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a b s t r a c t 

The pyrolite model, which can reproduce the upper-mantle seismic velocity and density profiles, was suggested 
to have significantly lower velocities and density than seismic models in the lower mantle transition zone (MTZ). 
This argument has been taken as mineral-physics evidence for a compositionally distinct lower MTZ. However, 
previous studies only estimated the pyrolite velocities and density along a one-dimension (1D) geotherm and 
never considered the effect of lateral temperature heterogeneity. Because the majorite-perovskite-akimotoite 
triple point is close to the normal mantle geotherm in the lower MTZ, the lateral low-temperature anomaly 
can result in the presence of a significant fraction of akimotoite in pyrolitic lower MTZ. In this study, we reported 
the elastic properties of Fe-bearing akimotoite based on first-principles calculations. Combining with literature 
data, we found that the seismic velocities and density of the pyrolite model can match well those in the lower 
MTZ when the lateral temperature heterogeneity is modeled by a Gaussian distribution with a standard deviation 
of ∼100 K and an average temperature of dozens of K higher than the triple point of MgSiO 3 . We suggest that a 
harzburgite-rich lower MTZ is not required and the whole mantle convection is expected to be more favorable 
globally. 
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. Introduction 

The pyrolite model proposed by Ringwood [1] has been widely used
s a reference for the upper-mantle composition. Previous studies sug-
ested that the velocities and density of the pyrolite model can match
he one-dimension (1D) seismological models such as PREM [2] and
K135 [3] for the upper mantle [4] and the lower mantle [ 5 , 6 ]. How-
ver, the shear wave velocity and density of the pyrolite model are
ower than PREM or AK135 up to 4% and 2% in the lower mantle
ransition zone (MTZ) [7–9] . Based on the complicated slab dynam-
cs in the lower MTZ, different hypotheses including the enrichment of
arzburgite-rich materials were introduced to reconcile this discrepancy
 8 , 9 ]. 

The velocities and density of the pyrolite model in previous stud-
es were only estimated along the 1D geotherm. The temperature lat-
∗ Corresponding author. 
E-mail address: wuzq10@ustc.edu.cn (Z. Wu). 
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ral heterogeneity clearly indicated by the seismic tomography model
10–13] is ignored in the calculations. In general, this neglection will
ot affect the estimates of velocities and density because the velocities
nd density of minerals both depend near-linearly on the temperature.
owever, when the temperature heterogeneity can affect the mineral
hases, the conventional method to calculate the velocities and den-
ity of the pyrolite model along the geotherm becomes inappropriate
ecause this method did not include the effect of the phase transi-
ion on the velocities and density. The lower MTZ, where the calcu-
ated velocities and density of the pyrolite model using the conven-
ional method fail to match the PREM and AK135 model, locates just
he depth range where the temperature heterogeneity can significantly
hange the mineral phases in the pyrolite model ( Fig. 1 a). The majoritic
arnet-akimotoite and akimotoite-bridgmanite phase transition occur at
21-23 GPa and ∼23-27 GPa [14–16] respectively, which correspond

o the depths of the lower MTZ. The phase transition temperatures are
lose to the normal geotherm [17–19] . If low-temperature anomalies
xist laterally, the pyrolite model will be expected to consist of a sig-
ificant fraction of akimotoite. Can a pyrolite composition explain the
Ai Communications Co. Ltd. This is an open access article under the CC BY 
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Fig. 1. The lateral temperature distribution in the lower MTZ. (a) Schematic 
diagram of calculating volume proportion of akimotoite by MgSiO 3 phase dia- 
gram with Gaussian distribution. Red lines are the phase boundary from Ishii 
et al. [17] . The cyan line represents the normal mantle geotherm. Black lines 
represent the Gaussian distribution of temperature at two depths. The yellow 

shaded parts represent the temperature where akimotoite exists. ΔT is the tem- 
perature difference between geotherm 𝑇 𝑔 and triple point of the MgSiO 3 phase 
transition. (b) Comparison of distributions of temperature anomaly from Wang 
et al. [11] and Gaussian distribution of different 𝜎. 

v  

p  

M
 

t  

b  

t  

i  

t  

b  

f  

t  

u
 

(  

p  

t  

t  

Fig. 2. The volumes of akimotoite at various pressures, temperatures, 

and Fe content. (a) Equation of states of akimotoite. The solid lines repre- 
sent our calculation results for Mg 0.875 Fe 0.125 SiO 3 , and the solid scatters are for 
Mg 0.9 Fe 0.1 SiO 3 from Siersch [9] . (b) Effect of Fe content on volume of akimotoite 
in different temperatures at 0 GPa. Solid lines are fitted by volume of MgSiO 3 

akimotoite [26] and Mg 0.875 Fe 0.125 SiO 3 (this study), and the dotted lines repre- 
sent the extrapolation. Dot-dashed line is fitted by experiment data [ 9 , 20 , 57 , 58 ]. 
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elocities and density of the lower MTZ after including the mineral
hase variations? Does mineral physics require a harzburgite-rich lower
TZ? 

