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This paper establishes non-asymptotic concentration bound and Bahadur representation for the quantile
regression estimator and its multiplier bootstrap counterpart in the random design setting. The non-
asymptotic analysis keeps track of the impact of the parameter dimension d and sample size n in the
rate of convergence, as well as in normal and bootstrap approximation errors. These results represent a
useful complement to the asymptotic results under fixed design and provide theoretical guarantees for the
validity of Rademacher multiplier bootstrap in the problems of confidence construction and goodness-
of-fit testing. Numerical studies lend strong support to our theory and highlight the effectiveness of
Rademacher bootstrap in terms of accuracy, reliability and computational efficiency.

Keywords: quantile regression; multiplier bootstrap; robustness; concentration inequality; Bahadur
representation; confidence interval; goodness-of-fit test.

1. Introduction
1.1 Quantile regression

Since Koenker and Bassett’s (1978) seminal work, quantile regression has attracted enormous attention
in statistics, econometrics and related fields primarily due to two advantages over the (conditional) mean
regression: (i) robustness against outliers in the response or heavy-tailed errors and (ii) the ability to
explore heterogeneity in the response that are associated with the covariates. We refer to the monograph
by Koenker (2005) for an overview of the statistical theory and methods and computational aspects of
quantile regression.

Classical theory of quantile regression includes statistical consistency (see, e.g. Zhao et al., 1993, for
weak consistency and Bassett & Koenker, 1986, for strong consistency), asymptotic normality (Bassett
& Koenker, 1978; Pollard, 1991) and Bahadur representation (Portnoy & Koenker, 1989; He & Shao,
1996; Arcones, 1996). A common thread of the previous work is that the regression estimators are
studied under the fixed design setting, that is, the covariates {x;}_, are deterministic vectors and satisfy
some (asymptotic and non-asymptotic) conditions and the only randomness arises from the regression
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errors {g;}7_,. A comprehensive review of the asymptotic theory under fixed design can be found in
Sections 4.1-4.3 of Koenker (2005).

In contrast to fixed designs, more recent work in statistics has emphasized non-asymptotic results
in the random design setting, where the covariates {x;} ;| are treated as random vectors (Hsu et al.,
2014; Wainwright, 2019). This additional randomness increases the complexity of the model and makes
theoretical analysis more subtle because the empirical processes involved now depend on the random
covariates with dimensionality possibly growing with the sample size. As stated in Hsu er al. (2014), a
major difference between fixed and random designs is that the fixed design setting does not directly
address out-of-sample prediction. Specifically, a fixed design analysis assesses the accuracy of the
estimator on the observed data, while the predictive performance on unseen data is of primary concern
of a random design analysis. Even though extensive studies have been carried out on ordinary and
regularized least squares estimators (Hsu et al., 2014; Wainwright, 2019), it is not naturally clear whether
similar results remain valid for quantile regression. A main difficulty is that the quantile loss is piecewise
linear, and hence its ‘curvature energy’ is concentrated in a single point. This is substantially different
from other popular regression loss functions, such as the squared loss and Huber loss, which are at least
locally strongly convex. The lack of smoothness and strong convexity makes it much more challenging
to establish non-asymptotic theory for quantile regression under random designs.

In Section 2.1 of this paper, we will establish non-asymptotic concentration bound (Theorem 2.1)
and Bahadur representation (Theorem 2.2) of the quantile regression estimator under mild conditions on
the random predictor and noise variable. To prove Theorem 2.1, we propose a new device to prove a local
restricted strong convexity (RSC) property of the empirical quantile loss, see Proposition 4.2. The notion
of RSC was introduced by Negahban et al. (2012) to analyze convex regularized M-estimators and
extended by Loh & Wainwright (2015) to the case of nonconvex functions. Thus far the RSC property
has only been established for locally strongly convex and twice differentiable loss functions (Loh &
Wainwright, 2015; Pan et al., 2019). New techniques are therefore required to deal with piecewise
linear functions, typified by the quantile loss and hinge loss. The proof of Theorem 2.2, the Bahadur
representation, builds on the concentration bound in Theorem 2.1 along with techniques from empirical
process theory. These results are non-asymptotic with explicit errors, which allow to track the impact
of the parameter dimension d and of the sample size n in quantile regression. These non-asymptotic
results, to the best of our knowledge, are new to the previous asymptotic results under fixed designs.

1.2 Statistical inference for quantile regression

In addition to the finite sample theory of standard quantile regression, we are also interested in two
fundamental statistical inference problems: (i) the construction of confidence intervals and (ii) goodness-
of-fit test. Broadly speaking, inference of quantile regression can be categorized into two classes: normal
calibration and bootstrap calibration (resampling) methods. Normal calibration heavily depends on
either the estimation of 1/f;.(0), also known as the sparsity, where f,,(-) is the conditional density
function of ¢ given x, or the regression rank scores (Gutenbrunner & Jureckovd, 1992). Resampling,
or bootstrap calibration, methods (Efron, 1979) are commonly used for quantile regression inference
because they are more robust against heteroscedastic errors and bypass the estimation of sparsity
although at the cost of computing time. Over the past two decades, various bootstrap calibration
methods have been developed for constructing confidence intervals, including the residual bootstrap
and pairwise bootstrap (see Section 9.5 of Efron & Tibshirani, 1994), bootstrapping pivotal estimation
functions method (Parzen et al., 1994), Markov chain marginal bootstrap (He & Hu, 2002; Kocherginsky
et al., 2005) and wild bootstrap (Feng et al., 2011). For relatively small samples or in the presence of
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MULTIPLIER BOOTSTRAP FOR QUANTILE REGRESSION 815

heteroscedastic errors, resampling methods have proven to outperform calibration through the normal
approximation. Therefore, in this paper we only focus on the resampling method.

Among a variety of bootstrap methods, we are primarily interested in the multiplier bootstrap, also
known as the weighted bootstrap, which is one of the most widely used inference tools for constructing
confidence intervals and measuring the significance of a test. The theoretical validity of the empirical
bootstrap (Efron, 1979) is typically guaranteed by the bootstrapped law of large numbers and central
limit theorem, see, for example, Giné & Zinn (1990), Arcones & Giné (1992), Praestgaard & Wellner
(1993) and Wellner & Zhan (1996), among others. Rigorous theoretical guarantees of the multiplier
bootstrap for M-estimation can be found in Chatterjee & Bose (2005) and Ma & Kosorok (2005), in
which ,/n-consistency and asymptotic normality are established. See also Cheng & Huang (2010) for
extensions to general semi-parametric models. It has since become an effective and nearly universal
inference tool for both parametric and semi-parametric M-estimations. We refer to Spokoiny & Zhilova
(2015) for the use of multiplier bootstrap on constructing likelihood-based confidence sets and Chen &
Zhou (2019) for a systematic study of multiplier bootstrap for adaptive Huber regression (Sun et al.,
2019) with applications to large-scale multiple testing for heavy-tailed data.

As stated in the previous section, the major theoretical challenge arises from the lack of smoothness
and strong convexity of the quantile loss. New techniques are in demand. In Section 2.2, we will first
revisit the multiplier bootstrap in the problem of confidence estimation for quantile regression. Next, we
will provide new non-asymptotic theory for bootstrap estimators, including the conditional deviation
bound (Theorem 2.4) and Bahadur representation (Theorem 2.5) conditioned on data already seen. We
justify the validity of the multiplier bootstrap via a distributional approximation result (Theorem 2.6),
which characterizes the difference in distribution between the regression estimator and its bootstrap
counterpart. In Section 2.3, we further discuss the use of multiplier bootstrap on goodness-of-fit testing,
extending the special case of median regression studied by Chen er al. (2008).

1.3 Notation

Let us summarize our notation. For every integer k > 1, we use R¥ to denote the k-dimensional
Euclidean space. The inner product of any two vectors u = (uy,...,u )T, v = (v{,...,v)T € R¥
is defined by uTy = (u,v) = Zle uv;. Weuse || - |, (1 < p < 00) to denote the ¢,-norm in RX:
llull, = Gk )P and ||, = max, ¢y ;] For k > 2, ! = {u € R* : ||u||, = 1} denotes
the unit sphere in R,

Throughout this paper, we use bold capital letters to represent matrices. For k > 2, i; represents the
identity/unit matrix of size k. For any k x k symmetric matrix A € R¥*K, IA]l, is the operator norm
of A, and we use A, and A A to denote the minimal and maximal eigenvalues of A, respectively. For a
positive semidefinite matrix A € Rk 11 A denotes the norm linked to A given by [u], = 1A 2u Il5,
u € R*. Moreover, given r > 0, define the Euclidean ball and ellipse as B*(r) = {u € R¥ : |, < 7}
and B, (r) = {u € Rk : lull, < r}, respectively. For any integer d > 1, we write [d] = {1, ...,d}. For
any set S, we use |S| to denote its cardinality, i.e. the number of elements in S.

