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Feeding mice a diet high in oxidized linoleic acid metabolites 
does not alter liver oxylipin concentrations
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Abstract

The oxidation of dietary linoleic acid (LA) produces oxidized LA metabolites (OXLAMs) known 

to regulate multiple signaling pathways in vivo. Recently, we reported that feeding OXLAMs to 
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mice resulted in liver inflammation and apoptosis. However, it is not known whether this is due 

to a direct effect of OXLAMs accumulating in the liver, or to their degradation into bioactive 

shorter chain molecules (e.g. aldehydes) that can provoke inflammation and related cascades. 

To address this question, mice were fed a low or high LA diet low in OXLAMs, or a low 

LA diet supplemented with OXLAMs from heated corn oil (high OXLAM diet). Unesterified 

oxidized fatty acids (i.e. oxylipins), including OXLAMs, were measured in liver after 8 weeks 

of dietary intervention using ultra-high pressure liquid chromatography coupled to tandem mass-

spectrometry. The high OXLAM diet did not alter liver oxylipin concentrations compared to the 

low LA diet low in OXLAMs. Significant increases in several omega-6 derived oxylipins and 

reductions in omega-3 derived oxylipins were observed in the high LA dietary group compared 

to the low LA group. Our findings suggest that dietary OXLAMs do not accumulate in liver, and 

likely exert pro-inflammatory and pro-apoptotic effects via downstream secondary metabolites.

Keywords

Liver; Lipid mediators; Linoleic acid; Oxidized fatty acids; Free oxylipins; UPLC-MS/MS

1. Introduction

Oxylipins are oxygenated derivatives of polyunsaturated fatty acids (PUFAs) formed 

through auto-oxidation [1] or cyclooxygenase (COX) [2], lipoxygenase (LOX) [3], 

cytochrome P450 (CYP) [4], 15-hydroxyprostaglandin dehydrogenase (PGDH) [5] and 

soluble epoxide hydrolase (sEH) enzymes [6, 7]. Oxylipins and their metabolites are 

important mediators of inflammation [8–10], the resolution of inflammation [11–13], 

cellular proliferation [14, 15], apoptosis [16, 17] and vascular function [18, 19].

Circulating and tissue oxylipin concentrations are known to be regulated by dietary PUFA 

levels [20–22]. For instance, feeding rats a diet high in linoleic acid (LA, 18:2n-6) was 

shown to increase LA-derived oxylipins, known as ‘oxidized linoleic acid metabolites’ 

(OXLAMs) in plasma, brain and peripheral tissues [20, 21]. Similarly, in humans, lowering 

dietary LA reduced circulating LA and OXLAM concentrations [23].

In vivo, OXLAMs are involved in mediating inflammation and apoptosis. Feeding 

mice a high LA diet, which increases plasma and tissue OXLAM concentrations, was 

shown to exacerbate chronic alcohol-induced liver injury [24, 25] by stimulating pro-

inflammatory and pro-apoptotic pathways [26, 27]. Preclinical and clinical studies have 

reported an association between circulating OXLAMs and liver inflammatory diseases of 

alcoholic [28–30] and non-alcoholic origin [31–33]. For instance, the OXLAMs, 9- and 13-

hydroxyoctadecadienoic acid (HODE) and 9- and 13-oxo-octadecadienoic acid (oxo-ODE) 

were observed to be higher in patients with nonalcoholic steatohepatitis, a severe form of 

nonalcoholic fatty liver disease, compared to patients with hepatic steatosis (a less severe 

form of nonalcoholic fatty liver disease) [31].

Diet is a source of OXLAMs, originating mainly from high LA oils (e.g. soybean oil) used 

in food processing [34–36]. OXLAMs constitute over 57% of oxylipins in high-LA oils 
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[36], and their concentration has been shown to increase during short or long-term thermal 

processing [37–40].

Dietary OXLAMs can be absorbed [41–43] and are therefore bioavailable to tissues and 

organs [44]. However, it is not known, whether they accumulate in tissues, such as the liver, 

where they can locally act to provoke inflammation and hepatocyte injury [45]. Recently, we 

reported that feeding mice a high LA diet low in OXLAMs, and a low LA diet enriched with 

OXLAMs (i.e. high OXLAM diet), provoked liver inflammatory and pro-apoptotic pathways 

compared to a low LA diet low in OXLAMs [26]. The high OXLAM diet in particular, was 

associated with increased oxidative stress, hepatocyte cell apoptosis, and the activation of 

the NLRP3 inflammasome pathway [26]. However, in the same study, we did not observe 

an increase in plasma OXLAM concentrations in the high OXLAM dietary group [26]. We 

hypothesized that this could be due to increased deposition of OXLAMs into peripheral 

tissues such as the liver.