The answers to the questions, which have fundamental implica-
ions to the mantle convection, require the elastic properties of iron-
earing akimotoite at high pressures and temperatures. The equa-
ion of states and elastic properties of MgSiO 3 akimotoite have been
nvestigated by previous studies [20–28] . The sound velocities of
he iron-bearing akimotoite (Mg 0.9 ,Fe 0.1 )SiO 3 have been measured
y Siersch [9] up to 26 GPa and 1100 K using ultrasonic inter-
erometry and synchrotron X-ray diffraction. However, the veloci-
ies and density of iron-bearing akimotoite at MTZ conditions remain
nknown. 

In this study, we investigated the elastic properties of
M g 0 . 875 , F e 0 . 125 )Si O 3 akimotoite at mantle conditions using first-
rinciples calculations. The calculated results are consistent with
he available experimental data. The temperature heterogeneity in
he lower MTZ will affect the volume proportion of akimotoite and
571 
ence the velocities and density of the pyrolite model. Combining our
esults with the elastic properties of other minerals, we calculated the
elocities and density of the pyrolite model in the lower MTZ with
he effect of temperature heterogeneity and compared mineral-physics
esults with seismic reference models. 

. Material and methods 

.1. First-principles calculations 

The calculations were performed using the Quantum Espresso pack-
ge [29] based on the density functional theory (DFT) [30] . The local
ensity approximation (LDA) was adopted for exchange-correlation po-
ential [ 31 , 32 ]. The pseudopotential for magnesium was generated by
on Barth and Car [33] , and the iron pseudopotential was generated
sing the method of Vanderbilt [34] . The pseudopotentials for oxygen
nd silicon were generated by Troullier and Martins [35] . The plane
ave kinetic energy and charge density cutoff were 70 Ry and 700 Ry,

espectively. The initial structure for (M g 1−x , F e x )Si O 3 akimotoite with
 = 0 . 125 (akimotoite refers to the composition of (M g , F e )Si O 
0 . 875 0 . 125 3 
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Fig. 3. Pressure dependences of elastic constants of akimotoite at various 

temperatures. 
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ereafter unless otherwise specified) is generated by replacing a Mg
tom with iron in a 40-atoms unit cell. The akimotoite structures at dif-
erent pressures were optimized with a 2 × 2 × 2 k-point mesh by using
amped variable cell shape molecular dynamics [36] . The dynamical
atrices were calculated using the density functional perturbation the-

ry (DFPT) [37] to obtain vibrational frequencies at a 2 × 2 × 2 q-point
esh for each optimized structure. 

.2. Elasticity and anisotropy calculations 

Isothermal elastic tensors are determined by second derivative of
ree energy with strain from Eq. 1 [38] : 

 

𝑇 
𝑖𝑗𝑘𝑙 

= 

1 
𝑉 

( 
𝜕 2 𝐹 

𝜕 𝑒 𝑖𝑗 𝜕 𝑒 𝑘𝑙 

) 
+ 

1 
2 
𝑃 
(
2 𝛿𝑖𝑗 𝛿𝑘𝑙 − 𝛿𝑖𝑙 𝛿𝑘𝑗 − 𝛿𝑖𝑘 𝛿𝑗𝑙 

)
(1)

Helmholtz free energy at volume V with infinitesimal strains e ij 
i,j = 1,2,3) can be obtained from the quasi-harmonic approximation: 

 

(
𝑉 , 𝑇 , 𝑒 𝑖𝑗 

)
= 𝑈 0 
(
𝑉 , 𝑒 𝑖𝑗 

)
+ 
∑
𝑞,𝑚 

ℏ 𝜔 𝑞𝑚 
(
𝑉 , 𝑒 𝑖𝑗 

)
2 

+ 𝐾 𝐵 𝑇 
∑
𝑞,𝑚 

𝑙𝑛 

{ 

1 − 𝑒𝑥𝑝 

[ 
− 
ℏ 𝜔 𝑞𝑚 

(
𝑉 , 𝑒 𝑖𝑗 

)
𝑘 𝐵 𝑇 

] } 

(2) 

The 𝜔 𝑞,𝑚 represents vibrational frequency of the normal mode m at
honon wave vector q . ℏ and 𝐾 𝐵 are the Planck and Boltzmann con-
tants, respectively. Thus, the conventional method for elastic properties
alculations requires vibrational frequencies at numerous strained con-
gurations, which need a large amount of computation. In this study,
e adopted the method proposed by Wu and Wentzcovitch [39] , which
572 
nly requires vibrational density of states of unstrained configurations
nd elastic tensors at static conditions. This method reduces the compu-
ation to one tenth of the conventional method and maintains accuracy.
he method has been successfully applied to many minerals [ 4 , 26 , 40-
5 ]. 