2. Random design quantile regression
2.1 Finite sample theory under random design

We consider a response variable y and d-dimensional covariates x = (x;,...,x;)7T such that the 7-
th (0 < 7 < 1) conditional quantile of y given x is given by Fv_li(ﬂx) = (x,B*), where g* =
By>--»B)T € R?. Here we assume x; = 1 so that B} represents the intercept. Let {(y;,x,)}?_, be
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816 X. PAN AND W.-X. ZHOU

TABLE 1 Summary of scaling conditions required for normal approximation under the Huber and
pinball loss functions

Loss function Design Scaling condition
Huber loss (Portnoy, 1985) Mixed Gaussian (with symmetric noise) (dlog n)3?% = o(n)
Huber loss (Portnoy, 1986) Fixed design (with symmetric noise) d? = o(n)
Huber loss (Chen & Zhou, 2019) Sub-Gaussian (with asymmetric noise) d? = o(n)
Pinball loss (Welsh, 1989) Fixed design d*(logn)? = o(n)
Pinball loss (this work) Sub-Gaussian d3(log n)? = o(n)

independent and identically distributed (iid) data vectors from (y,x). The preceding model assumption
is equivalent to

yi = (x,B%) +¢; 2.1

where ¢;’s are independent noise variables that satisfy P(¢; < 0|x;) = 7. The quantile regression
estimator of B* is then defined as

B = B(1) € argmin Q,,(B), 2.2)
BeRd
where
1 n
Q,(B) =~ > p. (i = (xix B)) with p () = ufr — I(u < 0)} (2.3)
i=1

is the empirical loss. The loss function p_ is known as the ‘check function’ or ‘pinball loss’.

This section presents two non-asymptotic results, the concentration inequality and Bahadur repre-
sentation, for the quantile regression estimator under random design. We refer to Chapter 4 of Koenker
(2005) for the classical fixed design and asymptotic analysis of quantile regression. See also Remark 2.2
and Table 1 below for a comparison of quantile regression and smooth robust regression in terms of the
scalings of the pair (n,d).

First, we specify the conditions on the random pair (x, €) under which the analysis applies.

Condition 1 (Random design). The random predictor x € R is sub-Gaussian: there exists vy = 1such
that P(|(u,x)| > vollullx - 1) < 2e7"/2 forallu € R? and > 0, where ¥ = E(xxT).

Condition 1 is satisfied for a class of multivariate distributions. Typical examples include: (i)
multivariate Gaussian and (symmetric) Bernoulli distributions, (ii) uniform distribution on the sphere
in R with center at the origin and radius «/3, (>iii) uniform distribution on the Euclidean ball and
(iv) uniform distribution on the unit cube [—1, 1]¢. The constant v, is dimension free and thus can be
viewed as an absolute constant. See Chapter 6 in Wainwright (2019) and references therein for further
discussion of sub-Gaussian distributions in higher dimensions.

Condition 2 (Regularity condition on error distribution). Let f,,.(-) be the conditional probability
density function of ¢ given x, which is continuous on its support. Moreover, there exist constants
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MULTIPLIER BOOTSTRAP FOR QUANTILE REGRESSION 817

f>=f>0andL, > 0such that
L <fep ) < fand Ve @) — fo (0] < Lolu| for all u € R, almost surely.

Condition 2 on the conditional density function of ¢ given x is standard and routinely used in the
study of quantile regression.
Throughout this paper, ‘<’ stands for ‘<’ up to constants that are independent of (n,d) but may

depend on the constants in Conditions 1 and 2. Our first main result characterizes the non-asymptotic
deviation of the quantile regression estimator.

THEOREM 2.1 Assume Conditions 1 and 2 hold. Then, for any ¢ > 0, the quantile regression estimator
,B = ﬂ(r) (0 < 7 < 1) given in (2.2) satisfies

d+1t
24
1B —Bllx i (2.4)

with probability at least 1—2¢~ " as long asn > chO[ 4(d+1), where ¢ 1» ¢, > 0 are constants depending
only on v,

The following theorem provides a non-asymptotic version of the Bahadur representation for the
quantile regression estimator see Section 4.3 in Koenker (2005).

THEOREM 2.2 Suppose that, in addition to the conditions in Theorem 2.1, sup, e |f, ()| < M, almost
surely for some M, > 0. Then, for any 7 > 0,
L

t
+ (d + log )1/2 "4 (dlog n)1/2Z (2.5)

. 1 -
1200 _ p* =172 ) ) _
S8 -8 +S ni§:1x,{1<e,<0) 7}

d+n'*dlogn +n'/?
& 374

with probability at least 1 — 4e~' whenever n > ¢,L3f~*(d + 1), where S = E{f,(0)xxT}, and c; > 0
is a constant depending only on (v, f, fs Ly, M,).

REMARK 2.1 With some basic analysis, the property that sup,cp |/, ()| < M, almost surely is a

consequence of Condition 2 with M, depending implicitly on (f. Ly). Hence, introducing the constant
M, is not to initiate an additional assumption but to simplify the theorem and its proof.

The significance of Bahadur representation lies in expression of a complicated nonlinear estimator as
anormalized sum of independent random variables from which asymptotically normal behavior follows.
To validate this point, the following result provides a Berry—Esseen bound for any linear contrast of the
quantile regression estimator.

THEOREM 2.3 Let A € R? be a deterministic vector that defines a linear contrast of interest. Under the
conditions of Theorem 2.2, it holds that

sup [P(n'/2(x, B — B*) < x) — @ (x/0,)| < (d+logn)/*(dlogn)'/*n~1/4, (2.6)

xeR
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818 X. PAN AND W.-X. ZHOU

where 0'1.2 =t(1-1) ||S_1A||2E and @ (-) denotes the standard normal distribution function.

REMARK 2.2 (Large-d asymptotics). A broader view of classical asymptotics recognizes that the
parametric dimension of appropriate model sequences may tend to infinity with the sample size, that
isd = d, — oo as n — oo. Such considerations, however, are rarely found in the quantile regression
literature. In the standard quantile regression setting, Welsh (1989) shows that d° (log n)2/n — 0 suffices
for a normal approximation, which provides some support to the viability of observed rates of parametric
growth in the applied literature (Koenker, 1988).

In the (sub-Gaussian) random design setting, the obtained non-asymptotic Bahadur representation
(2.5) with t = log n reads:

”]/2([3 - B = Sl% ; {r —I(c; <O }x;

d3*(logn)'/? + d'2(logn)3*  d*?logn + d(logn)3/?
Op nl/4 + nl/2 :

Combined with a multivariate central limit theorem (Portnoy, 1986) or Theorem 2.3, this shows that
the normal approximation holds as long as d°(logn)?/n — 0, which matches the scaling under fixed
design although the proofs are entirely different. For smooth robust regression estimators, the scaling
conditions required for asymptotic normality can be weakened. A prototypical example is Huber’s M-
estimator. Note that the Huber loss has an absolutely continuous derivative and is twice differentiable
except at two points. Portnoy (1985) obtains the scaling condition (dlogn)*/?/n — 0 that validates
asymptotic normality when the predictors {x;,...,x,} form a sample from a mixed multivariate normal
distribution in RY. In the case of random, non-Gaussian predictors and of symmetric noise, d? /n is
necessary for normal approximation, see Portnoy (1985, 1986).

2.2 Multiplier bootstrap and confidence estimation

LetR, = {e;,...,e,} be asequence of independent Rademacher random variables that are independent
of the observed data D, = {(y;,x;)}]_,. Specifically, e; € {—1,1} and satisfies P(e; = 1) = P(¢; =
—1) = 1/2. Randomly perturb the empirical loss Q,(B) = (1/n) >\, p,(y; — (x;, B)) by multiplying
its summands with w; := e; + 1, we obtain the bootstrapped loss function

1 n
o2(B) == - lewi P, ; — (x, B)), B eR 2.7)

Note that w; € {0, 2} satisfies [E(w;) = 1 and var(w;) = 1. Moreover, the bootstrapped loss Q[,’, ‘RY
[0, 00) is also convex.