Thus, in the present study we measured OXLAMs in liver samples archived from the same 

experiment, to determine whether feeding a high OXLAM diet increases hepatic OXLAM 

concentrations in mice. Additionally, oxylipins derived from omega-6 dihomo-γ-linolenic 

acid (DGLA, 20:3n-6) and arachidonic acid (ARA, 20:4n-6), and omega-3 alpha-linolenic 

acid (ALA, 18:3n3), eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 

22:6n-3) were measured to determine whether dietary OXLAMs impacted oxylipins derived 

from these PUFAs.

2. Materials and methods

2.1. Preparation of the study diets

The preparation of the three diets used in this study and their nutrient composition has been 

previously reported [26, 46]. Briefly, the three isocaloric diets (Dyets Inc., Bethlehem, PA) 

contained (% calories) 44% carbohydrates, 16% protein and 40% fat. Each diet contained 

casein (200 g/kg), DL-methionine (3 g/kg), sucrose (348.6 g/kg), cornstarch (150 g/kg), 

cellulose (50 g/kg), fat (201.4 g/k), mineral mix (#200000 from Dyets Inc, 35 g/kg), vitamin 

mix (#300050 from Dyets Inc, 10 g/kg) and choline bitartrate (2 g/kg). The three diets varied 

only by fat composition – one diet contained low LA (4.3% of energy), the other contained 

high LA (17% of energy) and the third contained low LA (4.3% energy) supplemented 

by 13% energy-equivalent of Crisco™ corn oil heated at 115 °C for ~4 weeks with daily 

stirring (i.e. high OXLAM diet) [26]. The low LA diet contained 40 g/kg corn oil, 141.8 

g/kg coconut oil and 19.6 g/kg flaxseed oil as the source of fat (Dyets Inc. catalogue # 

104097). The high LA diet contained 158.5 g/kg corn oil, 23.3 g/kg coconut oil and 19.6 

g/kg flaxseed oil (catalogue # 104099). The high OXLAM diet contained 67.7 g/kg corn 

oil, 114.1 g/kg coconut oil and 19.6 g/kg flaxseed oil (catalogue # 104098). As previously 

reported, the low LA diet contained 20.2 ± 4.7 nmol/g of OXLAMs, the high LA diet 

contained 33.4 ± 2.0 nmol/g and the high OXLAM diet contained 259.6 ± 21.6 nmol/g 

OXLAMs [26]. The fatty acid composition was also reported previously [26]. The low LA 

diet contained (% of total fatty acids) 16% LA, 6% ALA, 69% saturated fatty acids (SFAs) 

and 9% monounsaturated fatty acids (MUFAs). The high LA diet contained 47% LA, 6% 
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ALA, 22% SFAs and 25% MUFAs. The high OXLAM diet contained 12% LA, 7% ALA, 

67% SFAs and 14% MUFAs.

2.2. Animal experiments

Animal experiments and liver sample collection procedures were also reported previously 

[26, 46]. In brief, 7-week-old wild-type male C57BL/6 mice (n = 8 / group) were 

randomized to the three diets for 8 weeks after 1 week of normal chow diet adaptation upon 

arrival. The animal experiments were performed following the National Institutes of Health 

(NIH) Guide for the Care and Use of Laboratory Animals and approved by the University of 

California, San Diego Institutional Animal Care and Use Committee.

After 8 weeks of feeding, mice were food-restricted for 3–4 h to minimize potential 

postprandial effects on oxylipins [47, 48], and euthanized by carbon dioxide. Livers were 

harvested immediately, cut into several pieces, frozen in isobutane chilled in dry ice, and 

stored at −80 °C until the time of oxylipin analysis.

