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Muted extratropical low cloud seasonal cycle
is closely linked to underestimated climate
sensitivity in models

Xianan Jiang 1,2 , Hui Su1,3,4, Jonathan H. Jiang 2, J. David Neelin4,
Longtao Wu2, Yoko Tsushima 5 & Gregory Elsaesser6

A large spread in model estimates of the equilibrium climate sensitivity (ECS),
defined as the global mean near-surface air-temperature increase following a
doubling of atmospheric CO2 concentration, leaves us greatly disadvantaged
in guiding policy-making for climate change adaptation andmitigation. In this
study, we show that the projected ECS in the latest generation of climate
models is highly related to seasonal variations of extratropical low-cloud
fraction (LCF) in historical simulations. Marked reduction of extratropical LCF
from winter to summer is found in models with ECS > 4.75 K, in accordance
with the significant reduction of extratropical LCF under a warming climate in
thesemodels. In contrast, a pronounced seasonal cycle of extratropical LCF, as
supported by satellite observations, is largely absent in models with ECS <
3.3 K. The distinct seasonality in extratropical LCF in climate models is ascri-
bed to their different prevailing cloud regimes governing the extratropical LCF
variability.

Accurate projection of future climate has been an urgent need to
provide scientific guidance for policy-making on climate mitigation
and adaptation strategies. Global climate models (GCMs), the primary
tools used for climate projection and understanding of climate sys-
tems, however, exhibit large uncertainty in depicting how Earth’s cli-
mate system responds to human activity. For example, the equilibrium
climate sensitivity (ECS), a quantity used to represent the change in
global mean near-surface air-temperature in response to radiative
forcing associated with a doubling of the atmospheric carbon dioxide
concentration, significantly varies among GCMs that participated in
theWorld Climate Research Programme (WCRP) CoupledModel Inter-
comparison Project (CMIP)1,2. With increased complexity in climate
models, the ECS in GCMs that participated in the latest sixth phase of
CMIP (CMIP6) exhibits even a larger spread of 1.8–5.6 °C than that of
2.1–4.7 °C in the CMIP5 models3–5. The large discrepancies in ECS
among GCMs have been attributed to model uncertainty in

representing various feedback processes, which act to amplify (i.e., a
positive feedback) or dampen (a negative feedback) the initial warm-
ing. Among them, the short-wave (SW) radiative feedback associated
with low clouds, particularly over the extratropical regions of both
hemispheres, has been suggested one of the largest sources of
uncertainty in predicting the ECS4–11. Hereafter, if not stated otherwise,
the extra-tropics is referred to the latitude belts of 60–30°S and
30–60°N. All analyses in this study are conducted over ocean grid
points to avoid even more complicated feedback processes over the
land, and surface temperature is referred to skin temperature if not
specifically defined, i.e., sea surface temperature over ocean grid cells.
Low cloud fraction (LCF) in both models and observations is derived
by vertical cloud fractions below 700hPa using a maximum over-
lapping assumption.

As shown in Fig. 1, the strong warming by the end of the 21st
century in the high ECS models (ECS greater than 4.75 K,

Received: 11 December 2022

Accepted: 31 August 2023

Check for updates

1Joint Institute for Regional Earth System Science and Engineering, University of California, Los Angeles, Los Angeles, CA, USA. 2Jet Propulsion Laboratory,
California Institute of Technology, Pasadena, CA, USA. 3Department of Civil and Environmental Engineering, Hong Kong University of Science and Tech-
nology, Hong Kong, China. 4Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, CA, USA. 5Met Office
Hadley Centre, Exeter, UK. 6NASAGoddard Institute for Space Studies, and Department of Applied Physics andMathematics, ColumbiaUniversity, NewYork,
NY, USA. e-mail: xianan@ucla.edu

Nature Communications |         (2023) 14:5586 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0002-6010-0527
http://orcid.org/0000-0002-6010-0527
http://orcid.org/0000-0002-6010-0527
http://orcid.org/0000-0002-6010-0527
http://orcid.org/0000-0002-6010-0527
http://orcid.org/0000-0002-5929-8951
http://orcid.org/0000-0002-5929-8951
http://orcid.org/0000-0002-5929-8951
http://orcid.org/0000-0002-5929-8951
http://orcid.org/0000-0002-5929-8951
http://orcid.org/0000-0003-4998-0436
http://orcid.org/0000-0003-4998-0436
http://orcid.org/0000-0003-4998-0436
http://orcid.org/0000-0003-4998-0436
http://orcid.org/0000-0003-4998-0436
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-41360-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-41360-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-41360-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-41360-0&domain=pdf
mailto:xianan@ucla.edu


Supplementary Table 1) from CMIP6 (Fig. 1a) is associated with
reduced LCF over the extratropical oceans (Fig. 1e), which effectively
reduces cloud reflection of solar radiation, indicated by a positive
trend in the top-of-atmosphere (TOA) SW cloud radiative effects
(SWCRE) (Fig. 1c), and generates excessive heating at the surface. This
thus represents a positive cloud feedback that amplifies the surface
warming over the extra-tropics.While reduced low cloudswith surface
warming over tropics or subtropics has been ascribed to a drying
effect in the boundary layer due to enhanced vertical moisture gra-
dient and thus mixing12–14, processes underlying reduced extratropical
low clouds under a warming climate remain poorly understood, and
are highly relevant to the findings in this study. A slightly equatorward
shift in the maximum TOA SWCRE changes relative to the maximum
reduction of LCF is noted over 30–60°N/S (c.f. Fig. 1c, e). In addition to
weaker solar irradiance near Polar Regions, these equatorward shifts in
SWCRE changes can also be due to a negative feedback involved with
mixed-phase clouds over the higher latitudes of the extra-tropics15,16,
particularly poleward of 45°N/S. Over thesehigh-latitude extra-tropics,
more cloud liquid condensates over ice particles will be formed when
the atmospherewarms up, leading to increase of cloud brightness and
an enhanced cloud albedo effect, i.e., a surface cooling effect. This
negative cloud-phase feedback over the higher latitudes of the extra-
tropics can partially offset or even dominate over the positive cloud
fraction feedback. A competition between these extratropical low-
cloud feedback processes is found to be one of the primary factors
responsible for a large spread in ECS simulated in different
GCMs4,8–10,17,18. The strong positive cloud fraction feedback over the

