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Deep saliency models learn low‑, 
mid‑, and high‑level features 
to predict scene attention
Taylor R. Hayes1* & John M. Henderson1,2

Deep saliency models represent the current state-of-the-art for predicting where humans look in 
real-world scenes. However, for deep saliency models to inform cognitive theories of attention, we 
need to know how deep saliency models prioritize different scene features to predict where people 
look. Here we open the black box of three prominent deep saliency models (MSI-Net, DeepGaze II, 
and SAM-ResNet) using an approach that models the association between attention, deep saliency 
model output, and low-, mid-, and high-level scene features. Specifically, we measured the association 
between each deep saliency model and low-level image saliency, mid-level contour symmetry and 
junctions, and high-level meaning by applying a mixed effects modeling approach to a large eye 
movement dataset. We found that all three deep saliency models were most strongly associated 
with high-level and low-level features, but exhibited qualitatively different feature weightings and 
interaction patterns. These findings suggest that prominent deep saliency models are primarily 
learning image features associated with high-level scene meaning and low-level image saliency and 
highlight the importance of moving beyond simply benchmarking performance.

Our everyday visual world contains too much information to take in all at once, so we filter our visual world by 
moving our eyes to prioritize some regions over others. But how do humans know where to look to efficiently 
build a representation and understanding of complex, real-world scenes? One approach to answering this ques-
tion is to construct computational models that predict where people look in scenes. Deep convolutional neural 
network models of saliency (i.e., ‘deep saliency models’) reflect the current state-of-the-art computational models 
for predicting where humans look in scenes1. Although deep saliency models often generate very good predic-
tions of human behavior, relatively little is known about how they predict where people look. For deep saliency 
models to inform cognitive theories of attention requires a better understanding of what deep saliency models 
are learning about where people look in scenes.

To begin, it is helpful to distinguish deep saliency models from image saliency models. Image saliency models 
are computed from the scene image alone by combining local contrasts in low-level, pre-semantic image fea-
tures like color, luminance, and orientation across multiple spatial scales2–6. For example, a bright red flower 
surrounded by green grass would be a region that would be predicted by an image saliency model to capture 
attention. In comparison, deep saliency models use a data-driven approach that combines deep convolutional 
neural networks trained on large object recognition datasets (e.g., VGG-16 or VGG-197) with additional network 
layers that are subsequently trained on human fixation data8. Within this approach, deep saliency models learn 
a mapping between the pre-trained object recognition features and the human fixation data they are trained on. 
Therefore, a critical difference is that image saliency models only use low-level image features to generate their 
predictions, whereas deep saliency models might use some combination of low-, mid-, and high-level features 
to generate their predictions because they are trained using both object recognition and human fixation data9. 
Therefore, in order to understand the factors that drive deep saliency models, we will need to assess the associa-
tion between attention, low-, mid-, and high-level scene information, and deep saliency model output.

A large body of previous research has shown an association between pre-semantic, low-level stimulus features 
and attention. Early theories of attention focused on the role of low-level feature differences in capturing attention 
and were based on experiments using simple stimuli like lines and/or basic shapes that varied in low-level fea-
tures like orientation, color, luminance, texture, shape, or motion10–12. These early theories were formalized into 
computational image ‘saliency’ models that combined the different low-level feature maps based on mechanisms 
observed in early visual cortex such as center-surround dynamics to generate quantitative predictions in the 
form of ‘saliency maps’4,5,13–15. Image saliency maps were shown to be significantly correlated with where people 
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looked in scenes2–6. This foundational work spawned a large number of computational image saliency models 
(e.g., Graph-based saliency model3; Adaptive Whitening Saliency16; RARE17, Attention based on Information 
Maximization18) that each generate image saliency maps in different ways to improve their overall biological 
plausibility and/or performance on scene benchmark datasets1. Given the extensive theoretical, biological, and 
computational work on the role of low-level features in guiding attention, it will be important to quantify the 
degree to which low-level features are associated with deep saliency model performance.

Mid-level vision is thought to play a role in organizing low-level features in specific ways (e.g., Gestalt prin-
ciples) that facilitate higher-level recognition processes19–23. However, there has been very little work on the role 
that mid-level features play in guiding overt attention in scenes9. A recent study9 showed that two different pro-
posed mid-level features, local symmetry and contour junctions, contributed to category-specific scene attention 
during a scene memorization task in grayscale scenes and line drawings. The mid-level scene category predic-
tions were also computed over discrete temporal time bins, and the results suggested that symmetry contributed 
to both early bottom-up and later top-down guidance, while junctions contributed mostly to later top-down 
guidance9. Therefore, in the present work, it will also be useful to directly quantify the association between atten-
tion, mid-level features (i.e., local symmetry and contour junctions), and deep saliency model output.

Finally, there is a growing literature suggesting that high-level semantic density plays an important role in 
guiding attention in real-world scenes24–30. Much of this work has shown that high-level semantics often over-
rides low-level salience25–28,31. While many semantic scene studies manipulate a single or small number of objects 
in each scene, it is also possible to use human raters to rate the meaningfulness of scene regions based on how 
informative or recognizable regions are to generate a continuous distribution of local semantic density across 
the entire scene (i.e., a meaning map26). Meaning maps have been shown to be one of the strongest predictors 
of where people look in scenes across a wide variety of scene viewing tasks including scene memorization26,27, 
visual search32, free viewing33, scene description34, and saliency search35. Therefore, in the present study it will 
be important to assess the degree to which the image features learned by deep saliency models are associated 
with high-level meaning.

