﬁiy assumed thaf theddefailsvpeeeehted fhere concernieg.the

- actual orderihg of the approximations are to also be used



here. The present aim is to show how the parameters gij’ aij are to be
obtained so that &; =~ x(t;).

Equation (11) can be rewritten as

o (12)
+ % & 5 u(Qj) + %Paij Rj -vu(Gi)f

in most schemes, it is possible to state that fof all approximations Ei
there is a lowest ordér of accuracy. That is, &; = x(ti) + 0(n?*1) where P
has some lower bound. This means that the value §; must equal the

Tajlor‘s expansioﬁ u(ei) + e, Thus, it 'is reasonable to require that

this approximation can be written as

£y = g(ei) + ? 8 ; [gj - u(ej)] + ?,aij [X(gj)-_ Rj] : (13)
with % S u(Gj)_f ? aierj - w6;) = 0- (137)

Equation (12) is an identity. The requirement that (13') be satisfied

J
This will be the case if ﬁﬁ =.Rj(l) vhere R, is defined by (9). It is

. . B ' o . v
forces &, = x(ti) + O(h S;provided X(éj) - R. is of high enough order.

now easily seen that if g.., a. . satisfy (13'), then from (10) and (13)
B . i§? %43 B

comes the fact that Qi(l) =€

We state this as

 Property 2: If Qi'e R - R" is an approximation defined by (3)
and if &, is an approximation obtained by means of a generalized R. K.

. , _ _' . | . T _"»;
scheme,,then_@i(l) = Ei prov1ded thg parameters gij’ fij'— aij common |
to both approximations satisfy (13') which are referred to'as"thé'conditions

on the parameters..

Properties 1 and 2 show that, in the set of approximations Ci,there'
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exist approximations that are the solution x and there'exist approxi-
mations that have thé'value of apbroximations obtained constructively.
It is thus possible to work with these funcfions in determining thé
parameters of the scheme.

The proﬁlem of finding a correct sgheme can be stated as follows:
Let x ¢ R-ﬁ R® ve fhe solution of the diffefential equation Dx = X o x.
.Let Ci(l) be the desired approximation. Choose an origin and write the

Taylor's expansion of x and £ as

v ® g.T+l '
X(Gi) u(6;) + Zﬂ %i:gjl D?(X ox) (0)

b

: . (1k)
. o PR 4
£,(1) = w() + = Ll 5 (o) .

r=_ ( I‘+l) !

ChOoée the parameters that appear in ¢, so that these two series match
to a given order.

Tt is thus seen that the principal problem is the caiculation of
the defivatives ovai and of X oi in such a fashion that it is possible
to compare the series. Therefore,a common basis must be found for these
two series. Equation (5) sﬁows thét_it is only necessafy to calculate the
derivatives oth o gi since a prober'choige of gij and fzj will give the
expansion of x(@i) = xi(l). We now prpceed to constrﬁct an expansion
formula that will allow the derivation of the.necessary equations.

The derivatives Iﬁéivare to be calculated for r 2 £ + 1, ‘Equation
(3) shows that this is eqﬁivalent to_célculating g ﬁi for those values>
of r. That is, Dr+l§i(0) - prtl ni(O) =(r+1)DF 5?(0) Thué, the
deriﬁatives of 5; will first Bé calculated. invthe following, the super-.
scrip on 93 and fij-will be-droppéd; hoWever, it is necesséry to remembef

their dependence, particularly if the summation indices are changed.
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By d‘efinitionza,.L =X g..n.+2TF,. Xot,
which leads to*
5; =S g, n.+2 5. Xo(u, +1,) , o
gy o (19)
. © 7 _ ny
5; = % gig Myt ? f. [X ° uj + sil s!(DNl...NS X o uj)anl...ansJﬁ

Differentiate (15) to obtain

‘ i
. 1 r Ts-1
D8, =3 g, D', +.3 T, | r(X ° s ) + Z 2 e 3
i 3 1377 3 iJ s=1 s! i1=0 1g=0
. Dr?ik X ) Dll 12 . lesh J (16)
ey ° Uy o ;
rig Ui D). ..Ng Taw T oy

v (r > <1l> (1r l»
where O__. a0 =11
» rll...ls 1
However, Dr+1 ;(0) = (r + 1) D5, (o) so that (16) can be written

as D51y .(0) —z (r + 1) 2. DT (X o u;)(0) + zl [i. S S

1] i i Thttis
2 o ig-in
r I‘-ll . ° - 1 2 ..
‘ﬁ(r +1) fij_ D (D'Nl“‘Ns Xe uy)(0) - D M 51, ()
(167)

iS AN T '
D nJNS(O/]+ %(r_‘+ 1) 81 3 Dnj(O).

Before proceeding further, it is convenient to note that the range of the
"summation indices can be materially reduced. From (5) D™ (O)

for r < £ + 1.. Thus, one can write that

v
-~
+
=

which enables the following limits to be set

*See Appendix.V
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0Osssrs(L+1)

'..l
%

s(£ + 1), i

,2(s-1) (£+1), oo, g2 (2 +1) (17)

<7, ig $ip - (£ +1), iy Si, = (B4 1), cony ig 51

- (2 + l) .

Tﬁe limits defined in (17) will be considerea as the normal range of
ﬂsummatibﬁ_fof (16") when evaluating b?ni(o). We now proceed to define
functions W.€ R —R%, A ¢ R— E® and polynomials ¢ in a fashion siﬁilar._'
fo Butcher(l). While the work of Butcher was inspirational‘in suggesting
this appfoéch, it is the?expanéionjrepresented by-(léi) that has suggestea
how to actually define these duantities and (16') will be used repeatedly.
to derive the required results. . | A
We now proceed to define fﬁnctions WeR- R® of given rank R,
or‘der_r, degree s where R 2'r 20 + 1 are iriﬁegers and 'the integer vs
lies in the range O s S (r ~1) + (£ +1). The division symbol +
is.usethO'indicate.an infeger divide. The functidns are called #éighted
,differentials and iﬁ is important to note_thét fbr a:given rank R, order
r, degree é there may'correspond many éf tﬁese functions;

Definition 3: The weighted differentials of rank R, order r,

degree s = O with R = r are defined to be

W, = 2R

- xr
.= SRET D
: J i

DOZ'(X.".UJ),.-r?rO+-l. C(18)

Wi is a weighted differential.Of rank R, order r, degree s if

W, = ZRg.

i ] W, ' . ' = (19)‘

ij 7d
where Wj is a weighted differential of rank R. - 1, order r, degree s,

“or if
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. R-1 T ‘ ( ) ( ) _'_
W. =2 R T, . D D X W 20):
T i3 ( Nl"'Ns ¢ Uy ) 3Ny - - JN (' )
where
.:r = rO + rl +,... +_rs + l
| R = r, + Rl_+ «se + Ry + 1
and r. = order of w(i), R, = rank of w(i),
1 JN. N

i N

‘The degree s is bounded by 0ss s (r :l) + (L +1), 7 and:gvare
Velements of the real line RL.

_ Since the parameters fij and gij are‘in no way‘?estriqted in.fhe.
',definitidn, there will correspond for ea¢h choice'of'fhése_parameters and_:
their associated summation ranges'a set 6f weighted différentials.llﬁow-
ever, in praétice, the set‘that will be‘of;ihtepéét will be those weighﬁed“
differenﬁiais for which the parameters f and g are_thosejofvfhe generalized
R. K. scheme under éonéideratibh..

Thé actual geﬁeratibn bf fhe set-of weighted diffeféntialé can bé
carried out in many ways. We shall indicate one such pattern. Before

doing thls, it is helpful to introduce some notatlon that will help

shorten the task of writing'down’the differentials. Defihe

E=2Rg,.

J 1d v
=3 RleDJ+£ Hx o u, ) . (21)
Jf Jl _ lJl o Jl : . .
¢ = ZRleDJl(DN X Xoou ) .

J1 J1 , 1 ‘

Using these operators (18), (19), (20) can be written as
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' 1) (s
W. = CS w( ces WS
1 3 iy Js

1%5’»1’0”"1 (20")
It is possible to utilize this notation quite gffectively in_the
generation éf the weighted differentials and their related_quantitieé.
However,‘it'is necessary to be careful since the associative law does
not necessérily apply to these quantiﬁies. Their use is described much
more fully in Appendix I. At.fhe preSeht time, we only indicate the
pattern that.is used ‘in génerating the differentials} |

The first weightedvdifferentiél is taken to be that'of:loweét
ader and rank, Ci. There is now a choice of hoﬁ to proceed. The order
can be kept fiked and the function of higher rank cén be generated or
the rank can be set equal to fhe order and functions of higher order,
with the r;nk equal to the order, .can be génerated,'or the process can
be carriéd-oﬁﬁias a mixture of the aﬁove two patternsf in any case,
the‘differentials are considered as arranged in a matrix fashion ordered
with respect to rank R and order r,. This'cah‘béiindicatéd as PrR whefe
_ti;e' éntry I' g has order r, rark R We note that E raises the rank while
leaving the-ofaervaldng with the degreé‘unchanged; ‘The oﬁerator Cg
cregtés a differential of degree O of éiven rank and ordef, these
latter being equal. While the operator C? raises the rank, qrder, anq
degree. The ordering of the setskéf functions with like rank, order,
, and degree is not unique. In fact, to do thié inigeneral requires some
careful thought to bve sure'éll functions are obtained. The order that
is establighed by construction'in the-tables in Appeﬁdix‘l is to hold
for all ouf work. However, it will be-evident that we have not given
a unique means for continuing thié ordering to 1arg§réets éf‘functions

than have been used here. If these quantities afe generated by an algorithmf

then such a pattern must be established. For the present derivation



fhé actual ordering of_the function’'is of nu consequéncé; it is simpliy

assumed that tiere is some sequential positioning that is well established.
The réader should refer to Table I of Appendix I and the description

of that table given there for~moreAdetaiis on how to generaté‘these

. quantities. However, for conVenience, a short table.is presented here ‘

to show how the functions can be arranged:

TABLE I
A B C ¥  IR-g .def. " |R-2 g
. (). ) 2] .
110 0 c$ - Ecd
5 15 '
0 0
2 2 0 1 Co EC, |
o 1.0 1.0
3303 cg_ R " By
: j 0 1.0
3 31 %k Yo 1 ECCy CoEC)
| . o =5
3315 oYy | Bl ogECG |
1 1 1,20 11 1.2 0
3316 Wz | E(CD)CL ClEClC% (c1)°ECy

¥ = sequential count of functions with R = v
def. = definition of the function.
To iliustrate the proper ihterpretation Qf fhese entries, consider

one such entry .
. R)-1 R - - , Rp-1
1~ lAU 0] . - .
EC:C, = X R, .. X oy, R, &. 2 £f. . -
X1t T g ety Di(DNl ) 585 %09, i3 Ra J2dz
D Xo s ) 2 R, £. . D (X o u, )u
DNQ J_B:Nl %“‘)—L 1 JBJ)"' J).; N2

where Ri =/ +,i' This points out that the notation in'actuality does not
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carry enough information- since it is neééssai‘»y xtovknow the rank of the
factors, here R:L fHowevex";. it is éufficient for the purpose of establish-.
>in'g a pa.tt'ern 61‘ genera.tiop as ﬂze have uséd it. Obviously, this informs -
tion must be carried albng ii_f the functions are generated by an algorithm'.- I
It is omitted here for the sake 'df clai'ity in pfe’senting the tables. :
The abbreviated notation of Butctier(l) will be used for the dif-

ferentisls. Thus, (18) ‘and (20) will be written as

W= (rg) I s
Wy _ (ro;, wlws) _ (19")
where |
R=1+ rg+ Ry '+‘...v+‘Rs"
r =>l + T+ Ty +g-.-a_‘+ Ty

If "bhex"e are repeated factors in the Wy, then_théy will be collected to-

-gether as
: u u T
W= (re () Tal(ig) ) (23)

with o R =

1
l.—l
+
H
o
+
WMa
g
[

vs'=ul>+.‘.v.+u, . | | |
Whiie the weighted differentials 'h.'ave beenAd_erined,as_ elements of
R = R® and, thu.s , can bev di.ffere_nt_iatved and ca'.n.hvave their properties
inw}estigated; this will not .be done. Ins_tea,d,A we proceed directly to
obtain the desired resglt's in térms of the functions nl wﬁich. are the
~ functions whose derivatives we wish to .ca.lcula.te. In'a,_ll cases, it is
assumed that thé -deri_va.tiv_es a.i'e to be calculated for r 2 £ + 1 since

‘the resglts are know-n below that order to be identically zero.'>
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Theorem 1

DR+ln.(0) = .2 a, W;(J)(O), s . =1{J IW(J) has rank R + 1J.

+ ) JeSpy J 1 R+l

That is, the derivatives of order R + 1 of the function,ni evaluated

at O can be expanded'into the set of weighted differentials of rank R + 1.

Proof: If R = £ + 1, then from (16') is obtained

D(f+1)ni(o) = %(ﬂ +1) fﬁj Dg(x ° uj)(O). Thus, the theorem is

. £
certainly true for R = £ + 1, the coefficient & being 05 =(4 + 1) £ise

R+lni(0) of rank

An examination of (16') Will show that the functions D
R + 1 are obtained from those of lower ofder.‘_The'results of the theorem
follow by inquctioﬁ on R. If there is any doubt about obtaining ali»ﬁhe |
differenﬁials defined in Definition 3; fhen a careful examinstion of the
'vihdex range should convince one that no differentials are left out and ‘
e'fhat no new ones are obtained thfough the use of (16'). |

Néxt will be defined a setvof-fﬁnctions A E.R —R™. These functions
| will be calied differentiels of order'fi_ These are, in fact, 5 subset’
of>the weighted differentials'andvcan‘be obtaiﬁed by eetting 813 =0,

- 1 : ’
fR 1 = B and Gi = 1. It is, however, convenient.to have a separate

ij .
definition and notation for these functions since they will serve as a
basis for the expansions which are to be compared when determining the
parameters of a particular generalized R. K. scheme. These functions are

.defined as follows:

Definition U4:

The only elementary differential of order r, degree s = O is

A= Dr9(x ou) , T ;:ro'+.1 . _ - (2h)

A is an elementary differential of order r degree s. if, and only if‘
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T - : _
A=D O(Dle"NS X o u} Ay -+ By (25)

+ Iy + ees + T

where r = 1 + r, s

with T, = order Of'AN . The degree s is bounded by 0 £ s = (r - 1) &+ (£ + 1).
Again, it is assumed that r 2 £ + 1. It should be noted that if

Jlr = {W;} where W; are of order r, then there exists a one-to-one cor-

respondence between the sets 11‘ and the functions A.x. of order r. 1In fact,

if gij = O, then there exists a one-to-one correspondence between W; and A

since for this particular choice of gij:all the Wy have equal rank and order.
" With regard to the A, we have the following theorem:.
'Theorém_E:

Let x be a solution of Dx = X ¢ X. Then

Dr+ix(o) ' 2 a A(j)(o) >, S, o= {3 IA(j) has ordervr + 11,

+
Jesr+l

That is the derivative of order r+1is expandable into the set of dif-

ferentlals of order r + L and all ¢. are greater than zero.

J
T Gi
Préof: In (16 }, choose gij::O’ £i5 = ;:I . ‘?hls yields
r+l, _ r+l r+l - 14l r+l < 1 .
Dy =0 P T =6y (Rew) +F 2, Flouig rigeenig
| - N (25)
Lr+l _i-1 iy-is )
6. "D LD X o u) - D oD .
| ( an_ Dy

5 Nl;..N
| Cancel-9§+l, evéluate at 0, and do an-inductive proof on the order r to
obtain the desired rgsulﬁé.
It is‘convenient to have a short hand. notation for the differentials-

A and we shall for these functions interpret the Ci operater as

_ J
Cg-g Dj+£—l(x ° u)
| | (e1)..
¢S = Dj-l(DN - X o u).
J -+ T

Using this notation, (24) and (25) can be written as
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L mmdraoa @

5 . ;
. C. A n.-;A . . (25')
It is also useful to have a brace-notation

u ,\
A= {rgs Apeeeh) = (o5 (AD) LA , (28)

Q

[

= % u,
where s 21 M

o
r=14+ ry + iéi u, ry :
Next to be_defined_are the weighted polynoﬁials ® of rank R,
order r, degree s. We shall eétablish g‘one-to—one correspon@ence between
the ¢ and W acéordiné to rank, order, degree, and sequentiai position‘
" within the set oan gi&en:rank, order, and degree. That is, the patterﬁ

of generation for ® and ‘W is to be identical.

Definition 5:

' The weighted polyndmials,®'6fvrank_R, order r, degree s = O with

R = r are defined to be:

q).- . R-1 erfl A
= RTf.. 6. - .
i % -1y J (29)
@ivis a weighted polynomiai of rank‘R, order r, degree s if
®,.=3Rg O | | (30

© where ®j is 4 weighted polynomial of rank R - l;_order'r, degfee s, or if

© -ZRfR-lGrOGD‘ o o BRERES
where ¥ = 1 4+ Tg + Ty + ees + Tg
R=1+7ry+ R+ «0u + Ry

- witu 1, = order ¢ -
: i ij

,Ri = rani @ij.
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The degree s is bounded by.O = s= (r-1)+ (f +1), ¥ and 3 are
elements of the real liﬁe. - |
Th¢ reader will ﬁote.that Definition 3 and Definition 5 are idéntical
in form. We haye‘simply,factored out the coéfficients of the derivatives.
With regard to shorthaﬁd nqtatiqn, the{followipg will be uééd:i
|  Rel g4l | '

0
. = £, 6%
T AR s .
s. sRreedt | (32)

% Ja id1 "y

.

E= 2Rg.
v :jl ) lJl

The bracket notation used is

i @ = v[ro;.®l...’®$] = [ro; (@l)ul...(®s) ISJ . . ' (33)
where s %; iél gi‘

. Using the weighted differential W, the weighted polynomial ¥, and .
the elementary different;al A; it is pdséible ﬁo write the Taylor's series
for x, end that of §; in terms of a common basis. In order_tq accomplish -

this, the following results are needed which‘aregstated below as

Theorem 3:

Lgt-A = {ro; Ay ..g,AS} be of order r = 1 4 Xy + Iy + see + Iy
where ri'= order of.Ai. Let W ¢ erv= {Wlof'ordef r, rank R 2 r}.
let @ € ®r = {@] of order r, rank R g.f}. Then -

W=0A . | - C(34)
where ® and W are in 1 - 1 correspondénce according to 6rder,.rank, degree,
and sequential positiéh in the set of given order and renk. - That is

<r05 Wl e e ws) ‘= [ro; @l'.."®5‘] .v{ro; AlsooAs} .
T e (341)
E <ro; wlo-ows> =E[I‘o; ®l¢0.®s], ¢ {ro; AloooAs} ) )

where Cbi — Wy o= Ai'
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Proof: These results follow directly from the definition of the.

various quantities. Equations (18), (24), .and (29) give
R-1 Ty To :

wi~2RleD (Xou)—ZRflje D {Xo u) =9.A.
Thus for R = r, s = 0, the results are true. If this factorization holds
for rank R‘- 1, order r, degree s, then it is true also for rank R,iorder
r, degree s since from (19) and (30) are obtalned Wy =3 R gy ®J A= @iA-
A similar treatment of (20) and (31) will complete the proof.

Having establlshed this correspondence between W and A, it is now

possible to write the derivatives of1]i(0) in terms of A rather than W. =

Let ng) [R, r] be the jth function W; of rank R, order r. Then from

- Theorem 1 o ‘ ‘
ZDRn(o)— ;"Z jw(j)["v]' o )
Dy = r‘£+ 1 Gy Wi R; r] (0) | v (35),'
where j. c.- ={y IW(J) has rank R, order r} This can be rewritten as
'R .
DRT, (o) > b SS. o <I>('j)[R r] 4_(0) (36)

r=l+l & eSr J. €8y “Rr
where Sr‘='{a IAa'has orderzr} . Qhat is needed is an explicit formula
_fof the.coéfficient,lqgr. There can be obtained rether laboriously from
(l6').l‘However, inétead.of calculating these coefflcienﬁs one'by one
from (16' ), 1t is p0331ble to obtain a recursive formuls for their repre-
sentatlon.' We shall do this shortly. In what follows, it will always .
" be assumed that the functlons ‘are evaluated at the origin. - However, in
_ wrltlng down the results this will not be indicated. ThedexpansiOn (35)
is carried out in two‘steps. First, coefficienb-cdled dériVétive'harmOnios
are deflned and then it is proved that these are the coefficients of (35)

.These coefflclents are deflned in
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Definition 6:

The coefficient o is a derivative harmonic of rank R, order r,

degree s = 0O with r = R if, apd only if
a=1 | .' s (-3’.()
a is a derivafive harmonic of'rank R, order r, degree s if
=‘1 . o - | | . | ' ‘(38)}

where % is a derivative harmonic of rank R - 1, order r, degree s, Or if .

(R-l)' 1 Q- l.“ Cqy | © ‘ - (39) -
I‘O’ (ul)l...(uo»)! _(Rl)l ‘Ro,;- : :
where Qb is a derlvatlve harqonlc of rank RJ’ order Ty, and
‘R=]-_+i§_luiRi
r =1+ 21 ul I'l
& = _.§1 ug s Osr s (r - l) # (4 0+ 1).
It is assumed tnat the pattern of beneratlon of the a and uhe W

is identical and that this pattern establlshes al-1 correspondence
between o and W accordlng to rank, order, degree,/and sequentlal p051t10n '
within a get of glven rank and order.

It is now boesible to state
Theorem k4: | _ - :
R R e j
Dy = ;%+l Jeé U W [R, r] where ahr is the derivative
harmonic corresponding to W§J).I That is, the coefflcients of Theorem 1
are the derivative harmonics of Definition 67 _

| ggggiz 'Substitute the expansion (35) into both{sides of'(l6') and

collect terms of the function wi.- At the 'moment'.ai;r are not assﬁmed to

be derivative harmonics; simply coefficients as yet to be determined.
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Carrying out this substitution yields
| | i1-1y  1ig

ﬁRni =(R - 1)+ Z"}T' 2 a., o {R-1-1i; pIRREMMIED Y
_ - s Si 1eeedy Rll..fls 1 ri=p+l Tl
‘- Z .loc Z W(Jl) [il - ig, I‘l]--.W(JS)[iS, rs] aJl JS )

. . i -i rlo..ai r

Jl€Sl J€8g 1-12 _ S8
. R-1 o d (3

+E( 2 S a 1 W 1)

, R - 1, r 1).
ri=4+1 jies; R-1,my | .

The generél term on the left is either

(QJ_)[Rl’ ;l])ul---(w(qo)th’ ;U]) G>

W= (rg; (W

or

W

s VIg - 1, ).

Noting that E and (;) are linear opera%drs, we obtain from thé first term f
of DRni the coefficient ofvterms of dégree zero éf'equal rank and order..
They are always 1 and,jthﬁs, are the derivative harmonics of degree zero

of equal:rénk and'order.' From the last tefm are obtained the
céefficients”cqfresponding-to E(W) and these are seen to be unchanged.

Hence, fhe derivative harmonics specified by‘(38) are the correct
poefficients. It is nowtnecesséryvto sort out the coefficients gorresponding‘
to W= {rg;...). | | |

The general term on the right hand side is selected by placing’

: _ i=1...s
ri = ril '
i, = Rl + Ry +...+ R
12 = R2 +., i+ RS
i (10)
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:Thus, to each distinct permutatlon of the trlplet (qi, R 1 T, ) there
'”corresponds a valid index set and conversely. The coeff;cient for any

such choice is

Q. g
m- | R | BT L
(ro)! Rt ‘R s!
77whén
oy 11 | s 1\ (B 1
17eee = K . . PREEN .
1 . (R"l'll) (11'12)! L "(ls)l‘.
has been used. There are ~-— s! | such distinct permutations
' ' (ur)!...(ug) '

and they all have the same coefficient. Thus, the coefficient of

- the general term is

(R - 1)1 1 | %Rara || TR (b1)
I'O! (ul)! ...(uc)T - Ryt o 'Ro,.' : :

To complete the 1de;t1flcatlon with “the derlvatlve harmonics of (39)
_Ult is only necessary t.o affix the rank of W(Jl) to qﬁ and‘lt is seen i
:that by induction all of our a's are derlvatlve.harmonlcs. |
| The_séme theorem‘is true fbr.the derivati&es of i. Thus,.
'Thgorem 5: | |
Bx(0) = 2 of, a(®)0) , 5 = (al4 hes order r} (k2)

ae : -

'Where;if_

_ {ro’ '(A(a.]_))ul“..(A(ao'))uc}

>
I

then.
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& = (x -1 1 111 | To'o
rr ry! (up )t Tudt | ! » r! (43)

and for s = 0, a%r = 1. That is, the coefficients.of Theorem 2 are
derivative harmonics of equal rank and_crder. This implicitly assumes -
that the pattern of generatidn df W and A is idéntical,

E{gg{: Nofe thet x is deriveble from { and note that the

J

follow immediately from Theorem 4; or elée, one could proceed as with

Vderivative‘harmonics are independent of i and of fi‘ or 813 The results
the previous theorem starting from (26).
With regard to shorthand notation for the derivative harmonics,

it is convenient to define

0

Cj =1

s (R-1)! R e T A,
O T G T [()] {r—r] ' )
E = 1 :

which will pfove useful in definiﬁg'the pattern of construction of these
quantities. By now it should be evident that one need only give the
vpattern.of conétructing.the generic quantifij by means of the operators.
C and E. Then, upén properly interpreting these operators, the various
quantities previously defined will be 6btained.

With the use of the abéveAresults it is poésible.to write the
éxpansiOns‘for t andvx in a formAthat allowé a difect'comparison of the

terms. For Ci,-we have

» & R SN |
gi w4+ 3 = b b > aﬁ ®(J)[R, r] A(a) : (45)

1 Ref+1 Rl p=f+l jeSR acS, ¢ T

where SR = {J|®§J);has rank R, order r}
Sy = falA(a) has order r}
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and it is implicitly sssumed that the correspondence &; =Wy = A

_ mentioned earlier has been.maintained. In short, for each rank R and
order r, we sum over all the diff‘erent'ials'wi of thet rank and order.
However, each‘differential can be fectered into a weighted polynomial.df
like rank and order times an elementary:differeﬁtial of like order. Thie
faetorization is carried ouﬁ, We now'p:oceed to factor out the elementany

- differentials andureverse the order of summation to obtain

© o0 © R - . :
ti=u + = = s L3 aJ Q(J)[R SIS (46)
r={+1 acS,. | R=r R! J€SR Rr
For the solution x, we have
o <) r - L o '
x=u+ > E—g_' 2 aa ' A(a)
- r=f+1 r!  aes. T o
x=u+ 2 2l ‘ a Aa). :

r=f+1 acS, r'v rr

Using (46) and (h?), it is possible to write the nonlinear

E parameter defining equations of a generalized R.K. method as

. I' . .
;L S8 01 S '
5 = 3 [R rl= = o (48)
Rer ! J€SR aRI‘ _l _ r! rr o
forr=£4+1, 1 +2 ...
ae s, = {a|A has order r)

Sg = {jl@ij)[R,»r] S A(a) of order r}.

The'error terms for the local truncatioﬁ'error.are;‘of course;-given by‘
the difference of the 1eft and right hand side af-(48):'

Equation (48) allows.the pafemeter defining'eqpations corresponding
'Z'Ito any scheme under investigation to be written down. HoWever; i£ is
possible to factor further fhese‘eqnations. vThe weighted polynor._iials:@i

have a_coeffieient:associated withvthem'thatrcan be factored out and in



practice it is easier to obtain:and use these equations if we instead
use elementary polynomials.ng)[R, r] containing no numerical factors
and numerical coefficients ygi). The définifions of these quantities
follows the same pattern as was previously‘used and they are given below

as

Definition 7: The elementary polyﬁomials I' of rank R, order r;
degree s = O with R = r are defined to be

R-1 r-1 ’ -
r; = §fij eJ. . (L9)

Pi is an elementary polynomial of rank R, order r, degree s if

T, = ? e 0y o .(50)

where Fj is an elementary polynomial of rank R-- 1, order r, degree s, .
or if

Rl r, . . : .
r.=xrf,., 6.°T,....I' . . (51)
i 3 ij J 13 53 ;

wherer =1 + r + T+ ...+ T

O S

R=lfrC+Rl+...+Rs

and  r, = order of Pij

R; = rank of Pij‘

Definition 8: The coefficient 'y is a polynomial weight of rank R,

order r, degree s = O with R = r if, and only if

37

Y =R. S _v;wﬂﬁ

Y is a polynomial weight of rank R, order r, degree s if

Y=R-v, S (%)
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. whefe'yl is a polynomial_weight of'rank'R - 1, order r, degree s, or if
Y=R*Y1--Vg _ - (54)

* where - T

1+ Yo+ Tp + «.o + Tg

R‘= 1+ ry + Ry + ... }.Rs

’1
]

and order of v,

- o
]

rank of 7Y;-.
With respect to the C and E operators, we have the following for:

r and'y,_reépectively

o _ R-1 540-1
S =21, gIte-
J 31 Ly
s .R-1 :j'i ' . o ' :
¢ =3 £30 05 | . (55).
J1 1 _ ' ' : :
E =5 g, ,
3 51
0. .
Cj—‘.b’
A L BNCHN
E =R.-

The factorization of ¢ is carried out by means of
- Theorem 6? -
(5)

' The welghted polynomlal @ [R r] of rank R; order r, degfee s

~ can be written as
(i) . (J) o »
o '[R, r]- er (R, r] : (57)
‘where F(J)[R r] is. the elementary polynomlal of rank R arder r, degree j:
i
 s, sequential p051t10n J» and‘yé is the polynomlal weight of rank R,
[ . : . r

ordef_r, degree S, sequeﬁtial b051t;on Jj.. It 'is 1mpllcltly;assumed'that
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@, ', and ¥ are all generated from the same pattern.
Proof: The proof is by inductioh‘using the'definition of ¢, I',
and Y.

This theorem allows (48) to be rewritten as follows

oo J QJ .
5o o (J)[R rl= 2o o (58)
R=r jesg - R rt T

forr=10+1, 0 +2, ...,

a€ 8, = {a| A has order T}

‘Sk = {jlf(j)[R, r] —éé(?)[R, r] - A(j),of order r}
. i i .

where we éhall réfer to the coefficienés §% as fhe Tayiof coefficients,
the a%% as derivative haerniéé (harmonicé)5 the’ygr_as glementary. |
weights (weighté); and the f, as élementafy polynomials (polynomials).
-In Appendix I, the harmonics are tabulated in Table 11, the welghts
in Table III, and the polynomlals in Table IV. These tables are descrlbed
in that appendix and their use is illustrated by means of examples in our
subsequent work in Chapter VII, and will not Be explained here. Howevér,
‘we note’thét having selected a generalized R.K. 'methdd ‘the nonlinear
pérameter deflnlng equations can easily be dbtalned by 51mply looklng up
the quantmm38111(58) and.wrltlng down their llnear comblnatlon.
..In derlvlng the results, it-was assumed that the conditions

stated.in'(l3’) hold. Theée’cohditibns cqﬁsfitufe'part of the system

of equatiohs that the pdrameﬁers must satisfy and need to be written out

explictly. For r </
Dr*lx(o) =.Dr_(x o (u+ v)}(o) =,“Dr(x9 w)(0)

D" (x c)(o> D <Xo (u+n))(0) =D (x- w(0). . (59)
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Substituting these results into (13') leads to.

£-1 g. - Tl
Z gy {0) +2 2 -————(13 5, Dr(Xo u)(O)
i J _
S V , : (60)
2-1' er . z-l 91.‘+l r to
+3 5 0. L D (x o u)(o) - x(O) - L D (Xe u)0)=0. "
j r=0 1J | _ : r-O (r+1 )t - ;

Céliecting terms ig (60) and rememberingvthat the validity of thisgeqpati&hv
for all functions X 1mplies that the coefficients are separately zero, ‘.
‘nleaﬁs to the de51red condltlons

| In order that the results be easily acéess1ble, we collect: and

‘summarlze them.below-

Problem Dx =Xo x, x(a) =
‘Scheme | £, = z 85 5 gj’+ b aij:X(Ej)? i, J § S =-{O,;..;e x q}

J J

Condition A ¢ u6;) = O(hz * l)

i

for all i leads tov

J B
o+t or Tl
g, . +Za,,d -+ =0 61
o (r+1)1 5 1 7 (r+1)1 v (61)
r=0,1, ..., £ -1, i€ 8.
Condition B &y -'u(0;) =o(n™) , 1 ='io €8 1éads to
- o A et
i Yrr (J).. 03
= = o B VR el P (62)
T R 1 rr I

R=r JeSg

forr=£0+1,2+2, ..., m-1

ac.g
. r
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_ R-1 _
where in the elementary polynomials fij = aij for constructed approxi-
o ’ 1 : _ 0
‘-mations. For exact approximations f?_; =0, i #3J, fR . —i, and g, , =0.
, _ , ij. S | R 1J A

The actﬁal use of these results is pbmparatively easy once they
have been tabulated in a géneral form. The real prdbiém is to be quite
precise in knowing what the scheme is and to understand in what sense -
one is asking for parameters. That fhére is én'interpretation problem

cén easily be shown by means of a simple éxample._ Consider the scheme
£, = 1+ 8y x(gl) + 2, x(gg).

Ip the use of ﬁhe results, values for gli’ T i’ and g2i’ f2i must be

1
. supplied. Usually, £; and €5 are considered as exact approximations;
that is, x(0), x(92)>and then the parameters gli;-gQi’ f11, fp; are
those which make Ql(l) = xl(l) and £o(1) = xg(l). However, the results
are not limited to such an interpretation. £; and €p could be considered

as constructed appfoximations and,.in that case, f and g2i are equal,

1i
respectively, to fu15 8oy and the reéults give the error after two
~steps. What is essential for the'presént development is that some ofvthe
points be considered as exact approximétioﬁs ér else fhe infinitebsum

é%r will be juét that iiviﬁfinite. “Otherwise, it is self-limiting and
in.reality_a finite sum.

It_aléo.becomeS'apparent upon use of these results that the origin
has nevef‘beén specified; but must be specified to determine 4. Naturally,
the results should not.be origin dependent. Thét this is true is shown
rather easily for fhé pondition (61); In fact, it turns'éut that the
eqpations associated with degreé.s = 0 are the same ones obtained if r -

is permitted to increase tom - 1 in (61). That is, the equations (61)-

forr =4, £+ 1, «v., m -~ 1 are the equations of degree s = 0. Thus,
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it can be shown that for anyvvaiue of ri(61) is origin independent. We
state ‘this as
Theorem T:
‘The solution to the system of equations (61) for a given arbitrary

r is origin independent.

- Proof: Let.r be given and 1etv(61) possess a solution €5 615 <vus
ei; ;.t . Choose a reference 8, say 90. . Any Q can be.expressed as | |
6; =98+ o, when 0; is a constant. Now 0, = Go(t) is a function'of_where.

the origin is set. For r = m, the maximum value,we have

(m) _6?{ ,2' ég 9?1. » c o
f(eo) =Z. ...(-IT.;I)T.{- j oe- ;!-— m)-! = O s r=m
(m-1)

Df(e ) _f(6 ) __o-'

]ij(eo) =0 -, all j<e.
~ Thus, f(m)(eo) =0 as a fnnction'of 6, =:90(t) since the function value
~and all.derivatines are zero. The results are obviously the same for
r < m; hence, the theorem follows:
. Corollarxz The principal'error term for degree s =0 1s a constant*
independent of the origin. | *

These results are necessary to have 51nce,1n comparing the present work

'v with that of others, 1t may appear that the results dlsagree because for

higher order error terms the location of the origin enters 1nto.the
| coefficients. Tt must be remembered that these coefficients multiply
..derivatives that are evaluated'at the selected origin. |

Fer the general set of egnations, it is not so.obviOus that these

results are actually,independent of the choiee of origin. However, all
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results are polynomials in 6, and since the result is not yet proved,
in general, it can be explicitly verified for each case by taking a
suitable number of. values for'@O and noting that a polynomial of degree

n that has zeros are more than n + 1 points is‘the_zero polynomial.
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IIT. GENERALIZED RKF METHODS
BY MEANS OF SUCCESSIVE SUBSTLTUTLONS
In Chapter III, we shall tieat the case of a'system of p—th order

‘ordinary differential equations written as

: -1 '
Dpx =Xo t, t(a) =b, & = (Dp Xy seey Dox).

_ :Our goal will be to define for these systems a generalizéa Ruhgé—
Khtta—Frey'(RKF) schéme that inCluﬁes thevprevious definition when p =1,
and includes the methqdé uéing the derivatives of.X as intrbdﬁced by Frey,(7)
and to furnish a diféct'heans by which the nonlinéar parameter defining |

equations may be obtained for a given scheme,

" In order to arrive at the desired'results;'ﬁé introduce functions A;

called differentials, which reduce to the previously defined differentials
"when p = 1.
These differentials are used to establish a generic, pattern-

establishing set of symbols y which, when pfoperly-interpreted, furnish

ali thé'quantities needed_to obtain our réSulﬁs.  Deri#ative harmnnicsv

Bi afe derived from the généric Y, Defiﬁitioh by and we show by means

of Theorem 4 that tpé derivativés of x'cén be wriﬁten as §.6i A;. Using
the Taylor's series=expansion of X, this result éllows x to be wriften

as % Bs Ai.i“We show, Theorem 6, that the operation of SUbstitution X(¢&) ‘?

can be represented in the coefficient space of the differentials by

means of substitution harmonics o which are. also derived from the generic .
y. The operation of multipliéation DX(&) * S can also be represented in

the same coefficient space by means of multiplication harmonics obtained

from the generic y, Theorem 7. It turns out that to use our results, we

must be able fo‘make 8 chahge of basisvin_the space of differentials.
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This is accomplished by means of the tranélation harmoﬁics, v(t),
Definition 9. These, too, are dbtained froﬁ:the generic’y;

With the ability to multiply and subétitdte,’we ?aﬁ-actualiy carry
out in a direct_ménner'thevgenefation of any scheme and obtain its |
representation in the coefficiént spédé of fhé differentials A. The
class of schemes that are treated is given in Definition lO which defiﬁes

the géneralized RKFvscheme. The parameter defining equatidns are/obtainéd

by equating the components of the exact solution §(9i) and the corre-

sponding approximation'gi.
| Agaih,.anbassumption is made.concerniﬁé the ldwef bound'of the
vaccuracy 6f all appfoximétions €; and the fesultant'equations afe
given sas Theqrem'lO-where parametér conditiohs are stated.

' These results are collected and éummafizéd»af the énd of the
chapter where‘we indicate how to actually go éboutvobtaining the
parameter'defining equations from the séheme definition.

In Chapter II, we developed a formalism which, in effect, generates
all the parameter defining equations for all the methéds that are en-
compassed by Definition2 af that chapter. When a particular scheme is
considered, this formalism actually seleéts ffom‘the complete set"of
equations_those that pertain to the chosen ;cheme.- The approach might,
thus, be characﬁérized as a global approach to the nonlineai parameter
defining équdt&ohs associated with generalized R.K. schemes. vIt alloﬁs
us to see the form of these equations_énd thereby enables us to discuss:
‘them; to inveétigaté the_variqus properties that thej may have and; in
general, furnishes a means byfwhich they can be tréated’analytically.
~In short, it sets before us the whole cbllection-of equations associated

with the schemes and in such a fashion. that we can, if we wish, talk
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about them mathematicall& and see what'they are like.

In this:chaptef, we shall deﬁelOp a fprmalism that is-distinctly
different from the previous work in that the reéults can be characterized
as local; that is, givenbany ééhemé, we shall show' how thisvsdheme.cah bé
used to generate the pafametef defining.eqﬁatiéns'associated wifh,it.,
These equations will, in essence, belong to that scheme. Given any
_numbér of'schames, we can générate the equations associated wifh this
Qet of SChemes, but, again, tﬁéy are only for this set. We.have'no-
information és to what the equations may look like forka scheme that we
 have not Specified in detail. 'Thaf is, we mustfépécify the schementb
obtain the equations‘énd #é will only have eqpafions.for tﬁoSé.schémes
that have been written'down; before we had all the equations, the
épecification bf-a scheme ﬁérely selécted fhose which-were‘of interest
to ﬁs. _Thié appfoach'is,'thus, not in itself fery helpful if one wishes
tQ understandAthe charactervof the équations associated with the genera—
vlized schemes. ‘However, it is a very stfaightforward way of obtaining |
these eéuatioh5~and it will be seen that it éan be extended rather simply
té more generél methods than have been_@énsidered hefe; wheresas, thé
previbﬁs global appfoaéh is notiaé'easilyrextendable. The present work
is patterned after the work.of E. DeVogeiaere(3) and since the desired
equationé are derived by actually cafrying out, in a very systematic
fashion, the substitutions indicatéd by the schéme, we shall refer to
this as a sucéessive,substitution approéch. The previous chapter treated_
systems of first-order di%ferential equations. We shall'ﬁow consider
systems of p+th order differential equations. The treatment df.higher.
order differentiai;éQuations requires that‘the notation used be more

precisely defined_than‘was previously done and that the problem under

consideration be stated very ?recisely and explicitly.



The generai c.ase of higher order differential equations can be
set forth as followé:

Let R be the real line, t € R. Define the sets

v={0,1, ..., n-1},P={0, 1, ..., p - 1},

' ()
L

{0, 1, «c., my ..., nXp - 1}

where.m =1+ kn with i ¢ N, k€ P. TLet R® and R e respectively
real n and nXp dimerisional vector spaces.v Define x € R — Rn,

Xe RRP >R, & e R RPP,  More explicitly, define
g(t) [m] = Dp"l'k x(t) [1] o (2)

where k = m+n, i=m-kkn. It is desired to solve the o'rdinary

differential equation initial value problem

(0) map. . ®)
This can be written more explicitly as
Dpx(t)[Jj = %?...,.hp*l'kx(t)'[i],.,.) [j]
Dpfl—kx(o) [ii = a# (m] - o  , | (%)

where ‘i, je Ny, ke P

meé L, k=m<+n

i

i m - kxn .

t¢ EcR>0 € E.
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. In order to carry through the analysis, it is necessary to be
precise about which elements we are dealing with. We shall use the '

folloving notation
xy € (NXR) =R, xy [1] (%) =va(t) [i]‘ = x(t) [i]
Py [4] (4) = Day(t) [1] = (Px)(t) (1] N
e [1] (t) = gL(_t‘)__-.[Li] =‘ é(tj (il | ) |
(e &)y 4] (8) = (%o )(s) [1) = (xo £)(8) [4] - x<g<£'>_> 4l
Using this notation, éguati(;n (4) can be W.rittenas. l
.Dpr ='(x o e)ﬁ
£(0) = . o o | (6

It is also convenient to carry throﬁgh the convention df'summing'on'v

_ Qouble indiceS‘in:the followipg.manner.”vLet 3
Koy € (i. X N) -:—>I.R;
v tha# is, a ﬁatrix with Vélues'KLN [m{ il. ﬁe‘wfite
: WL [m](t) = W (t) [m] EKLN.[m] . TN(t) = 1§N KLN' [m, -_i]
| . TN[i](t)v
A OESSON n

(7)
N I

Vi(®) = Ty - Tyl)
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which is a consistent set of notation. We will, in general, make no
distinction between the various functions that can arise byApermuting

thé argumenté;»thus

W [ml(t) = w(+) [m].
Also} fhe matrices

'W,[m, i]/= W [m] [i]

will be considered equivalent. Of course, when both arguments of a

function come'from an index set, then we have that, in general,
W [m, 1] #w [%, m].

Upper case subscripts are the_setsvdefining the domain of
definition of the argumenmts. They are usually omitted when this domain
is_the'real line and usually included whén the domain is an index set.

deer case'subscripts and all superscripts are .indexing quantities;

(1) . .

v N iN
as éonvenient to indicate the i-th §N in the set of all eN” Whether or

i

that is, the némes of‘the items. That is, we shall write &

not an element is a function defined on R or a vector space point in R"
will be clear from the context or will be explicitly Stated, In general,

wevshall use
x(0;) = x, = -‘.=.x'(9-)‘€ R"
i i T XN N\¥i :

as all being equivalent ways of writing the solution x of (3).. We have
used some of this notation in the work in Chapter iI; however, for our

present work,'it is necessary that these quantities be precisely defined
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so that there will be no misinterpretation of thé~resultsf'

We ffoceed much -as before. Now,.however, our starting point is -
“the approximation. The work'that follows is patterned after that ofaii
.5Chapter Ii 80 thét the results can be eaéily checked for the special
case p-= 1 of.systems of firsf érder differential equations iﬁ those
areas thét;are ébmmon to both dgrivations., This also isfa coﬁvenient‘
way of contrasting the‘differences.

Thus, invthe cése of generalized'R. K. schemes for systems of
higher order differential equatioﬁé,vwe agéinréonsidef eléﬁents
3 e B%P hieh are‘approximations to E(ﬁi) wiere ti is in the’ interval of
inferest( A generalized R. K.vséhémejis_now defined'as:

Definition 1: The aﬁproximation_éi is said to be obtained by

means of a generalized R. K. scheme if, and only if

w9 (L) -
ey, @

g

- where A, € (L'X LS R); By e (L X N-f R)-én@ gj‘ié an approximatiqn
obtained in the same féshion.' 7 - | |

' Inrshért, any.scheme that uéés a linear combiﬁation dfvapproxie
mations and of function values dbtained at spproximations is called
a generalized R. K. écheme. At the presént timé, wé.séy nothing further 3
about the coefficient matfices A and B; however, it is obvious that a
"sensible" choice of non-zero éoefficients must be made when épecifyingv'
a scheme. vWe shall'say more about this later. It is easily seen.from (8)
tﬁét Definition 2 of Chapfer IT is contained in our.present_definition.

As was previously done, equation (8) can be rewritten as



S

<',J> L) () ().

= u(8; )+z - u6.)] += B [x(¢,) -Ry ]
i LLl Ll J f IN J'w. N
(1,5) L1) () o (9)
A (9 )+ - w(6;) o
J _ .
where R(ﬁ) will be spec1f1ed later, and
kKt _p o g : '
-1-k :
up, m] = = I Dp +rX(O) [1] ' (10)
r=0 r! » . » :
with m=1i+kn
ieN, ke P

is the Taylor's expansioh of‘the solﬁtion € up to and including the
p - 1+ 2 derivative. If the assumption is made that thefe is a lower
bound £ for the lowest ordef of accuracy among the approximations §i,

then (9) which is an identity can be legitimately written as

ey = u(6;) + = A ’J) (‘]) u(e, )1+ B ’J)[ (8 '-R(lﬂ)] (11)
J
s A(.Ii'T’J‘j) up (ej.) + 3 B(M;J) (J) - u(e,) = , (1i')

J 1 1 J

'EquatiOn (ll) will bercbnsidered as the:general farm of the scheme and
equatlon (11 ) will be con51dered as the conditions attaéhed to the
'parameters A and B. Later we shall add another term to (11) when the
1spheme 1svgenerallzéd§ that can, however, be easily done once the |

.results are established for (ll). To actually get started, consider that

A(i’j)s O;' Then(ll) reduces to
LL v -
e = w0 +3 8829 rxe.) - r(dN o (i2)
N A e ¥ SEAY N - : , -
R

Equation (12) includes ‘all Runge-Kutta schemes and their .generalizafion

%
d
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go a scheme with memory, provided one uses only'function evaluations from
.the past. Eqﬁation (12) will be used in a very sﬁraightforward fashion
to.obtain the desired equations. We simply phoose an index value for
which the solution is desired, say t;, and evaluate £(ty) = u(Gi) + v(Qi):
" and evaluate the approximation §i =,u(9i) +vni by aétually car;ying.out'n
the indicated substitution. |

It is seen that the principal prob‘lem is to satisfy

V(Gi)-- 5 B(l’J)[X(E ) - R(J)] o(nt) O (13)
S .
where
o ) o v l K . II‘ '
vp Imd = 5 oPTTx(0) [1] = (1)
: r=kt+i+1 S r! '

‘and r is maximum in some sense. As was previously done, we must represent
.the derivatives of x and the expansion of Ny = gi - u(@i) in the same
basis so that a direct term-by-term comparison can be made. From (14)

) o T T

is seen that we need the derivatives D. x = D (X o &) forr 2 1.

This task is accomplished in the same manner as before.

Let _ o
£ = u+ v, . - (15)
Then X o & can be written as-
X ot =%Xu+v)=Xo u + Z L ( X.o wvi v
o+ oy T L. VL LT
(16)°

- which when differentiated with respect té t gives rise to
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r 1 1 s-1
D(Xog) D(Xo u)+ z —I- Z 2 e 2 'ari~ i
s=1 S 1,%0 12—0 iS=O 1°" s |
(17)
r-i ) . i,-1 i
Cl o 172 s
D ,('DL...L Xou)D v eeeD v -
1 s - 1 s
' r i i
where o . o=f 1 ve- -1
ri..d oy i i
1 S 1 o) s
We note that
-1-k+ '
[m-](O):p vr [1] rzk+ 4+ 1.
5 .
=0 ' s r<k+4+ 1.
Define ' | '
- = D"x(0) ; (18)
and - _ '
(k) . . :
= B 19
Ty [m, 1] i+ ka (19)
where is the usual Kroneker delta. Then DrvL can be writtén as
( . :
\kl-) r-k.=-1 s
ml(0) = Z I iy lml By "1 oL (20)
klEP
The substitution of (18) and (20) into (17) yields
r ® 4 T ts-1 A | _ : '
B.=D(Xou) (0)+*+ = Z 2 .2 o, . 2 ...%
N —-.,S"’— s . I‘ll olsk'P P
- s=1 % 1)=0 1=0 1'7"VS kjeP kP
o - (21)
ridg () (k) (i1-ipkg-1)  (ig-kg-1)
D _(D]L‘”_.L,Xou)(O)ILN Ly By By .

1 s 11 ss 1 : S.



The range.of the indices in the index sets of (21) is exéessive.

E

By noting that r = k + £ + 1, which can also be written as k ST - £ - 1, .

 we see that it is pdssible to write

2., & as - 2 ..
k1€P keeP k=0 k=0  kg=0
which in turn implies that i_ 24 + 1, ..., 1, 2 (s - 1) (£ + 1), iy 2
s(f£ +1) sr. This allows us to write the summations using the i indices
as ‘ .
T £1-(4+41)  ig.3-(841)
3 -3 2 .
17=8(2+1) ip=(s-1)(£+1) i_=+1

Thus, the normal range of the indices will be cohsidered to be

0 sk Sy -y - (24 1)‘
0sk; siy - ;3'- (2 + 2)
O.ékséis-l'(£+l). C ‘ . (22)
s(£+1) si; s | |

(s-l)(£+1').§12éil-'(£+l)llbv

= .1S-l

1sssr+(f+1)

(2 + 1) si s - (1 + 1)

This set of indices will be referred to as the normal index set. ' We note f

A

that il:' i, ranges from ( +1) tor and, hence, 0 £ ky sr - (£ + 1).
- However, ky € P is always implicitly assumed, so ky =Ep - 1-is to be

used should r ~(£ + 1) be larger than p - 1. Similarly, k; € P is

implicitly assumed for all i =1, ..., s. In allvour-subsequent referehce'
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to (21), we shall assume that the indiées are in th; normal -index set.
Formula (21) is analogous to (l6').9f Chapter II where we derived‘
results for the case of systems of first order equations. We shall again
proceed to define différentials of givén.order and degree and prove that_
the derivatives of x'evaluatéd at zéro have expansions into. these functions
'evaluated at zero. We will theh derive explicity recursive formulae for
the coefficients,of these expansions. |
We now define a set of functions A€ R — Rn called.differentiais
of given order r and degree s where r and s are intege%s»such'that
rzf+1and 0 Ss S(r-1)+ (£ +1).

Definition 2: A is a differential of ordér r, degree s if, and

only if

(ro: 1’ ks) (1) 1.(5)' e

. | o
wherevA( 1) is a dlfferen ial of order ri, r = 1 +. ro + Z (kJ + rJ),

Nl . _ J=
kj € P and we define ’ '

(roskiy.--skg) o : ,
C n,n, ..., n_J= S
NN, .. .Ng o’ "1’ "t s | : .(gu)~
T, . ' (k1) (kg)
D (D Xou): [nl]TI [n1...1. ~ In.]
| Ll...L N O LlNl L LN, S

_ s 7o
- with P = {klk e P A § [m] appears expllcltly in X o E] For degree O,
C is to be interpreted as |
(ry) Ty ' :
CN =D . (X ° u)N N : (25)
o -0
It is necessary in the use of the differentials A to be sure that

all of these quantities are actually identified and used. The questlons K

that arise are concerned malnly with the generation of the A and the



identification of distinct A, We shall freatvthe latter first since in
the generation of these quantitiesrit is absélutely necessary to identify'::
only the distinct A.

The identificétion'of distinct A requires that we be able to
determine the effect'éf permuting the k's and the A's in tﬁe definition
’of‘AN . Let .us consider. the general term A = v{ro, kl, cers ksv; A(l)...A(s)'} =

o)
(ro,ki,.. ,ks) (l) (s) ‘
C NoN7 . . N Nl .. AN where'we have agaln employed the shortened

notation of the braces after the fashion of Butcher(l) We wish to

 consider what happens when we derive another function A =

- - (1) _(s): ‘ o -
{rgs Ky, «vy kg A ... A" '} where the set (ky, ..., ki).ls a

1) (s

permutation of‘(kl, .e.s kg) and the set (A , .:., & ) isa
permutation of (A(l); ceiy A(S))t. The question to be answered 1is the
‘ following: When is A = A? Since any permutation can beﬁarrived at by

the repeated permutation of only two items, we shall examine ih detail

hm (g X ) Ing] 108 N) [n,] I(k?) [n] A%I a3 Al(v;)[ne]-

This can be written as

h=3
i

k ,'kg; A(l) A(e)} =
3 3oy Iny + Kyn] [np + nl ¢ Wy Agl)[nll NN
n) p 1 2
A = {o, ke, kl; A(l) A(e)}-» =

i

| (1, (2)
;i ﬁi(DLlLé [n) + kynl [ny + kyn] X °:u)NO ANl [nq] ANé.[HQJ

i
1

— {O, 1;1’ ke'; A(Q)’ A(l)} =

ni(DL L, [n1 +-kip]_[#? + kenj:X o_u)No A§;>[n2]‘A%i)fnl} it

F?Lﬂ



A= (0, k, k3 A2) A1)y -

ni'. nél(DL/ng Fni'+ k2n] v'[ng +. kn] X ° u)No Al(\ri)_[n?] Al%i)[nl]. v
Now i{ can be written as
n? ﬁg(DLlLe [n2 + k2n] [nq + kin] X o u)No A;;)[hgl A;i?[?;]
.since the sets Ny and Ng.aré identical and.we sum o&er all_indices of
fhesé'sets. If the of&ér)of differentiationvis reversed, then the
dé%ivative element will be that of.i, but the value of A&i)A§2) is in_
éorrect. In fact, we see that ¢ and {{{ are the same prbvided‘if is:
permissible to interchange the ordér of takiﬁg thevdérivative. -We shall -
assumevthat this is justified;, The same procedure applied to iv shows
that.iv ana'i are equivalent té each oﬁher. If we ask ourselves when
are { and ¢{ equivalent, we see that this is so if‘k.l =~k2 or if
A(l) = A(e). In either,éase, ¢ and ¢7 are the same.: Websummarize these
‘results as 7

Property 1: 1In the definitién of fhe differentials A;-a permuta-
tion of the {ki] with fixed tA(j)}:is equivalent to a permutafion of the
{A(i)} wifh fixed {kj) and, in general, a new function will arise from
this operation. |

Property 2: in the definition'ofvthe differentials A, a permuta-
'tion of the fki} followed by an identical permutation of the correspondiné
'V{Ai} does not lead_fo a new function. That is, any permutation of the
couples {(ky, A(l)),bg.., (ké; A(s))] gives rise to the same A. |

Combining Property 1 and 2 leads to |

Property 3: If ky ='kj’ then the permutation of A; and Aj does
not give rise to a new A. If Ai = Aj’ then thefpermutation of ki‘and ks

does not give rise to a new function.
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We uée.prOperty 1 and 3 to obtain
>Property 4. GiVen‘A = {ro, ki, «.oy Kkg; Aﬂl)...Aﬂs)] of ordér'f,

- degree s, we.obtain ali distinct A of order r, degreé s with -the same
factors by cOnsideringréll the disﬁincf permqtations of (kl, ey ks) o
with (1) fixed with the understanding that i A(L) = a(3) then tnat

-permutation is noﬁ distinct.- That.is; we assoéiate to the couples
(ki, A(i))‘the inﬁegef n,. Two couples are considered idemtical if_at:
ieasﬁ ope of the components aré equal; ki = kj or Aﬁi) = A(J) ér bdth.
Diétinct couples have distinct integers. We form the distinét_permuta-:'
tions of {ni];then the cOrresﬁondence niQﬁ kj or n; = A(i) will furnish
all the distinct A with the same factors.

' A1)

As'before, we can collect together the repeated  and write

1

A= g, By, eees kg A AN R M) (26)

' ) g
with R = (rg, k3, ..., kg), s = igl Hye

,Hdwever,vwevmustibe careful
to perﬁuté (%, A<i)).together when arriving at this fofm,which‘we shallz -
refer to as.the normal form of thevdiffereﬁtials. We noteﬂz&'by'abprOpriéfe
iﬁdexing changes, we can always consider the indices as seqﬁentially in-:
creasing; It is also convéniént to usé the same notation for A when allf 
the A's are evaluated at a point; for example, in the expansion of
Dp+rx(0) we will evaluate tﬁem at O.> Whether they are to be considered' v
as functions or points of hn will be clear from the cOnfext, As was
4préviously_the case, the'operétor.(;}.is linear and {R; % ay Ai} =
, ;,ai{R; Ai}, a fact.wﬁiéh is needed in coliecting terms in expansions
:ubseqpenﬁly used.

_:With.rggara>to the establishment“df a pattern.of genération for
theée différenfials, we réfef-the rgader to Table V of Appendix I and

~ the description of that table. However, a few comments can be given'
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here. As with our previous work of Chapter II, we proceed-to order the
differentials starting with those of lowest order and lowest degree.

In fact, if P = {0}, then our pattern of'genération is identical.with

that of the elementary differentials previously defined in'Chapter II;.

If P = iO, eeey D - 1}, theﬁ we introduce the diffefentials with'lowést k
vélues and their_permutations wofking from lowest degree to highést

degree. As befare, we have not established how the battérn of generation ;
is to be continued beyond the ordersyanﬁ degrees ﬁﬁat we ﬁave given in
Table-V. Ir these'Quantities are generated by én-algorithm, as. they

can be, this pattern must be established in some fixed fashion and
preferably in a manner that is consistent for all the different'functionsvv
fhaf we define, including the work of Chapter II, this éhapter, and that -
of the folloﬁing chapter.

Since the A's are functions of R - R", it is possible-ﬁo differentiate
them and we have the following:

‘Theorem'l‘

Thé differehfial coefficient of any differential A of. order f is a
linear combinatioﬁ Wifh non-negative integer coefficients of the dif-
ferentials of order r + 1. That is,

DA = . X oy A; where Sr+l = {i|Ai has order r + l},
1eSp41

Note that we only claim that @; 2 0. In fact, it turns out that
many of the coefficients are zero. |

‘Proof: Consider the function A of order r = £ + 1, degfeé 0.

A= (2}= D/Z(X u) DA = D£+1(X ° u) and the theorem is true for the

“ lowest order,and4degree.A Now let A = (R; Al"‘As}'



DA

{ro + 1,-kl; ceey kg Al...AS] + {R,'DAl.}.AQ} + .. 4+

(R; A f..DAS].

?

(Rs Ay oA+ (Rs 2oy By Ap.. B + oo

!

= {R; Ay...A} + 2 di {R; Ki Ag.. Ag) + ..

’ Where,ﬁyiﬁduction hypdthesis,ﬁi is of order r; + 1; thus each term haé.

its order increased_by.one and the tﬁeorem is prqved. |
Corollary 1: The degree of A is invafiant under differentiation.
These derivatives df A are relatiﬁély simplé to calcuiate{ Thev

first few A's and their derivatives are given_below:

ROIS NGRS

NEH RTINS pa(1) = 4(3)

@) - {0;;0;'Aﬁo)}- o pa®) 2 a8y 4(5)

BV | |
A L, o; al0)

B A5 o, 0; A1)
_A(6) = {0, O: A(Q)}
Al < (o, 1; a%h

1]

It is possible to develop a recursive formula for the derivative
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coefficiénts. Although the simple case given here has all coefficients -

‘equal to 0 or 1, this is not so when more derivatives are taken. - With
~respect to highér’order derivafives, the corresponding theorem is -true.

Theorem,2 

~ The j-th derivative of the differential A of order r; degree s is

a liner combinétion with ndh-negative integral coefficients‘of the dif-

ferentials of order r + j, degree s.
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Proof':. Thét the degree is preserved is obviocus from Corollary 1.
The theorem is already frue for j = 1. For’larger values of j, we have
that DIA = p(pI~1a) and the reéﬁlts follow by induction on j along with
the application of Theorem 1. " o

We now state and prove the following theorem about the_dei'ivatives
of x at zero; that is, DP*Tx(o) = B,

Theorem 3: |

'Br of order r + 1 is the sum of the differentials A of order r + 1 .

evaiuated'at 0. That is
B§ =2 0y A(i) -where aii> 0.
i .

Proof: ',The proof is an inductive one using (21). "It is obviously
true for r = £ since B§ = DI(X ou) =1 - (£}, Now examihevthe second
term of (21) and look at the sum of the orders. The order of the genefal
termisl+r‘-il+kl+ ...'+ks+(i‘l- iy - k) + oo+ i -k, =T+ 1.
Hence; the order is r + 1. The only question is whether using the
 definition of the differéntials'A,'we will have a one-to-one correSpohdence'
between those A of order r + 1 and the quantities appearing in (21).
Sincevthe indices of (21) stay in the ﬁormal index sét, all the A of
order r + 1 appear in (21) and:only these A's appear.

This theorem allows us to use the A as a basis for the derivatives
 and:we:ﬁow ne;d to show how to obtain the coefficients . It is possible
‘to formulate a»definitibn for these quantities that is almost identica;
to our ﬁfeviously'derivéd derivative har@onics énd, in fact, reduces to
that definition.when p = l._vHoWé§er, since it is important to keép
track of the distinct coupies.(ki, A(i)) in the generation of the dif- -
ferentials and likewise in tﬁe géneration Of_the coefficients did itiigf
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more natural to define_é generic'sét which estabiishes the.pattérn of
generation aﬁd from which the quantities of interest can be easily
derived by estéblishing a proper correépondencé to this geﬁeric set.
Thié has, in fact, been done iq Table VIIT of Appéndix 1 which is the
extension of the workvof'Chapter IT to higher order differential.eqpatinﬁs.
.. For our pfesent work, the most convenient referehce.set is the sgt‘of_ ‘ |
differentia;s. Therefore, ail our definitions will be refer?ed to thé“
A.which will be used to establish a generic set. There will bé'ﬁo
problem making th; cbnnéction with the WOfk of Chapter IV since there
the A's are themSélves easil& identifiable with'évgeneric,;pattern
eétablishing’sét of quaﬁtities, ‘We émphasize thi$ point because it
seems quiteAnatgrél thatrQne'coﬁcise,aigorithm.cduld_be‘used to generate -
all the quantities:Wé have”diséussed apa ﬁiil'subsequently,discuss pro--
vided it is képt ih ﬁind thét they are»ail spécial cases of'é basic |
generiéfset which éstablishes their péttern‘of generation.

In order to use the A as a generic éet, we rewrite Definitioﬁ 2
-vas | | '

Definition 3: The symbol y is a généric y of order r, degree s,

position 1 if

yk[r, 1] =Y [r] o (z[r-f i, ol). ‘ (27)
The symbol y is a generic y of order r, degree s > O, position a if
PFlr, al = ¥(r, X, ..oy ko (2, al,..0, 2¥rg, aj]) (28)
where 2z T ai];are generic z of order Tss position aj»

o s ' _
r=l+r, f.;Zl (k; +ry), X5 € P, | :
. i= L7 , ~ I

' By convention, if the quantities_geherated do.not depend on k, then the
superscript k?is'suppre$sed.

!



It is assumed that the pétterns establishing y and A are identical
and that properties 1 - Lt are in effect here. 1In short, we have that

if P ={klke Pat [mlis explicit in X o £} and if

z [r-1,0] =1, = [ri, a;l =y ry, a,1, 8 #0

1
‘ r-1) .
Y[I‘]° -:_Cl(\r ,«)Q
O .
e _ (ros kyye-..skg)
Y [?o’ kl’."" kglo = CNONl... N, .

_ then the differentials A of Definition,é will be generated:. The index.
a is the sequential position of y [r, al in the set of order r with
the assumption that some order has;been éstaﬁlished.' |

We now establish the coefficieﬁts O by means of'DefinitiOn 4 and
- Theorem L. | |

Definition 4: Define

z [r-1,0] =1, =z [ri, ai] =y [r

it
-

Yy [r] o (gé)

d 1 lo = (I'—l)' . l ' .
b [I‘o, Kl".”" ks]' - rg! (o)t (ag)l (kg + rl)!...(kl-i-_rsjli

where ®; is the number of times that the triplet (ki’.ri’.ai) appears in
y [r, al. Then the generic y has as its realization the derivative

harmonics. By = y [, al.

Theorem U4:
Let B§fl = D'"Y(% o £)(0). Then we have that
( Br-l - 5! Bra A(I‘v,a)(o) o ’ | | (30) o
N aésr ‘ v S .

where B is the derivative harmonic of Definition 4 and

Sy = (aIA(r’a) has order r}.. .



: ' +r-1 T - o .
Corollary:_Dp "X(0) = = - Brg, Aﬂ?’a)(o). ‘ - (31)
e aes,. . B
Proof: This theorem:is proved, as was its analogue in the p = 1 caée,
by substitﬁting the expanéions into both sides of the equation giving
Bys equation (21), and collecting the coefficients of like terms. Let
r-1 _ s
BN' T a€Sy 5ra
. this into (21) gives

A(E’a) where the order of A is r. The substitution of .

- - 1 (r-iq- ces
Br 1 = Cr 1 + 2 > . > 3 a B 'Cl(\ux\; 1] f\;:kl: ,ks) |
N N § i..+ig ky...kg Tile:.2s Hp..-Ysg o
: ’ (i1-ip-ky,a1) (is‘ké;as)
. 3 . . cee B . A Y\ .
8y...a 'Bll‘le‘kl’al ‘als'kS’aS' L] ' e Ny
S . . :
r,a - - (T a )M F.,5.) Mo, . -
Let A(N’ ): {ro, Ky, -+v) Kg; (A( 12 l)). ---_(A( a’ 0)) }. We wish to

“determine the coefficient of the term on the righthand side of (32) cor-

responding to this term. The general.termfof the right member is

(r - iy, Ky, «ovy Kgs Alir-ie-kser) | (ig-kgsag)y - oy must, therefore,

be true that i; - ip - ky =Ty, .., g - kg = T_ which can be written as

i = (r) + k) + (rp + k) ol * (rg + k)
iy = : _'(rj‘+ kj) e (rg + k) | _(33)
iS = -v o . - | | (rs + ks)
a; = a;
: lv _} i=1, P
ki,= ki . .

" Thus, the factors of the term A(r,a) determine uniquely'an index set

(i,va, k). ,Propérty 2 télls us’how to find all the fermSICOrresponding :



e A(r,a). We write the set of triplets {(k;, ry, ai)i} = {n} where we

i
associate distinct .n; with distinct triplets. Writing the repeated marks

®1

as ng

allows us to write the set [(h')wl...( )wS} where s = w, + ... +‘® .
e 1 v 0y 1 (o]

Any permutation of the {ni} corresponds to a permﬁtation of the set of
triplets and leads to a new set of indices and. convérsely.‘ Howéver,

since we are permuting the whole triplet, this does nét‘lead tb any new
diffe?entigl A. The &;T%%:Eg?l permutationS»of‘[ni} give wus ali the termsf
corresponding to A&r?a). That we get all the terms this way is evident
if we consider (33) with the left member known and the right member un-

known; the solution is unique.