Based on Kelvin-Christoffel equation, we can obtain the wave veloc-
ties propagating in different directions: 

𝐶 ijkl 𝑛 𝑗 𝑛 𝑙 − 𝜌𝑉 2 𝛿𝑖𝑘 
||| = 0 (3)

here n = (n 1 , n 2 , n 3 ) is the vector of propagation direction, 𝐶 𝑖𝑗𝑘𝑙 is the
our-order elastic tensor, 𝜌 presents the density, and 𝑉 is the wave veloc-
ty. The P wave anisotropy ( 𝐴 𝑃 ) , S wave anisotropy ( 𝐴 𝑆 ) , and maximum
olarization anisotropy ( 𝐴 

𝑝𝑜 

𝑆 
) are defined as: 

 𝑃 = 2 ×
( 𝑉 𝑚𝑎𝑥 

𝑃 
− 𝑉 𝑚𝑖𝑛 

𝑃 
) 

( 𝑉 𝑚𝑎𝑥 
𝑃 

+ 𝑉 𝑚𝑖𝑛 
𝑃 

) 
(4a)

 𝑆 = 2 ×
( 𝑉 𝑚𝑎𝑥 

𝑆 
− 𝑉 𝑚𝑖𝑛 

𝑆 
) (

𝑉 𝑚𝑎𝑥 
𝑆 

+ 𝑉 𝑚𝑖𝑛 
𝑆 

) (4b)

 

𝑝𝑜 

𝑆 
= 2 ×

( 𝑉 𝑆1 − 𝑉 𝑆2 ) 𝑚𝑎𝑥 (
𝑉 𝑆1 + 𝑉 𝑆2 

) (4c)

.3. Geophysical modeling 

The pyrolite model along the normal geotherm contains ∼56
ol.% ringwoodite ((Mg,Fe) 2 SiO 4 ), ∼39 vol.% majoritic garnet
(Mg,Fe,Ca) 3 (Mg,Si,Al) 2 Si 3 O 12 ), and ∼5 vol.% Davemaoite (CaSiO 3 )
n the lower MTZ [46–50] . The Fe/(Fe + Mg) of the pyrolite model
s ∼11 mol.% [51] . The iron partition coefficients 𝐾 𝐷 of garnet-
ingwoodite, akimotoite-ringwoodite, ringwoodite-ferropericlase, and
ridgmanite-ferropericlase are around 0.8, 0.4, 0.65, and 0.7, respec-
ively [ 14 , 17 , 52-54 ]. Based on the total iron content in the pyro-
ite model and partition coefficients between different minerals, the
e ∕( Fe + Mg ) in ringwoodite, garnet, akimotoite, and bridgmanite is
10 mol.%, ∼8 mol.%, ∼4 mol.%, and ∼10 mol.% respectively. The

ron content of the majoritic garnet estimated in this study is closed
o those from Irifune et al. [7] ( ∼7 mol.%). Based on the chemical
omposition of garnet (pyrolite minus olivine) from Irifune et al. [7] ,
he majoritic garnet is Py 15 Gr 26 Alm 7 Mj 52 with ∼15 vol.% pyrope [40] ,
26 vol.% grossular [4] , ∼7 vol.% almandine [55] , and ∼52 vol.%
ajorite at 20 GPa, which is similar to Arimoto et al. [55] and Pam-

to et al. [8] . The chemical composition of majoritic garnet varies
ith depth mainly because of the exsolution of Davemaoite. In the

ower MTZ, the majoritic garnet is Py 31 Gr 10 Alm 8 Mj 51 since there is
5 vol.% Davemaoite transformed from majoritic garnet. The elas-

ic modulus and density of the pyrolite model are calculated using
qs. 5 , 6 [56] : 

 = 

⎡ ⎢ ⎢ ⎣ 
∑
𝑖 

𝑓 𝑖 M i + 

( ∑
𝑖 

𝑓 𝑖 𝑀 

−1 
𝑖 

) −1 ⎤ ⎥ ⎥ ⎦ ∕2 (5)

= 

∑
𝑖 

𝑓 𝑖 𝜌𝑖 (6) 

here 𝑓 𝑖 , 𝜌𝑖 , and 𝑀 𝑖 are the volume fraction, density, and moduli of the
 th mineral, respectively. 