2.3. Sample preparation and analysis of free oxylipins in liver

Weighted liver samples (30–100 mg) were mixed with 200 μL of extraction solvent 

(methanol containing 0.1% acetic acid and 0.1% butylated hydroxytoluene), 10 μL 

antioxidant mix (0.2 g/L EDTA, butylated hydroxytoluene, and triphenylphosphine), 10 

μL deuterated surrogate standard mix (0.5 μM) and 2 beads. The surrogate standard 

mix contained d11–11(12)-EpETrE, d11–14,15-DiHETrE, d4-6-keto-PGF1a, d4-9-HODE, 

d4-LTB4, d4-PGE2, d4-TXB2, d6-20-HETE and d8-5-HETE (all from Cayman Chemical, 

Ann Arbor, MI). The mixture was stored in a −80 °C freezer for 30 min and homogenized 

for 2 min with a bead homogenizer (Bullet Blender, Next Advance). This process was 

repeated to ensure that the liver was thoroughly homogenized. The homogenized sample was 

centrifuged for 10 min at 0 °C at 15,871 g. The supernatant (200 μL) was transferred to a 

new tube and 1800 μL of ultrapure water was added.

Unesterified oxylipins in the diluted supernatant were isolated using solid phase (SPE) 

extraction on Oasis HLB (Waters Cooporation) 60 mg extraction columns. The columns 

were conditioned with one column volume of ethyl acetate followed by two column volumes 

of methanol and two column volumes of SPE buffer (0.1% acetic acid and 5% methanol 

in ultra-pure water). Samples were loaded onto the column, and washed with 2 column 

volumes of SPE buffer. Oxylipins were eluted from the SPE column with 0.5 mL methanol 

followed by 1.5 mL of ethyl acetate. The collected fractions were dried under nitrogen, 

re-dissolved in 100 μL methanol, vortexed for 2 min, and centrifuged at 15,871 g for 2 

min at 0 °C. The oxylipin extract was transferred to Ultrafree-MC VV Centrifugal Filters 

and centrifuged at 15,871 g for 20 min at 0 °C at. The filtered extract containing oxylipins 

was transferred to LCMS amber vials containing inserts and subjected to ultra-high pressure 

liquid chromatography coupled to tandem mass-spectrometry (UPLC-MS/MS) analysis.

UPLC-MS/MS analysis was performed on an Agilent 1290 Infinity UPLC system coupled 

with a 6460 triple-quadrupole tandem MS with electrospray ionization (Agilent Corporation, 

Palo Alto, CA, USA) as previously described [49].
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2.4. Statistical analysis

All statistical analysis was performed on GraphPad Prism version 8.4.3 for Mac or 9.1.0 

for Windows (GraphPad Software, San Diego, California USA, www.graphpad.com). The 

normality of distribution for each oxylipin per dietary group was assessed using Shapiro-

Wilk’s test. As shown in Supplementary Table S1, most oxylipins were not normally 

distributed, so a Kruskal-Wallis and a Dunn’s multiple comparisons test was performed. 

For oxylipins that were normally distributed in all three diet groups, an ordinary one-way 

ANOVA and a Tukey’s multiple comparisons test was performed. Non-detected data in up 

to 3 out of 8 samples per dietary group were imputed by dividing the limit of detection 

(LOD) by the square root of 2. The LOD was defined as the lowest observable point on 

the calibration standard curve. The number of imputed values per group (for a total of 7 

compounds in which the imputation was applied) is shown in Supplementary Table S2. 

Data are expressed as median ± interquartile ranges (IQR) encompassing 25th and 75th 

percentiles. Significance was set at P < 0.05, and denoted in the figures (below) as *, **, and 

*** for P < 0.05, P < 0.01 and P < 0.001, respectively.

3. Results

3.1. Effect of OXLAM feeding on liver n-6 PUFA-derived oxylipins

Fig. 1 shows omega-6 LA, DGLA and ARA derived oxylipin concentrations in the three 

dietary groups. Compared to the low LA diet, the high OXLAM diet did not significantly 

alter liver OXLAM concentrations (Fig. 1-A). The high LA diet significantly increased 

LA-derived 9-oxo-ODE by 58% and 87% compared to the low LA and high OXLAM 

groups, respectively. 9-HODE, 13-HODE, 12(13)-epoxyoctadecenoic acid (EpOME), 9(10)-

EpOME and 12,13-dihydroxyoctadecenoic acid (DiHOME), were significantly higher by 

98–260% in mice on the high LA diet compared to mice on the high OXLAM diet. No 

significant differences were observed among the groups for the DGLA metabolite, 15 

(S)-hydroxyeicosatrienoic acid (15(S)-HETrE) (Fig. 1-B).