extra-tropics in both hemispheres as seen in the high ECS models,
however, is largely absent in the low ECS models (ECS less than 3.3K;
Fig. 1d, f), consistent with the overall weaker warming trends in these
models (Fig. 1b). The low-cloud fraction feedback associated with the
long-term climate trend over extratropical oceans, represented by
changes in LCF normalized by local sea surface temperature (TS)
changes between the 21st century and present-day (see “Methods”),
exhibits a high negative correlation (~−0.81) with themodel ECS across
18 available GCM simulations (see Fig. 2c, to be further discussed),
confirming a critical role of the extratropical low-cloud feedback in
contributing to the spread in the projected ECS.

In addition to the extra-tropics, model uncertainties in repre-
senting cloud feedbacks over other regions can also be partially
responsible for the large inter-model spread in ECS, e.g., over the
tropical and subtropical low-cloud regions8,18–22. Considering the
complexity of physical schemes in the latest climate models and the
non-linear interactions among different processes, identification of
key model processes governing cloud feedbacks and thus the large
spread in model ECS has been greatly challenging. For example, it
remains to be determined whether the high or low ECS models are
more realistic in their projected warming amplitudes and spatial pat-
terns (e.g., Fig. 1). Addressing this question will be critical to guide the
development of strategic plans and policy-making to mitigate impacts
of climate change. To assessmodel fidelity in projecting future climate
change, performance of these models in representing various climate
processes that are most relevant to climate sensitivity needs to be
comprehensively evaluated against available observations such as

Fig. 1 | Long-term climate trends in the high and low equilibrium climate sen-
sitivity (ECS) models. Composite patterns of the differences in climatological
annual mean surface temperature (a, b; Unit: K), top-of-atmosphere (TOA) short-
wave (SW) cloud radiative effect (c,d: SWCRE; Unit:Wm−2), and low cloud fractions

(e, f; Unit: %) between 2061–2095 from simulations under the shared socio-
economic pathway 5-8.5 (SSP585) scenario and 1980–2014 from historical simula-
tions in the high (left columns) and low (right columns) ECS models.
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through the process-oriented emergent constraint approach23–27. To
apply the emergent constraints for climate sensitivity, an empirical
relationship between an observable quantity in the past or present-day
climate, usually related to some key climate feedback processes, and
ECS needs to be identified.

In this study, we propose an emergent constraint on ECSusing the
seasonal cycle of extratropical LCF based on historical simulations.We
show that the extratropical low-cloud fraction feedback associated
with the long-term climate trend in CMIP6 model simulations is
strongly correlated with the seasonal cycle of extratropical LCF in
present-day simulations. A strong seasonal reduction of LCF over the
extra-tropics from winter to summer simulated in the high ECS mod-
els, which tends to agree better with satellite observations, is in stark
contrast to a weak seasonal cycle of LCF in the low ECS models. Pos-
sible processes leading to different seasonal variability in LCF between
the high and low ECS models are identified.

Results
Seasonal cycle of extratropical LCF as a constraint formodel ECS
Figure 2a presents a correlation pattern between ECS and the regres-
sion slope of seasonal LCF variations against local sea surface tem-
perature (dLCF/dTS) across 26 CMIP6 models (see “Methods”). A
strong negative correlation between ECS and the seasonal dLCF/dTS is
discerned over a large area of the extra-tropics in both hemispheres.
That is, a model with a more rapid decrease in extratropical LCF with
increasing local surface temperature on the seasonal time scale tends
to produce a higher ECS. When averaging the seasonal dLCF/dTS over
the oceanic regions between latitudinal belts of 30–60°N/S in each
model, a high correlationof−0.82betweenECS and the seasonaldLCF/
dTS is found across the 26 models (Fig. 2b). A strong correlation
between ECS and the seasonal dLCF/dTS is also found for northern or

southern hemisphere extratropics only (Supplementary Fig. 1a, b). A
rapid decrease of extratropical LCFwith surface temperature (<−2%/K)
on the seasonal time scale is found in most of the high ECS models, in
contrast to a rather weak or even slightly positive dLCF/dTS in the low
ECS models. Moreover, the correlation pattern in Fig. 2a greatly
resembles the pattern of long-term trend in LCF in high ECS model
simulations in Fig. 1e (a pattern correlation ~0.6), indicating that pro-
cesses in regulating seasonal changes of extratropical LCFmay also be
at play for the low-cloud feedback underlying the future warming.
Figure 2d confirms that the dLCF/dTS associated with the long-term
trend is indeed highly correlated with the seasonal dLCF/dTS over the
extra-tropics, although a more rapid change in LCF with surface tem-
perature is found on the seasonal time scale compared to that asso-
ciated with the long-term trend. As the dLCF/dTS associated with the
long-term trend is closely linked to model ECS (Fig. 2c), this may
explain the strong linkage between ECS and the seasonal dLCF/dTS
across models in Fig. 2b. Also note that a strong correlation between
the seasonal and long-term dLCF/dTS across these models is not
dependent on seasons when calculating the long-term dLCF/dTS
(Supplementary Fig. 1c, d).