The temperature lateral heterogeneity will change the mineral phase
n the lower MTZ. To investigate this effect on the velocities and density
f the pyrolite model, we assume a Gaussian temperature distribution
or the temperature heterogeneity of an entire spherical layer at a certain
epth: 

 

(
T; 𝑇 𝑔 , 𝜎

)
= 

1 
𝜎
√
2 𝜋

exp 
⎛ ⎜ ⎜ ⎝ − 

(
𝑇 − 𝑇 𝑔 

)2 
2 𝜎2 

⎞ ⎟ ⎟ ⎠ (7)
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Table 1 

Equation of state parameters of akimotoite at 0 GPa. 

Reference Composition T (K) V 0 (Å3 ) K T (GPa) ( 𝜕 K T ∕ 𝜕P ) T 

This study Mg 0.875 Fe 0.125 SiO 3 Static 262.7 213.2 4.35 
This study Mg 0.875 Fe 0.125 SiO 3 300 266.0 202.4 4.49 
This study Mg 0.875 Fe 0.125 SiO 3 1000 271.3 180.1 4.77 
This study Mg 0.875 Fe 0.125 SiO 3 2000 282.0 141.3 5.40 
Seirsch (2019) Mg 0.9 Fe 0.1 SiO 3 300 263.5 197 5.3 
Hao et al. (2019) MgSiO 3 300 265.2 202 4.40 
Seirsch et al. (2021) MgSiO 3 300 262.43 205 4.9 

K T : the isothermal bulk modulus at 0 GPa. 

Fig. 4. Pressure dependences of (a) bulk and shear modules and (b) velocities 
at various temperatures. Experimental data source: squares, Siersch [9] . 
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are the fitting results based on PREM and (d-f) are the fitting results based on 
AK135. 
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Here, T g is the normal geothermal temperature and 𝜎 is the standard
eviation of mantle temperature. The ratio of akimotoite is determined
y 

 

(
𝑇 0 ; 𝑇 𝑔 , σ

)
= 

1 
𝜎
√
2 𝜋

𝑇 0 
∫
−∞

exp 
⎛ ⎜ ⎜ ⎝ − 

(
𝑇 − 𝑇 𝑔 

)2 
2 𝜎2 

⎞ ⎟ ⎟ ⎠ 𝑑𝑇 (8)

Here, T 0 is temperature at which garnet transforms to akimotoite or
kimotoite transforms to bridgmanite ( Fig. 1 a). The degree to which the
yrolite model matches the 𝑉 𝑃 , 𝑉 𝑆 and density is evaluated using the
isfit function 𝐷 𝑎𝑙𝑙 : 

 𝑎𝑙𝑙 = 

√ √ √ √ √ √ 

∑𝑛 

𝑖 =1 

( ( 
𝑉 
𝑝𝑦 

𝑃 𝑖 

𝑉 𝑚𝑜𝑑𝑒𝑙 
𝑃 𝑖 

− 1 
) 2 

+ 

( 
𝑉 
𝑝𝑦 

𝑆𝑖 

𝑉 𝑚𝑜𝑑𝑒𝑙 
𝑆𝑖 

− 1 
) 2 

+ 

( 
𝜌
𝑝𝑦 

𝑖 

𝜌𝑚𝑜𝑑𝑒𝑙 
𝑖 

− 1 
) 2 ) 

3 𝑛 
(9)

here 𝑉 𝑝𝑦 
𝑃 𝑖 

, 𝑉 𝑝𝑦 
𝑠𝑖 

, 𝜌𝑝𝑦 
𝑖 

, 𝑉 𝑚𝑜𝑑𝑒𝑙 
𝑃 𝑖 

, 𝑉 𝑚𝑜𝑑𝑒𝑙 
𝑠𝑖 

and 𝜌𝑚𝑜𝑑𝑒𝑙 
𝑖 

represent the P- and S-
ave velocities and density of the pyrolite model and seismic models,

espectively, and n is the number of data points. 