In the present work, we had two main goals. First, we sought to replicate and extend recent results demon-
strating that prominent deep saliency models (MSI-Net36; DeepGaze II37; and SAM-ResNet38) provide excellent 
predictions of human attention during free-viewing of scenes. We addressed this goal using a large eye move-
ment dataset in which 100 participants viewed 100 scenes and performed active scene viewing tasks rather than 
passive free-viewing. Our analyses explicitly accounted for center bias39,40 and the random effects of viewer and 
scene using a mixed effects modeling approach30,41. Second, and more importantly, we determined which features 
prominent deep saliency models prioritize to predict attention by modeling the association between deep sali-
ency model output and attention to low-level saliency3,42, mid-level symmetry and junctions43,44, and high-level 
scene meaning26. Without an understanding of how deep saliency models prioritize different scene features to 
generate their predictions, we have no way to determine how human-like deep saliency models actually are. 
Therefore, the present work seeks to build a bridge between deep saliency models and human eye movement 
behavior beyond just overall prediction.

Results
We first measured the strength of the association between where subjects looked in each scene and each respec-
tive deep saliency model. We did this by examining whether fixations on a scene region could be accounted for 
by the mean deep saliency and center proximity values (averaged across a 3◦ window) at fixated and non-fixated 
locations. We examined each deep saliency model separately by fitting a separate logistic general linear mixed 
effects (GLME) model for each deep saliency model. Within each GLME model, whether a region was fixated (1) 
or not (0) was the dependent variable and the scene region’s mean deep saliency model value (MSI-Net Fig. 1b; 
DeepGaze2, Fig. 1c; SAM-ResNet Fig. 1d), mean center proximity value (Fig. 1e), and the deep saliency by center 
proximity interaction were treated as predictors. Subject and scene were treated as random intercepts in each 
GLME model. These three GLME models reflect whether fixations could be predicted by each deep saliency 
model while controlling for center bias and the random effects of subject and scene.

The results are shown in Fig. 2 and Table 1. In each GLME model, there was a significant positive fixed 
effect of a scene region’s deep saliency model value (MSI-Net β = 2.19 , CI [2.17, 2.20], p < .001 ; DeepGaze II, 
β = 1.82 , CI [1.81, 1.83], p < .001 ; SAM-ResNet, β = 2.57 , CI [2.55, 2.59], p < .001 ). Additionally, each deep 
saliency model interacted with center proximity (MSI-Net, β = −0.15 , CI [−0.16,−0.13] , p < .001 ; DeepGaze 
II, β = 0.16 , CI [0.15, 0.17], p < .001 ; SAM-ResNet, β = −0.22 , CI [−0.24,−0.20] , p < .001 ). These interactions 
are shown as a function of fixation probability in Fig. 2d). Finally, we computed the classification rates of each 
GLME model (MSI-Net = 0.82, DeepGaze II = 0.83, SAM-ResNet = 0.81; chance-level = 0.50), indicating that 
the models produced similar prediction of whether a scene region was fixated (1) or not (0). Taken together these 
results extend previous findings using free-viewing tasks36–38 and establish that MSI-Net, DeepGaze II, and SAM-
ResNet also predict scene attention well in active viewing tasks (i.e., scene memorization and aesthetic judgment).

However, demonstrating that deep saliency models are strongly associated with where people look in scenes 
during active viewing, does not tell us anything about how these models predict where people look in scenes. 
Therefore, to gain some insight into how each deep saliency model is prioritizing different types of scene features, 
we turned the analysis on its head and modeled the associations between the deep saliency model values and 
low-, mid-, and high-level feature values for each fixated scene region. Specifically, we fit a linear mixed effects 
model (LME) for each deep saliency model, where the fixated mean deep saliency model values (Fig. 1b–d) were 
the dependent variable and the corresponding low-level (image saliency), mid-level (symmetry and junctions), 
high-level (meaning), and center proximity map values were treated as fixed effects (Fig. 1e–i, respectively). We 
also included interaction terms for center proximity with each feature type (i.e., low-, mid-, and high-level) and 
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a term to account for the known interaction between low- and high-level scene features26,32. Subject and scene 
were treated as random intercepts in each LME model. Using this LME approach to analyze our data allowed us to 
measure the association between attention, each deep saliency model, and each of our defined feature maps while 
controlling for center bias and the random effects of subjects and scenes. Since all model terms were standarized 
prior to fitting each LME model, the feature-levels can be directly compared using the 95% confidence intervals 
within each deep saliency LME model. That is, if the 95% confidence intervals of the parameter estimate of two 
different fixed effects (e.g., meaning and IttiKoch saliency) do not overlap, then they are significantly different. 
Therefore, this approach allowed us to address our main question of interest, what do deep saliency models learn 
about where we look in scenes and how do they weight different types of scene features?