The general coefficient of. each term is
1 (r - 1) (Brlal) "1, (Brcao)
ST T T - 1) (G - (G - 0 ()

Replacing ij-l - i. by its value r. + k and multlplylng by the multi-

J J
nomial coefficient gives rise to (29)' In dbtalnlng the index (i, a, k),-
one mlght wonder whether it is possible to choose A(r a) such that the
derlved set (i, k, a) was not w1th1n the bounds of the normal index range
(22). A careful"examimtion of (22) and of Defin_ition 2 will show that
for any_valid_chbicé of (k, T, a) we will derive by'ﬁeans of (32) a set
(i, k, a) that is within the normél range. It is obvious that the B,
that we have used here are simply the derivative harmonicé of Definition &
and couid just as well have beéﬁ‘étated as an integral partvbf the theo?émj
'howevef, it‘is éonveniént_to isolate the generation of thesé hafmonics..
'Definitibﬁ b fﬁrnishes an explicit, recufsive definition ofvtﬁe
derivative harmonics. Theselcoefficients will be used later to obtain
the expansions of the derivatives of the sqlution.x énd then are‘tabulated
in Table VI Qf'Appendix.I. . f o o

It is possibie to give an amalogous resUlt.‘for‘the coefficients of



Theorem 2. We state the results as °

Theorem 5:

Let A(ria) = {r ," ky, oo

., kg AlTLse1) (?s’as)} be the a-th

dlfferentlal in the set of all dlfferentlals of order r. Let-
A(r+J’1)

p | | o
with q = igl #; be the i-th differential in the set of all differentials -

- - ' Nt
= {?o’ Ky eovy kg3 (Arl’al)gl (a" Tor ) c}

of order r + 3. Define the coeffiéients 5 by means of Theorem 2 to be

l€S ’ . . -
T+ .
where Sr+J {1iall A(r+3’1) of order j + r} Then, the non-zero coef- -

ficients of this expansion are given by setting

ky =Ky, Ty Er ST+ J, @ =8, Ty

A

— < . .
Ty STy 4

(2), 3 s [ . (al) l 8(30) uc
L .(;B'rO'! ieQ [(?i'rl)! , (r 'rs)' ®z ra l)_ . fng) ‘

(35) -~
: ¥ ' : : 5] v o . ‘{
where Q = {all permutations of S, ='£i1 Si‘such that after any permutation.
r; = ;- §'ri + jl. | The Se’ts 5; are described below by equation (ll-O) :
set Q is essentlally the set of distinct permutatlon of the set of couples
v[(r , a. )} correspondlng to repeated k1 The coefficients & in the rlght

member of (35) are defined as the coefflclents in the expansion of

pFr)(mesdy 6(;%) W) (56)
aiesfi 11 L

This'theorem, in effect, stétes that if we know the derivatives . -

of the lower order differentials, we can then find ‘those of the higher R

order differentials.



Proof: Write A = A(r a) _ = {r,, kl, ,..,1ké; A(rl’al)...A(rS’as)}.

Differentiate to obtain

) . i1 151 . -
DA= = Ze- 3 o Arg + § - 19, Ky, oev, Kgj
‘ s . 12 ’ S
—— s A J1]«-1D . L : :
11*0 15 0 ig 0] )

. . . . ‘ (57)
DllfLQ (A(rl’al))...Dls( ( Tgr8g ))} '

We ‘know from Theorem 2 that D (A( 184

)) is a linear comblnatlon with non-
negatlve integral coefflclents of the dlfferentlals of order t+rg

Thus, we can replace each derivative in (37) by its expansion. This leads .

to
. | | o
o) A ety § 5 S,
ies,,, T - 13=0 1p=0 3=0 T17Ts
: | (38)
. = (al) Cples) (R; 'A(rlﬂl_ie’?}?zx(rs+is"as)}
Qe 0l 1"1“1'12’0‘ | r s"1sr%

where R = (T,, K5 -+, Kg) and R = (ro#J - i, Ky, eees Kg):

( AR
A look at (38) shows us that many of the terms A?+J’l) of order r + j
are missing - that is, have zero. coefficients; We are interested only in

the non-zero coefflclents and this leads immediately to requiring that

H
fIA
A
H

ot d

. . S p. 3
1 l_'rl+v‘]

]
A
H |

which are the ranges stated in the theorem, and that .

il-= (;l -vrl) + + (r - T ) F oo+ (rs ‘-_rs),>

i. % : | : (rju% rj)+ .‘...+‘(rS - r,) | R (3@)



We note that A

ig = ._ ' Co (rs'rs)
s = g ,
1 1
o i=1, s B .
Ky =Ky
(r, ) determines the Ry and we are not allowed to

change them in (38). This, in turn, means that k_‘_ are fixed in value.

We wish to find permutations of (T, Ei) that will lead to newzindex-sete
through the use c‘:ﬁ"(BQ). HoWever, we know from our previous work that we -
must permute the triplets (k;, r;, a;) in order that the resultant dif- :
:ferential net be eha.nged. For the ki' %Ei fhat e,re alike, Ve‘canv_ permuﬁe_ _
(r+,1)

the (;i 5 a— ) without changing the differential A Thus, we collect

: .together the sets (rl, a. ) 1nto sets of llke k That is, we define
Sl = {(I‘l, al), oo ( (‘01 awl)} N
| (ko)
(T )y -+ (Fys )]

where (rJ, a, ) €8y iff kj =k;. We lét S, = {(;l’ El)- (;2,- 52),
‘(rs, as)} = U Sl. We define Q to be the set of all dlstlnct permutatlons '
of S where, by a permutatlon of So, we mean we permute the elements of

i) | (1)
each of the S;. Let us write s; = ((ry, a.l) S— (rg a‘f; )VCI 1.
Then we have

(@41)1

T, O
;.(71 ‘)!---(vgi_)!

permutations of S; and, therefore,

_((D]_)! e (o)s)l
(W Ly 2Dy, ( (8)), ( (5))'.
1 €y 7

permutations of SO. Unfortunately, we' cannot simply multiply the gener'ai 'f
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coefficient by this factor since
] i i .
J 1\ [ s Jt

Jig...ig 1\, )\ (Fg-ro)!(Fi-rl)!..-(Fé-rsﬁ

and, in general, this coefficient. changes as we permute the ;i while

leaving the r; fixed. Also, it is necessary to restrict the set further.

since ry S ry; =r; + j must éiways be true. Thus, Q = {all distinct

permutations of S  » r; ST; =r, + jt. 'Equation (35) arises when the
general term coefficient is extracted froﬁ (38). |

As 8 biprodﬁct of:thisvtheOrem, we have the following

Corollary: Let A = {R; A oo As}. Then R is invariantVUﬁdér
differentiation. |

Tﬁeorem 5 seéms to be of little,practicalvinterest unless one is
considering the.generation of these expanSions ﬁsihg.a suitéble construéted
algofithm. Invthat case; it furnishes an‘explicit fecursive definitionb
thé£ enables one to obtaiﬁ the coefficients of tﬁe higher order derivatives
providéd all the coeffiéients of the lower order ones are knowﬁ. The
corollary is of interest because it assures us that if k, € Pc P, we
v'needvonly concern oﬁfseives with the difféfentials in_the restricted set _ 
deﬁefmined byvﬁ. In actual practice?‘it is rather easy to obtain a
reasonable number of these coefficients by aétuaily éarryiﬁg out repeated
differentiation. It turns out that fhesé differential coefficients are
'nOt'the-onesbof interest to us and we shall make no further use of theséx
fesults; they have been presenfed here for the sake of coﬁpleteness.

Before turning to ﬁhe tésk-of‘generating the approximate solution
by successive substitution, we fifst uée'our results to write the true
solutipn 3 iﬁ the aésired form; that is, in thé form of an expansion in:' 

terms of the differential A evaluated at the origin.
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We have that

r
. _ E o P '
_ L j o T-k-1rp,
0] = @l ¢ 2 LT [1] (1)

‘where m = 1 + kn,vi_e N, k € P. We substitute into (hl) the expanSion

Ifor Br ana use the matrices I§§)vto'obtain

N
‘ | .‘ (j,r’&) (r,a) ) : | o
g6 = uL(G ) + rzz is T Ay - (k)
whene. _
P(j:r:a) 9§+l 6 (I‘+l)' I(k) (153)
IN (r+l)' KeP (r+1+k)' TLN :

and Sy = {aIA(r 8) 55 of order r}. Bquetions (42) and (13) furnish the
desired‘representation of &, at Qj;v We shall return to these:later afte??i_
obtaining a repreeentation for the approximate sclntion.. |
We shall take equation‘(li) as our starting point. In ofder to
determine the parameters in the matrices ALL'and BLN’ it is- suff1c1ent
tha't it be poss1ble to write § “in terms of the differentials A. With
regard to this, we obServe'the follow1ng fact. If,in the construction
of E;, it is ‘true that all ¢ used in that construction have the form
J.'= u(9 )+ z :'A(;)‘ then &, = u(e ) +'? A(a) will be txiue'pro'vided .
that X( . ) - R(J) = z ANa)and the condition established by (11') hold.
" We use this to our advantage by 51mp1y statlng that any § which we use
must have an expansion. How this expansion was46btained 1s,for the
moment, irfelevant. We,'of'ccurse, must at some stage'cf the developmentlc
explicitly display'the_expansion coefficients or a means of obtaining |
them, but that-will come later. For the present, we simplyﬁassume they r."
' exist._YWevnote thatfmany tines when determining-tne pafameters some ij:

the £; are chosen as exact values £(6;). 'In particular, for Runge-Kutta
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methods the iniﬁial value £, = E(QO) is chosen exactly, while the rest
are constructed. With finite aifféreme methods, ail-g'i except the final
one can bévchosen as g(@i). This is not, however, essential for our
_deVelopment and by éimply assﬁmihg.expansions exisf, we gain a generélity
that wiil éllow us to connect the development of 'a scheme by succeséive'f
substitutions with.the'giobal scheme development. Also, this furnishes
us with results that are easily extendable to other classes of methodé
and should give an insight on how to handle a global error analysis. We
shall say more about these matters later. |
| We note from (ll) that to proceed with the construction of éj’ we
must be .able to carry out thé substitution X(&i) and that the réSul't
X(éi) - R(;) must be expandable into the differentialé A. We shall thﬁs
define R(§) as that part of X(&i) which does not possess such an expansion.
To carry out thetsubstitﬁtion, we shall define substitutibn harmonicé

as follows: o L 5

Definition 5: Let there be given an elemeht TL e R yritten as ,

Tp, = £ 2 3 Opgg I](-_;;) A(rs2) nere
reS a€S, keP S

P = {k|§(k) is explicit in X o £}. Define

: <} : - o
z [r - b 0} =1, z7[r;, a5] = Q.08 #0

r-1

Y_.[r]-dbE '('g——_-:—L-)' - ' ' ’ (4k)
Y [ro,_ki;...., kglo (gﬁ[rl, a1l, «.u; gs[rs, agl) =

a (R N194 .
p¥o rlklal I's.ksa‘s .

ro! (@)oo (o )!

where w; 1is the number of times.ﬁhé’triplet (ki’ 1 ai) appears in



T2

. 5 _
y [r, a] and s = ;Z @w;. Then the generic y has as its realization the
. ) 1= ’ .

substitution harmonic By = ylr, al corrésponding to,TL.

We can then carry out the substitution using
Theorem 6:
Let zy = x(u(e) + Ty) - Ry

where . " E-1 i .
6 L1
- RN=Z'_—_D(X0vu)(O)

' (k) (r,a)

T = 2 > 2 I A .

1, L :
reS acS, keP Tka “ILN TN

Then, zﬁ = 2

2 Qgs Bra A(r,a) where Brg are the sﬁbstitutibn_harmoniés
r . v S

corresponding to Tr,-

T@us,»given the harmonics of the element Ty we can find,{in terms |
of these harmonics, the correéponaing hérﬁonics‘ofyzn. If_is*inferesting
to note that with the particular realization givenvin Definifion 5, Wé
can consider the opérator Y sz to be the substitutiOn operator in a space:
whose bases consists of tﬁe bifferentials A.

Proof: The proof ié straightforward. We can write

z = X(u(@) + Tp) as
z=(Xo u)®) +3 _'1_ (DL L X u)(8) T T _
s 8! 1" s S 1 s (L45)
Substitute into (45) the expansion for T;: This gives
| ! L ) o
z=3 WL+ = 3. 3 > s .
Lew A sz rgew Ty ..Tg€S a1...a665,  Ky...kg
1 @0 : : (ry,a1)  (rs,as)
- — e eee . k .o ; .o
S’_! 'rO! I.‘lklal‘ _arsksa's {I_-‘o’ l, ) ’ ks’ A A )

where @ = {0, ..., o}, w3 = {1, 2,..., »}. As usual, we write the general
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(Fy,77) (? aq)
o3 A SOOI A ] and look

term on the rignt side as {;5, Ei, cees
for the coefficients_ef tnis term on the'righthend side. The terms on
the right are found by forming all the distinct'permutations of the
triplets (k;j, ri, ai)-

If the process‘is carried out, it will be seen that to each A(r,a)
there corresponds a coefficient Bra whose pattern of generation is identicalv
to that of the A. The problem is simplyvﬁo identify the correcf realization
of y and z in Definition 4. This is seenvto be Definition 5.

We- note that to sfay within the set of differentials that have been
defined, it is necessary to subtract off

£-1 oF -1 ff . ot
> {r} —= 2 D (X o u)(0) — = Ry
r=0 T r=0 T

We now use this to define the R(J) of (11) and (11').
g1l

Definition 6: .RIEIJ‘) = 2 I‘(X 0 u)(O) Q‘J
Zerraition o A =5 -
| . v
(5) 't o ©; : |
R = = D x(o) L .
N r=0 rr -

We shall need these explicit resuits When_acfually WTiting out the
conditions that (ll ) represent.

It is now actually possible to carry out any substltutlon that a
particular scheme may require. The result of that substltutlon is in the
~ space spannednby the differentials. That is, the space spanned by the
differentiais A'is closed nnder the operation of substitution. At this
point of the development, it is natufai'to consider another operation,-
that of multiplication by the_Jacobian mafrix associated with X.. We shall
develop a multiplication theorem and show that the space spanned by the.
differentials A is also ciosed under multiplication.

What we have in mind-is the_follow1ng.v We wish to be able to treat |



schemes that make use of the Jacobian matrix (1)Lx)1\I associated with X.
This will allow us to treat schemes that are of the Frey(7)_type and
generalizations of these schemes .

To be more precise, define (DLX)ﬁ GtRnxP-% ((Ix®) = R) and then
Typ, [310m] = (D Xy ()my 3 = DX (Ep,eeey £ )[4] (48)

Qhefe m=1i+kn, ieN=1{0, ..., n-1}, ke P={0, ..., p-1}, je N
ié the matrik of partial derivatives of X evaluated at some point. " We
can multiply J times any element of R Xp and we propose to create new -
approx1matlons by using the products INL, SL where the SL are constructed
in a menner to be described shortly. ThlS 1dea is not in 1tself new(7)
but its full utilization is complex and while we will not attempt to use
all the variants of the schemes it suggests, ﬁe will set up the‘necessany-
formalism for obtaining any particuler scheme that one might:wishvto
‘investigate.i What is needed is a multiplication theorem and this is

arrlved at in a fashion qulte similar to the substitution theorem.

Deflnltlon 7:  Let there be given the elements TL and SL nxp~
written as ' S .
. TL = 2 > Z_'Yrk I(II{J.?I ‘(r,a).- _
reS acS. kP TP : S : i
o (k) ,(r,a) (¥)
SL::Z 2 2 a_kaILN AN, .

resS aESr ke P

where P = {kle(k) is explicit in (DLX)N]CP ={0, ..., p = 1}). Define

Z: [r:— l,o] E‘Q, thrl, al] = arlklal’kl € P

My v,k €T, 422, ceny s

2lrgs 2l = Ypgger B €T TSR e

Ylr-1le=1 . A (50)

: . k - o o kgp
Y [ro, kl, LECIY ] ks] ° (Z]{rl, a-l],o-o’ ZS[TS, as]) _E
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r .
7% . 1 S C . ‘ B
e r——— 04 'y e e o y ] .
ro! (s-1)leq T1%p8 Tofol r kg8 1

where Q = {all distinct permutations of thevtriplets (ki’ ri, ai)}.

. Then the generic y has as its realization the multiplication harmonics
‘Bpg = ¥ L1, a]vcorresponding'fo T, and ;. A |

We can carry éut the desired multiplication using
Theorem 7:

Let T, and S be as defined by (49). Let Jyp = DX (u(6) + Tp)

- and Wy = JNLSL" Then, WN = rgs a%Sr Bra A(§,a) where B,., are the
multiplication harmonics corresponding tO'TL and SL.

Proof: This is proved in a straightforward féshion by performingv
the expansions and collecting the tefms. Since wevhave carried through
in detail the other proofs, we shall be quite brief hére.' Start with

. ‘ , .

o o . .
D.X(w(B) + T_)= = = DD, X o u)(0) + = — X
L _ i s! L ‘ s!

‘ SEW : sewy”  gEw

éq
q
\
q
D_(DL

E

DX o'u)(O) Ty, eo.T
o1 s

l...LS

© . Substitute. for TL-and multiply by S; to cbtain

S | (r,8)y € |
Wy = 3 by 5 35 {s, k; A } = « wa t
- sew reS aeS, keP & TRa (51)
: . 51).
% 2 2 : PV Q. Y eo Y
SEWp  QE® Ty...T 87...85 ky...kg rikp8y r232a2 TsfeBg
6% 1

(oDr , alrne1) | y(ros aq)y,
q! s-1)! - . .

- {aq, Ky, ey kg

- As was previously done, we: isolate the general term of thé righthand side
and.an:examiﬁation of the pattern of construction of the Bra,will show
us that they are as defined by Definition 7.

It isvinterésting to note that, to a certain degree,the multiplication



by JNL-is equivalent tova substitutionQ iThisvseems enceuragihg until
we-note that all eerordegree_terms‘have,ﬁri = 0. This proves unfortunete
eince in irying thobtain‘higher order methods we find that the zero degree~.
terms,are eiactly thoSe>that cause difficulties 5y_being inconsistent
for a fixed number.of éj‘ The’eValﬁafien of JNL deés-not overcome this
difficulty' since the point 6 at which the evaluation is carried out does
.not enter ihte theSe terms, nor likewise do any of the INT,ST, that we
create help us for these Zero degreeAterms. _ _
Again, we see that the.space spanﬁed by the differentials is closed-b
under multiplication by'JNL and that, as defined in Definition 7,»the
realization of Y o z is the multiplication'operator in the coefficient
space, |

The substitution and mhitiplicatibn harmonics elohg with the
derivative harmdnics_have been tabulated'in Table VI-Of'Appendix.I.

'We are now in_a pOSition to describe a constructive approech to ﬁhe
generetion of the'ﬁbnlihear parameter defining equations- associated with -
any.perticular scheme we ﬁay wish to investigate. Thus, we choose a

- scheme and actually carry-oﬁt the indicated operatioﬁs of substifution,
linear COmbinetion; etc., thereby gerlerating 'Ehe assoeiated equatiens.‘
Slnce the work is actually carried out by an exp11c1tly defined algorlthm
thls turns out to be an extremely easy way to obtain these quantltles.
»We shall descrlbe thls generatlng alorithm later. We proceed now to
expllcltly deflne “how the approx1mat10ns should be ordered 5o that we
will have a cemmon systematic arrengement for all schemes. - The ordering
and.definitions:thet:appeer below}are to be1considered to hoid for all -
our work; ir_i,pa_rticular that of chapter IT and IV.

The interval of the independent variable, here considered to be t,



is discretized. The'poinfs of the discrete set are indicated as t;. It

is convenient to classify some of these points as major points and some

as minor poihts. This is schematically shown in Figuwe 1 which we shall

refer to at various times to help describe our organization of the
approximations.

Figure 1:

e v.h3——— <«— hy— <——h1-——~>

In Figure 1, the majOr-points havé been indicated by a large mark

and consist of tg, t3, t6,'té,while the mincr points arevtl, thy by s
>t7, and t8f In geﬁéral; the name EéEE is assigned to the number of pointé
in one major interval. ‘This is>ndt'quite‘truévfér the last majof.interval.
since if we count the last point, we have one extra point$ but, in.
general, there are g poiﬁ£s per majdr intefvai where q is the rank.bf the ‘
method. Conceptuwally, the difference betWeen'major'énd miﬁOrvpoints

is characterized by the fact>£hat the minor points are constructed;
' that is, they are assumed to havé a construcﬁive répresentation, while

- the majdr points are assﬁmed ﬁo:have‘”known" expansions. For example,
when derivingvthe parametervdefining equations for a pafticular'scheme;

it is sufficient.to take the ma jor points tq, t ... &8s points

Tt
29’ "3q
for which the approximation is exact, ii'; ﬁ(@i), while at the minor
. points the approximetion is constructive £y = Z°~~§j'+ z~--x(gj). For.

the exact approximations, the.expansion is known to be the usual Taylor's

expansion when we replace the derivatives by their expansions into the

-basic set of differentials:A(a).'
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We do not, in:general, require thét thé séquéntial ordering of the
tj wiil gorréspoﬁd'to'fhe,actual ordering by magnitude when the position
is allowed to be a parameter of the method and is then solved for. In
fact, the minor points may actually lie outside the major intéfval with
which they are associated. Witness dhaptef VII, wheré an example
is given for which thié,hapbens. 'We sinply state that we have approximate |

solutions £ n=0,1, 2 ... which are associated with major points

nq’

tpq in the sense that Eng = u(tnq) + ... is an approximation to (%

_ nq)’j"
and that there are other approximations &; = u(tj) + ;..;whiéh are . o
-.approximatioﬁs to.g(tj), associated wiﬁh the minor points tj.where
nxg < j < (n + 1)xq ﬁéans that tj is associated with the major interval.' |
n+ 1. With regard to Figure~l, the rank q = 3, the first major interval;;
consists of the poinfs,to,.tl, tag_the second méjor'intérfal of the .
?oints tB? tu,_t5; and thg last'major ipterjal of fhé ﬁoints'f6, tf, tg-
While tg actually belongs to the nextﬂmajor.interval, it furﬁishes a
natural'boundafy to the number of intervals and is included in”the scheme..
In pfactiée, it is usually‘fhe case that the major'pOints are the most
.accﬁrately known and:are”all of eéhal'ordér of accuracy with regard to
their local truncation error, while'thevminor points are the cohstructed :
approximations thaf'aré of &arying.dégrees of accuracy. We shall see o
this in more detail.iafer. |

Now to any scﬁemé there is associated a perioa éfter which the
séheme.is repéatéd. We cail this the period and by_défihition the period-:
is the number of m#jor intérvalsbafterlwhich'the scheme is fepeated. Thatv

is, to any approximation &, outside the interval defined by pXg where 5: ‘

i

p = the period and q = the rank, there is an identically defined approxima- . ..

tion &; within the period. For exsmple, with regard to Figure 1, if p=2 and g=3,
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‘then §7 = &7 in the sense that the construgtive repfesentatién of §7

and £, are identical; that is, the coefficients and index sets defining

Er =2 i gj + 2 . X(gj) are identical fo those defining €1 = & ... gj +
S X(gj).

For schemes that have used previousvaﬁproximations; that is,
generalized R.K. schémes with ﬁemory, theré must be a way of indicating
how far back the scheme exteﬁds. We define thé extent of the scheme to
be the number e such that éXq; where q is the rank, is.thé totality
-df poimts considered in the scheme.

Lastly, for the present, we have associated with eagh.majof'interval

the distance hy = (t

(1-1)q " tiq)nwhich we define as the major interval:
We collect together here these definitions for future reference
and shall refer to them as scheme interval parameters. ‘These are a sub-

set of the toﬁality Of parameters which define a particular scheme.

Definition 8: We define for a particular generalized R. K. scheme
{approximation) : :={any approximation from the generalized R. K. scheme)

(point>:: = (any ti for which there is an apprbximation)

Il

(major point) :: (a point for which the approximation hes a "known"
expansion)

(minor point) ::

{a point for which the approximation is constructed)

Then, the scheme interval parameters (SIP) are
1) {major interval hy)::= (the distance (t(i-l)q - tiq) between two

major points)

(the number of distinct ma jor intervals)

1

'3) {rank q) :: = (the nunber of poimts (approximations) in one major interval)

- k) (extent e):: = (number of major intervals in the scheme) °
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In practicé,-the majof interval hi is usualiy fixed at h, the steﬁ'A
size, thrbughout thé éxtent of thepséheme, the period is usuaily 1 and
‘the minor points uéualiy lie within the'élosed ma jor interval. There ‘is, -
of course, nothihg new in organizing the scheme in the fashion we have
indicated. The,scheme interval parameters are writtehlout expliéitiy so |
fhat we wili have a coﬁsistent, systematic apprbach wifh which to classify
‘schemes. The wofkers in this field have, to-date, beeﬁ somewhat undecided
in their various usé'of'terminology for'the same ideas using.such terms
as,rank,_height, stage, etc. In the’foregoing, We‘haye strived fo
‘presentuthe simplest set that will serve our purpose.

Before furnishing some simple‘examples, we note thét the major"
poiﬁtshcah bevinterpreted in a Vafiety of wa&s. We shall, when obtain-
 ing the parametér defining.equations, assume that these points are-éxact‘ -
solution values. However, suppose fhat one weré interestedvin'dbtaining';
the Cuﬁulative error after, say, two steps;  Then.this could be accompiiéﬁed
by considerihg the scheme to have the same formal construction, carryingf 
éﬁt:the construction for two major steps and, thus, 1ettiné the "knoﬁﬁ“ :
expansipn at gq be the constructed expansion. Such a scheme would have
an extent of e = 2. The same results could also be obtained by consider-x'
ing a scheme with a major interval twicevas'large as the fifét and then
létting one of fhe constructéd minor pointsvbe the intermediate solution i
Value. | |

Suppose one wished to simply c0nsider that.the majar points had
'approximaiions £y = wB;) + (64, h) when €4 is the error. -Then our
 formalism §ﬁould carry ‘througf; provided that one can obﬁain an expansi,On'__.
of the erréf térm g(ei; h). We shall.say'more later on how this could

be taken care of.



81

We illustrate our classification using three simple examples.
First, note that purely Runge-Kutta scheméSvall have an extent e = 1,
a rank q of various values, and a period = 1.  While finite difference

methods élways have a rank q = 1, a period = 1, and an extent e of various

values.
1. = For Euler's method, we would have
SIP 1) nh o .
. I l' t
2) period =1 o
: 1 0
3) rank g = 1
4)  extent e = 1
. Scheme nb = X(El)

i

o =81 * Bdloe

The parameter B, is chosen so that €, -'5(90) = o(n?).

2. A simple Runge-Kutta scheme would be as follows:
SIP 1) =n | ],
| ?) period =1 o : .v I } l : ‘
2 o 2 0 .
=9

3) rank q

L4)  extent e =1

X( Ez)

Schgme ,ﬂo

i}

By = Ep + Bong 5 oy = X(g)

The parameters B> Bl’ B, are adjusted so that &/ - 5(90) = 0(h3)1 that
ié a second order method. We see immediately that Eulef!s ﬁethod is
 contained‘invthe scpeme; B, é'Bz = 0. |

3. A simple fihite différence method of the’Adams‘type'is given as

e B
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3. contd.
| 73) raﬁk q =vl
L) extent e = 2
Scheme n‘o = X(e5); nq = X(&,)
) gé z gi + qu + Byny

rThe persmeters B, and Rl are adJusted 50 that €, - 5(9 ) = =0(h3)
| With thls type of classification there is no’real dlstlnctlon between
Bunge-Kutta methods, finite difference methods, or,predictor corrector
methods provided the last mentiOned'ones,ére used ﬁith only a few iteration§,
as is usuelly the case in préctice. |

Ouf basic-épproach in this Ghapter is, as we have already méntioned,;
to construct the parameﬁer definingvequatiéns by actually carrying out
the subétitutions; sting.egample 2, we wbuld write |

Q(é )+ 3 5(2)'A(?)

= . : . _ K " PR
g2 f 5 % Pi a maJQr p01nﬁ has a "known expansion
o =‘R2fr%_8§a),A(l)' by the substitution theorem
Ot =ud.) +3 {afa) + B Sge)]A(l) with conditions on B
1 R e i i oi o T 7o
' S 1
N, =R, + 2 5? ) A(i) by the substitution theorem.
-1 1 i i _ ‘
(1), (4 o
E =u(® ) 4-2 [B(g) B 8@2) + B 5§ )]A(l) ~with conditions on By, 3,
o 14 2 i o 1>

which is to ‘be matched w1th
: S (1)
g(@o) = u(Go) +Zly A

:An examination of this examplé shows immediately that thié-the 1'
scheme itself is easy t§ write ‘down, it would be eXtremely teqiéus to 
carryiodt the ﬁétual'computatiqn in éll its detail. Howevef,'it can be .
cérried dﬁtvsystematically with ﬁﬁéiai@.0£ a set of appropriate substitution

'tables..]wé take'advantagé of thisffaét-and-ﬁfiﬁe the defining algorithms
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as ALGCOL 60 procedures so that all we néed ever do is write down the
scheme, in some manner to-be defined lafer, and having furnished the
tables, the results of the substitution ére furniéhed to.us as output.

The next thing to notice is that'éﬁ origin must be chosen for |
u(92) and A(1). The choice normally made is, for this example, 85 = O
since we consider the solution known at 92 = t2 and we wish to advance
one h interval, one major s&ép, using one intermediate calculation. How-
ever, since we are considering points from the past, it turns out that
it is more convenient to chéose 96 as thévorigin. That is; the origin
is set at the next point fo;ward where we wish to kﬁow the solution. The
principal advantage in such a choice is that all the Gi's'are the ' same
sign and this helps in constructing the program. If we wish to compafe
our results directly with those of the global approach, then none of
the 6, 's should be set to zero before the equations are generated. The
. best procedure 1is to leave the actual choice of the values of Qi'bpen
until such time as the eqpations-défining the parameters.ére to be solvéd.
. At that time; the Qi's are made’éxplicit. If-thig is done, then the
‘results are easily compaiable Wifh our‘previous work and also the full
symmetry of the equaﬁions'presents itself and this, in itself, may prove
useful in finding a solution, The disadvantage_to this is that our results
are not directly comparable with the WOrk §f others unless we make the .
same choice of origin as they have made. This, howevef,’is a minor
vdétail since we need simpl& choose the appropriate Qi = Q or élse directly
verify the results by substitutibn.of the values of the parameters.. This
llatter process holds-only throﬁgh’the principal_error'tefm.sincé higher

‘order terms are origin dependenf.'

(2)

We see that we are immediately in need of the coefficients Bi .
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‘We have chosenige = E(Gé)'so theseiare'the.product of the Taylor coefficients
and the derivative_harmonics. However, for all schemes with memory this'>
problem will present itself; we shall need the coefficienmts in the expension
aud they will not necessarily be available.

Therefore, we now address ourselves to the prdblem-of finding the
expansion parameters for those approximationS‘éj that are used in con-
Structiug éi, but do not themselves have a constructiveAexpansion,'or
do not yet have a constructive expansion. We might note that the global . )
approach of Chapter II seems to have s1de-stepped this problem entirely.
We say seems because 1t will subsequently be shown that a dlrect can-
nection can be made between the'global and substitution approach.

The solution'to our problem is deceptively'simple. The expansion
is simply written down with undetermined parameters'ana the cdrrespondihée”
approximation ls used as if the coefficients were well known. Thus, the'_f
problem becomes a'new one. We need to be able to eventually establish the
values of the undetermlned parameters. The solution to this problem can
best be Obtalned by looklng further at Example 2 and examlning § more
closely. Once we have establlshed what it is that needs to be done, we .-
shall derive the results‘in general and in deteil. For the time being; :
we shall continue to use the:abhrevieted notation that has been used in.
Examples7l < 3; notation'that,is correct for p =1 and uhich is still

. correct for p-> 1 provided the elements are interpreted to be iu thé}
correct spaces. |

. Let us return to the definitions of u and v, equatlons (10) and (lh),

reSpectlvely. We_see that they have been written down as if € were
expanded about the oriéin. If en.arhitrary origin T had been chosen,

then they would have been written as
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k+d -
w Inl (5, 8) = 3 B PN |
T | (s2)
vy [ml (1, £) = 5 B P[] |
. r=k+i+1 T

Then £(t) = uL(T, t -‘T) +"VL(T,‘t:- 7) would have been the case. All

the differentials A would then be A(t, t) and we would be talking about

expansions‘of I%(X o £)(7) in terms of A(T; 0). We have developed all

our results with T = O, but they hold equally well for any other value
of 7. | : -
(2)
i

There aré essentially three wayé of treating the B of Examplé 2. .

We can write

&2 = u(0, éé) + §.§§2).A(i)(0: 0) | ’ B (53)ﬁ

2 ' L o
where the Eg ) are undetermined parameters and use &, as it is. Then we

translate the origin and write

¢ = u(r, 0,) + = g{2) Az, o) . ()
2 27 ;.01 _ :
where B; = 7(B) are functions of the Bi!énd the translation interval,
while 62§= éé - t. 1In the present éxample, £,= E(@é) the real solution;

. .VBut, §(5é) alvays has an expénSion
§(§2) = u(T, '9.2.) * Z Vi A(i)(T: _O)' o . (55)
. i : .

The coefficients y; are "known". In the case where T = =-h, we have

Vi =0 in our present example. Thus, the undetermined parametérs B are

defined by the equations

=y (%)
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This is what wé‘péll a backward translation’ahd we indicate it sche-
mafically_as:_

Figure 2

[ ]
[ ]
>
[ ]

. . Z—'o .
‘; use i ﬁl A1

ii _soive.T(E) =y o

We could'équally'wéil_have done the reverse process. That is, define

the undeterminedvﬁafameters By by_settingbthem equal to 7i
B =Y S

and then perform é‘ forward frénslation to.thain fhe parameters’

B; = Ei(ﬁ) which are fuﬁctions of B, and then iﬁSe ko as usual. Again» |

if 7 =.h, then yi.are dli.zero and B; = O; buﬁ the fact that B; are Zero -

dOes nOtvmean thaf all Ei are zero. We indicate this schematicélly as |
" Figure 3 |

8 o » : |
B | . 1 solve By =7y

[Tas)
X4

7 | , i1 use % T;(B) A s
T ' ! : .

In a sense we have the least number of undetermined parameters in our
Sysﬁem‘if we do a forward translation in this fashion} or, we could
prbceed in the same manner as with the first case using.ak, but, instead;
we apply the tranglafion,to B and solve

o =T8T S | (58)

We indicate this schematically as
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¢ ° eivs_ _ i use % B Ai
o s Pi " ii solve B, =7y,
i : : v Bl "'Yi
c T T iii solve B; =T,(B) -
3 .

Each of these appfoaches has’ifé advaﬁtages andvdisa&vantages. Inb_
the first case, the nonlinear pargmeter defining.equations have a form
directly related to those derived in Chapters II and IV. However, the
solutionjfor Ei may not be obvious. _Invthe second case, the solution
for p; 1is obvious,}sfraightforward,'but the parameter defining equations
may look different than thosé derived globally. The third approach has a
direct obvious solution_for Bi'énd aiéo fof'Ei;'fhe results for the
parameter equations are the same as the first case and;jfhﬁs, directly
.related'tpvthe work of Cﬁapters IT and IV. However, it has the diéadﬁantége
that it is, in general; necessary tb translafe_a fully constrﬁcted vectar
. component Y; and this may cause thé sforage céﬁacity of the machine tQ |
be exceeded. If it Were not for this, thé thifd approéch might well be
the best. v |

For any particuiar SCheme, the foliowiné épproaéh will»bé used.
Whenever the constrﬁctivé ?epresentationvof an approximation gi is not

availabie for use in constructing the approximation € write a repre-

j:

sentation of £; in terms of undetermined parameters.
. _ 2 S 'i;(a‘)-g ‘0 '
g5 =u(®, 8;) +2 g, A7(5,°0).. (59) .
i i a a :
Translate (59) to the point whére all the substitutions are to be perfofméd;

=ty )+ 3 EL A, o) (60).

and use this translated representation in the same manner as any other



88

vapprokimationQ'fNote,that this translation may,.in reality, be the

' identity translation analogons to Figure 3 or Figure L4, or it could be

a translation'corresponding to. 8>- ¢ which would correspond to Figure é.

To determine the undetermlned parameter, either translate (59) to a place _
where the expans1on is known or translate the known parameters ‘to the

point 5. Then solve_for the parameters by equating the appropriate

ore of the two represemtations

| -T'(fs) =y

T (61)
B = T(v)

where T is the translation:operator.
In order to carry out the translations, we see that it is necessary

to be able to write

u(d, ) = u(t, ¢) '*'%’"v-"-A(a)(g; O) |
ey o (62)
A5, 0) =2 ... A(a)(c, 0).
The translation of u is carried out by means of
Theorem 8 _
Let u(k)[i = uli + kn] where 1 € N, k € P. Then
k @ k T, "
“"(6 6) = e, e § s o0 40 o) (63)
. r=l+1 acS, T2 ‘
' where A( a) . has order r, p051t10n a in the set S, = {al1 A'of order r}.
The coefflclents O are glven as
(k) k+2» (k+r-3) .Oj . _ S _—
=% S = R (64)
‘r.at 320 (kr-g) T B
where ¢ "=:'_6_+v_6 -ty 0=8-¢,andp are the derivative harmonics' of

Definition k4.
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 Proof: Define u(k)[i] = uli + knl. Use (52) to write
| k+l T
(k)(s 0) = O P (s).
r=0 '
But, we have that
p-l- ® ~1-k (1 r)
DP 1 k+rx(6) - Dp +i (Q) g 7T

i=r (1-r)'
where oc=9%-¢.

This result is substituted in the previous equation to obtain

| k+£ ® (1—r)
k -l kti 6%
(s, 0) = = = x(t): G o (65)
r=0 i=r ) :
Break the sum in ( 65) into two sums -
k+f kt+l w k+l
z 2+ DI 2
r=0 i=r i=k+l+l T =0
interchange the order of summation in the first term, note that
(o)t _ 5 g
il r=0 (i-r)!r!
and the following result is obtained
@kl i (k+L+1+i-7) r;f
pHi+i oY
s, 6) = u<k><c #)+ 3 2 D a(t) T s
i=o r=o0 T (kb#laier)t ol

Whére ¢ =28 +86 -~-§, 6= 5 - C We are able to expand the deribvatives »
bjx(g) into the basis A(t, 0) using the derivétive harmonics of Definitionfh.
When this is donel(63) and (64) will be obtained. |
In order to effe_c*é' the traﬁslai.:zion of fﬁe differential A,' we shall
define .funcbtions W/ € R— R called .trans_laf_ion harmonics. .The franslatidr}v

harmonic 7y is associated with_two_‘ differentials A and A which we write .
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as A(r 2) K(?5a)}. The correspondlng'y is written as‘y(_.—). Since
‘the definition of these harmonics is rather 1nvolved, we present first
the following translation theorem.
Theorem 9 |

Let the dlfferentlals A be sequentlally indexed as A(J). Let thé
differentials A( )(5 0) and A(J)(C 0) be given along with their

i
associated translatlon harmonics 7.. Then

e, 0= 540 A(J>(c, 0), 1 s,
. JES .

(67)
where we have evaluated the translation harmonics at the point & - {
corresponding to the.interval of translation and_Sj = {set of all dif-

erentials}.

Corollaiye (J)(c, o) = | 5 7 (¢ - 8) A(i)(S, 0)

7 1€8y
 that is - ‘,', s y (g - 6) y (5 - g) I ' (68)v
. 1€S k _ Jk . : :
where SJJT=';"§jk =0 if j # k.

Thus, the translation hérmonicsvallows us to eXﬁress A(8,‘O) in tefms
of_A(Q; 0), effectively a change of basis, and if we wishvtO'obtain_thé
inverse transformation, we need simply replace & - § by -(8 - ¢). It
. is implicitly assumed fhat'the'A are iﬁdependeﬁfb

In fhe following definition of thevtranslationvhafmonics, we

shall assume that we are generating two sets'of,differentials

A= A(ry g) - {;O’:: El’ e, ks’ (r]_: al) A (T'S" a'S')}
- ) . (69)
k r a . e
A= al¥s 8) (ros kyp woukgs A alm2 1) . alTsr 2s)y
and their correspondingvtranslation_harmonic yir; a)} Then the y.are

defined in
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Definition.9: LetVy be the‘translation harmonic corresponding

to A, A of (69). Then we have that for

i) s<s :v L | vV(t) =0 ' ' (70;1)
i1) s =58 | o

(70.2)

a)  (Ep, ooes Kg) # (K, oy k) ¥(8) =0
b)  (Ky, oo Kg) = (K, «evy Kg) |
1) r,<T, ' v(t) =0 (70.3)
2) ro_% ;6
_ (wl)!...(ag)! ' tro-;b
¥(t) = e e e . — (70.4)
| (8{1))1...-(5%))!...(6§g))1...(6§g))! (r -T,)!
(I‘l:al)(t) v(?g:gg)(t)_v_‘_
1,87 o Tgreg
where §; = {(rj, aj)lkj =k, 15j5s=35)-=
. {(rij, alJ)IJ =1, ..., a)l}
8(1) = the repetition factor of (rij, aij) € 84
J | ,_ . .
’ O3 R
wy = 5 o)
j=1
S .
Sb = {(ri, ai)li-= 1, <., s} =.ita S;
i41) 's$§;8-5=q | , |
a) (K s B) (K ey K) (1) =0 (70.5)

) (K, eeey Bg) € (s wnes kg) = (Fpy oes Koy Kpy oeny K)o
_ 1) 3 My =9 .. ’ (70.6)
2 Amp=0 -

L~

: ot
~

i

o
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v(t) = & = [ Sl 12' : © (70.7)
Qb jeq ij€My iquq \
!

4 | . (r]_,a]_) (t).. (r—;as) (t )]

{ ];'O-fo+il' 1 61‘18.1' o quaq Taq+193g+1 r -s-,aq+S'

.wherej =Ty - ;o + 2 .(ki + I‘i)

Ml= {llmax (O:‘ ;o’_ I'o) <is ro}g Iy = (0,..., ro}

M, - {i|1ﬁax (_o,‘v ig-(ky+4)) s i s il}g Jp = .{O""’i;i}

Lo o (r0.8)

‘M. = {i|max (0, 1g.1-G 1)) si's min (kgttri, 1)} S
Je = {0,...

q ’.iq_-l]' v

Q ='{the-set of all distinct permutations of S, that
leave (kl, vees k ) unchanged}

i=1, ..., q]'
| and.the Briai are the derivative harmonié s., correspondingﬁ
© to A(ri’ai), that are defined in Definition 4.
Having defined the 'translation' harmonics 7’, it is _nec'essa.'ry to
interpret the deflnl'tlon co;'re:cr:‘tly in the spec1a.l cases glven below.
If s = s =0, then v(t) = (-—0—3), provided r, 2 ;o ThlS is case zz)b)P.

That is, the empty multlpller is considered to be 1. In case ziz)a), we .

see that the set_(kl, ceny k_) is not a- subset of (Kyy vves kg)o IF only



some of the k; appear in (k;, ..., k), then we still have case i17)a).

In case izz)b), we have that the set (kl, «..y kz) is completely contained
in (kl,_..., ko). Before us1ng (70 6), we permute the trlplets (ki, Ty, aj )
of A(r,a) 80 that we have, ‘after a suitable re-indexing, (kl, oeny ks) =
(Ei, ceey E;, Kyy oves kq). We are then ready to use (70.8). It is
nossible that the sets Mj = @, the null set. That is, while it is

implicitly assumed that i. € Jj’ it may not be true that the conditions

J
,defining M; make sense. For example, O = iq - (kq'+ £) 2 min (kq + £,
iq-l) may be true.” In the cases_where the conditions defining the Mj
“do not make sense, Mj =®, the null set. If some M; = @,'thgn the cor-
responding Y(t) = 0, this is (70.5). To obtain Q, we permute the set

o = {(ki, Tss ai)} and then ask whether the permutatipn?is a‘new one and -

whether the setn(Ei; ceey E:) is the same as before. In this permutatioh,v
the’lettefs.establish the position and the.humbers are permutted into
the positions. if the pefmutation5is new and (Ei, ceey Eg) is unchanged,
then it is accepted as a valid permutatibn to be included in the set Q.
If s =0 aﬁd s >0 is theAcase;bthen we consider that case 1;¢(b) holds
which is consistent with the faét that'(i‘ , , EE) =dcC (kl, ceey ks).
There are, of course, no Yy since s = 0. ‘

Proof of Theorem‘9: ‘The.results of Theorem 8 permit us to write

W6t D) =wt, b-0) e 5z 3 ol f® <r A)(c 0) (71)
r=l+1 aeS,. keP T® e

(k) ()

where a (t) is a function of t. By hypothesis, we assume that

for the ldwer order A we can write
(Fe), = (FuE) <rl'1> R
(6, 0)= = = .y 7 e, 0 ()

= A ra;
ry=f+1 ‘aiesri. i%i
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where the coefficient 7 depend only on 6-{ and not on t. At ﬁhe moment
we 4o not assume that the Y are translation harmoniecs, although it will,
.of course, turn out that the definition of the translatlon harmonics is
prec1sely the constructive definition of the above 7.

We now write

1
L_s.'X(u(Q: t -0)) + Z=3 a

D X(u(s, t+ =6)) =D_
Ll...lig—‘ . } Llonc
- , 73)
D, X(u(t, t -0)) s+ . = = = (73)
Llo e .Lquo .QIJE R rlo oorq al- . -aq ‘; klo . okq .
| Noo(k) (k) (ry,8) (r ,a_)
U AT - PN (R IR B , 0)
ri8q rqaq LN -Lhyq_ Ny 5 Nq.”

wh;ép has been obtained py substituting (71) into DLi"'Ls X(u (6, t -6))jv
and expanding into a Taylor's series about u(t, t -é). To- avoid unneceSséry
. complexity of notation, we_ehall simply write.the index sets of the partial
derivatives df X O u using the sgme Li since the interpretetion should be
clear from fhe contect in which they appear. - We now differehﬂiate (71)

and evaluate at t =59 remembering that the coefflclents o are themselves

functions of t. However, before carrying. out the differentlation, we write

(73) as
di. oo - = Z’ ) .
Ly+eolg X(u(®, t -8)) = Z 23— D (DL;L"'LE X(u(t, 0))) +
© ® J : ‘ (73.1)
: 1l 5 (t-é) J-
z = oz = D(D, . X(u(g, 0))) = - -
=, ! = . ! L o-oL_L cse _, .
=1 q! J=o- Chyreelghy el |
After cerrying out the.differentiation, we obtain
' ; 0 - J iy L . ' .
DO, .1 Xulss o)) - Z (66)° pI*Torp 1 Kt 0)) +
£ et
@ ' To 1 a-1 -r.+i
s § = s .z s . Sz 1 (=)o 1

g=1 j?OF rl.f.rq a1°'°aqki'7&HQ‘ligo .»o 1q~.o al (J-r +1l)

(continued)
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i . | | i1-ip (kl)
x OFpigenig D (D_Ll...LE-Ll...Lq X(u(t, 0))) D (a al |
| - (74)
ig (kq)) (kl) (k ) (r1,a71) (.rq,aq)
(@, LN, Iy, N .
qq 11 a9
Thé .cbefficient o ai'e givén in lI"heorem 8 as
(k) k+/z N 'ﬁ-a 3
(t) = (Lk i)r =) ( j!) Bra, (75)
( k)

where the B are deriVative’har-monic.s. We see from (75) that the Oc
are polynomials of order k + £ andA, thus, thelrhlgher order. derlvatlv_es

are identically zero. We, thus, limit the index ranges to

k, + £

0 Siy - i, Sky+ 4
2 : .
0=1 £k + 1
q Qa
sinée for values outside these rangés the derivatives are zero‘." Dif-
- ferentiate (75) and ev_alué.te at t = & to obtain
ktr-j : .
DJ(oz( ))(6) = 0sjsk + 4. (17
v ra (k+"_r - 3) ra . i
"~ We now write
e ;6 . ( l: 1) | A(;évg%) C
A(®, 0) =D (p, X7, 0))) A (8,0) ... A" ( ,0)
‘ l._‘. s ‘ . N | . )
:t(kl) . I(k—) oo (18)
ll\I 1 .J\T_

' Substltute (77) into (7&), then substitute that results a.long w1th ( )

into (78) to obtain the désired expanlons



@ o (re)
A(B, 0) =2 . 2 % {(rg+ 3, Ky, -5k A (¢, 0) ..
J=0 Ty...T= ap...8z
J o= = -
- (6-t)° (r1,81)  (TsyEs) = ©
-(b’s)(g,)- % T P s s s by
rf= rFs r;=0 g=1 1ed; 1 eJq
. 2 2 2 by 2 :
T eooT By...8g TgypeeTg 8gq-c-8g Kgpe..Kg (79)
: — - ' (rl’al—) ( s’a's‘)
 lros Kyy ey Ky Kgigsee kg A (¢, 0)...A (¢, 0)
(rsv1s084) (rg,85) 1o(e-6)” :
. A T(t, 0)...a - (E, O)) . T O 3 .. .1
o7l s
(kgyptra1-(i1-1p)) - (kgtrg-ig)
; (S'C) ese (8—§)
(kg1 +rgq -(11-15))! (ks+rs-iq)! |
) (?]_:-8_;]_) y(T'-g,vétg‘) : B _
1% sy Tmalal 0 TsPs
‘where s =8 + q
j#ro-?o+il_‘-

in the second term of the right number of (79). We write
(T,= e (r,8) (r,a) =

A (3,0 = Z = v, A (£,0)

’ r=f+]1 acsS ?

; r

and let the general term on the right side of this relation be represemted

_by .

iR

r,a
W) g

biseq)  (bo,e ). S
(brse1)  (bgscs)y . o - (80)"
We wish to find this term and its coefficient on the right side of (79).

' (r,a) '

An examination of (79) shows us that Ve .
. . o Ly

= 0 if s < s, since there are

no terms in (79) with s < 5 and hence an identification.of the v with the
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translation harmonics is correct in this case. For s =v§, we need only
consider the first term of (79). Let r_ =R, =T, + j. We see that if
r, < ;g then again ¥y = 0 and the:translation harmonics are correct. ZFor

J 2 0, we will, indeed, have-the translation harmonics provided the co-

efficient is correct. We have that

R=r_ =71, + J

(o] o]
Ky ='k; = Eﬁ |
by =1y ) i=1,...,8=5 . . (81) _'
ci=ai | |

We can find the valid index sets of (79) by considering permutations. of
(81) that leave the differential unchanged. In general, Ei are fixed

by the definifion of A(®, 0), that is by (78). However, if k, = E&

then we can permute the couples (by, ci) and (bj, cj) to arrive at
another valid index set through the use of1(81). _Thus; we proceed as
before in Theorem 5. Collect into sets Si the couples (ri, ai) of like
kg . The couple (rj, aj) € §; if, anq.only if, ky = k;. Let
| (1) (1)
Bi 8¢,
S, = {(rii, ail) yeees (1&':.L ) 8y ). 1)

1
g, o.
1 . 1

. i : .
where §j is the repetition factor indicating the number of times
' , o1 o :
(ri , a, ) appears in S,. We have the ®w, = 2 6(1) is the total number
S I e i j=1 74 \ ;
of terms in Si' Define SO =5Jl Si' Again, let Q be the set.of all distinct
. : i= o
permutations of S, where by a permutation we mean that for each S; we
permute its elements and then take the union of the.permutedlsets." The

general coefficient

' (5-C)E-y(?i’ai).., y(%§755) L o

) v 3y 4 =Ty - T
Jt - rep Tsls
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appears in all of these permutations and may be factored out. The co-
éfficient left is the number of such permutations that lead to distinct

permutation sets and this is

(1)1, .. (%) | ,
{1 ... (agl))x : ..(5(lg))! o (agi))! |
' (F1,5;)

and again.we see that if Y . are defined as the translation coef-

r.a.
i%1 = = s g ) ,
ficients y(® - {) corresponding to A(r},a;)’ A( l’al), then we have
(r,a) | . " o (T53)
Vr 5 is the translation coefficient v(o-- C) corresponding to A s
b : : :
r,a
A( ’ ).

For “terms of degree s > s, we proceed as follows. We have that

R=r

Ki =k =kg ,1=1, ..., § |

K; =X ,i=85+1, ...,5+q=5s ' (82)
sy =1, ..., s + q = s.

ci=ai

The indéxiﬁg above ié slightly different than that used in the definition
of the translation harmonics; hoWevér; this is immaterial éince we can
Suitably re-index the items provided fhat,we are consistenﬁ and keep thé
triplets (ki,vri,.ai) with the same common index. .
Equation (82) establishes one valid index set. To dtain all other

vdlid seté, let S, be defined_as

Il

SO {(E]_)' Tl al)’ SRR (Eg, rs» a‘s‘), <k§+l’ a1 a‘s‘+l)_: soe

(kS’ rs’. aS)} '

with s =5 + q. Let Q bé the set of all permutations of S, that are

distinct and leave the set (ky, ..., k) unchanged. Tt is important- to
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understand that we.really mean that the set is,identically'thé same.beforé;
and after thé permutafion. Consider (78) when A is defined and also (79).
We see.thgt ky, "’;'EE do not enter into any sums and, therefare, are

fixed. From (79), we notice that we must be éarefui to.keep the i indices’
within their bounded range indicated in (76). In general, we have that |

05i, s i, cu, 0514 and for any choice of k;

q é-iq—l
the indices will take on all values. The'probiem is fhat some of these
values correspond to terms that are identically zero. ;One,way,tb over-
come this difficulty is to apply the following bounds to,ﬁhe,indices.

Define the sets M; as in (70.8). That is, thév s,efs are defvi;ned.‘jnthe same way
as they are used in.Definifion 9, bﬁt because of our indexing we interprét
k; as ke . Now if Mi is a set for which:the'bounds are unattainable;

that is, the bounds are cdhtradictory; then M; = ®, the null set. We
consider ® c J; and then we make the con#ention that-if ied; =M

then the term we are looking:fof on the right;hénd side has a zero
coefficient. This is, of course, true since.for i outéide thése ranges
the derivativeé of o are zero.

In géneral, we do not have an identical cqeffiCieﬁt fbr'éach of

_the permutations, so we do not need to establish the multindmial

coefficient for the set Q.. We write the general coefficient for this

case &8s
l. 1 Fo : : _ »
é._! .Z ﬁ—i )' —(i -i )'...(i 7' (k‘_ +7, _/i -i )')"0'(k T -i )|
1€Q o~+17/° 1=in /s -q/° =1 T Ee1 v\ 171/ ) stTs a !
6£) (L) (o) ] e
| (rO_FO+il)! rial . sy I‘§+la'-sh+l. . ) “Tglg ‘

i
N P . - ; S : - = R et N .
where j = rg - .ry + & (ki + ri), s = s + q and again we see that_

o —
== i=s+l
r,a R . N . . . )
’ )= y(b—g) where Y is the translation harmonic corresponding to
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— _ : _ _ Fe s
A(r,a), A( a) provided we make the analogous interpretation of y(_l’,l).
. r.a.
— — i%i
Thus, given A(r5a)(6,0) we are able to write this in terms of

( (7,8) 5 _

r
,a)(ﬁ, 0) by means of the Yo o
)

the differentials A t) evalwted

at the interval of translation provided we know the expansion of the

T s r,a
factors A( 1’ l) ( ’ )

(8, 0) that appear in A . These factors are all of

lower order ;A, so an induction on order ;i can be applied and we need |

only show that we can get started. Since the start is with order T ; 2 +1
and degree § = 0, we haﬁe actually to do an induction on order and degree.

However, a consideration of how the differentiais are constructed will

show that.if we can'writevthé results for r = P+ 1, s = 0, then we can

obtain all the terms since we will, at each step, have already obtained -

the necessary lower order expansions. The lowest order Fv;.ﬁ +1, 5 = 0

term is Dr;l(X o u) where r = £ + 1. This term is obtained by setting
s =0 in (74), or equally in (79). We then check that Definition 9
equations (70.4) and (7b.7) do give the right coefficients when evgluated,
at t =98 - ¢, s = O; This then establishes Theorem 9 and although thé |
proof is somewhat involved, the generation of the Y should be a stréight-
- forward operatibn that caﬁ be systematically carried out.

The corollary to Theorem 9 follows quite easily since we never
said what and § were té be. We give the necessary éteps below. We
can write |

A, 0= 5 = yi(s'- ¢) yi(g - 8) A5 o)
ieS; keSy

A(j)(é; 0) = 3 s vi'('c - 3) 'vj};(S -t) A(k)(g, 0)

i€S; keSy |
where S; = S, = {set of all differentials A}. If the A are independent,

then it follows that
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J 1 ' \ ‘ Ly
S yi(t)vvk(t) =By Jy K€ 5y : (84)
€8s | »

where Sjk is the Kroneker delta. It is imteresting to note that the vy
are independent of the function i or X o x that define the differentials
A and, hence, of the set Si' Tﬁe results of the corollary must be true
no matter how many eleménts we have in fhe set Si' This could prove
ugeful in checking the_v.

| As a further aid in checking these harmonics, we note that they
have the following. .b . |

Property 1: Let ¥ be the translatioﬁ harmonic‘of Definition 9

corresponding to the differentials K, A of order T and'r; réspectively:
o | Y = e tFF  (s)
where c is a constant independent of t.

» That this must, indeed, be the qase‘can easily bevséeﬁ by consideriné
the physical units that might.bé associated"with A and 't in a parficular
case; say, for example, when t is a time variable; That it does follow
from Definition 9 can be shown byvan induqtiv¢7proof'on the.order r.

The statement is trivially true for all Y that are identically zero. It

(2+1)

', since
r .

is also"true for the case of lowest order and lowest degree Yy
for these functioﬁs s =0 in (70.3) and (70.7). In the case of (70.3),
' To-To  1+ro-(Totl) r-¥ . ' L
write t =t =1 and in the case of (70.7), write

. _ q .

Fl+ 2k bry -(ry + 1) =r - r. Thus,

the induction can be started. Referring to the definition of the Y wé_

e
JEsrg -1yt iélki + Ty =T,

see that, as was true for the differentials A, any 7Y of orders r, T is
formed from Y of orders ry, ;i where ry <r, ;i < T. Therefare, we

assume that the results hold for these 1ower_brders and write for-(70.h)

. !
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. -7 Fs To-To ;
y(t) =ct‘l L 47878 970 o ¢d
g

where j Z (r1 + k ) + ro +1 - ( L. Ty + kg T+ 1) =1 -1
since s = 5 and k; = kl. For (70 7), we write

ro+1-T1 ' (ro-ro+ g' ks +Ts )

Y(t) = = feg t et BT
ieQ i
T g
Y(t) = 2 fey t71)
 ieqQ | o
7 g+s q+s )
- where j; = . %}l ry + Z (rl + ki) + i¥%+l.ki +.r0 + l‘
= Z (k + T, ) + ro +1} =7 - T
Sy |

since k; = kq+i' Noting that j; is independent of the'permutations, We

can factor t out and obtain the desired result that y(t) - ¢ t'" where -
c is independent of t. |

| We cah alsé-prove induatively_in‘the's;ﬁe fashion

'PrOpérty 2: Let ¥ be the translation harmonic corresponding to
A, A of order r, r, xespectlvely. var <r, thén'y(t) = 0. Thus, if we
thlnk of A as formlng the rows and A the columns of the matrlx of harmonlcs
Y this matrix'is lower triangular. |

éince the derivation‘of'these harménics is rather invdlved, there:

is the possibility of ﬁfbpagating mistakes. These harmonics éan be
checked to any order by performing a translation on aﬁ approx1mat10n
£y = & B _(a) to obtaln.Z Ba A( a) when the B are treated as undetermlned
parameters. Then we consider 61’5 g(ei) for which the expansion is known .
in terms of Taylor coefficieﬁts‘and derivative harmonics. The relation
By =_T(Eé) should hold when the appropriate coefficients replace the B;
and-gé. Since the translation represents a change of basié'for.the A

and u(6;), it is sufficient to check only this special.éase;



103

The translation harmonics have been tabulated for arbitrary I in
Tablé VII of Appendix if This table is then used to obtain the various
particular results neéded to troatlthe vafious examples. |

It is now possible, by combining the results of Theorems 8 and 9;
to ootéin the reqﬁiréd‘represéntation of any Ej in our scheme. To actually
carryvout the requirediwork, it is necessary to specify the oxpansion origins
énd translationiinteryals that are used. The following approach has been
taken. The majoi intervals are considenad to be half open intervals nifh
uniform length h; = h. Thus, the first major interval contains the’points:
o toy B9, ey tq 15 the second major 1nterval, the p01nts tq, tq+l,

ceey
teq_l’ and from the last maJor 1nterval we use only the p01nt te exq’ We
shall con51der 9 to ‘be the distance of the p01nt ty from the origin. Theib
actual 1ocation of this origin is 1mmaterial, although it is possibly

advanﬁageous when solving the parameter defining equations to choose it

at & = 0. To each major interval, we associate a local origin which is

located at 'ajh for the major interval.j. The coefficient ajbis.a non -

‘negative integer with a, = 0. In effect, if 90 = 0, then the local origins
are QO, 9q, eresy Qqu‘ Given any approximation Ej, we have two repre-
sentations for it; one with respect to the origin and one with respect to

the local origin.‘ These are respectivelyﬂwritten as

[o]

‘ ‘ (j,r,a)
t5 = u(o, ej) + 3 b3 BLN’ T Al(\rr"a)(o, 0)
r={+1 ac s,
_ (86)
- ® i, r,a '
£y = u(-a.h, Gj) + 3 b E(J’ ,2) (r a)(_ h 0)
J r=£+1 ac s, LN
where §j =05 + ash, with h 20, and O £ @ 5 e, is the distance from the

local origin of the point tj oorresponding to éj and
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:-é-(j:r,a) =' —‘ I(k)
N . keP jrak LN
o : (87)
Loma) g 0 -
LN kep Jrak IN

ere the coefficients of the expansion. Since these are simply two different
represeﬁtations of thedsame approximation, the coefficientsd(87)'are .. |
related through'the use of’Theorems 8 and 9. vawe.have_done a:forward,'
translation; then thevﬁ are the undetermined_parameters, while B are
v;fonetions of B and the‘translation'intervai. Whereas, for e'beckward
transiation, the situetioh is reversed. Just how these tranelations are
selectéd and carried out will be described in detail in the description
.of the ALGOL.procedure that carry out the substitutions. We have chosen
' to‘ﬁse the backward and forward translations of Figure 2 and 3.

| The,defining equations for these.parameters are_determined-in a
straightforward faehioﬁ. If there is a point at which the eXpensionvis
fknown", then we oarrysout oﬁe ofvthe previously mentioned translations
to obtain equetions that define these unknotn parameters; otherwise, we
aésume that for any approximation that hae uhdetermihed paremeters there
exiets either a constructed representation‘of thét'approximation, or an -
epproximation that is assumed to be the same as the one which has only
a representation in terms of undeterminedfparemeters. That is, if we.uee':
éj'in oonStructing-Ei and if-éj is not yet_constructed (implicit methodslef
closed methods), then we geherate eueh an expansion and when gj is finallyi
constructed, we then have a‘constructive.representatioh; or if éj ie from
memory, then eince the scheme is periodic there'will be found,among the
£; that we are constructihg a ‘similar £; and since £y and £s are ideﬁticalry
constructed abproximations, tﬁéy must.hare identicalrexpansions about their

local origins and we can consider the constructed &; to be the comnstructive
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representation bf‘gj, 'Hence;lfor‘every Ej for wﬁich there exists an
expansion into undetermined parameters and for which we do not "know"
the harmonics, there also exists a constructive repreéentation. Whén'
considered to be expanded about their local origins; these expansions
- must be identicai and we thus obtain the defining equations’for these .
parameters byvéquating the harmonics Of.these expansions. In generél,
we éee that since all our construction is done with.referehce to ﬁhe,'
origin, we might, in principle, have to translate both thé constructed
represéntation and that with respect'to undetermined paraméteré, calléd
here an implicit répresentation, to:their fespebfive local origins. In
" practice, however, unless the period.is greater than one, most of the
qonStruction takes place in the first major infervél and, fhus, the
constructed representations are already with respect to their local
origin GQ. |

Uéing the above results, we now indicaté how we shall carry out a
constructive approach to developiﬁg séhemes and their aséociated barametér
defining,equations.

Define the scheme interval‘pafametefs‘consisting of the major iﬁterval,
period, rank g, e#tentve. Define a gcheme cdnstructively as | f

. Ji * ;.'f‘X(gjg)  » L€ 8, e sj
Jl 32 )

gi =Z ..._E. : ’ )

| 1 (88)
Jr € S, . :
ve | Je

~where S; Us; US; =8 = {j] 055 = exql.

1 2
' Consider the i td be sequentially ordered in Si and proceed to carry out
_ the’operations of* the construction using the representation

“u0, 8+ 2 2 ..A"0, 0) e

r a

€
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to obtain the construction

£, = u(0,6,) +2 = Pé&’r’a) A(r’a)(o, 0)

T
where it has been assumed that‘an& gj without a construcfivg representatioh
has been expanded usingﬂundetérmined parameters and that an appropriate..
translation has been éffécted so that fhere exists the represenfations
vwith respéct to the local -origin and ﬁith respect to thevorigin. This is
" carriedout using the substitution theorem and Where necesséry the
translation theorem. .Continue the cqnstruction until the exhausﬁion df
the set Si at Which time choose a particular &, say go, of that set to
‘be equal to the corresponding £(t). Equate the harmonics which are
obtained whén these two quantities are ékﬁanded about their local origiﬁ,

GO, to obtain the noplinear parameter defining equations

I ( R . )1' ’ QI:+l+k . ( k)
pLlosTaB) B (89)
~ LN kep Te (r+l+k)! N N

Finally, for each'gj, J € Sj"that has an implicit representation and
is not a major point, equate the harmonics of the implicit répresentation
-expanded gbout its local origin to the harmonics of the constructed

representation expanded about its local origin.

E-(J:r,a) _ i_-.(j,r,a)

v " T . . | | (920)

Reme%ber major points have'é known expansion énd we carry out one of the -
pnéviousiy menfioned tfanslations'to;obtain the apprépriatéjequations.
.'Solve (89)tandj(90) to'dbtaiﬁ the'parameteré of the scheme as defined
’by!(88). Below in Figure 5, we illustrate schematically the layout.for
the case q = 3; e ¥ 2, periodjérl whefe we_have taken the origin to the -

right of .
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Since the périOd ié_l,.wé have thaﬁ gh'is‘constructed in thg same manner
as gl and that.the expéﬁsidn of gu abbuﬁ -Qih is the same as:the expansion
of &i about aoh, o = 0. Similarly, for the point £ 5 and £ - -
The various gquantities needed to carry out the construction have
. been presented in'Appendix‘I'whefe wéuhave.tabﬁlated the differéntials,'»
the results of doing one éubstituﬁibn, and"of déiﬁg'one‘multiélication
along with the translation'of‘bne major inferval.. The‘tranSIatiQn has
been nofmélized to one interval since be repeating the translation, ahy
ngmber of intgfvals can be obtained and in this fashion the table»doés
not change for each intervalw The other alternativé is to use one
arbifrar&rinterval and let‘thé Corréct nuﬁbér be insérted when the
tfanslation is carried out. | |

At this point, we shall turn ouX attention to the géheralization’of
| the‘scheme to include the métrix of the derivétivesvof X, the matrii whOSe
determinant is the Jacobian and whic¢h we shall refer.to as ﬁhe-JacOEian
'ﬁatrix It _Theorem 7, the multiplicétion theofém, allows us fq use this

quantity, but we have given no scheme definition indicating how it is used.
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It is possible to introduce another ffee parameter by evaluating Dy X(gj)
where Gj is to Be included in our set of free parameters. We are actually‘
free to use any § from ow set of approximations. Whether the inclusion
of the new term will be of any practical value must be determined byi
examiningvvaribus schemes that make use of Dy X(Ej); However, to do this,
 we need a way pf characterizing the schemes. For that purpose, we shall
introduce some more terminology since schemes that use INL are able to
generate many more items to be used in the construction.of aﬁproximatipns
than the preViouSly considered schemes.