Hydroxylated ARA species were altered by the high LA diet. ARA-derived 11-

hydroxyeicosatetraenoic acid (HETE) and 15-HETE were significantly higher by 68–194% 

in the high LA dietary group compared to the low LA and high OXLAM dietary groups 

(Fig. 1C). 12-HETE was 10-fold higher in the high LA group compared to the high OXLAM 

group.

3.2. Effect of OXLAM feeding on liver n-3 PUFA-derived oxylipins

ALA-derived 9-hydroxyoctadecatrienoic acid (HOTrE) and 13-HOTrE were least detected in 

the high OXLAM group compared to the low or high LA groups. A scatter plot of detected 

values per group is shown in Supplementary Figure S1. As shown, 9-HOTrE was detected 

in 87.5%, 87.5% and 25% of samples (out of 8) in the low LA, high LA and high OXLAM 

dietary groups, respectively. 13-HOTrE was detected in 62.5%, 75% and 37.5% of samples 

(out of 8) in the low LA, high LA and high OXLAM dietary groups, respectively.

Fig. 2 shows the median concentration of oxylipins derived from EPA and DHA. EPA-

derived 12-hydroxyeicosapentaenoic acid (HEPE) was 67% lower in the high LA group 
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compared to the low LA group (Fig. 2-A). 17(18)-EpETE was detected in 7 out of 8 mice in 

the high OXLAM group and at a frequency of 50% or less in the low and high LA groups 

(Supplementary Figure S2).

DHA-derived oxylipins did not differ significantly among the groups (Fig. 2-B).

4. Discussion

This study demonstrated that feeding mice a high OXLAM diet for 8 weeks did not alter 

liver OXLAM concentrations. In contrast, the high LA diet increased several LA- and 

ARA-derived oxylipins, and decreased EPA-derived 12-HEPE compared to the low LA 

diets with or without OXLAMs. These observations suggest that dietary LA but not dietary 

OXLAMs modify liver oxylipin concentrations.

Previously, we reported (in the same mice) that the high OXLAM diet increased liver 

markers of inflammation, apoptosis and oxidative stress compared to the low and high 

LA diets (both low in OXLAMs) [26]. Additionally, both the high LA and high OXLAM 

diets increased transcription markers of fatty acid oxidation (e.g. CPT1) and apoptosis (e.g. 

TXNIP) compared to the low LA diet [26]. While the effects of the high LA diet can be 

attributed to the increase in LA or ARA-derived oxylipins (relative to the low LA diet), the 

effects of the high OXLAM diet on liver inflammation, oxidative stress and apoptosis are 

difficult to explain in the absence of changes in liver oxylipin concentrations.

There are a few plausible explanations for the lack of changes in liver OXLAMs following 

chronic administration of the high OXLAM diet. One explanation is that OXLAMs were 

rapidly metabolized into shorter-chain aldehydes and ketones following incorporation into 

the liver due to rapid turnover [44]. This is consistent with our finding of increased liver 

malonaldehyde concentration in mice on the high OXLAM diet compared to those on the 

low and high LA diets [26]. Another possibility is that we did not have the analytical 

sensitivity needed to measure subtle changes in OXLAM concentrations following their 

incorporation into hepatocytes, where they may concentrate in certain organelles due to 

targeted transport via fatty acid binding proteins [50, 51]. Lastly, the duration of the study 

may have been too short to observe marked changes in OXLAM accumulation. A longer 

feeding period may lead to measurable changes in liver OXLAM concentrations.

The lack of changes in liver OXLAM concentrations parallels our findings in plasma 

and brain measured in the same mice [26, 46]. In both matrices, we did not observe an 

increase in OXLAM concentrations in response to dietary OXLAM feeding. It appears, 

therefore, that plasma and tissues are not sensitive to dietary OXLAMs, possibly due to 

their rapid turnover within tissues [44]. This is in agreement with studies showing that 

dietary OXLAMs degrade into aldehydes in the stomach, which can accumulate in liver and 

potentially other organs [26, 43].