Let E*(-) = E(-|D,) and P*(-) = P(-|D,) be the conditional expectation and probability given
D,,, respectively. Then we have E*{QZ (B)} = Q,(B) forany B € R, This indicates that the quantile

~

estimator ii (1) = (,él ,...»By)T in the D, -world is the target parameter in the bootstrap world:

argmin E*{QZ(,B)} =argminQ, (B) = /}(T)

BeRd BeRd
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MULTIPLIER BOOTSTRAP FOR QUANTILE REGRESSION 819

This simple observation motivates the following multiplier bootstrap estimator:

B’ =B (x) c argmin 0},(). 2.8)

BeRd

Ab
Let 1 —a € (0,1) be a prespecified confidence level. Based on the bootstrap statistic § =
(B T, e ,35)T, we consider three methods to construct bootstrap confidence intervals.
(i) (Efron’s percentile method). For every 1 < j < dand g € (0, 1), let fj’q be the (conditional)
. Ab .
upper g-quantile of ﬁj , that is,

~

g, = inf {zeR: ]P’"‘(Bjb >2) <gq}. (2.9)

Efron’s percentile interval is of the form
T =51 a2 Gl J=1,....d. (2.10)
(i) (Normal interval). The second method is the normal interval:
TP™ = [B; — 2, pSe7°™, B+ 20056, j=1.....d. (2.11)

where s%:]l-’om is the conditional standard deviation of ﬁ;’ given D, and z,  is the upper «/2-

quantile of the standard normal distribution.

b ~

(iii) (Pivotal interval). The third method, which uses the conditional distribution of B (7) — B(7)
to approximate the distribution of the pivot B(t) — B*, is the pivotal interval. Specifically, the
1 — « bootstrap pivotal confidence intervals for ,Bl.*’s are

IJPIV = [25] - 2‘/-’0[/2, 2,31 —_ Ej,l—a/Z]’ j = 1, o ,d. (2.12)

In fact, there is a simple connection between the bootstrap pivotal interval and the percentile
interval: the percentile interval is the pivotal interval reflected about the point g;.

Ab
Before we formally investigate the theoretical properties of the bootstrap estimator 8 (t), recall the
Bahadur representation of (7):

n

| ~ »
By=p"+ > {r =16, <O} x; 47,

i=1

Ab
where r,, is the higher-order remainder term. Heuristically, the bootstrap estimator 8 () can be viewed
as the quantile regression estimator of /§ (7) in the bootstrap world under the model y; = (x;, /§ () + e?.
According to the Bahadur representation, it can be written as y; &~ (x;, B*) + (1/n) D1, (x;, S_lxl-> {r—
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820 X. PAN AND W.-X. ZHOU

Ab
I(e; < 0)}. The accuracy of the percentile interval, however, relies on the property that 8, is randomly
concentrated around B*. Motivated by this observation and the finite-sample correction method used in
Feng et al. (2011), for practical implementation we replace the original response y; in the multiplier
bootstrap by 3; = y; — (0} 'h{r — 1(&; < 0)}, where h; = x] (37 xx])™"x; and f,(0) is
estimated from the fitted residuals &, = y; — (x;, (7)). In particular, the density estimate f‘s employs the

adaptive kernel method (Silverman, 1986), which is implemented in the quantreg package as function
akj (Koenker, 2019).

Ab
Back to § defined in (2.8), the following result provides a conditional deviation inequality,
conditioned on some event that occurs with high probability.

THEOREM 2.4 Assume Conditions 1 and 2 hold. For any ¢+ > 0, there exists some event &, with
P{E(H)} > 1 — 2e! such that the bound (2.4) holds on £(f) and with P*-probability at least 1 — e’

Ab b
conditioned on £(t), the bootstrap estimator 8 = f (7) (0 < v < 1) given in (2.8) satisfies

Ab d+t
1B —B*llx < c4,/7 (2.13)

as long as n > c5(d + t), where ¢4, ¢5 > 0 are constants depending only on (v, f, Ly).

. e . ~b .. .
To characterize the distribution of B conditional on the initial sample D, = {(y;x)}i_;, we
establish in the following result a conditional Bahadur representation under P*.

THEOREM 2.5 Suppose that the conditions in Theorem 2.2 hold. Under the scaling n 2 d + log n, there
exists some event £, with P(£,) > 1 — 4n~! such that, with P* -probability at least 1 — n~! conditioned
on&,,

b R B 1 n
S'28 - By =S5 1/2; > ex{r —I(e; <O} +1o, (2.14)
i=1

where rE, = ri({(ei,yi,xi)}?:]) satisfies ||r5,||2 = Op:(x,), and x, = x,({(v;,x)},) is such that
X, = Op{(d +logn)!/*(dlogn)!/?n=3/* 4 (d + logn)'/?d log(n) n~'}.

We end this section with a distributional approximation result, which establishes the validity of the
(Rademacher) multiplier bootstrap for approximating the distributions of linear contrasts of the quantile
regression estimator.

THEOREM 2.6 Let A € R? be an arbitrary d-vector defining a linear contrast of interest. Assume
Conditions 1 and 2 hold, and that the parameter dimension d = d,,, as a function of the sample size n,
satisfies the scaling &3 (log n)2 = o(n). Then, as n — oo,

b P

sup [P(n'/2(X, B — B*) <x) —P*(n'>(A, B — B) <x)| > 0. (2.15)

xeR
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MULTIPLIER BOOTSTRAP FOR QUANTILE REGRESSION 821

2.3 Goodness-of-fit testing

The multiplier bootstrap method can also be applied to goodness-of-fit testing for quantile regression.
Under model (2.1), consider a subset £2, € R, and we wish to test

Hy: B* € 2, versus H, : B* e R\ £2,. (2.16)

We first construct the test statistics based on the empirical loss Q, (8) defined in (2.3). Let [Ai be quantile
estimator under the full model (2.2) and set 8, € argmin B2 0,,(B). The test statistic is defined as

T, = 0,(By) — 0,(B).

In the bootstrap world, we intend to mimic the distribution of 7, using that of QE,(/S ) defined in (2.7).

N Ab
LetB € argming cpa QZ(ﬂ) and B, € argminge o QE (B) be the bootstrap statistics in the full model
and null model, respectively. Motivated by Chen er al. (2008), we consider the bootstrap test statistic

T = {0)(By) — OB} — {Qh(By) — (B)).

See Remark 2 therein for the intuition behind this construction. The conditional distribution of TE given
the data then serves as an approximation of the distribution of 7,,. For every ¢ € (0, 1), let y, be the

(conditional) upper g-quantile of T,E, that is,
Vg = inf{zeR: P*(T > 2) < q}.

Consequently, for significance level o € (0, 1), we reject Hy in (2.16) whenever T, > vy,,.

It is worth noticing that the above method was first proposed and studied by Chen et al. (2008)
using standard exponential weights in the case of median regression and can be implemented by
the R package quantreg (Koenker, 2019). As discussed earlier, the Rademacher multiplier bootstrap
is computationally more attractive and also has provable finite-sample guarantees. See Sections 3.2
and B.2 for a thorough numerical comparison.

3. Numerical experiments

In this section, we conduct numerical experiments to compare the multiplier bootstrap on constructing
confidence intervals and goodness-of-fit testing with some well-known existing methods for quantile
regression. Our computational results are reproducible using codes available from https://github.com/
XiaoouPan/mbQuantile.

3.1 Confidence estimation

We first consider the problem of confidence estimation. The limiting distribution of the quantile
regression estimator involves the density of the errors, making the non-resampling (plug-in) inference
procedure unstable and unreliable. We refer to Kocherginsky ez al. (2005) for an overview and numerical
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comparisons between plug-in and resampling methods. In this paper, we focus on the following
bootstrap calibration methods:

e pair: pairwise bootstrap by resampling {(y;,x;)}7_, in pairs with replacement (Section 9.5 of
Efron & Tibshirani, 1994);

e pwy: a resampling method based on pivotal estimating functions (Parzen et al., 1994);
e wild: wild bootstrap with Rademacher weights (Feng et al., 2011);

e mb-per: multiplier bootstrap percentile method defined in (2.10);

e mb-norm: multiplier bootstrap normal-based method defined in (2.11).

The first three methods can be directly implemented using the R package quantreg (Koenker, 2019).
To better evaluate the performance of these methods under various environments, we generate data
vectors {(y;,x;)}?_, from two types of linear models:

1. (Homoscedastic model):
yi=By+ x, B +e, i=1,...,n 3.1
2. (Heteroscedastic model):

2exp(x;;)

.= *+ X, * +—g.’
Vi /30 (l ) 1+exp(xl-1)’ 1

:1,...,n. (32)

Here we use separate notations to differentiate the intercept A and coefficient vector * € R?. For each
model, we consider three error distributions as follows.

1. [2: 81' ~ t2

2. Normal mixture type I: ¢; = az; + (1 — a)z,, where a ~ Ber(0.5), z; ~ N(—1,1) and z, ~
N(,1).

3. Normal mixture type II: ¢; = az; + (1 — a)z,, where a ~ Ber(0.9), z; ~ N (0,1) and z, ~
N(0,5%).

Moreover, we generate random predictors with three different covariance structures:
1. Independent design: x; ~ N(0,i,) fori=1,...,n.