We definevgeneralized Runge-~-Kutta-Frey type integrafion methods using

Definition 10: The gpproximation £; is said to be obtained by means

of a generalized Runge-Kutta-Frey type integration method (RKF), if and

only if
: : (i,37) i
j1‘551 ! 1Ty 32652 'y
wﬁere.i E'So. The approximatdrs My are defined to bé‘éither
ngl) = X(gi) -R ., i¢€5 |
Ny ey | R 92)
(1) _ ) (B L. (
or as =d ISR €S ' : :
 with (1) _ D "X(lé ) ie8 o : ‘(93).'
: NL L tife 0 3 : e

and the sums S are defined to be

T S RO I et RIS R C )
' aEsy o 1 J585. N
constructed us1ng approx1mat10ns £ and 7. Thé index sets are such that

lz 8y & S = {O, 1, «ouy exq } where e is the extent and q the rank o

i=l’
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of the scheme.
In the foregoiné definition, it should be keét’iniﬁind that there ,

are actually two different épaces that are offinterestj the véctor space

" R™ and ﬁnxp and the coefficient spaces that contain the harmonics of the

'éxpansion with respect fo the diﬁferentials; In describing the scheme

and in its actual use, it is ‘the vector spaces’ that are of interest, while

in the actual construction of the'paramefer defining equétibns, it 1is the

coefficient épace that 1s used. Definiﬂibn 10 is, éééenfially, given-in

the coefficient space since &, - u(ei)’and X(Gi) - R; have expansions

-%...A&a).' Thus, we shéll; when constructing the scheme, interpret the

~ definition as being in the coefficient sbace and use the results of the

_translation; sdbstitution, and multipliéation theorem which are given in

that space. We can multiply the'mafrix JNL'times any'eiemeht df RHXP;

this operation is, however, to be carried out in the coéffiéient space

- and, therefore, ﬁefresﬁrict'ourselﬁes to previousiy construcﬁed approxima-

~tions or approximators. 1In the case p =1of a éystem'of first"order

differential 'equatiOrlls, itbkdoes not r_eally_make sense to take the sums

S as linear combination and'then.to again fofm iiﬁeai cémbinations af'ter

multiplying by JNL’ since the coefficient fdctorsouﬁ, one'lihear”combination

will sgffice; however, if p > l; then the paiametefé do not factor out

©and it does make sense to take both linear combinationé to iﬁfrbduce more

. parameters. _Whether this is helpful in achieving highérJOrder methods |

. must Ee fouhd out Ey constructing the‘schéme and ékamining the equétiohs.- -

ih describing and using thé scheme,‘we'wish to workvin.the.vector

XD, | P '

~ spaces R" and . It is implicitly assumed here that the conditions

. (11') hold and, thus, we can replace £; - w(6;) by £1 and X(&;) - Ribby

‘X(Ei) in Definition 10. The faét that some of the approximators'wr]:.L are
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obtained by substitution and some by mu;tiplicetion means that we must
keeﬁ track of those thaf are obtained by substitution since their parameters
enter into the conditions (11').

To complete the work of generating a scheme by means of successive
substitutions, it is necessary to give explicitly the coefficient matrices
A, B, E, F.and to display explicitly the conditims of'(ll'). After
doing this, we shall summarize our resulfs so that they may be more
conveniently applied. Before_doing this, we comment here that in any’
systematic search fof new methods using,echemes-such as are defined by .
Definition 10, it would be necessary*to-create a'more cbmpiete set of
scheme defining parameters. 'Some of these parameters, the intervel scheme -
parameters, have been given here but there will be needed some measure
of the work we will have to do versus the accuracy (or some other crltefia)
~that is achieved. For schemes that do not use the matrix JNL’ this is |
. handled in a fairly satisfactory manner, but the introduction of the use
of Jyr, gives such a wealth of possible combinations that some thought
should'be given to a suitable'classificaticn. We give here only a very
genefai_scheme definitioh;_e definition which enébles:us to construct
schemes‘but which does not contain in itself ah effective strategy for iﬁs
use. | |

The definition cf the parameter matfices has, up until.now, been
left4open; We have eimply menticned that the dhoice should bensensibleQ.
It is assumed that the schemes are 1ndependent aof the vectors, that is,
1ndependent of n where n is the dlmen81on of R , the space in whlch X
AN’ and the various derivatlves lle. However, they can depeni on the-
order of the differential equatioh, that is on k eP={0, eo., P - l}.

Keeping in mind these simple requirements we wish to imtroduce, or at least
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to have the ability to introduce, at each step as mény new parameters as
is possible. We, thus, define the B and .F matrices of Definition 10 to

be of the form

s (k) (k)
i k§P P T

B(i,.j)

By (95).

1 is a scalar, a parameter of

where I(k)*is defined es usual and b(g) € R
LN ij
the scheme. The coefficients of E: are defined slightly differently.
We might immediately note that é(k) '~'_Dp_l_kx(9i) and that, therefore,
it would not necessarily be the "sensible" thing to do if we used a

linear combination of lower arder derivatives when approximating aAhigher

order derivative. For example, one does not usually write
(1) 1 30, (@), (1), (0)
i _ i A & i i

unless A = B = O. We will, however, not require, for the present, any
such set of conditions sinee it is easier to work with square matrices
and then later to impose the condition that some coefficients are zero
for one reason or another. We say this in this fashion because it turns
out that the condition established by (11') will actually serve to help

establish this "sénsible" choice. The A and E matrices are defined to be

of the form
. . k ) L _v
Iilp  keP kpeP ipd LN LN : ‘
where I£§) have their usual meaning and a{ig? € Rl is a scalar parameter
ik, J L
of.the scheme. As usual, we sum.over the repeated index sets N.. Using
the notatlon E( )[1 eli + kn], the approximation éi.ls-wrltten explicitly

as
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() By~ s s ;(i).f[g(.kl) B )
o 1 jgesy kgeP 191 1 %

+ 8 5($) n&je) (97)
Jo€By - ”132_ '

or if one wishes to think in terms of the vector space representation, .

(x)

5 in the above equation.

replace Egk) - u(@i)-by 3
Knowing the specific reﬁresentation of the parametef matriées, it
is now possible t§ develop the conditigns that we intend to impose_oh
these matrices. These allow us to represent Ei as either &; - u(Qi) =
%...A(a) or use &4 = 2;..53 oo by means of (ll'); The results are
~presented as |
Theorem 10

In order that it be possible to represent the approximation £&;

in the two forms

g =3 ...k 43 .'..x(g. ) + Z...D, X(&.) S
oL i1 J1 in ;32 , J7

| (98)
£, _

71

]

wé;) +3 ... A(a)

thus allowing the construction and utilization of.generalized RKF schemes,
it is necessary and sufficient that the elements of the parameter matrix
A muiltiplying ng and the elements of the pafameter'matrix B multiplying

X(¢& 32) satisfy the following relations

t " | 83 :
(x : :
= % ag ()r-t+p-l) J —= =0 - | (99)
J1€8) r=o = 7% SREEAS S o :
t=0, I,.., p-2 -k

k=0, ..y p - 1.



K » | | - 113

t : GI.‘ 6‘t-p+l+k
Jl N
. k i _
z z ag 2r-t+ -1),3 o (t-p+1+k) (lOQ)
leSl r=0 °’ p-1),J7 T - 1
t=p- 1 - k,‘..., p-1
k=0, ..., p - 1.
. . ' er
, " ‘ .
5 S alk) i
j1€8] T=t-p+l i:(r‘t+P'l)’jl Tl
(101)
_ QF"P' 6t-p+1+k
L s oK) 2 A .
3pes, 2 (t-p)t (t-p+1+k)!

t

p,p+1, oo, p+ 1 -1
k=0,1, «.., D - l.

where we interpret values of tv< O as being empty conditions;ithat is,
the quantities referred to are non-existent and Qj is'fhe disﬁance of éj
from the origin.

These results can be presented in a slightly different form and
since it is advantageoﬁs tb haﬁe them, they:are given below as
Theorem 10' |
w vIn»order that it be possible tovfepreseﬁt the approximations §i
in the tﬁo forms given in (98), it is necessary and sufficient that the

polynomial in 6 , , .
I+r ‘ _ £-1.
p-1 J v ' 0.

B ez 5 W A, g ) G
: jpe Sy r=o J1 (4+r)! Jp€Sy 2 (£-1)1
ek+£ } - (102).
5 _ :

(k+2 )1

-

be the zero polynomial for k = 0, ..., p - 1.
That is, when we replace Qj by, say, 90 - ajh, then we obtain a

" polynomial in 6,. The coefficients must be such that as a function of
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‘0, the polynomial be identically zero. Since this in turn implies that
a1l tﬁe derivatives DJ(P?)(GO) = 0, we obtain the equations (101), (100),
and (99) simply by differentiating (102) and setting the derivative to
zZero. This, then, is an easy way to obtain equations that establish the
conditions_on the parameters. In the case of finite difference methods,
we can Obtain all the necessary parameter defining equations in this
manner. The equations-obtained'caq’easily be seen to be exactiyvthose
that arise by requiring that the method be exact for pOlynbmials‘df a

',_certain order and then using the bolynomial; 1, t, t2, cee -.
It is immediately obvious that we have the following

Corollary: The solution to the system of equatlons (99), (lOO),

and (iOl)Fis origin 1ndependent for arb;trary L.

Proof of Theorem:IO: The proof is very straightforward'and simply
consists of substituting the definitions of the terms into (11') and

properly collecting terms. Upon doing this, (111) becomes

r : T
. p-1 1” 9JJ_ /3'.1 K '
5z all) Dp'l'kl+rx(0)+2 T bf, == PTx(0)
Ji - kl=o r=0 lJvl r! : Jp T=0 Jo !

. " - , 7

k+4 O,

_ Z : 1 .')P-l-k+r (O) =0

r=o I! .

wheie ke P={0, ..., p -1}, jj € Sy, 52 € S,. Wevrequire that the
.condltlons hold 1ndependent of the function x, therefore, we collect
. the coeff1c1ents of the derlvatlves of llke order and set these terms
separately to zero. When thls is done, equations (99),'(100),_(101)
~ will be obtained. | |
'The:proof of Théorem‘ib‘ is_trivial; we have alfeady-staﬁed it.

Simply differentiate and set all derivatives to zero. The equations
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- Obtained are (99), (100), and (101). Likewise, the corollary is obvious. |

A few comments are in order gonsidéring these conditions established

by £;. If we use £; in a substitution X(&;), then in reality all that

is recessary is that the conditions hold for k€ P when P = {klg(k) is

explicit in X(&)} since only these & must have the represemtation

égk).= u(k)(ei) + ..., k€ P,

of the parameter defining equations by means of successive substitutions

for any generalized RK or RKF scheme. The necessary results are sum-

marized below. .

Summary: To defermine the nonlinear parameter defining equations

by means of successive substitutions, we proceed as follows:

1)

2)
3)
L)

6)

Problem D’x =X ot , £(0) = b

SIP Definition 8 of the scheme interval parameters

Scheme Definition 1 (RK), Definition 10 (RKF)

Condition A

Condition B

Condition C

egk) - f;(k)(eo) = 0o(h"

Creation Carry out the scheme using'és required

Theorem 6 - Substitution

Theorem 7 - Mhltiplication

. Theorem 8

- Translation
Theorem 9

ggk)‘_ u(k)(ei) _ o(hl+k+1)'

Use Theorem 10.
m+k

-Equate the harmonics of the created approximation

and of the. solution (Theorem L).

Carry out ﬁhe_necessany translations to obtain the

_ We now have all that is ﬁecessary to carry tthugh the construction

definitions of eny harmonics that havé been used as

_undetermined paramefers./
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The equations defining the éaramétérs of the scheme are the totality
of'Conditions A, B, C;H‘The'work necessary to-actually'carry out the
above is formidable; however, this work is preserved in an ALGOL 60
program described in Chapter v and given in its entiretj‘in Appendix iI.
Using this program, ﬁe need'only supply Steps l'- 3; Step 4 is done for-
: us and the'cbnditioné appear as the_reéﬁlt of carrying out Step 4.
Because there is much flexibility in the defirition of any particular
scheme, we must in reality specify'sémewhat more than is indicatéd here
“to obtainla.sef of equaﬁions,,but not much mofe, ahd the geﬁeration of
schemes and fhéir associated parameter‘defining equ&tions is quite,simple;
the sdiutibn of these equafions and the systemﬁtization ofra search for
new schemes is éhpther pfbﬁiem. |

We thus have all the equatidns néce#séry for thé definition of the-
parametérs of any constrﬁcted.scheme. We have
z) Equations that arise by requiring that all appfo:dmati-ons be

 'Qf at least a‘givén miniﬁum-order of accuracy. |
ii) EquatiOQ§;tha£ ariée by matching the Tayior's series of the
ﬁrﬁe_solution with the coefficients of a chosen approximatiqn, |

_ this.apprbximation3having been obtainéd constructively.

iii) EqﬁatioﬁS'that arise by equating‘fhe appropriate implicit
frepresenﬁgtion to the appropriate constructive represenfation,

ér to the apprbpréite "knoWﬁ" éipansion; |

Note that {7 are the basicvRunge-Kl.;‘Ltta; type equations, ; are the
finité difference méthodS‘eQuétibns; aﬁd 111 afé the result of using
¢closed methods 6r.else of mixing the two,methbds;'that'is, generalized

RK or RKF methods .
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IV. GENERALIZED R. K. METHODS FOR SYSTEMS OF
p-th ORDER DIFFERENTIAL EQUATIONS

In Chepter IV? we treat the‘oase ofva system of p-th order ordinary
differential equations written as DPx = X o &, £(a) = b, é =,(DP'121...,
Dox). This is the-same systemitreated in Chapter IIT; however, the
developmeﬁt here will allow us to obtain an overall, global, view‘ththe
.parameter defining equations. This chepfer, thus,vis an extension.of the
work of Chapter II to the p > 1 case and follows the development of that
chapter to a large extent. Io4Chapter.III, once a particuiar scheme was
'chosen, the results deﬁelOped there enabled one to obtain the equations
for that scheme. In this chapter,vwe obtain the totality_of equations |
that are associated with the general scheme definition. The.choice of
a'particular scheme simply selects from.that setjthose eqpafions that
define the scheme parameters: This is, however, done at an expeﬁse --
'our schemes are generallzed Runge-Khtta (RK) schemes and not generallzed
Runge-Khtua-Frey (RKF) schemes.

In order to arrive at our results, we again, as was done in

Chapter II, introduce approximatione t e R _)Rnxp’ approximations &

obtained from a generalized-R.K. scheme, and a generic set of functions‘

Ve Us1ng the generic y, we obtain from them weighted differentials W,

derivative harmonics o, differentials A, welghted polynomials &, elementary

Eolynomlals I, polynomlal weights v, product coefficients II, generallzed
RK harmonice,H._ g

In a manner similar to Chapter IT, we show that the derivatives
of C = Za;W;, Theorem 1. Theorem 2 éhows‘that Dr'l(X ° §) =2 o44;.
We again have the factorization of W =0 A, Theoremn 3 U51ng the results of
bTheorem h a general factorlzatlon theorem w1th respect to the generlc N

we have from Theorem 5 that-a@ =@y [ = [II" = H. Equatlon (h5).then shows
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us that the parameter defining equations for all &€; have the form
3 .
2 H; =8B gr .where on the left side we have the sum of generalized
3 : :
RK harmonics of the approximation §i and on the right side the Taylor

harmonics of the'exac£ solution 5(9). We finaily conclude the chapter

with a definition of approximation harmonics, again ‘denoted by «,

‘derived from the generic z and use. these harmonics to establish a direct
connection between this chapter's workvand that of Chapter III by means

of Theorem 6 showing that £ =5 ayA, where the a's are appr.oxima‘bi_on
harmonics. | - | |

This chapter Wiil'be'defeloped in a manner analogous to Chepter IT.
There the special case p = 1 was treated*‘here,.the value of p is arbitrary.
ThlS will lead to a profus1on of equatlons, essentlally a new set for
-every value of k € P = {0, ..., p - 1}. However,,whlle this limits the
.aetual use Qf,the'approacﬁ, in practice'ifiis'manageable for small values
| of-p and perticularly so if the first derivative is missing'from X; that
is, if k € F={1)cp-= - {0, 1} is the case. In general, when the k = 0
terms of §( ) are not expllclt in X there is a great 31mp11f1cat10n of
the results. Thus, the work of this chapter will furnish not only a
giobal view of the parameter definihg egpations, but also a means of
checking some of the cases of the previous chapter. We shall also see
that fhere is another way of viewiﬁg fhe work of Chapter III thst could
possibly lead tols simpler, or systematic development thén-has been carfied
oet there. vSiﬁee ﬁuch of the Wbri presented here is either an cbvious
extension of thevanalogous feSults of Chapter IT or an obvious‘ﬁse of the_
Vwork in Chapter III, we shall be brlefer in our presentatlon and Wherever
|

possible s1mply indicate the approprlate sectlon from which results come.;

‘The problem to be solved is the same as that of Chapter III. We
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restate it here for convenience.

Let R be the real line, t € R. Define

N=1{0, ...,n-1},P=1{0, ..., p-1}, L={0, ... m~...,

nxp - 1}

where m = 1 + kn, i € N, k € P. Let Rn and Rnx@ be respectively real n
. . . . n . phXp n
and nxp dimensional vector spaces. Define xe€ R—> R, X€ R - R7,

E ¢ R—-R™, We wish to solve

Dva= Xo &
£(0) = a, )
This problem is ideriti_cal to ﬁhaf df Chaﬁfér IiI and a complete, explicit
definition is given there. :
| To help carry out the analysis, we shall define functlons § e R —>R xp

using the notation Q[m = Q( )[1 m=1i+ kn where i € N, k ¢ P.

Definition 1:

t € R—>R"® is an approximation if, and only if

¢ = u+1n where

o0 5 DK (o)
()) . 5 I (e grekg(K)y 2y
! r=btk (141)) (r-)t o ‘ ' =

r-k (k) _ (k) (ko) (x)

DUt = 3 glkan o +2 flJr(X ¢)
. . J o

where k, kg € P= {0, ..., p-1}; g(k) f§§3 € R are constants; C(k)

o5 n(k) ik) are € R - R and T ¢ R—R such that I(t) =

2

As was previously done, define ¢i = GiI_e R - R and for any function
Yy define Vi =Y ° ¢il Then associated with (2) is the set of functions

which can be written as
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gi =rui+ni

u(_k) - lgk _EE?}E? Dp-l;k+rx(o)

r=0 rl

NN e ks(k)(o) ; - G)

reg4k  (r+1)! (T-K)!
(k) _ > (k) n(k°) +3 (3) (X.o ¢.)-
ir Jsko 1k J § tir
In the work below, we shall, oecasionally,‘omit.the r dependence
on & and f. It should ﬁever be forgotten that such a dependence exists;
especially when changing the range over which that index is summed.
When égk) is ﬁritten out explicitly, we ebtain

o r+l1

() -0, 5 I (ﬂnx['z (1) rkw>()
i i r=z+k (r+1)! (r-k)1 LJ» ®ix oJ
o N | .
+ .3 f(k) o (X o g,)‘(o)]. -
PR J
(k) _ 4 o(x) (k) _(rek)l g kel
Let gikéj = O? fijr O for i. # 3 and ? = T .
Substitute these into (4) to obfain |
, o L | _ |
(x) _(®),, ()™ |
£0,I) = u (64T) + r;§+k (r+l), (X ° E)(O) (5) )
We also have that DPx = X o g'where E=u+ vand v is defined_as
_ .> o r+1 |
v(k‘)= 5 L_ Dp-k+r
‘ r=k+{ (r+l)!
Thus
' w gl B ~
e‘k)(6i> ‘k)(e )+ 2 2 T Nxe 9)(0).  (6)
: . r—£+k (r+1)! v .

A comparison of (5) and (6):shOWS.thatv
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£, (1) = 89,). - (7)

These results are sumarized as
Property 1: If {; is an approximation defined by (7) and if
x is a solution to D'x = X o £, then.

. = i (k) =
Ci(l) g(ei) provided that gikoj =0 and .

£(E)
ijr

0, i #J
L) _ (z-w)! 'éma
iir  (r+1)! i
That is, with a suitable choice of parameters; the approxiﬁation £ reducés
to the vector & = (Dpﬁlx, cee, D°x) derived from the true solution x.
- In the present deVelOpment, we shall not use the Jacobian matrix”
Jyg, and will treat only gegeralized R.K. schemes the definition of which

is given in Definition 1 6f Chapter III and which we repeat here in a

slightly more convenient form.

Definition 2: The approximation Ei is said to be obtained by

means of a generalizéd RlK. scheme if, and only if

() - 5 B (), s (0 g o
i _:flzcogikcvj gj_ +§ 1y X&) 8

where X € Rnxp

~R" is that of (1), the g and a are eleménts of R,and éj
is an approximation obtained in the same fashion.

Our prévioué cqmments in Chapter Ii concérhing gj are relevent
hefef However, now éj € RnxP‘is an approximation to_g(ej) = (Dp-lx(ej),‘ -

) \ : S ' :
...y D X(Gj)) consisting of all the derivatives of order lower than the

order of the differential equation. Also, we shift back and forth

(k)

between R* ahd'Rnxp using § and &, respectiVely. We shall do this

repeatedly and the meaningvshould be clear from the context.
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We know that if the conditions established by Theorem 10 of
4'Chapter IIT hold, then we can write any approx1mation as
| (k ) (kg | .
g“‘) W9zl L)) (x(.e.)-a), (9)
b gk J ‘j
We can, by means of a pr0per choice of coeff101ents, write. Q(k) in the

same. form Write C( )

k k k 1 r (k
§( ) ( ) § o3 D n(i )(0)-, , (10)
\,v‘ r=0 Tl , ,

.;;Fdr r < i, the derivatives of ngk) evaluated at zero are éqﬁal to zero.
- Thus (lO) becomes
© r ‘ o ‘ o .
> L Drng'k)(O) = n(ik)=-fc(ik) - u_gk)- - | (11)
r=f T! . o o
"By expanding X » {; in a Taylor's series and defining

£-1 ' . r

Ro=3 D(xety)( L - ()
‘ r=o ' r! c ' ‘ -
-wé obtain
o II‘ r,. ’ . - ‘ :
2 o= D(Xet )0)=xot,-R. . - (13)
r=£ r! : ?

Now take (U4), factor out ™ ana substitute (11) and (13) to obtain

g(1k) .=Au§k)'+ikfl { . gi)J .[g(.k) ) ugk)}
3ok J _
L (1)
+2Z f( ) (xot, - 5.3]4.
J .JI‘ J J ’

- Tﬁe evaluation of (14) at l-shows.that if we use the pfevioﬁé |
""ae‘finitioh of R in (9), that 1s (49) of Chapter III then we have

” that F(k)‘— §(k) provided fgﬁ) = a( ) for all r, prov1ded we_are
«onalstont in mmtchlng all the §i C .and provided \
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r - . N
DX o £4)(0) =65 D'(X o u)(0). This last requirement is trué since
Qi'= w; + 1y and for r < I we have thet Drci = Dy, Drni = 0.
We sumarize these results as
Property 2. If §; ¢ R'—>Rnxp is an‘approximation defined by. (3)

and if § is an approx1mation deflned by means of a generalized R. K

1) - ofx)

ijr- common

scheme, then §,(1) = & prov1ded the parameters g(k) .y
to both approx1mat10ns satlsfy the conditions of Theorem 10, Chapter ITIT
_.referred to here as Condltlons A.

The problem Qf finding a generalized R. K. scheme can then be stafed
as follows: Let £ € R— Rn><p be the solution vector of the differential
equation DPx = X o €. Let £;(1) as defined by (3) be the desired approxi-

mation to &(9-). Write the Taylor expansions of & and {; as

- 6r+1+k _ _
(k)(a ) = (k)(Q ) 1 Dr(X ° 5)(0)
: : r_z (r+1+k)! .
| - | (15)
'Cgk)(l) - u§k)(l) A S Dr+l+k ggk)(o).

o r=g (r¥lek)!

Choose the parameters g and f that anpear in Ci sotthat theseltwo serieé
agree to a given order. When the’parametérs.are'ehosen,‘thenvProperty 2
establishes the explicit representation of the scheme. |

TNote %hat in practiee we usually will find.ourselves wofking from
the scheme_definition,‘byvmeans of Pfoperty 2,’back_t0 the panameter de-
_'fining‘equations.

We see that, as was the case in Chapter II With‘bf= l,IWe are again'
in the position of naving‘to.find expansione for the derivetives in (15}
- and that we must do'so in such a fashion that the two'sefies-can actuelly
';beicompafed term by tern. Altheugh this task is more complicefed than fer

the p = 1 case, we.éan easily outline what the results will be. The .
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basic set of functions that we use for the derivatives of X o £ we elready
have; they are the differentials of Chepter III. . As was done before,
\.we shall.define weighted differentials.end all the related quantities
that went with them. However, we shall have more functions than previously;
a1l these quantities will now depend on k € P = (0, ..., p - 1}. The |
aé£Ual'manner in which we define -these quantities will be made clear
later, But'we.have %he‘fesult that unless k = 0, or eome small number
(unless f<: P is "small"), the mnltiplicity of functions and resultant
eouations,soon becomes unmanaéeable when they are ectually written.out.

In the develoPment that follows, we shail use a mixture of the
nd ation that has been previously'defined. However, if one 'ascertains
from the context fhe space in which a function lies, then fhefe should
' be little confusion. In short, X is consistently the right side of the
diffenentiallequetion; 3 fhe solution vecﬁor_(D?x, cer, D%%);5 ¢ en
aﬁproximation in the function space;.éi are approximation in the vector
epace.. The paramefer k'is always an element of_P;vof;§<: P, where"
P = {C; i;';‘P - 1}. Functions, or vectors, With.a superscript k that,
lie in RﬁﬂcAE always be,written as being in RP by dropping the k; for
.example, (x) = C[i + kn] and conversely. We shall always sum on repeated
capltal subscrlpts, 1n01dentally, this means that A = B BNl BN = |
Z BN [11] BN [1 I By [11 where all factors have the same index value
On the other hand we shall never use lower case subscrlpts to denote
oomponents, only to denote elements of a set. Thus, as was the case’
in Chapter IIT, §<k) is the i-th element in the set of all C(k) and these‘
have components 1n the set N. We make no ‘distinction between CL and §
and w1ll 11kew1se use such notatlons as Q( k) and §(k> as belng equivalent.
.AS we haye said, the oonpext.in which the‘items appear should identify

the space of which they are an element.
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Referring to (15), we see that it is necessary to calculate the
derivatives of Cgk) starting'with I;+l (o)(O) This is equivalent to
evaluating DY ngk)(o) for J=r +k+1>1 F 1. More specifically, we

have that

Dr+1+k§(ik)(6)= r+14k . (k)(o) _(E_l_“‘l‘_)_ rsgk)(o) (16

for r > f. By means of (3), we can write

Sgk) = 3 ...n{ko) + Z...X(uj + ni) ' | (17)

iy 9

which when the expansion of the second term is carried out becomes

8§k) = 2 ...ngko) +

. 1 .
: S Xou, +3 = . X o U, M .. 1.
ik, ¢ J BRI g gl g

Jhg

(18)
§r+l+k}'
, make use

We now differentiate (18), multlply both sides by 5

of the matrices I£N) and equation (16) to obtain the following result

Dr+l+k ngk)(o) - ; i{i%;le‘fEEE Dr(X ° uj)(o) +
. d ) |

0 ’ )
: S 1 +1+k)! (k
Z 2 p2 2 ot Y = Tk) fg'i'
jos=l ij...ig Ky..okg & Theerly @ J

() (k) (9

r-i
l .
DAy g ¥ )(O) R

S
17 -in-kq+ks (kq) 1g-ketk (k )
D’l o-K+K) anl (O)...D s sv s (O)
o 1 .
s s (zelsr) (k) - ko+ko ( )(o)
j k rl lk od

We have deliberately‘put iﬁ the extra value of ki and gs usual’

= (r ) <11) (;s-l>‘ . Equation (19) will serve for this

Ori .. .1
. l‘ s iy is S
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‘-chapter the same central position that (16') did for Chapter II and, in

fact, for p =1, P = {0}; this reduces to that equation as may easily be

verified.

Since Drngk)(o)v= Oforr<4{ +1+k, the range of the indices:in

(19) can be materially reduced. This leads to the same normal index set
that was given in equationsﬁ(22), Chapter III. We write this nqrﬁal index

range here for reference -

(@]
A
b
A

1 51y -1, - (2 + 1)‘

ip - iz - (2 + 1)

o

v v A
nS

) A

0 = kg

1A

i, -4+ 1)

0sk

A

o s - (4 +1)

s(4 +1) siy sr.

(20)
(s -1 +1) S5, 51, (e v 1)

(2 +>l) < ig = is-l -J(ﬂ + 1)

l1Es=sr + (£ + 1) |

vhere it is assumed that ky € B, i = 0, 1, ... for all k. Thus, the
upper,bohnds on k; will not be achieved if the upper bound is not in the

set P. We also have the following bounds

r +;(1 - s)(4 +-l).'

;'_;(zv+ 1) 51, -1, =

- )) £4, - iz = >’_sv£' ' » v
(£ +1) £15 - i3 ; +.(1 )2+ 1) (e
(£ +1) si_sr +'(iﬂ- s)(2 + 1)

and these, in turn, give
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O=ky =r -s(f+1)

0sky,sr-s(f+1) : _ i
. S (22) .
0=ky sr - s(£+1).

It is useful to have these bounds.whenvdetermining whether ail the weighted
differentials and their related quantitiés have been obtained..

We see that (l9)'eXpresses;br+l+k ngk)(o); for any k e‘ﬁ, in terms
ofvlowér order derivatives; therefore, if we:know the lowestjordér derivative,
we can, indeed, éalculate'thé'neXt higher one and thus proceed to'obtain all
the necessary;derivatiV¢s. |

As ‘was previously done, we shall define functions W € R " RO yuhich
are again calied weiéhtedrdifferentials of given'rank R, Qfderfr, degrée s
where R 2 Tz Z‘+ 1 are integers, s 20O is anvinteger, and we assume that
ki € P= {k|§(k) is explicit in X o E}. We shall; however, make use of
a generic definition to'dq this since fhis will helf simplify the presenta— 
tion and, at the same fime; illustrates that a;l'theée'qpantities are ‘
obtained in, essentially, the same manner; To do this, we need only
éxtend.slightly the Quantities defined in Definitién 3 of Chapter III. -

We are thus lead to

Definition 3: The symbol y? is,a'géneric-y of rank R, order r,

‘degree s = 0, pdsition 1, with R = r if, and only if

' yk [R, r, 1] = _YI?‘[R] ° (zl_i [rR-1, r-1, 0}) o '(25)'-
o1 1 J - . . } R :

where z? is a generic z of rank R - 1, order r - 1, pbsition 0, degree O.

k

. The symbol yi is a generﬂ:ycﬁ'rank R, order r,‘degree_s,'pdsition‘a if

k N . kg
yi R, r, al = Yi [R’vko] ° (zj» [RO, r,

, ao]) o ".:(QL)
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. o k ,
where R = 1 + Ro + ko, r ='ry, and zjO is a generic z of rank RO, order

r,, degree s, position ay, # 0, or if

k. k ST R '
¥i [R, r, a] = Y5 [R, ros Ky, ""ﬂks] 6 (zj [Rl, rl,:al],

k “(e5)
zjS [Rs, rs, as])

where R=1+rg+ 2(k +R)
J—l
r=1+r,+ Z (k + g )
j=1
k'i R . . a . L. ' -
agq zj are generic z of rank Ri’ order ry, position ay # 0. In all cases,

Yo is the generic operator of>£he definition.

In the work that follows, we shall assume that Propertles 1-4of
Chapter IIT are true here. ThlS is not inherent in our deflnltlon, how-
ever, the pattern of generatlon is to be identical for all of the quantltles
that are the spec1f1c reallzatlon of Definition 5 and, in. partlcular, the
weighted dlfferentlals. Because of the way that they are deflned, We are
leed to:Properties 1- h.which are sfated here in ferms.of the generic y oo
and z.. | | |

Properfy 1: In the definition of the generic y, a permutation of
the set {k;} is equivalent to the same ?efmutaﬁion of the set [(Ry, vy, 85)}
and, in general, e new generic y will ariSe_froﬁ this operatioﬁL

Property 2: In the definition of the generic y; a éermutatien of
the {k;} followed by an identical bermutation of the corresponding

{(Ri, r., ai)] does not'lead to a new generic y. That is,'any permutation

i
of the set {(k;, Ry, ry, a3)} = {ni} gives rise to the same generic y.
Property 3: If ki = kj, then the permutation of (R;, ri, a-)_aﬁd

(RJ, s 8y ) does not give rise to a new y. leew1se,'1f (Rl, Ty, 8y ) isr

© idemtical to (RJ, rJ, a. ), then the permutatlon of ky and k does not glvev

J
rise to a new Y.
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Property 4: Given'y defined by (25) of rank R, order r, degree s, -
position a, we obtain all distinct y of rank R, ofder r, dégrée s with
the same Tactors by considering all fhe destiﬁct perﬁutationsfof (kl’ ...ks)
with the understanding that if (Ri, ry, a;) = (Rj, rs, aj) then that
permutation is not distinct. ‘That is, we associate to‘the couples ‘
(ki, (Ryy . Tys ai)) the integer n; . Two.éouples are considéred identical
if either k; = kj or (Ri, ri, a;) = (Rj,‘rj, aj)-or both. Distinct couples
have diStinct-integers n;. We form the distinct permutationsfof.thg set
{ni); then the correspondence ﬁi -%ki or ﬁi - (Ry, Ti, aj) will furniéh all
the distinct y with the same faétors. N |

- We can,fif we wish, again arrive at a normal form

. o
y =Yoo ((z)'1..(2,)"0), with s = 2, by suitable

i=
permutatiqns and re-indexing. In‘the above‘definifion and subsequent
realizations, it is always assumed that R 2r 2 £+ L and k; € ='{k[é(k)
is explicit in X o&}. |
Ve now.proceed td define thévweighted differenfials.

Definition L4: Define

.k | ]_-k-i,.f o
2 [R-1, r -1, 0] =1, zy [Ryy Ty

it
™

Yo [RY o
’ B+ o o (e8)
Y? [R, x,] o = = RBre) (k) o o |

Y[R, v, kyp eeey kgl o = 3 (R+w)l ffk) <r°’kl’7"ks).
~ (R LR Iy oy ..mg
whére4 S : '
 c§r°’kl’°"’kS) = DrO(D X o u:) I(kl). (s
NGy - S Dhpe. eI 97 TLgNy LN

' ke .
Then the generic Y has as its realization the weighted differentials’
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| W§ [R; r, al of rank R, order r, position a, degree s.
As was done before, we make use of the shortened notation and

write W as (R - _1)(k’) for (23), E(k)(w(_k")). for (24) and
| (rgs Ky, +-ep kg3 Wy .u. ws)(k), or (K;__- (wp)HL ... (wo)“c)-, for (25).

The quantities arertabﬁlated in Table VIII of Appendix_I using a
slightly different, shorter ﬁotatién:than that which defines the generic

&. This table is actually a generic table in which we have, essentially,

identified the z to bé the éame as the y. The construction of that

table is completely'deécribed in Appendix I. Hdwevef,-a few,comments

will bé’made here. The pattern of generation of the.geﬁeriéfy is the

same as we previously used in Chapters II and III. We starﬁ with lowest

ordér and rahk, degree zero, and work upward in‘degree-and order; but,
‘now we have the possibility of items with rank R greater than the order.

It is cénvenient‘tovenvision the eleménts of'cdnstént order r and in-
creasing rahk R to'form'ﬁhe rdws and thefeiéments of coﬁstant fank R and
incfeasing order r the columﬁ of a square array when generating these functions.
This is what has been done in Table VIII. The best way to become familiar
’ wi£h\how to generate thése quantities.ié to actually carry out some examples.

We give below a short table to show hdw this can be done. It will
immediatel& be noticed that we have implicitly assumed a oné-to-one
' correspondence between_thé>y'and the z, except for zk [R.f 1, r -1, O];

This is not inherent in Defiﬁition 3, but since, in fact, we shall have this

cofreépdndence in a;l ;ur realizations 6f the generic y, we shall assume'

that this is the situation. A combarisqn of Table I with Table VIIT of -

'Appendix I will show that this isvjust a very short section ofbthat table.'

The notatipn of Tablé VIII.has been shortened to -aid in ifs coﬁstructioﬁ;,:

however,‘ir thesé quantitiés are generated by means of an algorithm; fheir

complete identification is needed; this is furnished in their definition.
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@]
-
=
0

' Nae Definition ‘Name Definition
|y* IR, r, 1] Y& [R] o (2¥ [R-1, r-1, 0]) y¥ [Rel, 7, 1] v5 [Red, 0] o (2° [R, 7, 1])
E [Rel, r41, 1] | ¥ [Re2] o (2" [R, 7, 0)) V5 [Re2, »+1, 1] YX [Re2, 0] o (2° [Rel, r+i, 11)
K [Rel, w1, 2] | ¥ [Re1, 0, 00 o (2 [R, 7, 1]) || ¥F [Re2, w1, 2] | YN [Re2, 0] o (2° [Re1, x+1, 2])
[R+2, r+2, 1] K [Re2] o (zk_[R+1, r+1, 0]) yk (R+3, r+2, 1] e [R+3, 0] o (2° [Re2, r+2, 1])
k [R+2,'r+2, o] Y¥ [Re2, 1, O] o (zd (R, r, i]) vF [R+3, 42, 2] YF [Re3, 0] o (2° [Re2, r+2, 2])
fR+2, ri2, 31 | ¥¢ [R+é, 0, 0] o (2° [Re1,r+1,11) || v [R+3, re2, 3] Y& [Re3, 0] o (2° [Re2, i«+2, 31)|
: [Re2, r+2, U] ™ [3+2, 0, 0] o (z° [Re1,r+1,21)|| ¥ [R+3, r+2, 4] Y* [R+3, 0] o (2° [Re2, r+2, uj)
[R+2; r+2, Yk [R+2, (z+ [R, r, 11) 'yk [R+3, r+2, 5] YK [R+3, Oj.q (z° [R+2, r+2,:5])

1¢1
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It is possible to expand the derivatives el +l+k ( )(O) into these
differentials. However, the fact that k € P and not simply Zero, as was
previously the case, requires that we modify‘our fesults. In the work
which follows, we shali always assﬁme_thet there is established a one-to-one
correspondence between the various items that are generated as specific |
realizations of the generic y. Thus, when we write aRk2 and Wk R, r, jl,
we implicitly assume that these ifems were generated in the same manner.
The generic y establishes a pattern for all qpentities deri&ed from them

.and this pattern, once established, remains fixed. |

The expansions of the defivatives'Of ngk> are earried out using
Definition 5 of the derivative harmonics and Theorem 1. We state the
theorem first. |
Theorem 1

(% )

Let Rz 4+ 1, ke P= (Kt is explicit in X o tJ, SR"= {jlw€k>
[R, r, j] has rank R, order r}. Let Oﬁ be the derivative harmonlc
k
' corresponding to the weightedldifferent;al Wy (R, r, jl. Then
Rik (k) R ko (k) .
Dy (0) = = s, (R + kﬁ Oﬁrg W [r, r, 31(0).  (27)
- r={+1 jeS - .
. . R ‘
‘The derivative harmonics are non;negatiVe, rational coefficients -
independent of i and ere definedvin

" Definition 5: Define

K . k. K.
zj'[R-l, r-1, 0] =1, 2 [R, r, a] = Y5 [R, r, al, a #0

i (Rl - = (Rex)t ° | A

. y ]0 T e g ¢ i ) . -
(R-1) 1
(Rek)! 1! (wl)!-4-(®5)!

k o . » —
Yo [R, Ty Kjseee ks]_o =

where w; is the ﬁﬁmber of times that (ki, Ry, ri, ai) appears as a factor
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in yk [R r, al. Then the generic y [R r, al] has as its realization the

‘5der1vat1ve harmonic Qﬁ We note that when R = r these derivatiVé harmonics,

when multiplied by (R + k)!, are identical to those of Chapter III.

Proof of Theorem 1l:  The proof of this theorem is essentially the
same as that of the constructive case in Chapter III where we found the
expansion of the derivatives of x.. Con81der first the case R £+ 1.

From (19) we have that

D£+l+k ng_k)(o) = 1 . (1>(k)(0) (29)

where we have used the fact that, because the'indices lie in the normal_.
éet, there are no terms other than the first term. Now, we assume the

results are true for all ranks less than R and substitute (27) into (19)

. to obtain
k ‘ . . .l
o n(ik)(o) = (R - 1)(k)(o) +2 = > b gy
s 10003 kl...ks Ty...Tq jl...js
. R~1-1 ces 3
o"R-.l,ll. i aR lJl aRerJs (R 11, k9, ’ks
(k) (ko). : ' k,
W 1 [Rly Ty jl]'“w ® [RS’ Too JSD )+ = = OLRO 3q
. k T J O (¢]
) . o Yo
50 lr,, rg, 3,1)(0). | o (50)

Whemawe:have left out the séaliqg”factor (51%77 in the definition‘of .
the a. We see that the derivative harmonics furnish the correct'coefficieﬁt
~for the degree Zero ferms and for the last term obtained using the E
Qperafor. ‘The only question is the genefal chfficiént éf the second

term in the right member of (30). We procéed exactly in the same manner'v

~ as previously. The expansion (27) is written for the left side (30) and.
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then we establish the valid choices of indices for the right side by
permutting the couples (k;, Ry, Ty, Jj;) that appear in the factors of the

general term. We will;obtain as the general coefficient

k1 - kg
g &L 1 ahlrljl ORI (31)
Rrj rol . (o)l (et (Rywig )i (Rgtkg)! e
where @; is the number of times that (ki, Ry, i, ji) appears as a factqr

in‘W% [R, r, j]. If we now multiply (31) by (ﬁI%TT and refer to the
definition of the derivative harmonics, we see that they are indeed the
correct coefficients. ,
Since we eventually plan to use the differentials A of Chapter ITI
as our basis; it is convenient to have them defined directly in térms of -
_'the generig y. It is bossiblé to actually consider the.A as a subset of
the W'b& tsiné‘a proper choice of the parameters g, f; and © that appear
in W. If we set all g =0, fii = %%5%%}, f?j =0 if i'# j, 65 = 1, then
we can write A [r, a] = Wv[r,rr, al and have the desired differentials.
'This, howéver, is not a convenient way to geperate the differential A
and we give below an explicit definition of these quantities.

' Definition 6: Define

k ' k o
2 [R -1, r-1,0] =1, 2 [R, r, a] = y? [R, r, al, a #0

Y R] e = o
: (o)

L o (32)
R (R, ko] ° =0
- X A . (ro’kl}"’;ks)
A [R, roy kyseeny kgl oo = Cy Ny ...Ng )

where

(ro,kl,...,ks) . Ty : (k1) -‘(ks)
» v %= o X I g eI
OGNy - T G A
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. then the generic y? [R, r, al has as its realization the differential

A [z, al = y% [r, r, a] and the.frivial_set zero for those y with R > 1.

| By convention, we ignore this setvof zeros and for éach set '
{y¥ [R, r, allk ¢ P}, since all items are identical and independent of k;

- we choose one of these items as a representative and any subéequent reference
to yk [R, r, al] refers to,thié representaﬁive.

The previously ihtrqduéed notation {rg, k9, «v0y kgy Ay, «o. ALD
will be used and also its normal form wherever convenient.v This has been
‘previously described in Chapter IIT

. We next define the weighted polynomials & of given rénk R, order r,
position a, degree s. There is established by the generic y a one-to-one
correspondence between the W and ®wiich we write as ®(k) [R, T, a] e—

W(k) (R, r, al.

Definition 7: Define

z?[R-l,r-l,O]Ei “ [R, r,a]—y IR, r, al, & #£0
K o (Rek)! .k R-1
Yi-[R] °c = %]‘- %R._—l)l- .in GJ . »
k.- R+k)! (k) o o (33)
I‘Yi [R, kol o _.§ %;(337' 8ix o . B ~ :

k . - , (Rtk)! (k)
Y. (R, rg, kl, cen ks] o = ? (R-1)1 lJR J.

then the generic y}; [R, r, a] has as its 'realization the weighted polynomial

K
d)i [R, r, a].
Again, we use the abbreviated notation [r - lJ(k) for (23) G(k)(® )

~for (24), and [ro, k kg @gkl). ( s) for (25)

19 v
We note that there exists a one -to-one correspOnience between the
differentials A [r, a] of order r, degree s and the set of all W? [R, r, &l

of order r, rank R 2 r, degree s. This is the same correspondence previously
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éncountered in Chapter II; however, now k € P.

With regard to the derivatives of x, we already know that they can
be expanded into the derivative harmonics Bra'of Chapter III; these
_harmonics are, however; the same as (R + k)! aﬁra which can easily be
verified. We restate>that fact here for refereﬁce.

Theorem 2:

i xe £)0) = = B,

€
a Sr

A2y - | (34)

{aIA(r’a) has order r}.

where B, = (r + k)! a?ra for any k € P and Sp=
The connection between the W and A is easily made by

Theorem 3:
ng)FLR, r, jl = @gk) [R? T, j] « Alr, al | (35)1

Whefe'w,'®, and A have their usual meanings. This léads to the explicit

relations

S T R T
_E(k)(_(K; wgkl).._;wng%(kO?) = o [K; @&kl)... cbgks)])' . )

.{Ki Agrl)...Ag?S)}

A}

_ w(kl)...wng))(k) ¥.[K

(x5 W, o) plks)

(ry)  (rs)
TN S N N Al

where K = (ry, k3, ..., kg), the Qorrespondeﬁce wgki) = @gki) A(ri) is
“assumed,(k, k;) € P, and j ¢ Sg =v[j|W has rank R, order r}. .

-.'Note that the.use'of tﬁe generic definition ﬁithout a-change-ih iﬁs
péttern of.creation @nsu?es that the pfoper correspondénce in sequential"‘
pOsitidﬁ iS'ﬁaintainéd-between all terms of (35). We are thus able to |

féctor-out_theuA-in any expansion in which W éppears.
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Proof: The proof is an inductivé‘one using the definitions of'the_:'
W, ®, and A. It is trué fqr s =0, R =.r so the inductive process can
be started. If the results are true for degree s, arder r, rank:R, then
théy are likewise true for degree s, order r, rank R + 1 as can easily be  
verified. Thus, if the fesults aré true for any R = r element, then the&;
are true for.the whole row with R >r. On the other hand, if they are
true ‘fdr any row, _then they arev.tr.ue for the ‘appropriate row with higher‘; :
rankvand,prder; -Thus; they are true for all elements.

We are now in a position ﬁo rewrite our expansion (27) of the
derivatives of n;. Upon substituting intq (27) thevfactqrization of W
into ®A, we obtain -

R

_ _ .
phK ngk)(o) = % by (R + k)! Oy @
- r=f+1 acS, JeSp, SR

gk) (v, =, 31 87 0) (37)

—'{a|A(r’a) has order r}

0N
|

0
I

= {jlw( ) [R,vr,_j] has rank R, order r, and corresponds to

. Ra
A(TJa)

of order r}.

If, in equation (15), we now replace the derivatives by their
exﬁansions into the differentials A(O), the following equivalent ex-

pansions are obtained.

- eI.'+k

o) =)« 5 3 5 —— a5y

: r=£+1 aes? - <r+k)!‘ | | (58
() =¥y 3 3 (3 s & oM,y Ao
L _ 1 : I‘I=£+l aGSr R=r j€SRa Rrj l.. ' '

where the order of summation of R and r-has been interchanged.
Equation (38) gives us, essentially, the desired expansion into the

basis A. However, it is possible to factor @ into. a numerical coefficient
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7 and an.algébraié pérm,F allowing us to write a® =ayI', We can, if

we wish, collect the product &y = 7 and write instead 7mI' where thgre

are only two t&pes of qﬁantities in the summation; the numerical coefficiént
7 and the algebraic coefficient I'. We can also go the other way and
~collect together the factor to write H ;(&@. vThesé various representatiuns
ﬁave their advantage depending on %hét we are interested in and how the '
quantities are to be obtained. We give below the definition of the
éoefficients that are'necéssary to effect these different representations.

Definition 8: Define

z? [R-1,r-1,0] =1, z? [R, r, al Ezy? [R, r, al, a #0

k _ (k) R-1

Yi [RJ o vv: ? fin ej . . . .
k | -b : _ ‘ (59)
YR, k]e =3 &5 . |
i 3 lkoJ -

Y[R, r, k k1o =3 5 g%,

L Tor Frorerr KT T E SRR T

' theh the generic y? [R, r, al hgs as its realization the elementary .

polynomial Pi [R, r, al of rank R, order r, position a, degree s.

Definition 9: Défine
z? [R-1,r-1,0] =1, z? [R, r, a] = y? [R, r, al, a #£0

' le [R] o = (B! |

(R-1)1 . u)
SR, k] s = 'LBiElL ( >
i ’ O. = (R-l)' .. v :
TR, r, ok, o ko = (R
i Rt e R

'S (ray

then the generic y? [R, r, al has as its realization the polynomial weight -

vk [R, r, al of rank r, order.r, positidn3a, degree s, independent of i.
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Definition 10: Define

Z[R-1,r-1,0] =1, 25 [&, r, al zylg [R, r, al, a #0

YI; [R] o = —2— -
| (R - 1) (1)
Y-k [R, kO] o =1 -
K .. = =)
Y[R, 7, Ky ...,'ks] Sy (@)1 .. (ag)!

where w; is the number of times that (ki, Ryy Ty, ai).appeare as a factor .
in y? [R,.r; al. Then the generie y has as. its realization fhe’product
coefficient ij[R, r, a] of rank‘R, order r, positibn a, deéree S,
independent of i and k. |

Definition 11:. Define7

z? [R-1,r-1,0]= l,'Z?_[R, r, al = y? (R, r, al, a #0

1 ‘ ()R‘—l'

Yy Ble = oo 5 T %
. Yk 5, k lv=5 g(k) . (42)
, - Pikgd

1

s #{8) g% .
: . lJR J
vl (@)t (o)t 3 ,

A

k
Y [R, rg) %yy +vvs Kl o

where w, is the number of times that (ki, Ry» Ty, ru) appears as a factor
in y [R, r, al. Then, the generic y has as its reallzatlon the generallzed

. R.K. harmonics H(k)[R r, al of rank R, order r, pos1t10n a, degree Se.

In order to obtain the various representatlons of (37) using these
deflnltlons, we appeal to the follow1ng result.
Theorem L.

Let the generic y 5e‘generated as y'e Yz];f..zS where‘Y UV and r
z; = ujvy are permissible faetorizatiohe of_Y andiii, respeetlvely. Then

y ='yly2 is a permissible‘factorization of y where y; = Uuj...ug,
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¥y = Vvi...vg are the.generations of the factors Al and Yo provided the
necessary commutation of the terms iq UVhlvl...usvs can be carried out.
The converse isvalsoltrue. That is, givén the factors y; aﬁd Yo generafed
7 using the opérators U and V, then y = ¥1¥o can be generated;using the
operatbr Y = UV provide& the necessary commutations can be carried out.

Proof: The proof is inductive. Starting with y [R, r, 1] of lowest>
.rank, order, and degree, we show that thé inductivebprocess can be started :
and is, in fact, true for all degree zero terms. Equation (2k) shows
that if it is true for a given rank R, order r, degree s, then it is trwe
qu rank R + 1. Equation-(25) wili be_frué provided it is ffue for
quantities 6f lower rank and.order.

Using this resﬁlt, we cén write the coeffiéient Qf A in (37) as
follows:
Theorem 53

Let o and ® be respectively a derivative harmonic and weighted

polynomial of rank R, order r, degree s,.position Js; then we have that

a%rj @? [R, ?i_j] = Orrj YRrj fgk)[R’ s J]
'='n§fj ng) [R, r, j] C (43)

1
=1
—
{2o]

-

H

-
.

where v, T;.ﬂ, and H are respectively the polynomial weights, élementary A
>poiynomials; prqduct coefficients, generalized R.K. harmonics.

We now make ﬁse of ouf results.to rgstafe the definition of the
genera;iged R.K. SCheme, but now in terms of the harmdnics of the basis A.

'To'define a generalized R.K. scheme for the solution of

vaX =Xe° £, x €"R“9,RN, X € RnXp —)Rn’ £ ¢ R._).RDXP,
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specify the rank q, the extent e, and the scheme definition

(k) (k) <k ) (k) |
Ey = 503 + = X(€.) (hL)
i X €ik 5 v o lJ J ~

where A

1
with

S; U8, US., «8 = (jIO =5 = exq}
i 17 T _

koy ke P ={0, ...; p-1}.

To determine the parameters of (Mﬁ), choose a point within the extent
and require that the corresponding 5 shall match the true ‘solution §(6 )
to a certain order r. This leads to the parameter deflnlng equatlons |

that can be writtenvin the following equivalent forms.

o (k) - - r+k
5 5. R, r, 3] =B, o
R=r je SR& : ’ ' e . (I‘+k)! :
w ' : ' o er+k
ko o(k 7
b3 I TRpy Fg ) [R, r, jl = Bra - ,
R=r J€SRa - (I‘+k)' . o
ek (45)

s k ko (k) o . o N : :
z 5 . VYoo Iy IR, r, jl=18 —
R ey, 0N L TR g

’ : r+k
® k (k) 01
2 o 9 IR v, 5l= B,
=r jeSp, Tyt S T8 (r+x)!

where l+1srs7
ke P

a€sf, = [alAﬂr’?) has order r}

= {(5]y5 [R, r, ] has vank R, order r and
4SRa = {Jlyg [R, r, j] has rank R, order r an
(r,é;)]

corresponds to A
In the layout of the 1nterval we have assumed that we proceed in a fashion

1dentlcal to that of Chapter IIT us1ng ma jor p01nts and minor p01nts,
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the4meaning‘§f which aré well defined the?e. :Here,'all the 6, are

measured from the origin. It will be recalled that the expansions of the
major'pointé were assumed "known™. For our present developﬁent, we use
_proberty 1 which, when suitable attention is paid to the re-~indexing that

has taken place, becomes

#(k) i -
lJR 0 # J . . (11-6)

(k) _ gR—lgl g+l

fiim = (R+k)! %
when : ;i(l) = g(ei)_
Along with thesé parameter defining equations, we have conditions
equivalent to those bf Theorem 10, Chapter III, which arrise when a

minimum order ggk) - §<k)(6 ) = O(h £+l+k) is required. These are given as

Conditions A: cLet 6, =6, (t) and deflne the polynomlals
' £+k -1
6 ; 9 . 2+k
J 3 0.
Pk(t) =5 = ggi). L5 Gl P2 9
31 kg oy (4 g ®idp (1)1 (2+x)!

thén in order.that’ﬁgk) -.g(k)(ei)-= o(nt+ltky 44 is necessary and

sufficient that

0" P(t) =0 o (47)
for.
T = O} 1, ..., £ +p-~1.

kjeVPﬁ:{O, ceey p -1}, i € 8 =V(O, ceey €Xql

Given that equations (L47) and (45) are satisfiéd, then the local
truncatibn error is
k) _ (K)o y- 5 = (3 R w5 [r, r, 5] -
i i . i 2 . !
r+k (r )
L3 At %®(0)

o Creny
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or any of‘the equivalent‘representationsIObtained by replacing H by its
factorizations.
~In order that these constructions can easily be carried out, we

have tabulated in Tables VIIi5XII of Appendix I the various realizations

of 'the generic y that hape been used here. Since the generalized R.X.
harmonics are easily derivable from the quantities, these have been omitted.
A detailed.explanation of these tables isagiven in that Appendix; Their
use is illustrated later in Chapter VI'Where various examples are treated.

At the beginniné of this chapter, we indicated that there is a

' complete equivalence between the present global approach and the prev1ously
develOped substitutive approach to the non-linear parameter defining
equationss. At first.sight,this is not. apparent; however, the connection
can beiobtained quite easily; In Chapter III, each individual approxima-v.
tion 5. has harmonics, mhich we shall callhapproximation harmonics that

are obtained by carrying the 1ndicated substitutions and linear combinations.
The substitutions are, in practicey effected by means of a“substitution
table the elements of Wthh can be generated by a realization of a
.formally defined‘generation scheme. We note that this scheme is not used
in obtaining the‘harmonics, only the elements of the substitution table.
- In our present work, we‘have obtained quantities, thergeneralized R.K.
harmonics or any of their factorizations;_USing a formaliy defined
generation scheme (a scheme which canbalso generate the substitution table
as'one of its realizations) and avlinear.combination of the appropriate
R.K. harmonics yields the approximation harmonics. Now, it_is possible__““
to obtain a realization of this latter scheme for which the'generated'
velements are the'apprOXimation harmonics. In the process -of arriring at

the appropriate definition for the quantities in Definition 3, we shall
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see the connection between the two different approaches ‘that have been
used to obtain the parameter equations.

We know that we can write any appfoximaﬁioﬁ £; as

k k. (k x), - _ k -
Eg ) - u(ei) = 2 8ik j [gg ) - ug )(l)] +2 aij [X(gj) - Rj] (ko)
v J,k ° J
[e] .
and further that

(k) S k o (r,a) N

Nt - wB,) = = 2o A *=7(0). (50)
1 1 r=0+1 ac8, J _ _

If we substitute (50) into (49) and use the substitution harmonics of

Definition 5, Chapter III, then we obtain

| bt _ k K k 63 - 1
&Sk) -u6) = = [, z g, . a.o + X a, . ——-Q—T] A(r’ )(o)
i i r=t+1 Lk, ikod Jrl . | J (rfl).
© : n.© (a. )
L , k ko -k ej : JT184
* 2 z ['Z By 5 Oypg vE By T
r=0+2 acS, "k ,j T 0 J 3 J gl !
| - B |
qurﬁas) | (r,a), . -
—22 %0 ()
wgl = : v -

. where w; and 5 have the ﬁéaning assigned to ‘them in the’definitionvof‘thé
' dériﬁative hafmonics.

Now, if we substitute for Q%&a’ its representation as
k02 k) | o - _
o =3 3 H() [R, r, J] (52).
JT&  Rer jeSp, -t : o . ,
and collect the coefficientsfpf A(rfé) to obtain the-apprinmation harmonics
a?ra correspondipg to the approximation g?, we shall find that a?ra aiso
has the representation (52). This is, indeéd, the obvious result that must
‘be true if the derivations are correct; hoWeVer, this allows us to see that
for each apprdximatioh.thﬁtVWe construct,'the constructed harmonics are

identical to those obtained using the generalized R.K. harmonics and that
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by a rather simple extension of the definition of the substitution
harmonics, we can obtain'from_thé generic generator a realization which
will give us these harmonics. . This is-done in

Definition 12: Define

zg [R-1, r-1,0] =1,

z? [R, r, al = = y? [L+R+ Kk, r, al + y? [R, r, a], R=1r, a # 0

koeP
£ [R, v, al = 0, R>r a #0
i > Lo =Y T 4
X : 93"1- ' .
Y, [Rle = 3 5y, —4— (53)
J (R-1)! _
Kk o k.
Y, [3, kO]o:; 8ik j °
k ' ' 1 | 1 : k Ty
Y., [R, r, ki, veuy k ] o = , - 3 f£,, 0.°.
i (R ros Kyp ey Ky SR T PP T T

where mi is the number of times that (kj, Ri,.ri,'ai) appears as a factor

in y? [R, T, al. Then the generic z of rahk»R-: order r has as its -

realization the approximation harmonic agfé. -
Associated with this definition, we have
" 'Theorem 6
If gi‘is an approximation defined by a generalized R. K. schemne,
then
; k r,a
g(.k)= >3 S a A( ’.‘)(O)
i ira
r={+1 acS _
‘where the Q are approximatioh hermonics. This, in particular, includes
the solution values §(6i),
~ Proof: The proof aof this result follows by induétion from (51)

“where we proceed as we have done many times befare to substitute.the
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(k)

expansion for £ - u(Gi) into the right side and isolate the general
term. This will lead to coefficients which are those of Definition (12).

We note that there is little difference.between the definition of
the generalized R.K harmonics and those we have Just defiﬁed. There the
generic y turned out to be the quantify of interest, while here the generic
z are the items ﬁe want.

The definitiohvof these quantities is rather abstract and is given
in the foregoing fashion to enable us to obtain all the hafmonics*using
the same formal pattern of generatioh. However, they have é simple
?attern that can be obtained directly'frbm'the approximation and it is
convenient, in practice, to have this explicitly dispiayed. Thus, given
the approximstion (49), we simply note that the harmonics a?ra = é? [r,r,a]
are the coefficients of (51). We may now, if ﬁé wish, use (52) in (45)
and (48). ‘ X

We thus see that we can, in'generaigrtabulate the equations with
no sﬁeéific'refereﬁcé to the index sets and then the particular realizatién
of anyone.scheme arrises by specifying the appfopriate index sets. How
.thislactually is carried out will become clear when we treat.various exampiés
in Chapter‘VII;uFor'the present, we restrict oﬁrselves to mentioning a Pew
rather obvious facts. It is evident that the choice of origin is imma-
terial; conditions A are origin independent and the results up ﬁhrough the»;
frinqipal error'tefm should be origin independent. We lack a general :
vtheorem concerning'the latter fact; hcwever, the results can be direétly
verifigd-since the equati§ns are polynomials in 6. The choice of.l dependé
on the desired methOdj for self starting methods £ = 1 while for finite |
- difference methods of orderAr, L =1r - b. For mixéd methods of a_given _ f

. order r, then m =1 - p - £ is a measure of the complexity of the set of
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equations (45) that mmst be solved. We are rather vague here about the
precise definition of order, but, for the present, it suffices to take
p = 1 and for higher p we shall be more precise later on when dealing
with examples.

A further remark is that when comparing our present results with
those obtained by thelconstructive substitution approach, we must remember
‘that we are essentlally dealing with what was then called the backward
translation case. We know, however, that if our work 1s carefully arranged,
we should be abie to make a direct ccmparison of the results.

We should also say a few words about the infinite.sum onvrank R.

If the R.K. harmonics H are generated (we have seen that we Eam‘instead,
if we wish, generate the approximation hérmonics); then while if is true
that we cannot e-priori state exactly'wheh the ihfihite sum or'the'rank R
w1ll terminate, the sum can be drastlcally llmlted provided we limit
sllghtly the class of methods we wish to 1nvest1gate. To;be more precise,
note‘that for any glven scheme the appearance_of a term of rank R > r
implies that the coefficient g appearing‘intthe scheme are'ﬁon;zeref_ We
Rnow that for purely R.K. schemes.all’g can be censidered-as idemtically
zero. - Hence, we'need never consider‘R.> r for these Cases.,_Incidentally,
for R =r and purely R.K. schemes our results should agree 1dent1cally,
when £ = 0, p = 1, with those of Butcher! ! ) ond with 2 = 1, p'= 1 with
'f'those of Ceschlno-Kuntzmann(é,). .For Runge Kutta schemes with memory
) where only function evaluatlons are used, we note that agaln we rieed never
*con51der cases with R > r._-However, this is a severe restrlctlon and we
do not limit ourselves to that extent. Instead, for‘Canenience in pre-
:senting some comﬁlete tables, we iimit Qurselves to scheme yﬁose parameters
are to be determinedeitm theeassmmption that the major-points havev"knomnﬁ

expansions whose harmonics are the Taylor harmonics. That is, we consider
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major polnts to have approximations & = £(8;). This then implies that

gk = 0. This, in effect, simply says that in determining the approxima-

ko]
tizz éi, we shall consider'g. to be a true solution value if j = nxq.where
g is the rank of the method. . Since, in practlce, the major points gj
all have an order‘equal to that~of,§i, the determination of the parameters h
will not be affected. In contrast'tO‘this, we consider € = §(Gi)’+ &g
where g; is an error term We know that~this case can be easily treated
provided we "know" the appropriate expan51on of g and therein lies the
dlfflculty ) We have 1nd1cated in the substitution case how this dlfflculty
can be treated u51ng undetermlned parameter expans1ons. This approach 1s._
stlll valid if we generate the approx1mat10n harmonlcs using Definition 12,
but it becomes more dlfflcult to apply directly using the R. K. harmonics ;
H. Since it will not, in general, change the parameter defining eqnatlons;
we consider £j = g(ej), The limitation imposed here does, indeed, become_n
. a restriction if we are concerned with global error terms and correct
starting values of the soheme, but we Shali say.more about,tnat later.

~ With thisrestriction we are able to forget about all functibns fon
those cases where there appears- two or more g coefflclents. Referring to’{
Table VIII of Appendix I, we have ellmlnated all cases where there are two~
.or more E factors. This allows the tables to be reduced to a reasonable
~ working size.

To illustrate with an example, consider
53 =8+ Es .l

where 831 = 83p = 1 and all other g -are zero. An examination of the
meaning of the higher powers of E shows us that we will have termsrsuch_‘

as gz g} --., but since £, is an exact value‘g(el) we have that g;... = O.
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These ideas bécome clearer when specific exampleé are treated. In
- short, ‘it turns out that we need only cbnéidef terms that contain one
or less factor E when ﬁreating generalized R.K. methods in which we
determine.the parameters using one major step. If we use two major
steps, consider the case of the truncation erfdr after two steps, then
we need terms with two or less factors and, in general, thé<pat£ern
persists. Should one wish to utilize the tables presented for these
" more complicated schemes, then these tables must.be extended. We commentv
that .if these quantities are generated, then there is no brdblem; we
get all the quantities we need simply 5y spécifying the indekx sets and
the "known" expansion at major points.

| Having limited_the‘téble of functibns needed, it turns out that
we can further limit the sum on R. The rank R can be wfitten as
R=r+1+ Xk vhen k e PcP=1{0, ..., p-1}. Thus, we need only

consider those kj that appear explicitly in X o &.-
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V. UTILIZATION OF ERROR HARMONICS IN
‘ GENERALIZED RKF SCHEMES
In Chapter V? we present reéultsrthét afe, to a large ektent,

»simply a re-interpretation of thé eafiier work of Chapter ITI. It is
shown that if we evaluate the differentials not at u(0), but, inétead,
at é(O) where £ is aﬁ>exact.solutionvto DPx = X o &, then many of the .
harmonics that were previously ﬁon;zero become zéro aﬁd no new non-zero
hérmonics are introduced. We.tﬁus; in a sense, have found a canonical
sét for a basis. We are lead td this set by considering the errors
g5 = &4 - g(ei) of the-generalizéd scheme. 'Thése errors aré defined

in Definition 1. In order to\carfy out the required expansions, we

define, Definition 2, error differentials E (the canonical basis) and

theh proceed to show that most of fhe work of Chapter IIIihas a parallelv;;
| development in terms of these functions. We can‘calculaté the derivativési
of E, Theorem 1. The derivatives of x can be expaﬁded into the set E,
Theoremv2, and, in fact, those harmonics.are mostly zero. Again, it

is poésiblé_to define derivative; sdbstitution,.@ﬁltiplication, énd.
tnanslétion harmonics. In fact, it turns“out that the substitution énd‘ S
mpltiplication harmonics are identicai to those pre&iously defined.