. Results and discussion 

.1. Elastic properties of akimotoite at high pressures and temperatures 

The equation of states of akimotoite up to 30 GPa and 2000 K
re shown in Fig. 2 a and listed in Table 1 . The calculated volume at
mbient temperature is ∼1.5% larger than the previous experimen-
al measurements [9] . It was observed that such discrepancies be-
573 
ween calculations and experiments dwindled away while the pressure
nd the temperature increased. At MTZ’s pressure, the relative differ-
nces of volume are less than 0.5% at 1100 K. The volume of akimo-
oite increases linearly with iron concentration [ 9 , 20 , 57 , 58 ]. The ef-
ect of iron content on volume ( Fig. 2 b), which is estimated based on
gSiO 3 akimotoite from Hao et al. [26] and (Mg 0.875 ,Fe 0.125 )SiO 3 aki-
otoite in this study, agrees well with the experimental data at ambient

onditions. 
Akimotoite has a trigonal structure, and its elastic tensor can be de-

ermined by seven independent parameters C 11 , C 12 , C 13 , C 14 , C 25 , C 33 ,
nd C 44 ( Fig. 3 , Table S1 and S2). The adiabatic bulk moduli K S and
hear moduli G are calculated based on the Voigt-Reuss-Hill average
56] ( Fig. 4 a). The derivatives of elastic modulus with respect to PT

re listed in Tables S1 and S2. The compression wave velocity 𝑉 𝑃 and

hear wave velocity 𝑉 𝑆 are given by 𝑉 𝑃 = 

√ 

𝐾 𝑆 + 
4 
3 𝐺 

𝜌
and 𝑉 𝑆 = 

√ 

𝐺 

𝜌
, and

heir derivatives with respect to PT are shown in Fig. 4 b and Table S3.
he calculated wave velocities agree with those measured by Siersch
9] within ∼1%. 

The pressure dependences of anisotropies at various temperatures
re shown in Fig. S1. The anisotropy of MgSiO 3 akimotoite is larger
han other major minerals in the lower MTZ [ 26 , 27 ]. Our calculation
hows that iron further increases the anisotropies of akimotoite. At 20
Pa and 1500 K, 𝐴 𝑃 , 𝐴 𝑆 , and 𝐴 

𝑃𝑂 
𝑆 

of iron-bearing akimotoite are 2.2%,
.4%, and 6.1% larger than MgSiO 3 akimotoite respectively. The dif-
erences of 𝐴 𝑃 , 𝐴 𝑆 , and 𝐴 

𝑃𝑂 
𝑆 

between iron-bearing and MgSiO 3 aki-
otoite increase to 2.4%, 7.7%, and 7.4% respectively at 24 GPa and
000 K. 
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Table 2 

Bulk (Ks) and Shear (G) Moduli of minerals at base of the transition zone employed in the calculation of density and seismic velocities. 

Composition K S (GPa) 𝜕 𝑲 𝑺 ∕ 𝜕 𝑷 𝜕 𝑲 𝑺 ∕ 𝜕 𝑻 
(MPa/K) 

𝜕 2 𝑲 𝑺 ∕ 𝜕 𝑷 2 

( ×10 −3 𝑮 𝑷 𝒂 −1 ) 
𝜕 2 𝑲 𝑺 ∕ 𝜕 𝑷 𝜕 𝑻 
( ×10 −4 𝑲 

−1 ) 
𝜕 2 𝑲 𝑺 ∕ 𝜕 𝑻 2 

( ×10 −6 𝑮 𝑷 𝒂 ∕ 𝑲 

2 ) 
𝑹 𝒆 𝒇 

Ringwoodite 

Mg 2 SiO 4 184.9 4.23 -15.05 -8.25 0.54 -0.70 Cal.1 
(Mg 0.875 Fe 0.125 ) 2 SiO 4 186.9 4.79 -20.99 -21.61 3.43 -1.94 Cal.1 
Garnet 

Mg 3 Al 2 Si 3 O 12 176.3 3.79 -5.59 1.36 -8.88 4.85 Cal.2 
Ca 3 Al 2 Si 3 O 12 170.0 4.22 -8.01 -4.96 -1.70 0.48 Cal.3 
Fe 3 Al 2 Si 3 O 12 172.6 4.43 -18.7 Exp.1 
Mg 4 Si 4 O 12 159.7 4.64 -14.70 -13.73 0.47 -0.27 
Akimotoite 

MgSiO 3 204.9 4.45 -17.72 -11.39 1.49 -1.18 Cal.4 
Mg 0.875 Fe 0.125 SiO 3 205.1 4.62 -24.07 -13.71 4.35 -2.86 This study 
Ca-perovskite 

CaSiO 3 248 4.2 -36 Exp.2 
Bridgmanite 

MgSiO 3 247.5 4.00 -19.38 -4.96 1.03 -1.42 Cal.5 
Mg 0.875 Fe 0.125 SiO 3 249.4 4.04 -19.56 -5.07 0.96 -1.37 Cal.5 