The feature association LME model results are shown below for MSI-Net (Fig. 3; Table 2), DeepGaze II 
(Fig. 4; Table 3) and SAM-ResNet (Fig. 5; Table 4). High-level meaning was the strongest predictor in MSI-Net 
( β = 0.33 , CI [0.33, 0.34], p < .001 ) and DeepGaze II (DeepGaze II, β = 0.44 , CI [0.44, 0.45]) followed by 
low-level saliency (MSI-Net: β = 0.308 , CI [0.305, 0.312], p < .001 ; DeepGaze II: β = 0.253 , CI [0.250, 0.255], 
p < .001 ). In SAM-ResNet, high-level meaning ( β = 0.28 , CI [0.27, 0.29], p < .001 ) and low-level saliency 
( β = 0.27 , CI [0.27, 0.28], p < .001 ) were equally strong predictors. In all three deep saliency models, the mid-
level junctions (MSI-Net β = 0.006 , CI [0.003, 0.008], p < .001 ; DeepGaze II, β = 0.03 , CI [0.02, 0.03], p < .001 ; 
SAM-ResNet, β = 0.016 , CI [0.012, 0.019], p < .001 ) and symmetry (DeepGaze II, β = 0.06 , CI [0.05, 0.07], 

Figure 1.   Scene with the fixated and non-fixated regions for a typical subject, and the corresponding deep 
saliency and feature maps. (a) The solid green dots show the scene locations where the subject fixated, and the 
solid cyan dots indicate randomly sampled non-fixated regions that represent where this subject did not look in 
this scene. Together these locations provide an account of the regions in this scene that did and did not capture 
this subject’s attention. Each fixated and non-fixated location was then used to compute a mean value for each 
deep saliency model map (b–d) and feature map (e–i) across a 3◦ window (shown as circles around one example 
fixated and non-fixated location in each map). All the heat maps were scaled (0–1) and plotted in Matplotlib45 
(3.4.2, https://​matpl​otlib.​org/) from their respective source maps (see “Methods” for details).

https://matplotlib.org/
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Figure 2.   Deep saliency model general linear mixed effects model results. Whether a scene region was fixated 
or not was modeled as a function of the mean deep saliency model value, mean center proximity value, and 
their interaction as fixed effects (a MSI-Net; b DeepGaze II; c SAM-ResNet). The black dots with lines show the 
fixed effect estimates and their 95% confidence intervals. Subject (green dots) and scene (grey dots) were both 
accounted for in the model as random intercepts. (d) A line plot of the interaction between center proximity 
(panels) and each deep saliency model (colored lines) as a function of fixation probability. All error bands reflect 
95% confidence intervals.

Table 1.   Logistic general linear mixed effects model results for each deep saliency model: MSI-Net, DeepGaze 
II, and SAM-ResNet. Beta estimates ( β ), 95% confidence intervals (CI), standard errors (SE), z−statistic, and 
p-values (p) for each fixed effect and standard deviations (SD) for the random effects of subject and scene.

Predictors

Fixed effects
Random effects, 
SD

β 95% CI SE z-statistic p Subject Scene

MSI-Net

Intercept 0.40 [0.31 0.50] 0.05 8.05 < 0.001*** 0.23 0.45

MSI-Net 2.19 [2.17 2.20] 0.01 295.36 < 0.001*** – –

Center proximity 0.31 [0.30 0.32] 0.01 57.93 < 0.001*** – –

MSI-Net: center proximity − 0.15 [− 0.16 − 0.14] 0.01 − 22.65 < 0.001*** – –

DeepGaze II

Intercept − 0.11 [-0.25 0.02] 0.07 − 1.69 0.09 0.24 0.63

DeepGaze II 1.91 [1.90 1.92] 0.01 339.92 < 0.001*** – –

Center proximity 0.99 [0.98 1.00] 0.01 225.03 < 0.001*** – –

DeepGaze II :center proximity 0.20 [0.19 0.21] 0.01 33.85 < 0.001*** – –

SAM-ResNet

Intercept 0.66 [0.58 0.75] 0.04 15.54 < 0.001*** 0.21 0.37

SAM-ResNet 2.57 [2.55 2.59] 0.01 242.82 < 0.001*** – –

Center proximity 0.65 [0.64 0.66] 0.01 104.63 < 0.001*** – –

SAM-ResNet: center proximity − 0.22 [− 0.24 − 0.20] 0.01 − 19.99 < 0.001*** – –



5

Vol.:(0123456789)

Scientific Reports |        (2021) 11:18434  | https://doi.org/10.1038/s41598-021-97879-z

www.nature.com/scientificreports/

p < .01 ; SAM-ResNet, β = −0.01 , CI [−0.02, 0.00] , p < .01 ) features were only weakly associated with the deep 
saliency model values. Together these findings suggest that deep saliency models are primarily learning features 
associated with high-level meaning and low-level saliency, while mid-level symmetry and junctions play a more 
marginal role.

Based on previous work26,27,32 that showed a relationship between high-level meaning and low-level saliency, 
we included an interaction term (high-level meaning X low-level image saliency) in each of our decomposed 
deep saliency model analyses. The high-level by low-level interaction was significant in all three deep saliency 
models (MSI-Net β = 0.04 , CI [0.04, 0.05], p < .001 ; DeepGaze II, β = −0.08 , CI [−0.08,−0.07] , p < .001 ; 
SAM-ResNet, β = 0.09 , CI [0.08, 0.09], p < .001 ), but displayed different qualitative interaction patterns. MSI-
Net (Fig. 3b, top-right) and SAM-ResNet (Fig. 5b, top-right) displayed a similar interaction pattern; as a fixated 
region’s meaning value increased the predicted MSI-Net and SAM-ResNet values increased more quickly with 
greater low-level saliency. DeepGaze II displayed the opposite interaction pattern (Fig. 4b, top-right); as a fixated 
region’s meaning value increased the predicted DeepGaze II values increasingly were unaffected by low-level 
saliency. These divergent interaction patterns suggest that MSI-Net and SAM-ResNet predict a scene region is 
more likely to be fixated if it is both meaningful and visually salient, while DeepGaze II prediction is associated 
with increasingly discounting low-level saliency as a scene region becomes more meaningful.