2. Weakly correlated design: first generate a covariance matrix X = (o) ¢jr<q With diagonal
entries oji independently drawn from Unif(0.5, 1) and oy = O.SU”"(q/jakk)]/ 2 if j # k and then
generate x;’s independently from N (0, X).

3. Equally correlated design: first generate a covariance matrix X = (0j)¢;x<q With diagonal
entries oj; independently drawn from Unif(0.5, 1) and o = O.S(crjjakk)l/ 2ifj # k, and then
generate x;’s independently from N (0, X).

We set ﬂf)* =2,B8"=(2,...,2)T and (n,d) = (200, 10). The confidence level is taken to be 1 — o €
{80%,90%,95%}. All of the five methods are carried out using B = 1000 bootstrap samples. Tables 2,
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TABLE 4 Average coverage probabilities and CI widths (in brackets) over all the coefficients under
homoscedastic model (3.1) with type I mixture normal error

Independent Gaussian design

n =200 n =500 n = 1000
o mb-per mb-norm mb-per mb-norm mb-per mb-norm

0.05:  0.967 (0.542) 0.935(0.540) 0.950 (0.346) 0.923 (0.346) 0.960 (0.247) 0.948 (0.247)

0.1: ~ 0.925(0.451) 0.873(0.453) 0.904 (0.289) 0.871(0.290) 0.923 (0.206) 0.895 (0.207)

0.2:  0.824(0.347) 0.769 (0.353) 0.817 (0.224) 0.768 (0.226) 0.824 (0.160) 0.792 (0.161)
Weakly correlated Gaussian design

n =200 n =500 n = 1000

o mb-per mb-norm mb-per mb-norm mb-per mb-norm

0.05:  0.964 (0.806) 0.926 (0.802) 0.954 (0.512) 0.933(0.512) 0.966 (0.364) 0.948 (0.364)

0.1: 0917 (0.670) 0.873 (0.673) 0.905 (0.428) 0.875(0.430) 0.913 (0.305) 0.899 (0.306)

0.2:  0.821(0.515) 0.767 (0.525) 0.798 (0.331) 0.770 (0.335) 0.824 (0.236) 0.799 (0.238)
Equally correlated Gaussian design

n =200 n =500 n = 1000

o mb-per mb-norm mb-per mb-norm mb-per mb-norm

0.05:  0.967 (0.860) 0.930 (0.856) 0.960 (0.547) 0.941 (0.546) 0.961 (0.389) 0.944 (0.389)
0.1: ~ 0.921(0.714) 0.867 (0.718) 0.912 (0.456) 0.873 (0.458) 0.909 (0.326) 0.888 (0.327)
0.2:  0.816(0.550) 0.767 (0.559) 0.804 (0.353) 0.773 (0.357) 0.818 (0.253) 0.792 (0.255)

3 and B7- B10 in Section B.1 of the Appendix display the average coverage probabilities and average
interval widths over all the regression coefficients based on 200 Monte Carlo simulations.

From Tables 2, 3 and B7— B10 (in the Appendix), we find that all the bootstrap methods preserve
nominal levels, while pairwise bootstrap and bootstrap based on estimating functions (pwy) tend
to be more conservative with wider intervals and wild bootstrap loses coverage probability under
some cases, see Table 2. Across all the settings, the multiplier bootstrap methods (percentile and
normal-based) provide desirable results in terms of both accuracy (narrow width) and reliability (high
confidence). It is worth noticing that the normal-based confidence interval (mb-norm) tends to have
lower coverage probabilities compared with the percentile method. As the sample size increases, the
coverage probability of mb-norm approaches the nominal level gradually, see Table 4. After taking into
account the interval width, we recommend the multiplier bootstrap percentile method that has the best
overall performance.

Regarding computational complexity, for each bootstrap sample, pairwise and wild bootstraps solve
a quantile regression on a sample of size n, bootstrap based on estimating functions (pwy) solves a
quantile regression of size n + 1, while multiplier bootstrap solves a quantile regression essentially on
a subsample of size n/2 on average. In summary, the multiplier bootstrap provides a computationally
efficient way to construct confidence intervals with high precision and reliability.

3.2 Goodness-of-fit testing

In this section, we compare the multiplier bootstrap with classical non-resampling methods on goodness-
of-fit testing for quantile regression. Specifically, we consider the following methods:
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826 X. PAN AND W.-X. ZHOU

e Wald: Wald test based on unrestricted estimator (Koenker & Bassett, 1982);
e rank: rank score test (Gutenbrunner et al., 1993);

e mb-exp: multiplier bootstrap with exponential weights (Chen ez al., 2008);
e mb-Rad: multiplier bootstrap with Rademacher weights.

The first three methods are included in the R package quantreg (Koenker, 2019).
We generate data vectors the same way as in Section 3.1. Moreover, we set (n,d) = (200, 15), and
the confidence level is taken to be 1 — o € {90%, 95%, 99%}. We consider testing

H,: ,3; =0, forj=1,...,15 versus H, :,3]-* # 0, for some j.

To assess the overall performance, we employ the following three measurements:
1. Type I error under null model: B* = 0.
2. Power under sparse and strong signal: ,8]" = 0.5, and ,Bf =0forj=2,3,...,15.

3. Power under dense and weak signal: ﬁj* = 0.1 forj = 1,2,...,10, and ﬂjfk = 0 for
j=11,12,...,15.

The two resampling methods (mb-exp and mb-Rad) are carried out using B = 1000 bootstrap
samples. Tables 5, 6 and B11-B14 in Section B.2 of the Appendix display the average type I error and
power over 200 Monte Carlo simulations.

From Tables 5 and 6, we see that the Wald test suffers from severe size distortion by rejecting much
more often than it should, while the other three methods have type I errors close to the nominal level.
Under both sparse and dense alternatives, the multiplier bootstrap outperforms the rank score test with
higher power throughout all the combinations of design and error distributions.

To further compare the power of the last three methods, we draw the power curve with gradually
increasing signal strength under sparse and dense settings. Figure 1 is a visualization of Tables 5
and 6 with type I mixture normal error and independent design. The advantage of multiplier bootstrap
over rank test is conspicuous under homoscedastic model, and multiplier bootstrap reveals perceptible
advantage as signal gets stronger under heteroscedastic model.

4. Proofs of main results

All the probabilistic bounds presented in the proof are non-asymptotic with explicit errors. The values of
the constants involved are obtained with the goal of making the proof transparent and may be improved
by more careful calculations or under less general distributional assumptions on the covariates and noise
variables.

4.1 Preliminaries

Recall that Q,(B) = (1/n) X7, p,(y; — (x;, B)) is the empirical quantile loss function. Since Q,, :
RY — R is convex, we define its subdifferential a0, by

90,(B) = (£ e R : 0,(B) = 0,(B) + (£, 8’ — B) forall B € R}. 4.1)
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F1G. 1. Power curves of the three methods under independent design and type I mixture normal error with « = 0.05.

A vector & € 00, (B) is called a subgradient of Q, in B. More specifically, the subdifferential 0Q,, is
the collection of vectors §ﬁ = (éﬂ’l, e, Sﬂ’d)T satisfying, forj=1...,d,

éﬂ‘,‘ = _i injl()’i > (x;, B))
i=1

1— " 1 n
Tt : Dl < (x;.B) — - > xyid (3 = (x;. B)). 4.2)
i=1 i=1

where v, € [t — 1, 7].
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Of particular interest is the subdifferential dQ,,(8*) under model (2.1). By (4.2), every vector § =
(&y,....&)T € 00,(B") can be written as

£ = _5 > xle; > 0) — (1 - 1))
i=1

-7 — 1 — .
+— > xlle; < 0) =1} - - > xvile;=0), j=1,....d. (4.3)
i=1 i=1

where v; € [t — 1, 7].

ProOPOSITION 4.1 Assume Conditions 1 and 2 hold. Then, every subgradient & g €00, (B*) satisfies

12d
]P’(||Zl/2§ﬂ*||2 > 3y, :x) < ™%, valid for any x > 0.

The following proposition provides a form of the RSC for the empirical quantile loss function.

PROPOSITION 4.2  Assume Conditions 1 and 2 hold. Then, for any ¢ > 0, it holds with probability at
least 1 — e~"/2 that

1 2(d
(6 — &g B — B) > oL 1B — BT — 40518 — Bl 5 ( n+ ) (4.4)

uniformly over B € R? satisfying 0 < [|B — B*|| 5 < f/(6Lyud).