G (GPa) 𝜕 𝑮 ∕ 𝜕 𝑷 𝜕 𝑮 ∕ 𝜕 𝑻 
(MPa/K) 

𝜕 2 𝑮 ∕ 𝜕 𝑷 2 

( ×10 −3 𝑮 𝑷 𝒂 −1 ) 
𝜕 2 𝑮 ∕ 𝜕 𝑷 𝜕 𝑻 
( ×10 −4 𝑲 

−1 ) 
𝜕 2 𝑮 ∕ 𝜕 𝑻 2 

( ×10 −6 𝑮 𝑷 𝒂 ∕ 𝑲 

2 ) 

Ringwoodite 

Mg 2 SiO 4 120.9 1.30 -10.96 -16.73 1.72 -0.39 Cal.1 
(Mg 0.875 Fe 0.125 ) 2 SiO 4 115.2 1.35 -13.06 -20.71 3.06 -1.02 Cal.1 
Garnet 

Mg 3 Al 2 Si 3 O 12 93.95 1.35 -6.48 -13.54 -3.76 2.76 Cal.2 
Ca 3 Al 2 Si 3 O 12 106.3 1.29 -6.03 -14.7 0.07 0.38 Cal.3 
Fe 3 Al 2 Si 3 O 12 94.2 1.06 -12.6 Exp.1 
Mg 4 Si 4 O 12 83.53 1.28 -8.77 -14.19 0.97 -0.01 
Akimotoite 

MgSiO 3 128.1 1.79 -13.77 -17.13 2.26 -0.81 Cal.4 
Mg 0.875 Fe 0.125 SiO 3 120.9 1.85 -17.58 -20.99 4.58 -2.28 This study 
Ca-perovskite 

CaSiO 3 126 1.6 -15 Exp.2 
Bridgmanite 

MgSiO 3 167.6 1.79 -19.8 -7.82 1.81 -1.21 Cal.5 
Mg 0.875 Fe 0.125 SiO 3 164.6 1.79 -19.74 -8.34 1.85 -1.20 Cal.5 

Cal.1 Núñez Valdez et al. [63], Cal. 2 Hu et al. [38], Cal. 3 Duan et al. [4], Cal. 4 Hao et al. [26], Cal.5 Shukla et al. [64], Exp. 1 Arimoto et al. [53], Exp. 2 
Greaux et al. [65] . The data from calculations are fitted for the pressure and temperature range of 0-30 GPa and 270-2000 K respectively based on the equation: 
𝑀 = 𝑀 0 + 

𝜕𝑀 

𝜕𝑃 
× 𝑃 + 𝜕𝑀 

𝜕𝑇 
× ( 𝑇 − 270 ) + 𝜕 

2 𝑀 

𝜕 𝑃 2 
× 𝑃 2 + 𝜕 

2 𝑀 

𝜕 𝑃𝜕 𝑇 
× 𝑃 × ( 𝑇 − 270 ) + 𝜕 

2 𝑀 

𝜕 𝑇 2 
× ( 𝑇 − 270 ) 2 . M represents the elastic moduli. P is pressure in GPa, and T is temperature 

in Kelvin. 
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.2. The pyrolite model can account for the velocities and density of the 

ower MTZ 

Combining the elasticities of akimotoite and other minerals in the
ower MTZ (summarized in Table 2 ), we calculated the velocities and
ensity of the pyrolite model along the normal geotherm. As shown in
ig. 5 , the S-wave velocity of the pyrolite model in the lower MTZ is
ower than PREM or AK135 up to 0.2 km/s, similar to previous studies
 7 , 8 ]. The stagnant slabs in the lower MTZ may contain non-negligible
arzburgite. However, the velocities of harzburgite with an initial com-
osition of 81.5 vol.% wadsleyite and 18.5 vol.% majoritic garnet are
till lower than the PREM or AK135 ∼0.1 km/s unless the temperature in
he lower MTZ is 200 K lower than the adiabat with a potential temper-
ture of 1673 K [8] . The stable field of akimotoite is close to the mantle
eotherm. The harzburgite mineral model can contain ∼15 vol.% akimo-
oite at the temperature around 1673-1873 K [ 59 , 60 ]. Siersch [9] found
hat the velocities of harzburgite can match PREM and AK135 after in-
luding the contribution of the akimotoite phase. Their results suggested
 pure harzburgite and a reference temperature below 1873 K for the
ower MTZ. Although the presence of a harzburgite-rich layer at local
egions is supported by the stagnant slabs in the lower MTZ, the mech-
nism for a global harzburgite layer in the lower MTZ remains unclear.