Figure 3.   MSI-Net linear mixed effects model, marginal effects, and interactions. (a) Fixated MSI-Net values as 
a function of low-, mid-, and high-level features and interactions. The black dots with lines show the fixed effect 
estimates and their 95% confidence intervals. Subject (green dots) and scene (grey dots) were both accounted 
for in the model as random intercepts. (b) Line plots of all model marginal effects and all model interactions. All 
error bands reflect 95% confidence intervals.

Table 2.   MSI-Net LME Results. Beta estimates ( β ), 95% confidence intervals (CI), standard errors (SE), 
t-statistic, and p values (p) for each fixed effect and standard deviations (SD) for the random effects of subject 
and scene.

Predictors

Fixed effects
Random effects, 
SD

β 95% CI SE t-statistic p Subject Scene

Intercept 0.03 [− 0.04 0.10] 0.04 0.75 0.45 0.04 0.37

Meaning 0.33 [0.33 0.34] 0.002 153.13 < 0.001*** – –

Symmetry 0.002 [− 0.003 0.008] 0.003 0.89 0.37 – –

Junctions 0.006 [0.003 0.008] 0.001 4.27 < 0.001*** – –

IttiKoch 0.308 [0.305 0.312] 0.002 166.54 < 0.001*** – –

Center proximity 0.383 [0.380 0.386] 0.002 241.59 < 0.001*** – –

Meaning: center proximity 0.092 [0.088 0.095] 0.002 52.82 < 0.001*** – –

Symmetry: center proximity − 0.004 [− 0.006 − 0.001] 0.001 − 2.81 < 0.01** – –

Junction: center proximity 0.012 [0.010 0.014] 0.001 10.28 < 0.001*** – –

IttiKoch: center proximity − 0.034 [− 0.036 − 0.030] 0.002 − 21.64 < 0.001*** – –

Meaning: IttiKoch 0.044 [0.041 0.047] 0.002 25.86 < 0.001*** – –
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Finally, center proximity also played a significant role in each deep saliency model both as a fixed effect and as 
an interaction term. The effect of center proximity was larger in MSI-Net ( β = 0.38 , CI [0.38, 0.39], p < .001 ) and 
SAM-ResNet ( β = 0.31 , CI [0.31, 0.32], p < .001 ) compared to DeepGaze II ( β = −0.01 , CI [−0.015,−0.010] , 
p < .001 ). The interactions between center proximity and the mid-level maps (junction and symmetry maps) 
were very small (see Tables 2, 3, 4); however, the center proximity interactions with low-level and high-level 
features showed distinct patterns among the models. 

The interaction pattern between low-level saliency and center proximity was different in each decomposed 
deep saliency model. In MSI-Net ( β = −0.03 , CI [−0.04,−0.03] , p < .001 ), as low-level saliency increased the 
effect of center proximity decreased (Fig. 3b, bottom-right). In SAM-ResNet ( β = 0.04 , CI [0.03, 0.04], p < .001 ), 
as low-level saliency increased the effect of center proximity increased (Fig. 5b, bottom-right). In DeepGaze II 
( β = −0.04 , CI [−0.04,−0.03] , p < .001 ), a dissociation was observed. That is, as low-level saliency increased, 
greater center proximity switched from being associated with higher DeepGaze II values to lower DeepGaze II 
values (Fig. 5b, bottom-right). The interaction pattern between high-level semantic density and center proxim-
ity was consistent for MSI-Net and SAM-ResNet (MSI-Net β = 0.09 , CI [0.088, 0.095], p < .001 ; SAM-ResNet, 
β = 0.13 , CI [0.128, 0.137], p < .001 ). In both models, as meaning increased center proximity had a greater posi-
tive impact on the predicted deep saliency values (Fig. 3b, 5b, top-middle). In comparison, DeepGaze II showed a 

Figure 4.   DeepGaze II LME model, marginal effects, and interactions. (a) Fixated DeepGaze II values as a 
function of low-, mid-, and high-level features and interactions. The black dots with lines show the fixed effect 
estimates and their 95% confidence intervals. Subject (green dots) and scene (grey dots) were both accounted 
for in the model as random intercepts. (b) Line plots of all model marginal effects and all model interactions. All 
error bands reflect 95% confidence intervals.

Table 3.   DeepGaze II LME results. Beta estimates ( β ), 95% confidence intervals (CI), standard errors (SE), t 
values, and p values (p) for each fixed effect and standard deviations (SD) for the random effects of subject and 
scene.

Predictors

Fixed effects
Random effects, 
SD

β 95% CI SE t-statistic p Subject Scene

Intercept 0.27 [0.20 0.34] 0.03 8.00 0.13 0.04 0.33

Meaning 0.448 [0.445 0.451] 0.002 288.48 < 0.001*** – –

Symmetry 0.06 [0.05 0.07] 0.002 33.57 < 0.01** – –

Junctions 0.025 [0.023 0.026] 0.001 26.83 < 0.001*** – –

IttiKoch 0.253 [0.250 0.255] 0.001 193.45 < 0.001*** – –

Center proximity − 0.012 [− 0.015 − 0.010] 0.001 − 11.16 < 0.001*** – –

Meaning: center proximity 0.027 [0.025 0.030] 0.001 22.16 < 0.001*** – –

Symmetry: center proximity 0.005 [0.003 0.007] 0.001 5.13 < 0.001*** – –

Junction: center proximity 0.007 [0.005 0.008] 0.001 8.02 < 0.001*** – –

IttiKoch: center proximity − 0.034 [− 0.036 − 0.031] 0.001 -30.99 < 0.001*** – –

Meaning: IttiKoch − 0.078 [− 0.081 − 0.076] 0.001 -65.19 < 0.001*** – –



7

Vol.:(0123456789)

Scientific Reports |        (2021) 11:18434  | https://doi.org/10.1038/s41598-021-97879-z

www.nature.com/scientificreports/

much smaller interaction between meaning and center proximity ( β = 0.027 , CI [0.025, 0.030], p < .001 ). These 
different interaction patterns with center proximity are likely influenced by both the different model architectures 
and the different center biases in each deep saliency model.