Propositions 4.1 and 4.2 provide the key ingredients to prove Theorems 2.1 and 2.2. Similarly, the
finite sample performance of the multiplier bootstrap estimator relies on the corresponding properties
of the weighted quantile loss function, which are given by Propositions 4.3 and 4.4 below.

Recall that P* and E* denote, respectively, the probability measure and expectation (over R, =
{e;}7_,) conditioning on D, = {(y;,x;)}i_,. Fori = 1,...,n, define

¢=1(s; <0)—t and z; = £~ /x,

i’

(4.5)

which satisfy E(¢;|x;) =0, E({f lx;)) =7(1 — 1) and E(ziziT) =1,

ProPOSITION 4.3  Assume Conditions 1 and 2 hold, and let & = BQZ (B*). For any t > 0, there exists
some event G, (t) = G,(¢; D,) with P{G, (1)} > 1 — e~2 such that, with P*-probability at least 1 — e~

conditioned on G (1),
12,0 mkgb d+1
12777 —E"8")l, <2 — (4.6)

Similarly to Proposition 4.2, the following result establishes the RSC for the weighted quantile loss
function.

aslongasn 2> d+t.
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ProposITION 4.4 Assume Conditions 1 and 2 hold. For any ¢ > 0, there exists some event G, (f) =
G,(t; D,) such that P{G, (1)} > 1 — ™', and with P*-probability at least I — e~ /2 conditioned on G, (),

2(d
(6 8B~ B > L 1B~ B — U318 — By @)

uniformly over 8 € R4 satisfying 0 < || — Bl 5 <f/(6L0v§) as long as n 2 log(d) + .

Proofs of Propositions 4.1— 4.4 are placed in the Appendix.

4.2 Proof of Theorem 2.1

By the convexity of B — Q,(B), ﬁ satisfies the first-order condition that & B = 0 for some & B € 00, (B ).
The proof builds on the symmetrized Bregman divergence associated with Q,, defined as

D(B;.B,) = <E/31 - Eﬂz’ﬂl — B,), for Eﬂl € 3Qn(ﬂ1),§ﬁz €00,(By).

By convexity, D(B,, 8,) > 0 for any subdifferentials 5,3 and 53 Taking (B, B,) = (ﬁ, B*), we have

0< (65— kg, B—B") = (=4, B—B*) <1127 ke 11]IB — B*I1 5, (4.8)

for any & g € 90, (B"). Starting with (4.8), we bound the left- and right-hand sides of (4.9) separately.
To establish the lower bound, we use a localized argument (Sun et al., 2019) and a new RSC property
for the empirical quantile loss (Proposition 4.2).

Define the rescaled £,-ball By (1) = {8 € RY IBlly <t},t>0.Forsome0 < r <f/(6L0U§) to
be determined, define

n=sup{ue0,1]:uB —p*) eBy(n} and B = p* +n(B — ).

By the above definition, n = 1 1fﬂ € B*+By(r)and n < 1if ﬂ ¢ B* + By (r). In the latter case, we
have ﬂ € /3* + 0By (r). Applying Lemma C.1 in Sun et al. (2019) with slight modifications yields the

bound D(ﬂ B < r}D(ﬂ B*), leading to
(5 — kg B — B*) <n(ks — &g, B— B, (4.9)

where &g+ € 90,(B*) and éﬁ € 8Qn(ﬁ). This, together with the fact & = 0 and Cauchy-Schwarz
inequality, implies

(€5 — &g, B—B") <n(—Eg. B —B*) <1275 l1111B — B3 (4.10)

Note that (4.10) is a localized version of (4.8) because ﬁ falls in a local neighborhood of B*.
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832 X. PAN AND W.-X. ZHOU

Setting 5= ﬁ — B* € Bx.(r), it follows from Proposition 4.2 that

T ~ [2(d+71)
(65 — &g B — B) > L1815 — 4051815/ —

with probability at least 1 — e¢~*/2. Combining this with (4.9) and (4.10), and taking x = ¢ > 0 in

Proposition 4.1, we obtain
1~ ~ 2(d+1)
L1815 < (4u + 3vo) 1811 5/ —

with probability at least 1 — 2¢~". Canceling ||§|| 5 on both sides yields

~ [2(d +1t
18]l 5 < r:= 8~ (4vd + 3u,) (n )

with probability at least 1 —2¢ " as long as n > CL%[’4 (d+1) for some constant C > 0 depending only
on v,. Consequently, B falls in the interior of B* + B (r), enforcing n = 1 and ;§ = E € B* + By ().
Otherwise if/@ ¢ B* + By (r), we must have B on the boundary, i.e. ||B — B*|ly = r, which leads to
contradiction. This completes the proof.

4.3 Proof of Theorem 2.2

To begin with, define the ‘gradient’ function VQ,, : R? — R as
I < d
VO,(B) =~ > x{l(; < (x;, b)) — 7}, BER (4.11)
i=1

Recall from Condition 2 that the conditional distribution of ¢ given x is continuous. Lemma A.1 in
Ruppert & Carroll (1980) states that with probability one, there is no vector § € R? and 1 < i < n
such that ¢; = (x;, 8). It follows that with probability one, E,g = VQ,(B) for any §ﬂ € 00,(B). Hence,
we will treat VQ, as the gradient of O, throughout the proof. Moreover, consider the population loss
EQ,(B) = Ep,(y — (x, B)), whose gradient vector and Hessian matrix are given, respectively, by

VEQ,(B) = E[x{I(¢ < (x, — B*)) — 7}] and V?EQ,(B) = E{fﬂx((x,ﬂ — B )xxT}.
Next, define the vector-valued random process
AB) =S712{vQ,(B) — VO, (8"} — 2B — B, (4.12)

where S = VZEQn(ﬁ*) = E{felx(O)xxT}. The goal is to bound ||A(B)]l, uniformly over B in a local
neighborhood of B*. To this end, we deal with EA(B) and A(B) — EA(B) separately, starting with
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EA(B). Applying the mean value theorem for vector-valued functions yields
1
EAB) = s—1/2< / V’EQ, (B)dr. B — ﬂ*> ~ S8~ ")
0
1
= <s—1/2/ V2EQ, (BF)drS™1/? —i,, SV (B — /3*)>, (4.13)
0

where B = (1 — 1)f* + tf and V*EQ,(B}) = E{f; ), (t(x, B — B*))xxT}. For r > 0, define the local
elliptic neighborhood of B* as Oy (r) := {/3 eRY: B — By < r}. By Conditions 1 and 2, ¥ is
positive definite and f < f,,(0) < f,sothatf ¥ < S < f¥. Ford = B — B* with B € Ox(r), the
Lipschitz continuity of f, . ensures that

[$72V2EQ,(BNS™% — iy, = [STVPE[{fye t(x.8) — £ () }axT]S T2
2/3
< Lyt- sup E{(S—I/Zx,u>2|<x,5>|}gflLOr-( sup E|<z—1/2x,u>|3) (Bl (x, 8)1)"
ueBd(1) ueB4(1)

< Lof_lm3 rt,

where my 1= supycpai) E|(X~"2x,u)|* (for k > 1) depends only on vy and k. Combining this with
(4.13), we obtain

1 -
sup |EAB)], < ELO[ U202, (4.14)
BeOs(r)

Turning to the stochastic term A(B) — EA(B), define the centered gradient function
1 n
R,(B) == (1 =B){I((x;, B — ) > &) — T},
i=1

sothat A(B) —EA(B) = S_l/z{Rn(ﬁ) —R,(B*)}. By a change of variable v = >12(B — B*), we have

sup [AB) —EAB), <f7* sup [ Z7VHR,(B) — R, (B},

BeOxr () peoz ()
=172 sup |Z7VHR,(B* + 27 — R, (B}
veB9(r)
=747 sup (ZTVRR, (BT + X7V — R (BM)).u). (415
uyeB(r)

n=12 Ag(uv)

where Ag(u,v) =23 (1 —E)(z; u){I(s; < (z;,v)) — I(g; < 0)}. To bound sup, ,cpa(,y Ao, v),
we first show its concentration around the mean, and then bound the mean via a maximal inequality
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834 X. PAN AND W.-X. ZHOU

specialized to VC type classes (see, e.g. Chapter 2.6 in van der Vaart & Wellner, 1996). Consider the
following two classes of real-valued functions on R x R:

Fp =1{(zg:2) = @ou) :u e B} and F, = {(z0,2) > ({7, v) —29 = 0) :v e B(r)}).  (4.16)