The above-mentioned velocities and density of pyrolite and harzbur-
ite along geotherm were calculated based on the average temper-
ture and the mineral phases at the average temperature. In gen-
ral, ignoring the secular temperature distribution in Earth’s interior
574 
oes not affect the 1D velocity and density profiles since they de-
end near-linearly on temperature. However, in the lower MTZ where
he stable field of akimotoite is close to the mantle geotherm, akimo-
oite can appear even geotherm is above the stable field of akimo-
oite and the akimotoite fraction is sensitive to the temperature dis-
ribution ( Fig. 1 a). Since akimotoite has much higher velocities than
ajoritic garnet especially 𝑉 𝑆 (Fig. S2) [ 26 , 27 ], the effect of akimo-

oite on the velocities and density of the pyrolite model cannot be
gnored. 

By assuming a Gaussian temperature distribution, we determined the
olume proportion of akimotoite at the mantle geotherm 𝑇 𝑔 with differ-
nt standard deviations ( 𝜎 is 0 ∼300) based on the MgSiO 3 phase dia-
ram (see Fig. 1 a and Eq. 8 ). Combining elastic data of minerals in the
ower MTZ ( Table 2 ), we obtained the velocities and density of the py-
olite model. The calculated misfit function 𝐷 𝑎𝑙𝑙 ( Eq. 9 ) based on AK135
s shown in Fig. 6 . Δ𝑇 is the temperature difference between 𝑇 𝑔 and the
riple point of MgSiO 3 phase transition. The 𝐷 𝑎𝑙𝑙 increases dramatically
nce Δ𝑇 < 0 𝐾, suggesting that the triple point of the phase transition
hould be below the geotherm, which is consistent with the perspec-
ive that majorite is a stable phase along geotherm. The results from
he conventional method, which ignores the temperature distribution,
re represented by those with 𝜎 = 0 𝐾. 𝐷 𝑎𝑙𝑙 with 𝜎 = 0 𝐾 for the cases
ith Δ𝑇 > 0 𝐾 is ∼1.7% for AK135. Introducing the temperature distri-
ution can reduce 𝐷 𝑎𝑙𝑙 by ∼40%. The same conclusions can be derived
ith 𝐷 𝑎𝑙𝑙 based on PREM (Fig. S3). As shown in Fig. 5 , after considering

he temperature distribution, the consistency between the velocities and
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Fig. 6. The deviation 𝐷 𝑎𝑙𝑙 between pyrolite and AK135. The results are based 
on phase boundary of (a) Yu et al. [19] , (b) Ishii et al. [17] , and (c) Hernández 
et al. [18] at different 𝜎 and Δ𝑇 . Stars are the points of the smallest 𝐷 𝑎𝑙𝑙 . 
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Fig. 7. The pyrolite model with temperature heterogeneity (modified 

from Frost [46] ). Opx = Orthopyroxene, HP-cpx = High-pressure clinopyrox- 
ene, Cpx = Clinopyroxene, Aki = Akimotoite, Fp = Ferropericlase. The phase 
boundary of orthopyroxene to high-pressure clinopyroxene is from Akashi et al. 
[69] . Although akimotoite is stable below the geotherm, the pyrolytic lower 
MTZ can contain a significant amount of akimotoite because of the temperature 
heterogeneity ( Fig. 1 ). The velocities and density of the pyrolite model agree 
well with the seismic results in the lower MTZ after considering the tempera- 
ture heterogeneity ( Fig. 5 ) 
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ensity of the pyrolite model and those of PREM and AK135 at the depth
ange of 580-660 km is as good as or better than that at the depth range
f 540-580 km. The harzburgite model contains only about 18.5 vol.%
ajoritic garnet. Introducing Gaussian distribution of temperature into

he harzburgite model can only reduce 𝐷 𝑎𝑙𝑙 ∼7% (Figs. S4 and S5), thus
ailing to match the velocities and density of PREM and AK135 at lower
TZ. Thus, our results demonstrate that the pyrolite model can explain
ell the velocities and density of the lower MTZ with temperature het-

rogeneity. The lower MTZ with a composition different from the upper
antle and lower mantle is not required. 
575 
.3. The temperature distribution of the lower MTZ 

The smallest 𝐷 

𝐴𝐾135 
𝑎𝑙𝑙 

occurs at Δ𝑇 = 49 𝐾 and 𝜎 = 112 𝐾 for Yu
t al. [19] , at Δ𝑇 = 16 𝐾 and 𝜎 = 179 𝐾 for Ishii et al. [17] , and at
𝑇 = 57 𝐾 and 𝜎 = 88 𝐾 for Hernández et al. [18] , respectively. The
est 𝜎 and Δ𝑇 derived from PREM are larger than those from AK135.
ang et al. [11] constrained the water and temperature distribution

t the base of MTZ by combining 660-km topography and seismic to-
ography. The 𝜎 from their temperature distribution is around 100