This close relationship between the projected ECS and the sea-
sonal dLCF/dTS over the extra-tropics based on the present-day
simulations suggests that the seasonal dLCF/dTSover the extra-tropics
canbe used as anemergent constraint on ECS. Therefore, theobserved
seasonal dLCF/dTS over the extra-tropics as derived from satellite
observations, e.g., the CloudSat/Cloud-Aerosol Lidar and Infrared
Pathfinder Satellite Observations (CALIPSO)28 and the NOAAOptimum
Interpolation Sea Surface Temperature (OISST)29 (see “Methods”), can
provide an important assessment of the confidence in projected ECS in
GCMs. Incontrast to the ratherweak seasonaldLCF/dTSover the extra-
tropics in the low ECS models, the observed seasonal dLCF/dTS by

a) Correlation pattern between seasonal dLCF/dTS & ECS
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Fig. 2 | Seasonal cycle of extratropical low-cloud fraction (LCF) as a constraint
for model equilibrium climate sensitivity (ECS). a Spatial pattern of correlations
between the ECS and seasonaldLCF/dTSacross 26CMIP6GCMsbasedonhistorical
simulations for the period of 1980–2014; Scatter plots of b ECS versus the seasonal
dLCF/dTS, c ECS versus the dLCF/dTS associated with the long-term trend, d the
seasonal dLCF/dTS versus dLCF/dTS associated with the long-term trend, e ECS
versus annual mean LCF acrossmulti-model simulations. All variables in the scatter
plots (b–e) except the ECS are derivedover theoceanic regionbetween30–60°N/S.
Note that only 18 GCMs are available for the dLCF/dTS associated with the long-
term trend in (c) and (d). The light gray shaded areas around the regression line in

(b) represent the standard prediction errors by the linear fit following Schlund et al.
(2020)25. The vertical red line in (b) corresponds to the seasonal dLCF/dTS derived
from the climatological seasonal cycle of LCF and TS based on the satellite
observations for the period of 2006–2011, with its uncertainty (dark gray shading)
estimated by the mean and one standard deviation of the observed seasonal dLCF/
dTS in each year of 2006–2011. See “Methods” for details in deriving the dLCF/dTS
on various time-scales based on both models and observations. Note that the ECS
value predicted by each model used in this study is the “effective climate sensi-
tivity” from Schlund et al.25, an approximation of the equilibrium climate sensitivity
that might be biased60, 61.

Article https://doi.org/10.1038/s41467-023-41360-0

Nature Communications |         (2023) 14:5586 3



CloudSat/CALIPSO shows a relatively strong seasonal change of LCF
with surface temperature (the vertical red line in Fig. 2b), which is
closer to the high ECS models, although the seasonal dLCF/dTS tends
to be largely overestimated in several extremely high ECS models. In
contrast, the rather weak or even positive seasonal dLCF/dTS as found
in the low ECS models is not supported by CloudSat/CALIPSO obser-
vations, indicating the projected low ECS values in these models may
be underestimated. A moderate ECS has also been suggested by sev-
eral recent studies based on evaluations of model feedback errors18,22

or other metrics of emergent constraints19,30.
Since the seasonal evolution of surface temperature in the high

and low ECSmodels is largely similar (Supplementary Fig. 2b), distinct
seasonal dLCF/dTS over the extra-tropics between these two model
groups are mainly due to their differences in simulated seasonal var-
iations of extratropical LCF (Fig. 3). A pronounced seasonal cycle in
extratropical LCF is discerned in both the high ECS models and
CloudSat/CALIPSO observations, with the maximum LCF occurring
during the winter season in both hemispheres (Fig. 3a, c), whereas a
generally weak seasonal cycle of low clouds is found in the low ECS
models (Fig. 3b). In particular, relatively larger low-cloud amounts are
found in summer over both hemispheres in the low ECS models,
opposite to those in the high ECS models and observations. A pro-
nounced increase of extratropical LCF during the austral winter
(May–October) over the Southern Oceans in the high ECS models and
satellite observations is further illustrated by seasonal evolution of
vertical cloud profiles in Fig. 3d, f with their maximum LCF between
900–800 hPa closely connected to increased clouds in the mid-to-
upper troposphere. In the low ECS models, an increase of LCF below
700 Pa during May–October is nearly absent (Fig. 3e).

Due to more LCF during winter in the high ECS models, a larger
amount of annual mean LCF is also generally seen in the high ECS

models than those in low ECS models. While the climatological mean
LCF over the extra-tropics itself also shows a statistically significant
correlation (r ~ 0.56, p =0.0024) with ECS across the models (Fig. 2e),
the correlation is relatively weaker compared to that between the
seasonal dLCF/dTS and ECS (Fig. 2b). We therefore consider the sea-
sonal dLCF/dTS over the extra-tropics a better metric to constrain the
model ECS than the climatological annual mean LCF.

Short-term trend in extratropical low-cloud fractions
In addition to the long-term trend and seasonal cycle, Fig. 4 further
demonstrates that the distinct extratropical low-cloud feedbacks
between the high and low ECS models can also be clearly detected in
the trend of LCF during a relatively short period of 1980–2014 in his-
torical simulations. Despite their largely similar surface temperature
trend (Fig. 4b), a significant reduction of extratropical LCF during
1980–2014 is clearly seen in the high ECS models, but not in the low
ECS models (Fig. 4a). Differences in the trend of the extratropical LCF
between these twomodel groups are largely consistent with the trend
in TOA SWCRE (Fig. 4d). While an increasing trend in SWCRE during
1980–2014 is found in the high ECS models, which tends to be sup-
ported by the Clouds and the Earth’s Radiant Energy System (CERES)
satellite observations31, almost no trend is detected in the low ECS
models (Fig. 4d).