Moreover, define the function f; : (zy,z) = I(zy < 0) and write z; = (¢;,2;) € R x Refori=1,...,n.
Then, the supremum sup,, ,cga(,) Ao (%,v) can be written as the supremum of an empirical process:

v.ueBd(r) feF

1 n
sup  Ag(u,v) = sup 7 > UG —Ef G, (4.17)
i=1

Guf

where F = F| - (F, — fy) is the pointwise product of F| and F, — f,. Under the assumption
that sup, [f;,(u)] < M, almost surely, we have, for each i € [n], supre 7 f(@;) < rlizll, and
SUPre F Efz)? < M, SUPy B (r) E(z;,u)?|(z;,v)| < Mymyr®. By Lemma 2.2.2 in van der Vaart &
Wellner (1996),

max sup [f@)l|| < r| max [lz;l,| < rd'/? max |zl
ISi<npeF " <in " 1<i<n1<<d "

< (log?2)/?rd'/? max |z

1<i<n1<i<d Y

< co(dlogn)/?r,
2

where ¢, > 0 depends only on vy, and | - ||, (1 < ¢ < 2) denotes the ¥ -Orlicz norm. Applying
Theorem 4 in Adamczak (2008) with @ = 1 and § = n = 1/2, we obtain that for any x > 0,

3
sup G, f < EE( sup an) +x

feF feF

with probability at least 1 — e="/GMomsr) _ 3p—xv/n/ler(dlogm 2} \yhere c; > 0 depends only on c.
Given t > 0 such that 4e~" < 1, taking

X = max {(3M0m3)1/2r3/2t1/2, 2c,rt(dlog n)l/zn_l/z}

in the above bound yields that, with probability at least 1 — e~ — 3¢ > 1 — 2¢7",

3 dl
sup G, f < EIE( sup an) + max |(3M0m3)1/2r3/2z1/2, 2¢rty/ ogn ] (4.18)
n

feF feF

To bound ]E(supfe 7 G,f), the key is to control the covering numbers N(F, L,(Q), €||F o) for all

finitely supported probability measures Q on R x R?and0 < € < 1, where F (z) = rllzll, is a measurable
envelope of F. Respectively, for the function classes | and F, that have envelopes F(z) = r||z||, and

120z Joquiaidas ¢ uo 1senb Aq 00¥ L ESS/E L8/E/0 L /SI0IE/IeIeWl/ W00 dNo"olWapeoe)/:Sdjy WOL) POPEOJUMOQ
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F,(z) = 1, using Theorem B in Dudley (1979) and Theorem 2.6.7 in van der Vaart & Wellner (1996)
we have

sgpN(Fl,Lz(QxenF1 lpo) < (A;/€)*“+? and SZPN(]'—Q,LQ(Q),G) < (A /o)D)

for some A; > e, where the suprema are taken over all finitely discrete probability measures Q on
R x R?. Combining the above bounds with Corollary A.1 in the supplement of Chernozhukov ef al.
(2014) shows that

sgpN(}_, Ly (Q),€lIFllg2)

< SlleN(bez(Q),2—1/26||F1||Q’2) . SZPN(fz’Lz(Q),T”Ze) < (/)@

where A, = 21/ 2A1- For the envelop function F : R x R — R, we have EF(z)> = r*>d. Consequently,
it follows from Corollary 5.1 in Chernozhukov ez al. (2014) that

d
IE( sup an) < \/M0m3r3dlog (A%d/(M0m3r)) + rMnl—/2 log (A%d/(MOmyf)), 4.19)
feF n

where M, := (Emax, ¢, lIz; II%)I/ 2. To bound M,,, we will reply on an exponential-type tail inequality
for X := max, ¢;¢, ||z,-||%. Assume there exist constants A,a > 0 such that P(X > A + au) < e for
every u € R. Then

e¢]

EX) =/ PX>ndt<A +/ P(X > ndt
0 A

o o
=A+/ P(X>A~I-t)dt=A+a/ PX > A+ au)du <A+ a.
0 0

Given ¢ € (0,1), there exits a finite subset N, < S4-1 with IV < A+ 2/€)? such that
max ¢ic, 1zl < (1 — e)! max; <;c, Max, ;. (,w;). For every i € [n] and u € N, Condition 1
indicates that P(|(u, w;)| > vyu) < 2¢=12 for any u € R. Taking the union bound overi € [n] andu €
N_, and setting u = \/ 2v + 21og(2n) 4 2d1og(1 + 2/¢€) (v > 0), we obtain that with probability at least
1—2n(14+2/e)de™ /2 =1 —¢, max; ;¢ Iz;ll, < (1—€)~ vy/2v +21og(2n) + 2d log(1 + 2/e).
Minimizing this upper bound with respect to € € (0, 1), we conclude that

IE”|: max lIz;13 > 2v3{3.7d + log(2n) + v}} < e, valid for every v > 0.
1

RN
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836 X. PAN AND W.-X. ZHOU

Taking A = 2v0{3 7d + log(2n)} and a = 2v0 in the earlier analysis yields the bound M,2! =
E(max1<,<n llz; ||2) 2U0{3 7d + log(2en)}. Plugging this into (4.19) gives

(sup an) < \/M0m3r3dlog (AZd/(Mymyr)) + r(d + logn) '/ ld/z log (A3d/(Mymsr)).  (4.20)
feF

Together, (4.15), (4.17), (4.18) and (4.20) imply that with probability at least 1 — 2e™7,

sup [[A(B) —EAB)I,
BeOx(r)

t d d t
< I\/§+ ,/1og(czd/r)% + (d + logn)'/? log(Cyd/n)~ + (dlogn)l/zzl. 4.21)

Thus far, we have established a high probability bound on the £,-norm of A(B) = S~'/2{VQ,(B) —
VQ,(B*)} —S"2(B — B*) uniformly over B € @ (r), alocal neighborhood of B*, for any prespecified
r > 0. By Theorem 2.1, we have ﬁ € Oy(r,) with probability at least 1 — 2¢™" as long as n >
CLYf*(d + 1), where r, = C3/(d +)/n. Setting r = r, in (4.14) and (4.21), we find that with

probability at least 1 — 2¢™7,

d+ D4 dlogn +1)1/? t
sup  AB)I, S . 4 (d+1ogm' P8 | (10g /2L
Be®x(r1) n n

Recalling that VQ,, (B) = 0, this completes the proof.

4.4 Proof of Theorem 2.3

Let A € R? be an arbitrary vector defining a linear contrast. Define the normalized partial sum
S, = n~1/23"_ y¢; of independent zero-mean random variables, where ¢; = I(s; < 0) — 7 and
v =—(S™ Iy x. ;). Moreover, write §,, (d+logn)l/“(a’logn)l/2 -4y (d—i—logn)]/zdlog(n) n1/2,
Applying Theorem 2.2 with ¢t = logn yields that, under the scaling n 2 d + logn,

"2 B — B*) =S,

R 1<
—-1/2 1/2 _ p* -1/2 2 . _ .
<s A, SU2B - By +872 ; {1(g; <0) t}x,>

=n!/? <o IS7V2 1,8, (4.22)

with probability at least 1 — 4n~! for some constant ¢, > 0.
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MULTIPLIER BOOTSTRAP FOR QUANTILE REGRESSION 837

For the partial sum S,, note that var(S,) = 0'1.2 =t(l — r)||S_lk||22. Then it follows from the

Berry-Esseen inequality (see, e.g. Tyurin, 2011) that

sup [P{S, < var(S,)'/%x} — @ ()|
xeR

< E|{I(e <0) —t}{S7IA,x)]3 - 1 —2(t—1%) my i

217253 S2@ )2 g2 T2 (4.23)

Moreover, forany a < b, @(b/o,) — P(a/o,) < Qr)" Vb - a)/o,. Combining this with (4.22) and
(4.23), for any x € R, we obtain

P(n'* (A, B - B*) <)

<P(S, <x+c STV, 8,) +4n~!

< P{var(Sn)l/zG <x+olISTV2, 8,} + en V2 dn!
<P(0,G <x)+c {21 — DY V28, +eon V2 4 an!,

where G ~ N(0,1). A similar argument leads to the reverse inequality. Putting together the pieces
established the Berry—Esseen bound (2.6).

4.5 Proof of Theorem 2.4

Without loss of generality, we assume ¢ > 0 is such that 2¢™*

b ~b
of B — QE,(/}), B satisfies the first-order condition that 5;» = 0 for some §;b € BQZ(ﬂ ). Again, we

< 1 throughout the proof. By the convexity

follow the same localized analysis as in the proof of Theorem 2.1. For some 0 < r < f/ (6Lovg) to be
determined, if,f?b ¢ B* + By (1), there exists n € (0, 1) such that B := B* —I—U(ﬁb —B") € B*+ 0B (r);
otherwise if f!b € B* + By (r), we take n = 1 so that B = ﬁb.