Once again, we are able to extend tﬂe definitioﬁsrto tﬁe geners-
aiizeduRKF scheﬁes. This is given in Definitibn 5 which is mefely a
reétafement of that given.in Chapter IiI,‘but nbw in terms of the
effors e and the error"differentialé E. This allows us to show that
there is relatively. 1little to be dome before the progfam.RKMI.can c@nstfucé
schemeé in the coefficient space of the error differentials. Fiﬁally, we .|
show, Theorem 6, that ﬁhere is essentiélly.ﬁo distinction to be madé.

between the approximation harmonics ¢ given in Chapter IV and the error
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harmonies e developed here.‘“That is; a.table of'approximation harmonics
is also a table of errer harmonics. | |

In tne work that has been presented in Chapters 1T - IV, extensive
use has-been made of the Pact that any solution £ of the differential
equation ﬁpx = X o & can be represented ae ¢ = u+ v where the first
ferm is a finite nUﬁber‘of terms of the Taylor's eeries expansion'of ¢ and
v 1s the remaining'part of'that series. This has caused all of our .
functions, in particular, the differentials A.and:weighﬁed.differentialsv
W, to be evelua£ed at u. For example, we heve:D(X o u)(0)." Tnis has
been a fertunate choice in some respects. In narticular, if has forced
us.fo find an.exnansion fermule’fer ﬁhe derivatives D' (X o'&j = Dr(X(u + v))
whicn has been ﬁhe nrime-sonrce Qf‘inspirafion in obtaining the definitions
vfor the differentials which'in turn has lead to a definition of the |
éeneric y. However,vit also'ieads £o reeults‘that do nOt necessarily
compare.directlj with other work. Our previous work can be directly - -
vcompared with thatvpresented by Ceschinef-Kuntzmann(2 ):and.for the
pv= i, ! = 1 case does agfee’With their-results; bnt the work presenfed
by Bﬁfcher(& ,8) has cansed us to ask, what is the direct eonnection
) between his results and #hose derived here? The overly simple’answer'
- is that the point of evaluation of the derivafives is different from ouf
choice, so there must ﬁe a difference in onr.error tenms.- However,IWhat
" about the equations that detefmine fhe.undetermined'parametersé: If ne
v_loqk closely;vwe ean'idenﬁify;all.the.derivatines that he uses and find
:the correspondence befween these functions and eurs, but the‘numner of
equations that he_sets forfh fo Solve are a subseteef-tnOSe that we
wnnid.obtnin. Alse, his'equatiqns*contain error_terms ef.the apﬁroxi£

mvtions; ours never do. In short, his results look simpler and the question
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" arises:what caﬁsed the simplification? 'This is an important‘point be-

 cause: |

1)  For higher order RKF schemes.in whidh the difference
between the order of accuracy of the minor aﬁd ma jor

'poiﬁts is more than three oi four, the nonlinear parameter

eqﬁatipns soon becbme quite qomplicated and, thus, any

Simplification in the results'ﬁili aid in understaqding !

and sélving‘these equations.

2) The storage requirément of RKMI can easily bééome

“ excessive and it is necessary that the prdbiem be
simplified or'theiprogram modified to take advantage
of certain properties of the parameter equations.

We.shall present below a development ihat connects our work to
that of Butcher,‘Simplifies the equations, and, at the same time, raises
some interesting-quesfions. To do this, ﬁe shall use ﬁhe resﬁlts_of
Chapters ITI aﬁd IV °~ We shall, howevef, use thebnOtation of Chapter IV.

in Chépters 1T - IV, ﬁe have worked with approximations &5 which
were constructed iﬁ a well-defined manner and we dbtainéd our paraméter
equations by requiring that ﬁhese éppioximations agree to a certain
order of aécuiacy‘wifh the true solution g(Gi). “We shall, in this
drapter, work with the errors g; which are a measﬁre of how:weli the

approximations and the true solution agree. These are defined as:

Definition 1: The error g; is said to be a generalized R.K scheme j;~

error if, and only if

9L ey s ) lke) | (R .
i1 3rkg 1koJ J : J ( 5-,>
e (®) X =
+ ?.‘aij [x(g(ej) . ej) - Rj]
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where.g(ej) is an exact solution of DPx = X o &

- . 1 k+r 04
o) = = P 2 |
: - r=k+i+1 r
S ()
£-1 ’ C 0% :
Ry = - D" x(0)
r=0 : ool

and €5 is an error obtained in the same fashion. We immediately have

that
v§i=€i+§(91)- R ¢ )

which follows directly from (1) upon substltutlng (3) 1nto (l), recalllng |
that € = u + v, and referrlng to equations. (ll), Chapter III, or |
- equation (9), Chapter IV. We shall assume that equation (11') of |
"Chapter IIT alwayé hoids. That is, condition A is in'effecf.for all
valid'choipes'ofvthé parameters in (1).
We now define differentials exactly as wés doﬁe in‘Deﬁinitibn-Q
of Chapter III exceﬁt we replace u by‘g. We give that définitiénvas

' Definition 2: Define

2 [r-1,01=21, zlr,al=ylr,al, a0

S

T (ro:kly ks)
s NNy . . . Ny '
where c(rO)v= Forx o £ )y
(%) - (k )

r
o .

_ =D (D Xo £)I

NONl- . 'NS ‘ ! : Ll- . .LS LlNl L N

cand '  £ = (Dp-lx, ooy Dox) is an exact solution to"Dpx =Xo g.



Then the'generic y [r, al has as its realization the error differentials

E [r, al.
We have given these differentialé a different name, E. instead of
A, because they really are different functions since théy contain a

composition with the function‘g,‘instead of u as was the case with the

15k

differentials A. However, the results proven usiﬁg the differentials A

éarry over directly to-the E and the proéf‘bfvthese resulfs is?cafried
out in'fhe same manner.j We Shall, tberefbré, only give the results
thét we wish to use and the reader can refer td the appropriate previous
-work if he wiShes to carry out the proofs.
‘Theorem 1 | | '

The j-th defivative of the differential E of order r, dégree é
is a 1inéaf éombination with nonenegative integral coefficients of the
differentials E of order r + j, degree.s. |

Proof: See Theorem 2, Chapter- III.
Theorem 2 |

Dp+rx(0) = 8 of order r +1is a iiheaf-combihation of differ-
:‘ entials E of érder r + 1 evaluated at O. in féct, the only non-zero
coefficients are those of the degree O terms..

M‘: Notice that DP"¥x(0) = D'(X o £)(0) which is the differ-
ential of degree zero, ordef r+ 1.

If we comparé this %ith Theérem 3 of.Chaptef IfI,kwe immediately
'7: sée that we have a much_simpler‘césé ﬁere._.Previously;‘the coefficienﬁs
were greater than zero for all the order r +1 terms 'We_went to a
considerable'ambgnt of trouble to calculate the derivative harmdnigs
in ChaptévaII. They are trivial.fo'obtéin heré; théyvare'all éero

"~ except the degree 0 terms which have coefficient 1.
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Definition 3: Define

S

[r -1,0]l =1, 2z [r, al =y [r, 2], a #0
Y [If]OiElb
Y [rg, kyp -y kglo = 0.

then the generic y [r, al] becomes the derivative harmonic B,.. -

These results allow us to expand v(6;) into the error differentials

| Ak+r k+r f ‘
(K)gy . = ool b7 2 ST (x,0)
’ .(ei) ) r;%+l g : -X(O) (k+r)P i r=g+1 (krr)! (0 (5)-

It turns out thét the operations of substitution and multipiication
‘have the same ‘form in the,coefficientvspace of the error_differentials‘E
as theyvdid in1the coefficient-spéce of the differentials. We, thus have

Theorem 3 CSubstitﬁtion)

‘Let
2y = X(g(e) + Tp,) - Ry
where - -1 ? _ '
Ry = Z D (X £)(0)
r=o . . :
T = 2 2 2 o I 7=,
L reS aésr keP .rka N W
Then : (r a)
. _ s8).
Iy = Z 2 Bra E
resS a§Sr

where B are the substitution harmonics .corresponding to T, These

“harmonics are defined exactly as in Definition 5, Chapter III.
Proof: The proof is carried out exactly as was done fof Theorem 6,'

Chapter III, except we start with z = X(&(6) + T) and we note that
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A
™
1

=

D(X o £)(0) = D'(X o u){0) for 0 s r
In a similar fashion, we have
Theorem 4 (Multiplication)

Let‘TL and SL be defined as

il

, _ (.
T, = 2 2 2_ Vyka N N
T TES a,eSr keP . _

> > S o
reS aeS, keP.

rké
Let
Jyp, = DLX(E(8) + Tp) and Wy = Jyy, Sp-

Wy = Z Pra E N
reS a€Sy

- where Bré are- the multiplication harmdnicsﬂcorfesponiing to Ty, and Sy
" as defined in Definition 7, Chapter IIT.

Proof: See Theorem Ty Chapter‘III The startingfpoinﬁ'is; how-

‘ ever, now Dy 2(5(9) + 7).

Tt will be'recalléd that one of our bigvdifficulties has been to
obtain the”trdnélation'hafmoni¢s that alléwed us to dhange the origin
of evaluatiqh of the differentials. These can now -easily be obtained

 usiﬁg Theorem,5, Chapter1III, which gives the ‘derivatives of A. In

that theorem, we ﬁeed éimple replace A 5y E to obtain the'deriVatives

of E. waevér, it is eésier,in practice, to obtain these quanti ties .
;;by actually-carrying out,thé differéntiation.v This was indicated in
Chapter IIT whefe wé gave a fewfof'the derivétives,of Aj again, we

. ineed simpiy.feplace A by E.

| Once Qe_know the dériﬁatives of-E, we'éan obtain £he éorfésponding

translation harmonics as follows:
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Let
= T,a - = — T1.8 =B
E-u5% o (5, %, ..., K, g TLE) | g(FeEs))
b(r a) (ry,a7) (rs,as)
E=F = {ry, Ky, +-.) kg, E DAL g ey

Then, we have
ot as ' . '(?:E)
Definition 4: The translation harmonics yra

corresponding to

E, E are defined as

) s<3 w0
1) s=3 H |
a)  (Ep oo Bg) £y, oy K ¥(8) =0
b)  (ky, > Kg) = (ky, ..., kg)
1) ro<ry v(t) =0
2) T, ST, STyt 5
a) ryf [Fi, 7o+ 3] () =o0
v) rpe [Ty, T gl |
) = _ (ml)!..f(mg)!-v \ .___ff:fé.
| (ai”);...(af;’)z...(agg))z;..(aég))!  (x T
| (7,5)  (FeEg)
T158 Tgr8g
where |
(7,5)  (F,E) 1T o -
ri;a} = yri,ai, (t)/t is,indepenqgnt of t

i
and

8; = {(ry, aj)lkj =k, 1s5ss=5}=

{(rij’ a‘ij)lj ":. l; ceey (l)i}
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Sgl) = the repetition factor of (r; , 8y ) € 84
' ' J J
Lo (g
@ = '5(.1;)
. J. i
i=1
, | » g
SO ={(I.,‘i’ ai)|i=l, I s}= U Si
o . i=1
it1) s8>8 S ¥(t) =0 -

Once again we_dan‘state‘the translation fesults asu
Theorem 5

Let the differentials E Be sequentially indexed as E(j), ‘Let the
différentials E(i)(S, 0) and E(j)(G, 0) be given along with'£heir
associated franslation harmonics 73. Then

E(i).(zs, 0y = .zs 73 (3 - ¢) _E(j_)(g", .o), ie s1 = S; (6)
JeS, '

J . . M ' ’
when 8 - { corresponds to the interval of translation and S5 = {set of
all error differentials}.

This is the same as Theorem 9, Chapter III, and the corollafy

stated there giving the orthogonality conditions on Yy is also applicabie

here. - v v . _
| (534 - 2 T8 o) & '
Proof:  We write B ?%/(t) = = DUE " ’7/)(0) Er and then use
_ o0 | ! .

Théorem 5 of Chaptér ITI, as applied to error differential E, to dbtain
the expansion of DJ(E ?’g))(o). The reader will see that this leads
directly to the harmoﬁics(given in Definition 4 aboye.
| 'We havérpurpdsefully stated Definition 4 in the saﬁe format as was
usedvto definé the translation harmonicg in Definition 9, Chapter IIT.
It 1s seen that there ié a tremendous simplification when we use

thekerror differentials E. We also note that Properties 1 and 2. are

still true.-:
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We, thus, cén carry out the constrﬁction of the scheme using the
error differentials E éna we will have the non-linear paramefef defining
equations as error hérmonics. In Chapte?vIII, we devoted considerable
-space to explaining how thatuproéggé was to be effected. There is no
need to repeat it here;v£he overall approach is the samebwhenbusing thé
functions E as a basis. Howe?er,_it is important that Definition 10,
_Chaptéf;IIi, be correctly interpréted and we réstate it here}  Remember;
this definition was given in suéh a manmer that it could be interpreted
either in terms of ppints in RFXP or as éoefficients in fhe coefficient'
space of the differentials. It, thefefaﬁe, is this definiﬁibn that is
reflected in thé program RKMI. Such will also be the casé here and it
wi;l, thus, be easy to see wﬁat has to be_doné to utilize error harmqgics
~In RKMI. B

Definition 5: The error g4 is said to be obtained.gz means of a -

‘generalized Runge-Kutta-Frey type integration method (RKF) if, and only

if

leghk) + v(k)(ei) = > g(k) [agko-) + v(ko)(e )] |

ik

'J’k'O [e] dJd
vz BBy
P S I

. where the approximatbrs'nﬁ afe.defined to be either

x(£(0,) + &)

My =
or as ni = Jj Si
with Ty = DX((6;) + &)

and the sums S are defined to be
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S(ik) =.§ ES;))J [Eg%0)+ v<k0)_v(9‘j)] + il 5(1};) ny
constructed using the errors ¢ and appfoximétors n. ‘Thevindex sets are
such that any element lies in the set Sq = {0, ..., exa} where e is the.
eitent and q the rank of the scheme. |
| This is nothing mbre than the réstdtement of the previous definition

by using &; = g * £(61). There is a complefe eqﬁivalencé and, thus,
the diseussion of Chapter.III pertains élso'to'this work. In particular, see
the summary of that chapter. |

We point out that %he great_Saving Wiﬁhvreépect to storage in the
"~ use of RKMI comes from working with gi, or g + v(61) = &1 - w(B1); we
have lots of zero harmonics. For any major point, we have that ¢4 = O
“for all harmonics, and Q(Gi).has non-zero ﬁarmonics for only the degree
zero terms. We also note that in the coefficient space, u(Qi) hés all
zero harmonics, so,‘in reaiity,'gi +‘v(Gi).= gi'ahd we are able to use
Définition‘io, Chapter III; as it stands provided'weﬁ

1) Thinkiof this as being in the'éoefficient space of

‘error differentials, and '  |
2) Rememher to subtract off'Q(ei):fQom'gi”béforé-performing_
a substitution. »

To»state‘if quite plainly, if we use the translation and.derivafive
hérmonics présented in this chapter, and:if we alwais sUbsfitute
, éi - v(6;) instead of &j, theﬁ the work of'Chapter III and thé program
RKNE which arises from Chapfer ITI can bevinterpreted directly in terms
of error differentials and errofrhannonics as.presented here. 'We;seeu
that the only modification necessafy‘to RKMI is the aﬁilityfﬁo perform
the subtraction N -'V(Gi)'Before.substituting. The implementation of

this‘is, however, relafively easy; although not completely trivial since
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we probably would not want to stone separate v's for each Qi. With
vregard to this, the reader should refer to how this problem was solvedb;
for the translation tables (remenber, they depend on the translation
interval). The description of procedure translate will be found in _
Appendix II.

We now turn to dbtainingvthe harmonica directly. It will be re-
called that using the differentiale A as a basis, the approximation
harmonics could, with the aid of the substitution table, be directly
obtained for generalized RK sehemes and that this was done at the end
of Chapter IV. This is also true when using the error differentials E.
Tb distinguish these harmonics from those previously defined, we shall
refer to them as error harmonics: vThis seems naturalvsince the local
error can be expressed as é = & -iv nhere § has as harmonics those Which‘
we call eiror harmonies and v haa moatly zerd harmonics. Thus, in
realitj;'ggit of the error harnonics are, indeed, the harmonics of the
‘local error when expanded into the space of error differentials.

In fact, referring to Equations (h9), (50), and (51) of Chapter IV,
we see that if we interpret the results using the‘error differential E,
.tne equations are still true. We, thus, arrive at
Theorem 6

The approximation harmonics-defined in Definition 12,.Chapter Iv,

can also be interpreted as error harmonics e prov1ded we change the

prev1ous definition (Definition 12, Chapter IV) to read

- o ! 1 Kk
« LR ee °o = 9. .
R i oy e ? 159 )

- kl kS -
-B. gesesmB. °
jriaq Jreag |-
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where
B y eeer=B. oz " [r,al, ...,z  [r,al]s=
Jriag Jrgag | - 1 s 8

e

i i

i? (27 [rys 2] Bjrlal)

nd Koy - 3 s g 1))

J’ - jra &

r={+1 aESr

If gi ié an approximation defined by a generalized R.K. SChéme, then
-2 3 o8 #7%0)
r=L+1 aeS, :

when the e ére efror harmoniqs. In particular, thisvtfivially'includes
' the solution values 5(919'f0¥ which all e; of degree3greater than zero
are idéntically zero.

Thus, wersee that'mﬁch of owr work carries ovér directly_tb ex-
_ﬁressing the probleﬁ in terms‘of:the:local error‘betweéh the true
.'  solution and:the constructed approximatibn. There.is an advaﬁtage in
such a preséntétion, énd it.is'this set of functions that leads to the
same resﬁlté as Butéher..All of his'&ﬂivatiVes are evaluated at_é(ei) an
exacf solution poiht. Howeﬁer, we should note that while it éeemé
natural to define and‘usé the set of functioﬁ (A} as a basis, it is not at
éll obvious that. the set of functions (E} are the appropriate basis.
There are just too‘mény zero harmonics for fhe defivatives in the latter
”Tf_set of fuhctions. Thus, thé evaluatioh Qf X at u(é)»has, through thé‘v‘
use of formula (21)(Chapﬁer iII),‘lead'us'to a definition fgr the set
| of différeﬁtiaJS{AJ that héve in turn_suggestedﬁthe cbrrecﬁxdefinition
foy the set of error differeﬁtials {E}. we have, in a'senée,-found g

canonical set of functions to use for a basis. The set is certainly



large enouéhj however, while the set {A} is a minimal set (we need all
the functions) and wevmade it-that way by restficting all indices to
the normsl index set, iﬁ is in no way obvious that the set {E} is
minimal. Tt probably is; it would be nice to show this.

Also, thére is the question of whether the work of Chapter IV
applies to this set'of functions; How to formulate the definition éf
the approximation { so that we érevin the coefficient spacevof the error
differentials is an open questions; those definitions that the author

Has tried so far lead to difficulties that will not be .discussed here.
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VI. GENERATION OF GENERALIZED RKF SCHEMES BY
MEANS OF AN ALGOL 60 PROCEDURE

Chapter VI is devoted to abdescriﬁtion of various parts of'the
program RKMI that carries out the successive substitutions. The author
is of the opinion that it is impossible to "describe" a program in detail;
the user must do this for himself by means of the source listings. On
fhe other hand, it seems to be just as impossible to read a source

,iisting if there are no hints as to why things are done the way théy aré
" and what ceftain quantities mean. Wé try to give here, in this chapter, -
a guide to the rationale behind the construction of RKMI. We present
"a rather detailed, and yet, at the same time, rather sketchy description
~of how fhe program'goes about perfbrming the neCesSary operatibns. The
©llist strﬁctﬁre is explained; the prééedureé that creaté,'store, and -
' :fetch from the list are describédj and an attempt.i§ madé to deécribe
how the operations of addition and multiplicationvare perforﬁed_using
~lists and how the ability to perform théese elementafy operations on the
listé ehables us to carry ogt the successivevsubstitﬁtions and arrive
at avscheme and ifs associafed ﬁarameter'defining equations.

This éhapter is meahf to be réad in conjunctién with'Appéndix IT.
Tdeally, the readef has before him a complete listing of whatever pro-
éedure is being discussed'aioﬁg witﬁ the appfo?riate variébié declarations

- and procedure descriptions. Sincevthié is, indeed, rather ideal, it |
ié hopedvthat those who.wéht, or need, to know ﬁofe«about the how and
. why Qf.RKMI will find.in this*chaﬁter and:in Appendii IT enoﬁgh material
: fdr them to ans&er.their own questions. There is no attempt made here
'ﬁo be exhaustive; as Wé havévsaid, we believe it‘td be impossibie and

actually unpfofitable.
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The procedures that follow bélow.will nof-neéessariiy appear in
the order that they apﬁéar'in the progfam. Instead, we shall preseﬁt
them in an 6rder which illustrates how‘the'program carries out the suc-
cessive substitutions.

In order to carry éut the_algébraic manipulations that'are_required,v
é list structure ispdeVeloped and procedures are built that perfofm
certain elementary operations on the list. The lisf itself is'stored
in the array V [0: 1ist length]. This array is divided into two parts; .
the first being a permanent storage section from [O: temp 4 - 1], and
the second being a temporary storage parf from ftemp g: 1list length].__'
' Temporary storage is essentially a sqratch area‘and_is.continﬁally over-
Written stértiﬁg at the temporary storage origin temp @, whereas the
perméﬁént.part is never ovérwritten except to restart a new-problem.
With respect to the array V, theievare three globai variables‘that are
consistently used as pointers; they are iast, last 1, last daté,nlist
length. The‘déscription of these variables appears in the Variable list -

given in Appendix II. Figure 1 shows the storage'layout:
‘Figure 1
o dat8 ——e «permanent storage—— <«temporary storage —e

I_ : . | B
| 1 | t

.0 last data . last 1 . temp § last 1i$t_length

The pointersvlast and lan l;may, of course, point to anywhére in tﬂe‘
-arrayg'their:particular positioh depends on the procedure being.execﬁtéd;j
There are other poinﬁers used to keep track of the status of the array V,V;
5ut.the& are §f_a temporary.natufe and are lpcal tb the procedufe iﬁf | :

which they are used.
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The baéic procedures used to creafe and manipulate the lisﬁs

. stored in the array V are: father, son, get atom, atom, collection,
thollection, and sum. The first five of thesé procedures were made
available tovthe author by Professor R. DeVQgeléefe and ha&e been Changed;
hardly at all, except that alpacked‘version of atom and get atom were
~constructed. The other procedures havé been constructed by the author

as needed. It is, of course, dovious to those familiar with Profeséor
DeVogelaere's work'that these proéedures are strongly influenced by hié
work which is only natural since the basic list structure‘that'he proposed
has not been modified.

Béfare describing these procedures and how they are used, we first
describe the list structure and how it enables us to carry out the
vsubstitutions. We recall'from Chapter III that the actual creation of
‘,‘the parameter defining equations by neaﬁs of succesSivé substitutions was
to be éarried out by means of Theorems 6, 7, 8, and 9. We have pointed
out that all the neceséary operations can be éerformed in the'coefficient
space in the sense that if we know thevcéefficients éf one element, we
know>how to obtain_the coefficienfé,of the derived eleﬁent in terms of
the first element. See, for example, the substitution theorem of -
Chapter III,.Theorem 6. i |

The coefficients are, however, neﬁer kn0wn numerically, énly
'algebraicallyf We must, therefbre,vbe able to identifyvaﬁd manipulate
thé algebraic quantities that we have previously been writing as Bfa’

04, été. Any such coefficient:C will have the following structﬁre:'

e
1

ntl

.8 1 _en c € em -
c=[gxB ><.._.><_Bn}+ (g x B, X me. o] »_ (;)

where a, b, ¢, d, ... are integers; €1, €, ... are integers;
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By, By, ... are the various parameters that appear in the
parameter defining equations. "~For example, the expansion of an

dgpproximation g(ei) into a Taylor's series gives rise to
' ' 1 2 '
01 o, B1 - ,
£(6;) = £(0) + e(0) — + Te(0) =&+ ..o (2)

which has the coefficients

‘ 1
. Cy = =
1737
R 1
CE.' I Qi
2:
03 = 1 6
2 1

Thus, our basic 1iéts,.identified as a list of level O (list ),
is composed of the individual terms of the sum of terms that nake up
. the coefficient C. Oﬁr_secondary list, identified as avlist of level 1v
 (list 1), is the coefficient C, thatvis the sum of the térms. We

visualize C as

C= x| list g

™

list ﬁ v : :
x ) o 3 list 1 . (3)

x list @ , o .
= J : _

in which list ¢ has as its elements the atoms consisting of (a,.b,.l, h
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€1, 2, €, +.., 1, en).where.we identify_Bi by means of the index i,

while 1ist 1 has as its elemeﬁfs the;lists (1ist @, list #, ..., list @).
It is quite obvious-that any approximatioﬁ:gi =2 di A; can be represented'
as a list of‘level 2 (liét 2) with the elements (1ist 1, 1ist 1, ;.., |
iist 1) and that the fotality of all such approximations would be a

1is t (1ist 3) comprised of.(li;t 2, listv2, ..., list 2). It has, how-
eVer, proved convenient to give the second lists, list 2, names by which
they can be identified. We shall be more explicit about this.shortly.

| Fach list; list i, has an identical structure. Associated with

the array V are two quantities; the name (position of) therdrray element
and the contents of thét eL.Lement.. Wé sha.ll, for the pI"esvént , denote the
name of the element by i where O = i = 1ist length and we shall denote

the ¢on¢ént$ as V[1i]. Each list can be visualized as shown below in

~ Figure 2.where wevsée that the first entry is the last list item + 1

which, if thefe are succeeding lists, is the name of the next list which
may or may not be of the same level as list i. This next 1ist will,
deever, not be of a lower order than'list i.

Figure 2: General List Structure

i . ‘ _ v[i]
entry to list i = . last list item + 1
J+ 1 | first 1list item
i+ 2 . o o next list item
j+n o - | last list item

entry to next list k = j + n + 1

J+n+ 2
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We can aasikvijlustrate,these‘ideas'using the general term C of (1)
which, if we assume that the current poéition of last was 200 at its

time of creation, would look like Figure 3.

Figure 3: Equation (1) in List Form

i ylil

200 - 215 ’f R
001 - 208
202 a
203 b -

; » 1ist @
204 ‘ 1 -
205 ey
206 2.

J \  list 1

208 : 215 7 S
209 ¢
210 4
211 - 3 B

' ' "y list @
212 . e3
213 Sy
21k - gy

Ny /
| 215 2
- b e e e e
: ) _a 1 _%2 c 3 _S4
Note: € = B'-Bl B2 + ,5' B3 B, .

‘The order thatvwe ﬂéﬁevused’in (1) is what we shall.céll theb
normal zgzg‘of the list and all lists will be assumed to éXist as normal
form lisfs if these elements are atoms. That is; a norﬁal form list is
a list of atoms arranged in the order (numerator, denoﬁinator3 iﬁdex 1,.-

exponent 1, ..., index i, exponent i, ..., index n, exponent n) where i



170

appears to the left of indéx Jif i< j. Repéated indices are storgd in
the exponent as powers so there are no repeated indices in a normal_fﬁrm
118t

In the ﬁrocedure RKMI, the subscripged variable B is consistently
used when printing the pafameters_of the schene. Interﬁally, thé‘
paiameters are identified by their index value. There is a well-defined
orderiﬁg'of-these parameters; some are reéerved for interwval parameters
ard then free parameters are simply added as needed in constrﬁéting schemes:
- We shall describe that ordering in detail shortly, but for the present
’diécussiOn; it is suffiéientvto sfate that.aﬁy approximafion £Ei =2 o5 Aj

has as its coefficients q; = where ci has the form given iﬁ (l).

cy ’
If we reflect for a moment, it becomes evident that we shall be
“able to manipulate the quantitieé €; in an algebraic fashion providéd we
“can ad@ and multiply fheirbharmonics. The addition is neéessarj since we.
wish to form linear combinations éi =v2‘yj.§j and the’mﬁltipligatibn is
necessary because operatibns such as SUbstitutioﬁ fequiré thé mpltipliCa-
tion of harmonics. ' These harmonics afe iepresented as lists so we need
to be. able to add and multiply lis;s; These operations can themselves
be reduced to operétiqnsvthat;store and fetch from existing.lists and
~that create new lists. | |
We shall describe first that procedure which‘creates,lists,j
- actually any list 1 since all lists have the same structure. This is the
Jﬁ procedufe father. . The reader'shoulchonsult Appendik'II for a concise

description of father and also to obtain the pérameter declarations{

Schematically, father works as pictured below in Figure'h.
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‘Figure 4: The Creation of a List by proceduﬁe father.

i | | vlil. n

father:= copy Vlcopyli:=- last
name of son:= - son | 0
name of éon}:* - . son o 1

) while B = true

name of son:= © son

last ' next free location

We see that tﬁe actual parameter son should furhish a némé
(name:of son) and a list item {son). We note that father is, itself,
a suifable candidate for the éctual parameter son. If no list items
are created,,thén’ (copy %'1aét ; 1) has Vélue true and last is-returned
to copy,vthe list with name father is nil; that is; empty.’ The global
variable-nil-is consistently used to indicate a non-existént»item. The
counter n indicates the sequential numbef of the next list item td‘be
created. |

The brocedure father, fhué, furnishes thelbasic.tool needed to
create lists. The creation of the list given as an example-in.Figure_Bb
. would entail the use of N |
| father(ﬁol;301,nol<l;fathér(no,BO,no<6,A,son))
ﬁhere we have yet té Specify the acﬁual pérameter soﬁ. 'Thevabbve cali
illustrateé the typical use.éf the global variables that,appearvés |
_ actﬁal parameters. It is, of course, immediately evident that the'liét i
can be created by a céll father(..,,father(..;,;..)) where there are i + 1 .

calls to father. .
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To complete the creation of a list,; it is necessary to store the-
atoms. This is accomplished using the proceduré atom.. We shall always
assume thaf the reader is familiar with fhe procedﬁre descriptions given

-in Appendix IT and that he will aiso refer there for variable declarafions.
and descriptions that are not given here. Thus, the reader will see

from the listing of RKMI that atom is,!itself, a suitable capdidate for

the parameter son invthe procédure father. Whén atom is used és an

éctual parameter in fhis position, the'elements of the lists are atoms

. stored in the afrayvelements of V and their names are the current value

of last when they were stored. |

There are presently two versions of atbm; one which stores one

atomic value of i in each array element, aﬁd another which stores‘two
: \ .

étomic values of i in each array element. The fundamental purpose ofb
each pfocedurevis identical; however, the packed version is necessariiy
more complicated. As presently constructed, both routines are completely
interchangeable in RKMI. Note, however;vthat if atom is packed (unpacked)
then get atom must also be packed (unpacked). |

. The operation of the packed version of atom can easily be under-
stood in terms of the unpacked version by means of Figure 5 given below.
In the packed case, fhe_first atom is left adjusted, the second atom
‘vrightladjusted; the gldbai Boolean BAé is true if we are in the left

half of the word, false if we are in the second half.
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Figure 5: DPacked and Unpacked Version of atom.

i visl . vl4) | - :
0

1

2 >.atom 1] . atoml Fatom 2

3 atom2 | |- Tatom 3 Fotom b

i : atom 3 o

5 atom M-.

; :

The actual word structure is quiﬁe simple and we illustrate it on'vv

. a six-bit word, the generalization to-n bits being cbvious.

Wi W .
W= lajbfch d]e]r]

The bits a and d are sign bits. The bit d is on for negative Wp, the

sign of W is set to the sign of wl.' A check is made to see that Wy
amd Wp will f£it, in tﬁis»case, less then 22 - 1. We also note that -0
is stored in the second.half of thé wdfd to indicate an empty éecond'
" half. It:will'be seen later.that the.pfocédure get atom.ﬁeedé to know
- when it has rﬁn out of atoms. The_procedure atom also performs a check
Before stofing to sée that-therévis-room in the list to store the atomf
Tﬁis is done usiné proceduré check. |

‘The list of Figure 3 could now be built by calling

| father(nol,301,nol<i,A1,father(nq,Bo,no<6,A;atom(1£

nol =0 then (if no = O then a else

if no = 1 then b else .;.)))y
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wheré this is the "brute force" application of atom. We have quite
often built small local procedures namea store to accémplish this storage. .

We, of course, iﬁplicitly assume all the atoms are numbers and,
as will become evident 1ater on, we also assume that if a list of level
g is noﬁ-empty, then there exists at leasﬁ ﬁWo atoms (a, b) -- the
numerator and the denominagtor. This; inractuality, implies~thaf Zeros
afe'represented as empty listS‘and; in turn, prevents the formafion Of‘

‘coefficients that are identically.zero. This, in effect, eliminates
identically zero terms since the coefficients are algebraic_quantitiesv
.composed of sums of products..

Having built theilisﬁs, it is now nedéssaxy to be éblé to extract
atoms’from,these lists.. fhe next procedures deécribed will enable us to_'l
do just that. vThé first of these described is proéeduré son. _ T
: The action 6f thié-prbceduré is easily'ﬁndefstood ffom Figure 6
where we.haQe'Shown a 1list of level 1 whose elements are lists of
level #. We'ﬁoté that the procedure son is, itself, a sultable candidate Ji
for thg parameter father entry so we have the ability to find sons in

_ listé of level i by calling son(son(son(..;)))“whére the innermost’ son
is fhe father entry of the list of highest level. -
| .Once we have located the son whose items are atoms, it becomes
necessary to pick up'these afoms. This is-acéomplished using procedure
.get afomF-V |

Tﬁe manner in wﬁich atom works can be easily ﬁnderstood 5y
'conéulting figure 6 énd the-épufce listing fof RKMI in Appendix IT. We-
note that get atom éffeétively considers all lists to be of level #.
Thus, a’;ist of level i can Be dumped completeiy using.get atom. This
is, howefer, not ﬁrue for'the packed &ersidn'singe only thé atoms areA

.packéd;
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:Figure.6: A Pictorial Representation of procedure son.

i | : v[if

father entry | next father entry | N
: . ‘ \

son ’ »next son = last atom name + 1

atom name atom S ' ' y list @

atom name |, atom

3  1list 1

son t»last atom name + 1
atom name Jfatom o r list @
atom name / atom

J o

father entry

Withvrespect to the pécked version of get atom, we note that its
purpose is identical to the unéacked version,'and bofh &érsions ére
éompletely interchangeablé in RKMT pfovided'the cOrreéponiing.versibn
‘_Of.atom is also used.

We now have at our disposal the ability to create iists,-to store
tﬁem, aﬁd to fetch them. There is, however, one more basic.procedure
4.thatvwill bé'ﬁeeded. This proceduré/wiil, as does father, create a
list; howevér; the élements of the iist it is creating will depend on
elements of anbthér list. This is.fhe procedure collection. The manner in
Whigh-collection operates“cah‘bgueaSily understood with the help of |
v‘figure 7. We see ffom Figﬁrev7r£héf collection is a ﬁapping whose'f
| domain of definition consiSts’of.the sons of set_j'énd Whose fange of
values consisté of the‘élements'of the lists of level i tha% are the

elements of collection.
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Figure 7: The Creation of a List by procedure colléction.

Fcollection , 1
([ f(son 1) )
f(son 1) { list i

T

f(son 2).

rset. f/’//

. L ————>{ f(son 2) | 1ist 1

list 3¢ ) { L L dn=0,1,2...]

| ) | _ f(son i) .
. | ; N\\\\\\\‘~, 'f(sdn 1) list i

Itﬁwilifﬁe seen in ﬁhe source listing that we havevimplied'that 1istg
i is 1list ¢ for’which_thekeiements are atoms. This is,rhowever, not in;l E
hérent‘iﬁ thé.constructidn of_collectioh. .The thy requirement is thatv
list j be of at ieast level 1 sincé it is assumed that there exists-sOns;
Note also that set may be a nil list. | |
The first‘opefétion that ﬁe shall treat is that of summatibn. It
is desired to form in the doefficient space the vectorvsum'S =2 Q4 Ai.=”
2 By N where 1y = 2 By Ai; Thet is, we wish to take avlinear combination

of_Quantities whose components are represented by lists the general form

_ of which is given by (1). The reader should refer to Chapter III,
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Definition lb, Equations (91),>(94), and also (97): It is seen there
that it is‘sufficiént to carry out the sum for each individuél component
and then repeat this for all;values of_k eP={0, ..., p -1}. in'tﬁe
Program RKMI, we have'cbnsistently that
| order = p = order of the differential equation
im[0] = the'numbef of basis functions A
-énd we usuaily have that
der = k =¢ {0, ..., p =1} is the derivative counter
 no2 e {0, ..., im[0] - 1} is the component counter and
also the list 2 counter since a list of ‘level 2
rep?esents the'vector g(k);
The §hantities‘thaf are to be summed are assﬁmed to be represénted as
‘lists that aﬁe ordered as shown below in Figure 8: | |

Figure 8: List Structure Used in RKMI.

der (1ist 2
0 . (o2 ©  list 1 - '
o (nol. 1list ¢
1 0 . . p,no
. : . . . fatoms
j-—1 . - | B ' | R X
{ i o - . b
1 wieeeef ] eed X
. . . 3 D &
order-1 . ) - X
_ im[0]-1 '
v“S(k) ~ Yector component - ¢Gefficient “term  factor

- It is immediately evident that it would be natural to include the lists,
list 2, as elements of list 3. However, the elements of 1list 2 are
 directly accessible by means of names rather than the list structure-

and thé procedure sum”has'been construCted_Without this extra‘lévei;
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The resultant sum is, itself, of the same.form sinée, in reality, all
we have done is sum component by component.

The actual summation is carried out by procedure sum. In creating
the linear combination, it is necessary to introduce parameters which
~we :call B[l].where’lyis the giobai variable of RKMI that is consistently
- used to indicate the neit free parameter.

The>aEtual manner in which the summation is accomplished by
procedure sum can be eaéily understood bijeferring to Figure 9 below
whére.the components of two vectors are added togethef to fofm the cor-
responding component of the resulfant sum.

Figure 9: Creation of a Sum by procedure sum.

v[1,der,no2] + v[2,der,no2] e———e v[j,der,no2]
no2~ . nog [ . - no2f”
nol nol { mnol
{a
a c
+
- 3b'
Y + 1 + A
: { -+
| {c
b d 4
’d
B » ' v L .
coefficient terms coefficient terms . coefficient terms

We see that in this particular case the procedure dbllectibn has
been used to collect the separate terms a, b, ¢, 4 and wriﬁe them as
one level 2 list. The addition of these two vectors is aécdmplishéd

by writing sum(vlj,der,noel, i, 2, vli+l,der,no2]). If a liham'combination

has béen requested,ﬁthen each term has the extra factor B[l]'attached.
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Since £ is continually increaSed the normal form.lists will remain in
normal form. We would then have that (n, a, Bl...1, e[ g, ..., Bl...],
el...]) vecomes (n, 4, B[...], e[;..], ..., B[...1, el...], Bl2], 1). va :
temporary storage 1is desired, thenhthe'resultant sum is written into V
starting at temp 4.

We now turn to aﬁdescription‘of’how RKMI effects a substitution
nj.= X(éi). We hnow from Chapter III_that.this operation can be carried
out in the coefficient space by‘means of a substitution table. The
manner in whdch'the multiplication/DX(éi)“- S is carried out is quite
gmilar and will be_easy to understand when We understand.how to substitute.

>Basically, we Wish to construct an elementjnj_=t2 Q; A; that has -
the 1list structure indicated in_Figﬁre 8. We note that der.does not
enter into the deveIOpment'sinee the vector constructed has components
Q; that are independent of der =k € P = {0, ..., p - 1}. The results
are based on Definition 5 and Theorem 6 of Chapter.III.' We start out
with the following call to father .

father(no2,B02,n02 < im{0],name,Zze)

whioh is used to construct a level 2 list; Iist 2,vfor-each component
0 s n02 élimto]«- 1. TIn RKMI, the name of thesevlists will always be de-
noted by Zn or Zp dependlng on whether the created quantxtles are stored
in permanent storage or in temporary storage | Thus, the qpantltles £,
M, S of Definition lO Chapter IIT, are 1dent1f1ed in RKMI as Zn or Zp.
It is immediately evident-that Ze must be an integer procedure that
completes the construction‘Of list 1 and list 0.

| ' We see from the source llstlng of Ze in Appendlx II that
W[type n02] is used as the name of a list of level 1 the entries of
whlch are sons whlch in turn have elements composed of atoms -If we .

- examine a typical term of Definition 5 of Chapter III, we see that these
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terms can be conveniently represented as

(numerator, denominator, 64, exponent, der;, ny, cen, der;, nj;

Ceeey derp o, npo ) e

which almost looks like a nofmal form list. What we really do is to
break up the information into a number of sons that appear as

(numerator, deno@inator),‘(exponent), (dery, ny, ..., derp .qom. 1),

. (der, n, ..., derp ,

. (derj, LYPRPR dermaxj’ Ly j)’ .

)

In thisvform, the first SO@ is a normal form list giving the fracfion
multiplier, the second son gives the exponent of Gi, and the remaining
sons givevthe k value and the seéuential position of the harmonic appearing
in the substitution, or multiplication. We see from Definition 5rthatA
ihere are'needed.only three sons to représeni a substitution whilé for

a multibliéation, more sons may be needed. As a concrete example,
consider from TablevVI of Appendix I the table entry %;Glabb which is
represented as (l,l),(l),(0,0). |

BKMI consiStentlyjdenotes‘the'name of: the list specifying 6; as

ol...,1]. The actual substitution, or multiplication, is carried out byi
list multiplication. If we désire.tovbbtain tﬁe coefficient correspond-
{'iﬁg t0 a particular component no2, theh we look up the first sQn of the
- list W[type,no2], called herg son.b. _We obtain from thé second son,

'soh 1, the éxponent for the list T[...,j]a‘ We locate the lists corre-

'spbﬁding to the féctors'specified_by son i, 2-5 is .;.'. These are
lists with name jlder,nop]; remerber that, in reality, all such lists
have name Z 6: Zp. Then_we perform the:list multiplication

| (son @) x (Tl0,3]) x ... x (7l0,3j]) X name jlder,nc2] X ...

as often as required to construct the resultant coefficients
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o C= (g}.x Gj t (exponent) X ... X ...

a :
+ (3) x Gj‘f (exponent) X ... X «v. + ...

which is the iﬁternal representation of Defiﬁitions 5 or 7 depending on
whether we are substituting or multiplyiﬁg. We note that j = num[O] is
the name of £, at which either X or X is evaluated. |

In the procedure Ze, these lists are denotéd bvaQ[..{]. After
éollecting together ali factors BE[O],TT.;BQ[n] of the product, ﬁhe
‘prodﬁct'is fdrmed by setting

- Ze:= father(nol,.7;,father(no,;..));
- The source listing'fof RKMI shows that to compléte this discussion we
_musf understand the actions of two procedures thét appear as actual
:_pafaméters iﬁvthe above‘céll.

Each list B2[i] tﬁat appears éé a factor in the produétAis composed
of a number of sons. To form a p¥odu¢£ bf these lists means that we
must form the’individual products of éll n-tuples (son 1, ..., son i,
cee, soﬁ n) where son i is taken from B2[i] and‘we must be sure that all
sons are included. That is, we ﬁust form all cross products that éppear
when we take the product of sums of items. The procedure Bncollection
vobtains these individual n-tuples. The procedure JPn performs the
~actual multipiication of lists in each n-tuﬁle; each item being a normal
 form list.

Thé operatipn of Bncollection iSFQery‘straightforward. The lists
" are laid out like a counter as is shown below in Figure 10. The first
“row is taﬁén aé.the first n-tuple. Thereafter, the columns are indexed
v separaﬁely through each son in the‘manner,of a diéital sequential-
‘counter; starting with the units in theriéft column, until the n-tuple

containing the last row is obtained. A suitable check is made on k to
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"freeze" the first k.cblumns at fhe first row. We note that a nil list
corresponds to a zero‘factbr which in turn corresponds to a zero term
and that setting Bncollecﬁion tofalse causes father to skip this facﬁor;
in effect, a nil list is stored. Thus,:zero factors never appear in
the results.

Figure 10: List Layout for procedure Bncollection.

Beto]... B[i]...B[h-l]

son 1 son 1. sonl
son 2 son 2 son 2
son j, son j; soq,gn_l

- JPn which carfies out the actual multiplication of the elements
. of the n-tuple bperates in a manner similar to Bncollection in that the
1li§ts, which are now lists of atoms, are'laid out in the same way. See

" Figure 11 below:

Figure 11: List Layout for proéédure JPn.

Bii[i] ... B11[i] Bli[n-1]
nl ni n
a1 ai a
index index index
equnent - exponent lexpénent
inéex 'inéex iédex
exponent exponent exponent




JPn first obtains the fraction multipliers c/d ='nni/ndi} Then,

each list is read until all lists‘are:exhaﬁsted. The local counter
.52 kee@s track of the number of lists that have been read completely..
When following the operations of JPn, it should always be kept in mihd
that in each lists the indices, index, increase in sequential order,
since the list is in normal form, aﬂd that we always have to fetch at
least two items, the index and the exppnehf. We desire to have.the_
resultant produgt list in formal form; thus, we mpst search the lists
_.Bl[i] for the_smallest index and be careful to have only one index for
~each parameter. The exponent‘is then increased to take care‘qf'the

" product of_like factbrs. |

To accomplish this, JPn stores the.index from each list in

Covis (index'1, ..., index i, ..., index n-1) and then uses a‘émall_proj
cedure minimum to furnish some neédéd information aboﬁt these indices.
‘We see from Appendix II that the céil m:= miﬁimum(v,ﬁ,w) furnishes the

smallest index from the lists Bl[i] and also furnishes the number of

factors with that index, thus, allowing us to perform the multiplication

ejl ejm - ‘ejl +;..+ejm
B,  X...X B, =B. .

'; After this multiplication, each list is positioﬁedvaf the next index
- provided its current index is the cﬁrrent minimum index. Wheﬁ all
lists are exhausted, a normal form‘liét has been stored. Note that
Bg ;é not stored which is cOnsistent ﬁithrthebinterpretation B? =1,

o The‘Boolean BAl is properly set for the packed version of get atom,

L two atoms/word. If a different packihg density greater than two atomé/

" word was to be used, then some consideration.would need to be given to

this variable. The procedure normalize is to be used to créafe a

_1'85

relative prime fraction multiplier; however, since most of the numeérators
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"~ are small, fhis=procedure has not presently been implemented.

We have, then, that the multiplication of the lists B2 whose
elements are sons Bll, the eléments of which.are in turn normal form
lists of atoms, can be acéomblished'by means of the call

father(nol,B01,Bncollection(B2,B11,n,B01,k),Al,

father(no,B0,B0,A,JPn(1,1,n,B11))) - , (&)

;Where 0<ksn-1is appropfiately selected. - In the particular case
at hand, since we desire only son g from W, we}set k.=>1.thus causing
the n-tuples to be-sélecfed from the lists Be[1],...,B2[n-1] with only
the first son from B2[1] aépearing in all the n-fqplés.

| Equation (4) represents the operatiqﬁ of muitiplication in the
QOefficieﬁt space and Wé shall use it in other précedures of RKMI. It

" seems natural thét a multipliéation'proéédure should be built; although
we~ha§é not yet done this.

) Up until now, we have simply assumed that there exists an
e#ﬁansion fdr any item that we chooSe;to use. That ié, thére exists a
list of the form indicated in Figure 8, and that any sumation, substi-'
tution, éfc;,‘is to be performed on these lists. This, of course,‘is
not thé case.‘ These lists must be appropriately created before thej

__can be used. The next two procedures that‘we shall describe accompliéh
_this task.  In arder to carry out a descripton of thesé procedureé,
procedure create E and procedure'translate,'it is necessary tha£ we first.
present a detailed descriptionvof how we organize the interval sub- |
division and the parameter indexing.~ It will be récalled that we

defined in _Chapte;r I1I, Definifion 8, the quantities involved. In
partiqﬁlar;:RKMI uées the variable listed below to'represeht thesel'

quantities.
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period:= the peridd of the scheme

qQ ;=' the‘zggg of the scheme

e := the extent of.the scheme

B{i] := the,scheﬁe ﬁafémeters which may be the

interval paraméters Gi or the undetermined
paraﬁeters Bi_df an implicit repreéentation
‘of some approximation, or the scheme Qparameters
previousiy (Chapter III, Definition 1) denoted
‘by A andAB. |
.The manner in which intervals aré subdivided is indicated in
Figures 12 and 13 ﬁhich illustrate the twb cases considered by RKMI. It
will be recalled that in Chaptér III we indicated that there are differént
ways in which the expénsion into undetermined parameters may be handled. |
We have in RKMI mede the following choice: |

1) Expand about a local origin and translate the expandéd vectof-
to the pdinﬁ where all substitutiohs, multipliéations, étc.;

. are to take place. We ¢Qnsisténtlj indicéted this 5y setting

~ the vériable mdde::.-l. Determine ﬁhe undetermined.parameters
by equéting their local origin éxpahsion to a constructed.
ekpansion;

2) EXpénd about the point where all substitutions take place and
translate this eipansion'to,thé local origin. We consistent;yf"
indicate this by sefting mode = O.. Determine the undeterminéd
bafameters by.eqﬁating-the translated (idcai o:igin) expansioh g
;to a.construcfed expansion. | :

These two;caées are called a forvard transiation'(modé = ;l) and a back-
ward tfansiationv(mode ? O)vand are iliustrated schematically in

Figures 2 and 3, Chapter III.
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Figure 13. Scheme Parameter Determination for a Backward Trahslation:(modéﬁo); S

Q=3 order = p = 2
period = 2 im[0] = 4
extent = L first free parameter Bli] = 129
108 124 . 56 52 . . 3228 Undetermined
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Figure 1h4: Interval Parameters Returned by procedure index.
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In order- that we ‘can easily~loéate_any approximation &,
ie M= {0, ..., exl] there is in RKMI an integer procedure, procedure

‘index, which when called as index (1) returns a number of useful quantities.
- These are 1llustrated in Tlgure 1L above. The most obv1ous and most
frequently used quantlty 1s the value of index whlch is the corresnondlng
.b01nt w1th1n the period. For example, referring to elther of the
V Flgures 12 or 13, we have that 1ndex (5) has value 5 since d5 is within
'_the period while index (ll) also has value 5 since E , and 55 represent,f"’
the same approximatipn., The rest of the: values are returned in global
variables. These are:

il:

the number of h intervals away from En.

]

the fraction of the h interval == the distance from the

local origin.
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i2:

the number of'period intervals away»frém £o

jl:= the local origin within the period that corresponds

to the local origin &;. /

We see from Figure 13 that the lo¢alv9rigin/of €; and ifs corres-
ponding point within the peribd,'gj where ji = index(i), are not de- :
pendent on the manner in‘which the undetermingd parameter expansion is
carried out. On the other hand, the significance of B[i], the parameters
of the method, is directly connééfed with this choice. If mode = ;l ana
a forward translation is performed, then the following situation exists
for 0 £ i =2 X (period X q) +vqu.

We have that

Blo]:= to which is the distaﬁce from the origin to the
point where all Substitutions, ete., are carried out.

Blq):= h which is the distance between major points

Bli):= if index (i) # O then T[-1,1] which is the distance
of &; from the local origin else
if (index (i) = 0 A i < period X q):EEgE B[i] is un-
défined, provided i # q, and never appears in any of
the equations. "However, .'I‘[-l,i]:.= 0 since fhe distance
from the local Qriginbis zZero. |
if (period X q < i < 2 X period X q) then B[ij is
undefined else | |
i{»(Q X period X g £ i S 2 X period ¥ q_+vqu)_tﬁen
T[0,i] which is the distance of t; from the arigin.
The undeterminéd parametérs B[i] are réserved, imfo] x ordervof
them for eacﬁ poinf, stafting wifh i= (2-x=period'+ e) X q + 1 and
stopping when we Teack: i =>(2 X périod +ve‘¥ order X im[0] X periodj X q.

Those points outside of the first period have the same undetermined
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pérameters as their corresponding point within the period. This latter ;
fact arises because thé expanéions are carried oﬁt about the loéal origin -
_and.the,épprOkimationsnéi and éindex(i) are the same distance,
Blindex(i)], from ﬁheir-local origing aﬁd because we assume that &;
and éj were constructed in the same fashion.

Having reserved the necessary parameters_Bti] to represent 05,
ai’ and the undetermined parasmeters, the next free parémeters available
for use as a scheme parameter is B [2 X period X q + exq + 1 + im{0] x
ordér X period X ql. All parameﬁérs introduced‘into.the scheme by
- taking linear combinations of various quantities are séquentially indexed'
starting with this value. |

If mode = Onaﬁd a backward translation is to take plan, then the
'parameter indexing_is slightly differenﬁ. We see'from a comparison of |
Figureé 12 and 13 that we have reserved uhdetermined parame%ers for all
the apprdximations. We do this because each undetermihed_parémeter
expansion is'with respect to the originiahd since each point is a dif-
ferent distance from the origin, the harmqnics are different. This
;gauses the next fréé'parameter index to be |

- i-2 X period X q + exy + 1 +'ordef X iﬁ[O] x. (exq + 1){

':This, however, is the only difference in the interpretation of the
pérametérs. |

Thevaﬁové discussion shc&é thaf each apprbximaticn has a we;l;-
défined’exﬁansion and all we ﬁeed is t§ cfeéte it and to translafe it
suitably.' We do this_usiﬁg the pfocedures éreate E_and trénslate.. For
each &, referenced, we have two representations; Z[-l;der,i,noé] and
AZ[O,der,i,noQ], which respectively refer to the expansion aﬁout'the
local origin and about thé_origin, taken to be to. .With respect to the

latter, we note that Z[O,...] references the undetermined parameter
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expansion until a constructed'representation is obtained at which time -
it then references that constructed representation. Note that the
location of the list representation is forgotten when a constructed
representation exists. This is consistent with the fact that in a
substitution, etc., we wish tO use the uudetermined paranmeter expansion
' only as long as there is not available a constructed representstion.
This at least was what was first thought. It has proved advantageous
to revise thislphilosophy. and this is a question that is still to be
completely resolved. With respect to substitutions, there is no real.
problem; we can perform all substitutions first and this forces the use
~of undetermined parameters. However, when perfarming a multiplication,
we use the current representation referenced by the name z[O, ved)
iWhen we eraluate.DX(éi) and cannot easily force the program to use the
-undetermined parameter expansion. A solution is to increase the family
of names,.but this is at the expense of requiring more storage. The/
.reason for wishing‘to use undeteruined parameters as long as possible

.is that this simplifies the equations enormously because ali distributed
products, arising because the components are sums of products, disappear.
More thought should be given to the solution of this problem.

The actual manner in which create E carries out this creation of

an approximation is easily obtainable from the source listiné in

Appendix II now that it is'knoun what is to be constructed. We simply »»;
uote a few details here. The local Boolean B indicates the speciél caSe_l
of a forward translation with i a major point or a backward translation..
with i the first point; that is 1 = fo = 0. The quantity E[,] is
boriginally set to nil, then E[O il:= 0 'mpiies that their.exists.T[-l il

and T[0,i] while El-1,il:= 0 1mp11es that an expans1on into undetermined"w
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parameters has been made. Note that major points have all zero coef-
ficients when mode,f -1 and that we store zero ralues as nil lists,
thus, we presently ignore the parameters of’E,i when this special case
exists. RKMIL needs to know which approximations exist and which don't
because to save space we oﬁly create those approximations that are used
and these only once. ‘wé also note tﬁat these quantities_are stored
‘permanently and are always'available once created with the exception we
noted above about our reference to the undetermined parameter expaﬁsion
v using_the name z[0, ...]. With regard to that5note that we still have:
the expansion, only its neme is forgotten.

Once a full expansion of E is ereated, it is necessary to
translate it appropriately. This is carrled out using the prdcedure
transLate.

Webshould point out that RKMI has’evolved through man&>editions
and that the formulatien of the'preblem has-also evol#ed. These two‘
processes have gone hand—iniﬁand as more experiehCe'was gained in what
ean or cannot be donelwith the program and what the output generated

looks like when presented from different viewpoints. Thls is, of
course, natural, but the two processes are separate and when both
change considerably, as has happened here, there is boundlto be dead-
wood - in the.program and trpcedures are never going to be as'neat and
elegantvas.they could: be. This is especially true Qf the prOcedurer
translate. | | | | o

We w1ll not trouble the reader w1th past hlstory, but do mention
that translate orlglnally was to translate a s1ngle h 1nterval repeatedly.
thus enagbling it to +ranslate a number of h 1ntervals by d01ng the

same'mﬁng over and over again. Also, the interpretation of the interval

parmneters'was different. The remnants of these ideas are still in
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translate; therefore, this ﬁrOCedure stould be rewritten. With regafd to
this, we mention thét thought should be given to freeing the origin;

that is, letting the origin be completely arbitrary. This will allow

the full symmetry of %he-equationsvto become .apparent.

There are a number of details;in translaté that need td be clarified
in order that tﬁe source listing given ithppendix IT can be.easiiyv |
followed. Before doing this, we illustrate the typical use in RKMT
of the procedures create E and translate.

if E{0,i] = nil then |

begin create E(i,true);

translate(i,zlmode,der,i,no2],
zlmode 1,der,i,no2], i + q,mode i)

end; |
A check is made té determine whether it is nedeséary to create the -
approximation; if it'is, thénvthe procedure create E does so, the vector
is sppropriately translated, and the two repreéenﬁatidns'ofvéi are now
available to be used as required. |

Translate can be easily understood once we display thé'actual
menner in which a translation is performed. We ha&e already furnished

in Theorem 8, Theorem 9, and Definition 9 of Chaéter III the necessary
means for carrying out the translation. We must, however, colléct_
these results together into one_easily_understbod procéss. .The reader
éhouid refer to Figures 2 and 3 of Chapter III which give, respectively,
a schemaﬁic representation of the backward and forward trénslation. |

For any approximation, we have the two representations

oy o ft o) w2 e\ v\ mede -1
&, =u A EAN e I B [T (1)
o 85 s=0 \ Bi o o/ - mode = 0

?\j::(-).—{-'f
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where the upper row of arguments and ééefficients is to be used when
mode = -1, forward translation; and the lower row is to be used when
-mode = 0, backward translation.. Equation (4) represents the untranslated

approximation. The corresponding translated approximation can be written

as .
0 8, \ J-1f|stn-1|ktef V¥ [0 1
k k : i .
N CO) R P s 1= | | .
T 6 J=1| n=s | m=o\-1/ é& al m!
(5)
- 5-1 ’ , fo
- altype 2, n -5, jl + = -~ altype 1, n, jl|+ A [3]
‘ ‘n=0 , T
=k+f4+n+1-m=-s
where again the upper argument are for mode ;_-l and the lower ones are

fof mode = O. The results given'here in (5) are equivalent to Theorem:
(8), Chapter III? however, to arrive at (5), it is mare convenient o
start with eéuation (66) of Chgpter IIi, expand the derivatives as

: = s-1 - |

Dp+£+n-sx(§) 'S altype 2, n-s, s] At)[s], n=s,...,5 + 1 - 1,
and then (5) is eas1ly—2btalned.

The coefflclents altype 2, i, j] are derivative hérmonlcquf
DP+£+1X and “are readily available from the tables of Appendlx I. The

coefficients altype 1, n, J] are the translation harmonics that represent

the change of ‘basis

.A( >[n] =3 altype 1, n, 3] A < )[j]
0 J T

‘and these too are available from Appendix I.
The key formﬁla'to the understanding of the translation process

is (5). The coefficients of interest are.



[ o ,' altype 2, n - 5, 3]
and
| Yy, : altype, n, jl.

- Bach of these is represented as a list of'level 1. See Figure 8 with
regard to this representatien. The erray elements of a are stored in
 the appropriafe list structure by data. The harmonics‘yn of tﬁe un-

E translated vector are already in a list structure and the procedure

translate creates the lists that represent the coefficient { }. Thus,
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to obtain Cj, the coefficient of the translated vector, we need only form

the sum of lists that are obtained as the products of lists, WEIknow
~ how to do this using the.already described procedures sum and JPn.

The first thing done upOn entry iﬁto translate is to check whether
Q is far enough away from the origin. If the originrturns.out to be the
local origin of v, then We perferm the‘identity trapsletiqn. If the
-vector requires an actual translation, then storage is reserved-for some
temporary arrays. _The appropriate coefficients are stored in lists with
names ve[der,nOQ], first the coefficients of_v and then the bracket
coefficients. The trehslafion harmonicsvand the derivative harmonics
:are located by storing the names of their lists in al[noe,j2]. We note

here that the translation table depends on the rank g end the direction

of the translation. Translate takes care of.thisvsince at the same time:

that it is locating the names of thevtranslation table, it is also using
the procedure collection to insert in the table the value of g and the
appropriate sign of the coefficient. Note that the initial manipulation

of k3 and ki Jjust prior to obtaining vs is to insure that normal form

lists will be'cdnstructed.

Since the correspondence of the indices used in (5) and in translate
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"is not necessarily obvious, we give below the correspondence for the
bracket coefficient which we denote as «.
ke 1\ 6; \"

a
5 = NG
m=o \ -1 [alm \ B3

Q
]

k1l (' ) _ 1 _
> um? il ————————— e 'B.
o T Toray TR

il

Qheré we note that the érray b is used to store the list items tempérarily -
for this sum of termé.‘ |

To compléte the tfanélation, it;is=nécéssary to fofm the products
Aindigated in-(5) aﬁd carry dht the summaxions. The result ﬁas name 2
and is;stqred permanentlj; | |

We have described,iin sdme:detail; all the procedures'of RKMT that
Eare.concerned with actual.liéf manipﬁlatipn; The résf of the procedures,
,‘\Wifh the exceptioﬁ of data, are concernéd_with the output of informatidn;
_‘Ofithese; the only;ones that are ofyintereét hefe are thbse ﬁhatvhelp
construct the ﬁarameter equations.‘ The other procedures cgn be éasily
understood with the aid of the listings in Appendix ITI. Procedure data
has a special descriptipnﬁgiven in Abpendix IV since it pertains to the
use of RKMI and.this procedure is an iﬁput_?rocedure.

The tﬁo output procedures that ddncern us here are procedure‘print
-sum and-procedure conditions E. The first of these, print sum, is almost
'seif-eiplanatory with the aid 6f Appendix IT. Howevér, it helps'to
remember that |

length 1 = the muiber of spproximtions E in the sum

- length - order X.length l.= the numbervof épproximators N in

the sum.
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vs[0,i]= the names of thie approximations E in the sum. -
vs[1,1]= the names.of the approximators N in the sum.
Procedure conditions:is.a little more interegting. It has as its
sole purpose the printing of equafions (95), (100), (101) of Theorem 10,
-:Chapter I1T. anh approximation cbnsists of a linear combination of
approximations, approximators obtained from a substitution, an@
éppfoximators thained'from a derivativé multiplication; Of these thrée,
-only the parameters appearing iq the first two: have conditions attached
to them. Thus, when the sum is creatéd, and when the approximation is
created, certain information must be stored that will allow us to now
identify‘which parametéré‘appeér in the approximation and which of these
iparametérs have conditions attached to them. For fhis, we have
E[O,i]:: the_minimum value of all Bj appearing in gi'
E[1,i]:= the nurber of appfoximétions in &y
El2,i]:= the number of approximatorsn = X(Ej) in &,
E[3,i]:= the total number of items summed to obtain &y
vv[O,i,j]:= the names of gj appearing in gi, thus allowing the
| ~ identification of Gj | |
vl1,i,j]:= the names.of £ ; appearing in n= X(gj), thus allowing
the identification of.gj
iSince it knows the first"parameter appearing.in gi, the length of the
- éums and, the mannef in which §i was -constructed, conditions E can célcuiapév
the appropriate indices for the parameters that appeai in the COnditions.
,aséociéted with thié épprOXimatibn. These cond itions. are prinpedrexactly‘

as they appear in Theorem 10 of Chapter III.
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VII. EXAMPLES OF GENERATED SCHEMES

This chapfer is devoted toithé ﬁreatment of five examples all of
ﬁhich have been generéﬁed usihg the ALGOL procedufe; RKMT, baéed.on the
:wofk of Chapter IIL. We first pfesent a classical hfh 6rder Runge-Kutta
scheme.  This scheme is verifiedibn four sets of well-known coefficients. ..
We then proceed to presént foﬁr simple gegeralized Rungé-Kutta schemes
that ac;ually make use of data from the past; that is, have a mémoxy.
These example, which are the simplest cases of the class of genéralized'
schemes treated in the previoué chapters,'are believed to bé new. They
are analogous to the k-step methods presented by Butcher; however, they
make use of only one intérmediate function evaluation énd, therefore,

»; réquire one less.function évaluatioh.per;step than do his éxamples.

The results’ lead fg k-step method s of acéﬁrééy'O(h2k+2)'that have stable
cOrrectérs. For each of thése schemes, a sfart is éresented for thé
intermediate point since it requires:a-correct start. be Exampies 1

and 2, a complete.starting prdcédurevis alsd.provided; and for Example 2,
| a complete presentation of the RKMi resglts is giveh.

This chapter contains the discussion of these examples and
Appendix III contains all the tables and graphs which pertain to these
examples. For eéch example, we give error termsland,'where applicable,
determine the range of a stable corrector. |

As aﬁ introduction to the.géneréfibn of scheﬁesbﬁsing tﬁe ATLGOL
. pfogram, 'RKMI, wé'give,'in.completeldefail, the classical fburth order
Rungé-Kutté process. This.progeSS»was selected for'varioﬁs'réasons. In
» _partiéular,,it is a well-knowﬁ méthod that-is'sﬁffigiently complicated
to bevinteresting while, at,thg same time, it is not too cémplicafed. .We

gain nothing by presenting a Fifth or higher order process and'a third
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order process is rather simple. Because”this process is well-known and
has a variety of solutions, we have at our disposal a number of sets of
test coefficients. This'is an extremely importanf point to remember when
. creating schemes using RKMI. _It is of the utmost importance to try and
verify the output on known coefficient sets; otherwise, all feeling for
the validity of the results is completely lost.
The results of this example are used later in the developmént Qf
‘2 starting scheme for Exémple'Q and thﬁs we have some continuity in our
presentation and some confidence that the material which.we use.to
generate the starting scheme is accurate.
How one actually organizes the problem to obtain input data for
RKMI is of little importance; héwever,‘we'have presented one approach
in Appendix IV where we used RKlL as an'examplé.
If the reader will refer to Example RK4 in that:apﬁendix, he will
see'that we: - o
1)  define the problem,
2) establish a scheme to be genérated,
3)  layout the interval division,
L) . set forth the interﬁal parameters of interest which are
the rank, period; and extent, »
5)" extréct’the data for RKMi consistiﬁg of the order, upper,
o rank, extent, number of basis funétions, and ﬁhe number .
of derivatives included in this choice of basis fuhctioné;
- Note thatvwe have purposefuliy left out.thg scheme parameters fhét
multiply the righf hand-éidé of 2). This is convenient and quite natural -
.sincé‘RKMI will Supply us with these coefficients. We see that there -

are only four points in one major interval for RKH, thus; the rank = k;
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the scheme repeats after one major interyal, thus the period = 1; there
is a totaiity‘of one major interval, thus the extent = 1. Also, since
this is a classical RKischeﬁe, we know that the lower bound for the
'.order of accuracy for all points is notigreater than 1 and thét tﬁe
greatest lower bound for this accurécy is I =1. This setting of the !
value and the extent e to 1 is one ofvthe characteristics of‘cLassical
RK schemes. As we have mentioned earlier, finite différené¢ methods
have { equal to the order of thé method minus 1 and have an extent equal
to the numbér of,points incompassed by the method.

| If we were dealing with. an unknown scheme, we woﬁld, at thié point,
have to decide hoﬁ accurate we were gOingbto force the intermediate
poihts to be. For exaﬁple; in‘our k-step examples that follow, we do
as Butcher has done and say that the intermediate points (minor points)

- are of O(h2k) and the major pointé have accuracy O(h?k*e),

We also know
to what order of accuracy we can match the derivatives of x for this
example. If we let Ty = E(k) - E(k)(t ) be the local error in the p-kth
: derlvatlve, then we have that T4 = O(h2), Ty = O(h5+k l) for k = 1, 2, «..,
p-1. We write this as Ty = 0(5, S, vee, P+ 3)

Since_we have’l = 1, we have that DX is the first derivative thét
we héve expanded into the set of‘differential§ A. Referring to Table V,
'Appéhdix I, which gives these differentials, we see that we must decide
‘how many.orders to use in the expansion or, equivalently, how many |
derlvatlves of X are matched and how many error terms of Ty we wish to
'look at. For the RKh process, we see that in order to inclule the
principal error term, we must examine through th and, thus, we.have all

the terms from the orders £ +vl,v..,, £ + 4 corresponding to these four

derivatives. This would be 22 functions meaning im[Q] = 22. 'However,
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ﬁe must actually specify P; ﬁe choosé p = 1 for this example. .Once this
is done, we have that k 6_[0,'01 and from Table V, we éee that there are
dnly 16 functions ¥, .}.,‘¢l5.