Discussion
Using deep saliency models to inform cognitive theories of attention requires more than state-of-the-art predic-
tion, it requires an understanding of how that prediction is achieved. Here, we first replicated and extended to 
active viewing tasks that three prominent deep saliency models (i.e., MSI-Net, DeepGaze II, and SAM-ResNet) 
predicted where people looked in real-world scenes. Then, we decomposed the degree to which low-, mid-, 
and high-level scene information were associated with fixated deep saliency values. We found that MSI-Net, 
DeepGaze II, and SAM-ResNet are primarily learning features associated with high-level meaning and low-level 
saliency, and exhibited qualitatively different interaction patterns.

The present work extends our understanding of the relationship between deep saliency models, attention, 
and scene features in a number of important ways. First, we demonstrate how a mixed effects modeling approach 
can be used to directly model the association between deep saliency output and human eye behavior across low-, 
mid-, and high-level feature spaces. This approach is both general and flexible. That is, the mixed effects approach 

Figure 5.   SAM-ResNet LME model, marginal effects, and interactions. (a) Fixated SAM-ResNet values as a 
function of low-, mid-, and high-level features and interactions. The black dots with lines show the fixed effect 
estimates and their 95% confidence intervals. Subject (green dots) and scene (grey dots) were both accounted 
for in the model as random intercepts. (b) Line plots of all model marginal effects and all model interactions. All 
error bands reflect 95% confidence intervals.

Table 4.   SAM-ResNet LME results. Beta estimates ( β ), 95% confidence intervals (CI), standard errors (SE), t 
values, and p values (p) for each fixed effect and standard deviations (SD) for the random effects of subject and 
scene.

Predictors

Fixed effects
Random effects, 
SD

β 95% CI SE t-statistic p Subject Scene

Intercept − 0.06 [− 0.15 0.02] 0.04 − 1.53 0.13 0.05 0.42

Meaning 0.28 [0.27 0.29] 0.003 93.18 < 0.001*** – –

Symmetry − 0.01 [− 0.02 0.00] 0.004 − 3.14 < 0.01** – –

Junctions 0.016 [0.012 0.019] 0.002 8.75 < 0.001*** – –

IttiKoch 0.274 [0.269 0.278] 0.003 107.84 < 0.001*** – –

Center proximity 0.314 [0.310 0.318] 0.002 144.54 < 0.001*** – –

Meaning: center proximity 0.133 [0.128 0.137] 0.002 55.82 < 0.001*** – –

Symmetry: center proximity − 0.001 [− 0.004 0.003] 0.002 − 0.37 0.71 – –

Junction: center proximity − 0.011 [− 0.014 0.008] 0.002 − 6.99 < 0.001*** – –

IttiKoch: center proximity 0.035 [0.031 0.039] 0.002 16.72 < 0.001*** – –

Meaning: IttiKoch 0.087 [0.083 0.092] 0.002 37.42 < 0.001*** – –
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can be applied to any deep saliency model that produces a saliency map, any type of feature map of theoretical 
interest, and eye movement data from any scene viewing task. Using this approach, we show that while MSI-
Net, DeepGaze II, and SAM-ResNet each predict scene attention well, they do so in qualitatively different ways. 
From a cognitive science perspective, this is of theoretical importance because we want to know if deep saliency 
models are doing what humans are doing when processing scenes. Without this information, we have no way to 
determine whether the features prioritized by deep saliency models to predict scene attention are similar to each 
other, or more importantly, if they are similar to how humans prioritize features to guide attention in scenes.

The strong association between all three deep saliency models we tested and high-level meaning suggests 
these deep saliency models are learning image features that are associated with scene meaning. While MSI-Net, 
DeepGaze II, and SAM-ResNet each have a unique architecture, training regimen, and loss function, all the 
models are trained on human scene fixation data. Given previous research indicating that local semantic density 
is one of the strongest predictors of where observers fixate in scenes46, it follows that deep saliency models would 
benefit from learning features associated with semantic density. Therefore, the use of scene fixation data to train 
deep saliency models may be the common factor that drives each deep saliency model to learn which pre-trained 
object recognition features are most associated with scene meaning. It is important to note that this does not 
necessarily mean that deep saliency models and human ratings of meaning are equivalent47. For example, recent 
neurocognitive work shows human-generated meaning maps produce stronger activation in cortical areas along 
the ventral visual stream than DeepGaze II48. The differences between meaning maps and deep saliency maps 
are most likely driven by the inherent differences between deep saliency models and human raters. Specifically, 
deep saliency models have a much simpler neural architecture compared to human raters, and while deep sali-
ency models have a constrained feature set of the visual features stored in VGG-16/VGG-19, human raters likely 
draw on a much broader set of features including object semantics30.