Similar to (4.9) and (4.10), we have that for any & . € 90, (8%) and &5 € 90, (B),

(& — &y B —B") <1272 1L1B - 875

For the right-hand side, Proposition 4.3 implies that there exists some event G, (f) with P{G, ()} >
1 — e~ such that, conditioned on G, (f),

d+t
—1/24b —1/2m% b
127128 g0l <2/ —— + 127 2B Ll

with P*-probability at least 1 — e as long as n 2 d + t. On the other hand, since ||;§ - By <,
by Proposition 4.4, there exists some event G,(f) = G,(1;D,) with P{G,(1)} > 1 — e’ such that,
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838 X. PAN AND W.-X. ZHOU

conditioned on G, (#),

N < [2d+0D
(65— 5. B — B7) > oL 13115 — 8u3 1815/~

with P*-probability at least 1 — e~'/2 as long as n 2> log(d) + t, where 5= ﬁ — B*. Together, the last
three displays imply

~ 2(d+t
I8y <8671 (212 4 803) ) 2D g tmg (4.24)
n

with P*-probability at least 1 — e~ conditioned on G, () N G, (¢).
For || 2—1/21@*5;* ll,, it follows from (4.3) and Proposition 4.1 that

2(d+t
||Z—1/2]E*§;*||2 < 3uyy/ ( n+ ) (4.25)

with probability at least 1 — e 2 Let G5(7) be the event that (4.25) holds so that P{G5(1)} > 1 — e X,
Combining (4.24) and (4.25), we conclude that conditioned on G, (t) N G,(t) N G3(®), 8]l 5 < r =
Cyf ~'/(d+1)/n with P*-probability at least 1 — e~" as long as n > CsL3f~*(d + 1), and P{G, () N

~ b
G,() N G5(H)} = 1 — 2¢™', where the constants C,, Cs > 0 depend only on v,. This enforces § = 8 .
Finally, taking £(¢) = G, (1) N G,(¢) N G5(¢) establishes the claim.

4.6 Proof of Theorem 2.5

Following the proof of Theorem 2.2, we treat VQZ(ﬂ) = (1/n) 2 wx{I(y; < (x;, B)) — T} as the
gradient of QZ(,B ). Under this notation, define the vector-valued random process

A (B) =ST12{VQL(B) — VO (B*)} — S2(B — B*) for B € RY.

Recalling E(w;) = 1, we have IE*VQE,(ﬂ) =VQ,B) = (1/n) X x{I(y; < (x;,B)) — t}. Define
Ry(B) = VO(B) — VQ,(B). 0 that

A (B) =STVH{R(B) — R(B*) + VO,(B) — VO,(B*) —S(B — B*)}
and E*Ab(ﬂ ) = A(B) with A(B) defined in (4.12). By the triangle inequality, for any r > 0 we have

sup [|[A°(B)Il, < sup [|A(B) —E*A°(B)ll, + sup [ AB)Il,, (4.26)
BeOx(r) Be®x (1) Be®x(r)

where @5 (r) = {B € R : || — B*|| 5 < 1.
The last term SUPgcoy (r) IA(B)Il, in (4.26), which only depends on the data D, = {(y;,x;) ;1=1
has been dealt with in the proof of Theorem 2.2. Hence, it remains to bound the random fluctuation
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A°(B) —E*A(B) = S_l/z{RZ(ﬂ) - RE,(ﬂ*)} over B € @x(r), given D,. As before, we use a change
of variable v = ¥/2(8 — B*) and obtain

sup  |A°(B) —E*A°(B), = sup [ISTVZRL(B) — RA(B)}YI,
Be®Ox(r) BeOx (1)

<f? sup  (Ry(B) — R.(B*), ™/ ?u)
ﬂe@;(r),ueIBd(l)

=727 sup (ZTVAHR(BF+ 2TV - RU(BF)L), (4.27)

u,veBd(r)

n*l/zA?)(u,v)

where A(b)(u,v) =n 12 Sy ezpu{l(e; < (z,v) —I(g; < 0)}. Let F; and F, be the function
classes defined in (4.16), and let ¥ = F| - (F, — fy) be the pointwise product between F; and
Fyp = Jfo with fy ¢ (z9,2) — I(zp < 0). With this notation, we have sup, ,cpd, Ag(u,v) =
SUpse F n=1/2 >, ef(Z,). Recall that E* denotes the conditional expectation given D,. By Theorem
13 in Boucheron ez al. (2005) and the bound sup; <<, re 7/ (z;) < rmax;¢;c, lIz;ll,, we obtain that,
with Z := IE*{supfe F1(1/n) Z?=1 e,;f(z;)|} denoting the conditional Rademacher average,

/ M M M
{]E(Z — EZ)ik}I/(Zk) < 2U/EZ - kir nk + 2kkr nk < EZ + 3kkr "’k, valid for any k > 1,
n n n

where k = \/e/(2/e —2) < 1271 and M, = (Emax, ¢, z[3)"/¥. By (4.27), Markov’s
inequality and the bound Z < (Z — EZ), + EZ, we obtain that

sup [|1A°(B) —E*A"(B)ll, = Op.(r~'Z) and Z = Op(EZ + rM,, , /n). (4.28)
BeOx(r)

For EZ, by a similar argument to (4.20) and (4.21), we get

/ d d
EZ < 3% [log(Cod/r) = + r(d + logn)/* log(Cod /1) —. (4.29)
n n

With the above preparations, we are ready to prove the claim. Together, Theorems 2.1- 2.4 imply
that under the scaling n 2 d + log n, there exists some event &, satisfying P(£,) > 1 — 4n~!, on which

IB — B*5 < r, = C3/(d+logn)/n and

. l —
12, _ p* —121 ) ) _
SVB - +8- ;x,{l(s, <0) -}

Xin = ‘
2

d+1 141 172 dl
< sup [ABIL S (d+ logm 3/4( ogr) +(d +logn) 228
ﬁE@Z(rll) n n

=Ana
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b
Moreover, with P*-probability at least 1 — n~! conditioned on EnlIB — B*ll s < r, sothat

By (4.26), (4.28), (4.29) and (4.21), x5, = X2,(D,) = ]E*{SuPﬂe@z(rZ) ||Ab(,B)||2} satisfies x,, =

b ~

Op(4, ). Letry = SV2(B — By —S712(1/n) 30 epxidt — I(g; < 0)}. Then, with P*-probability
— ‘o b .

at least 1 — n~! conditioned on Eps Irnlly < X1 + SUPgeos () ||Ab(ﬂ)||2 with supgce; () 1A (B) I, =

Op+(X,) and Xy, + Xo, = Op(4,, ;). This establishes the claim (2.14).

< sup [1AB) I,
2 BeOx ()

" pls
S8 — B+ > will(e; <0) - 7)
i=1

4.7  Proof of Theorem 2.6

Let A € R be an arbitrary vector defining a linear contrast of interest. Write v, = (S_lx,xi) and
¢ =1(g; <0) —tfori=1,...,nand define

1 n 1 n
S, = ﬁ ;mj and SZ = ﬁ gl:eiyig‘i.

To begin with, it follows from Theorem 2.2 that under the scaling n = d + log n, there exists a sequence
of events {£,} with P(E,) > 1 — 4n~! such that, [n'/2(X, 8 — B*) — S| < 1 IS7V2A]58, 4 on &,
where §, ; := (d + log )4 (d log ) 2= 4 (d + log n)\/2d log(n)n_l/z. By Theorems 2.4 and 2.5,
we further have [n'/2(\, B’ — B) — $3| < [IS™V/2A |, [In"/2} ||, with P*-probability at least 1 — ™!
conditioned on &,. For the remainder rz = rZ({(ei,yi,xi)}?zl), using Markov’s inequality with the
bounds (4.28) and (4.29), there exits some event G, with P(G;) < (8,4 /82)2 such that, conditioned
on&, NG,

P*(In'2rlly > 8;) < 87" (8 +8)
valid for any 8,8, > 0. Taking 8, = 62/ and 8, = . yields that P(G%) < ¢,52 and
2/5

IP’*(Hnl/zr,ble > 855) < ¢38,;» conditioned on &, N G,,.