The‘readef should also refer to Table I, Appéndix.IIi, and;examine
the actual input usedvfo genera£e'this example. ‘There is a difect
éonnéctidn between 5) and the data:input that particularizes the problem,
>and also between 2) and the scheme that genefates the output. We suggest
_that any integration scheme in the class of scheﬁes con;idered.in‘this |
work cen be characterized in a simple, stfaight-forward;faéhioﬁfsimilar
to thaﬁ presented'hére; When this is doné, ﬁhe data needéd to generaté
:the écheme'Will be'réadily avaiiable fdf input inﬁb;RKMI;- |
' Wé-willlnot discuss #hé'actualiaaté?setup that is presented in
fable‘I‘ Appendix IY contains a deécription.ofvhbw to prepare the data -

for the procedure data which:inputs the hafmhnics5 and also a general

o deécription'on-hdw to use the program. This, along with a good under-

‘i standing of the Tables VII and VIII of Appendix I, should enaﬁle the user
vto’prepare data. | | | R |

Gi&en thé input of Table I; Appendix'III, the program RKMI generates
vfhe_butput given in‘Tablé_II. The first secfion of outputVShowsvwhat
type of 1aﬁguage the equatiéﬁs are pfinted in (FORTRAN for this particular
run),-how mﬁch storage we‘have'alloked_for various'items, and how we have
‘$e£ some inﬁernal output:pérameters; In pafticﬁlar, ﬁe héve T0 charaéters
per card (liné) on the eéuétion 0utput,26000.words for permanent stéfégé,’
and iOOQ words for temporary storége giving a‘fotal of 7000 Wordé in the
list storage. array. The'maximum'numberféf apbroximatdrs n, (N), or
.sums S thatlméy be created is ﬁen; the maximuﬁ number of items inia

sum is ten; the maximum number of lists that we may multiply together
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at any one time is ten.-

We then specify the préblem that is to be solved. .Here a firsf-
order differeﬁtial equation Dx =VXVox. The value of upper which is
actually thé value of tﬁe loWér bound.l determines the order of the
derivative of X that appears first in the basis functions A. Here it
is IPX which is correct for RK processes. We note,  as én'aside, thét
we could have used 2 = 0 as does Butcher<j~); hoﬁever,ithis leads to an

~unnecessary profusion of equatibns and ouf tables in Appendix I‘are not
‘valid for £ = 0; they are'missing terms of degree s 22 and need to be
expanded if one wishes fo consider such cases. However, since we can
aiways set £ = 1, we shall pay no more étténtion to this.

Sinée the rank is 4, there are four points in dne h intérval; the -
period is 1, and we have 16 basis functions and theé corresponding four
derivatives 6f X. | | |

We.héve input the.déta tables wifh no qutput SO we simply recelive
the message to this éffect{ There ié‘a procedure schéﬁé.fo'output the
problem being solved, essentially as it has Been stated in Equations (1) -
'1_(h) énd_(9l)'- (94) of Chaptef III;,ﬁé have not used.it hefe. Our éomment
~ is then echoed on the outpuﬁ.medium.

The rest of the output constitutes the scheme and the parameter
equations assoéiated with that scheme. At this innt,.we should make
a general comment on that output. Originally;vit was planhed to presenf
' ﬁhé totalitj of output in reference ALGOL letting all the transliteration
_‘bé done by>machine. .This WOuld‘ultimately lead to output that had both
tﬁe character»and quaiity'of‘fyped;work and the dependabilify 6f machine
generation and translation. in principlé, this is simple to do and.RKMI

can generate all output in CDC ALGOL. In practice, however, it turned



out that much of the actual computations done to Verify the results and
generate the new processes were done in FORTRAN because of the availa-~

bility of those facilities. We, thus, at the present time, have a
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mixture of languages in our output. We do not recommend, or even approve.

of this; hovever, practicalities have dictated the form of the present

results. It would be a pleasure to see these results in reference ALGOL.

There is no lower and upper case type available on the printers

and so we must remember that we have the following transliterations_in our

output for the examples presented here.

Text Reference RKMI - Output
" ool N(/1/)

X x X

,ggk) Eli,x] : B(/1,k/)
. CoEd AN
t0,)  mD) R
. ox | K

B | B4 - B(/1/)

et BT (BB Y/
V<) ¢ €3 A3)(/1/)

rThe'RKMI output_ébove refers tq thé exémples presentedvin this‘
chapter and Appendix IIi;- For different values of type set, a slightly
diffefent transliteration will be obtained.

The scheme is develéped exactiy as specified by-thé,ihpufi' The
sqﬂstitutions are performed aﬁd_tﬁeﬁ the'iinear combinations,aré made.
In order to understand the suns, recall equation (97), Chapfer TIT and
note that»in the double sgm the first sum on i-COfreSpondé‘té jigsi;
“that the second sum on j corfesponds to k§€P5 and that the paraméter; B
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correspond to the agizjl. The second term corresponds to the second .
ierm of Equation (97). Below the summation we identify the:index seﬁs
v[0,i] and v[l}i] that tell which'E and which N appear iﬁlthe éumt For
exaﬁple, v[0,i] = v[0]l[i] which is the i-th*element in the éet v[O];
This nbtation, althdﬁgh.a little obscure for elementary schemes, has
.édvanﬁéges in that it does not change in size or form as the cdmplex;ty
of the scheme incfeases.' In actuél'practice, it usually suffices to;lbok
‘at the sets v[0] and vi1].

The scheme generated can eaSily be identified by presenting the

coefficients as in Figure 1 below:

Figure 1. RKh Parameter Table

E ]t . X
difbk W13t 2 11
13)77] 78
l2|79f80}81

11]80] 85 | 84| 85

0{86(87]88]|89 |90
where we writé as entries in’the table'thé indices of the €45 Xy, and
B; thatvappeér'iﬁ fhe écheme. For'example;.éa = By7 &), + Byg X). This.
presentation is éssentially the same as thaf of Ceéchino-Kuntzmanﬁ; how -
ever,.from a.practicai viewpoint, ‘it is convenient to preseﬁt all the
‘ scﬁeme.data.
Bélow the s;héme, we'ouﬁput>éil the parameter equations associatéd |
with that';éheﬁe.'_Therihterfal barameters are defined, B, is not |
»specified ﬁince it is the distance 6fvto_ffom the origin,vahd fhé»
locétion of the origin is essentially srbitrary. |

'The conditions on Eos £ gé, €5 are those given in 5) Qgggijign'A,.

'of'the summary at the end of Chapter IITI. These are origin independent
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as presented here. They should all evaiuate és Zero.

The equations following next-are those given in 6) Condition B of
the summary; Note that if go has not been used in a substitution X(go),
or DX(EO), then these equations are origin'independént in the folldwing
sense: they represent the harmonics of Eé expanded about the origin.

To obtain an integration proceés, we match these to the harmoniés of

£(6,) and if the origin is Seiected at fo,'then all harmonics of £(0,)

are zero. If use has been made of X(&o) or‘DX(go); then it is necessary
to locaée the origin at By = O; that is af'to, in order that the equations
of ﬁhis section remain valid.

 These first two sets of equations corresponding to Conditiqns A
and B are the parémeter'defining equations of the scheme. We note,
‘hc(ever, that we have ﬁsed eéchvapﬁfoxiﬁation before it.was constructéd;
thus, it has been rgpreseﬁted'aévan expansibh'in ferms Qf undetefmined
: parameters.’ These are defined at the“end’of the out?ut;b-Fdr example,
&, = u(0,By) + éi Boori Ai(o). The actual definition of these para-
meters is given in the sectidn entitled, "Comment equations‘which define

the undetermined parameters used in the expansion of ..."

. In any
actual use of the equations, care must be ekercised tO'inéuré that all

'parameters are defined before they are'uSed, This can necessitate the
reordering of. the presentation of:the output."Howevér, because: of the
recursivé'nature'in which the quantitieé appear in proceeding ffom.lqﬁen
té_higher order, it should always be possible'io do thisf For tﬁis RK&I
example, itvis'necessary to aétualiYcélcuiate the parameteré-as 53,"52,

'gl, whereas, they have been presentéd in the reverse ofder,

| At the end of the outbuf;WE,ﬁEQéa;shor£ dump'showing how”mugh

storage was used and how many parameters were used. It is evident that
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we could have used considerably less'storage when generating this scheme.
In Table IIT of Appendix III, we specify the results on four sets
of coefficients. These are taken frqm Ceschino—Kuntzmann(2 ) and the
venror termé can be compared directly with those he presents.
We note that the array c[i,k,ﬁ] appearing in the;b'output from RKMZIZ
is meant to have its indices start.from'zero; however, siﬁce this is not
 possible in the FORTRAN ianguage, we have starﬁed the indices f?om one.
' This céuses the index sets mentioned just‘before the interval parameters
to be off by one. If type set is set for-ALGOL output, the indices do
start from zero in the output.

" We shall now present a set of simplé'generalized'Runge-Kutta
methéds that have all been obtained using the procedure RKMI. These
examples af¢~the Simplest generalized RK schemes uSing data from the
past,'ﬁThey are characterized by having a Trank é =2, and an extent
e =2, 3;'h, ... . We recall that classical Runge-Kutta proceéses have.'
exfént 1 and rank 2 1 and finite difference'methods have rank 1 with
extent e 2 1; thus, ﬁhéiexémple giVén are indeed generalized RK schemes.
Thefe is one intermediate point and.we require that the approximation at
this_?oint have anrorder of‘éccuracy at least 2 orders less than that at
the major pdint; otherwise, we shall have a classical predictor-corrector
‘séheme. v

| The wbrk that we present to a large ektent panﬁllelé that of Butcher

(8)

~and his,work has proved very3helpful in providing a method for the
" solution of the parameter equations and in furnishing examples(l') that
can be used to check the correctness of thé results generated by RKMI.

A- comparison of oﬁr results with his will show that for each example we

present there is corresponding scheme of Butcher's and that because we
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use an approximation from the past, we have one less function evaluation

in each case.

We shall treat the following:

Problem Dx = X o x
Scheme : ,
- k Ck _
£ = 21 25 Epy + h {JF by X2 + 51X3} : (1)
k k o o
Eo= 2 At h (2 B xej + DX+ Bx} (2)
J=1 S J=1
" Intervals o
t bl ty Tt % _
Lol
_ e @ : { | . L AN
- L B >
¢ 2k 2(K 1) L 3 2 1 0 origin t

We have 2k + 1 coefficients in (1) and 2k + 2 coefficients in (2). 'Thus,

2k+2
we shall seek a solution to (2) such that §0_4 E(to) = 0(n )

and
gl - %(Tl) ='O(h2k); This leaves one free parameter in (1) plus the
interval'paiameter Tl. We shall assume ti+l - ti'é h =1 and

T‘l - '_t2 =h = l.

- Since the:order of accuracy of the intermediate point £, is more
thao one orderelower_thenvﬁd,.we shall heve erfor terms from §l appearing
in EO. Schematically, we'shall have with £ = 2k - 1 the eituation given'

.in Figure 2. | |

The equations corresponding to ¥,,¥1, are what we call finite
dlfference type equatlons and- arlse by requiring that the approx1mat10n
k be exact for polynomlals of degree less than or equal to 2k + l (see
Condition A of the work of Chapter IIT and set I =2k + l).: The equation
correspondlng to wg arises from the substitutlon of g aﬁd is what we

shall call a Runge-Kutta type equation, This latter equation will be

satisfied using the free parameter of (1). The interval paremeter Tq,
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- will then be available for use in obtaining a stable corrector with a
minimum principasl error term.“

Figure 2. Differentials and their
Corresponding Orders for Examples 1 - k4

-

' " - Order
o ., nok
1 .
h2&+lf
2
3
L _
v ‘h +2 Principal Error Terms
5 v
6

i .

There are a number of ways‘to 6btain fhé parameter values that
will makeAél - (%) = O(hék)'ané Eé - &(ty) = O(h2k+2). vSince, however,
both 63 aﬁd El represent points not on the standard interval steps, we |
cannot easily u$e a derivativé interpolétion’formuia to find these .
parameter values. .We shall find it COnvehient to ﬁse the complex
analysis approach used. by Butchef(8 ) and refer the reader to his work
.for g slightly‘more detailed descriptionrthan we give here.

To obtain a solution to (2), we choose a polynomial

— v (2 - tg) K 1 .M 1 u, |l
¢(z) —111{ o vt'.)2 (z - ) Tz - Tl)?fr(z - 15)  (z - 15F (3)
AT '

J=0

-where K; My, M, are parameters as yet to be determined. We shall require

that o(z) E'¢(z) where ¢(z) is detérmined by (2) to be
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. kK oa kK g, b
¢(z) = - + = = + -2 - ot 1
z -ty i=1 (2 - tg) =1 (z - %1)2 (2 -711)%

Now let R(¢) be the residue of F(z) at the point z = £. Then we

shall require that

| R(t,)

= -1 | |
R(1) = 0 | o (5)
R(t,) = 0 |

giving three equations for the three unknowns K, Ml,‘ and M2 When this
is done ®(z) = ¢(z) and we can solve for Ay Bi', and b; in terms of K,

My, -and M,.

Similarly, to obtain the solution to (1), write

L - L, L L -
| ¢(Z) = - 1 1 4 2 + = 3 . | (6)
' o (z -tj)2 2 -7 z-T, (z-71p)
J=1

~ and :
: . k. K ‘

plz) == —2 + = % 4 nl = Pi + P1 ](7)

. z -7y =1 (z - t;) | 1=1 (z - ;i)e (z - )7

We then have that ¢(z) = ¢(z) provided

R(7,)

- , » | -
0 | : (8

il

whichh', furnishes two éQuatioris for the three unknowns Ll’ 1;2, L5" thus, -
leaving one free parametér; |

Let us now define
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k
c; = 3 1 , i=1,2
J:l 't',j - Tl
.
d = =/ 1 , 1i=0,2, ..., k
- = A - . (9)
K 2
e; = I (tj - 7y) s i=1,2
5=l .
k SN _
£f; = IV (tj - t5) , i=0,2, ..., k
. j=l | .

vhere the prime indicates the usual sum (product) with j = i missing.

We can then write the solution to (1) as

Ly = -
Ly = -2 ¢; I
L= L3 |
T
E, =2 d; + g=1, 2
i > b
3 Ty - %y
E; - E; + 1
> 1, -t
v, - 1 [1+2(c, - t;) c,]
(1 _ t°)2“. v =
2 i T3
(10)
. ,
— 1 1
v, o= - 1

1 i v g
Q = [Bz + 2(7, - t;) ¢y E5]
L (g -ty 0 2 e
i
Ry .= 'Vi El
a; = Q L+R, | o
t e O N PRI
o
by = o

K
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and the solution to (2) as

1 1 U
— = — - C
My T 2 2
1 1
L L o
My ~ T2 2 |
1. L S S N S
K folto - 71 to - To (ty - 71)° (t, - 122
nb. - L i=1,2 (11)
1—(Tl_to.) el ’ - Lo (ll)
M
K 1 1 1
- ) . )
PBi T Tp - to)fn [ﬁtl ST TR COUEED S ST T2f4
Ay = 8 |—- " P - S
(ti - to)fi ty - Ty ty - _ (tl - Tl) (Ei - Tg) -
| 1 1 !
+hB; | 244 - - -
1 1
[ b3 -7 b - T Y- % ]

 We see from (10) that we have a free parameter L and thet the free
infervalepafameter Ti epﬁears in both selutions.. We also note that it
is implicitly assumed that Ti-¢ tj.

Now that we have a general‘eolution to the scheme represented
Byv(l) and (2), we proceed in much the same fashion as Butcher to obtain
schemes for the k = 1, 2{ 3, b casee which are Examples‘l, 2, 3, and L,
respectively, as presented in Appendix ITT. v

| Tables VI, VII, VIII, and IX give, for eech of these examples, all
- the parameters plus the harmonics 6f the intermediate approximatioﬁ- |
éxpanded sbout its local origin and the Ffinal approximatidn.expanded'
about tﬁe origin. For example, referriﬁg to Table VI which treats
Exemple 1, we have the interval parameters‘Bl, very 37; the hafmonics
:Bi6’ ceey Byy OF £y expanded ebbut t, which are also the harmoﬁics of

3 'eXPanded_abQut t2(i;1); Note that here we simply count

2i-1, 1=2,3,...,
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the points starting from to and meke no distinction between t and T1s
a distinction which was cohvenient in deriving a solution but is.not
conveﬂienﬁ in ggneral. Next come the scheme paraméter-valugs, 323, .;.,
' Byg where we give also the scheme in which they are used. TFinally, we
give the results of substituting the parameter values into the equations
tﬁat represent conditiéns A and B as given in Chapter ITI. As output
from RKMT, c0pditioﬁ A equations should'evaluate to zero; condition B
should evaluate to the Taylof harmonics of §(to) expanded'abouf thé
origin. Since the ofigin was chosen at ty, these too are zero. Ané,
_finélly, we have the principal error term_coefficieﬁts.

The k = 1 cése is, of-course, stable. This is not, howevér,
'neéessérily true for the k = 2, 3, 4, ... cases and we give for'theée
caées the roots cfﬁjhe stability polynomial associated with the correctar:

‘For example, in Table VII, the polynomial is

2

2= - Bog z - Byg = 0
and thus appéars.as  '

2 1. :

ABZ + A2z‘ + Al

in the stability check.

For Exa@ples'e, 3, and’h,'we have presented two values of t; ;'Bl;
The first valﬁé is tﬁe usual one where ti is in thé interval betweeﬁ §2;
the last approximatibn calcuiated,and €os the next approximation we wish
to obtain. The othef &alue lies_oufside this interval and is presented
mainly for comparison. It will be seen that in all cases the principal
error terﬁs are conéiderably iarger for this non-standard choice. |

For each of the examples, we present a graph of the principal error



term cqefficients versué:the‘freé interval parameter tl. Where appli-
cable, we also give‘th¢ stabi1ity range bf the correctar. These are
given in Figures 1 - 10 of Appendix III. An examination of these gfaphs
shows why we have chosen the t1 values that are presented. We note that
the values of t] are givenvas unreduced fractions even though they can
be reduced.'_This_is purposéfully:done to‘indiééte the resolution. For
éxample, in Figure 2, we have that -56/256 is within 1/256 of the minimum
of the maximum root. |

For éach scheme presented, there is an analogous schemé given by
Butcher. We note that the only difference between our examples and
Butcher's is the scheme. That is, we can,.simply Ey changing the scheme
and no other éggg; use RKMI to generate either our examples or'Butcheffs.
Thus, his work can serve as a check‘oh‘fhe validity of the results of
RKML. We have run the k = l,'é, 3,‘h, cases that.he presents and the
coefficients he presents all check. Since our basis functions are
- different ffombhis? our error terms will have differeht.numefical Values;
lhowever, when errér differentials.E are used, we should have the same
error terms and this, indeed, is ﬁhe cése for k = 2 which the authér
checked in this fashion. 1In Table XIII, we present é summary Qf,the.
prinéipal error term cbefficients‘for each of our examples and the
analogous"case of Butcher..

We have presented in Tablés IV and V thg complete generation of "
: E%ample 2 using RKMI. The format ofithe.iﬁpﬁt'and output is idenﬁiéal -
to RKM4 and thé description given_previdusly should suffice for under- .
standing these tables. |

‘ In ordér to correctly,uSe the generalizedvﬁungé-Kutta schemes, it

, is’necéssary.to start correctly. In particular, a start in which all
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approximetions metch a Taylor's series to a certain order is not, in
geﬁeral, the correct start for these methods. If we refer fo Table XIV
of Appendix I ﬁhiéh gives thé’approximatidn harmonics, we see that the .
we"terﬁ has Fk'wgvdrre wg .refers to the harmonics of &, about the origin.
However, referring to Figure 1 of this chapter, we see that the wo
"harmonics of &4 are the principel error terms of £, and there is
a%solutelj no immediately apparent reason why these should be Teylor'
harmonics. As a mafter of fact, for Exampie 2, it turns ou£ these .are
very close to Taylor harmonics and it would be very enteresting to knoﬁ
whether or not the ¥, term of &, is a Taylor harmonic.-

‘To obtain a start fer Example 1, we can proceed as follows:

Knowing 52, we use an elementary Runge-Kutta start to obtain §3

3 =fathap X

IWhere the coeffiéients are obtained from

812 =65 - 6
81p + 813 =6; - 6 o (13)
a1 0o + 813 Y3 = ~. 92/2
w;thv : 6y = -1
93_= 92.-'35/128
o =

= Blé-Table VI, Appendix III

a free parameter

D
i
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and h is the step size'to - to used in the Example 1 scheme. Now that
" we know §3 and 52, wé can proceed'using‘the scheme as given in Table VI.
We could also proceed in an alternate fashion. Use an RK3 start with

interval h to obtain &g - &(ty) = O(h*). Then find
€1 = g10 & + b [agp X, + 330 X, - (1%)

to find §l where the coefficients are obtained from

gp = 1
810 Op + 83p + 819 = 91 | : (1)
., , . , a
81050 T 2% 20 =0
with |
6, = '-35/128
o0 L
90 = 0
o = Bi6 of Tabie VI, Aépendix IIT

and h is the step size t, - tp used in the Example 1 scheme.
_ We have used the latter starting scheme for Exampleé 3 and 4. In -

: . _ ar1.2k+2 . : s

Example 3, we assume that £; .- £(t;) = O(h ) for i =2, k, 6. k. is

" originally known and any sufficiently aCCUrate starting scheme may be

used to obtain &) and £5. Once_thesé values are known, we have suf-

ficiently many points to obtain the'infermédiate point]EB. 'ThevSChemev

and coefficient set are given in‘Table Xi,.Appendix IIT.. We{obtain an il

intermediate approximation Ei and a final approkimation_é5'= go. . Once
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this is done, there are'enough‘known valﬁes to continue with the regular
scheme. We note that in reality the scheme to obtain €3 = £, is the
éame as the regular écheme presented iﬁ Table VIII; only the parameter
set is different. We also check that tﬁe starting predictor is stable.
The start for Example'hiis thé saﬁe, exéept that we have one more point
to obtain before obtaiping 53.

'The starts,presénted here for these examples are, in general, not
the best. There is no question that one can.find_ﬁore efficient starts.
Thesé are presented to illustrate that some thought must be given to

" calculating the intermediate poinﬁs correctly when Starting. The
obtaining of efficient, correct starts for generalized Runge-Kutta
schemes needs to be investigated thoroughly as ﬁore schemes are obtain;d.-
"We also point out that the same problems must be considered when
changing stép size.

In Ekamples BJaﬁd 4, we have not actually given any explicit means
Qf.obﬁaining the approximations at the major points wheh starting the
écheﬁe.. We db, however, give in Tabie X a complete start for Example 2.

- In ordervto do this, we proceed as in thé start for Examﬁle 1. Assuming
that.iu is the initial vélue, we uée coefficienf setll to 6Etain an RK4 =
type start for the infermediate-point Eo- We now set &g = €y, E5 = &g |
and'use coefficient set‘3 tQ obtain the.next approximation £, at a major

| pdint. ‘Then we set gh:= €5 53 = &5, o = £,. There are now enough -

épprdximations-to continue with the scheme as:présented in Table VII.

Wé note first that we could have saved'one‘SUbstitutioﬁ if we had.

"~ used RK5vstarf for_the.apprcximation §2 and then proceeded as in
Examples 3 and 4 to evalﬁate_thé intermédiate point. We did not do this

because we‘wished to illustrafe a point that can stand further investi-

gation. When trying to obtain RK starts for higher order methods, one’
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always -eventually obtains'teo many equations to solve:effectively. Ohe 
way of aroiding this ie to verk'with_approximEtions,for which the order:
~of eccuracy is'known to be greater than l. This effectively increases
the value of;l in the tables of Appendix I. As the value of / increases,
i .

we can. see from those.tables that the equations that we need to solve
ere subsets of the equations obtained for lower values of £. The manner
in which this process takes place mustvbe carefuily examined.in each case
of interest, but it appears that by Choosing a good strategy, we can
effectively "boot'strap"'our way to higher orders. The subject needs
much more work, buﬁ the possibility does seem to exist. TFor our starting
scheme of Example 2, we have used 55 in coefficient'seﬁ.j and an RK5
type start. However, since 55 and'éé both had a sufficiently ‘high dréer,
of accuracy, we dld not need to solve all the RK type equatlons. of -
the 16 equatlons appearlng in Table X1V, Wlth k = O we solved only
¢b; V1, ¥ss Y5, Vg Y10 Y109 Y14 The solution for these automatlcally
'_satisfies the remaining equations. ‘ v

v'Anofher point to keeb‘inbmind is that the coefficients for the set
of examples that we considere here are rationai'numbers.>'1t is frﬂe |
,tha£ we chOOSe L to satisfy tﬁe wz equation; however, L eﬁters.linearly
in that eéuation. Itlwould be nice to have these coefficients presented
as rational nuﬁbers, but becaﬁse-of the factlthat we do héve a rather
invqlved caicuiatidn wheﬁ obtaining. L, this has not been‘attempted

What is more 1nterest1ng is to establish Whether the free parameter

:'Bg appearlng in the RK4 type start is in reallty By = Bg. ThlS parameter
is a pqunomlal_root and need_not be rational. We would also like to “
kﬁow.whether the_principal.error term of £y ﬁhe intermediate point

of these examples, is or is not a Taylor harmonic. From our calculations,
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we can only say it is quite close in Example 2 for the values of tq
that we have given here. |

Since all our results are presented in floating point format, there
is a question of sigﬁificant figufes. The numerical célculations were
performed on the Universify of California, Lawrence Radiation Léboratofy‘s‘
CDC 6600 Computer located at Berkeley, California. We caﬁ expect about
twelve significant figureé_for single preéision. However, a close
examination of the numerical results leads tb the concluéion that, in
reality, we may have only 10 - 11 significant figures. There is a
feeling that the corrector coeffiCients are well calculated to 12
significant figures, but that the predictor coefficients may well have
only ten significant figures of aécuracy. ‘It is possible that accuracy
has been lost in the'calculatidn'of the correct value of L of that .
accuracy is lost in.the calculation of the coefficiénts themselves. Iﬁ
the intérest of ac¢uracy, we have not, however, transcribed the output
and present it as itvwas obtained. |

<We have not, at the present time, had an opportunity to evaluate
fhese schemes on any exampléé.‘ This is,vof‘couféé, neéessarylbefore
" coming to any conclusion about their wofth. At the moment, we can onlyb
éay that for the same order of accuracy they require one less substitution
than Butcher's, thus putting them in the class qfrpredictor corrector.
- schemes, and that they have a stability range'similar to,bbuf much'more
: réstricted than, his work. If is, in fact, questionable whethef the five
step scheme has a stéble range.’ .l o

This“chapter_deéls with eiamples and yet the reader wili note that
.we have presenfed‘no exampiés uéing.thé results'of-Chépters-Ii, IV, or V.

.The reasons for thisare twofold. The first'and most obvious one is
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space requirements. It requires a fair amount of discussion to present.
sueh ekamples and we wish to limit our presentation to a reasonable‘size.
The second is that our'examples have net actually been obtained in this
fashion. Since the schemes can be generated by RKMI and the output s0
. ebtained is almost immediately avallable-for use in other prbgrams, we
have not generateddour examples "by hand“ and then programmed them. |
This does not, howerer?'mean’that these results have not been useful.
They have proVed'intalueble iﬁ thet they allow us to easlly check the
validity of the program generated eutput and they provide an insight
into the structure of the equations we are dealing with. It is in this
manner that the results of those chapters have been used. Of course,
not everyone has computing facilities.at‘their disposal and those re-
_sults should allow an easy investigation of some rather compliceted
schemes.

. In addition to the results presented.here, we have used the
.program RKMI to generate a number of well known schemes on Whlch we
could check the results. These are the classical RK1l, RK2, RK3 schemes
._u51ng the coefficients as presented in Ceschino-Kuntzmann and the
lschemes of R. DeVogelaere(5 ) and R. E. Scraton(fs) which can truly bef
considered a generalized RK scheme sincevthey use data from an inter-
‘mediate pointf However,-since in these two latter schemes the inter- -
hediate point approaximations have an order of accuracy'only.one lower
_ tﬁan the final epproximation,kthese_coeffieients are derivable by finite
difference methods.

We would like to emphaSize that wevﬂave presented a wealth of raw
data in this work A sincere attempt has been made to ellmlnate mlstakes'f

and sheer blunders, but 1t is always necessary to- somehow find checks
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for the results obtdined. .With-regard to-thg Examples 1 - 4 that we
have presenfed here, we have that |

1) The solution derived by means of reéidue theory yields

| coefficients that satisfy the parameter equations as
generated by RKMI.

2) A simple variation of the scheme given from RKMI gives
Butcher's schemes and his coefficients satisfy the
parametef gquations.

3) The starting schemes for EXamplés 3 and bt are éimply a

- re-interpretation of the main schemes for those examples
and require no ﬁew generation.

4)  The starting scheme for Example 2 is obtained from'fhe

IRKM éxample, tﬁe schemé is identical; we simply match a
aifferent set of coefficients. Since we include the
- error term in the RK4 example, we can also use those
results to obtain the RK5 type.start. Thisvfeqqires a
different scheme for RKMI, but no cther new data. The RK:
scheme, as generated by RKMI, checks completeiy on known
‘coefficients.' | | |
5) At every step, all parameters havé been subétitufed into the
y :
j'pa:r'_ameter equations to check whether a solutioﬂrhas; indeed,
been found;v

6) The results één-be-used to integrate known polynomials to ;_

check.the order of accuracy;vthis last step hasvnot been

performed and, of course, should be when time permits.:
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VIII. COMMENTS'

The work that we have presented in the preceding chapters and the
accompanying appendices, though rather voluminous, can only‘be considered
as an introduction to the investigation of generalized RKF integration
échemes. ~We have, hopefully, laid some foundations; oﬁr work is
characterized as much, if not more so, by what has been'omifted>£han
what has begn presented. 'We shéil give}in‘this chaptéf a few chments.'
on some of these omiséions and shall aiso indicate some direcﬁions'that
futuré'work might take. |

We note first that although we have devoted a large aﬁbuntvof
effort to the development of & descriptive formalism which can be
4'directly reflected, ﬁreserved, and implementéd by means of suitably
defined procedures, the class of schemes we treat is, in reality, not
large. One need only lodk at a reference sucﬁ'as Ceschino-Kunﬁzmann(g)
to féalize that there are mahy we have left out. However, theirJWOrk also
' suggeéts that it should be possible to include this work; that ié, it
Should:frove'possible to considerably extend'the class'of'sghemes treated
and include most common integration processes. This is probably most
easiiy done along the lines of the work of Chapter IIT and hdpefully oﬁe'
could also eventually arrive at a globalrviewpoint similar to that
given by the approximatioﬁ.or error harmonics. |

This leads immediately, however, to another topic that_we have not
treated in'sufficient detail;:this is the ciassification of schemes. We
~ have given what we believe to be a -fairly adequate-claésificafion of thé
relevant schemg-parametefsvfor géneralizeauRK schemes. - It immediatéi&'
becomes evident, howevér,.that we must‘obtain a goéd systematié classi-

fication for the-generalizéd RKF schemes if'any‘serious investigation
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and comparison of schemes is to be undertaken. We point this out
because not only is a good, systematic'classification necessary fof‘
practical reasons, it also leads naturaily to (and from) a good SChéme
definition;

| However, these problems can pfobably best be resolved by first
obtaining some.solid practical experience using the results so far |
obtained to carry out a thorough‘investigation of the schemesvthat are
contained in the work presented here. It is the author's -opinion that
the present work has progressed to a stage where it shbuld-be thofoughly-
~ used. and evaluated. Our work presents results that are‘usabie; there>
~is a wealth of unbroken ground, as well as known examples, tpon which
it cén be tested and carrying out such an investigation will no doubt
suggest modifications and improvemehts'thatvwill better help ué under-
stand.the theoretical aspecfs of the generation and solution of the
parametér équations aséociated with these integration schemes.,

We might comment thétvwe are arriving at the point where integrétion
schemes can be generated and the assoclated parameter defining equations
completely solved simply byzﬁresenting‘a rather small Sét of;data that
characterizes the prdcess. How well this can be dong.depends’to‘a high
degree on understanding the equatlons that are created when .we generate
8 scheme and, thus, it is neceésary to actively pursue not oniy the
obtaining of a specific scheme, thgt is, the local approach,.but also
, vthe global gpproach that yields the total view of.our pfoblem. 'if this
;éttack.could be carried to a successfui complétion, one cén see tha£4
thefe.ﬁould be the possibility of‘fayloring the_schéme to fit‘thé”

differentiai equations being integrated. N -

This latter comment points out the fact that 'we have made no
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ﬁention of twé important aspects of these.schemes. One is the subject

~of sﬁable schemes. With regard to this, we comment that any scheme .
search should be carried out within the context 6f Stabilify, however;,-
very 1ittle has been done or said about the stébility of generalized

RKF schemes. The other subject is a global error analysis. R.,DéVogelaere
has suggested to the author the possibility of- handling that prbblem;in

. such a fashion fhat it too could be treated by means of suitabl& défined
procedures.

dne aspect of 6ur“work that requires some explanation is ouwr use of
tables for the quantitieé'that are used in the program RKMI. This is
really not the way to do it. All the quantities of interest can, and
should be machine generated. The use of fables externally input is
sub ject to too many errors and is only a temporary means of obtaining
these quantities{' One of the_first, parallel tasks of any investigation
af generalized RK schemes using RKMI is to program not only the generation-“
| of there quantities, but also the checking of the generated guantities. This
cén be done and will féliévé the user of an enormous amouht of needless
preparatory work.

| In the same spirit, the generic dgfinitionigiven in Definition 3,
.Chapter IV, should be built inmto a procedure.so that weicaﬁ investigate
at will'the quantities so.laboriously tabulated in Appendix I.

.The examplés‘that we have pfesénted in Chépter.VII aﬁd Appendix.III :
cén only be considefed to be illustrative of the type of_work that can be
done with the.results presented. It_is-immediately ébVious thaﬁ no Frey -

_ type.schemes have'been presented. | v o
RKMI ié, we believe, quite capgblé bf_hahdling these schemes ahd';'1 

also schemes for higher order differential equations. Their omission
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here has been caused mainly by the lack of space andvtime to adequately .
treat their generation. We trust that in the future there will be an

opportunity to undertake the scheme investigation that appears as the

next natural step of this work.
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Appendix I

. TABLES

Appendix I is devoted to the presentation of tables of which the
items represeﬁt the various quantities discussed in Chapters II - V.
‘We give.below a short descriptiOn of each of theae tables. The first
‘sat of tables, Tables I - IV,_pertains to Chapter II; the next set,
Taﬁles vV - VII, to Chapter.III. Tables VIII - XIT cane from Chapter'IV,
while Tables XIII and XIV come from Chapter V. There is a dependence
among the tables thai.we‘ahall de8criba before proceeding ta the
individual table descriptions. TableSEII, I1IT, and IV can be derived
from Table I. Tables IX, X, XI are derivable from Table VIII. Tables I
and VIIT are in a certain sense»equivaleht. They represent the aame
items in that for k = O Table VIIT would reduce to Table I, except for
the fact that we have lefﬁ dut the terms wlth more than one E;:whereas,
in Table I, we have extended the table to the terms with two E factors.

Table XII is equivalent-to Tables IX and X since 7 = Q&y. Table XIV,
likewise, is équivalent to Ix; X, X1, and XIT since, if we combine the .
- quantities to cobtain the'parameter equafions, we will arrive at the
zesulfs presentad in Table XIV. We give below in Figure 1 the relation-
shlp of the tables and the chapters in which they are used or defined.\

Tables I - IV will be discussed first. These tables are used to
tabulate the various quantltles mentioned in Chapter II. Table I is a;
gereric table from which Tables II, TIII, and IV can be generated. We
shall show how this is done shortly Table II gives the derivative
harmonics that are deflned in Definition 6 of Chapter II; Table IIT
glves the polynomlal weights ¥ (Deflnltlon 8) and Table IV gives the

elementary polynomials P_(Deflnitlon 7). Referring to Condition B,
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Equation (62), Chapter.II, we see that these are precisely the gquantities |
needed to write down the non-linear paramete£ defining equatidns for any
generalized RK scheme as developed in that chapter. It should be kept
in mind that Chapter IT has as its generalizafion the work of Chapter IV
and that the corresponding tables for that chapﬁer (in particular, we
‘refer to Tables VIII, IX, X, and XI) should reduce when k = O to the
.: Tebles I, II, IIT, and IV. It is realized fhat there is a certain
amount of.redundahcy in fhe work as presenteé here; however, we have
presented only a small, but representétive, section of the tabulated
.'wofk and the redundancy'along with the interrelations of the tables
should help pfovide a check on the material. |
It is féssible to give a rather cbmplete.deécription abouﬁ how

" to systéma£ically'construct the geﬁeric table, Table i, and éuchf a
»discussion‘is neceSsary if one considers_the generation of these
quantities ﬁsing suiﬁably'defined procedures. Since we havéinot built
~such procedure, we shéll évoid any lengthy deSCriptién of that process.
Howeyer,.it is very hélpfui.to visuélize this tabiebas é twp-dimensional
array Aij where 1 = Qrder,'j = rank, and.thg_A_are blocks of elements
containing the items of given order and rank. Then, referring to Theorem 1,
to Equation (16'), and to Equation (14) of Chapter II, we are able to
see why_the'various'quantities in that chapter have the same recursive
aefinition. We shall limit. ourselves herevto the ﬁse ofkthese tables;

| In Table T, every item has a set of quantities associated with it
thag uniquely specify that item. Theée aré the Qrder r, rank R, degree. -
s, value of { (see.Equation‘(Q), Chapter Ii), and seQuential position a
~of the item_within the set of all items of given drder; rang)»degree,

~and { value. Thus, for any item < in Table I, we have
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Y= ¢[£,‘R, r, s, al. |
It will be seen that these quantities are tabulated in the first
 few columns of the ﬁablé. We have, however, specified the rank as R
- in the upper left corner of eaéh block of order R and we have not
sequentially ordered all the functions, only those with rank = order
gﬁd for these, we have also fouﬁd it convenient to seQuentially count the

functions. TFor example, the reader will find
wlo = 7//[°°;_ £+ kg +_L|') 1, 2]

rand he will find that
’ 1 10

Ylo, 4 + 5, 4+ b, 1, 2] = E Gy € O

‘haé not been give a sequential count.

~'In order to have before us a concrete example of thé items.of
Table I, we imagine that the Y represent thefweighted differentials W
of Definition 3, Chapter II, and aléo recall that we gave.there a short
introduction'to this table, The first item.wo is then the.weighﬁed
| -, differéntial Wleo, £ +1, £ +1, 0O, O] of rank £ + 1,’ order £ + 1,
degree zero,bposition zero, and this funcfion will appear for all values
of I which is indicated by setting o inté the £ position. Keep.in mind
' that if we picture a table fér each value of 1; then ail items of degree
zero or degrée 1 will correspond identically fof each tabie;'that is,
wé could overlay the tables énd see no chénge. This is not true fdr
items of degree greater than one;: Thus, © as an { value iméliés that
the item appears'for all values of ! , whereas, a numerical value such as
1; 2,_etc., imbly that this item appears only for that particular Value:'
~of 1. We.also point'out that the blank spaces in the first three coiuﬁns

of Table I are to be filled in by the number appearing above in that column.
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See, for example, our reference above to wlo where we have supplied the
missing quantities.

We have as our first»itemﬁwo, the item of lowest order and degree;"'
then we write wl, the next item of degree zero; and then, we which is
derived from ¥,. Once we have all the items of a given rank and order,
here rank £ + 2, order £ + 2, we write the degree zero item of next |
higher order and rank. Note that we write all the rank R = order r
items first; Thus, we have ¢5 and then Y); ws,;w6.andee'ﬁroceed on-

'rard in this fashlon to as high an arder as necessary We raise the

rank R by 1 by applying the E 0perator and then proceed again from the
lowest order to generate all the function of rank'R = order r + 1.

Having once obtained all of these, we again apply the E operator to all

o these 1tems and proceed as . before. The reader can best become famlllar:
with these items by generating the tables himself u81ng Definition 3

of Chapter II as a guide. He will seeée that one must be qulte careful in
obtaining the terms of degree.greater thanhl. We point out that the items-
of renk R = order r are the same ae presented in Table V ﬁhich proceede

to a higher order (referuto the discussioﬁlimﬁediately preceding
Defihition 6, Chapter IV), and, thus, fhe results obtained can be verified
for higher orders.than given.in Table I.

To use Table.I, we replacevthe operator in Table I by the quantities_
defined in Chapter II and presented again in the Supplement'to Table I. h
.,Ueing-C%EC%Ci,,we illustrate with one example for each case:
| 1) Weighted Differentiel'w |

Ry-1 | ' Ryl

1,10 . ’ (o] .
C7ECICT = S Ry f,. D(DyXeo u; ) = Reg. . = £ 2
1814 I , Dy . g
LT Ty PR S Be,  es
, , Ry-1 _

-0 B £
o u; = R ° U, :
‘ D (DNEX uJB)Nl | 3y Rl fJ5J)+ D (X th)NQ
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2)  Elementary Differential A.

110 o .0 | 2-1
C.EC.C. =D Xou)D Xou)y D (Xo u)
177171 (DNl (DNe Ny N,

where we choose for A any function from the set of all
functions of order r since all functions are the same.

3) Weighted Polynomial &.

1 10, Ry-1 o _ - Ry-1 &
- .. B: 5 Ry g. f£f.7, 6,
ClEClcl ? Ry, flJl Ji ; B‘ngJE ? R2 Jpds I3
1 ,
R, -1
2
by le,l,‘ 6. .
. J)-I- JBJ"" ‘J)_L
%) Derivative harmonics a. (Table II).
1 10 (R-1)' 1 (Ry-1)t 1
CECC =
1 11 o! (33)1 o! v.(Rl)!
'5) Elementary Polynomial I'. (Table IV).
110 Ry-1 o _ -1 o R, -1
clECC. = 3 £76% 5 g . 3 £ g% 5 21Tt
Ty Mo g e gy ded3y ds g, 3dn dy

6) Polynomial Weight y. (Table III).
1 10 - L
CJECIC; =Ry By Ry By
where; in each case, R; = £ + 1 is the rank of the item.
 We remind the reader that care must be taken when interprgtihg

quantities of degree‘greater thén 1. Consider, for example; the

weighted differential
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Ro-1 © Ry-1

1 _
W, = c c (ECl) =2 R, f, 5 , ( nXe uy )(z R T, Df(x o u, )y )
5 NN, ip J1dp da’ M

(z R, &. Z Ry £, D(Xoe u, )y

.end we note that both the second and third factors depend on jy. This
‘is seen in Equ5£ion (2C) of Chapter II.

We have written these quantities out in detail here 6ece to
illustrete the notatioh; howevei, ihegeneral,'it is‘ﬁot neceseary to do
thie exeept with the elementary polynoﬁiale aﬁd then only when we wish -
to write down the equation for a‘pafticular scheme. |

| For the W, A, and &, it is more profitable to utilize Table I
only as é pattern estaelishing table. For the @ anid 7y, it is easy
;ehough-to generate them froﬁ their'immediate faetors father than re-
expreseihg these factors'in ferms of the Suceeeding faetors and the
same 1s true for tﬁe generation ef the eiementary polynomials.iﬁ Table IV.

As a check on our work, we ﬁote that each of the quanfities W, A,
@, a, Y T has a.eeperete definition. However, we know.thai W = ®A,
@ = Y[, and will suBseQuently see that g?-= T where T are product
- coefficients defined in Table XiI.

In Table II, we note thét»we have consistently used-an abbreviated
factorial type notation al = ali ) (a+ 2)(a+2 - l) (a £ 4-1i+ 1)
along with the fact that we also have con51stently left out the value of
K for these terms. Thus, 3-2 /2!‘— (2 '+ 3)(2 + 2)/21 whlch could just
as well.be-also wrltten as 52/2!; '

.Table_III also uses this notation; thus, 4 = (£ + 4)(2 +3)(1 + 2).

' : ' 3 I+ . T
Table IV has as its first column ¢J =0 J»and the ‘Taylor harmonics
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_ 2+3 .
we are trying to match are TT?ﬁjTa where:a is the derivative harmonic

-corresponding to that pos1t10n. For example, for the Uth harmonié, we
gt '
[0

We have, however, appended the appropriate order to F as a subscript;

have (£ + 2) ———— . The G and F are essentially the E and C of Table I.

thus, F; has order r = £+ i. We have that

]

F.GF, F. 0°= S f.. 5 gix S f£.. S f£.. 0%.
> el . M1y e fodz 5, 93dk

1 & dp J3

It will be recalled that exaét’points have a special set of scheme
cogfficients and tﬁese are indicéted in Table IV. We have used the
Ordér r as a subscript for thé F instead of the rank R sinceiit suffices
. fdr the purpose of identifying the fij for'exact points. This turns out
10 be the.case since gij E‘O‘fafsﬁ§hpoints.' The use pf r gives us then
a simpler fabie that can mare easily be checked for mistakes.

‘The use ofAthes'e tablés to generate ‘the equati.ons given by
Condition B, Equation (62), Chapter II, is quite easy. We.simply multiply
the correspondlng table entrles of Tables II, III and IV together to
obtain ayl', divide by R'where R is the corresponding rank, sum up a row
of given order and set it equal to the corrésponding Taylor harmonic
multiplied by the derivative harmonic of that rank énd order. | |

bThere is, therefore, no problem to cbtain the pafametei.defining
equatiqns. quever, théy can be obtained e%en more easilyvusing appfoxi-
msation or7error harmqnics presented ianable IX. This result was-nof at
first‘apparént aﬁd, thus, the need for Tables I - IV. They are preéented[v
here, however, because théy furnish explicit examples aof the quantities
discﬁsséd'in Chapter II and are possibly in themselves of some iﬁterest
if one wishes to study the de&eiopment'of the equations, rafher tﬁan

generate schemes.
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Tables V - VII pertain to the Wérk Qf Chapter ITI. Again, our
first table of this setlis, in a sense, pattern establishing. We have
defined here the differentials A of Chapter III, Definitioﬁ 2. These
quantities depend on the value of £, the order r, degree s, index set
k), --., kg, and aré’sequenti?ily positioﬁed within that sét;f'

The first five columns &f Table V give this information. We have
actually included an extra ﬁiece of infqrmétion in the index sgt kl, N
k.. For example, ¢l9:is of dégree 1 and‘éhould thus have anly oné value

s
of k, k; = 0. However; we have added'alsd’the values of k that appear
" in the factors of wlg that are not equal to O. Theréfore, the.first s
Qalues of kl, ooy ks are the k values and the remaining set‘bf_values
are the other wvalues of k thaf-appéar'in the factor of ¥. ‘Ih.this'ﬁay,
we can see at a glanceAVhat value of k w actually depehds oh. This is_
rather'uéeful because if wé were to delete all ' terms dependiﬁg'on k =:l;
~ that is, we consider a fiﬁsf order'differéntialbequation, then we would
" certainly delete ¥ng, but might forget to delete ¢19.

Thevitems tabulated in the column-definition are the.same A.in the
‘same notétion as those given.in Chapter ITI. vWe note, however, that
‘since for degree zefO'&ﬂms,”we'have ro, = order - 1 aﬁd since. the order
:depends on I, we have used not rb, but‘ro - £. For example {3} is
aétualiy (g + 3}. This is not true fdr térms_of degree higher than O.
vThus, {3, wo} is really {3, O; wo}..

The rest of the éolﬁmns gi§¢ the sequential couht’of'¢_where k is
in the closed set heading that colum. For example o

Voo 18 Y8 1if k ¢ [1, =], Y if k € [2, ], ete. .
Note that this pertains alsoc to the column definition;' In particular,

we change both the k set and the reference indexing column when order-{
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becomes 6. The reaéon'for this 1is obvious, there are toé many functions.
However, it is easy enbugh to £ill in this table if that proves desirable
as indeed it may for'higher order Runge-Kﬁtta starting sehemes.

One of the most interesting things about TaBle V is that it makes
quite evident the tremendous simplificatién that takes place when
k = 0, that is, when the term of higheét ?erivative,‘is missing from
the right-hand side of the differeﬁtial equation. The diéaﬁpearance
of the k = 1 term again simplifies the table in the same fashion and, of
‘course, this continues as we move up in order. |

Tables VI‘and VIT are numbered in the same fashion as Table V. The
‘harmonics, as 1abled.iﬁ Table.VI, are those of Definition 4, Defintion 5,
and Definition 7 of Chepter III. It is these harmonics that the procedure
.RKMT uses. These derivative harmoniés arevthe same as those with rank R =
- order r in Table ITI provided we limit ouiselves to kvé (o, 0]. The
factorial type notation is again used al = (2 +a)(2 + é -1) .. (2 + &

- i+ 1) for the derivative harmoniés.

The substitution‘harmonics are preSénted éxaétly as defiﬁed in
Definition 5. We have,-howe&er, omitted the index r specifying thei
.oéaer. ‘Thus, Byg = .6 isvﬁhe l6th harmonic of x = X(u.+ 7) wﬁere a66
is the m =(6 + O-rOthcomponent of T; that is, the 6th component of the
k = 0 set. ' | | |

The multiplication harmonics aré defined exactly as in-ﬁéfinition Ts
'ﬁé havevthai Y corfesﬁonds to T»énd o correépbndsfto S. Aéain, thé-ordef |
: f inéex is omitted. | | |
| _Tablé'VII gives us the}transiation harmonics ‘corresponding to
"ltne'differeﬁtialsyA. We indicate their use ‘at the top of tﬁis table.

We have factored out of each block of harmonics tJ/j! and this is
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indicated by the.(:) at the left corner of each_block. We have also.
used the factorial type notation ad = (0+a)t+a-1)...(+a-j+1)
for those quantities that depend on £. This table is obtained from |
Definition 9 of Chapter ITI.
It is always nice to have checks for the tables that are cohstructedl
and, to a certain extént, this is possible. We notevthe following:
| The first column of Table VII should be the derivative harmonics

B presented in Table VI. We also have the following check sum for

Table VII.
o J
Hule: Take any row i with element'Yij. Factor out the term ET
J!

‘ (that is, use the table entries as presented in Table VII); theén

Y
J€ Sy

the translation harmonic corresponding to wi.” Note that j is restricted -

i3 750 = Yio = Pt

to the set'of”coefficients with order r. This result is true for all
orders in a given row.
| For:exaﬁple,‘ : 79O‘Wb0',? E9 :
Y91 Y10 * Vo2 Y20 = P
Yo3 Y50 + Yol Vho * V95 Y50 * Y96 Yeo * V9T V1O
: _ . 0.

The elements given in Table VII should be orthogonal as stated in -
the.qoréllary to Theorem 9 in'Chapter ITII. It is possible to éheck not
only the table, but its ﬁse by performing an expansion gi é'Z ai_Ai’
translating to bbtain'gi,=v2 5& K& and then substituting Taylor'harmonics
for a;; that is, assume §; = 5(91) is'an exact‘solutioﬁ éndvhas a Taylof's
expénsidh."We thén know the expansion.harmonics of £ with.respect to

both origins and can evaluate ai(ai) to see if the results are correct.
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The substitution harmonlcs prove sllghtly more troubleseme. The
derlped equations can be checked on known examples . Thls 1s to be
considered a necessary check, but certalnly not sufficient.p Another
check is to realize that if all pdintsqﬂa'scheme are exaeﬁfsolutions
E(éi), then each set of harmonics that iis: constructed should reduce to
iaylor harmonicslénd wﬁetﬁer thisAis, iﬁdeed,;the caee can.be easily”
eheck‘numerically‘bf a maehine. | | |

Tables VIIT - XII.are obtained from the work of Chapter IV. The-:
work of that chapter is a generalization of the work of Chapter IT.
-.Therefore, the tables here arevsimply‘a generalizatioh of Tables I - iV
and, thus, do not require a very'detailed explanation;” We note that an
ekplicit dependence_oh k has been introduced. Since the faet that
k € P= (O, cesey D = l},.there can be a profueion of terms in the
equations for'higher order equations._ ﬁe have limited the number of
pefme present iﬁithe tebles by tabulating only those for which one E
appears and omlttlng those for which there is more than one E.

The appllcatlon of the C and E operators to obtaln the qpantltles
given in the supplement to Table VIII is done in the same manner as
previously wiﬁh Table I. However, now we must.also pay attention to

- the value of k. We should mention that for ¢,, the (6 + k1 + ky) terms

*can be arrived at as follows. Consider kePs= (O,_..., p - 1}. TFor
= g° ' ‘
eech k, there is a ¥ = E, lk wk We{ thus have wo’ c ey wp-l'

Because A =.{O, O? O,fA1 A2} has,kl = kz; there are no permissible
permutations. Therefere; we-get new functions for the sets |
(Yor ¥5)5 (7/’1:. "P;}_): (?Pp_l, p_j_)' »
Wor #1)s Wi W), -
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Wor Yoy Wi Ypo1)s -
and having chosen wiwj,'we cannot chqose iji'

We have again used the factorial typé notation and omitted the
value of £ when tabulating the quantifiés of-Taﬁlés IX énd X. The
elementary polynomials of Tgble XI are also easily undersfobd in terms
:of those previously descriﬁed. We should, however, note a couple of
things. One is that the derivative harmbnics‘defined in Definition 5
‘of Chapter IV are not what has been'tabula£ed. We have, as indicated,
factored out (R . k); and to obtain aRrj of Chapter IV, we must divide
| thevtable entry by (R + k)! Also, we note that we have gggvtabulatedv
the product coefficients T of Chapter IV, but instead T L.

| The relations between the.vafious quéntities are given in
Theoremn 3vand Theorem 5 where we show.that W:= ®A, =" = ﬁF = H. We
see that we h;§e the prefiousiy mentioned check T = ay. The use of
~ these table entries is defined iﬁ Equaﬁion (45) of Chapter Iv.

Thé'last two tables, XTII and‘XIV,'cqntain,'in a certain sense, the
most interesﬁing:and.pleasing rééﬁlts.‘ Table XTTT présents the.trans-
.lation harmoniés as they pertain to error harmonics E. iThere is no
:differénce between.the interpreﬁation of this table_and'the previéusly.
described_translatiqn table. Theré is, however, a tremendousvsimpliﬁ
fication of‘the reSults..'These'results areQ»in fact, so simplifed_that
' the bnly_check left fo ﬁs is the orthogonality'check; thé check sum is
frivially ffﬁe.v | | | |

Table XIV gives the:apbroximation harmonics as:defined iﬁ
ﬁefinition 12 of Chapter_iV or equivaiently the error harhohics given.
in:Chapter V._‘Our ordering is that of Table V; we simply interpret

- the ¥; as either approximation harmonics or error harmonics. For any



e the ad:roprlate summatlons ‘as shown to the right of the table. Thls 1s,:

have before us here the totallty of equatlons and can ‘see thelr 1nter-’h

approximatlon,we write 1ts expan51on 1n these harmonlcs and then make ;[,¢{f

of course, nothlng more than what RKMI does for RK schemes, however, wevr

dependence. Slnce Table XIV is closely related to RKMI, it can furnlsh':q'“
| .
ar means by which we can check the reasonableness of the answers generated

by that program B This is’ qulte a necessary task because both people

and machlnes make mlstakes.,
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Appendix IT .

PROCEDURE RKMI SOURCE LISTINGS

In this appendix are presepted two:schemaﬁic SOurcé‘liétings, a
iist of.prodedure descriptions for all the main procedures, a list of
variables, and a complete soﬁrée listing-of RKMI. Thé‘first source
‘listing gives anjbverall #iew of the stfuctuqe of RKMI; the sécdndv,
:source listing gives déclaratiéns-of all thezvériables of the‘procedures.' '
The procedure>descriptions give short descriptions of théutask that fhe |
procedufe is to perform. - The list of variables gives a description of
most of the global variables. The last_éource listing is the program>
RKMI given in reference ALGOL.

Tt is hoped that these 1istings, along with those of Appgndix T
and aléng wifh the discussion of Chapter V; will serve as a guide for B
the reader thatvwishes to’uhdérstand how thé’program'ﬁofks. These
listings and diséussions can, however, only serve as a guide and; as is
unf ortunately always the case with programs, the interested reader must

address himself directly tb .the program and the problem-it solves.



Schemtic Source Listing 1

'I'he i‘ollowing is a schemtic source listing of RKMi in which all

the procedures and the global variables are declared This 1isting
provides an overall view of the structure of the program.

'Program RKM1

begin integer field,deciml,n for print nil,line lengbh left margin,
| right margin,count;height,neight1,pmax,last,last1,
last data,l,lastl,'tempo,type,der,order,upper,q,e,period,
origin,mde model length lengthl,length2,control,list
length n,no,nol,noa a0,A,A1,1,11,12,3,)1,name, type set;
‘Boolean temp,tempS, print scheme,linear comb, BOO, B0, BO1,B02, BA1,
| BA2,left adjust,inout; |

integer array 1m[0 1],pring length[o 12],

~ begin comment input-output procedures,

procedure dump(a); ; !
procedure lines(n); '

gi'ocedure spaces(n);.
procedure page; ;

-e s

" procedure s(string);

-e

procedure sr(string); ; N
procedure ps(i,string); 3
»procedure check mrgin(a);ﬁ-% i'v
proeedtzre pi(a); ; R
procedure pfi(a,e); ;

*.integer procedure ioi(string),

. ee

L 13

- integer procedure 1ob(string)-,

procedure title; ,
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begin: comment

begin comment

 Source Listing 1 Cont.

There appears here a section which inputs data that is
used to set computer parameters; |
Variable array declarations followed by procedure

declarations;

_ integer array num,no3[-1:2],cond[0:height-1];T[-1:0,0:exq],

El-1 :3,0:exq] ,VIo:List lengthl,Z[-1 :2,o:oréer-1_,'
o:exq,o:m[o]-1j,Zp[‘o:oraer-1,o’:m[o]-ﬂ_, |
v[0:1,0:exq,0:height1-1],va[0:1,0:height1-1],
wWl1:2,0:1m[0]-1],D[0:1im{0]-1 ;o:in[o]-l 1,

a[-1:0,0:1m[0]-1,0:4m{0]-1],B11,B2[0: pmax] ;

procedure check; H

procedure normalize(a,b); ;

integer procedure index(i); = ;

integer procedure fact(n); ;

. procedure debug(orgin,al,e2,a3); ;

integer procedure father(n,B0,B,name of son,son); ;

~integer procedure son(father entry,soni,B); ;

integer procedure get atom(father entry,atomic set,atom,B);

.o

integer procedure stom(1i); ;

integer procedure collection(n,B,set,f); ;

Boolean procedure Bncollection(B2,B1,n,B02,k); - 3

procedure sum(name,i,length of sum,name of list);  ;

procedure print sum(nmhe); 3

integer procedure minimum( v,length,w); ;

integer_proceduré JPn(cn,cd,n,B1); 3

integer procedure Ze; 3
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 procedure create E(i,BB);-

’

' procedure translate(v,namel ‘,name2,mmﬁype )s

again? ‘:

aga.iri:

_fin:

end

end of computations:

end

" procedure list(name of 1ist,BB); ;

procedure conditions E(nax;le of vector,name);

procedure data;

’

procdeure check list(first,last); ;

‘procedure scheme; ;

comment All declarations have been made. The following section

constitutes the control section;

E control

_1_{ control

_i_{ control
g‘_ control
if cdntrol

_:g‘_ control

of program,

end of RKMI

i

i

H

it

i

£ W

-1 then

)

then begin

then beg

then begin -

then begin

then begin

end velse

end else

end else

g_rlg_ else

.
»

procedure print 1ist(1,length,name,name of list,sign);

(_e_n_q of control; -

-e

o6k -



265

Schematic Source Listing __g

In the following listing there appear the declarations of all |
, forml paramters , all variebles and all procedures used by each procedure,
In order to decla.re the global variables we have introduced the. t.ype

declaration globa.l The procedures are 1isted in the order of their :

A
i i

' appeara.nce in RKM1,
procedure dump(a); integer a;

begin integer array B[0:1]; end dump;

procedure lines(n); value n; integer n;

begin 1nteger i;

global procedure output;

global integer count;

Sgc_l lines;

- procedure spaces(n); velue n; integer n;

begin integer i;

global procedure outcharacter;

global integer count;

~end spaces;

procedure page;

begin global procedure output; end pege;

procedure s( string); string string;
begin integer i,length;

vglbbal procedure chlength,oﬁtcharacter;
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global integér count;

end s;

procedure sr(string); string string;

- begin global integer line length;

global Boolean inout;

global procedure spaces

- - end sr;

. procednre»ps(i,string); integer 1; string string;

begin global integer array print length;

global procedure check mergin,s;

end ps;'

- procedure check margin(a)}vvalué a; integer a;
begin integer i; |

global integer count,right margin,left margin;

global procedure lines, spaces,s;

end check margiﬁ;

procedure pi(a); value &; integer a;

‘begin procedure layout;

begin global integer field;

~ global procedure format;

~end layout;

-e

' procedure list(item); proceduré item;

global integer count,field;
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global procedure spaces,s,outlist;

end p1;

procedure pfi(b,c); value b,c; integer b,c;
beéin integer a,n,nl;
global integer right margin,left margin;

- global procedure s;

begin procedu're'( layout;

begin global procedure format; end layout;

procedure list(item); procedure item; 3

global integer count ,typeset;

global procedure check margin,outlist;

. end

. end pfi;

integer procedure ioi(string); string string;

" begin integer n; .

globai Boolean inout;

global procedure input;

 begin global integer line length;

global Boolean left adjust;

. globai proéedure lines,spaces,s,o_utptrt;

end

-'_e_rld_ ioi;
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Boolean procedure iob(string), string string,

begin integer i,J3;

Boolean b;

global integer line lengbh H

glo'bal Boolean inout, left adjust;

global procedure eof incharacter,lines spaces,s;

end iob;

procedure title;
vegin integer 1,J,left margini;

global integer count,left margin;

global procedure eof,incharacter,check margin,s,equiv,
input,output; |

end title;

procedure check,

‘begin global integer last, tempo field,list 1enghh, v

globa.l Boolean temp,

global procedure lines, s, ,pi, check list,

'global lable end of computations;

S_rzd-check,‘
procedure normalize(a,b); integer a,b; ;

' procedure index(i), 1nteger i,

begln global integer q,it, 12 J, j1,period end index;
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" procedure fact(n); velue n; 1nteger n;

begin integer i,] SB‘.’: fecf.;

» procedure debug(origin a1 a2 a3), integer origin,a1 a.2,a3,

begin 1nteger 1 fie1d1,

global integer n for pring,field,no,no1 ,n02 last nil;

global integer erray no3,V;

global Boolean right adjust;

global procedure liries »8,pl;

end debug;

integer procedure father(n,BO ,name of son, son); .

integer n, name of son, son; Boolean B,BO;

begin 1nteger copy, son1,

global integer last ,nil ;

g&obal integer array V;

. global procedure debug;

end father;

1nteger procedure son('fathe'r' ehtry,som,B) H

integer father entry,som H Boolea.n B;

begin globa.l integer nil,

global integer array v;

globel procedure debug, o

end son, R
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integer procedure get atom(father entry,atomic set, atom,B);
integer father entry, atomic set, atom; Boolean B; |

comment unpacked;

beginv global integer nil;

global integer array V;

global procedure debug;

ng_q get atom;

integer procedure get atom(father entry,atomic set,atom,B);

integer father entry,atomic set,atom; Boolean B;
- comment packed 2 atoms/word; |
begin integer n1,n2;

global integer nil;

global .integer array V;

global Boolean BA1;

'global procedure abs de‘bug H

end get atom;

integer procedure atom(i); value i; integer 1;

comment unpacked;

begin global integer lest,nil;

glo‘bal integer array V;

glo'bal procedure check,debug,lines,s,pfi,check list,abs, E

“global lable end of computa.tions,

end atom;

270



Source Listing 2 Cont,

integer procedure atomKi); value i; integer 1i;

comment packed 2. atoms/word;

begin global integer last,no,nil}

global integer arrary V;

global Boolean BA2;

global procedure abs, lines,s,pfi,check list, check,debug,dump;

begin integer copy,ni,n2 end

end atom;

integer procedure collection(n,B,set,f);

_integer n,set; Boolean B; integer procedure f;

begin integer copy,soni;

Boolean BB;

global integer last,nil,no,A;

global Boolean BO,B0O;

global procedure father,son,debug;

’ end collection;

Boolean procedure BEncollection(B2,B1,n,H02,k);

value n,k; integer n,k; integer array B2,Bi; Boolean BO2;

begiﬁ integer j;

., own integer arrary B11[0:20];

own Boolean array B0O1[0:20];

global integer nil;

global procedure son;

- end Bnecollection;
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procedure sum(name,i,length of sum,name of 1list);
valué length of sum;

integer neme,i,length of sum,name of list;

begin integer 11;

integer procedure add -end(u); integer u;

begin global integer nil,i,no,a0,Al,1;

global Boolean EO,BO0,linear comb;

global procedure get’ atom, atom;

_g_r_x_g add end;

global integer last,last?,tempO,l,der,order,no2;

global integer srray im;

~ global Boolean temp,B02,linear comb; -

global procedure father,collection; -
end sum;
procedure print sum(name); integer name;
begin integer n,n1 ,n2,n3,nk,n5;

globa.l integer field, 1ength1 lengbh,order,count left mrgin

‘ der,order,contrpl,l,

global integer array vs;

global Booléa.n B0, iineai' cémb;' '

global pmcedure lines,s, pi ,spaces H

end print sum; - : BN
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integer procedure minimm(v,length,w);

integer length; integer array v,v;

begin integer j sk,m,min;
gl_obal integer length,nil 3

;

g_n_d minimum;

integer nrocedure JPn(cn,cd,n ,B1 ),

integer cn,cd n; integer array B1,

'begin integer j,c1,c2,n1,n2,m;

integer arrey. B,v,w[O:n—1 1;

global ger nil,last,a0;no;
global Boolean BO,BA1;

'global procedure get atom, atom,nomalize ,minimm,

end J'Pn,

integer procedure Ze;

begin integer n,n1,.j typeo

global integer type,nil no,nol,noa,A,Al a0;

global integer array W, 'B2 T,num,Zp,Z,BH,

' global ‘Boolean BO,BO1, B02 stempS;

global procedure father,son,get atom,Bncollection,JPn.'

end Ze;

procedure create' E(1,BB); value i; integer 1; Boolean BB;

begin integer 11; ¢

I

‘ integer array element[ 1:0,0: 3],

7>
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Boolean B;

global mteger mode,e ,period,q,der,order,no,nol ,n02,

A Al,j 3, nil,

glo'ba.l integer array im,E T Z;

globa.l Boolean BO1 ,B0;

global procedure index, father,atom,

end create E;
procedure translate(v,nemel,namea,mm,type),
va.lue v,num,type; integer v,name1 ,namea num,type,
begin integer t i,3,31,32,k1,k2,k3,kk, smax1 ,num? ,num2,temp00,temp1 ,tempa,

Boolean B1 BBI »BB2;

1nteger array vs[O:order-1,0:smax1-1],b[0:6xk1-1],

al [o smax1-1,0: im{0]-1],vs[O: order-1 O:smax1-1,0:im[0]- 1],

1nteger procedure store(u), integer u;

begin global integer 1 k1 type,t,no,A,aO,nil,

globa.l 1nteger array b;

global Boolesn BO,B0;

global procedure abs,get atom,atom;

end store ;
global mteger origin,q,der order upper,last lastl ,tempo,nil,no,
: n01 no2 A,A1,11;

globa.l 1nteger a.rra.y im,D,Zp,B2, BH,a, ,

global Boolean linear comb temp,ml BO;

global procedure 1ndex,fact atom, father,Bncollection JPn, sum;

end translate; H
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procedure print 11ist(1,length,name,name of list,sign);
va.lueilength; integer i,length,name,name of list,sign;

begin integer line,left margin,J,ji,n1,n2,n3;

global integer left margin,field,der,order,a0,A,Al,no2,count,nil;

global integer a.rra.yim, :

global Boolean BO1,B0;

- global procedure lines,spaces,pfi,pi,ps,son,get atom;

end print list;

procedure 1list(name of list,BB); 'i‘nteger neme of list; Boolean BB;

begin integer J,B2;

. gobal integer fleld,nil;

_giobai integer' array V;

giobal ' procedure lines,spaces,s,pi;

e_n_<_i_ list;

procedure conditions E(name ofvvectorv,name) ;
intége'r name of ve.ctor.,'name H | _
begin integer kmax,tmin,tmax,smin,i,t,left mrgih,m ;
procedure B( i,j)‘; integer 1,J; '

begin global procedure ps,pfi end B;

procedure theta(i,el)times B:(,j,é2); integer i,el,j,e2; "

begin global integer no2,11,q;

global procedure ps,pfi,fact,B;

" end theta;

A0 T
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1
global integer field,left margin,count,n,no,nol,no2,length,lengthi,
length2,der,order,upper,e,q,i1,period, type set;

‘global integer array B,v,cond;

global procedure index,ps,pi,lines,spaces;

end: conditions E;

procedure data;
begin procedure table(j,length,name); value ],engbh;
integer Jj,length,name;

begin integer procedure store;

begin global integer no,A,i1;

global Boolean BD;

globe.i procedure ioi,father,atom;
gn_g. store; '
global integer nol ,A1,12,nil;

global Boolean BO,BO1;

" global procedure ioi,iob,lines,s,list,father;
‘end table; :

- global integer contrbl,‘t&pe,i_,noa,last,la_st data;

glbbal integer array im,d,D,W;

global Boolean temp,left adJuét'; _

_e_n_g data;

procedure check 1ist(first,last); integer first,last;
begin integer 1, i1,j,k,type,def,no2,ﬁe1d1,10,11,12,13,col,mm col;

procedure fields(n2,n1); integer n1,n2;
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begin global int'eg er 12,11,10,num col,line length end;
* global integer e,q,order,field,last,nil;

global integer array im,V,T,Z;

global procedure page,lines,s,spaces,pi ,chlength;
end check list;

procedure scheme;

. begin global-pfoced.ure pege,lines,s end scheme;
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Procedure Descriptions

" Each procedure in RKMI performs a well defined task when it is
called., We give below a concise description of this task.
procedure dump(a); , | |
comment dump 1s used to obtain 8 sta.ck dtnnp by violating the bounds of
the loca.l array B[a],
procedure lines(n), ;
comment A new line, carrage return is performed n times on cha.nnel 2 using
- the glo'ba.l procedure output H
pnoceoure spaces(n), ;
:coment n spaces are written on channel 2 using the global pxjocedure :
outche.racter, RS o
proceo.ure page; 3
comment A new 1ine, carriage return is performed on channel 2 and & new
page is started using the globa.l procedure output;
procedure s(string), ; N | |
; comment Using the globa.l procedures chlength and outcharacter, procedure
8 outputs the string -string- on cha.nnel 2,
:procedure sr(string), ; | - |
conment 1f inout then sr outputs on Chs.nnel 2 a right adjusted string _
-string- . The globa.l Boolean inout- :lndicates whether the userA
desires to,have data read under an input - output mode; .‘unless‘
inout is _‘E’l_le;, thene will be .no o_utput from tl'.xis procedu_re'. .vThe -‘
progrem RKM1 1s designed to give as output text the totslity. oi’ :
which constitutes a meaningﬁﬂ. description of the integration
scheme and the parameter defining equstions associated with that -

scheme, When input - output of the data is .desixfed, for ,example' _
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when checking a_.;ta, it 1s helpful to have the data output separated -
from the program output. This 1s accomplished by using procedure
sr to right adjust the data output; | '

pi'ccedure ps(i,string); ;

comment ps is used to output tex‘b on channel 2. It is used principally

» in .'t.he printing of equations. The integer i identifies the actual

string parameter, the global variable print length[i] furnishes
the length in .characters of the string, and the global varisble
type set chooses the transliteration that will be used when the
string is pi'ihted. By means of this procedure, it is possible to
obtain the odtput of the parameter equations in different ‘program
languages., Presently there is a choice of CDC Algoi' and.Fortran
using either su"bscripted or siixlple variables;

procedure check margin(a); ;

comment Using the character count specified by the globa.l varia‘ble -coxmt-
a check is mmde whether the quantity (count + a) exceeds the right
margin. I'fv so, & new line - carrage return is performed on
channel 2 and the print position is set s0 that the next cheracter |
printed will be at the margin position specified by the global |
varisble left margin. An elementary exit procedure is provided to
avold an infinite loop should the field width be to large;

‘procedure pi(a); ; |

'commen'b The integer a is oubput on channel 2 using the field width
specified by the .glo'bal variable -fie1d~ The character countef

-count- is increased by the field width, however no margin checking

1s performed H
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procedure pfi(a,c);

. comment

integer

The integer ¢ is output on cha.nnel 2. The field width used is
determined from c¢. Margin checking is performed. If type set is

equal to 2, thus indicating Fortran output, periods are inserted

"in column 6 and the integer ¢ 18 printed as a fixed point real

number;

procedure ioi(string); ;

comment

ioi:= n where n is an integer input from cha.nnel 1 using standard
| (10)

format . if inout then n is output on channel 2 as -string'- n-.

| The output begins at (g left adjust then left margin + 5 else

integer

right margin - 30). Note that the output cen be omitted by setting
inout:= fa.lse,

procedure iob( string), ;

" comment

iob:= b where b is a Boolean input from channel 1 using standard
format » 1f inout then b is output on cha.nnel 2 as -string-‘ b-
’I‘he output begins at (if left adjust then left margin + 5 else
right ‘margin - 30 ). The vailue true is identified by the letter t
false by the letter ?, all other characters are ignored. After
accepting the Boolean val;ie, a delimetef_cqnsistinglof a blank or
a comma is looked for. Thus the value Er_ug can be represe’nted asv
t, or Ln_;g, or anything with a t in 1t. After recognizing the t
the only other characters recognized are the comma or blank.