The consistent strong association between deep saliency models and low-level image saliency is also an inter-
esting finding. The deep saliency models each have access to low-level features in the pre-trained VGG-16 and 
VGG-19 weights of the models. That is, early layers of VGG-16 and VGG-19 both exhibit frequency, orientation, 
and color selective kernels similar to properties observed in early visual cortex7,49,50. Therefore, it is likely that the 
association we observed between low-level image saliency and each model was driven by the low-level features in 
the early layers of VGG-16/VGG-19 and the human fixation data during training. Interestingly, while high-level 
features often override low-level saliency in human observers25–28,31, it may be that the deep saliency models are 
learning when low-level features and high-level features are most relevant for predicting where people look in 
scenes. For example, in all three models we observed a significant interaction between low-level saliency and 
high-level meaning. And at least in DeepGaze II, the pattern of the interaction seemed consistent with the idea 
that high-level features can override low-level saliency in scenes. That is, we observed that as a fixated region’s 
meaning value increased, the predicted DeepGaze II values were increasingly unaffected by low-level saliency. 
Granted, we observed the opposite interaction pattern in MSI-Net and SAM-ResNet, so more work will be 
needed to understand why different deep saliency models show different interaction patterns between low- and 
high-level scene information. Nonetheless, these results suggest that deep saliency models are learning something 
about how best to prioritize low- and high-level features, although they seem to be learning different mappings 
in different deep saliency models.

The mid-level associations with the deep saliency models were relatively weak compared to high-level mean-
ing and low-level saliency. This suggests that local symmetry and junction density, while significant, may only 
play a supporting role in attentional guidance in scenes. That is, mid-level features help to combine low-level 
features into higher-level representations23, but it is these higher-level representations that are used to determine 
attentional priority. Our mid-level findings using local contour symmetry and junction density complement pre-
vious work9 by examining how these mid-level features are directly associated with fixated deep saliency model 
values. Finally, it is worth noting that while our current results suggest local symmetry and junction density play 
marginal roles in MSI-Net, DeepGaze II, and SAM-ResNet, it may simply be that these deep saliency models are 
using a different kind of mid-level feature representation.

The current work has a number of limitations that would be useful to address in future work to expand our 
understanding of how deep saliency models predict scene attention. One limitation of the current work is that we 
used active viewing tasks that do not involve a specific target object (i.e., scene memorization and aesthetic judg-
ment). The results will likely be different in a task that involves a search for a specific visual or semantic target 
(e.g., visual search for a a dresser in a bedroom scene). Another limitation is that the current scenes were typical 
indoor and outdoor scenes, without semantically inconsistent objects. So it will be important in future work to 
examine whether similar patterns of association hold for scenes that contain object-scene inconsistency51–54. 
Finally, we only looked at two possible mid-level features, so it would be useful in future work to test other 
candidate mid-level features. For example, one could investigate the intermediate layers of VGG-16/VGG-19, 
or other proposed mid-level feature representations such as texforms23. Fortunately, the general approach intro-
duced here is flexible and can easily be applied to examine other candidate mid-level feature representations.

While deep learning models provide state-of-the-art scene fixation prediction, insights they might provide for 
cognitive theories of attention have been limited. In order for deep saliency models to inform cognitive theories 
of gaze guidance in scenes, we must find ways to understand the feature mapping these models are learning from 
the human data. Here, we have shown how a mixed effects modeling approach can be used to decompose the 
performance of deep saliency models by using maps that reflect a wide range of processing levels ranging from 
pre-semantic, low-level image saliency to high-level meaning. We found that all three deep saliency models were 
most strongly associated with high-level meaning and low-level saliency, but exhibited qualitatively different 
feature weightings and interaction patterns. These results highlight the importance of moving beyond simply 
benchmarking deep saliency models and toward understanding how deep saliency models generate their predic-
tions in an effort to guide cognitive theory.
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Methods
Participants.  University of California, Davis undergraduate students with normal or corrected-to-normal 
vision participated in the eye tracking (N = 114) and meaning rating (N = 408) studies in exchange for course 
credit. All participants were naive concerning the purposes of the experiment and provided verbal or written 
informed consent as approved by the University of California, Davis Institutional Review Board.

Stimuli.  Participants in the eye tracking study viewed 100 real-world scene images. The 100 scenes were cho-
sen to represent 100 unique scene categories (e.g., kitchen, park), where half of the images were indoor scenes 
and half were outdoor. Each participant in the meaning rating study viewed and rated 300 isolated, random 
small regions taken from the set of 100 scenes.

Apparatus.  Eye movements were recorded using an EyeLink 1000+ tower-mount eye tracker (spatial reso-
lution 0.01◦ ) sampling at 1000 Hz55. Participants sat 85 cm away from a 21” monitor and viewed scenes that 
subtended approximately 27◦× 20◦ of visual angle. Head movements were minimized using a chin and forehead 
rest. Although viewing was binocular, eye movements were recorded from the right eye. The display presentation 
was controlled with SR Research Experiment Builder software56.

Eye tracking calibration and data quality.  A 9-point calibration procedure was performed at the start 
of each session to map eye position to screen coordinates. Successful calibration required an average error of 
less than 0.49◦ and a maximum error of less than 0.99◦ . Fixations and saccades were segmented with EyeLink’s 
standard algorithm using velocity and acceleration thresholds (30/s and 9500◦/s2 ). A drift correction was per-
formed before each trial and recalibrations were performed as needed. The recorded data were examined for 
data artifacts from excessive blinking or calibration loss based on mean percent signal across trials57. Fourteen 
subjects with less than 75% signal were removed, leaving 100 subjects that were tracked well (signal mean = 
92.1%, SD = 5.31%).