The low detectability of ALA-derived 9-HOTrE and 13-HOTrE and high detectability of 

EPA-derived 17(18)-EpETE in the high OXLAM group relative to the low or high LA 

groups is interesting but difficult to interpret. A low or high percent detectability in one 

group over the other may be caused by group-specific matrix effects (e.g. ion suppression 
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or enhancement). Matrix effects are typically caused by non-specific compounds interfering 

with the ionization of the analyte during UPLC-MS/MS analysis. Our data suggest that 

livers from the high OXLAM group may have different matrix features compared to livers 

from the low and high LA groups. We cannot exclude the possibility that differences in 

oxylipin detectability are metabolic in nature. Future studies involving tracers could further 

inform on this hypothesis in OXLAM-fed mice.

The increase in OXLAMs and ARA-derived oxylipins, and the reduction in EPA-derived 

12-HEPE in the high LA group compared to the low LA group is consistent with prior 

studies showing that a high LA diet increases plasma and tissue n-6 oxylipins and decreases 

n-3 oxylipins [21, 41, 42, 46, 50]. This is because elevated intake of dietary LA increases 

circulating and tissue n-6 PUFA concentrations, while reducing n-3 PUFA concentrations 

due to increased turnover (i.e. increased loss of EPA and DHA due to metabolism) [52]. 

Overall, these observations lend support to the notion that dietary LA is an important 

modulator of tissue n-3 and n-6 PUFA derived oxylipin concentrations.

A limitation of this study is that we did not measure unesterified PUFA precursors to 

oxylipins. Doing so would have allowed us to determine whether dietary-induced changes in 

oxylipins were linked to changes in the availability and turnover of their unesterified PUFA 

precursors. Recently, we reported that a high OXLAM diet altered the percent composition 

of PUFAs in the brain, suggesting potential pathways linking dietary OXLAMs to in vivo 

PUFA metabolism [46].

In summary, this study showed that dietary OXLAMs did not alter liver unesterified 

oxylipin concentrations. Our findings suggest that the previously reported effects of the high 

OXLAM diet on liver inflammation and apoptotic markers are likely caused by aldehyde/

ketone degradation products of OXLAMs [26]. A direct effect of OXLAMs is also plausible, 

particularly if they concentrate in organelles. Labeled OXLAMs could be used in future 

studies to better understand OXLAM partitioning and metabolism within the liver.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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ALA Alpha-linoleic acid

ARA Arachidonic acid
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COX Cyclooxygenase

CYP Cytochromes P450

DHA Docosahexaenoic acid

DiHETE Dihydroxyeicosatetraenoic acid

DiHOME Dihydroxyoctadecenoic acid

DGLA Dihomo-γ-linolenic acid

EPA Eicosapentaenoic acid

EPOME Epoxyoctadecenoic acid

HODE Hydroxyoctadecadienoic acid

HETE Hydroxyeicosatetraenoic acid

HOTrE Hydroxyoctadecatrienoic acid

HEPE Hydroxyeicosapentaenoic acid

IQR Interquartile range

LA Linoleic acid

LOX Lipoxygenase

MUFAs Monounsaturated fatty acids

OxoODE Oxo-octadecadienoic acid

OXLAMs Oxidized linoleic acid metabolites

PGDH 15-Hydroxyprostaglandin dehydrogenase

PUFAs Polyunsaturated fatty acids

sEH Soluble epoxide hydrolase

SFAs Saturated fatty acids

UPLC-MS/MS Ultra-high pressure liquid chromatography coupled to 

tandem mass-spectrometry
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Fig. 1. 
Concentration of n-6 fatty acid-derived oxylipins, including oxylipins derived from A) LA, 

B) DGLA, and C) ARA, in liver of mice fed a low LA diet, high LA diet, or a high OXLAM 

diet for 8 weeks. Data were analyzed by Kruskal-Wallis and Dunn’s multiple comparisons 

test, or an ordinary one-way ANOVA and a Tukey’s multiple comparisons test, and reported 

as median and interquartile ranges (IQR, 25% and 75%) of n = 8 mice per group.
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Fig. 2. 
Concentration of n-3 fatty acid-derived oxylipins, including oxylipins derived from A) EPA 

and B) DHA in liver of mice fed a low LA diet, high LA diet or a high OXLAM diet for 8 

weeks. Data were analyzed by Kruskal-Wallis and Dunn’s multiple comparisons test, or an 

ordinary one-way ANOVA and a Tukey’s multiple comparisons test, and reported as median 

and interquartile ranges (IQR, 25% and 75%) of n = 8 mice per group.
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