 Fig. 1 b), which is closed to 𝜎 our fitted based on AK135. These re-
ults suggest that the temperature in the lower MTZ can be described
y a Gaussian distribution with a σ of ∼ 100 K and an average tem-
erature of dozens of K higher than the triple point of MgSiO 3 . The
onclusion is not sensitive to the iron partition coefficients K D be-
ween akimotoite and ringwoodite (Table S4). The triple point of the
gSiO 3 phase diagram provides another anchor point for the mantle

eotherm. 
For the lower MTZ, 𝜎 ∼ 100 𝐾 means that the volume proportions

f mantle material with temperature 200 K lower than geotherm is
2.25%. The cold mantle is mainly caused by subducting slabs. As-
uming that all subducting slabs penetrate into the lower mantle ex-
ept the flat slabs which are stagnant above the 660 km discontinu-
ty, using the subduction length, the dip angle of slab, the width of
tagnant flat slab for each slab beneath arc volcanoes [61–63] and
he petrological model of the slab with a thickness of 80 km [48] ,
e calculated the volume proportion of subducting slabs in the lower
TZ globally, ∼2.88 vol.%. This may be overestimated since there

re some young subducting slabs that have not been subducted to
he lower MTZ yet. Considering only a fraction of the slab is 200 K
ower than the ambient mantle, the estimation on volume proportion
f slab is close to 2.25% in the lower MTZ and also supports that
is ∼ 100 K . 

The temperature distribution allows ∼10-15 vol.% akimotoite in the
ower MTZ ( Fig. 7 ). The strong elastic anisotropy of akimotoite (Fig.
1) provides a reasonable explanation for the anisotropy of the lower
TZ although ringwoodite and majoritic garnet, the major minerals in

he lower MTZ, are almost isotropic. Global seismic observation shows

hat the radial anisotropy (ξ = 

𝑉 2 
𝑆𝐻 

𝑉 2 
) of the lower MTZ is less than 2.3%
𝑆𝑉 
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64–66] . The anisotropy can be explained by no more than 5% akimo-
oite in the pyrolite model when the lattice of akimotoite is arranged
n a preferred orientation completely. 10-15% akimotoite in the pyro-
ite model should be large enough to generate the weak anisotropy in
ower MTZ. We updated the pyrolite model by considering the temper-
ture heterogeneities ( Fig. 7 ). The pyrolite model can well account for
he seismic velocity profile in the lower MTZ. Thus, although the 660-
m boundary partially blocks the circulation between the upper mantle
nd lower mantle as suggested by slab stagnant and 660-km topogra-
hy at the short length scale [ 61 , 67 , 68 ] , a lower MTZ compositionally
ignificantly different from the upper mantle and lower mantle is not
 requisite. This is consistent with only part of slabs stagnant at the
60-km boundary. The 660-km boundary is not an efficient obstacle for
antle flow and the whole mantle convection is expected to be more

avorable globally. 

. Conclusion 

We investigate the elastic properties of akimotoite
 M g 0 . 875 , F e 0 . 125 ) Si O 3 at high pressures and temperatures with first-
rinciples calculations based on the density functional theory (DFT).
he results are well consistent with available experimental data. In

ower MTZ, the akimotoite is ∼20% (11%) larger in 𝑉 𝑆 ( 𝑉 𝑃 ) than in
ajoritic garnet. 

The volume proportion of akimotoite in a pyrolitic lower MTZ de-
ends on the temperature heterogeneity. Combining the elasticity of aki-
otoite and other minerals in the MTZ, we estimate the velocity and
ensity profiles of pyrolite with the Gaussian temperature distributions.
e found that the velocities and density of pyrolite fit the seismic ve-

ocity profile well when the standard deviation of temperature for lower
TZ is ∼100 K and the geotherm locates at a little bit above the triple

oint of the MgSiO 3 phase diagram. The triple point of the MgSiO 3 phase
iagram provides another anchor point for geotherm. The presence of
10-15 vol.% akimotoite at the base of MTZ provides a reasonable ex-
lanation for the anisotropy of the lower MTZ although the other major
inerals in the lower MTZ are almost isotropic. A lower MTZ with com-
osition significantly different from the pyrolite model is not a requi-
ite and the whole mantle convection is expected to be more favorable
lobally. 
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