Eye tracking tasks and procedure.  Each participant (N = 100) viewed 100 scenes for 12 s each while we 
recorded their eye movements. Each trial began with fixation on a cross at the center of the display for 300 ms. 
For half the scenes, participants were instructed to memorize each scene in preparation for a later memory test. 
For the other half of the scenes, participants were instructed to indicate how much they liked each scene on a 1–3 
scale using a keyboard press following the 12 second scene presentation. The scene set and presentation order of 
the two tasks were counterbalanced across subjects. This procedure produced a large eye movement dataset that 
contained 334,725 fixations, with an average of 3347 fixations per subject.

Deep saliency models.  We compared 3 of the best performing deep saliency models on the MIT saliency 
benchmark1: the multi-scale information network (MSI-Net)36, DeepGaze II37, and the saliency attentive model 
(SAM-ResNet)38. Each deep saliency model takes an image as input and produces a predicted saliency map 
as output. All of the deep saliency models were trained on human data in the form of fixation and/or mouse-
contingent density maps that reflect where humans focus their attention in scenes. The model weights are fixed 
following training, and then the models are evaluated on new scenes and fixation data. MSI-Net, DeepGaze II, 
and SAM-ResNet each have distinct network architectures, training regimens, center bias priors, and loss func-
tions which are worth considering.

MSI‑Net.  MSI-Net consists of three main components, a feature network, a spatial pooling network, and a 
readout network36. MSI-Net uses the pre-trained weights from the VGG-16 network7 without the feature down-
sampling in the last two max-pooling layers36. The VGG-16 network is a deep convolutional network with 16 
layers and was trained on both the ImageNet object classification58 and the Places2 scene classification datasets59. 
The activations from the VGG-16 network then feed into a spatial pooling module called the Atrous Spatial Pyra‑
mid Pooling (ASPP) module60. The ASPP module of MSI-Net has several convolutional layers which combine 
feature information at multiple spatial scales including a global scale to capture global scene context which has 
been shown to be helpful in predicting where people look in scenes61. Finally, the readout network contains 6 
layers that include convolutional and upsampling layers and a blur. The ASPP and readout network were trained 
on the SALICON dataset8. MSI-Net prediction is optimized using the Kullback–Leibler divergence which meas-
ures the distance between the target and model estimated distributions. The MSI-Net predicted saliency maps 
reflect the predicted probability distribution of fixations for each scene image (Fig. 1b).

DeepGaze II.  DeepGaze II also consists of three main components, a feature network, a readout network, and 
an explicit (i.e., non-learned) center bias37. The feature network consists of the pre-trained weights from the 
VGG-19 network7 without the fully connected layers. The VGG-19 network is a deep convolutional network 
with 19 layers that is trained on more than a million images to recognize 1000 different object categories from 
the ImageNet database58. In DeepGaze II, the VGG-19 feature network is fixed and the readout network is the 
only portion of the model that is trained to perform saliency prediction. The readout network consists of 4 layers 
that are trained on the SALICON8 and MIT100362 datasets to predict human saliency data using the pre-trained 
VGG-19 features8. The DeepGaze II model maximizes log-likelihood and expresses saliency as probability den-
sity with blur. Finally, DeepGaze II applies a center bias to capture the tendency for observers to look more 
centrally in scenes39,40. The DeepGaze II maps reflect the predicted probability distribution of fixations for each 
scene image (Fig. 1c).
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SAM‑ResNet.  SAM-ResNet is composed of a dilated feature network, an attentive convolutional network, and 
a learned set of Gaussian priors for center bias38. SAM-ResNet modifies the ResNet-50 network63 using a dila-
tion technique to reduce the amount of input image rescaling that is detrimental to saliency prediction64. The 
ResNet-50 network is a deep convolutional network with 50 layers that is trained on the ImageNet object clas-
sification dataset58. The dilated version of the ResNet-50 feature network provides the features that then feed into 
the attentive convolutional network. The attentive convolutional network is a recurrent long short-term memory 
network (LSTM65) that is used to refine the most salient regions of the input regions over multiple sequential 
iterations. It is worth noting that this recurrent model module is fundamentally different compared to the pure 
feedforward MSI-Net and DeepGaze II model architectures38. Finally, SAM-ResNet learns a set of Guassian 
priors to account for observer center bias39,40. SAM-ResNet is trained on the SALICON dataset8 and uses a linear 
combination of multiple saliency benchmark metrics (i.e., normalized scanpath saliency, linear correlation, and 
Kullback-Leibler divergence1) as its loss function during training. The SAM-ResNet predicted saliency maps 
reflect the predicted probability distribution of fixations for each scene image (Fig. 1d).

Feature maps.  Low‑level features: image saliency map.  Low-level scene features were represented using 
the Itti and Koch model with blur with default settings3,42,66. Similar to other image-based saliency models, the 
Itti and Koch model is derived from contrasts in low-level image features including color, intensity, and edge 
orientation at multiple spatial scales. An image saliency map was generated for each scene stimulus and reflects 
the predicted fixation density for each scene based on low-level, pre-semantic image features.