The low-cloud feedback (dLCF/dTS) derived by the linear
regression slope of the annualmean LCF and TS over the extra-tropics
during 1980–2014 is found to be highly correlated to the dLCF/dTS
associatedwith the long-term trend (Fig. 4e), to the seasonal dLCF/dTS
(Fig. 4f), and also to the ECS (Fig. 4g). A significant negative correlation
between the dLCF/dTS associated with the short-term trend and ECS
(r = −0.69, p < 0.001) is still evident, although slightly weaker than the
correlations with the dLCF/dTS based on the seasonal cycle (Fig. 2b)

Fig. 3 | Seasonal variations of extratropical clouds in the high and low equili-
brium climate sensitivity (ECS) models. a–c Composite seasonal cycle of zonal
mean low-cloud fraction (LCF) over 60oS–60°N for a the high ECS models, b low
ECS models, and c the CloudSat/CALIPSO observations. d–f Composite vertical-
seasonal cross-sections of zonal mean cloud fractions over the extratropical

Southern Ocean (60°S–30°S) for d the high ECS models, e low ECS models, and
f CloudSat/CALIPSO observations. Zonal mean values in all these plots are calcu-
lated over ocean grid points. All these seasonal evolution patterns are derived
based on climatology during 1980–2014 for GCM simulations, and 2006–2011 for
the CloudSat/CALIPSO observations (see “Methods“).
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and long-term trend (Fig. 2c), which can be partially ascribed to the
influences of the internal climate variability considering a relatively
short period of 1980–2014, such as the decadal or inter-decadal
variability as the surface warming patterns also matter for cloud
feedbacks32–34. These results lend further credence that the significant
discrepancies in the extratropical low-cloud feedback between the
high and low ECS models can be robustly identified based on the
seasonal cycle and short-term trend of extratropical LCF from histor-
ical simulations. In particular, considering that a climatological sea-
sonal cycle can be readily derived in the present-day simulations, the
seasonal dLCF/dTS can thus provide an especially useful emergent
constraint on ECS. Moreover, understanding of the underlying pro-
cesses responsible for the distinct seasonal LCF variability between the
high and low ECS models can provide important insights to their dif-
ferences in predicted ECS.

Cloud regimes associated with the extratropical LCF variability
Despite the distinct seasonal variations in extratropical LCF between
the high and low ECS models, several large-scale cloud controlling
factors that have been widely used to understand low-cloud

variations12,14, including surface temperature, the estimated inver-
sion strength (EIS), lower-tropospheric relative humidity and ver-
tical velocity, exhibit largely similar seasonal evolution features
between the two model groups (Supplementary Fig. 2). These large-
scale factors thus do not readily explain the key differences in their
seasonal LCF variations. Since extratropical clouds are strongly
linked to transient extratropical cyclone activity on synoptic time-
scales35–39, model deficiencies in representing clouds embedded in
extratropical cyclones can lead to significant biases in the simulated
cloud-radiation feedback and thus climate sensitivity40–42. A cloud
regime-based approach is thus applied to understand the different
characteristics in extratropical low clouds between the high and low
ECS models. As daily vertical cloud profiles are needed to derive
prevailing synoptic cloud regimes, which are only available from
very limited models that participated in CMIP6, the cloud regime-
based analyses in this section are based on three GCMs, with two
high ECS models, CESM2 and HadGEM3-GC31-LL, and one low ECS
model, MPI-ESM1-2-LR, as representatives for the high and low ECS
models, respectively. These three models exhibit very typical char-
acteristics of the seasonal cycle as well as the climate trend of

Fig. 4 | Short-term climate trends over the extratropics in the high and low
equilibrium climate sensitivity (ECS) models. Evolution of low-cloud fraction
(LCF) (a; Unit: %), surface temperature (b; Unit: °C), p-vertical velocity at 700hPa (c;
Unit: 0.01 Pa S−1), and the top-of-atmosphere (TOA) short-wave (SW) cloud radiative
effect (SWCRE) (d; Unit: W2 m−1) over the extra-tropics during 1980–2014 for the
high (red) and low (cyan) ECS model composites, and the observations (black;
observations for LCF are based on CloudSat/CALIPSO, surface temperature based
on NOAA OISST, vertical p-velocity based on the ERA5 reanalysis, and TOA SWCRE
based on CERES). Note that in (a–d), the corresponding climatological values for

each value, denoted by the numbers in the parentheses following the high or low
ECS models and observations in the legend of each panel, are removed from the
time series. e–g Scatter plots between the dLCF/dTS based on the short-term trend
during 1980–2014 and e the dLCF/dTSbased on the long-term trend, f the seasonal
dLCF/dTS, and g ECS in available CMIP6 model simulations. All variables in this
figure except ECS are derivedover the extratropical oceangrids between 30–60° in
both hemispheres. See the legend in Fig. 2 for the model name corresponding to
each mark shown in (e–g).
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extratropical low clouds in the high ECS and low ECS models (Sup-
plementary Fig. 3, also Fig. 5 to be discussed).

With a focus over the Southern Oceans, prevailing extratropical
cloud regimes in the three GCMs are derived based on an empirical
orthogonal function (EOF) analysis of daily vertical profiles of cloud
fractions (see “Methods”). Despite slight differences in their detailed
structures, the three leading modes of daily vertical cloud variability
derived from the three models are largely similar, representing the
high-, mid-, and low-top cloud regimes, respectively (Supplementary
Fig. 4). The mid-top cloud mode, which is strongly coupled with the
lower-to-mid-tropospheric ascending motion, bears a great resem-
blance to the cloud structure associated with the observed extra-
tropical cyclones36,38,39, characterized by a gradual transition from low
clouds over the cold front sector (west side) to deep clouds over the
warm front sector (east side) of cyclones. This suggests a strong
modulation of low clouds by extratropical cyclones along the mid-
latitude storm tracks38,40,41,43. Since the seasonal cycle and interannual
extratropical LCF during 1980–2014 in these three models can be well
reproduced using their corresponding long-term climatology plus
variability associated with the three leading modes (Supplementary
Fig. 5, Fig. 5), this makes it possible to identify the dominant cloud
regime controlling the variability of extratropical low clouds in these
models. Significantly enhanced LCF over extratropical Southern
Oceans during the austral winter (May–October) is found to bemainly
contributedby themid-top cloud regime inCESM2 (Fig. 5a), andby the

combined mid- and low-top cloud regimes that are in-phase with each
other in HadGEM3-LL (Fig. 5c, and Supplementary Fig. 5i, j). This sug-
gests that enhanced tropospheric vertical velocity associated with the
active storm-track variability, fueled by the baroclinic instability that is
most energetic during the winter season44,45, may play a crucial role in
generating themaximumextratropical LCF during the australwinter in
CESM2 and HadGEM3-LL. In contrast, while LCF associated with the
mid-top and high-top cloud regimes also exhibits a maximum during
the austral winter, they only play minor roles in regulating seasonal
variations of low clouds in MPI-ESM2-LR (Supplementary Fig. 5);
instead, its seasonal cycle is dominated by the low-top cloud regime,
which favors a maximum in the austral summer (November–March)
and a minimum in winter (May–October; Fig. 5e), largely in concert
with seasonal evolution of the lower-tropospheric instability, e.g., the
EIS (Supplementary Fig. 2).