Output can be omitted by setting inout:~ false;

procedure title;

comment

title inputs from channel 1 &nd outputs on channel 2 an Algol -

. comment. The first set of charscters on channel 1 should be

< comment > followed by < any text for which there is an internal.
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representation > followed by < . , >. Margin checking is performed
using the ‘p‘rocedure‘ check ma.rgin. ‘, An error message is furnished
if a.n end of file is incountered on channell;

: integer procedure index(1);

comment index:= (if J1 + =0 mod(q) then 0 else ,j1 + J) where .j 1 nbd(q)'
o, end 31 (1- j) mod(period xq);

integer procedure fact(n), 3

comment fact- = n fa.ctorial for n an integer > O,

procedure debug(origin,a1 a2 a.3), 3

‘ comment debug furnishes an elementary monitoring of the list elements which
| is use'ml in debugging a program using the procedures father, son

get a.tom collection, and atom;

: 'vinteger procedure father(n,B0,B,neme of son,son), "»; =
comment This procedure upon entry first. sets BO:= true "It then ici-éates a
list with name —father- the elements of which a.re sequentia.lly
ordered with n=0,1, s 2, ves s These elements are named and crea.ted
- by setting name of son:= son, . Elements -are a.dded to the list
until B:= false. If the list‘ father- is empty, then the ‘value .
father-~ nil is returned;

'integer procedure son(father entry,sonl B);

comment Given the non-empty 1ist with name -father entry-, the procedure -
: sonvfumuhes in succession sonl:= son:= the name of the neict sonv
in the list. For a given father entry, the first call to son
should be indicated by previously setting B'- true,

integer procedure get .atom( father entry,atomic set ,atom,B), 3

cOnment father entry is the name’ of a 1ist the elements of which a.re atoms,

The first entry to this lst is made by calling get atom with B = true.

¥See Page 280 for o description of ‘the procedure check and normalize.
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It then furnishes in succession atom:= get atom:= the ei'.'omic
velue. When the list is exhausted, atom furnishes nil. At each
call atomic set :- the atom name. If father entry is nil, then.
the procedure furnishes nil; | '

procedure atom(i);

comment

This procedure stores a non-nil atomic value i in the array element
V[1last] and returns the value atom:= la.si:, velues of i which are
nil are simply not stored;

procedure collection(n, B,set, f), H

‘collection creats & 1list with the name -collection- the elements

of which are themselves lists vhich are sequentially ordered with

n=0,1, 2, ... . FElements are added to collection until B:= false.

The parameter -set- is the name of a list with elements sonl, son2,

ceey 8ONL, ... . Given a value of n, then to each son of set there

" corresponds an element of collection with name -list- and the

Boolean

elements of list are obtained as f(soni);

procedure Bncollection(B2,B1,n,B02,k); ;-

_comment

given the lists B2[0],...,B2[n-1], Bncollection furnishes from

' these lists at each call one n-tuple of sons, (B1[0],...,B1[n-11),

and the value Bncollection:= true. When all n-tuples have been
obtained, Bncollecticn.; false. If any list -is ‘an empty list,
the.t is, a nil 1ist, Bncollection:= false.v BO2 must be set to

true to indicate the first call to Bncollection, it is returned :

- as false and thereei‘ter i3 to remain false. The pa.rameter k is .

the number of lists, starting with B2[0], for which only the first

‘son is to appear in the n-tuple;
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procedure sum(name i length of sum,name of list), 3

conment

Vectors of dimension order X im[0] are sumed. The elements of the
vectors are lists.‘ The parameter 1 1s the sumation index starting v_
with 0, neme of 1ist is the current component of the vector being
added to the sum, length of sum is the mmber of items sumed,

neme is the name of the current componentfof the sum. The component

‘indices are the global varia‘bles der and n02 if linear comb then

the sum represents & linear conbination of the vectors in which the
coefficients are B[...], if temp then the sum is stored in temporary

storage else in permanent storage,

procedure print sum(neme) 3 ‘; .

comnent

print sum defines the sum S[name k], the approximtions E[na.me k],

and the associated undetermined peremeters B[., .] by printing their -

_ a.lgebraic representations. In order that pa.rameter indexing

remain consistent with that used in pr_ocedure sum, it is necessary
that print sum be called.immediately preceeding the call to sum
which actually constructs the sum, o

procedure minimm(v, length,w), F

integer

comment

- -integer

This procedure finds min:= the minimum of the elements of v. It
sets minimum:= m which is the number of elements of v which are
equal to min. The array w, (w[-O]',v...,w[m-T] ), contains in an in-

creasing order the subscripts of those elements of v which are equal

“to min, A nil element is ignored. If all v[j] ere nil, then

minimmn’:= ‘l;

procedure JPn(cn,cd,n,B1 ), H

" ‘comment

JPn creates a normal form list of atoms corresponding to the product

e X B1[1] X vue X B[n-ﬂ where c is a constant cn/cd and B1[J] are o
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lists of atoms in normsl form. A normsl form list is of the form
(c1,ce,index[oj,exponent[O],...,index[i],exponent[i],...,index[p],
exponent[p] ) with ¢1,c2 relatively prime integers, and index(1] <.
index[j] 1f 1 < j. Note, at the present time the constants ¢!

and c2 are not ma.de rela.tireiy prime sinc'e.this has not 'heen
'necessa.ry; | |

integer procedure Ze; 3

éomment Ze performs 1f type = 1 then a Substitution x(Et. i.]) else if
type 2 then a multlplication DX(E[...]) x sl...]. The work
is carried out in the coefficient space of the ftmctlons A(O)[i]
| using tables W[type ,no2] to represent the substitution a.nd multipli-
cation operators, '
procedure create E(i BBR); 3
comment The approximation E[i] is created with tmdetemmed parameters.

if mode = -1 then

"Em--' ul=115h] (7L -1 1]) .
_ (if BB then sum(i 0, im[o] 1 B[...+i] X A( i1xh)[1]) else nil)

else if mode = 0 then

E[i]°— u[o](T[o i]) + _
. (if BB then sum(i 0, im[O] 1, B[...+i] X A(O)[i]) else nil),

procedure translate(v,name1 ,na.me2 num,type); ;

comment The procedure tra.nsla.te is used to translate a. vector with name -V~
of dimension ( 1im( o] X order ). the elements of which a.re lists. 3
| The origina.l component name is —name1- ’ the final component name 1is
na.me2 the number of intervals is -num-, the translation is- re-
‘presented by a ta.ble a[type seeese ] This table nomlna.lly represents

a tra.nslation of one h interval, the procedure substitutes the
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-correct value. The transletion is carried out in the coefficient
space of the functions A(O)[... Note that if type =1 then
the translation is in the -h direction else :I.f type O then the
_ translation is in the +h direction 3
| ﬁmcedure print 1ist(i,length,name,name of list,sign); ;
comment For ( 0 < 1 < length ) print list outputs in algebraic forux
A order X 1mt0]{ ) ho_ml '.form’J-.ist’s which have it}lle struc't_ure' ‘
- father(... ,'father(... )). The parameter -name of list- is the name
. of the 1ist to be printed, —name;- identifies the output, -sign-
© determines the sign of addition'between lists, 0 for - and 1 for +.
A normal form list 1s defined in the description of procedure JPn; .
'procedm-e list(name of 1131-, ,BB);
comment The procedure list outputc on chanmnel 2 the 1list with name -name of |
list-v if isB 'then e'-heading is provided; | -
procedure conditions E(name of vector,name), ;0
‘comment In' ‘order that E[name of vector]’* u[O](...) + sum(i o, im[O] B[...
o+ i] x A(0)[1]), where A(0)[1]) are the basic functions, be a valid
_ ‘rei:reseritation of the approximation 1t is necessary that .th‘e
 perameters B[... + 1] satisfy certain ¢onditions. The procedure
conditions E prints these conditions in dlgebraic forni as C[name,
der,t] = ( the equations a.rrising from these conditlons)
procedure data; 3 _
coment data reads from channel 1 a data table a.nd stores it in a list with‘
structure father(... ,father(... )), that is, a list with father, |
._ sons, atoms, »;'l‘he table is ectua.lly_ stored by the procedtn'e table ’-
 which makes the list. The mmber of fathers, is -length-, the |

" number of sons 1is -12-, the number of atoms is -i1-. The table .
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'represents it control -0 then derivative harmonics else 1f
control = 1 then transla.tion ha:rmnics else if control = 2 A type

= 0 then a substitution teble else E control = 2 A type = 1 then

a multiplieation table. Note that if' BO EhEE the list representing
the table 1is output on cha.rmel 2, 3 |
procedure check 1ist(first, last), | :
commnt When called, check 1list prints the '11ist storage array V[1], i-=
first,(T-),‘last -.1, and the names ofthe lists Z[type,der,no3[typ_e],
no2] and T[type,no3[typell. This procedure can by ca.lled at any
© time without changing any of the local or global parameters of
RKM1 3 |
4proeednre scheme; H \ ‘
‘ comment scheme defines the problem considered and furnishes definitions
-whi_ch along with the program output define a method of solution;
: proeedure check; = ; | v | |
eomment if last 2 tempon'1tempiv'last z 1ist length égggie meséage is brinted,
: the list elementsvv[i], 0 =1i = last are_dumped and the;program RKML
‘is stopped; |
procedure normalize(a,b); ¥
. comment given the integers a,b the procedure normalize returns them as

relatively prime integers a,b;:

¥See the description of JPn on page 284 and also the bottom of page 183.
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Varidble List

The following is a 1ist of the principal variables used in RKM1
It is not inclusive; 1t should, however, prove helpful to the reader who

wishes to understand how the program works.

Global Variables

1nteger

;identifier : | , eomment

fleld . The field width used in printing & numerical quentity.

decimal The nmnber_of'decimal digits in a printed number.

n for print After n for print approximations E[no3[0]] have been
created, the procedure debug will be sctivated and will
print.v . | |

nil - Consistently'used to indicate'the'empty set or zeroﬁt

 line length The length in 'cha.raeters of a print line, Used principally

| to determine the print line length of the printed (punched)
parameter definlng equations.

" left margin The position of the left margin.

_rightvmargin‘- The position of thevright-margin.

“last oata A list pointer pointing to the first available storage
_location after storing all the data tables.

1 The next free parameter index for the parameters B.

E;lasti : 1-Many'parameter values B[i] are reserved for interval -

| | parameters and undetermined parameters,-iastl is the rirst

free parameter available for ‘the scheme parameters. -

"rfteme ' The beginning of temporary storage.

¥Presently nil is represented by -2 T48.
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Varisble List Cont.

identifier o , comment
 type Usually used to determine the type of a quantity in the

following sense: there are approximations, approximators,
and sums, and the approximations can have local origin.
expansions o:f 6rigir_1 expansiqn.- See the table in Appendix
III, Source Listing I and note the varicus references to type.
der A counter rather cénsistentl_y used to represenf the -
| derivative index k m P = ,(o,."..,p-J) associated -with E[1,k].
order The order of the differential equation. Refered to as p o
" in the text. b,f\p.x - X QVE, order = P. - |
'ﬁpper ' The lower boundl of the lowest order approximation,
o upper = 1, see Chapter II, équation_ (3). |
q o | ' The rank of the scheme which is the number of approximstions
in one h interira’l. ” |
e  The extent of the scheme which is the total rumber of h
.. intervals c’6n§idéred’. | , | | |
. count | A pointer indicé.tjng fhe cuffént“ print position. |
_._Yheigi'rt | The value of the dimension 1imiting the nunber of approximators
| N or smé S that may be constructed. One cannot construct -
more than height sums S or approximators N. |
height1 The value of the dimension limiting the maximum number of
items that may appear in a sum S. One cannot construct a
sum that cqntainé more thap heigh_tﬂ 1tems.
%'pma.x Thé value of the _dimen»si'on‘ limiting the maximnu number of
V‘ | Alists that may be multiplied together. Notev ih_‘at. a sub-

‘which

stitution (multiplication) requires 67 = 6,X...x9;



identifier

last
lasti

period

origin

i'mode ‘

model
length
. lengthi
length2

. :,"eontrol

‘1ist length

' local origin), mode =

'The variable mode is in the set (0,-1).

289

*"Variable List Cont.

comment

18 J multiplice.tions and that the 0; ere stored as l-ists.
However, ‘the dimension is 1nput data and cen easily be set
as large as needed, |

A 1ist pointer pointing to the next available storage

locat ion.

A list pointer usually used to remember where last was when

last is tempora.rily shifted.

;The period of the scheme.

The location of the orlgin presently set to 0 with the
understanding that zero corresponds to -B[O] = 0, Remember

that the develomment of the results of Chapters II, ITI,

IV, and V never fixed the origin, but presently RKMi does.

The-jiype ofv translation, mode = -1 implies & forward
translation ( undeteimin’ed parameters create'd a.bout the
0 implies a backward tra.nslation
(undetermined pa.rameters created about vthe origin).
The variable mode?l
always has the other value of mode.

The number of items appearing in'a sum S.

The number of approximations E appearing in a sum S.

' The number of approximators N appearing in a sum that

were created by means of a ‘substitution.

A simple va.iiafble used exclusively by the ‘user to control the .
action of the progra.m. |

The dimension limiting the maximum length of the llst

'storage array. This includes -’che temporary storage.



identifier

n

" no

© nol

no2

a0
A

i1

iz )

Cae ™

i

| - type set

 3001ean

'temp

print scheme

linear comb

'BOO
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Varisble List Cont.

: comment
A comter .
Usually sequences the elements of ; list of level O,
USually séquences the elements ofla list of level 1;

Usually sequences the'elements of a list of level'2.

Usually the value of an atom from the 1list.

| Usually the name of an stom.

Usually the name of an element of & 1ist of level 1
Very often siﬁply coﬁnteré.b Remember that these are
global varisbles here. Beware, ﬁhén the procedure
ihdex 1s used, it sets i1, i2, j,‘j] to values with

a particular significance, See Chapter V.

Selects the language of the'eqﬁhtion output. See

" Appendix ITI.

The value true means that storage in the list will
take place in the section reserved for temporary storage.

The value true means that the scheme description will be

- printed.

‘The value true means that the procedure sum will perform
a linear combination of the given itéms. Thus new

parameters will multiply each item of the sum. The

~ value false meéns that the procedure sum will simply

_sum the items.

Global Booleéh availsble for general use. See, however,

procedure collection,



identifier

BO

BO1

BAl

BA2

left adjust

inout

integer array

im

no3
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Varisble List Cont.

comment
Uséd principally as an actuai parameter of the procedure
father for.lists of level 6.
ﬁsed.principally as én acfﬁal parameter of the procedure
father for lists of level 1.
Used exclusi&ely in the packed version of atom aﬁd ge£
atom to indicate which half of the word we are chrrently
working in.. A:change in‘the numbef of atoms per word |
réquires thought sbout the use of BAland BA2. . The
unpacked versioné of.atom and get atom make no use of
these variables. | |

The value true means that output will be left_adjhsted,

otherwise it is right adjusted.

The value true means that all input.ﬁill be output on

- channel 2. 'The value false means no input will be output.

im{0] is the number of fasis functions. We implicitly assume

that we will chooSe all the hafmonics_corresponding to

" some ofder r of the tables given in Appendix I. This is

not absblutely necessary for RKMI but>i5'necessary if the

- output is to contain -all the equations.

im[1) is the nunber of derivatives we atten?tfto match in

im[0]~1 : k+2+i+r
v[m].‘.—_ - Z' Dp+k+_rx ...I.______ .
r=0 (kL4147

Since r corresponds to the order mentioned above with
regard'tovim[o], Ve-see that there is one defivative-for"

each order of the differentials that are the basis functions. -

The names of various quantities. ‘This is usually used as

no3[type] where type indicates what qﬁantity we are



identifier

cond

Zp .
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Variable List Cont.:

comuent -
refering to. See the description of type. |
The names of approximators that have conditions attached to _f'
their paxameters. They ha.ve conditions when they have been ‘

used in a sum and ‘the approximator wa_s created by means of

a s'ubstitution. o

The names (list entry points) of the interval parsmeters cH
in the quantities u(6; ). |
If an ‘approJ.:imat:ion ¢; has been created then E[0,1] is

zero. If undetermined parameters have been used to create

" this approximstion, then E[-1,1] is zero. The quantity

£[0,i] is the smallest index of the parameters appearing

in ¢;. E[1,1] is the number of apprnximat‘ions appearing

"in ¢, , E[2,1] is the nunber of apptoximators appearing

in gl that have been created by a substitution, E[3,i]

is the total number of items in the sum,

This is the list storage array. All list'vaiues.are stofed_i
in' V. . | o

o

Names of the 1lists. We usually ha.ve z[type,der,i,no02]. "'I‘he' _

. variable type gives the quantity ve are identifying. See

~ the description of type.

Names of the lists. Used in the same fashion as Z except .

that ‘these lists are stored in temporary storage. The name

is valid for an 1tem only as long as .tempor_ary storage is

not used again, Remember, translation may use temporary

storage. Thus & sum that is stored temporarily may be

destroyed if one :su'bsequently creates an approximation with
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vs

B

_ Variable List Cont.

comment

undetermined parameters before using S. :

The quanti'fies"bw'r[o,-r;o3[0],i] are the names of the appz;oximaQ
tions appearing in the construcfbion of £, 3= no3[o]. :
The quantities v[1,n03[0],1] are the names of the approxi-
mators appearing in the c_onstruction..v

Temporary storage of names

The quantities W[1,1] are entry points to the substitution
table, W[2,1] are entry points to the multiplication table.
See procedures dsta and Ze. -
The quantities D are derivative harmonics. See procedures
data and'trq.nslate.

The quantities a are translation harmonics. See'procedures'

data and translate.

 Global storage for names when multiplying lists. See

procedures Ze and transiate.
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RKMI ALGOL 60 SOURCE LISTING

The following_soﬁrce listing has been prepared from a flexowriter
tape that contains thé program RKML. The only non-standard ALGOL symbol
;is the use of « for the string space character id. In order that this
listing be as accurété as possibie, the fleiowriter tapé was translated
5y machine to CDC ALGOL card ‘images andkthat source deck waé then compiled-
and run on.thé two exaﬁplés,.Examplev1_and'2, for which we have-presented’
complete data. The results obtained agree with thpée_presented'hefé."‘
Thé few errors that were detected during this prbcess were then corrected
on the flexowriter tape.

. At the end of the source listing, we have presented a list of
known.restrictions and omissions. Thésé are of avminor-natufe_and have
not affected our use of the program.

The source listing presented_on pageé 295 through'336 is the
':prograﬁ’RKMI. The versions of atom and get‘atom which appear in ﬁhis
listing aré packed two afoms pef ﬁofd. To obtain an unpacked Versionf
of RKMI; replace these two procedures bj the procedures'atom énd ge£ atom

that are given on page 337.



' b'eg'in

begin

- comment The foll@vdng program, RKM1, is a generator of generallzed Runge-Kutta-Frey type schemes

“with memory inc]_.uding 1st derivative DX to be used in the nurderical_ solution of n-th.

order systems of p-th. order ordinary differential equations., All parameter defining equations.

are output along with the scheme definition 3

integer field,decimal,n for print, nil,lin,e lengt.h left mergin,right margin,count,height,heighti ,pnax,

last last1 last d.ata,l lastl,tempo,type,der,order,upper,q,e,period origin,mode,mode1 length

 lengthl,length?,control,list lengbh,n,no-,noj,noE,aO,A,A1,i,i1,12,3,31,name,type set;

Boolean temp;temps,print scheme, linear comb,B00,B0,B01,B02,BA1,BA2,left adjust,inout;

4 'intégerrarra;[ im[0:1],print length[0:12];

procedure dump(a); teger a;

vegin integer array B[O:‘1]§ Bla] := 1 end dump;

ééa -



Eméedure title; i
begin int_ger i,J,k,left margim H

, eof(1,exit), left ma.rgirﬂ left ma.rgin, Ji= 1:= 0;. :
for Ji= 3+ 1 while J $ 24 do :anha.racter(1 ‘coment’,i), lines(1), s(‘comment’ ); ki= 3:= 0
for Ji= iwmle (1 + equiv(¢,’) vV k $ equiv(‘ ’)) do
m =13 1npu+,(1 ‘a’,i), check margin(1), count:= count + 1; output(2, fa’,i) end; H
g toend; | |
~exit: s(‘eof _,_incouhtered L, in, title’ );
end: left ma.fg_in.= left margini

end title;

* procedure lines(n), value n; integer n;

begin mteger i; for i:= 1 step 1 until n do outptrb(2,‘/’ ), count:= 1 end lines;

groceduré spaces(n) ; value n; integer n;

begin inteéer i forr i1:=1 step 1 until n _49_ outchéracter(e, 2751 ); count:= count + n end spaces;

_ procedure page; outpu_t(2', ‘N );

962



' procedure s(string); string string;

" begin integer 1,length;
" length:= chlength(string);
for i:= 1 step 1 until length do Voutcharac'cer(Q ,string,1i); count:= count + length

end s;

'Erocedure sr(string); string string;
if inout then‘begin lines(1); spaces(line length - 30); s(string) end sr;

| gméedure pé(i ,string); intéger' i; string string;
begin check margin(print lengthl[il);

- if typeset = 1 then begin _i_f_ count = left margin then spaces(1); s(string) end else

if typeset = 2 then

begin if count = 6 then s(¢.?); if 1 = 1 V1 = 3 then s(¢(?) else

i_f__i-=2Vi=l+:c_k_asgs(f)’)gl_§g_igi=9§p_e_x3s('>o<’)__g_1_ss
if 1 = 10 then s(%=*) else if 1 4 12gx_e_rls(s.tring)v
if typeset = 3 then

‘begin _:Ii count = left margin then spaces(1); _:L:_f_i% 1Ai142A14 11 then s(string) end else

L62



if typeset = 4 then

begin if count = '6v'bhen‘s(‘._’); 1f 1 = 3 then s(¢(?) else

9 then s(xx’) else

AT 1=k then s(¢)?) else if 1 =
ifd= loms(‘%_’)g_]ﬁ_e__i_i:i+ 12/\i+‘11 A14 1 A14 2 then s(string)
énd . .
gr_lgps;.

procedure check margin(a.); value 8; integer a;

begin integer i; 1:= O;

again: 1:= 1 + 1; Lf_ i> 2_1_3_139_1}_59_& exit;
if countv + a > right margin then
begin ,lihes(1 ); spaces(ief‘t mérgi_.n - 1); go_to again end;
g to fin; |
exit: s( ‘check,margin’ );
- fin:

end check margin 3

862



procedure pi(a); value a; integer a;

begin procedure layout; formst(‘-xzd’,field - 2);

procedure list(it.em); procedure item; item(a);
count:= count + fileld; - '

if a = O then Begin spaces(field - 1); s(fO’) end else outlist(2,layout,list)

end pi;

procedure pfi(b,c); value b,c; integer b,c;

begin integer a,n,nl;

n:=.¢3 a:= 2;
for nl:= a + 1 while n I 0 g_g;begin n:=n + 10; a:= nl end;

if (right margin - left margin) < a then s(‘line,length,<,field,width’) else

begin procedure layout; format(¢-xd’,a - 2);

procedure list(item); procedure item; item(c);

check margin(a + 1);

if count = '6»/\"(‘bypeset = 2 V typeset = k) then s(¢.?); -

if ¢ = 0 then s(¢,0?) else begin outlist(2,layout,list); count:= count + & - 1 end;
if b = 100 A (typeset = 2 V typeset = 4) then s(¢.?)

end .

662

: ?—ng pfj_;"



integer procedure ioiv( string); string _s.tri_hg;

N begin integer nj-

input(1 ",n), loi:= n; if inout then

begin lines(1), spaces(if left adjust then 5 else line lengbh - 30); s(string), s(¢,:=?)

if n = O then s(¢0’) else output(2, ‘-4zd’ ,n)

end
end ioi;

- Boolean procedure iob(string); string string;

i begin Boolean b_; integer 1,33

| - J:= 0; 'eof(i,exit); i:= 0; | _
Ar;:_:; Ji= 3+ while 1 F1A142 gg__incharacter(i,ftf’,i); bi= (1=1);
for Ji= 3 # 1 while 1 $ 1 A 1 + 2 §£ mcharaéter(i',‘u_',vi);

~if inout, then ' o

be gin lines(1 ), spaces(if left adJust then 5 else line length - 30),

s(string), s(¢,:=,2); i b then s{“true’) else s(¢false’)
g‘_rlg;)g_o__g end iob;' | | |
‘exit: s(¢ eof ', read, in, procedure J_io'b" %
end iob: fobi= b |

. end iob;

‘ 00¢



begin:

1nout-='1eft adjust' true, count := o, field:= 3; decimal'- 0; page;

if ioi( ‘control’) < 1 then go to end of computations else lines(2); F
s(¢ data&input‘_that‘sets‘,_computer,_variables’), lines(2);
s(¢1:= O,,for,print,_length[i]:ﬂ ); inout:= false;

for i:= O step 1 until 12 do -

begin print 'lengbh[i]':e 101(¢*); pi(print length[1]); if 1 $ 12 then s(¢,’) end;

s( ,do,1:=1+137); inou't'— true, typeset:= ioi( “typeset’ );

n for print:= ioi(‘n‘,_for_,_print’ ); line 1ength-~ ioi(‘line_,_length’), left margin:= 2;
| .righ’t margin:= 1ine length - _2; tempO:= 101( ‘origin_,_of_,_temporary)_store’ );
" 1ist length:= ioi( ‘list_,_length’ ); height:= ioi( ‘maximum,nunber,of,vectors,N,or,sums,S’);

“heightl:= 1oi( ‘maximum‘,_lengthz_of,_al_swn’ ); pmax:= 1oi( ‘maximum,length,of,a,1ist,product? );

define problem lines(2);.

left ‘,é.‘d‘.just 4= j._gu_g 3 s(¢ dé.tal_inp\it;that Lpé.rticularizes 2_‘_l:lfle J_pmblenﬁ ); lines(2);

order:= ioi( ‘order,of ;fhe ,differential,equation’ ); upper:= ioi( ‘D,{\(order p+Hupper )x, is,the,
first &negiected J_T_aylor *, texm, , upper? ); : q:= ioi(¢ humber ,0f, points, in J_ene , 1, Interval? );

e:= 151( ‘nmnb‘er_,_ofl_hl_intewds’ ); ﬁeriod:= ioi( ‘period,of,scheme’ ); 1m{0] := 1oi( ‘number,
of,basic qur;ctions’ ); im[1]:= 1oi(* number,of 4deiivatives , e, attempt, to,mateh’ );

left adjust:= false; -

T0¢
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_ comment varia’ble array- declarations followed by procedure decla.rations,

begin

integer array num,no3[-1:2],cond[0:height - 1],T[-1:0,0:exq],E[-1:3,0: qu] v[o 1ist lengthl,

z[-1:2,0:0rder - 1,0:exq,0:1im[0] - 1},2pl[0:order - 1;0:im{0] -1],
© v[0:1,0:exq,0:heightl - 1],vs[o_:1,o:he1ght1 - 11,wl1:2,0:1m[0] - 1],

- p{o:im{1] -1,0:4m{0] -1],al-1:0,0:4m[0]-1,0:1im[0] -1];B1l1,32[0:pmax];

procedure check; if last > temp0 A 1 temp V last > list length then

begin lines(1); s(¢ overlap ), last, 1=2 ); field:=5; pi'(last);

check list(O ,last) ; g0 _to end of computations

end check;

-e

pro rocedure nomalize(a,b), integer a,b;

integer procedure index(1i); integer 1i;

begin 11:= 1 + q; Ji= 1 - i1 X q; ‘12:= 11 + period; 31:=(141 - 12 X period) X q;

‘index—if(31+,j)-((,j1+,j)+q)><q—0then0elsej‘l +

' ,7 -end index,

co¢



integer Emcédﬁre.faét(n); value n; integer n;

begin Integer i,,j-; if n = O then fact:="1 els

begin J:= 1; for 1:= 1 step 1 until n do J:= 1 X J; fact:= J end

end fact;

-e

procedure debug (origin,al,a2,a3); integer origin,al,e2,a3;

' integer prbcedure 'father(n,BO,B,name of son,son)'; intéger nyname of son,son; Boolean B,BO;

begin  integer copy,soni;

‘ni= Q;‘copy::las‘b; last:= last + 1; BO:= true;
again: 1if B 3}332' begin name of son:= sonl:= son; debug(1,sonl,nil,nil); n:= n+l; g0 to again end
o else 1f copy = last-1 then begin father:- nil; lest:= lest-1 end |
else begin father:= copy; V[cop;y]-.‘v= last; debug(2,copy,nil,nil) end

end father 3

integer procedure son(father entry,soni,B); in'teg er father entry, sonl; Boolean B;

begin if B.then -

'beg'in 1f father entry = nil then begin sonl:= son:= nil; go to end end;

B:= false; sonl:= son:= father entry + 1

¢og



end ‘else“ '

be'giri sonl:= son:= if V[son1] < V[father entry] then V[son1i] ‘else nil end;
end: debug(3,father entry, sonl,V[sont])

end son;

integer émceduré atom(i); velue 1; integer 1i;
comment packed two atoms/wbrd; _
p;gg;r_x"atom:= last; 1f no = 0 ﬂa_g_q BA2:= true; if i $ nil then
begin if abs(1) > 8 388 607 then | | |
~ begin Lines(1); s( ‘atom,too,large:=?); pfi(0,1);
- checklist(0,last); go to end of computations
, end else | | h

begin integer copy,ni,n2;
check, nl:= 16 TTT 216 n2. 8 388 608;

if BA? then
 begtn vl1last]:= a.bs(i) X n1 +n2; if 1 <O then Vllastl:= -V[lest];
BA2:= 1 BA2; lest:= last + 1; |
begin lasti= last - 1; copy:= ebs(V[last]) + abs(1);
| if i > O:t_‘;llil} copy:=-copy - n2; if V[last](.o then copy:= - copy;
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 V[1last]:= copy; last:= last + 1; BA2:= 7 BA2
o o
end; debug(6,1i,nil,nil)

end

end atom;

vinteggr' pi'ocedure get atom(father entry,atomic.- set ,atom,B) H

integer father entry,atomic set,atom; Boolean B;
comment packed two atoms/word;

begin integer nl,n2;

“n1:= 16 TTT 2165 n2:= 8 388 608; if B then

'begin 1f father entry = nil then begin get atom:= atom:= nil; go to end end;

B:= 7 B; atomlc set:= father entry + 1; BAl:= true

end else if BA! then atomic set:= atomic set + 1;
‘43.2 atomic set < V[father entry] then
begin 1f BA1 then

begin get atom:= atom:= V[atomic set] + n1; BA1:= 7 BA1 end else

begin atom:= abs(abs(V[atomic set]) - abs((V[atomic set] + n1) x n1));

. if atom = n2 then begin get atom:= atom:é..nil; go to end grii;;' :
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if ‘atom > n2 Elle_r_l;_vatom.;.-(atom - n2);
ge£ atom:= atom; BA1:= 7 BAI |
end else‘ get atom:= atom:= nil;
end: debug(k father entry,atomic set,atom)

end get atom,

integer procedure colléction(n,B,set,f); integer n,set; Booleen B, integer procedure f;

begln ' 1nteger copy,sonl; Boolean BB;

ri:

-1; copy:_= last_., ]‘.ats*b.‘= last + 1; BB:= rue; :
for n:='n +,1 whil‘e B do |

__e_g_i_ if set # nil then ‘_

for n:= n while son(set,som BB) | nil do

beégin BI0:= true; father (no,B0,B00,A,f(son1)) end;
egin _ ) gna

: BB1:=“§_1_'_u_§.
end; if copy = last -1
then begin éou'e_ction:e nil; lest:= lest- 1 end
else 31?.512 collection:= copy; Vlcopyl:= last, dé'bug(s‘,'copy,‘nil,nil) g@_'

end collection; .
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‘Boolean procedure 'Bncoll_e‘ction(Ba ,B1,n,B02,k); value n,k;

integer n,k; integer array B2,B1; Boolean BO2;

begin integer J; own integer array B11[0:20]; own Boolean array B01[0:20];

if BO2 then

begin BO2:= false; for j:= O step 1 until n-1 do

begin if B2[J]= nil then begin Bncollection:= false; go to end end;
| B01[3]:= true; B1[4]:= son(Bé[.)],Bn[.j],Bm[J]) |

end; Bneollectlon:= true; go to ehd

end else if n = 1 then begin Bncollection:= faise; go to end end

.33_53',__31 [k]:= son(B2[kl,B11[k],B01[Kk]);

for Ji= K step 1 until n-1 do

begin if B1[j]l= nil then.

begin if § = n-1 then begin_Brxcollectién:= false; go to end end;
| B1[J+1]:= son(B2[ +1 1,B11[3+1],B01[3+1]); BOY [3):= true;
B1[4]:= son(B2[31,B11[3]1,201(41)

" end

end; Bncollection:= true;
end:

end Bneollection;
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procedure sum(name,i length of sum,name of list) 3 vaJ.ue length of sum;

integer name,i,length of sum,name of 1ist, .

begin integer 11;

integer procedure add end(u); integer u;

begin BO0:= (get 'atbm(.u,m,ao,m) } ni1);
_1_2 BOO then add end:= atom(20) ’
else if 11néa_r conh ﬂagg begin add end:= atom(i + 1); add end:= atom(1) end
end add end; | | ' ' o
if temp then begin lastli= last; lasti= temp0 end; 11:= 1j der:= -1;
‘ ggg‘der:= der + 1 while der < order do
begin 1:= 11 + der X length of sum; o
| fathef(noa;ma,noe < im[0] naxhe,ééllection(i 1 '<' léngth of sum,r_;ame.of 1list, add end));
_end; l:= if 1inear comb then 11 + order X length of sum else 11,
-if temp then __e_g_j_;r_x. 11 last, last'- lastl, last1 = 11 Erl‘l

- end sum;
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procedure print sum(name), 1nteger name,

begin

nk:= 33 n5

.1nteger nl,n2 n3,nh n5;

u field:= nb; nl:= if lengthi $ 0 then O else 1,

n2'—'if length - order X lengthl } O then 1 else 0,

"BO:= true; lines(a); count:= left margin;

for der:= O step 1 until order - 1 do

~begin if control = 2 then s(¢S’) else s(“E’); s(*¢ [’), pl(name); s(‘ ’), pi(der); s(¢ ] 2’ )s

for n:= nl step 1 until n2 do

egi lines(1 ),

1: s(‘sum( ); if BO then s(¢1’) else s(¢3’); s(¢,0,?);

pi(ig_n=0 A BO then length1-1 else if n=0AT RO then order-1 else .

length-orderxiengthl-1);

s(‘,’); if B0 An=0thenb __512 BO:= false, go to 11 end,
if linear comb then |
22533 field:= n5;
| 8(“B[*); pi(1 + derxlength + (if n = O then O else orderxlengthl));
field:= nh s(‘ + 1’), if n = O then begin in s(*,x?); pi(order); s(¢, j’) end;
s(‘]‘x")
end; if n = O then s(‘E’) else s(‘N’), s(¢ [v[’), pi(n), s(¢,11°);

if n = O then begin s(¢,”); s(,3’) end; s(€1)?);
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ifn=0 ﬁhen__s(‘)‘-}’);
. BD:= true; if n = n2 then lines(2);
id.

end; lines(1); fieldi= n5;

- for n:= nl step 1 until 1 do

begin s( ‘where,,v[’); pi(n); s(¢1:=(*);-
" n2:= (4f n = O then lengthl else length-orderxlengthl) - 1;

for n3:= O step 1 until n2 do

begin pi(vs[n,n3]); if n3 $ n2 then s(<,’) else s(¢)?) end;

s(¢, and ,,vI?); piln); s(¢,11:=,v[7); pi(n); s(€1[1]7); lines(1)

end

end print sum;

integer proéedure‘ minimum(v,length,w); integer length; integer array v,w;

integer Jj,k sm,min;

begin

k:=length-1; m:= O; min:= 9999;

for 3:= O step 1 wntil k do if v[j] < min A v[Jj] # nil then min:

for J:=0'step 1 until k do if v[j] = riin then begin wlml:= J; m:=

minimum:= if min = 9999 then nil else m’

_e_gig minlmum, ..

vl3l; .

m+ 1 end;
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integer procedure JPn(cn,cd,n,Bl); integer en,cd,n; integer array Bl;

begin integer j,cl,c2,nl,n2,m; integer array B,v,w[O:n-1];

ifn=0Vn = nil then begin JPn:= last; BO:= false; go to fin end;

c1:= en; ¢2:= ed; nl:= n-1; n2:= 13

for J:= O step 1 until nl do | , |
begin BO:= true; el:= e X get atom(m[,j],B[,j],ao,Bo); c2:= 2 X get atom(BT[.j],B(j],va.o,BO) end;
normalize(c1,c2); JPn:= atom(c1); no:= 1; JPn:= atom(c2);

_fg_x:,j:= Oste21 until n1 do

begin BAl:= frue; if get atom(BﬂJ];B[J],aO,HJ) = nil then -

begin if n2 = n then go to fin else n2:= n2+l end; v[J):= a0
end; |

‘again: m:= minimm(v,n,w); atom(v[w[0]]); cl1:= 0;

for J:= O step 1 until m-1 do
begin BA1:= false; cl:= o1 + get atom(B1[w[41],B[w[41],20,B0);
. if get atom(B1[w[‘j]],B[w[J]],ao;,BD) = nil tlflen n2:= n2 + 1; v{wl3jll:= a0

atom(e1);

end; E’_ ¢l = 0 then last:= last -~ 1 else JPn:
if n2 < n then go to again;
fin:

end JPn;
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integer procedure Ze;

begin

integer n,nl,J,type0;

BO2:= true;

if son(w[type,noaj,Al ,B02) = nil then Ze:= nil else .

begin B2[0] := W[type,noQ];' nl:= 0; J:= 0;

| for J:= J + 1 while son(B2(0],A1,B02) $ nil do -

begin BO:= trué’; typeQ:_= if 3 = 2 A type = 2 then type else O;
' for ni= nl + 1 while get atom (A1,A,a0,0) 4 nil A a0 > 0 do

begin 1f § = 1 then

begin for ni:= n step 1 until n + a0 - 1 do B2[n1]:= T(0,num[0]];
| nli=n + a0 - 1 |
_pgﬁi_q B2[n]:= if § = 2 A tempS A type = 2 then zp[ao,get atom(A1,A,ao,Bo)]
else z[type0,a0,num[type0],get atom(At,A,20,B0)]; nl:= n
_e_rg o - .

end
end, n:= n1 ‘+”1}5 |

 Ze:= father(nol,B01,Bncollection(B2,B11,n,B01,1),A1, father(no, B0, 0, 4,JPn(1,1,n,B11)))
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pro rocedur create E(i BZB), value 1 BB, Boolean BB; integer i,

begin integer 11; integer array element[ 1:0,0:3]; Boolean B;

11:= index(1); B:=(11 = O A mode = -1) V(i =0Amde = 0);

it

element[ 1 3] = element[O, o]

i

: element[0,1]:=.element[0,31:= element[-1,1]:
element[0,2]:= 2 X perfod X q + i; elemerﬁ:[-hO] := if 11 = O then O else 1; element[-1,2]:= 11;
for 11:= -10de | ‘ |
‘T[l1 i]:= father(no1 BO1,n01 < 1,A1,father(no, BO,no < 4 A,atom(if element[ll 0] =0 then

nil else element{l1,n0])));
El0,1]:= 0;
e _
. begin deri= -1; element[0,0]:= 1; - o T

for deri= der + 1 while der < order do

for no2:= 0 step 1 wntil tmf0] -1 do |
begin element[0,2]:= 1 + 2 x period X q + e X q + (if mode = =1 then (J + §1) else 1)
| X im[O] X order + der X im{0] + no2; |
Z[mod.e,der,i,noa] 1f B then nil else father(n01 BO1,nol < 1,A1 father(no BO,

no < h,A,atom(element[nm ,no] )

end; if 1 B then E[-1,1]:= 0
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groced translate(v,namel ,na.me2 num,type), value: v,num,type, teger v,nemel ;name2, num,type,

begin

inte&r t,i,3,31,32,k1 k2,k3 kh smaxl,nwm ,num2 tempO0, templ ,temp2;

Boolean B1,BB1, BB2;

if (v > origin A v < origin + g) then

begin for der:= O step 1 until order - 1 do

begin for for no2:= O step 1 until im[O] -1 do name2. name1 end; go to end translste
end; templ:= last1, last1 last; last:= temp0O0:= tempO; smax1:= im[0] + im[1];

B1:=" (type = -1); BB2:= linear comb; linear comb:= false; BBI:= temp; temp:= true;

k1:= order + upper';
if B then be egin ki:= (kM\e CK1) 24 K15 num2:= -1 end else num2:=

begin integer array vs[O.ord.er-1,0.smax1-1],b[0.6><k1 1,a1[0:smax1-1,0:4m[0]-1],

‘Vs[O:ordéf-1 0:smax1-1 O:im[O]-1];

mte&r procedure store(u), integer u;
begin if O then |
p_ggin_ kl:= =1;
for m := k1 + 1 while get atom(u,A a0,B0) =|= nil do
begin 1:= k1; bli]l:= a0 end

end; BOO:= (no < 1);

Hig



| if BOD then storei= stom(1f(no=0 A type =-1 A 1=3) then (abs(b[0])x((-1)4®[31))
. else 1f (no=0 A type=0) then abs(b[0])
_else if no=2 then t else blmol)
| else store:= nil
end store; | _
j:= index(v); t:= (2 x period +11) x Q5

Af typé = -1_then J:= 2 X period X q + v

if § < t then begin k3:= 2; kb:= I end else begin k3:= 4; kh:i= 2 end;

- for no2:= O step 1 until' smaxl -1 do

begin for der:= O step 1 until order - 1 do

begin kii= der + upper; k2:= O; »
if no2 < im{0] then vs[der,no2] := nametl

else begin for. i:= O step 1 until k1 do

begin J1:= no2 - im{0] + upper - 1 + der + 1;
| blk2]:= (num2j1);
blk2+1]:= fact(J1) X fact(i);
b[k2+k3] := 35 vlke+k3n = 1; blk2+xh]:= t;

blk2+kh+1]:= J1; K2i= K2 + 6
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~end; vs[der,no2] := father(no],EOT,nM < k246, A1,father(no,B0,no < 6,4,

atom(1f (b[6xno1+2] = 0 A b[6xno143] § 0) V

(no-2x(no+2) = 0 A b[6xnot4no+1] = 0) Vv
“(b[6xmol+no] = 0) then nil

else bl6xnoi+nol)))
end

- end; J1:= last;

for J2:= O step 1 until im[0] - 1'_d_é
| 1f no2 < im[0] then |
* begin 1a§t:=. alo,n02, j21;
a1(no2,42]:= if last = nil then last else
| c.'oilection(nol',nol < 1,a[_0;n62,32],stox'é)
- end else al[no2,j2]:= Dlno2 - im(0],J2]; last:= J1

- end; tempP:= last; last:= lastl; tempO:= temp®; num:= 1;

for numl:= O step 1 until num-1 4o

_ begin lastl:= last; last:= tempO; tempi= true; Bl:= (mum! < num -1);

for der:= O step 1.until order -1 do

for no2:= 0 step 1 until if Bl then im{0] - 1 else smax1 -1 do
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for J:= O step 1 until im[0] -1 do

begin B2[0]:= 1f no2 < im{0] A numl # O then Zp[der,no2] else vs[der,no2];
B2[1]:= ail{no2,J]; BO1:= true; |
vs[der,no2, ] := father(noi‘,Bm ,Bncollection(B2,B11,2,B01 ,o),Ai ,
: father(no,m;m,A',JPn(1,1,2,1311 M)
s |
| §1:= lastl; lastl:= bemp:= last; lasti= Ji;
temp:= false; sum(name2,J,smax1,Vs[der,J,no2])
end; tempO:= temp0O; lastl:= templ
end; temp:= BB1; linear __;:}omb:='BBa;'
~end translate: - | -

end translate;
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grc;cedure print list("i,length,_name,n’amé'of list,sign); velue length; .

integer 1,length,name,name of list,sign;

begin

left marginl

i

1f type set

_:I_.f_typeset=2Vtype set

2V type set

‘integer line,left margim »J,31,n1,n2,n3;

left margin; lines(1);

]

b then n3';= 1 else n3:= 0;

i

4 then left margin:= 6;

nl:= 3; n2:= b der:= -1; Ji= 0;

for der:= der +'1 while der < order do - . %

.begin n02 = -1, for no2:= no2.+ 1 while no2 < im[O] do -

egi lines(l), spa.ces(left margin), field. n1; line.— 1;

ps(0,¢c?); ps(1,¢[*); pi(name); ps(11,¢,”); pi(der + n3);

PS(1 1:: ¢

for i‘

»); pino2 + n3); pe(2,¢1°); ps '(io €:22); J13= 05 Li= -1

1 +1 while 1 < length do 1f ngme of list + nil then

egin BO1:= true, Ji=J + 15

1

BO:= true; if son(name of 11st,A1,501) = nil then go to end of list;

if _iin'e < 3 then begin line:= line + 1; lines(1); spacés(left margin - 1) end;
if sign <0 then ps(5,¢ N &’) else ps(6,* 2’ )

ps(3, ‘( ); pfi(l-OO,get 'atom(m- A, 80 BO)); ps(8 ‘/’ )

pfi(100,get atom(A1, A ,80,80)); ps(h €)); fleld:= n2; 1=

for §1:= J1 + 1 while get atom(A1,A,a0,B0) % nil do
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begin ps(7,¢,%,”); ps(0,v’); ps(1,¢[?); pri(0,80); ps(2,¢17);
| if get atom(A1,A,a0,B0) + 1 then begin ps(9,\’); pf1(0,a0) end
end; go to L1;
en@ of list:
end; g J = 0 then pi(0); ps.(12'_,‘;’); lines(1)
end; lines(2) -
Vgr_x_q._; ‘name:= nam'e_+'1; left margin:= left marginl .

~ end print list;

_ procedure 1ist(name of 1ist,BB); integer name of list; Boolean EB;
_begin integer J,B2; B2:= name of 1list; ‘
’ _if BB then begin lines(2); EB:= false; s(,,,1%); spaces(k); s(v[1]?); 1lines(1) end;

_1_;_?_32 = nil then»s( ¢,,nil,,’) else

begin for j:= B2 step 1 until V[B2] - 1 do
begin lines(1); fleld:= '-l-;..pi(J); spaces(4); field:= 18; pi(V[J]) end
end

end list;
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E rocedur conditions E(nwe of vector,name), integer nene ‘of vector,name, e

begin integer }nnax,tmin,tmax,smin,i t, left ma.rgim ,n1 5 |
procedur e BI(1); in teser 1; | o
begin ps(0, "b’), 1f 1= 0 A type set = 3 then pf1(0,1) else
begin ps(1, ¢0); p£1(0,1); ps(2,¢]%) end |
| _ grocédure _B(i‘,J).; infeger 1,35 if ,j $ 0“3135:1_ ‘
p_s;g_ig_psm,‘,_xg’-); ps(0,v?); ps(1,¢[?); pf1(0,1); ps(2,¢1%);
if 3 4 1 then begin ps(9, N ); pri(0,d) end
gnd B; |
.grocAeduré. theta(i,a Ytimes B:(J,e2); integer 1,e1,J,e2; -
begin ps(3,(?); pr1(100,1f no2 = O then 1 else (- 11) A mo2);
' ps(8,‘/’ ); pf1(1_00,,fect(n62) X fact(el-no2)); ps(l,)?);
if 1 <.q then begin in B(i,e1-no2); B(q,no2) end |
7 else begin B(q,noa), B(i,e1-noa) end;
B(J,e2)
end theta} ,
~ 1:= name of :{_ri_act_or;. f’ield:éa ; left mgm = left margin;

Af type set = 2 V type set = L then left margin:= 6; -
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1if type set = 2 V type set = 4 then nl:= 1 else ni:= 0;

e

if 1 = O then for t:= O step 1 until e X q do

_1; E[0,t] + nil then
begin lines(l ); spaces(left margin); |
B1(t + 2 X period x q); ps(10,¢:=2); B1(0); - | ,
‘1_f7 index(t) $ O then begin ps(6,,+,°); Bl(inde;(;;)) end;
if 11 4 O then begin pi(-11); B(q,1) ends
ps(12,45%) |
if E[0,name of vector] > O then
‘begin lines(a); | )
s(‘éoméht.conditions‘on‘E[’ ); pi(i); s.( ¢132); 1ines(2);

lengthl:= E[1,1]; lehgth2:= E[2,1]; length:= E[3,1]; -

for der:= O step 1 until order - 1 do

- for n:= 0,1,2 do

‘begin tmin:= E n = O then O else 1f n = 1 then order-der-1 else order;
tmax:= 1f n = O then order-2-der else if n = 1 then order-1 else order-1+upper;

for t:= tmin step 1 until tmax do
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‘begin 'lines(e);:spaces(ieft margin); fleld:= 3; |

ps(0,%?); ps(1,¢0?); pi(name); ps(11,¢,7); pi(der + n1);

ps(11,¢,%); pi(t + n1); ps(2,¢17); ps(10,:=? );1ines(1);

spaces(left margin -1); field:= b; smin:= if n = 2 then t - order + 1 else 0; .

for no:= O step 1 until lengtht -1 do

if v[0,1,n0] $ nil then

begin_ for nol:= smin step 1 until t do

. for no2:= 0 do -
begin if no2 4 0 v nol 4 smin V no ¢ 0 _t_h_e_g ps(6, 4,4, );
R theta(2xperiodxq + v[0,1,n0],n01 JtimesB:
(ef0,1] + derxlength + noxbrder + (nol-t+order-1),1);
e _
end; if n = 2 then
begin for no:= O step 1 until length2 - 1 do
©if v[1,1,n0) $ nil then
‘_t_'gg no2:= 0 do :
begin if lengthl = O A (no 4 0 V no2  0) V lengthl O then

ps(6,¢,+,’ ); theta(2xperiodxq + condlv[1,1,n0l], t-order)
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timesB:(E[0,1] + derxlength + lengthixorder + no, 1 )
end
end; if n § O then
for no2:= 0 do
begin if (lengthl= O A length2 = 0 A no2 } 0) v
(lengthl $ O V length2 { 0) then ps(5,¢,-,%);
theta(2xperiodxq +i , t-order+i+der)timesB:(nil,0)
end;
if count = left margin -1 then pi(0); ps(12,¢;?
_eﬁ_@'n; nape:= name + 1
ggg; left margin:= left marginil;

end conditons E;
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procedure data;.
begin procedure table (J,length,name)}; value length; integer J,length,name;

.. begin integer procedure store;

begin 11:= ioi( ‘num,of,atoms?); store:= _father(no,BO,no<il,A,atom(ioi( ‘atom’ ))) end store;

. for j:= O step 1 until length - 1 do

begin 12:= ioi( ‘num,of,sons’); .

neme:= if 12 = O then nil else father(no1,B01,n01<12,Al1,store)

end;
if iob(*data,list,out’) then

beginb 1ines(2); s(¢ ,data’ ); lines(1); s(¢,,generating,tables,,’);

1ines(2); BO:= true;

for Ji= O step 1 until length - 1 do list(name,B0); 11nes(h)
ens . \ | _ |
end tsble; 'témp.= left ad3u5£.= false; lines(2); s(‘data,table,input’);
again': control:= ioi(‘type;of;table’) ; lines(1); _i_f _cont§o1 -0 5.312

begin sr( ‘haxmonics,of,derivatives’);

for 1:= O step 1 until im[1] - 1 do table(no2,1im{0],D[1,n02])

end else _i_i_: cohtrol = 1 then
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' egi type 10i( ‘type’)'
, sr( ‘translation)_table’ ),
: 1f type = -1 then sr(f-,h’) else if type = O then sr(¢+,h? );

for 1:= O step 1 until im(0] - 1 do table(nQE,im[_O],a[type,i,noel)

end else E‘_ control = 2 then

begin type:= ioi( “type’ )

 if type = 1 then
sr( ‘substitutionl_table’) else if type 2 then sr( ‘mul‘biplication)_table’ ) H
table(no2 m[o],w[type,noal) | '

‘end; if control # -1 then go to agein else last data:= last

end data;.
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pro ced e check list(first last); teger first,last;

begin

again: - p

integer 1,11,J,k,type,der,noe,fieldl,col,num co0l,10,11,12,13;

‘Efoeedure fields(n2,n1); integer ni,n2;

begin 12:= n2; 11:= nl; num col:= line length + (L1 + 10) end fields;
10:= T; 11:= 16; fieldl:= field; il:= first; 13:= chlength(‘v(i]’);
fields((ll - 13) + 2 11), col:= num col -1;

bage; for 1, 0] step 1 until col do

egin'spaces(lo 2 2); s(‘;L’), spaces(12); s(¢v[i]?); spaces(11 - 12 - 13) end; lines(1);
for i:= 11 step T-until if col

0 then last else 11 + h9_gg

esin lineS(1), for Ji= O step 1 until col do

if 1+ Ix50 < last EEEE
éggig K:= i+‘jxso; field:= 10; pi(k); field:= 11; pi(V[k]) égg
- else col:= col - 1 | |
end; if cel = num'coi - 1 then _2522‘11}= k+1; 52;§g~agaih ggg;
page; s(‘Z[type,der,no3[type],n02] ); lines(a), k.— 1;
fields(12,12 + chlength( z[,,,] ~’))

for type: —'-1 s0,1,2 do .

for‘i: O step 1 until if type < then e X 1 else no3[type] do

for deri= O step 1 until order - 1 do
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for no2:= 0 step 1 until im[0] -1 do . |
begin if k > num col then begin lines(1); k:= 1 end;
field:= 3; s(<,20?); pi(type); s(*,”); pifder); s(¢,”);
p1(1); s(¢,?); pi(no2); s(¢}:=,?); field:= 10;
- _:Iilz[type,der,i,noal' = nil then begin s(¢,ni1?); spaces(lo_ - 4) end else
'pi(Z[type,dér,i‘,noﬂ); ki= k + 1 |
end; | |
liﬁes(S); s( “Tltype,1]?); lines(2); k:= 1;

£114s(6,6 + chlength( <r(,1:=*));

for i:= O step 1 until e X g do
for type:= -1 0 do
begi if k > num col then g 1ines(1); k-— 1 end;

field:= 3; s( 2T07); piltype)s s(4,%); pi(i), s(¢):=,7);

field:= 1o, if T[type,i] = nil then begin s(“,nil’); spaces(10 -4) end else

pi(Tltype,1]); ki= k + 1
end;
fleld:= fieldl -

end check list;
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againl:

grocéduré ééheme; 

coment this 15 & dunmy version of scheme;

begin page; if print scheme EEEE o
QEEEEHS(‘séiﬁiioﬁlscheme;;;?hiqLiqLéldummyLébhequroutiné.Lprinplschemei=‘E£gg’) end

 else

'i begin s(‘dnmmyzprinﬁ‘sqheme.z‘printzschgme:=,false’) end;'
page ‘

end scheme;

- comment All declarations have been made. The following sectidn constitutes the control section;

nil:= -(2Mi8); last data:= O; print scheme:= false; last 1:= nil; 1ineér-é6mb:# true;

inout := iob(‘inoutf); origin:= 0;

last:= lastl:= last date; for i:= -1 gtep 1 until 2 do no3[1]:= -1; L:i= last 1;

for ni= O step 1 wntil e X q do

begin for type:= -1 step 1 until 3 do
begin if type < 1 then T[type,nl:= nil; Eltype,n]:= nil;

if (type > -1 A type < 2) then

for no2:= O step 1 witil height! = 1 do v[type,n,no2]:= nil;

©1if type + 3 then
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egaln:

egin for der:= O step 1 until order - 1. do

" be egin for for n02'— O step 1 until im[O] 1 do Z[type,der,n,noal'- nil end
end
end

end; for ni= O step 1 until height - 1 do cond[n]:= nil;

for n:= last step 1 until 1list length do vin]:= nil;

if last date = 0 then deta; scheme; lines(2); title; lines(2),

_control 101( ‘control? ); if control < =1 then go to fin;

ir controlv -1 then begin print scheme:= true; go to againl end;

0 thexi_ o

if control

egin mode = ioi( ‘model.ofz_memory’ ); model:= if mode = O then -1 else 0; lines(1);

1:= last 1:= 2xperiodxq + exq + 1 + ordezxim[O]x(g‘_ mode= -1 then periodxq else exq + 1);

. end else

1if control = 1 then

begin comment construct a new approximator N;

sr( ‘new,N? ); no3[1]:= no3[1] + 1; lines(1); field:= 3;
if iob( ‘substitution’) then
. begln num[o]-— 1oi(‘E[i] 1°); type:= 1; tempS:r temp:= false;-cond[no3[1]]:="num[0];

" lines(2); s(‘N[’); pi(n03I1]); s(€]:=,);
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(L) pi(mmlo]); s(<1));
end else |

begin type.: 2; num{0]:= ioi(‘DX(E[i]),l_i’),

num{type] := 10i( ‘S[,j] 3?2); tempS iob( ‘temporary.,_swn’ );

lines(a), s(*N[?); pi(no3[1]); s(* 1 2’ )

s( «DX(E[?); pi(num[0]); s(* ]),,x,_s[’); pi(num{typel); s(<]?)

end; temp:= false;

if E[O num[O]] = nil then

egin creste E(num[0], true);

translate(num{0],z[mode; der,nmn[o],no:z] Z[mode1 der,num[O],no&],mm\[O]a-q,modﬂ)

g_n_q else

g control‘= 2 *_then

begin

new E:

comment create a new sum S_;

sr( ‘new,suw’ ); _

no3t2]:= no3[2] + 1; temp:= iob( ‘te;’nporary)_sto’r'e’ );
length:= ioi(‘lengthl_of_‘_smn’),‘ num(0] := num[1]:='

for i'- 0 step 1 until length -1 do

 end; father(no2,B02,n02 < 1m{0],Z[1,0,n03[1],n02],2e);

linear‘ conb:= iob( ‘linear,combination’);

begin type:= ioi( “type,of Lvector’ ); vs(type,num[typell:= 1o0i(‘num[typel’);

num[type]:= num[type] + 1_

19



end; | _

comment, begin normalization of input; length2:= O;

1:= -1; for 1:= 1 + 1 while 1 < num[1] do if condlvs[1,1]]  nil then length2:= length2 + 1;
- lengthl:= num[0]; 1:= -1;

for 1:='1 + 1 while 1 < mm(1] do

begin BO:= true; if cond[vs[1,1]] = nil then

begin j:= 1;
begin

ji= §+ 1 while B0 A § < num1] do
(cond[vs[1,3]] = nil); if 71 BO then

for
BO:=
begin 11:= vs[1,1]; vs[1,1]:= ~v's,'[1.,3]; vs[1,3]:= 11 end

end
end; BO:= true;
fgg_ type:= 0,1;1‘_@2
Eejlr_xn# _1;‘_,.1:.ypei= O_'lﬁ_e;xglengbm -1 g}ﬁgg BO then length2 = 1 S]_;s;gmm[ﬂ - 1;

for i:= 1f BO then O else length2 step 1 until n do

begin J1:= 1; for J:= 1 step 1 until n do

-

begin 1f § = 1 then 11:= vs[type,1]; if vs[type,J] < vsltype,1] then
begln vs[type,1]:= vs[type,d1; J1:= § end |

end; vs{type,J1]:= 11; if type = 1 then BO:= false
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end - |
grg of normé.lization o-f‘inpufc; E - o _ ‘ .
1:= -i;vfor 1:= 1+ while 1 < lengthl do
: begln if E[0,vs[0,1]] = nil then | o

begin create E(vs[O i],true),

translate(vs[o 1] Z[mod.e,der,vs[o 1],n02], Z[mode1 der,vs[O i],n02] vs[O 1]+q,mode1)

gnd .
end; lenéth'= iengbh + lengthl X (order.-.-f);

if control 3 then

begin for 1:='0 step 1 until lengthl -1 do v[o,no3[0],1]:= vs[o0,1];

for 1:= 0 step 1 until length2-1 do v[1,n03[0],1]:= vs[1,1];

E[O noa[o]]-— 1; E[1,no3[o]] lengthl; E[2,n03[0]]:= length2; E[3,no3[0]]
end; left margin:= 0; type:= if control '; 3 then O g_J_‘.-_'gg 23
print sum(no3[type]), | |
if temp then sum(Zp[d.er,no2] i length if i<length1xorder
o then z[0,1-(i+order)xorder,vs[0,1+order],no2]
é;gg.Z[j,O,vs[l,i—iengthfxorder],noal)

else sum(z[type,der,no3[typel,no2],1,length,if i<lengthixorder

~ then z[0,1-(1+order )xorder,vs[0, 1+order] ,no2]

length
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’ gigg'ZEJ,o,vs[1,1-1ength1k§rder],noal);
ﬁ co’_ntroi =3 il'_x_e_n. go _to again | |
if control = 3 then

begin comment construct a new approximastion E[1];

no3[0]:= i0i(*E[1],1’ );._ témp:= _f;a_.]_.g_é; linear comb:= true;
| create E(no3[0],_i_‘_a_.jL_§§_),; sr( ‘nev, E’ ); go to new E
Erﬁﬂgg_., T
if contrdl_= L :§_h£r_1_

begin conment print all parameter defining equations;

lines(2); name:= 1; | } _

s( _‘E[d] = ‘._E(O);+J‘_error ", terms, uAllldefining ,_eqﬁations &ax;é ,_printed)_belbw’ ); lines(2);
s(¢c[1,k,n] ,‘_whére‘_k‘&is,_in(o,.. .+ ,0rder-1),and,n,1s,in,(0,...,1m[0]-1)’ )f lines(1);
s( ‘comment, equations ,_arising:_from_,_fequiring’ ) ;‘ iine.s(1 );

s(EL.. Tt gulun (o us ) tpsum(2,0, 1m{01-1, Lo s IXAC. o )[11)57 )5

lines(2); for i:= O step 1 until e X g do conditions E(i,name); lines(2);

s( ‘comment Equations,arising,from,E[0,k],-,E(0)(k]:=,0(bN(k+* ); pi(upper+im[1]1+1); s(¢));?);

print 1ist(1,1,name,z[0,der,0,n02],1); lines(1);

i:= -1; for i:= i + 1 while i < period X q do

- begin BO:= true; for n:= i step ¢ X period until e X q do o
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begin if BO A E[- 1,n] + nil then

begin s( ‘comment Equations J_which define _,_the ‘_undetemined J_parameters’ ); lines(1 ) 3

s(‘used_,_inzthe‘_expansion‘,_of E[*); pi(n), s( ¢ ],’), lines(1);

print 11st(J1,2,name,

z[if J1 = O then -1 else O,def,_i_._f_ 31 = 0 then n else 1,n02],(-1)A(J1+1));

if mde = -1 then BO:= false
‘ §29}"1£ n = e X g then BO:= ;E&EE
ond ‘
gﬁ; llihe:.;'(2) ;
-cdxmneht'poi.nts that are to be equated;
= io1( ‘number’ ), |
if n> o} then |

begin for 1:= O step 1 until n - 1 do

. begin vs[o-il ioi(‘name’), vs(1,1):= ioi(‘tyjpe’) end; lines(2);
s(‘comment,'bhe J_following)_appmximations J_are , equal’ ), lines( 1); field:= 33

for i:= Ostepauntiln-ado

‘for J:= 0,1 do
egin s(‘E[ ), pi(vs[1 i+;]]), s(‘ ’); pi(vs[o,i-i-,j]),
1f J =0 then s( ]: *’) else begin s(¢]°); l:Lnes(l) end

end; s(¢;5?);
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for 1i= O step 2 until n - 2 do

i:'rint list(J,E,namé,Z[vsh ,1+J];der,vs[o,1+31,noe'] ,(-1IN)
end; lines(h); ‘ |
s( ‘Define,the _Lmdeﬁeﬁnined , parameters,bl...],by, printing,out,? ); lines(1);
s( ‘the‘_expansions&of E[1 k],‘_il_in“ 1, 2=, (1 ,...,qu_),_,_k in‘_ =2); 1:Lnes(1 );
| 8(¢,(0,... 0rder,-,1 ), s With,respect,to,these, paremeters, E‘_‘.mode 2’ )5 lines(1 ),
s( ‘e 0 J_’g_ki_éa_n_,_the.;f.rilocal qorigins,are,the )_point 0 else,’ ); lines(1);
s( _i_f_‘_,_nnde)_ L-],_j:_}_na_n:_they‘_arel_ ,11,%,h )_wherej_ﬂ :=,1,+,q” );1ines(2);

field:= U;

for 1:= O step 1 until e X q do if E[-1,1] # nil then

gg_g_i_r_l_i;gg der:= O step 1 until order - 1 do |
begin n:=-index(1); s(“E[>); p1(1); s(¢,?); pilder); s(cl:=pul’);
| if mode = OV 11 = O then pi(0) else begin pi(-11); s(%X,h*) end; s(1,(*);
if n = O then pi(0) else begin s(“B[’); pi(n); s(f]’),énd; |
if mode = O A 11 $ O then begin pi(-11); s{,x,h’) end;
S(‘),_[’); pi(der); S(‘],_+,_su;n(i,0,’); pi(imf0] - 1); s(<,?);
s(*b[?); pi(2xperiodxq + exq + 1 + (if mode= -1 then j+j1 else i)xim[0]

xorder + derxim[0]);

s( ‘,_+,,_i]5 );
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fin:

end

end

" s(*xA(?); pi(if mode = O then O.géig -11);
if mode $ O then si(f-,_k_“h’_); s(‘)[i]’); _iines(1).
end; 1ines(1) |
end; |

end of con.tml; go to again;

lines(h), field:= 6; s(fcomment’),'
s(‘last —’), pi(last); s( last1'—’), pi(last1); s(¢,,tempO-last:=?); pi(tempo last);
Cs(e 2,115, length-temp0: =2 ); pi(list length-tempO), lines(1); s(‘next freq&parameteg;b[ ) pi(l), s(¢ ],’),
if iob(‘checkllist’) then check 1ist(0,1last); |
g0 to if control = -2 then define problem else if control = -3 then begin g_]f_g end of computations .
of the program; lines(2); | |

of computations: lines(e) 3 s(* _Lendlofl_éomputatidns.’ )

end _

end
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integer procedure atom(i); value i; integer 1;

_ comment mpacked;
if abs(i) > 248 then
'geg_i_n_ 1ines(1); s(‘a‘boml_tooi_lerge‘:#’ ); pfi(0,1);
check lis;‘b(o,lasi;.) 3 59__132 end of computetions
end else T
begln atom:= last; if 1 } nii-i}_a_g_g begin check; V[last]:= 13 last:= last + 1 end;
" debug(6,1i,nil,nil) | |

- end atom 3

- integer procedure get atom(father entry,a:bomic set a‘com,B) 3

.integer father en’cry, atomic set ,a:bom, Boolean B;
comment unpacked;

begin if B then

B_eﬁi_n_iﬁ father entry = nil then begin get atom:= atom = nil; go to end end;
| | B:= false; atomic set:= fa'ther entry +1 |
end else atomic set:= a‘bomic set + 1;
get atom:= atom:= if atomic set < V[father entry] then V[atomic set] else nil ;
‘end:  debug(l,father entry, atomic set,atom)

end get atom;
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RESTRICTIONS AND OMISSIONS TO RKMI

1. The procedure title does not handle line overflow as it should
when the line Iéngth of the input chamnel is different from the line
;iength of the output channei. : | |

2. The procedure Bncollection has a limit of 20 as the number of
lists if can handle. This limif caﬁ be altered by changing the upper-
bounds of the own variables Blland BOL. | | o

3. The procedﬁrés‘norﬁalize, débug,‘and scheme are preséntly " Gummy "'
 'procedures. We have'not needed normalize;*'debug has been used bnvthe
IBM 7094 version, but for the CDC 6400 version, the use of an update
program has provéd more useful; the procedure scheme exits-and can be
easiiy implemented. _ | |

| L., ‘We have not yet‘complefely'checked out-thé use .of the program
‘when using DX. Varioué parts have bgeﬁ individually checked. Also, we
" have a slight prdbleﬁ witﬂ"intefpretihg the &, 1, S as presently printed
) ﬁhen using the derivative DX. Refer to Definition 10, Chapter III. The
program actually operates with this definition. ‘When INT is never‘used,
it is correct to replace all
| £ - u(64) - gy "
| ny = X(¢5) - Ry =y o
-since Condition A’ {Theorem iO, Chapter III) always holds. RKMI présently .
'fdoesvthiS- - If JﬁL is uséd, thén‘ﬁe must pfesently interpret its printed
dﬁ@wtas ' v . v |
£ > &5 - u(6y)

SNy _’xxgi) - Ry

¥fee the description of the procedure JPn on page 28L.
C . N



in order that‘the correct scheme will be'WTitten down. This is.Simpiy
an oversight in printing the output definitions of &, n, and S. It
- does not affect the parameter equations.
5. Note that proeedure Ze in reality handlesfcorreCtly only lists_
of the form (numerator, denominator), (exponeht), (dery, np, ..., dermaxl’
) and, thus, will not-correctly carry out a multlpllcatlon DX « J
for a term such as w61 which needs another son to correctly represent the
multiplication process. The short table presented here (Table VI
Appendix I) does not need more than three sons. -Substltutlon only

requires three sons and, thus, the oversight which is rather easily

corrected.
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Appendix IIT
RESULTS OF THE EXAMPLES OF CHAPTER VII

Appendix IIT is devoted entirély to the presentation of thg
results of the“examples treated in Chapter VII; Tables I - IIT deal
bwith the claSsical:RKH eiample. The remaining tables ahd gfaphs
pertain tq the exampiés 1 -:h presentéd in_thét chéptér.. A fulli.

description of these results is given in Chapter VII.