Mid‑level features: symmetry and junction maps.  Mid-level scene features were represented by two different 
types of maps: symmetry maps and junction maps. The symmetry and junction maps were both computed 
from a line drawing of each scene (Fig. 6a). The line drawings (Fig. 6b) were extracted using an automated line 
drawing extraction algorithm (logical/linear operators43,67). Then, using the contours from each scene line draw-
ing, the symmetry (Fig. 6c) and junction (Fig. 6d) maps were computed. Each scene symmetry map reflects 
the degree of local ribbon symmetry of contours in the scene line drawing43,44. Ribbon symmetry measures the 
degree to which pairs of scene contours exhibit constant separation (i.e., local parallelism) along their medial 
axis43,44. Each scene junction map shows the density of points where at least two separate scene contours inter-
sect each other68.

High‑level features: meaning map.  Meaning maps were generated as a representation of the spatial distribution 
of high-level, semantic density (26,27; see https://​osf.​io/​654uh/ for code and task instructions). Meaning maps 
were created for each scene by cutting the scene into a dense array of overlapping circular patches at a fine spa-
tial scale (300 patches with a diameter of 87 pixels) and coarse spatial scale (108 patches with a diameter of 207 
pixels). Each rater (N = 408) then provided ratings of 300 random scene patches based on how informative or 
recognizable they thought they were on a 6-point Likert scale24,26. Patches were presented in random order and 
without scene context, so ratings were based on context-independent judgments. Each patch was rated by three 
unique raters. A meaning map (Fig. 1f) was generated for each scene by averaging the rating data at each spatial 
scale separately, then averaging the spatial scale maps together, and then smoothing the grand average rating 
map with a Gaussian filter (i.e., Matlab ’imgaussfilt’ with σ = 10 , FWHM = 23 px).

Center proximity map.  In addition to the low-, mid-, and high-level feature maps, we also generated a center 
proximity map that served as a global representation of how far each location in the scene was from the scene 
center. Specifically, the center proximity map measured the inverted Euclidean distance from the center pixel 
of the scene to all other pixels in the scene image (Fig. 1e). The center proximity map30 was used to explicitly 
control for the general bias for observers to look more centrally than peripherally in scenes, independent of the 
underlying scene content39,40.

Statistical models.  Fixated and non‑fixated scene locations.  We modeled the association between the 
eye movement data and each deep saliency model by comparing where each subject looked in each scene to 
where they did not look30,41. Specifically, for each region a subject fixated, we computed the mean value for each 

Real-world Scene Scene Line Drawing Symmetry Map Junction Map

a b c d

Figure 6.   Scene, line drawing, and its corresponding symmetry and junction maps. Each scene (a) was first 
converted to a line drawing (b). Then, from the line drawing, local symmetry (c) and junction density were 
computed (d). The symmetry and junction maps served as mid-level feature maps in our analyses.

https://osf.io/654uh/
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deep saliency model (Fig. 1b–d) and the center proximity map (Fig. 1e) by taking the average over a 3◦ window 
around each fixation (Fig. 1a, neon green locations). To represent the model and center proximity values that 
were not associated with overt attention, for each individual subject, we randomly sampled an equal number of 
scene locations where each subject did not look in each scene they viewed (Fig. 1a, cyan locations). The only 
constraint for the random sampling of the non-fixated scene regions was that the non-fixated 3◦ windows could 
not overlap with any of the fixated 3◦ windows. This procedure was performed separately for each individual 
scene viewed by each individual subject.

General linear mixed effects models: how well do deep saliency models predict scene atten‑
tion?  We applied a general linear mixed effects (GLME) logit model to examine how well each deep sali-
ency model accounted for the eye movement data using the lme4 package69 in R70. We used a mixed effects 
modeling approach because it does not require aggregating the eye movement data at the subject or scene-level 
like ANOVA or map-level correlations. Instead, both subject and scene could be explicitly modeled as random 
effects. The GLME approach allowed us to control for center bias by including the center proximity (Fig. 1e) of 
each fixated and non-fixated region as both a fixed effect and as an interaction term with the deep saliency model 
values. Specifically, whether a region was fixated (1) or not fixated (0) was predicted as a function of the fixed 
effects of each respective deep saliency map value (i.e., MSI-Net, DeepGaze II, or SAM-ResNet), center proxim-
ity value, and the deep saliency model by center proximity interaction. Subject and scene were treated as random 
intercepts. Since we are interested in how well each deep saliency model performs generally, regardless of task, 
the memorization and aesthetic judgment data were combined in all models. To compare the performance of 
the three different deep saliency models, a GLME model was fit separately for each deep saliency model (see 
Fig. 2 and Table 1).

Linear mixed effects models: how do deep saliency models weight low‑, mid‑, and high‑level 
features?  We quantified the associations between low-, mid-, and high-level features and each deep saliency 
mode by fitting a linear mixed effects (LME) model to each deep saliency model using the lme4 package69 in R70. 
In each LME model, the fixated deep saliency model values (i.e., MSI-Net, DeepGaze II, or SAM-ResNet) were 
modeled as a function of the fixed effects of center proximity (bias), Itti and Koch image saliency (low-level), 
symmetry and junction (mid-level), and meaning (high-level). Given the known strong effect of center bias39,40 
we included center proximity as an interaction term with all other feature maps. Finally, since high-level and 
low-level features are known to be associated with each other26,32, we included a low-level by high-level feature 
interaction term (i.e., Itti & Koch X Meaning) in each deep saliency LME model. Conceptually, these LME mod-
els for each deep saliency model (MSI-Net, Fig. 3; DeepGaze II, Fig. 4; SAM-ResNet, Fig. 5) estimate the degree 
to which the various feature maps (i.e., low-, mid-, and high-level) are related to the respective deep saliency 
model output.
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