The distinct vertical cloud variability in the threemodels is readily
seen by a snapshot of seasonal evolution of vertical cloud profiles over
a representative region of southern extratropics during a randomly
selected year (Supplementary Fig. 6). Significantly enhanced LCF or
more frequent occurrence of low clouds during the austral winter
(May–October) is found to be closely linked to vertically-extended
clouds in themid- and upper-troposphere in CESM2 andHadGEM3-LL,
as also largely evident in CloudSat/CALIPSO observations. A crucial
role of the mid-top cloud regime associated with extratropical
cyclones for the radiative budget over the extra-tropics has also been
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Fig. 5 | Leading cloud regimes associated with the extratropical low-cloud
fraction (LCF) variability. a, b Climatological seasonal cycle of LCF (a) and the
time series of annual mean LCF (b) over the southern hemisphere extra-tropics
(45–55°S), shown as deviations from their long-term climatology during the period
of 1980–2014, in CESM2 simulations (black) along with reconstructions using the
daily LCF variability associated with the mid-top cloud regime (i.e., the Empirical
Orthogonal Function, EOF, mode #2, red). c, d Same as in the upper panel but the

black lines for HadGEM3-LL simulations and blue lines for reconstruction using the
daily LCF variability associated with the combined mid- and low-top cloud regimes
(EOFmodes #2 and #3). e, f Same as in the upper panels but the black lines forMPI-
ESM2-LR simulations and green lines for reconstruction using the daily LCF varia-
bility associated with the low-top cloud regime (EOF mode #3). See “Methods” for
details on the derivation of the leading extratropical cloud regimes based on the
EOF analysis.
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previously reported in both observations and CMIP5 model
simulations10. In contrast, slightly reduced low clouds particularly near
the surface duringMay–October are found inMPI-ESM2-LRdespite the
enhanced deep clouds in general associatedwith extratropical cyclone
activity, confirming a decoupling of LCF from the vertically extended
clouds.

Similar as the seasonal cycle, the mid-top or the combined mid-
and low-top cloud regimes are also found to play a dominant role in
determining the decreasing trend in extratropical LCF during the
period of 1980–2014 in CESM2 and HadGEM3-LL (Fig. 5b, d). Con-
sidering a strong coupling between the lower-to-mid-tropospheric
ascending motion and the vertically-extended clouds (Supplementary
Fig. 4), a significant decreasing trend in the extratropical LCF during
1980–2014 in CESM2 and HadGEM3-LL and other high ECS models
(Fig. 4a) could be closely linked to the decreasing trend in the mid-
tropospheric ascending motion as illustrated in Fig. 4c. While a
decreasing trend in the extratropical ascending motion with recent
warming is also evident in the low ECSmodels including MPI-ESM2-LR
(Fig. 4c), the change in tropospheric vertical motion tends to not
effectively affect low clouds in these models due to a decoupling
between LCF and the vertically-extended clouds as previously dis-
cussed. As a result, the year-to-year variability of extratropical low
clouds in the low ECS models such as MPI-ESM2-LR is largely con-
trolled by the low-top cloud regime as in its seasonal cycle, leading to
the absence of a significant decreasing trend in extratropical LCF
during 1980–2014 (Figs. 4a, 5f). Note that while a decreasing trend in
the ascending motion over the extratropics is simulated in both the
high and low ECS models, it is not evident in the ERA5 reanalysis
(Fig. 4c), possibly due to a lack of observational constraints involved
with the vertical velocity field in the reanalysis dataset.

These above results suggest that the distinct extratropical low-
cloud feedbacks that are closely linked to their projected ECS between
the high and low ECSmodels, could be largely due to their differences
in depicting the coupling between tropospheric circulation and
extratropical LCF. A pronounced reduction of LCF with decreasing
tropospheric ascending motion is found in the high ECS models
through a strong modulation by the vertically-extended clouds,
whereas there is a lack of such strong coupling between tropospheric
circulation and low clouds in the low ECS models. Instead, in the low
ECSmodels the variability of extratropical low clouds is dominated by
the low-top cloud regime that largely follows the lower-tropospheric
stability as suggested by its seasonal cycle.

Motivated by the above cloud regime analyses, following a similar
approach used in Grise and Medeiros (2016)46, distinct processes

involvedwith the LCF variability between the high and low ECSmodels
are further elaborated by composite LCF as a function of vertical
velocity at 700hPa and the EIS over each ocean grid point of the extra-
tropics in both hemispheres based on their climatological seasonal
cycles (Fig. 6, shaded contours). A strong dependence of LCF on
700 hPa vertical velocity is clearly evident in the high ECS models and
CloudSat/CALIPSO observations (Fig. 6a, c), with more (less) low
clouds over regions with strong ascending (descending) motions. In
contrast, LCF in the low ECS models exhibits a strong dependence on
EIS with more (less) LCF associated with high (low) EIS, particularly
when ascending motion prevails in the lower-troposphere (Fig. 6b,
shaded). During a seasonal transition fromwinter to summer, changes
in LCF due to the increase in the EIS while decrease in the ascending
motion tend to offset each other, leading to a rather weak seasonal
cycle of LCF in the low ECS models. Projection of the occurrence fre-
quency of LCF in the 21st century simulations suggests that the
reduced LCF in the high ECS models is associated with more frequent
occurrence of strong descendingmotion, while no significant changes
in LCF in the low ECS models are due to a cancellation with enhanced
EIS and increased descending motion under the future climate (Fig. 6,
contours), in accordwith the climate trend in LCF simulated in thehigh
and low ECS models (Fig. 4a).