TABLE I  DATA INPUT TO RKML EXAMPLE RK4

{ DATA

COMMENT

L,

Control

lelslylels35393,1525191,0,"
2, o

FORTRAN output

5097096000,7000410,10,10,

Set program parameters

Lyly4slylsl6ed,

Particularize probiem

*FALSE',

1 No input-output

Data table input

Dy

Derivative harmonics

1524151,
0§0L010i090'0|0509010000010’00
‘FALSE? : .

2

Dx

See Table VI

Ue

10241,1,

1,2¢1,1,
090909092090,0909090+090,0,
'FALSE?®

Px

Appendix I.

0:0,0,

1424191,

142:3,1,

1529191y

1¢2+1,1,
0+04090,0,0,090+0,"
'FALSE" '

0+0,040,0,0,0,

1 1929191, , _ |
1¢246,51, Pl
1929441,

1’234!10

1420141,

1924351,

19251,1,

1929141,

-YFALSE?!

291,

Substitution harmonics

292+1929142,
390291919140+92,0,0,

O ¥
1
2

See Tablie VI

Appenith.

212]1.611,3'

3.
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TABLE T CONTINUED

DATA

COMMENT

3¢2415191,1,2,50,0,
392919191940925001,
392919191,0452+0,2, -
292919244154,
3029142419252+0,0,
39291915191929091y
3529191l9191,424D,2,
3929153131509220+30»
39291919150:240,4,
39291919190+42¢945,
392915151,0,250,6,

1 49291929190929000+2,0,0,

'FALSE*

(2] Substitution
harmonics
cont inued

[Ry
O w0 oo &

11
12

i

1%
15
21

1,0,

Tfanslation harmonics

1e2e¢l9 1,

1949-1,1,10,1,
15491,2,1042,
19493,251042,
11491,2910,2,

"1'4'192'10’21

114,‘1)6.1093'
l1949-141,10,3,
194y-2+3,10,3,

1 1949=293410,3,
11949—1926,510,3,

1le49-1,2,10,3,
1943=19691043,
1945~196510,3,
1949-192910,3,
‘FALSE?® )

Ao : See Table VII
Appendix I

0,
129191,

10,

Ly4y—1,1,10,1,
l445-241,10,1,

.‘ 0'
.0'

1944192,10+2,
114+5,2,10,2,
19491,1,410,2,
lo4s1ls1,10,2,
0y
0y
Oy

R

19491,1,10,42,

_*FALSE!*
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TABLE 1 CONTINUED

DATA COMMENT

0+0, v A2
192+191, :

oy .
114:‘1}1110,19
1141"191110’11
1949-151,10,41,
Gy

.’_1'4’ 192510,2,
ly491,e1,1042,
le491,1,10,2,
194,392410,42,
1949192,10,2,
194919241042,
194919241042,
*FALSE®

090'09 - A3
192s1,1, ’

Oy

1.0y

Qv
lef4e—1y1,10,1,
1949-3,1,10,1,
Oy

Qe

Oy

Os

Oy

Qy

YFALSE?

0505050, Ay
142:1,1%

090y

O ‘ :
1e49-1,1,10,1, , . '
le4s=151,10,1, ' | R
1l949-1,1,10,1, : . : :

Oy :
0y

0y

Oy .

" le4s-1,1,10,1,
*FALSE"

040,0,0,07 | s
O,
Oy
O
ly4s=1,1,10,1,
o




TABLE 1 CONTINUED

DATA

~ COMMENT

le4s-15151041,
- 1949~-2+1+10,1,

. 0,

Oy
Oy '
YFALSE!

0+050,050,0,

. 2,191,

-0y

Gy

0y . -
1p4,‘1;1'10'l!
.| O» . ‘
| Te49=191910y1y
1l449-1,1,10,1,
1945-151,10,1,
Oy o
*FALSE®.

05,0,0,0,0,0,0,

1 1929lyl,

,09010,09050,040,
SFALSE?

0909090504050,0¢
194294191y
0309000300050,
*FALSE?

000+09090+0,0,0, Op
1929191, -
09050205050,

- "FALSE?

1410

0,0, 090:000'0'010039
12,151,

0¢0+050,0,

*FALSE?*

1411

0 0'0.0 0,0,0, 090{5.0'
2+1,1,

0 010009

*FALSE?"

1412

090+09050509090+909¢0,0,0,
1929191, :
090,+0y
CFALSE"®

0909090+90+05,0,0,090+,050,0,
1'2,1'11 .

090,

'FALSE?

Ay

) 0 0 0’010:0’090{6:5}0{090'0'
l 211919‘

Ov

*FALSE

A15  _ -
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TABLE I CONTINUED

345

COMMENT

DATA

090507030005 0,0¢0,0,050,0,0,0, A1
1429191,

*FALSE?®

-1

End procedure data output

COMMENT THIS IS A CLASSICAL RUNGE KUTTA METHOD OF RANK 4

FOR A SYSTEM OF FIRST ORDER DIFFERENTIAL EQUATIONS.,

Oy=1,

Forward. translation

1, *TRUE,4,
1,*TRUE',2,

1, *TRUE?Y, 3,
1o *TRUE', 1.

Scheme

39194y 09491¢0+145191,2,
390955 0+491400els1s15251,3,
by—1, Print all parameter equations

~445 YFALSE®,

Exit from program
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TABLE II  RKML QUTPUT

COMMENT GIVEN THE DATA INPUT OF TABLE 1, THE BELOW OUTPUT IS GENERATED
BY RKM1 SQURCE LISTING 8090 68, 9/20/68,

CONTROL .= 1
DATA INPUT THAT SETS COMPUTER VARLABLES

1.=0., 'FOR® PRINT LENGTH(/I/}e= 1y Llv 1o 1o Lo 3, 3y 3, 1, 2,
1, 1, O, *DO' fu= I¢la,

TYPE SET .= 2
N FOR PRINT .= 50
LINE LENGTH .= 70

ORIGIN OF TEMPORARY STORE .= 6000
LIST LENGTH .= 7000 )

MAXIMUM NUMBER OF VECTORS N OR SUMS S .= 10
MAXIMUM LENGTH OF A SUM .= 10
MAXIMUM LENGTH OF A LIST PRODUCT .= 10

DATA INPUT THAT ﬁARTlCULARlZES.THE PROBLEM

ORDER OF THE DIFFERENTIAL EQUATION .= 1
‘D*POWER* {ORDER+UPPER)X IS THE FIRST NEGLECTED TAYLCR TERM, UPPER
= 1

NUMBER OF POlNTS'IN ONE. H INTERVAL o= . 4

NUMBER OF H INTERVALS .= 1

PERIOD OF SCHEME .= 1

NUMBER OF BASIC FUNCTIONS .= 16 . - :
NUMBER OF DERIVATIVES WE ATTEMPT TO MATCH .= 4

CINOUT o= *FALSE®
‘DATA TABLE INPUT

DUMMY PRINT SCHEME. PRINT SCHEME.= 'FALSE®

"COMMENT®* THIS IS A CLASSICAL RUNGE KUTTA METHOD OF RANK & FOR A
SYSTEM OF FIRST ORDER DIFFERENTIAL EQUATIONS.,

N(/ O/)e= X{ E(/ 4/))
NI/ 1/)e= XU E(Z 37))
NU/ 2/)e= XU EWL/ 27))
NG/ 3/1e= XU E(Z 1/))
E(/ 3, 0O/).=

SUM(I,0, O,SUM(J4,0y O0,8(/7 T7T ¢+ 1 & 1 ¢ J/) * E/VU/ 001709 J7)) )4
SuM(I,0, O0.,8B(/ 18 + I7) &« NU/VU/ 1,171)7)) ’

WHERE V(/ 0/)ez({ &) AND VIU/ 0s8/)e= V(/ ONVU/IN)
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WHERE VI(/ 17).=( 0) AND vis 1ei/V.= V(7 w717

E(/ 2y 0Q/)e= ’ : .
SUM(Is0s O0sSUMCJ,0y 04B(/ 79 ¢+ 1 % 1 4+ 4/} % E(/VI/ 041/)s J/)))
SUM(T,0, L1,8(/7 80 « 1/7) & N(/V(/ 1,1/)/))

WHERE VI(/ 0/).=l 4). AND v/ 0s1/).= VU/ 0/)/17)
WHERE VI(/ 17).=( 0y 1) AND v/ Lel/)e= VI/ /)1t/717)

E(/ 1, 0/).=
SUM(1,0s OsSUMIJeDs 048I/ 82 + 1 % -1 ¢ /) & E(IV(/ 0,171y 371114
SUN(T+0y 2,B(/ 83 ¢ 17) & NUIV(/ 141/)/))

WHERE V(/ 0/).=( 4) AND v/ O 1/)e= VI/ 0734717}
WHERE VU/ 1/71.=( 0y 1, = 2) AND vi/ 1,1/7)e= VU/ 1/710/717)

E(/ Oy 0/)e= o .
SUM(1,0, 0,SUM(Je0y  0,B(/ 86 + 1 * 1 + 3/} % E(/VI/ 0,07}, 3/)))+
SUMII,0, 3,80/ 87 + I/) * NN/ 1,1/)/)) ‘

CWHERE V(/  O0/)e=l 4) AND ~VU(/ - 0y1/)e= V(/ O/)(/1/) :
WHERE V(/ 1/)e=t 0y 1o 2, 3) AND VU/ Lel/de= VU/  ANVUZ
1/)

E(/0/).= E(0) + ERROR TERMS. ALL DEFINING EQUATIONS ARE PRINTED BELC .
W ‘ ; ,

CO/14KyN/)y WHERE K IS IN (Ogeee9ORDER-1) AND N IS IN (Ogeeey IM(/0/)-1)
¢*COMMENT®* EQUATIONS ARISING FROM REQUIRING
El/eeal)e= Ul/eeol) (eea) + SUM(TI,0,IM{/0/)-1, B(I...I)* A(/.../)(/ll))

B( 8)=B 0

81 9)=B 0 + 8L 1)

8( 10)1=B 0 + B( 2)

8( 11)=B 0 + B( 3)

B( 12)=B 0 -1 * B{ 4)

*COMMENT®* CONDITIONS ON E(/. 0/).,
[} l’ Ly 1l)=
ol le/ 1.) * B( 86) - { 1./ 1.)
Ct 1, 1, 2)=
of 1o/ 1.) * BU 12) * B{( 86' + (1. I l.) » B( 87) + ( 1. I l.)

« * B( 88) ¢+ ( 1./ 1.) = B( 89) + { 1o/ 1a) * B8( 90) - ( 1./
« 1.) *= 8( 8)

'COMMENT® CONDITIGNS ON E{/ 1/).,
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ct 2o 1, 1)=
ol 1o/ 1.) * B( 82) - ( !./ 1.)

ct 24 1, 2)=

ol 1.7 1.) * 8L 12) * B{ 82) ¢+ ( 1./ 1.) # 8( 83) + ( 1./ 1.}
« ¥ Bl 84) ¢+ ( 1.7 1.) * B{ 85) - 1/ 1.) * B( 9)

'COMMENT® CONDITIONS ON E(/ 2/).s
€l 3, 1, 1=
<0171 % BLT9) - ( 1/ 12)
Ct 3, 1, 2)-

el 17 1) * B( 12) * B( 79) + ( 1. /7 1.) * B( 80) ¢ ( 1.7 lo)
« * B( 81) - ( 1.7 1.) *= B( 10)

“COMMENT® CONDITIONS ON E(/ 3/).%

C{ 49' | % 1)=
ol 1o/ 1) =80 T - l./ 1.)

Ct 4 1y 2)=

ol 1s/7 1la) * B 12)" 8( 77) + ( 1./7.1.) * B( 78) - (1. I l.)
« * B( 11)

*COMMENT® - EQUATIONS ARISING FROM E(/0sK/) -~ E(0)(/K/) o= 'O(HPOWER® (K

+ 6)).,
Cl 55 1l 1)= :
e ¢+ ( Tu/ 2.) ® B{ 12)%% 2 * B{ 86) ) : .
e # ( 1e/7 1o) * B{ 12) = B( 87) ¢ (1.7 1.} & B{ 11) & B( 88)
e + ( 1.7 1) * B( 10) = B( 89) + ( lo/ 1.) * B( 9) = B( 90)
Ct 5, 1y 2)=
e ¢+ [ 1.7 6.) % B( 12)%% 3 * B[ 86)
oo+ L 1o/ 2.) % B 12)%% 2 & Bl 87) + ( 1a/ 2.) * Bl 11)ex 2
« % Bl 88) + ( 1./ 2.) * 8( 10)%* 2 & B( 89) + ( 1./ 2.) * B(
« 9)%% 2 = B({ 90) . : N
Cl 5, 1s 3)= o
e« + ( 1a7 6.) * B( 12)%% 3 & B( 86) : L
o + { 1o/ 2.) * BU 12)%% 2 *= Bt 87) + ( 1./ 1.) * B( 61) = B{
« 88) + ( 1./ 1l.) * B 45) * Bl 89) ¢+ ( 1.7 1.) * B{ 29) = B(:
« S0) ‘ . : .
Ct 5S¢ 1y 4)= )
e« ¢+ ( la/ 24.) * B( 12)%%. 4 * B( 86)
e« + { 1.7 6.) * B( 12)%x 3 & B{ 87) + ( 1./ 6.) * 8{ 11)** 3
« % B 88) + ( L./ 6.) * B( 10)s¢ 3 * B 39' + {1 1.7 6.) * 8{
« 9)%% 3 = B( 90) :
Cl S5, 1y S5)=.
e ¢+ { 3.7 24.) % B( 12)%% 4 * B( 86) i
e ¢ ( 1.7 2.) * B{ 12)%% 3 ¢ B( 87) « ( 1./ 1.) * B( 11) *» B
« 61) * B( 88) + { 1./ 1.) * B( 10) * B( 45) * B( 89) + ( 1./
« 1) * B( 9) * B( 29) = Bt 90) )



Cl 50 Ly 6)=

o« + 0 1o/ 24.) * Bl 12)%* 4 + B( 86)

e + { lo/ 6.) ® B{ 12)%% 3 % B{ 87) + ( 1./ l.) ¢ Bl 62) * B(
e 88) + ( 1.7 1.) * B{ 46) *-8( 89) + ( 1.7 1l.) * B( 30) * 8{
« 90)

Ccl 5' | I 1=

e + [ 1o/ 24.) * B( 12)%% 4 = B{( 86)

e + (1.7 6.) % Bl 12)%% 3 = B( 87) + ( 1.7 1.) * B( 63) * B(
« 8B8) + ( 1.7 1.) * B{ 47) = B( 89) + ( 1./ 1.) * B( 31) * B(
« 90)

Cl 5S¢ 1y 8)=

e + ( 1o/ 120.) % B( 12)%¢ 5 * B( 86)

e + { 1o/ 244) * B{ 12)%% 4 = B{ 87) + ( 1./ 24.) * B{ 11)%=
e 4 * B( 88) + ( 1./ 24.) * B{ 10)%* 4 = B{ 89) ¢ ( 1./ 24.)
« * B( 9)%x 4 * B( 90)

Cl 5, 1, 9)=

e + ( 647 120.) * B{ 12)¢% 5 & B{ 86)

o + { 1o/ 4o) * Bl 12)%% 4 * B( 87) + ( 1.7 2.) * B( 11)%% 2
« ¥ B( 61) * Bl 88) + ( 1.7 2.) * B( 10)%* 2 = B( 45) * B(

e 89) + ( 1.7 2.) *-B( 9)** 2 = B( 29) * B( 90) .

Clt 5, 1, 10)=

e + | 447 120.) *» Bl 12)%* 5 * B( 86)

e + { 1o/ 64) * Bl 12)%% 4 * B( 87) + ( 1./ 1.) * 8( 11) * B¢
e 62) ® B 88) + ( 1.7 1.) * B( 10) * B( 46) * B( 89) + ( 1./
e 1o} * B{ 9) * B( 30) * B( 90}

Cl S,. 1y 11)=

e + ( 4o/ 120.) % B( 12)¢% 5 % B( 86)

e ¢+ { 1.7 6.) * B( 12)%¢ 4 = B(-87) + ( 1.7 1.) * B( 11) * B(
e 63) * B( 88) + { 1.7 1.) % B( 10) * B( 47) % B( 89) + { 1./
. 1.} * B{ 9) * B( 31) * B( 90)

Cl Se 1s 12)=

e + ( 1a/ 120.) % B( 12)%*¢ 5 * B( 86)

e + ( 1o/ 24.) * Bl 12)%% 4 % B{ 87) + ( 1./ 1.) * B( 64) * 8(
e 88) + ( 1.7 1.) * B( 48) % B{ 89) + ( 1.7 1l.) * 8( 32) * B¢
« 90) ’

Cl 5, 1y 13)=

e« + ( 3.7 120.) % B( 12)%¢ 5 * B( 86)

e + { 3./ 24.) * Bl 12)%% 4 * B( 87) + ( 1.7 1.) * B( 65) * 8(
o B8) + ( 1.7 1) * B( 49) * B{ 89) + ( 1.7 1.) * Bl 33) * B{(
« 90)

Cct Se 1s 14)=

o + ( 147 120.) * B( 12)*% 5 * B( B86)

e+ { 1./ 24.) * B( 12)%%x 4 = B( 87) + { 1. / l ) * Bl 66) . B(
« 88) + ( 1./ 1.) = B{ 50) * B{ 89) + ( 1./ 1.) * Bl 34) * B{
« 90} '

Cl 59 1 15)8 ’

« ¢+ (1.7 120 ) = B( 12)%% S5 = B( 86) .

« + ( 1./ <) * B( 12)** 4 % Bl 87) + ( 1./ 1. ) * B( 67) *» B(
« 88) ¢+ ( l / 1.) *= B{ 51) * B({ 89) + ( 1./ 1.) * B( 35) = B({
« 90) : . :

Cl 5, 1y 16)=

309
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* B( 12)¢% S = B( 86)

« + ( 3./ 120.)

o + { 1o/ 8.) ®= B( 12)3% & * B{ 87) ¢ ( 1.7 2.) * B( 61)e% 2
o * B( 88) + [ 1./ 2.) % B{ 45)%% 2 * B( 89) ¢+ ( 1./ 2.) * B{
. 29)%% 2 & B( 90) -

*COMMENT® EQUATIONS WHICH DEFINE THE UNDETERMINED PARAMETERS
USED IN THE EXPANSICN OF E(/ 1/)ey

Ct 65 1, ) -
e = (. 1o/ 1) * B 29) -
e+ { le/ 2.) % B( 12)8¢ 2 ¢ B( 82) + ( 1.7 1l.) * B( .12) * B¢
e B83) + ( 1.7 1) * B( 11) * B( 84) + ( 1./ 1l.) * B( 10) & B¢
- 85) o
Cl 6, 1, 2)= .
e = ( 1a/7 1) * B( 30}
e ¢+ ( 1a7 6.) * B{ 12)%¢ 3 * B( 82) ¢+ { 1./ 2.) & B{ 12)9¢ 2
« * Bl 83) ¢ ( 1e7 2.) * Bl 11)e* 2 * B( 84) + | 1./ 2.) * B¢
e 10)%% 2 & 8( 85} .
Clt 6, 1l 3=
e = 1o/ 1a) * B( 31} .
e + { lea/ 6o) * B 12)%% 3 * B( 82) ¢+ ( 1./ 2.) & Bl 12)%¢ 2
« * Bl 83) + ( 1./ 1l.) * B({ 61) * B{ 84) ¢+ ( 1./ 1.) * Bl 45)
« * B( 85) . ]
Cl. 6y 1y 4&)=
e = ( 1o/ 1.) & B( 32)
e + ( 1o/ 24.) * BU 12)%% 4 % B( 82) + ( 1./ 6.) * B( 12)e»
e 3 % B( 83) ¢+ ( 1.7 6.) * B{ 11)** 3 % p{( 84) + { 1s/ 6.) ¢ 8B,
«{ 10)¢* 3 %= B{ 85)
ct 6y lp 5)2
e = ( 14/ 1.) * B( 33)
« + { 3./ 24 ) ® Bl 12)*% 4 * B{ 82) + U 1e/ 2.) * B 12)%%
e 3% Bl B3) + ( 1o/ 1.) * BL 11) > B 61) * B( 84) ¢ ( 1./
« l.) = B8( 10) * Bl 45) % B( 85)
Cl 6, l' 6)=
e = { La/ 1o} % B( 34)
o + { la/ 264,) ® Bl 12)%¢ 4 & B8( 82) + ( 1.7 6.) % Bl 12)¢s
e 3 % B{ 83) + ( 1./ 1.) %= B{ 62) * Bl 84) + ( 1.7 1.) *= B ..
« 46) * B( 85) :
ct 6’ l. T)=
e = ( 1o/ 1.) * B{ 35) :
o + ( 1e/ 24.) * Bl 12)%¢ 4 * B{ 82) + ( 1.7 6.) ® B( 12)%s
e« 3 % Bl 83) + ( 1o/ 2o} * B{ 63) % B( 84) + ( 1./ 1.) * Bl
« 47) * B( 85) : )
C‘ 6y 1' 8)=
o — ( 1o/ 1.) * B( 36)
e + { 1o/ 120.) % B{ 12)%%.5 & B( 82) + ( 1./ 24.) * B¢{ lZ)‘t
o« & % Bl 83) + ( Lo/ 24.) % B{ '11)%% 4 * B( 84) ¢+ ( 1./ 24.)
"» * B{ 10)*% 4 = B{ 85) : :
Ct 6y 1y, 9=
e = 1 Lo/ 1ls) * B( 37}
e% { 6./ 120.) ® B( 12)%% 5 & B( B2) + ( 1./ 4. ) s 8( 12)»e



11)e* 2 & B( 61) = B( 84) + |
) = B( 85)

82) + ( 1./ 6.) * Bl 12)%¢
* Bl 62) * B( 84) + ( 1./

82) + ( 1./ 6.) = B( 12) 8¢
* B( 63) * B( 84) + ( 1./

82) + ( lea/ 24.) % Bl 12)*
* Bl 84) ¢+ ( 1.7 1.) * Bl

82) + { 3./ 24.) * B( 12)¢x
* Bl 84) + ( 1./ 1.) * B¢

B2) + ( Lo/ 24.) % B{ 12)8#
* Bl 84) + ( 1.7 1.} * B(

82) + ( 1./ 24.) % B( 12)%+

B{ 67) *= B( 84) + ( 1./ 1l.) * B(.

S % B( 82) + ( 1o/ 8.) * B{ 12)*

o 4 * Bl 83) + ( 1./ 2.) * B{

e 1o/ 2.) *® B( 10)%* 2 = B( 45

Cl 6y 1, 10)=

e = ( 1o/ 1.) * B( 38)

« ¢+ 4,7 120.) * Bl 12)¢* 5 = B(
« 4 % Bl 83) + ( 1./ 1.) * 8¢ 11)
« ls) * B( 10) *.B( 46) * B( 85)
Clt 6, 1, L1)=

e = ( 1a/7 1.} * B 39)

o + ( 4.7 120.) * B( 12)*% 5 * B{
e 4 % Bl 83) +# ( 1./ 1.) * Bt 11).
« 1,) = B( 10) *= 8( 47) * B( 85)
Clt 64 1, 12)=

« = ( 1a7 1) * BL 40)

e + ( 1o/ 120.) * B( 12)%% S5 * B{
« 4 * B( 83) +# ( 1.7 1.) *= B( 64)
« 48) * B( 85) :

ct 6, 1, 13)=

e = ( 1o/ 1) * B 41) .

o + { 3./ 120.) * B( 12)%% 5 % B{
« 4 % Bl 83) + ( 1./ 1l.) * B 65)
« 49) % B( 85)

Ccl 6y 1, l4)=

e = ( 1/ 1) * B 42) . )

e #+ ( 1.7 120.) * B( 12)%% S * B(
« 4 % B( 83) + ( 1./ 1.} ¥ 8( 66)
-« 50) * B( 85)

[} 6y 1,°15)=

e« = { 1.7 1.) % B( 43)

e +  1a/7 120.) * B{ 12)%% 5 * B{
e 4 % B{ 83) + ( 1./ 1.) *
« S1) * 8( 85)

Cl 69 1y 16)=
e = { 1o/ la) * Bl 44)

o + (3.7 120.) * B( 12)%**

« 4 % Bl B83) + ( 1./ 2.) * Bl 61)#s¢
ol 45)%*%x 2 % B( 85) :

*COMMENT*

2 * B( 84) +( 1./ 2.) * B

EQUATIONS WHICH DEFINE THE UNDETERMINED PARAMETERS

USED IN THE EXPANSION OF E(/ 2/) ey

B( 45)

[ 2 K g

)
* B( 46)

Cl 7o 1, 3=
e =t 1/ 1.) % BL 47)

B 12)%% 2 % B( 79).+ ( 1./ L.) % B( 12} * B(
<) * B( 11) * B( 81)

. Bl 12)%% 3 = B{ 79) + ( 1./ 2.) # B( 121+ 2
) ¢ (1.7 2.) = B( 11)%% 2 = B( 81)

351
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/7 6.) % Bl 12)%% 3 & B( 79) + ( 1.7 2.) % B( 12)%s 2
) + ( 1./ 1.) * B8( 61) * B( 81)

1y, 4)=

/ 1.) * 8 48)-

/7 24.) * Bl 12)%% 4 * B( 79) + ( 1./ 6.) ® Bl 12)ee¢"
80) ¢ ( 1.7 6.) * B( 11)%¢ 3 &« B( 81)
l| 5)=

/7 1.) * 8{ 49) ,

/7 24.) * Bl 12)%% 4 % B{ 79) + ( 1o/ 2.) & B{ 12)%s
80} + ( 1.7 1.) = 8{ 11) * B( 61) ¢ 8( 81) :
1, 6)=

/7 l.) * B( 50}

/7 24.) * Bl 12)%% 4 % B{ 79) + ( 1./ 6.) * Bl 12)%e
80) + ( 1.7 1l.) *= B{ 62) * B{ 81)

1, M=

/7 1.) & B( 51)

/7 24.) * Bl 12)%% 4 % B{ 79) + ( 1./ 6.) * B( 12)%*
80) + ( 1.7 1.) *= B{ 63) = 8( 81) :

1, 8)=

/. 1.) * B( 52)

/7 120.) * Bl 12)%% 5 * B{ 79) + { 1./ 24,.) . Bl 12)es
80) + ( 1o/ 24.) * B( 11)** 4 * B( 81)

" ly 9= :

/°'1.) * B( 53) -

7 120.) % Bl 12)%% 5 & Bl 79) + L./ 4.} & B{ 12)%¢
80) + ( 1./ 2.) = B( 11)** 2 * B( 61) * B( 81)

1, 13)=

7 1.) % B( 54)

/7 120.) & B{ 12)%* 5 * B{ 79) + { 1./ 6.) * B{( 12)"
80) + ( 1./ 1l.) * B( 11) * B( 62) * 8( 81)

l. 11)=

/ 1.) * Bl 55) o '

/7 120.) * B( 12)*% 5 & B( 79) + ( 1o/ 6.) * B 12) %
80) + ( 1.7 1.) * B{ l}) s B( 63) * B( 81)

1, 12)=
l.) & B{ 56) ) :
120.) * B 12)%% S % B{ 79) + ( 1./ 24.) * Bl 12)%¢
80)

+ (1.7 1.) * Bl 64) * B( 81).

ly 13)=
/ 1) * B( 57) '
/7 120.) * B( 12)%% S = B( 79) + ( 3./ 24.) ¢ B{ 12)9*
80) + { 1.7 1.) = Bl 65) * 8¢ 81)

l’ 14)=
1.) * B( 58) ‘ _ v
120.) ® B( 12)%® S % B( 79) + ( 1o/ 24e) * Bl 12)0»
80) + ( 1.7 1.) * 8( 66) * 8{ 81) ’ .
Ly 15)=
7 1.) % B( 59) . :
/ 120.) * B({ 12)%¢ S * 'B( 79) + ( 1./ 24.) * Bl 12)9e
80) ¢+ ( 1./ 1.) ® 8L 67) * B( 81)



ct v 1, 16)=

e = ( 1o/ 1) * Bl 60} '

o + { 3.7 120.) *# 81 12)%% 5 * 8( 79) + ( 1o/ 8.) * B( 12)*=+
e 4 % B( 80) ¢+ ( 1./ 2.) * B( 61)%¢ 2 % B( 81)

*COMMENT' EQUATIONS WHICH DEFINE THE UNDETERMINED PARAMETERS
USED IN THE EXPANSION OF E(/ 3/) ey

Cc{ 8, | 1Y 1)=
« = ( 1a7 1) * Bl 61) )
o ¢+ ( 1o/ 2.) % B( 12)%% 2 = B( 77) + ( 1./ 1l.) * B( 12) * B(
. 78)
Ct 8 1, 2)= )
e ~ { 1s/ 1.) * B( 62) ‘
o # { 1o/ 6.) % Bl 12)%% 3 3 B( T7) + (1.7 2.) * B{ 12)%¢ 2
- * B( 78) ) : ' ’ . .
ct 8 1, 3)=
o« = lo, lo, * B‘ 63’
ot ( 1o/ 6s) ® B( 12)%% 3 & B{ 77) + ( 1o/ 2.) % B{ 12)%% 2
« * B( 78)
Ct 8 1, 4)=
e = { 1o/ 1) * BU 64) )
o + ({ 1o/ 24.) % B{ 12)%% 4 * Bl T7) + ( 1.7 6.) * B( 12)%#
« 3 % B{ 78)
Ct 8, 1, 5)=
e = ( 1o/ 1e) *.B{ 65)
o + ( 347 244) * Bl 12)%% 4 % B( 77) + ( 1o/ 2.) * B{ 12)%»*
« 3 % B( 78)
C(t 8, 1, 6)=
e =  1a7 1) * B( 66) : o
o + { 1o/ 24.) * Bt 12)%% 4 * B( 77) + ( 1./ 6.) * B( 12)**
« 3 % 8( 78). g :
Ct 8,y | B )=
e = ( 1o/ 1) * Bl 67) i
o + { 1o/ 24.) *® Bl 12)%% 4 * B( T7) + ( 1o/ 6.) % Bl 12)*s¢
« 3 % B{ 78)
ct 8, 1, 8)= _
e = ( 17 1.) * B( 68) ‘ '
e + { 1o/ 120.) * B( 12)%% 5 & B{ 77) + ( 1./ 24.) * B( 12})%*
« 4 % B( 78)
c( 8, 1, 9)=
e = ( 17 1.) * B 69) ]
e + ( 64/ 120.) * B( 12)8% 5 %= B( 77) + ( 1./ 4.) * B( 12)%+
- 4 % B( 78) . '
ct 8, 1, 10)= .
e = 1.7 1.) * Bl 70) : i :
o ¢+ [ 4./ 120.) * Bl 12)%% 5 & B{. T7) + ( 1./ 6.) * B{ 12)#»
« 4 % B( 78) ) :



e« = ( 1s/7 1.) = Bt T1)
o + { 4.7 120.) * B( 12)»* * Bl
< 4 * B( 78)
Cl 8y 1y 12)=
e = ( 1o/ 1.) * BL 72)
« ¢ { 1o/ 120.) * B{ 12)** 5 = B(
e 4 % B( 78) R
€l 8y 1y 13)= .
e = ( 1o/ 1) ® Bt 73)
o« + ( 3.7 120.) * B{ 12)%% 5 * B(
« 4 % B( 78)
Clt .8y 1, l4)=
e = { lo, l.’ ‘B( 14’
e« + ( 1o/ 120.) * B( 12)¢% S = B{(
« 4 % BL 78) : i
Ct 8y 1, 15)=
. - ( ln, l.) * B( 15, ’
o« + ( 1o/ 120.) * B( 12)#* 5 & B{
« 4 % B( 78)
C({ 8, 1Ly 16)=
o = { VS P8 B 8( 76)
o ¢ ( 3./ 120.). % B{ 12)%* 5.5 B{(
« 4 % B( 78)

m

)

17

m

1

m

35l

1./ 6.) % B( 12)es
1./ 24.) & B 12)es
3./7.24.) & B( 12)%

le/ 24.) & Bl 12)%s

" le/ 24.) * BL 12)%e

1o/ 8.) * B( 12)#»

DEFINE THE UNDETERMINED PARAMETERS B(/.../) BY PRINTING CUT
{leeessE®Q)y, K IN Pe=
{OseeasORDER - 1)y WITH RESPECT TO THESE PARAMETERS, *IF* MODE
SEQUAL® O °*THEN®' THEIR LOCAL ORIGINS ARE THE POINT O ‘*ELSE*
*IF* MODE *'EQUAL®*-1 °*THEN® THEY ARE - Il # H WHERE Il.= 1*/°* Q

THE EXPANSIONS OF E(/E+K/)y I IN M.=

E(/ 1, -0/).=U(Z O/) ( BU/ L)) (7

+ 1/7)% A( 0 * H)(/I/))

Et/ 2y O/)e= U{/- 0O/) ( BU/ 2/7)) (7

+ 1/7)* Al 0 * HI/I/))

"Ets 3, 0M).= UL/ O/) ( BU/ 3N U/

¢ 1/)% Al 0 * HI/L/))

0/) .+ SUM(I,0, 15,8(/ 29
0/) + SUM(I40s 15,80/ 45

0/) + SUM(1,0, 15,8(/ 61

YCOMMENT® LAST 1959 LASTl.= 0 TEMPO-LAST.= 4041 LIST LENGTH-TEM

PO.= 1000 ,
" NEXT FREE PARAMETER B(/  91/).,

END OF COMPUTATIONS.



TABLE I11 KNOWN COEFFICIENTS

[@]]
o1

I8¢
B
B(
| B
B(
B(
B(
B(
B(
B
B(
B
8¢
B(
B(
B(
B(
Y

1)=(
2)=(
3)=({
4)=(
7)) =
78)=(
79)=(
80)={
81)=(
82)=(
83)=(
84) =1

85)=(

86) =
87)=(
88) =
89) =
90) ={

o/

-1/

-1/
1/
1/
1/
1/
0/
1/
1/
o/
0/
1/
1/
1/
1/
1/
1/

O W) O e et e ks N s

l1)=
2)=
2)=
1)=
1)=
2)=

[
L4
1]

- WS W W G e e S e e

B L (I T T R TR T I T O 1]

COMMENT THESE ARE RK4 CLASSIC COEFFICIENTS

O.
-5.0000000000000E-01
-5.0000000000000€E-01

1.0000000000000E+00

1.0000000000000E+00
5.0000000000000€-01
1.000000000000CE+00

0. , '

5.0000000000000E-01

1.0000000000000E+00

0.

O. : '

1.0000000000000E+00

1.0000000000000E+00
1.6666666666667TE-01
3.3333333333333€-01

3.3333333333333&-01

1.6666666666667TE-01

COMMENT FOR THE ABOVE COEFFICIENTS THESE VALUES ARE OBTAINED

ct 1, 1, )= 0. n €0 |Condition A ‘
C{ 1y, 1y, 2)= 1.7763568394003E-15

€l 25 1, 1)= 0. ’ )

Cl 25 1y 2)= Q.

C( 3' 1,y )= O g :

108 | 31 1' 2)= D. v2

CC &4y 1y 10= 0. :

Cl 4y, 1y 2)= 0. . 3

Cl 59 1y 1)= 0. he Yo |Condition B . €0
ct 5, I, 2¥="7. ho T
ClL 5, 1, 3)= O. A . 2

Cl 55 1y 4)= 2.7755575615629E-17 3 '
Cl 5, 1y 5)= 4.4408920985006E-16 |,k i h
Cl S5y 1y 6)= 3.3306690738755E-16 5

Cl S5y, 1y 7)= 2.7755575615629E~16 6

C( Sy 1y 8)= 3.4722222222222E-04 Rl

Cl 5, ly 9)= 2.0833333333333£-03 9

C{ 5y 1510)= -2.0833333333334E-03 10

C{ Sy lsl1)= 8.3333333333332E-03 11 | R .
“C{ S5y 1912)= -1.3888888888889E-03 12| 7 Principal error term
Cl 5y 1413)= ~4.166666666666T7E~03 13 | :
Cl So lel4)= 2.0833333333334E-03 1

C( 5, 1,15)= -8.3333333333331E-03 15 |

Cl 5, ls16)= 6.2500000000000E-03 J




TABLE IIlI CO

NTINUED
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COMMENT THESE ARE RK4 GILL COEFFICIENTS

B(  1)=( 2/ 1)= 0. |

BL 2)=( -1/ 2)=-5.,0000000000000E-01
B 3)=( -17 2)=-5.0000000000000E~01
Bl  4)=( 1/ 1)= 1.0000000000000E+00
Bl 77)=( 1/ 1)= 1.0000000000000E+00
Bl T78)=( 1/ 2)= 5.0000000000000E-01
Bl T79)=( 1/ 1)= 1.0000000000000E+00
B( 82)=( 17 1)= 1.0000000000000E+00
Bl - 83)=( 0/ 1)= 0.

T8t 86)1=( 1/ 1)= 1.0000000000000E+00
Bl 87)=( 1/ 6)= 1.666666666666TE-01
Bl 90)=( 1/ 6)= 1.666666666666TE-01

BIBO)= (SQRT(2+)=1.)/2.
B(81)= (2.-SQRT(2.))/2.
B(84)= -SQRT(2.)/2.
B(85)= 1.+SQRT{2.)/2.
B(8B8)= (2.-SQRT(2.))/6.
B(89)= (2.+SQRT(2.))/6.
COMMENT FOR THE ABOVE COEFFICIENTS THESE VALUES ARE OBTAINED
ct 1, 1, 1)= 0. : €p | Condition A
Cl 1, 1, 2)= 5.3290705182008E~15 | '
CH 2’ 11 1’3 Oe gl
Cl 2y 1, 2)= O.
TTr3, I, 1= 0. )
C( 31 11 2,= O°A
U 4, I, I7= 0,
Cl 4, 1, 2)= 0. ‘ & : |
ClL 5, 1, 1)= ~1.7763568394003E-15}2 ¥ | Condition B &,
Tl 5, 1, 21= 4.4408920585006E=16]3 1 , | :
Cl 5, 1, 3)= 4.4408920985006E-16 =~ ©
Tl 5, 1y 4)= 5.5511151231258E-17] 3
Cl 5, 1y 5)= 2.2204460492503E-164 L
Cl S, Ly 6)= 4.1633363423443E-16 5
C{. 5, 1, 7)= 5.5511151231258E~17 6
Cl 5, 1, 8)= 3.4722222222221E-04 51
Cl 5, 1y, )= 2.0833333333334E-03 9 |1
C{ S, 1,10)= -2.0833333333333E~03{ 10 ||
Cl 5, 1,11)= 8.3333333333333e-03|, 11
Cl 5, 1,12)= -1.3888888888887€-03h° 12 |} Principal error term
Cl 5y 1,13)= -4.1666666666662E-03 13 || '
C{ Sy ly14)= 2.0833333333335E-03 1k
Cl{ 5, 1,15)= -8.3333333333331E-03 15
Cl{ 5S¢ 1,16)= 1.93527539194T70E-03 o1 Y




TABLE I11
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CONTINUED

COMMENT THESE ARE RK4 STRACHEY COEFFICIENTS

B(
B(
B
B(
B(
B
B{
B(
B (
B{
B(
81

Bl
|8t
B(
Bl
B

B{ -

[ T T T VI T T T | I )

P A e e el e

86)=I

87)=(

88)=(
89)=(
90)={

0/ 1)= Q.

-1/ 2)=-5.0000000000000E-01
-1/ 2)=-5.0000000000000£E-01
1/ 1)= 1.0000000000000E+00
1/ 1)= 1.0000000000000E+00
1/ 2)= 5.0000000000000E-01
1/ 1)= 1.0000000000000E+00
-1/ 2)=-5.000000000000CE~-01
1/ 1)= 1.0000000000000E+00
1/ 1)= 1.0000000000000E+00
o/ 1)= Q. ‘ '
1/ 2)= 5.0000000000000€E-01
1/ 2)= 5.0000000000000£-01
1/ ~1)= 1.0000000000000E+00
1/ 6)= 1.6666666666667E-01
37 6)= 5.0000000000000E-01
17 6)= 1.6666666666667E-01

1/ 6)= 1.

666666666666TE-01

COMMENT 'FOR THE ABOVE COEFFICIENTS THESE VALUES ARE OBTAINED

¢t 1, 1, 1)= 0. ' © & |Condition A

Cl 1, 1, 2)= 3.5527136788005E-15

Cl 2, 1, 1)= 0. - "t : .
Cl 2y, 1, 2)= 0. g!

Ccl 3, 1, l1)= Qe ' 3

Ct 3, 1, 2)= 0. 2

Cl 4, 1, 1)= 0. £

Cl 45 1y, 2)= 0 5

C( 5, 1, 1)= -8.8817841970013E-16 [, Y0 |Condition B E
CC5, 1, 2)= 2.2204460492503E-16 3 1 Y

"Ct 59 1y 3)= Qe 2 .
C( 5y 1y 4)= 1.3877787807814E-17 3 -
Cl 5y 1y 5)= 4.4408920985006E-16 [ 4 L .
Ct 5y 1, 6)= 7.7715611723761E~-16 5 '

. Cl 5y 1y 7)= 9.4368957093138E-16 6
Cl 5, 1y 8)= 3.4722222222222€-04 B8
C{ 5, 1, 9)= 2.0833333333333E-03 9
Cl 5, 1,10)= -2.0833333333337E-03] = 10 .

Cl 55 1,11)= 8.3333333333329E-03[° 11 PPrincipal error term
cC{ 5, 1,12)= -1.3888888888890E-03| 12 v
Cl Sy 1,13)= —4.1666666666664E-03 13
Ct S5, 1,14)= 2.0833333333333€£-03 14
C{ 5, 1,15)= -8.3333333333333E-03 15 .
Cl 5y 1,16)= 1.6666666666667E-02 o1 ¥ .



TABLE 111

CONTINUED
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COMMENT THESE ARE RK4CK COEFFICIENTS

B
B
B(
B(
B{
B(
B(

| 8¢

B(
Bl

B(

B
Bl
B(
B
B(
B(
B(

1)=(
2)=(
3)=A{
4)=(

ST =

78)={
79)=(
80)=(
81)=(
82)=(
83)={
84)=(
85)=(
86)=(
87)=(
88)=(
89)=(
90)=(

o/
-2/
-3/

1/

1/

2/

1/
-3/

3/

1/
19/

=157
40/

1/

55/
125/
125/

. 55/

44)= 4.3181818181818E-01

360)= 1.527777TTTTT78E-01

1)= 0.
5)=-4.0000000000000E-01
5)=-6.0000000000000E-01
1)= 1.0000000000000E+00
1)= 1.0000000000000E+00
.5)= 4.0000000000000E-01
- 1)= 1.000000000000CE+00
20)=-1.5000000000000E~01
4)= 7.5000000000000€E-01
1)= 1.0000000000000E+0)

44)=-3.4090909090909E-01
44)= 9.0909090909091E-01
1)= 1.000000000000CE+00

360)= 3.4722222222222E-91
360)= 3.4722222222222E-01
360)= 1.,5277777T7TT7T778E-0OL

bOMMENT FOR THE ABOVE COEFFICIENTS THESE VALUES ARE OBTAINED

Ct 1, 1, 1)= 0. o |Condition A
C{ 1, 1, 2)= -8.8817841970013E-16
c{ 2' 1',1,__. Oe . g
Cl 2y, 1, 2)=  3.5527136788005€E~-15 1
C( 3, 1, 11= 0. :
ct 3, 1, 2)= 0. 2
C( 41 I' 1)= Oe g
Cl 4, 1, 2)= -3.5527136788005E~15 3 |
Cl 5y 1y 1)= 1.776356B394003E-15 h2 Yo Condition B go_
“C( 5, 1y 21= —3.3306690738755E-167] 3 ) |
Cl 5o 1y 3)= 7.7715611723761E~-16 | 2
T( 5, 1, 4)= 5.1347814888913E~16 3
Cl 55 1y 5)= -1.1102230246252E-16 | I 4
Cl 5y 1y 6)= -5.5511151231258E~17 | 5
Cl Sy 1y 7)= 4.4408920985006E-16 6
“Cl S5y 1y 8)= 2.7TTTTTTTTTT68E-0% 51y .
'C( 59 ley 9)= Oe . 9
C( 5, 1,10)= 0. i?
C( Sy 1,11)= 8.3333333333329€-03 | 5 . |
Cl 5, 1012)= -1.1111111111110E-03 [*~ 12 YPrincipal error tern
Cl Sy 1,13)= 1.1102230246252E-16 13
Cl 5, 1,14)= 0. ' 1k
"Cl 5, 1+15)= -8.3333333333330E-03 15 )
"Cl 5, 1516)= 3.4090909090909E-03 o1




TABLE IV DATA INPUT TO EXAMPLE 2 °

DATA

 COMMENT

1,

Control

1’111119113,37311129191101
2,

FORTRAN Output

50,70,6000,7000,10,10,10,

_Set program parameters

19342+924147,3,

Partiéularize problem

‘FALSE?",

No input-output

Data table input

Oy

Derivative harmonics

T2, 1510
07050,050,05
"FALSE

Dux ' See Table VI

09

" 15251,1,
1525141, -
0+,0,0,0,
*FALSE!

DPx Appendix I

0:0+0,
142,11,
192:541,
1,2+:1,1,
1,2,1,1,
*FALSE!

Substitution harmonics

29231356,1,3,
3929191+14092,0,0,
29231,120,1,5,
3929151419152,0,0,
342+141+1+0,2,0+1,
" 392915141+0+4240,2,
YFALSE! .

[N = S Ve

_ See Table VI
Yy © Appendix I

1,0,

Translation harmonics

1929151y
1141‘1,1:10117
114)‘111:10111
1,41112110121
14495492,10,2,
. 15441,2,10,2,

14491,25,10,2,
- *FALSE?

Ap : See Table VII
Appendix I

359



TABLE IV CONT.

360

DATA

COMMENT -

O»
192y 1,1,

O
1'4)"1’1110) 11
1141"’411110111
-0y
O,
' FALSE!

A

020,

'11291111

Oy
1,41"‘1111101 1'
1141—111’109 1’
1'4,—1111101 1!

| *FALSE"

0:0,0,
1121 111)
O

Oy

0y :
'FALSE?®

090,053,
1924141,
£y0, '
'FALSE?

0+0+:0,0,0,
112, 1’11
0y . .
*FALSE?

0+0,0,0,0,0,

1,2,1,1,
'FALSE?"

Ag

-1

COMMENT EXAMPLE 2,

1End’ data table input

THE RANK IS 2, THE EXTENT IS 2. THIS

CORRESPONDS TO A K= 2 FINITE DIFFERENCE SCHEME AND
SHOULD BE COMPARED WITH THE K= 2 CASE OF BUTCHER,

-JACM91251,1965, P.130., .. '
Os~1, Forward translation
15 *TRUE'y4, 1,'TRUE',3,
19*TRUE' 42, 1,"TRUE", 1, ﬁkheme_
391,5, - 012!014911311711112) -
,3101'6'1 01210{1411'011)1)11211131
49-1»

Print all parameter equations

~44,"FALSE?Y,

Exit from program




TABLE V OUTPUT FROMtRKHl EXAMPLE 2

CONTROL .= 1

DATA INPUT THAT SETS COMPUTER VARIABLES

1.=049

TFOR® PRINT LENGTH(/I/)e= 1, 1, 1y 1,
l, l' 0’ '‘00°* [o= l*lo'
TYPE SET .=
N FOR PRINT .= 50
LINE LENGTH .= 70 .
ORIGIN OF TEMPORARY STORE .= 6000
LIST LENGTH .= 7000
MAXIMUM NUMBER OF VECTORS N OR SUMS § .=
MAXIMUM LENGTH OF A SUM .= 10 .
MAXIMUM LENGTH OF A LIST PRODUCT o= 10
DATA INPUT THAT PARTICULARIZES THE PROBLEM
ORDER OF THE DIFFERENTIAL EQUATION .=

D*POWER* (ORDER+UPPER)X IS THE FIRST NEGLEC
3

NUMBER OF POINTS IN ONE H INTERVAL .=
" NUMBER OF H INTERVALS .= 2
PERIOD OF SCHEME .= 1
NUMBER OF BASIC FUNCTIONS .= 7
NUMBER OF DERIVATIVES WE ATVEMPT TO MATCH .
‘ INOUT .=

DATA

DUMMY PRINT SCHEME.

TABLE INPUT .

PRINT SCHEME.= °*FALSE*

361

1y 3, 3, ly 2y

10

|3
TED TAYLCR TERM, UPPER

2

3
*FALSE®

COMMENT EXAMPLE 2, THE RANK IS 2, THE EXTENT IS 2. THIS CORRESPONDS TO

A K= 2 FINITE DIFFERENCE SCHEME AND SHC

K= 2 CASE OF BUTCHER, JACM,12,1,1965,P,
N(/ 0/)e= XU E(7 47))
N(/ 1/)e= X({ E(Z 3/))
N(/ 2/)a= XU E(/ 2/))
NG/ 3/Ye= X( E(/ 17))
E(/ 1, Of)e= . :
SUMIT1,0, 1,SUM{J,0, O0,B(/ 23 + 1 * 1 + 4/) ¢

SUM{ 1,0, 2,B(/ 25 ¢+ I/) * NW/VI/ 1, 0/)/))

ULD BE COMPARED WITH THE
13040

EWIVILZ 0,1/}, 371004



WHERE V(/  0/).=( 2, 4) AND VI/ . 0s1/)e= VI/ 0N /71
WHERE Vi(/ 17).=( Oy | 2) AND V(/ Lel/)e= VIV 17)(/717)

E(/ 0y 0/)e= ‘ B
SUM(T.0y 1sSUM(JQy- 0+8(7 28 +.1. % 1 « J/) ¢ E(/VU/ 0417), J/)))e
SUM(1,0, 3,B(/ 30 « I/) & N(/VlZ 1,12)/7))

“WHERE V7 0/) .=t 2y 4) AND vi/s 0sl/)e= VI/ /7)t/717)
WHERE V(/ 1/7).=1t 0, | 2, °© 3) AND vtz Lel/)e= VI/ 1734/
17) - ; .

E(/0/).= E(0) + ERROR TERMS.  ALL DEFINING EQUATIONS ARE PRINTED BELO -

Cl/14KeN/)s WHERE K IS IN (OpeessORDER-1) AND N IS IN (Opesce IM(/0/)-1)
*COMMENT* EQUATIONS ARISING FROM REQUIRING
El/eeelVe= Ul/coe/) leee) + SUMIT0,1M(/0/)-1y B(/eeo/)® A(/..-/)(/ll))

8( 4)=B 0
B( S)=B 0 + 8( 1)

B{ 6)=8 0 ~1 * B( 2)

B{ 7)=B 0 + B( 1) -1 * B( 2)
8( 8)=8 0 -2 * B( 2)

‘COMMENT* CONDITIONS ON El/ O/).s

[} 1,y 1y 1)=
ol 1o/ 1) * Bl 28) + ( 1.7 1.) * 8L 29) -~ (1.7 1.)

Ct 1, 1, 2)= )
ol 1.7 1.) * B( 6) * B( 28) + ( 1./ 1.) % 8( 8) * B( 29) + (
e le/ 1) * Bl 30) ¢ ( 1.7 1.) * B( 31) + ( 1.7 1.) * B( 32)
ot { 1./ 1) & BU 33) - (1.7 1.) * B¢ 4’

Ct 1, 1, 3)=
ol 1a7.2.) * BU.6)%* 2 % B( 28) ¢+ { 1./ 2.) * B( 8)“ 2 ¢ B{
e 29) + ( 1.7 1.) * B( 8) * B{ 30) ¢ ( 1.7 1.) * B{ 1) * B{
e 31) + (1.7 1) ® B( 6) * B( 32) + ( 1.7 1.) = B{ 5) * B{
e 33) = ( Lla/ 2.) * Bl 4)%s 2

Ct 1y, 1y, 4)=

{ 1.7 6.) * B( 6)%* 3 = 8( 28) + (1. I 6.) * B( 8)“ 3 ¢ B(

« 29) 4+ { 1./ 2.) % B 8)%* 2 * B{ 30) + ( 1.7 2.) = B( 7T)*=
« 2% B( 31) ¢+ ( 1./ 2.) * Bl 6)%* 2 * B( 32) + (1.7 2.) * BU
o 51%% 2 % B{ 33) - ( 1./ 6.) * B{ 4)¢s 3

*COMMENT* CONDITIONS CN E(/ 1/).y

Ct 24 1y 1l)= . ‘
ol 1o/ 1) % B( 23) .+ ( 1./'1. ) * Bl 24) - l I l )

Ct 2, 1y 2)=
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WU 1.7 1.) % BL 6) * BL 23) + ( 1./ 1.) * B( 8) & B 24) ¢ (
o 1o/ 1.) * 81 25) + ( 1./ 1.) * B( 26) + ( 1.7 1.) * B 27)
e« = ( 1.7 1.) * B( 5)

Ct 2y 1o 3)=

ol 1o/ 2.) * B( 6)%% 2 & 8( 23) + ( 1./ 2.
e 24) + 1 1./ 1lo) = B( 8) * B( 25) + ( 1./
e 26) + ( 1.7 1) * BL 6) * 81 27) - ( 1./

)% B( 8)%s 2 * B(
1.) = 8( 7) * B(
2.) * Bt S)ex 2

ct 2, 1, 4)= .
ol 1./ 6.) # BU 6)%% 3 % Bl 23) + ( 1./ 6.) * B(.8)%% 3 & B(
e 24) + (1.7 2.) * BU B)s® 2 * BL 25) + ( 1.7 2.) * B( 7)#s

C e 2% Bl 26) + ( 1a/ 2.) % BU 6)%% 2 ¥ B( 27) - ( 1./ 6.) * B{
. S)¥x 3

;CUMHENT' EQUATIONS ARISING FROM E(/70,K/) = E(O0){/K/)e= O(H*POWER®(K
% T))en :

1=

Clt 34 1,

e + U 1o/ 24.) * Bl 6)%* 4 * B( 28) : '

e + { 1o/ 24.) * B( 8)%% 4 € B{ 29) + ( 1./ 6.) = B( 8)#% 3 ¢
oB( 30) + { 1./ 6.) * B( 7)%* 3 % 8( 31) ¢+ ( 1./ 6.) % B( 6)ee
e 3 % B 32) + ( 1e/ 6o) * B( 5)%% 3 » B( 33)

{ 3, 1, 2)=

+ ( 1.7 120.) * B( 6)** 5 * B( 28)

+ ( 1.7 120.) * B( 8)** 5 *= B( 29) + { 1./ 24.) * B( B)*»

4 % B( 30) + ( L./ 24.) * BU 7)%% 4 % B( 31) + ( lu/ 24.) *
(

Bl 6)%% 4 * B( 32) + ( 1./ 24.) * Bl S)*¢ 4 * B( 33)

cCt 3, 1, 3)= o
o + { 1s/7 120.) * B( 6)%* 5 % B(-28)

o ¢+ { 1.7 120.) % B( B8)%* 5 * B( 29) + ( 1./ 24.) * B{ B)ss
o« 4 % 8( 30) + ( 1.7 1.) * Bl 16) * B( 31) + ( 1./ 24.) * B(
s 6)%% 4 ® B( 31) + ( 1./ 6.) * B( 1) * B( 6)*=x 3 & B( 31) + {(
o Lo/ 4o) * Bl 1)%% 2 & B 6)%% 2 * B{ 31) + (. 1./ 6.) * B{
« 1)%% 3 %= B({ 6) * Bl 31) + ( 1./ 24.) * B{ 6)%% 4 * B( 32) +
«l 1.7 1.) * B{ 16) * B( 33) .

[} 3 | ) 4)= .
e + { 1.7 T20.) * B( 6)** 6 * B{ 28)
e + ( 147 720.) * B( 8)*% &6 * B{ 29) + ( 1./ 120.) * B( 8)2¢
« 5 % 8( 30) # ( 1./ 120.) * B( 7)** S * B({ 31} + ( 1./ 120.)
« ¥ B

( 6)%% 5 3 B( 32) + ( 1./ 120.) * B( 5)¢+ 5 * B( 33)

Cct 3, | Y 5)=
+ ( 5.7 720.) * B( 6)%¢ 6 * B( 28)
+ { 547 720.) * Bl 8)#*% 6 *= B( 29} + ( 1.7 24.) * B B)»x
S * B8( 30) + ( 1.7 1.) « B( 7} & B( 16) * B8( 31) + ( 1./
24.) = Bl 6)** 4 * B( '7) * B{ 31) + ( 1.7 6.) * B( 1) * B{(
61%¢ 3 ® B( 7) * B({ 31) + { 1.7 4.) * B( 1)%% 2 * B( 6)%*
2 * B( 7) = B{ 31) + ( 1.7 6.) % B( 1)** 3 % B( 6) *= B( 7)
* B( 31) + ( 1.7 24.) * Bl 6)%% 5 » B{ 32) + ( 1.7 1.) * B(
5) * B({ 16) * B( 33)

¢ 5 8 0 0 0 2 0

ct 3, 1 6)=

o + { 1.7 720.) * Bl 6)*¢ 6 * B( 28)

e * { 1o/ 720.) * Bl 8)%% 6 % B( 29) + ( 1./-120.) * B( 8)**
.o 5 *® Bt 30) ¢+ ( 1.7 1.) * B( 6) *= 8( 16) * B( 31) + ( 1./ 1.)

« * BL 17) « B( 31) + (- 1./ 120.) * B( &6)*s S » 8( 31) + ( 1./

e 24.) * B( 1) * B( 6)%% 4 * B( 31) ¢ ( 1.7 12.) ® B( 1)*x 2

e« * Bl 6)%% 3 * B( 31) + ( 1./ 12.) * B{ 1)#%* 3 & B( 6)**x 2 »
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«Bl 31) ¢ ( 1.7 120.) * B( 6)#% 5 & B( 32) + { 1./ 1.) * B¢
« 17) * 8( 33)

cl 3, le 7)=
+ ( 1.7 T20.) * Bl 6)¢* 6 * B( 28)
+ { 1.7 720.) & B( 8)** 6 * B( 29) + ( 1.7 120.) * B{ 8)**
5 * 81 30) + ( 1./ 1.) = B( 6) *= B( 16) * Bl 31) ¢ ( 1./ 1.}
* B{ 18) ® B( 31) + ( 1./ 120.) * B( 6)*¢ 5 * B( 31) + ( 1./
24.) * B( 1) * B{ 6)%% & & B( 31) + ( 1./ 12.) * B( 1l)*s 2
* B{ 6)¢% 3 ¢ B( 31) + ( 1./ 12.) * 8( 1)** 3 & B( 6)%% 2 »
B{ 31) + ( 1.7 120.) * Bl 6)** 5 = B( 32) + ( 1.7 1.) = B{
18) = B( 33)

'COMMENT' EQUATIONS WHICH DEFINE THE UNDETERMINED PARAMETERS
USED IN THE EXPANSION OF E(/ 1/) ey

1

l.) * B( 16)

24.) * B( 6)e% 4 B 23) + ( 1./ 24.) * B( 8)3s 4
( 1.7 6.) * B 8)%% 3 * B{ 25) + ( 1./ 6.) * B{

{ 26) + l 1./ 6.) * B( 6)%¢ 3 & B( 27)

)=

* 8( 17) ’

<) # Bl 6)%* S & B( 23) + ( 1o/ 120.) * B{ 8)es
¢ { 1./ 24.) % Bl 8)%% & & B( 25) + ( 1./ 24.) @
B( 26) + ( 1./ 24.) * Bl 6)%% & & B( 27)

» 3=

. ( / les) * B{ 18)

- ( /7. 120.) * B 6)** S5 * B{ 23) + ( 1./ 120.) » B( 8) e

. * 24) + ( le/ 24.) * B( 8)** 4 * B{ 25) + ( 1./ 1.) = B
ol 16) * B( 26) + ( 1o/ 24.) * Bl 6)%% 4 & B( 26) + ( 1.7 6.)
. Bl 1) * Bl 6)%% 3 * 8( 26) + ( 1o/ 4.) ® B( L)s* 2 *» B{

. *% 2 & B{ 26) + ( 1/ 6.) & B( 1)%% 3 » B( 6) & B{ 26) + (
. /.24.) * B( 6)%% 4 » 8t 27

4y ly 4)=

le7 1.) * B( 19)

1o/ 720.) * B( 6)3% 6 ® B( 23) ¢+ ( 1./ T20.) & B( 8)ss
Bl 24) + ( 1.7 120.) * B( 8)*% 5 & B( 25) + ( 1./ 120.)
{ 7T)s% 5 % B({ 26) + ( 1./ 120.) * Bl 6)¢% 5 * B{( 27)

4y ‘1, S)=

( 1.7 1l.) * Bl 20)

{ 5«7/ 720.) * B{ 6)#%¢ 6 * B( 23) + ( S./7 T20.) * B{ 8)ss

* Bl 24) + ( 1./ 24.) * B( 8)** 5 » B( 25) + ( 1./ 1.} * B
) * B( 16) * B( 26) + ( 1./ 24.) * Bl 6)%% 4 = B - 7) * BI
e 26) '+ ( 1./ 6.) * B 1) * B( 6)** 3 = B( 7) * 8( 26) + ( 1./
e 4s) * B( L)% 2 = Bl 6)*% 2 * B( T) * B( 26) + ( 1./ 6.) * 8B
ol 1i#x 3 = B( 6) * B( 7) % B{ 26) + { 1./ 24.) * B{ 6)%¢ 5 »

«8( 27)

Cl 4y 1y 6)=

« = ( 1.7 1.) * B( 21)

e ¢+ ( 1.7 720.) * B( 6)%* 6 * B{ 23) ¢ ( 1./ 720.) * B( B)*»

o 6 % Bl 24) + ( 1./ 120.) * B{ B)%*x 5 & B( 25) + ( 1./ 1l.) ¢
«Bl 6) * Bl 16) * B( 26) + ( 1./ 1.) * B{ 17) * B{ 26) + ( 1./
- 120

<) ® Bl 6)%% 5 % B( 26) + ( 1./ 24.) * B( 1) & Bl 6)*¢



1) 2 * B( 6)*% 3 * B{ 26) + (
* 2 * B( 26) + ( 1.7 120.) * B{

(2]

O bt P s O | e

4y Ly .

( 1.7 1.) * 8( 22) . )

( 1./ 720.) « B¢ 6)%% 6 % BL 23) + ( 1./ 720.) % B( 8)#s

* Bl 24) + ( 1./ 120.) * B( B)** 5 & B( 25) + ( 1./ 1l.)
Bl 6) * B[ 16) #* B{ 26) + ( 1./ 1.) * B( 18) * B{ 26) + { 1./
20.) * B 6)%% 5 % B( 26) + ( L./ 24.) * B( 1) * B( 6)*s .
® B( 26) + ( 1./ 12.) * B( 1)%* 2 * B( 6)%% 3 = B( 26) + °(
/7 12.) * BC 1)%% 3 * B( 6)%% 2.% B 26) + ( 1./ 120.) * B(
*

« 5 % B( 27)

OEFINE THE UNDETERMINED PARAMETERS B(/.../) BY PRINTING cuT
THE EXPANSIONS OF E{/I,K/)s I IN Me= (lyoeeesE®Q)y K IN P.=
{0s...,CRDER - 1)y WITH RESPECT TO THESE PARAMETERS, *IF' MODE
*EQUAL® O °*THEN® THEIR LOCAL ORIGINS ARE THE POINT O 'ELSE!
*IF* MODE *EQUAL'-1 °*THEN® THEY ARE ~ I1 * H WHERE Il.= [e¢/+ @

CEW/. 1, 0/).= Ut/ 0/7) ( 8/ /7)) (/ 0/) + SUM(1,0, 6,B8(/ 16
IV AL 0 % HYU/I/)) -

f(l 3 0/)e= U/ -1 & H/) ( Bt/ /7)) (/7 0/) + SUM(I,0, 6,8(/
16 ¢+ 1/7)% A{ -1 * H)(ll/))_ . ]

*COMMENT® LAST 1154 LASTl.= 0 TEMPO-LAST.= 4846 LIST LENGTH-TEM
PO.= 1000
NEXT FREE PARAMETER B(/ 34/

END OF COMPUTATIONS.



-TABLE VI EXAMPLE 1 SCHEME PARAMETERS -35/128

PARAMETER VALUES COMMENT
B( 1)= —-2.7343750000000E-01 B, =
B( 2)= 1.0000000000000E+00 a=
B 4)= Q0. - , B; g 7¢ §
' B( 5)= -2.7343750000000E-01 NN
B( 6)= -1.0000003000000E+00 & 43 1 &,
B( 7)= -1.2734375000000E+00] - ; *
B( 16)= 3.73840332031186-02| O ¢;  Harmonics of & |
B( 17)= -1.0341838995613E-01| 1 "~ about t,,
B( 18)= -1.0341838995612E-01} 2 '
B( 19)= 9.1921752008281E-22| 3
B( 20)= 2.7576525602483E-01| 4
' B( 21)= 1.8846137946288E-01| 5
B( 22)= 1.8846137946287E-01] 6
 B( 23)= 1.0000000000000E+00]| 51] & X
B( 24)= -9.6529017857132E-01| 1| 2] 3] 2] 1
B( 25)=. '1.6918526785713E+00. ‘ ‘
B( 26)= 1.0000000000000E+00{ 1|23 |ok|os
B( 27)= -1.0952380952381E-01 .
B( 28)= 4.6257040450589E-01] 0]26]27]28}29
Bl 29)= 6.4695340501791E-01] | | |
FCR THE ABOVE PARAMETER VALUES THESE RESULTS ARE OBTAINEC
C( 1, 14 1)= O. : gn [Condition A
C( 1, 1; 2)= —3.5527136788005E-15
C( 2, 1s 11= 4.9737991503207E-14 TR
C( 2y 1y 2)= —4.9737991503207E-14
C( 3, 1, 1)= 0. ' -~ [p2 Yo |Condition B £
C( 3y 1, 2)= 2.2204460492503E-16[,5 1
C( 3, 1, 3)= ~2.6645352591004E-15 2
C( 3y 1y 4)= 6.2730577257364E-05]| Z
C( 35, 1, 5)= 1.8819173177109E-04] L - S
C( 3, 1, 6)= -5.3686135912681E-02|" 5 |f 'rircipal error
C( 35 1, 7)= -5.3686135912679E-02 6 em
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TABLE VII EXAMPLE 2 SCHEME PARAMETERS

PARAMETER VALUES -7732 COMMENT
B( 1)= -2.18750000000C0E-01 B.= b

B( 2)= 1.0000000000000E+90 2=

B( 4)= 0. '

B( 5)= -2.1875000000000E~01 B 1 b 5

B( 6)= -1.0000000000000E+00 ’ 1 By
B( 7)= -1.2187500000000E+00 t; # 3 a1+ o g
B( 8)= -2.0000000000000E+00

B( 16)= 9.5407168007711€E-35|0 9 Harmonics of £; about t,
B( 17)= —1.8593644288477TE-02|1

B( 18)= -1.8593644287844E-02[

B( 19)= 2.3451935087751E-023

B( 20)= 1.1725967543796E-01 |4

B( 21)= 2.1069520381382E-01]5

B( 22)= 2.1069520380745E-01/[6

B( 23)= 8.5435638427522E+00

B( 24)= -7.5435638427513E+00| 61| & X

B( 25)= -1.8735885620054E+00] . il %

B( 26)= -1.0072544642836E+01| =+ 312]1

B( 27)= 5.1838193620896E+00

B( 28)= 1.3003331746788E+00| | |20 [2%[25[26 27

8( 29)= -3.0033317467873E~01| ((28]o9 30|31 (32 |33

B( 30)= -5.9487796120479E-02

B( 31)= -7.7146392874144E-01

B( 32)= 9.9055959747060E-01

B( 33)= 5.4005895271257£-01

FOR THE ABOVE PARAMETER VALUES THESE RESULTS ARE OBTAINED
C( 1, 1, 1)= 6.3948846218409E-14 £, |Condition A

C( 1, 1, 2)= —-8.1712414612412E-14

C( 1, 1, 3)= 4.9293902293357E-14

Cl 1, 1, 4)= -2.1260770921572E-14

C( 24 1, 1)= 9.0949470177293E-13

Cl 2, 1, 2)= -1.1368683772162E-12 &

C( 2, 1, 3)= 7.3896444519050E-13

C( 2, 1, 4)= -4.0738939999230E-13

C( 3, 1, 10=_1.47665B81814600E-15] o _ 90 | Condition B %o
C( 3, 1, 2)= -3.0179851673307€-15] ;5 1|

Cl 35, 1, 3)= 1.2157592640949E-14 2

C( 3y 1y 4)= 2.7488253780019E-06] 3

Cl 3, 1, 5)= 1.3744126839082E-05{ 1,6 4 |{principal error
C( 3, 1, 6)= 4.3044447371057E-03 5 term

c( 3, 1, 6

7)= 4.3044447369593E-03}
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TABLE:VII. CONT. EXAMPLE 2 STABILITY CHECK -1/32

1 2 3
X(I) -2.1875E-01 X . :
A(D) 3.0033E-01 -1.3003E+00 1.0000E+00
RHO(I) 3.0033E-01  1.0000E+00 : i
THETA(ID) | 0. 0. ,

PARAMETER VALUES =~ 177/256

- CCM

MENT

6.9140625000000E-01 | See previous case with

4)= -3.1241675912952€-13

B( 1)=
B( 2)= 1.000000000C000E+00
B( 4)= 0. g =-7/32
B( 5)= 6.9140625000000E-91
B( 6)= -1.0000000000000E+00
- 8( T)= -3.0859375000000E-01
B( 8)= -2.0000000000000E+00
'B( 16)= 9.5218637434513E~03 (0 ¢, Harmonics of &y about t,
B{ 17)= —-1.2899824826048E-01 |1
B( 18)= -1.289982482€6040E-(Q1 |2
B( 19)= 1.1508940408733E-01]3
B( 20)= 5.7544702043659€-01 {4
B( 21)= -3.6947052581091E-01 |5
B( 22)= -3.6947052581061E-01]6
B( 23)= 8.8304000415720E+00 | See previous case with
B{ 24)= -7.8304000415719E+00
B( 25)= -2.7747193164008E+00 -ﬁ = -7/32
B( 26)= 3.7183757821901E+00
B{ 27)= -7.0826502573614E+00
Bl 28)= 9.2205493921958E-01
B( 29)= 7.7945060780429E-Q2
B( 30)= 1.9005618281631E-02
B( 31)= 6.8211932288409E-01
B( 32)= 3.7184702411883E-01
B( 33)= 4.9730954958851E-03
FOR THE ABOVE PARAMETER VALUES THESE RESULTS ARE OBTAINEC
cC( 1, 1, 1)= 0. ‘ ' £y [Condition A
Cl 1y 1y 2)= T7.5772721430667E-15
Cl 1y 1y 3)= ~-1.2059797604991E-14
_C( 1y 1,y 4)= 5.1417203827953E-15
Cl 2y 1y 1)= 1.1368683772162€E-13 £
Cl 2, 1, 2)= -2.2737367544323E-13
C( 2y 1y 3)= 3.1263880373444E-13
clt 2, 1,
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TABLE VIT CONT.

C( 3, 1, 1)= -1.6930901125534E-15n" %0 [Condition A
C( 3, 1, 2)= 4%.9960036108132E-16[,5 1
Cl 3, 1, 3)= 1.5482840703962E-14 2
C( 3, 1y 4)= 3.2831713151999E-05 3
Cl 3, 1, 5)= 1.6415856575530E~041:0 4 |lprincipal error
C( 3, 1, 6)= -B.9505577954445E-02 5 term
C( 3, 1, 7)= -8.9505577954389E-02 6
|EXAMPLE 2 STABILITY CHECK 177/256
I S| 2 3
X(I) | 6.9141E-01 _ .
ALI) ~7.79456-02 -9.2205E-01  1.0000E+00
- RHO(I) | 7.7945E-02 1.0000E+00
THETA(I) 1.8000E+02 0.




TABLE VIII EXAMPLE 3

PARAMETER VALUES  -55/256 - CCMMENT

B( 1)= -2.1484375000000E-01f B = g

8( 2)= 1.00000000006000E+00 3 ‘

B( 4)= 0. ' - : B 10 9.8 74 5y

B( 5)= -2.1484375000000E-01 T

B( 6)= -1.0000000000000E+00 L AN
B(  7)= -1.2148437500000E+00| t; & § % 3 a 1.0 % |z

B(  8)= -2.0000000000000E+09 : ’

B( 10)= -3.0000000000000E+00

B( 18)=" 1.3658533459804E-07| 0  Harmonics of &;about t,

B( 19)= -3.5596361412327E-03| 1 : _ :

'B( 20)= -3.5596361433155E-03 | 2

Bl 21)= 6.0425894389404E-03 |3

B( 22)= 4.2298126075085E-02 | 4

B( 23)= 1.1208166814845E-01 |5

B( 24)= 1.1208166821050E-01 |6

B( 25)= 3.5976231668263E+01

B( 26)= -3.1099918878961E+01 | . :

B( 27)= -3.8763127892998E+00 | &1 § X

B( 28)= -9.7817667588986E~01 |~ 11 o1 ;[ 61 6] 4] 5] 2] 1

B( 29)= -1.5254413783933E+01

B( 30)= -2.9789337836564E+01 1.{25(26 [27128 (29]30(31
| Bl 31)= 7.9545400888260E+00 : «

B( 32)= 1.0923319157677E+00 0132133 |34 35136]37|38139

B( 33)= -1.2643169976527E-01 ] 1

B( 34)= 3.4099783997631E-02

B( 35)= 8.9961593964621E-03

Bl 36)= 4.7634536908740E-02

B( 37)= -6.5949997267148E-01

B( 38)= 1.0110443847661E+00

B( 39)= 5.3359275983016E-01

FOR THE ABOVE PARAMETER VALUES THESE RESULTS ARE OBTAINED

Ct 1, 1, 1)= 9.9475983006414E-14| = &, [Condition A

Cl 1, 1, 2)= -1.1368683772162E-13 | :

C( 13 1, 3)= 6.0840221749459E-14

Cl 1, 1, 4)= -2.1260770921572E~14

Cl 1, 1, 51= 7.5876804839226E-15

C( 1y, 1y 6)= —-1.1492543028346E-15

C{ 2, 1, 1)= 2.1032064978499E-12 :

Cl 2, 1, 2)= -3.2969182939269E-12 1

Cl 25, 15 3)= 2.501110429875S6E-12 '

Cl 2y, 1y 4)= -1.6674162051089E-12

Ct 2, 1, 5)= 8.0054539386420E-13

C( 2y, 1, 6)= -2.9013830183874E-13 - :
{CC 3, 1, 1)= -3.9952850056091E-17 [y® ¥y [Condition B &0

ClU 3, 1, 2)= 9.9261673506363E-17(,7 1 | . . :

C( 3, 1, 3)= -8.6935611941436E-15
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TABLE VIII CONT.
C( 3, 1, 4)= -2.9878394336950E-05] 3
C( 3, 1, 5)= -2.0914876031072E-04 8 M .
Cl 3, 1, 6)= 4.1830494316906E-04[" 5 incipal error
Cl 3, 1, 7)= 4.1830494343131E-04 6 term
EXAMPLE 3 STABILITY CHECK -55/256
I 1 2 3
X{(1) -2.1484E-01 »
A1) -3.4100E-02  1.2643E-01 -1.0923E+00
RHO(I) 1.8466E-01  1.8466E~01  1.0000E+00
THETA(I) -7.5522E+01  7.5522E+01 0.
I 4
A(I) 1.0000E+00
|PARAMETER VALUES 1897256 COMMENT

B( 1)= 7.3828125000000E-01] See previous case with
B( 2)= 1.0000000000000E+00

B( 4)=. 0. : t = -55/256

B( 5)= 7.3828125000000E-01

B( 6)= —1.0000000000000E+0Q0

B( 7)= -2.6171875000000E-01

B(- 8)= -2.0000000000000E+00

B( 10)= -3.0000000000000E+00

B( 18)= 2.2490470311531E-C4|0 ¢, Harmonics of &
B( 19)= -4.9111151787269E-02]|1 about t,
“B( 20)= -4.9111151785584E-02]2

B( 21)= 6.9066665619596E-02|3

B({ 22)= 4.8346665933678E-01}L

B( 23)= -2.0539578168642E-0115

B( 24)= -2.0539578167701E~Q1|6

B( 25)= 5.6803094838622E+01| See previous case with
B( 26)= —3.6292289144468E+01 |

B( . 27)= -1.9510805694152E+01 t; = -55/256

B( 28)= -5.4327395775294E+00 . '

B( 29)= -4.3689122954257E+01

B({ 30)= 5.5858992806255E+00

B( 31)= -3.0039656031613E+01

B( 32)= 6.9220393663531E-01

B( 33)= 2.7689156653732E-01

B( 34)= 3.0904496827364E-02

"B 35)= 7.1917265804906E-03

B( 36)= 1.4057619056241E-01 |

B( 37)= 6.1183394188573E-91

B( 38)= 5.7737323850185E-01

| 8 39)=

1.7254626615661E-03
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TABLE VIII CONT.
FOR THE ABOVE PARAMETER VALUES THESE RESULTS ARE OBTAINEC
C( 1, 1, 1)= 0. . to | Condition A .
Cl 1, 1, 2)= 8.6181062286528E-15 -
C( 1, 1, 3)= -1.23928645123T8E-14
C( 1, 1, 4)= 1.3163081735712E-14
“C 1, 1y 5)= =5.2410333017949E-15
"C( 1, 1, 6)= 2.7792438489493E-15
C( 2, 1, 10= 2.2737367544323E-12 )
Cl 2, 1y 2)= —4.2064129956998E—12
Cl 2, 1, 3)=. 5.1159076974727E~-12
C( 25 1y 4)= ~4.9449333516804E-12
€l 2y 1y 5)= 2.4159008127356E-12
Cl 2, 1, 6)= —1.3045467484041E~12
Cl 3, 1, 1)= -6.1640959263948E-16 110 ¥p | Clondition B ¢,
C( 3, 1, 2)= 2-6697800871096E-16 [, 7 1
C( 3, 1, 3)= 1.8530294486341E-13 2
"C( 3, 1, 41= =1.3235635893351E-06 3
Cl 3, 1, 5)= -9.2649451731932E-06 [;8 b ||p 05001 error
C( 3, 1, 6)2 -3.0148486496469E-02 5 | torn
Cl 3, 1,.7)= -3.0148486495435E-02 6
EXAMPLE 3 STABILITY ‘CHECK 189/256
= 1 2 3
X(I) |  7.3828E-01 K .
A(I) | -3.0904E-02 -2.7689E-01 -6.9220E-01 .
RHO(I) 1.7580E-01 1.7580E-01  1.0000E+d0
THETA(I) -1.5110E402 1.5110E+02 0.
I 4
A(I) 1.0000E+00
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TABLE IX EXAMPLE 4

PARAMETER VALUES <~13/64

COMMENT
B 1)= -2.0312500000000E-01|8,=4,
B( 2)= 1.0000000000000E+00
B{ 4)= C. . B,iaw o9 7 6 5%
B( 5)= -2.0312500000000E-01 T I f)
B( 6)= —1.0000000000000E+00 BN R I M
B( 7)= ~1.2031250000000E+00(F; € 7 6 5 ¥ 3 2 + o t|¢
B( 8)= -2.0000000000000E+00
8( 10)= -3.0000000000000E+00
B( 12)= -4.000000000G000E+00
B( 20)= 7.1885178365427E-11| 0 ¢;  Harmonics of &g about tg
B( 21)= -7.5284008171891E-04| 1 '
B( 22)= -7.5284008227385E-04] 2
B( 23)= 1.6231158189083E-33| 3
B( 24)= 1.4608042370796E-02] &
B( 25)= 4.9377922165884E-02] 5
B( 26)= 4.9377922201086E-02] ¢
B( 27)= 9.0836146607243E+01
B( 28)= -5.7707017723012E+31
B( 29)= -2.8882857280867E+01
B( 30)= -3.2462716033597E+00
B( 31)= -7.5385949973605E-01] &, 3 X
| B( 32)= —1.4751932004396E+01 '
B( 33)= -5.6894706452300E+01| O] 2| k| 6] 81 8] 6| 4| 3] 2]1
B( 34)= —-6.3432869222755E+01 '
B( 35)= 1.1418695084360E+01] 1|27 28(29(30(31 32133 |3k|35
B( 36)= 1.7417250703161E-01 . )
B( 37)= 3.2180748571091E-01| O|36[37(38|39 |40f41 Jh2 |k ki fk5
B( 38)= 4.5770073285158E-01
B( 39)= 4.6319274405917E-02
B( 40)= 1.0452001726922E-02
Bl 41)= 2.2680839056931E-01
B( 42)= 7.6355523090345E-01
Bl 43)= -2.7778502802622E-01/
B( 44)= 1.1419380743356E+00
B( 45)= 5.1119819512282E-01
FOR THE ABOVE PARAMETER VALUES THESE RESULTS ARE OBTAINED
Cl 1, 1, 1)= 2.1316282072803E-14| &y |Condition A
C( 1, 1, 2)= 5.6843418860808E-14
1€l 15 1, 3)= ~7.4162898044960E-14
C( 1y 1, 4)= 1.0336176359260E-13
Cl 1y 1, S5)= -5.4678483962789E-14
Cl 1, 1, 6)= 3.0296294986631E-14
Ct 1, 1, 7)= -1.4030965245996E-14]
c( 1, 1, 8)= 5.7578180555519E-15
Cl 25 1y 1)=  4.4906300900038E-12 3
Cl l, 2)= -7.3328010330442E-12| -
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TABLE IX CONT.
Cl 2, 1, 3)= 7.3328010330442E-12| ¢ [Condition A
C( 24 1, 4)= —-7.3801798006201E-12
Cl 2y 1y 5)= 4.7156358679024E~12
Cl 2, 1y 6)= -2.5848360723970E-12
C( 2y 1y 7)= 1.5251306395059E~-12
C( 2, 1, 8)= —7.2241295839177E-13 -
C( 3, 1, 1)= —3.15847077T632T0E-15[,8 ¥, [Condition B Ty
CU 3, T, 2)= B.3084292I00750E-16],5 1 ,
C{ 3, 1, 3)= 2.8729822594551E-15 >
C( 3, 1, 4)= —6.1688291913145E-06 3
Cl 3, 1, 5)= -5.5519462718045E-05/,10 ki {pui ooy orror
Cl 3, 1, 6)= —1.8189154884590E-04 5 e
Ct 3, 1, 7)= -1.8189154897543E~04 6
EXAMPLE 4 STABILITY CHECK -13/64
I 1 2 3
X(1)|  -2.0313E-01
AT -4.6319E-02 -4.5770E-01 =3.2181E-01
RHO(I) 1.0872E-01 6.5273E-01  6.5273E-01.
THETAGI) 1.8000E+402 =-1.2332E+02  1.2332E+02
I 4 5
ACI) 1.7417E-01  1.0000E+00
RHO(I)|  1.0000E+00
THETA(I) 0.
PARAMETER VALUES 195/256 COMMENT

7.61718750000C0E-01

B( 1)=

B{ 2)= 1.0000000000000E+0D
B( 4)= Qe ,
B( 5)= 7.6171875000000E-01

Bf{ 6)= -1.0000000000000E+00
| Bl 7)= -2.3828125000000E-31
B( 8)= -2.0000000000000E+00
B( 10)= -3.0000000000000E+Q0Q
B( 12)= -4.0020000000000E+90

See previous case with

t1 = %13/64

1

| 8¢ 20)=

2.8108456175957E-06
B( 21)= -1.6757738836915E-J2
B( 22)= -1.6757738819361E-02
B( 23)= 3.2221594335501E-02
"B( 24)= 2.8999434901404E-01
B( 25)= -9.8316394112856E-02
B( 26)= -9.8316393976117E-02

AN FEWND = O

(2 Harmgnics of gy about t,
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TABLE [IX CONT.

B(
B(
B(
B(
B(
B(
- BY(
- B{
- B(
- B{

27)=
28)=

34)=

36)=

2.0536983350272E+02
4.3921408186741E+01
29)= —-2.1197688558192E+02
30)= -3.6314356107544E+01
31)= -8.8063187484961E+00
32)= -1.3314678448849E+02
33)= -2.6831348403107E+02
7.7896031546224E+00
35)= -8.4736728436299E+01
3.7294517398069E-01

See the previous case with

t; = -13/6k

-9.5814671940321E-03

"B 37)= 4.1772793391875€E-01
B 38)= 1.9551458658608E-01
B( 39)= 1.3812305514491E-02

- B( 40)= 2.9591527068352E-03
B( 41)= 8.3992250276174E-02
B( 42)= 4.2161843561475E~01

. B( 43)= 5.7085515817217E-01
B( 44)= 7.6986036773435E-01
B( 45)=% 9.0865913013098E-04}.

- |FOR THE ABOVE PARAMETER VALUES THESE RESULTS ARE OBTAINED
C{ 1, 1y 1)= 7.1054273576010E-15 £, |Condition A
Cl 1, 1, 2)= 2.6794538809938E-14
Cl 1, 1y 3)= -5.1701698478013E-14
C( 1, 1y 4)= 2.8249971806282E-14
Cl 1, 1, 5)= ~1.6683703030207E-14
Cl 1y 1y 6)= 1.0284470757654E-14
C( 1, 1, 7)= -4.0702169282550E-15
C( 1, 1, 8)= 1.6216987876270E-15
C( 2y Ly 1)= —-4.54741735088646E-12 £y
Cl 2y 1y 2)= 1.3642420526594E-12 '

C( 2y 1y 3)= 1.7280399333686E-11

C( 2y 1y 4)= —3.7516212358923E-11

C( 2y 1, 5)= 3.0240754345101E-11

Cl 2y 1y 6)= ~1.8928844602861E-11

Cl 2y, 1, 7)= 1.1777913713762E-11]|

C( 2y 1, 8)= —6.6691679305800E-12 ‘

C( 3y 1y 1)= -4.6963466474807E-16[{1,C Vo [Condition B Eo
CU 3, 1, 2)= 2.4597152544462E-16],9 1

Cl 35 1, 3)= 1.2887068716132E-12 2
C( 3, 1, 4)= 1.3754480577628E-07 3
C( 3, 1, 5)= 1.2379029477152E-06. u o
Cl 3, 1, 6)= -9.5814672040689E-03|1l0 5 Principal error
c( 3, 1, )= 6 term
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TABLE IX

CONT.

EXAMPLE 4 STABILITY CHECK 1957256

I 1 2 3
X(I) 7.6172E-01. S ' '
A(I) -1.3812E-02 -1.9551E-01 -4.1773E-01
RHO(T) B.4485E~02  4.0434E-01 4.0434E-01
THETA(I) 1.8000E+02 -1.3214E+02  1.3214E+02 -
I 4 5
A(T) -3.7295E-01 . 1.0000E 00°
RHO(T) 1.0000E+00 |
THETA(I)

0.




TABLE X EXAMPLE 2 START =-7/32

{INTERVAL PARAMETER SET 1

B(129)= ' 3.6€13843203960E-14

B(131)= 4.8214285714282E-21"

B(130)= 3.7202380952384E-01 |

B(132)= 1.0416666666@66E—01

B( 8)= 7.812500000C000E-01| B, 1rueg9 ¥
B( 9)= 7.8124999816152E-01
B( 10)= 5.2083333333333E-01 : . By | ¢
Bl 11)= 2.6041666666666E-01 £ 4 3 2 1 o
B( 12)= 0. -
COEFFICIENT SET 1 o
B( 77)= 1.0000000000000E+00| ¢, |¢ X
B( 78)= 2.6041666666666E-01 -
B( 79)= 1.0000000000000E+00 il u W o3| 2]t
B( 80)= -2.6041666990549E-01
B( 81)= 7.8125000323882E-01 3177178
B( 82)= 1.0000000000000E+00| ——}—1 |
B( 83)= 7.8124999261592E-01 {791 80} 81
B( 84)= -7.8124998516484E-01 —
B( 85)= 7.8124999071044E-01 1| 82| 83| 84|85
B( 86)= . 1.0000000000000E+00 " |
B( 87)= 9.7656249780499E-02 o} 86| 87| 88{89(90
B( 88)= 2.9296875100110E-01
B( 89)= 2.9296874796406E-01
B( 90)= 9.7656251254341E-02
|INTERVAL PARAMETER SET 3
B( 1)= 1.0000000000000E+00 .
B( 2)= 1.0000000090000E+00 B 6 s y3 a¢
Bl 3)= 6.6666666666666E-01 | (4 ¢
B( 4)= 1.9999999999999E-01 | TV T T &
B( 5)= 7.8125000000000E-01 t;) 6 5§ ¥3 3 1!
B( 6)‘-‘ Qe ) :
COEFFICIENT SET 3
"B(115)= 1.0000000000000E+00 |
B(116)= 1.7439999999999E-01 ’
B(117)= 2.5599999999998E~02 | ;| ¢ X
B(118)= 1.9090090000000E+00
B(119)= -2.5037037037040E-01 il 6] 6l 5| 4| 3| 2
B(120)= 6.6778176025487E-02 :
B(121)= 8.5025886101158E-01 | L4l115{116]117
B(122)= 1.0000000000000E+00 : -
B(123)= 9.3599999999993E~-01 31118(119]120 |121
B(124)= -4.0051612903217E-01 | — :
B(125)= -1.0783410138248E+00 ol122123 |12k {125 [126
B(126)= 1.5428571428570E+00
B(127)= 1.2000000000000E+00 1| 1271128]129 |130]131 |132
B(128)= 4.1666666666650E-02 :
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TABLE X CONT. EXAMPLE 2 START 177/256

INTERVAL PARAMETER SET 1

B{ 8)= 1.6914062500000E+900
B( 9)= '1.6914062499823E+00
B( 10)= 1.1276041666667E+00
B( 11)= 5.6380208333333E-01
B( 12)= Q.

See previous case with

t = -7/32

COEFFICIENT SET 1

" 1.0000000000000E+00

Bl 77)=
B( 78)= '5.6380208333333E-01

. Bt 79)= 1.00000G0000000E+00 |
B( 80)= -5.6380208337246E~01
B( 81)= 1.6914062500391E+00

B8( 82)= 1.0000000000000€+00

B{ 83)= 1.6914062499187E+Q0|.

B( 84)= -1.6914062498198E+00
B( 85)= 1.6914062498834E+00
B( 86)=" 1.0000000000000E+00

" B( 87)= 2.1142578124750E-01|

Bl 88)=" 6.3427734375933E-01
B( 89)= 6.3427734373160E-01

B( 90)= 2.1142578126158E-01

See previous case with

t = -7/32

INTERVAL PARAMETER SET 3

B( 1)= 1.0000000000000E+Q0
B( 2)= 1.0000000000000E+00
Bl 3)= 6.6666666666666E-01
B{ 4)= 2.0000000000009E~01

B{ 5)= 1.6914062500000E+0GC
B( 6)'-' 0.

See previous case with

t, = -7/32

CUEFFiCIENT SET 3

B(115)= 1.0000000000000E+00

B(116)= 1.8817551963056E-01|

B(117)= 1.1824480369526E-02
B(118)= 1.0000000000000E+00
B(119)= -4.5445214267355E-C1
B(120)= -1.3420485839614E-03
B(121)= 1.1224608579242E+00
B(122)= 1.0000000000000E+00
B(123)= 1.8314087759795E+00
B(124)= -3.6018519302512E-02
6(125)= ~2.3382473995335E+00
B(126)= 1.5428571428564E+00
6(127)=. 1.0000000000000E+00
B(128)= 4.1666666666742E-02
B(129)= -1.7551245388849E-15
B(130)= 3.7202380952380E-01
8(131) 4.8214285714277E-C1
'B(132) 1.0416666666670E-01

See previous case with

ty = -7/32
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"TABLE XI . EXAMPLE 3 START

START FOR -557256
INTERVAL PARAMETER SET 1
B( 5)= -2.14843750000006-01| B 1© 9 8 7 ¢ 5 4 |
B( €)= 0. - - SN G I >
B( 7)= -2.1484375000000€-01} = 1 . | R | M
B( 8)= -1.0000000000000E+07 ¢ 6 7y 31
~8( 10)= -2.0000000000000E+00 | |
COEFFICIENT SET 1
B( 25)= 8.0769388137674E-01
B( 26)= 1.4709500246681E-01| . £ X
Bl 27)= 4.5211116156451E-02 ‘
B( 28)= 1.2699127279347€-02| i 2| 4| 6] 6] 4] 3] 2| 1
B( 29)= 1.1549256053058E-01
8( 30)= Q. 1]25 [26]27]27]29|30(31
| 8( 31)= -1.0551820303021E-01
B( 32)= 1.0716125982387E+GCO 0132 33 134 135 [36137|38]39
B 33)= -6.6416959663704E-02 '
Bl 34)= -5.1956385750449E-03
B( 35)= -1.2609701702601E-03
B( 36)= -2.6073845525025E~02
B( 37)= 0. g
B( 38)= -8.7058630558552E-02
B( 39)= -1.7725854055996E-01
STABILITY CHECK OF CORRECTOR )
I 1 2 3
X(1) -2.1484E-01 ‘ ,
ACT) 5.1956E-03  6.641TE-02 -1.0716E+00
RHO(I) 4.46T8E-02 1.1629E-01  1.0000£+00
THETA(I) 1.8000E+02 0. | 0.
1 4

AlI) | 1.0000E+00
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TABLE XI CGNT. EXAMPLE 3 START FOR 1897256

INTERVAL'PARAMETER SET 1

B(
Bl
B
B
B

5)=

6)= 0. |
7)=  7.3828125000000E~01
8)= -1.0000000000000E+00]
10)= -2.0000000000000E+00 |

7.3828125000000E-01

See previous set with

-t = -55/256

'COEFFICIENT SET 1

25)= -6.8810803488247E+00

| 8¢ See previous set with
B 26)= 4.0869543144945E+00). o
B( 27)= 3.7941260343302E+00 "t = -55/256
B( 28)= 1.1274617846823E+00} ~ : :
B( 29)= 7.1042760544924E+00
B( 30)= C. R '
B( 31)= 4.1817497939803E+00
- Bl 32)= -3.5911200522334E-01|
B( 33)=  1.0244778344542E+00]
B{ 34)= 3.3463417076912E-C1
B( 35)= 8.9704991856244E-02
| 8( 36)= 8.9041530527373E-01
B( 37)= Q. '
. B( 38)= 1.2340394364734E+00
B( 39)= 2.1786769238911E-01]
STABILITY CHECK OF CORRECTOR
I , 1 -2 ' 3
X(I) 7.3828E-01 S
A(TI) ~3.3463E-01 -1.0245E+00 . 3,5911E-01
RHC(I} 3.2296E-01  1.0000E+00 = 1.0362E+90¢
© THETA(T) 1.8000€E+02 0. ‘. 1.8000E+02
11 4
A(T) 1.0000E+0C
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TABLE XII EXAMPLE 4 START

START FOR -13/64

INTERVAL PARAMETER SET 1

B( 5)= -2.0312500000000E-01{% " ' " 1 &
B ( 6)= C. g ) 1
B( 71= -2.0312500000000e-01 T 1
~8( 8)= -1.0000000000000E+00{*. ¢ » | s 4 3 2 4 o
"B( 10)= -2.0000000000000E+00 | -
B( 12)= -3.0000000000000E+00

COEFFICIENT SET 1

B( 27)= 7.7732624036978E-01
B( 28)= 5.2919044055955E-02
B( 29)= 1.4330664890230E-31 .
Bt 30)= 2.6448066671965E-02] &, £ X
B( 31)= 6.5722405381052E-03 : :
B( 32)= S.2068517451195E-02| i| 2f 4} 68| 8] 6] 4] 3|21
B( 33)= 2.0760548052721E-01
- B( 34)= Q. o
B{ 35)= -9.0494696640064E-02
B( 36)= 1.0929348438486E+00| 0|36]37|38{39 |40k (42|43 |4k {45
B( 37)= -7.1409776695964E-02
B( 38)= -1.9655777718015E-02
B( 39)= -1.8692894345904E-03
"B( 40)= -4.2660791629733E-04
B( 41)s -S$.3021170399682E-03
B( 42)= —-4.7297384656830E-02
B( 43)= C. -
B( 44)= -8.0881326187540E-02
B( 45)= -1.8154676463513E-01

1|27|28 29 |30 31 |32|33 34 [35

STABILITY CHECK OF CORRECTOR

I. 1 2 -3
X{(1) -2.0313E-01 - ' :
A1) 1.8693E-03 1.9656E-02 7.1410E-02 \
RHO(I) 9.1087E-02 9.1087E-02 2.2530E-01 . :
"THETA(I)|  -1.3660E+402 1.3660E+02 O.
o " Y |
A(I)| -1.0929E+00 1.0000E+00
RHO(I) 1.0000E+00
~ THETA(I) 0.




TABLE XII CONT.

START FOR 1957256

INTERVAL PARAMETER SET 1

B(
B
B
B
B(
BI(

S)= 7.6171875000000E-01
6)= 0.

7)= 7.6171875000000E-01
8)= -1.0000000000000E+00
10)= -2.0000000000000E+00

See previous set with

t = -13/6k

12)= -3.0000000000000E+00

COEFFICIENT SET 1

27)= —-1.6683029324881E+01

See previous set with

B
B( 28)= -1.1924920363082E+01
B 29)= 2.3964116341398E+01 t; = -13/6h
B( 30)= 5.6438333465649E+00
B( 31)= 1.4351760001959E+00
B( 32)= 1.7593593201836E+01
B( 33)= 2.7580200429486E+01
B( 34)= (.
B( 35)= 7.0875614778907E+00
B( 36)= -1.9308154367946E+00
B( 37)= 4.2207660908586E-01
B( 38)= 2.1894575618534E+00
B( 39)= 3.1928126585526E-01
Bl 40)= 7.6049433303698E-02
B( 41)= 1.2698494619563E+00
Bl 42)= 3.1205991376546E+00
B( 43)= 0. .
B( 44)= 1.8547241922324E+00
B( 45)= 1.9933205521152E-31
STABILITY CHECK OF CORRECTOR
I , 1 2 3
X(1) 7.6172E-01
A(I) -3.1928E-01 -2.1895E+00 -4.2208E-01
RHO(I) 1.4433E+00  1.4433E+00 1.5328E-01
THETA(I) -1.6421E+02  1.6421E+02  1.8000E+02
1 4 5
A(T) 1.9308E+00  1.0000E+00
RHO(T) 1.0000E+00 -
THETA(I) 0.
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TABLE XITT

ERROR TERMS OF EXAMPLES. ERROR X SCALE

41.83

EX. 7.1 RK3  EX. 7.2 EX. 7.2 . JCB EX. 7.3 EX. 7.3 JCB  EX. 7.4 EX. 7.4 JCB

coate | 10t 10" 10" o 10" 10° 10° 10° , 10 10 | 106
& |-35/128 -7/52  177/256 -1/2  -55/e56  189/256 -1/2 -13/64  195/256 -1/3
¢S 0.627 } 0 0.027 0.328: ‘A1.792 -2.988 -0.123  3.473 | -6.169  0.138 -.993.
Wy, 1.822 k16.667 0.137 1.642 89.61 -20.91 -0.926 206.6 -55.52  1.238 522.k4
' ¢5  -536.86 0 b3.0h  -895.1 = -8.961 41.85  --3020. -2k.31 -181.9 -9581. - 8.937
¢6 -536.86  -b16.667 b3.04 ;895,1' 189.61 3020,  -206.6 -181.9 -9581.  -522.k

¢g¢
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Appendik IV
"USE OF PROCEDURE RKMI -

In thie appeﬁdix; we give information that will enable one to use
the procedure RKMI. ‘It is assumed that the reader is familiar with the
work of Chapter 11T end that'he thus understehds, in principle, how a-
problem is to be set up. 'Ih order to heip clarify and fix'these‘idees,
_we present here one completevpfohlem work sheet showing'how the RKﬁ
elassie example was set up, along with a discﬁssion-of the_progremvcontrolt
sections; The reader can find the.aetual input data in Appendix.III
e»where that example appears in full detail.

We also present two eQurce_listings thet afe'sufficientpte run the
progrem. ,Seurce Listing 1 gives the input-output structure of the‘ﬁain'
progrem; ﬁhile Sburce Listing 2 gives the-input-output.strueture'of the
datavteble input pfocedure data.‘ These two same listings are all that
are necessary.to run RKMI oncehan‘example is.understood. Since Such_is
the case and since one usﬁelly prefers not to have an excess ofvinfermation
around when preparing data; we shall try'end_limit our discussion here
to the essentiais}. Remember that there are.complete eXamples given in
Appendix III, there are de5cr1ptlons of examples in Chapter VI, there :
are descriptions of various parts of the program in Chapter V, there is
a description of the problem being solved in Chapter III; and, 1f
disastrous situations arise, thefe-are source lietings in.Appendix iI

We glve first a sample problem set up using the rank L Runge-Kutta

(9)

scheme. We note that we have been runnlng under the CDC Scope Svste

(10)

using their ALGOL Compiler.: .Thue,»all‘the date that we present-is

exactly that, a data record in the job set up andvcdnstitutes the data



to the ALGOL program.

Exa'mple I{Ku | [ 1 1 | Ay
I ) A Tt 't
Problem DPx = X o & 3210
Scheme

ng = X(Ey); & = &y + g

ny = X(&3);5 &y = &y + g+ My

Il

no = X(&5)5 & = &y + Mgt Mg+ oNp

]
U

nB glﬁv+no+q1+n2+h3

X(61); &g
The scheme given above is that which ore would use to obtain a
"solution to the differential equation. It is better, however, to geﬁeraté
vthe scheme parameter equations by doing all the substitutions first; héw-
éver, we emphasize that this is not necessary and thé intefested reader
can set up the above séheme. The equations obtained will look different
from our example;.but fhe fesults are the same. We thus use instead the

Scheme
No = X(&)y)s ny = X(&5)5 ny= X(gp)s mg = X(g);
b5 = & *+ 1 | ' |
Bp = &y ¥ Mg g

ey ¥ Mo v tNp - | :

uee
[y
1

e
o}
!

=g v ot Nt np oz

rank = 4 principal error T =>O(h5, h5, ceey hp+5) 

i
—

period

extent

I
-

=1

We -can match hu for the casé p =1 and since we wish to have the principal

error term, we chose not three, but instead four deérivatives. Thus, for
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hKMI, we have the following parameter values:

.order =p =1 . e = extent =1

upper»='£ =1 : -period =1

q = rank = b im [0] = 16
im [1] =&

Using field free formatoo), this translates directly to the following

data input: A listing of this data is given in Appendix III.

1, : ’ } - Value of control
51,1,1,1,3,3,3,1,2, 1, 110}_ : -
' A choice of FORTRAN equations
2,
50, 70, 6000, 7000,10,10,10 .}  Computer parameters.are set
C1,1,4,1,1,16,h4, }  Problem parameters set
.false, } No input-output desired.

Tnsert data teble (im[l],im[o],[kﬂ,+h,z) 
] thch is table: (L,16,0,+,1) ’ |
'cdmmeﬁt' This is the‘classical Runge-Kutta method of raﬁk b
O,Ql o Use an expansion abouf.the local origin and
. translate to the origin |
1,true,b, 1,true,3, 1,true,2, 1,true,l,
:3,3,2, 'o,h,i,o, | |

'3,2,3, .0,4,1,0,1,1,

. _ y .Scheme
3:'111": O:)"') 1,0,1,1,1,2, o ’
3,0,5, 0, 11-,1,0, 1,1,1,2,1,3, .
_ : . /
4,-1, 7 o g } . Print results

-k, false, '} - stop without a list dump



The data input to RKMI divides itself naturally into four seﬁarate
blocks of information.

1. Data input that sets computér variables.

A look at Source‘Listing 1 will show that these parameters aré
almost:self-explanaféfy; If a fuller explanation is desired, see the
variable list given in Appendix II. Tt is necessary to have the values
of print length readily available so théy are given hére. The.sﬂb- |
scripted variable print léngth [i] gives the length in characters of
the character with name i‘for a given value of type set. Table‘l gives

the appropriate values.

Table 1. Values of Print Length

Type
| Set - Value of Print Length [i]
_ Capital : 1 1
{Character]| Letter| [| 1| ({)ju-u{uw]uxul /11 ]:=1 ,1| ;
i 0 11231k 5 6 7 18191011112
1. 1 2 olefltliy 3| 3| 3 {1|7]2]1]:2
See the T !
| 2 1 1111141 3 3 3 112 1 1 0
. | note ’ ; . ; .
| 3 2 oloj1l{1{ 3] 3] 3 11{7|2]0]ce
- {pelow. : 1 : S .
’ L 1 oOjoj111 3 3 311121140 0
Note: Type Set =1 CDC ALGOL subscripted variable dutput.
Type Set = 2 FORTRAN subscripted variable output.
. Type Set.= 3 CDC ALGOL simplé,variable_output;
Type Set = 4  FORTRAN simple vériable output.
2. Data input that particularizesvthe problem.

At the label - definefﬁrbblem - are input; the variables that
‘characterize the differential equation, and the scheme. These include

the scheme iﬁterval parameters of Chaptér IIT and their meaning ié
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discussed there. With_regard to u.pp'exl"‘= L, we note that it is assumed

that §i = u(@i) + 3 aiAi is an approximation and tha£ £(6;) = u(65) +
(9 ) is the true solution. The quantit& I gives the first term of v

k+f+1 o

since vy, [m] = DP+£x(O) I + ... . This in turn gives the lower

: (k241 )

bound for the order of accuracy of all approximations and we 1nd1cate

this byvstating that DT x(O) Iﬂ (order + upper) x(O) is the first

" ‘neglected Tayior term.

The number of basic functions'and-the number of derivatives we
attempt to match ﬁust be consistent and’will COme from:the faﬁles of:
Appendix I. We will have as many derivatives as we have orders taken
 from these tables. |
3. Data tabievinput usipg procedure data

At the 1akel-aéain1-ye incounter the daoa inpoﬁ procedure data.l:
 We note thet‘fhe only way tabies can be reed iﬁ,using'thie proceduré,‘
is to pass throuéh-the statement.laSt defa:=0. Thus,-again 1 fdrniehes
.Ian entry'point that allo&s all thevnamee and ali the lists, except the
data table lists, to be érased. R

The tables are characterized,by.the'parameters (iﬁ[l],liﬁ[o],
ke Pc Pd= {0, ..., D - 1}, t, z)vwhere_?fis the.set of k values that
éppear explicitly in X ° g; £ is the value_ofrupper and is g lower bound‘
for the order of accuracy for the mlnor p01nts, and the ch01ce of +
1ndlcates that these tables are wrltten for a forward translatlon, that
';,Vls, mode =,'1 and - for a backward tranelatlon with mode = O,. Note .

o the program determinee'ihternaliy the eorrect‘coeffioient-for'fror -

translation and either table can be used. This, however,rwas not always

o the case and to remain compatible with previodsly verified:tables, the

classification is still retained. Which table is used depends on the
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problem. For example, the RK4 case requires table (k4 16,0,+,1)..
In brder to make the use of procedure data as easy aswpossible, we

“have givenvin this appéndix a schematic source lisfing of data. Once
vthis listing is understood with the aidtof the explanation given below,
this source listing should suffice for the inputing of tables fo data.

| We first note that all iﬁput-output-canvbe suppreséed from data
by setting inout to false bef§ré entering data. Whether or not the
internal dabe list is oubput is controlled by reading a Boolean varisble
in teble, true means that this interval list will be printed out. Since
we are ihputing ﬁhe various hérmonics taﬁulated in Appendik I, wevshall,
USe these tables to give a short illustrative example far each case
encountered in data. The derivative, substitution, and multiplication
harmonics.come from Tablé VI of.Appendix I. Let us assume im[O] = 5, 
A2 = upper = 1. This mgahs that a suitable, though not necessary, choice ,
" of im{i'] is im{1] = 2. |

For derivative harmonics, we have that

Dp+1x = % A[O] "'% A[l] + % A[2] = ((1;1)) (011)) (O)l))
Dp+2 0 1 1 |
x= 7 Alo] +‘1‘vA[1] +7 A2]= ((o,1), (1,1), (1,1))

'Where we have giveﬁ above bofh the expansion and the list representation.
Werrecall that for derivative and translation harmonics,. these
quantities afe‘stored as a normal form_listg Daté requires two additionai
pieces of information; |

i) How many sOﬁsvare input.
¢1) How many atoms are.in each son;

The above harmonics would appear as the following data
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o,

}  These are derivative harmonics
1,2,1,1,0,0, false -y Pt
o, 1,2,1,1 1,2,1,1,false } D o o
-1, } No more data input

.. where the data lists are not output since the Boolean is false. Note
that for each Ali] there is a son with atoms, zero is input as a 2ero
son; that is, a nil'list.. For each derlvatlve, there is a separate

list terminated by the Boolean true or false dependlng on whether that

data list is or ;s not to be output.
_ For substitution and multiplication tables, the list structure is

as given in the explanation of Ze given in Chapter VI; that is,

(son1l, son?2, ..., soni, ..., son n) =

((numerator, denominator), (exponent), (der ...,.derj; Doy wue

17 Py J
der - 9, ... (deri, Ny +eey derp o,on ),
“EDH - maxy | i i
.. (der, n, ..., der; ., nmax))'

- The reédereshould be familiar wifhuthe description of Ze and also with
Def'initionv’?, Chapfer ITI. The val@s of the atoms are obtained from
Table IV of Appendix I. The number of sons is two more than the number
ef terﬁs in ﬁhe sum giving the table entry. Note that for substitution,
the number of sonsvis always three; whereas for multiplicatibn, the

higher degree terms, in general, have more. The substitution table

entries for our example are '— e 92 1 0.0- Notice that this toble
_ , : .
has o +« This becomes
der,n
2, - , . _ , ‘
1, 2,2,1,1,1,1, 2,1,2,1,2, 3,2,1,1,1,0,2,0,0, false | L (2)

__1,



Note that only the‘egﬁonent is entered for Gg. The program internal}y
uses the correct Gi. Also, that a missing ] is.inpuf as GQ‘= 1, that
is the exponent is O. | |

The corresponding multiplication'table input is.

..2’

2, 0,0, 3)2:1)1;.1:1)2:0)01;23&5_?,' L : (3)
1, '

v As was previously the case, a missing'(zerd)'quantity is input with O

sons.

The translation table comes from Table VII of Appendix I. We Have
that | |

- A(-n)[0] = 1A(0)[0] -n A(0)[1] - h A(0)[2] _
: ‘ ‘ ‘ . Type = O
A(-n)[1] = oa(o)[o] +1 A(0)[1] + 0 A(0)[2] +h
. ‘ mode = -1
A(-n)[2] =

OA(o)[o]}o A(O)[l‘]v + 1 A(0)[2]
which is;inppt as

1,0,

1,2,1,1, 1,h,-1,1,01, 1,4,-1,1,q,1,false

o, 1,2,1,1, O,false,
0, 0, 1,2,1,1,false,

-1,

where q can bevan& value. ’Thé prégram internally uses tﬁe'rank of fhe
‘ schemef |

The dafa separately inpﬁt in.(l);(z),(f),(h) can. be éombinéd by
omitting the -1 from ( 1),(2),( 3). It is suggested ,tl'llat-the readér use

the.abové simple‘examples as a guide to undefstanding.the data input of =
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the examples given in full detail in Appendix III.

‘4. Scheme Definition and Program Control.

The rest of the data input used will depend on the values of control

read, and these, in turn, will depend on what the users wish to generate

ésmmmﬂ.

The action of the program for various values of control should be

' ,obvious.from Source Listingvl of this appendix. We'giVe below some

comments on the section:

a)

Control = O
A selection is made on whether we use forward or back-
ward translation. Which is used is up to the user; the

translation tables are internally adjusted. This section

must be entered at least once before creasting a scheme.

A mixture of forward and“backward‘franslation is not

recommended; 1t will lead to confusion.

- Control =1

The reader should be familiar with Definition 10,
Chapter III. 1In this section,.the approximators 7 are obtained
either as a substitution ﬁ = X(&;) or by multiplying the
matrix DL X(gi) times some previously created sum S. The
user first makes the choice of substitution which is EEEE‘
or dérivative mulﬁiplication which is ﬁﬂiﬁi' He then chooses
the néme (i) ofifhe vector &, at which evaluatioh takes'placg ‘
and if a multipliéation is to bé pefformed, then the name (j)
of the sum s[3]. Since the sum can be stored either perma-
ﬁently or temporarily, it is necessary to specify this; true

méans it was stored in temporary sforage, false that it was
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stored permanently. Note that if the speqified approximation
does not éxist as an approximation of the scheme, then iﬁ,is
created and'translated. vThis means thatitemporary storage
may be written on starting from its origin tempg. This will,
in effect, destroy a temporary sum Sj. - This, however, is no
real problem since any £;, i € M= {0, ..., exa} can be
éreated by performing a substitution X(Ei) and the‘correspénd-
ing 1 need never be used. |

As the new approximators and sums are constructed, they
are sequentially nuﬁbered starting with 0.

As a simple example, we have

1) ng = X(&p) 1,true,2

;f) No = DX(&,) X 55 1,false,2,3,false

where we assumed 85 is stored permanently;
Control = 2

It should be kept in mind that the sums S constructed
hére.are the sums.of Definitién 10, Chapter IIT, equation (9L).
The assignment temp:=true means that. the presently constructed
sum will be stored in temporary storage and will thus be .
available only as longfas this storage ié not reused. The
value temp:=£§l§g will cause a permanent storage of S. The
assigﬁment linear comb:=false means that the coefficients of
- the sum are the identity; that is, a linear combination is not
performed and new parameters are not iﬁtroduced into the scheme.
in’particular‘cases, it may not make sense to take a liﬁeqr
combinatioﬁ; in these cases, a &traight sum can be performed.

To actually carry out the summatidn, We-must_specify thé
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vectors to be summed and their type; that is, are they
- approximations (type = 0) or approximators (type = 1). We

illustrate a simple case as

S = go + SR T

2, false,true,4,0,0,0,1,1,0,1,2,

where a linear coﬁbination of fbur.ferms has been constructed
and bermanently stoféd. What order the terms appéaf iﬁ the
sum is of no consequénce. |
Control = 3

Here a new approximation ¢, is constructed. We recall
from Chépter III thét €; is itself a éum of the same type as
- S5; however, we attach a speéial significance to this sum by
inferpreting it as an approximation to g(ti). This is reflected
here in that all gi are stored permanently. Upbn specifying
the name i€ M= {0, ..., Xy} of the approximation being
constructed, we simply.transfer to the lable new E and
fbrm the sum. |

Therefore, the input to construct a new gi is almost
identical to that of constructing a sum, the difference being
that the two Booleans are missing and we ﬁﬁst name the.gi.

As. an example, we have
R P PR TR
3,44 . 0,0,1,0,1,1,1,2

where the approximators N, are assumed already constructed.

Tt is worth noting that we have beén purposefully lieaving
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out the coefficient matrices. This is quite natural since
'RKMI will take care of this for us. We need’simply-tell it
what to do with the elements that constitutevthe scheme.
Control = & |

It is here that we.ask that‘all parameter defining
equaﬁiOns.bé printed; Note that the previous input has -
characteriiedvthe problem and defined a scheme for its
solution. Once we have defined the scheme, we proceed to
this section to obtain the equations. In the layout of the
scheme it haé always been implicitly assumed that £ = g(to)

has been constructad. In genefal, it is assumed that it is

g

o that we wish to have as our next value, so go is compared

with £(t,). We have schematically laid out the interval as if
to were.the point furthest to the right, but this is only to
have a diagram to talk about. Thus, by an appropriate choice

Qf ﬁhe value‘of the intefval parameters, the approximation §O
‘can be interpreéted as belonging té any value of t.

At the ﬁresent, we do, however, require that the origin
be located at to = 0. This pertains to the equations répre-
senting the harmonics of & . Note that if £, has never been"
constructed, by accident or intent, all zeros will be priﬁted
since the lists representing the harmonicé of go afe nil:‘-

We also implicitly assume that for any gi that was
created with undeterﬁihed parametgrs there is also available
a.cnnstructed_representation of either &, or g[ihdex(i)]f
This.isvnecessary so that there will be equations that define

- the undetermined parameters;
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Once'this'section is entered, there_gre prihted.the

parameter defining equations caused by requiring that in

. - im{0]-1 - im[0]-1 -
Eo - E(t5) = 2 (yy -BidAy = 3 g Ay
1=0 . i:o C :

the coefficéﬁts»ci = 0. ‘The number of these équatioﬁé that
can actually be satisfiedjdétermines the. order of accuracy
if go; Next are printed eqpafions that define the unde-
termined parametefs that were used in the expaﬁsion of gi
for those &5 that had such'implicit.representation.

- There is also in here a;section that allows what can be
considered a "manual" control of the printing of the equations.
We can equatevany'z[type, eee; i, ...] with any other
Zltype, ..., jy ...] where type is hot necessarily the same
in both cases. Since.ahy unddnstructe& quantity has a nil
list, we can print out any of the g,:n, S by equating to an
-unconstructed quantity, or we can, if it is désired,raCtually‘,
equate any two quantities in the forﬁ’A ; Bv= 0. These |
Teatures allow a great fle#ibility in creating the scheme and
glsg are helpful in constructing’spediél schemes used in
checking the tables and imternal workings of RKMI.

This essentially completes thé discussion of using RKMI. The
program is quife flexiblé and the.user,Will héve to'experiment with it ,
to have a feeling for what_Wili ﬂappeh,under certain COnditions. A word
of cau£ibn; it is not foolproof; or the conﬁrary, it is easy to obtain
- meaningless results. _A_method of éheckiné the results should always be

devised.
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Schematic Source Listing I

RKM! prozram control source ‘listingv809o_ 68 9/20/68

begin

tegin comment The -following is an outline of the program input. All input

begin;

is presented here,

if joi( ‘control?) < 1 then go to end of conputations else

s( ‘data, input, that, ,sets, computer, varisbles’ ) ;

for 1:= O step 1 mtil 12 do print length{1]:= ioi( €);

type set:= ioi(‘typeiset’),

it

n for print:= ioi( ‘n, for, print’ );

line length:= ioi(‘line,length’);

“tempO:= io0i( ‘origin_,_of;,_temporary_,_store’ );

tist lengthi= ioi(¢list,length’);
height:= ioi( ‘maximtm_;_nmnber_,_of_,_avectors_a_N_,_orLsﬁms_,_'S’ );

height1:= ioi( ‘maximum,length,of,a,sum’ );

- pmax:= ioi( ‘maximtm_,_length_,_of&a_,_listlpfoduct’ );

define problem:

-s( ‘date, input,that, particularizes,the, problem’ );

order:= 1oi( ‘order,of,the, differential ,equation’ );

upper:= ioi( ‘D/{\(order + upper )x, is,the Lfirst neglected,Taylor,
“term, ,upper’ );

q:= ioi( fnwnber_,_qflpo1ntsiinione_,_h_,_ihterval’ ); -

e:= ibi( ‘nmnber_',;bf.,_h;interva;ls’ )F |

period:= foi(‘period,of,the,scheme’);

1m[0] :=- i01( ‘number, of ,basic,functions’ );
im[1] io1( ‘number, of derivatives AR attemp_!_fo ,match? ‘) :
inout:= iob( ‘input,output’ );
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Source IListing I Cont.

againi: comment The list storage V and all names T,E,Z are: initialized

again:

to nil. The list origin in the storage array V starts
at last:= last data. Thus all generating tables stili |
‘exist if entry is made through the lable sgainl;

if last data = O then data; scheme; title; -

comment The procedure data inputs éeneréting tables. See source
listing II of this appendix to effect this.inpﬁt." The
procedure scheme ontputs the séhemej definition if ﬁrint
scheme is true. The procedure title réa.ds an Algol
comment <text>, thus furnishing a means of identifying
the output; | |

control:= ioi( ‘control’ ); if contirol < -1 then M fin;

if control = -1 then begin print scheme:= true; go to againi end;

if control = 0 then

begin comment Define the undetermined parameters B, if mode = O then

they are defined in expansions about the origin 0

else _i_{ mode = -1 then they are defined in expen-

‘sions about the local origin. -ﬁxh where it:= isq,
with 1 the name of the appro’ximtion and q the rank
of the scheme; | |

mode:= ioi(‘mode Lof_z_m;emry’ );

end else

1{ control = 1 then

begin comment Co_hstrucﬁ a new appmx'ima’cof B(no3[1]], if substitufion v
- then by substitution N[-i]':=' X(E[3]) of an approximation
_ E:[j‘»],.j'_in M= (o,...,exq).g_l_gg'by‘mutiplication | '
using the ‘Jacobian ma.trix; J[,j]‘:= DX(E[J]) to create -
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N[1):= J[J] x S[num(2]]. Note that if E[1] = nil
_i_lle_g E[i] is created with undetermined parameters,
E temporary then the sum S is stored in temporary
‘» storage else it is stored in perminant storage. In
any case, it is assumed that a constructed ‘repres'e‘nta-
tion of S exists H
if iob(‘sﬁbstitution’) then num{ 0] := ioi(‘E[1] i’),
else begin num[0]:= ioi(‘DX(E[i]),i’),
num(2]:= 101(¢s[3],3?);
io'b( “temporary,. sum’ ) |

end -

end else

if control = 2 then

begin comment Create a new sum S[no3[2]] consisting of. approximations

E[1], 1 in M”=> (C,...,qu), aod of existing approximatore
N[31, if E[j] does not exist then it is crested with un- .
.determined.perameters. The order of the input of the
constituents of the sﬁm is immaterial, they are internallj ‘
normalized to | ’.
S[no3[1i])]:= sum(i 0,lengthl-1 sum(k,order-1 0, B[...] X
Elvs(0,1], k1)) + sun(1,0,length2-1,B[...] x Nlv[1, 1]]) +
sum( 1, length2, length-lengthl-1,B[...] x N[v[1, 1]]) where f
(vlo,i] < v[0,J] and v[1,1] < v[1,J]) if i < J. The first
sum is the sum of approximations E, the second sum is the’ suﬁ

of approximators N that have been formed by means of a

‘substitution X o E, 'che third s1.m1 is a sum of approxima‘cors_
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fhat’ have been formed by multiplication of the form -
(DX 0 E) X S. Any of the sums may be empty;

s( ‘new, sum’ );. o |

temp:= iob( ‘tempozjary_f._sitore’ )s

iinear combi= 1ob( “linear,combination’ );

length:= ioi( ‘length,of,sum’ );’

for i:= O step 1 until length-1 do

begin type:= ioi(“type,of,vector’);

it

comment if type = O ‘bhe'n; E else

if type = 1 then N;

vs[type,mmltype]):= ioi( ‘mumltype]’)
end

end else

if ‘control = 3 then

begin comment Constructvab néw approximation- E[i] by specifying i

and the vectors that make up the sum, |
E[1]):= sxnn(i,o,lengih1-1,smn(k,loraer-1,o,13[.._.] X
| Elvs[0,1],k])) + o
sum(1,0,length-lengthi-1,B(...] x Nlvs[1,1]1)));
no3[0]:= ioi(‘E[1],1’); go to newE

end eise

: g’_'control = U4 then

begin comment Print all parameter defining equations;

comment Points that are to be equated. If we inpﬁt a sequence
of points a, b, ¢, d, e, £, ... then the output is a = b,

c=d, e=1T, ... . Therefore, the'v nuinber of poirits mst be
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&_‘Eg E control = -2 then define problem else

Source Listing I Cont.

an even nuﬁber,.vThé quantity printed is the 11st Zltype,

.. .gmENE, .. .J. Note that names are given seéueﬂtially .tob
appmximatc;rs N‘a.nd sums S as they are constructed. The
names of E lie in the set M = (O,...,e><q) A quantity my :
be printed even though 1t has never been constructed. This
section below furnishes a means by which the user can me.nipu-
1ate the equating of constructed qua.ntities. Note the .
following short teble:

type quantity

-1 E ‘expandéd about the loc_al Ho:rigin .
0 | E expanded ebout the. origin

1 N expanded about the ofigin

2 S expanded about the origin, '

‘n:= ioi( ‘nmnber,of,points’ )3

1f n > 0 then

for i:= O step 1 until n-1

|&

begin vs[0,1]):= ioi(‘name’ );
vs[0,1]:= ioi(“type?)

énd

end of control;

go to again;

] comment A short dump of 'bhe list pointers is given here,

o if 1ob(‘check ,1ist?) ‘then check 1ist(0 last),

Lkll’
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o if control = -3 Eh_gg begin else
end of conputations
end of progrem; o L
‘end of cémputatioris s s ‘endiof_z_computationg’)

end



Schematic Source Listing II

Table Input Using The Procedures dsta and table

procedure data; -

begin

again:

control:= ioi(‘control? );

_:_t_f_' control = O then

- begin sr( ‘harmonics ,0f,derivatives’ );

for 1:= O step 1 until im[1] - 1 §2

table(no2,im[0],D[1i,n02])

end else

p—

1 then

i

_i_{ control

it

begin ity'pe: ioi( “type?’ ); sr(‘translation table’);
if type = O then

for i:= O step 1 until im[0] - 1 do

table(no2,im[0],a[type,i,n02])

end else

o——

if control = 2 then

begin type:= 1oi(‘type’ ); }
if type = 1 then sr( ‘substitution_;_table’) _e_1_sg
if type = 2 E_rf_g sr( 'multipncatio:i_,_table' );
table(no2, 1m{0], W[type no2]) |

end; if control = -1 then go to again

-end dats;

3
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procedure table(n02 im[0],name);

‘begin for no2:= 0 step 1 until im[O] -1do
begin 12'- ioi(‘nuﬁbe;apf son] );
if 240 then

for nol:= 0 step 1 until 12 -1 do

begln 11'— ioi(‘numberzpf atoms’),

for no:= O step 1 until i1 -1 do

ioi( ‘atom’ )

end no1l
end no2;

viob(‘datqalistiput’)

end table;
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Ap?endinV’
NOTATTON
The notation that is used throughout this work is stahdard and
- is explained as it is introduced. We do, however, use a rather concise
representation for the Taylor's serigsvwhich we shall explain more
fully below. | |
We first noté that-we.consistentiy use D as the derivative with
vvrespect to the single variable tné R the real line, and DNti] as avpartial"
derivative. We also sum on fépeatea index sets. Thus, we write for
Xe R'- Rn, u,v € R;a R

1
— (D, ,..p KXo uvy ...vy
s! 1 s s

) )
Xo(u+v)=Xou+ 3
. : 1

s=1
which when written in detail becomes

X(u(t) + v(t)) = X(u(t)) +

1

| ‘ :
S = 2. ... % D .. .1 Im,...,m] X(u(t)) vy (t)[my]...
s=1 8! mge Ly mge L TLypeerlg T s Iy !
VLS(t)BnS]
‘where
) - |y %
. m =
P A R dx, ... O%,
; 1 s
“and
~L, = {1, .;., m}, i=1, 2, ;.;;'s.

In Chapter II, Wé‘have»m.=_n.and elsewhere we have m = X2,

Throughout this work, we' have repeatedl& and consistently used



capital subscripts to‘indicate‘the index sets-(the domains) associated
with fﬁe qpantities. We have alsb consistently summed on fepeated index
sets. fhe style invwhich this ﬁotation has Beeh ﬁsed along with the

use of the matrices I%§), which are first used in Chapter IiI,.ﬁés

(3).

”introduced to the author by Professor R. DeVogelaere The use of

this notationrhas*proved invaluable in developing this work.



REFERENCES

J. C. Butcher, Coeff1c1ents for the Study of Runge-Kutta
Integratlon Processes, J. Australian Math. Soc. 3, Part 2, (1963),

185-201.

F. Ceschino and J. Kuntzmann,vNumerical'Solution of Initial
Value Problems, (Prentice Hall, Iﬁc., Englewood Cliffs, N. J.,

1966).

and’

F. Ceschino and J. Kuntzmann, Probldmes Differentielé de

Conditions Initiales, (Dunod, Paris, 1963).

Professor R. DeVogelaere, Mathematics Dept., Univ. of Calif.,
vBerkeléy, Calif., private communication.

J. C. Butcher, A Modified Multistep.Method for the NUmerical
Integration of Ordinary Differenfials, J. ACM 12, 1 (1963),
124-135.

R. DeVogelaere, A Method for the Numerical Integration of
Differential Equations of Second Order Without Expliéit First
DeriVativeé, J. Research Natl. Bur. Standards 54, 3 (March 1955),

119-125.

R. E. Scraton, The Numerical Solution of Second Order Differential '

Equations, The Computer J. 6, k4, (January, 1964), 368-370.
T. Frey, On Improvement of the Runge-Kutta—Nystr8mAMethod I,

Periodica Polytechnica, Electrﬂx&>Engineering - Elektrotechnik 2,

No. 2, Budapest (1958), 141-165.

J. C. Butcher, A Multistep Generalization bf Runge-Kutta Methods

with Four or Five Stages, J. ACM 1k, 1, (Jenuary 1967), 84:99.




10.

REFERENCES - contd.

Control Data 6400/6500/6600 Computer Systems, Scope 3.1 Reference

Mahual, Rev. A, Pub. No. 601894004, Coﬁtrol Data Corporation,

Palo Alto, California.

ALGOL Generic Reference Manual, Pub. No. 60214900, Control .

Data Corp. (December 1967),APalo Alto, California.



.

LEGAL NOTICE
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behalf of the Commission:

A. - Makes any warranty or representation, expressed or implied, with
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apparatus, method, or process disclosed in this report may not in-
fringe privately owned rights; or
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resulting from the use of any information, apparatus, method, or

- process disclosed in this report. '

As used in the above, person acting on behalf of the Commission’
includes any employee or contractor of the Commiséion, or employee of
such contractor, to the extent that such employee or contractor of the
Commission, or employee of such contractor prepares, disseminates, or pro-
vides access to, any information pursuant to his employment or contract
with the Commission, or his employment with such contractor.
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