Discussion
Despite the urgent need for accurate climate projection to guide the
development of climate mitigation and adaptation strategies, our
state-of-the-art climatemodels exhibit largeuncertainties inpredicting
the magnitude of future warming, as measured by the ECS. Under-
standing the underlying processes responsible for the large inter-
model spread in ECS and constraining ECS with available observations
are thus critical for model improvement. Motivated by recent studies
on the crucial role of the extratropical low-cloud radiative feedback for
climate sensitivity, in this studywepropose ametric based on seasonal
variations of extratropical LCF to constrain model ECS. We show that
seasonal changes of LCFwith surface temperature, dLCF/dTS, over the
extratropical oceans between 30–60° in both hemispheres, is closely
related to the low-cloud feedback under long-term climate change,
and is thus highly correlated to model ECS. A strong negative value of
seasonal dLCF/dTS over the extra-tropics, i.e., a significant reduction
of LCF from winter to summer indicative of a strong positive cloud
feedback, is found in the high ECS models, in contrast to rather weak
seasonal variations of LCF in the low ECS models. Strong seasonal
reduction of LCF over the extra-tropics from winter to summer in the
high ECS models is in general agreement with the CloudSat/CALIPSO

Fig. 6 | Cloud controlling factors for extratropical low-cloud fraction (LCF) in
the high and low equilibrium climate sensitivity (ECS) models. Composite LCF
(shading; unit: %) as a function of vertical p-velocity at 700 hPa (Unit: 0.01 Pa s−1)
and the estimated inversion strength (EIS; unit: K) based on a the high ECSmodels,
b low ECS models, and c CloudSat/CALIPSO observations. These composites are
derived based on monthly mean fields of climatological seasonal cycle at all ocean
grid points between 30–60° over both hemispheres. Model composite are based

on historical simulations from 1980–2014, while observations are based on the
period of 2006–2011. Contours in (a) and (b): differences in the frequency of
occurrence of LCF in model simulations between future climate (21st century
simulations for the period of 2060–2094 under the SSP585 scenario) and historical
simulations from 1980–2014 (solid/dashed lines for increased/reduced frequency
of occurrence under the future climate with the first contour for ±0.1% and an
interval of 0.1%).

Article https://doi.org/10.1038/s41467-023-41360-0

Nature Communications |         (2023) 14:5586 7



observations, suggesting that the predicted low ECS values in climate
models may be underestimated.

Based on three GCMs, CESM2, HadGEM3-LL, and MPI-ESM2-LR,
as representatives of the high and low ECS models, a cloud regime
analysis is performed to identify key processes underlying distinct
extratropical cloud feedbacks in these models. In the high ECS
models, the LCF variability tends to be dominated by a mid-top or a
combinedmid- and low-top cloud regime that is strongly coupled to
the lower-to-mid-tropospheric vertical velocity. During the seasonal
migration from winter to summer, tropospheric ascending motion
over the extra-tropics weakens due to reduced baroclinicity and
storm-track variability, and leads to a significant reduction of
extratropical LCF in these models. Under a warming climate, weak-
ening of the ascending motion over the extra-tropics, possibly
associated with the expansion of the Hadley Cell47–50 and/or the
poleward shift ofmid-latitude jet stream45,51, can also lead to reduced
extratropical LCF in the high ECSmodels through modulation of the
vertically-extended clouds, therefore, a positive low-cloud feedback
that leads to rapid warming over the extratropics in these models. In
contrast, in the low ECS models as indicated by MPI-ESM2-LR, the
variability of extratropical low clouds is mainly dominated by a low-
top cloud regime, which exhibits a seasonal cycle that largely follows
the lower-tropospheric stability, i.e., with a maximum in summer
and a minimum in winter, and lacks a significant trend under a
warming climate.

Since the emergent relationship between the seasonal dLCF/dTS
over the extratropics and ECS in this study was derived based on
CMIP6 models, it is interesting to verify whether this metric is also
applicable for CMIP5 models. By plotting the seasonal dLCF/dTS and
their corresponding ECS from 21 CMIP5 models (Supplementary
Table 2) along with CMIP6 models (Supplementary Fig. 7), it is found
that a majority of the CMIP5 models exhibit a much weaker seasonal
cycle of extratropical LCF than the observations and the high ECS
models from CMIP6, consistent with generally low ECS in the CMIP5
models4. While a statistically significant correlation between ECS and
the seasonal dLCF/dTS over the extratropics can still be obtained
based on 26 CMIP6 and 21 CMIP5 models (r ~ −0.56, p <0.0001), no
significant correlation is found across the CMIP5 models alone
(r ~ 0.06). This result suggests that the high ECS predicted in several
CMIP6models, which largely leads to the increase in the spread of ECS
from CMIP5 to CMIP6, is closely associated with changes in repre-
sentation of extratropical low-cloud feedbacks, consistent with find-
ings from other recent studies4,8,10.

The cloud regime analysis suggests that the rapid reduction of
extratropical low clouds under a warming climate in the high ECS
models could be mainly due to the reduction of vertically-extended
clouds in associationwith theweakening of ascendingmotion over the
extratropics. However, future investigations are needed to better
understandhow the reduced vertical clouds and associatedweakening
of the ascending motion over the extratropics under a warming cli-
mate are linked to changes of the Hadley Cell expansion, the mid-
latitude storm-track variability, and the shift of thewesterly Jet Stream.
A weak relationship between extratropical SWCRE or ECS and pole-
ward shifts of the extratropical jet streams has been previously
reported in observations and CMIP5 models45,52. On one hand, this
could be due to a significant role of the Hadley Cell expansion on
extratropical LCF in addition to the shift of the Jet Stream52.Meanwhile,
this can also be ascribed to different model responses of extratropical
low clouds to changes in environmental conditions as suggested by
this study. For example, a weakening of the extratropical ascending
motion is simulated in both the high and low ECS models (Fig. 4c),
whereas the reduced extratropical LCF is only simulated in the high
ECS models (Fig. 4a). Since CMIP5 models exhibit large deficiencies in
representing the seasonal evolution of extratropical low clouds in
general, investigations based on the high ECS models from CMIP6 are

expected to provide important insights on how extratropical LCF and
its induced radiative effects respond to changes of the dynamical
processes over the extratropics. Also note that considering large
model deficiencies in representing extratropical storm-track clouds in
the low ECS models as shown in this study, it needs to be cautious
when assessing environmental changes over the extratropics under a
future climate based on these low ECS models, including most of the
CMIP5 models.

In this study, we mainly focus on the low-cloud fraction feed-
back over the extra-tropics. It has been suggested that model
uncertainties in representing the cloud-phase feedback can also be
related to large model spread in predicted global climate sensitivity
as previously discussed4,8–10,53, although with a possible secondary
role compared to the cloud-fraction feedback over the extra-tropics
between 30–60°N/S4. An examination of the liquid condensate
fraction as a function of atmospheric temperature, an important
metric indicating the fraction of super-cooled liquid water in mixed-
phase clouds4,16, does not show a significant difference between the
high and low ECS models (Supplementary Fig. 8). A detailed inves-
tigation of SW radiative feedback over the extra-tropics due to the
cloud phase and cloud optical-depth feedbacks between the high
and low ECSmodels is warranted in future studies. We also note that
a model’s overall climate sensitivity can be determined by multiple
feedback processes over the globe in addition to the extratropical
low-cloud feedback examined in this study18,22,25. For example, sev-
eral other cloud-based emergent metrics have been recently pro-
posed to constrain model climate sensitivity, including tropical
shallow cumulus and stratocumulus clouds19, seasonal cycle of
subtropical marine LCF21, or the regime-averaged marine low-cloud
feedbacks between 60°S–60°N20. The emergent relationship
between model ECS and the seasonal variability of extratropical LCF
proposed in this study provides a unique metric to quantify model
representation of low-cloud feedbacks over the extratropics.

Methods
The dLCF/dTS at various time-scales in model simulations
Model low cloud fraction (LCF) on each grid cell is derived by the
vertical profile of cloud fractions below 700hPa using a maximum
overlapping assumption. The climatological seasonal evolution of LCF
from January to December is obtained frommonthlymean LCF for the
period of 1980–2014 based on historical simulations from CMIP6. The
slope of LCF variations as a function of surface temperature (dLCF/
dTS) on the seasonal time scale at each grid point is calculated based
on the 12 monthly values of LCF and TS from their climatological
seasonal cycle using a linear regression following Zhai et al.21. Seasonal
dLCF/dTS over the extratropics in each model as shown in Fig. 2b is
obtained by averaging the dLCF/dTS over all ocean grid points
between 30–60°N/S.

Similarly as for the seasonal dLCF/dTS, the dLCF/dTS associated
with the short-term trend during the period of 1980–2014 on each grid
cell is derived by a linear regression of annual mean LCF and surface
temperature during the period of 1980–2014. Then the dLCF/dTS
associated with the short-term trend over the extra-tropics in each
model as shown in Fig. 4e, f is obtained by averaging dLCF/dTS over all
ocean grid points between 30–60°N/S.

To calculate the dLCF/dTS associated with the long-term trend
over the extra-tropics in each model as shown in Fig. 2c, d, long-term
changes in LCF (dLCF) and surface temperature (dTS) on each grid cell
are first derived by the differences in their 35-year mean values
between 2061–2095 from simulations under the shared socio-
economic pathway 5-8.5 (SSP585) scenario and 1980–2014 from his-
torical simulations. Then dLCF and dTS are further averaged over all
ocean grid points between 30–60°N/S, and the ratio of their spatially
averaged values is defined as the dLCF/dTS associated with the long-
term trend.
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Observational datasets
The latest ERA5 reanalysis from the European Centre for Medium-
RangeWeather Forecasts (ECMWF)54 is used to characterize large-scale
cloud controlling factors associated with variability of extratropical
low clouds. The observedmonthlymean surface temperature used for
this study is based on the NOAA Optimum Interpolation Sea Surface
Temperature (OISST) dataset (version 2)29. Observed TOA all-sky and
clear-sky fluxes from theClouds and the Earth’s Radiant Energy System
(CERES) instrument (version EBAF Ed4.1)31 is also used to verify model
simulations.

The observational dataset for vertical cloud profiles is based on a
combined product from the CloudSat and Cloud-Aerosol Lidar and
Infrared Pathfinder Satellite Observation (CALIPSO) satellites (2B-
GEOPROFLIDAR; version P2R05)28. The combined CloudSat/CALIPSO
dataset has been considered the best satellite observations for vertical
cloud structures associated with extratropical cyclones36,43,55,56, mainly
due to its advantage of the Cloud Profiling Radar (CPR) aboard
CloudSat in detecting optically thick hydrometeor layers, and the
CALIPSO lidar in detecting optically thin cloud layers that could be
missed by the CPR28,57,58.

Due to a severe anomaly of CloudSat occurred in 2011, Cloud-
Sat/CALIPSO vertical cloud profiles during the period of 2006–2011
are used in this study. Similarly as formodel results, LCF on each grid
cell is defined by the vertical cloud fractions below 700 hPa using a
maximum overlapping assumption. While a seasonal dLCF/dTS of
−1.71%/K over the extratropics from the CloudSat/CALIPSO obser-
vations is derived based on climatological seasonal cycle of vertical
clouds (Fig. 2b, vertical red line), its corresponding value derived
from each individual year during the 6-year period shows relatively
weak year-to-year variability with a mean value of −1.65%/K and a
standard deviation of 0.27%/K. This mean value of the seasonal
dLCF/dTS along with the one standard deviation value is used to
estimate uncertainties involved with the observed seasonal dLCF/
dTS (see the vertical gray bar in Fig. 2b). Sensitivity tests also suggest
that the climatological seasonal cycle of extratropical LCF and thus
the seasonal dLCF/dTS derived based on model simulations during
the 6-year period of 2006–2011 are largely identical to that derived
from the entire 35-year period of historical simulations as shown in
Fig. 3. This lends confidence in constraining the simulated seasonal
dLCF/dTS over the extratropics using the CloudSat/CALIPSO
observations.

It is noteworthy that global low cloud observations are also pro-
vided by several passive-sensing satellites, such as the International
Satellite Cloud Climatology Project59. While these passive instruments
provide useful information of horizontal distribution of low-top
clouds, they have limitations in detecting low clouds collocated with
deep or multi-layered clouds, such as those associated with extra-
tropical cyclones along the mid-latitude storm tracks28,36,43,56. The
passive sensing also has difficulties in accurately detecting the cloud-
top height40. Therefore, the low-cloud fractions based on these
passive-sensing satellite observations are not supposedly to bedirectly
compared to those derived from the active CloudSat/CALIPSO obser-
vations and model simulations in this study.

Cloud regime analysis
An Empirical Orthogonal Function (EOF) analysis is used to objec-
tively identify the leading cloud regimes over the extra-tropics with
a particular focus over the Southern Oceans. Before the EOF analy-
sis, we divide the global longitude belts between 45–55°S into 12 sub-
regions with equal areas. Namely, each sub-region covers an area of
30 × 10 longitude-latitude degrees, representing a typical size of an
extratropical cyclone. Daily vertical profiles of cloud fractions on 19
pressure levels between 1000 hPa and 1 hPa spatially averaged over
each sub-region are then obtained for the period of 1980–2014 (total
12,775 days). An EOF analysis is then conducted based on the

covariance matrix of a concatenated daily series of vertical cloud
fraction anomalies over the 12 sub-regions (after removal of their
corresponding long-term climatology over each sub-region) during
the 35-year period, i.e., with total 19 spatial points (i.e., vertical
levels) and 153,300 temporal points (12,775 days × 12 sub-regions,
the first 12,775 time points for the 1st sub-region, the second 12,775
time points for the 2nd sub-region, and so on). The derived eigen-
vectors based on the EOF analysis depict the vertical cloud profiles
associated with the leading extratropical synoptic-scale variability
modes, and the corresponding principal components (PCs) similarly
contain a concatenated daily time series during the 35-year period
for each sub-region. Evolution of vertical cloud variability over each
sub-region associated with each leading mode or multiple mode
combinations can then be reconstructed based on the eigenvectors
and their corresponding daily PC coefficients along with their long-
term climatological vertical cloud profile. Daily zonal mean vertical
cloud profiles over the entire extra-tropics between 45–55°S con-
tributed by each leading mode or multi-mode combinations can be
further obtained by averaging the reconstructed daily profiles over
the 12 sub-regions. Moreover, detailed 3D structures in cloud and
vertical velocity anomalies associated with each leading mode can
also be derived based on lag-0 regressions of these daily anomalous
fields (2.5 × 2.5 deg, 19 pressure levels, similarly with their corre-
sponding long-term climatology on each grid removed) against the
corresponding daily PCs over each sub-region, and then by com-
positing these structures over the 12 sub-regions with respective to
the center of each sub-region, e.g., longitude 0 in Supplementary
Fig. 4. In this study, EOF analyses of anomalous vertical clouds over
the South Oceans are conducted independently for CESM2, Had-
GEM3-LL, and MPI-ESM2-LR, with their corresponding eigenvectors
of the first three leadingmodes shown in Supplementary Fig. 4a, e, i,
respectively. Note that a similar EOF analysis can also be conducted
by including extratropical sub-regions over the north Pacific and
north Atlantic between 45–55°N, the leading modes of synoptic-
scale cloud variability are largely unchanged (not shown). The
leading EOF modes are also largely similar by slightly modifying the
latitudinal or longitudinal width of the extratropical sub-regions.

Data availability
The CMIP6 GCM outputs were downloaded from the ESGF https://
esgf-node.llnl.gov/search/cmip6. The ERA5 data was downloaded
from the website https://cds.climate.copernicus.eu/cdsapp#
!/dataset/reanalysis-era5-pressure-levels. The CloudSat/CALIPSO
cloud data was downloaded from https://www.cloudsat.cira.
colostate.edu/data-products/2b-geoprof-lidar. CERES-EBAF TOA
fluxes were downloaded from https://asdc.larc.nasa.gov/project/
CERES/CERES_EBAF_Edition4.1. NOAA OISSTv2 data was down-
loaded from https://psl.noaa.gov/data/gridded/data.noaa.oisst.
v2.html. The processed climatological monthly mean LCF and
TS from historical simulations of CMIP6 models and satellite
observations used for derivation of the seasonal dLCF/dTS can be
downloaded from https://ucla.box.com/v/ecs-vs-extratropical-lcf.

Code availability
The Fortran codes to derive the correlation pattern between seasonal
dLCF/dTS and model ECS (Fig. 2a), and the correlation between sea-
sonal dLCF/dTS over the extratropics and model ECS (Fig. 2b) can be
downloaded from https://ucla.box.com/v/ecs-vs-extratropical-lcf.
Other codes used to produce the figures and to derive dLCF/dTS
associated with climate trend and the leading extratropical cloud
regimes are available from the corresponding author upon request.
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