Next, we establish the closeness in distribution between S, and SZ. Note that y;¢; are independent
random variables with mean zero and var(y;{;) = (1 — t)||S’1k||22. Thus, var(S,) = (1 —
7")”8_1)‘”22 >t(1— r)f_l ||S_1/2k||%. Moreover, under Condition 1,

E(ly¢;?) < t(1 = OES™ M x) P <t — oymgISTIA
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Let @ (-) be the standard normal distribution function. By the Berry—Esseen inequality (see, e.g. Tyurin,
2011),

P{s, < 123 — )| < —— 4.
i:ﬁ‘ {8, < var(S,)*x} — & (x)| NGO (4.30)

For Sl,)l, using a conditional version of the Berry—Esseen inequality for sums of independent random
variables (Tyurin, 2011), we have

n 3
sup [P*{S) < var*(8))!/%x} — @ ()| < (A/m) iy 1)

< , 431
xeR 2./n {var*(Sh)}3/2 3D

where var*(S;) = (1/n) 3, (y;¢,)% Recall that z; = X~'/2x, and letu = X'/2S71A/|S7A| 5 €
S9! be a unit vector. For the two data-dependent quantities var* (SZ) and (1/n) >, |yi§l~|3, we have

|[var*(Sp) /var(S,) — 1| = (4.32)

1 1<
m Z Z§i2<”azi)2 —1t(l—-1)
i=1

and
1 n
3~ -1 —149 2 2 2
- E ly;¢il” < max, IJ/ZQ E cHSTIax)? < lrgflgnlyifil ST - p _El ¢ (u,z;)". (4.33)
1=

For independent zero-mean sub-Gaussian random variables y;¢;, it can be shown that with
probability at least 1 —e™, max; ¢;<, |74l < IS~ s+/10g(n) 4 x. Furthermore, following the proof
of Proposition 4.3, it can be similarly shown that

2v0, / + 2UO -

‘ Z{ (u,z;) —‘L’(l—‘L’)
with probability at least 1 — 2¢~*. Putting together the pieces, it follows from (4.32) that there exists an
event £, satisfying P(€,) > 1 —n~!, on which max; ;< 7,81 S IS~IA|l 5 (logn)'/2,

1 — 1
=3 il S IST'MIE (ogm)' 7 and [var*($5) fvar(s,) — 1] S / —— (4.34)
n n

i=1

as long as n 2 logn.
For the normal distribution function, we have the following property derived from Pinsker’s
inequality (see Lemma A.7 in the supplement of Spokoiny & Zhilova, 2015):

sup |® (x/var(S,)'/?) — @ (x/var*($)) /%] < %!Var*(SEl)/var(Sn) — 1] (4.35)

xeR
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as long as |Var*(S,b1)/var(Sn) — 1] < 1/2. Moreover, for any a < b,

@ (b/var(S,)"?) — @ (a/var(S,)'/?) < b-a S —a) (4.36)
" g = 2rvar(S,) ISV 2rt(T— 1) '
Combining the ingredients, we derive that for any x € R,
P(n1/2<x,/§ — B*) <x) <P(S, <x+c ISTV2,8, ) + 4n7!
C Plvar(s )26 < x+ ¢, [S~12A|1,5 +L+4 -1
{ ( ) <X €1 “ “2 nd} m n
2/5
18}1 d + 6 / m3 _1

(i) z
< ]P){VHI(Sn)l/zc <x— ”S 1/2)\.”252/5} +f1/2 27_[1.(1 = T) + ) ‘[(1 — ‘[)n +4n

(i)
< PH{var*($)2G < x — 871241187
2/5
l var*(SZ) _ 1' ];1/2 Cland +8 / + my _{_4”71
2| var(S,) S2rt(l — 7,') 2/t —1)n
(iv) 1
QB (s <o 15 A,p2) + L G
2./ {var*(8;)}3/2
1| var*(S)) 1' 1 C1dna ¥ O LM
— — n b
2| var(S,) 2rt(l—1)  2t(1—1T)n

where steps (i) and (iv) follow respectively from the Berry—Esseen inequalities (4.30) and (4.31), step (ii)
uses the anti-concentration inequality (4.36) and step (iii) is due to the Gaussian comparison inequality
(4.35). Conditioned on £, N G,,,

P (S < x— 1871 2001,877)

_ 2 5
<SPS, <x = ISTV2 L1020 1) + P (I 2R, = 62))

A A

<P ) <)t el

Moreover, on the event &, the bounds in (4.34) imply

var (Sn) 4l < [logn
VaI(S ) ~ n

as long as n 2 log n. A similar argument leads to a series of reverse inequalities.

A/m) Y vl
2./n {var*(S;)}3/2
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Putting together the pieces, we conclude that conditioned on the event £, N 5,’, ng,,

sup P2, B — B) <x) —P*(n' 20, B’ — B) < x)| S 620,
xXe

Under the scaling & (log n)? = o(n), g = o(1) as n — oo. Combined with the above bound, this
establishes the claim (2.15).
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A. Proofs of Propositions 4.1- 4.4

A.1  Proof of Proposition 4.1

By (4.3), every £ g+ € 90, (B*) satisfies §pr = £ = (1/n) X1, x;{I(g; < 0)—1} with probability one.
Hence, it suffices to bound ||E_1/2§* 2 = supy,=1 (@, 2_1/25*). Via a standard covering argument,
for any € € (0, 1), there exists an e-net ./\/€ of the unit sphere S9! with |/\/'€| < A+ 2/e)d such
that ||E_1/2§*||2 <1 —-e! max, .\ (, > ~1/2g*). Along each direction u, define one-dimensional
marginals

Vi =, 27 2x)I(g; <0) =1}, i=1,....n,

which satisfy E(y, ;) = 0 and var(y, ;) = t(1 — 1) < 1/4. By Condition 1, P(|(u, £~"/2x;)| = vyt) <
2e~"/2 for all 1 > 0. Hence, fork = 1,2,...,

EyX <E{l(e; < 0) — v} (u, X~ 2x )%

1

2k * —1/2 2k—1 2k Ak—1 (Zk)!
= 1Y% Zk/ P((w, 712, > vot) P dr < vt 21k €
0

2kk!

2k
(ayvy)

for some absolute constant a; > 1. Following the proof of Theorem 2.6 in Wainwright (2019), it can

be shown that Ee*wi < e(“laz’\”(’)z/ 2 for all A € R, where a, > 1 is also an absolute constant. By the
Hoeffding bound for sums of sub-Gaussian random variables (see, e.g. Proposition 2.5. in Wainwright,

2019), for any y > 0 we have
S <
- - < a1ayVpy | —
n e Yu,i 192V~

with probability at least 1 — ¢~ Taking the union bound over all vectors u € N yields

1212, < %t |2
1 —¢€ n

with probability greater than 1 — ¢°2(142/€)4=y Through a careful analysis, we select a; = 1.09, a, =
1.3 and € = 0.314 so that all the requirements are satisfied. Finally, taking y = 2d 4 x completes the
proof.
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A.2  Proof of Proposition 4.2
By (4.2), every EB = (ég,---,6p4)T € 00, (B) can be written as

n n n

T 1 1

Egj=—— D %+~ D5l 0 < B — = D v+ (L= DU, = (x;, B)),
i=1 i=1 i=1

where v; € [t — 1, 7]. With § = B — B, it follows that

n

1
(g g B = B") > = D (i &) {I(e; < (x,8) — I(e; < 0)

i=1

=Un(8)
1 n
== DI = (xi.8) + 15 = 0)). (A1)
i=1

Since the conditional distribution of ¢ given x is continuous, with probability one, there is no vector
8§ € RYand 1 < i < n such that g = (x;,8). See Lemma A.1 of Ruppert & Carroll (1980). In other
words, with probability one,

% Z [(x;, 8)|{I(e; = (x;,8)) +1I(e; = 0)} = O forall § € R (A.2)
i=1

Turning to the first term on the right-hand side of (A.1), the main difficulty comes from the
discontinuity of U, (8) as a function of 8. To construct a smooth version of U,, we introduce four
Lipschitz continuous functions as follows. For any a,b > 0 and u € R, define

1 ifu > 2a 1 ifu < —2a
g ) =1-14+% ifa<u<2a, g;w={-1-% if—2a<u<-a, (A.3)
0 otherwise 0 otherwise
and
1 ifu<b/2 1 ifu>—-b/2
Ypy=12-2 it <u<b, Y, w={2+2% if-b<u<-%. (A4)
0 otherwise 0 otherwise

Respectively, <,0ai and I/I;: are (1/a)- and (2/b)-Lipschitz continuous, see Fig. A2. Also, they satisfy the
following properties: for a,b > 0 and u € R,

Iu>2a) < @F () <Iw=>a), 1u<-2a)<g; ) <Iu<-a, (A.5)
I < b/2) < Y () <T@ < b), 1> —b/2) <Y, W) <I(u> —b), (A.6)

1 1
ap; (u) < 3 max{u,0}, ag, (u) < 3 max{—u, 0}. (A7)
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— @, (u) — pi(u)
2 — ) 2 — g
= | = |
o | w |
= © =1 =}
2 S 2 S 7
2w ==
(=] (=1
o ~
3 2
o | =
(=] (=1
T T T T T T T T T T T T T T
30 25 20 a5 10 05 0.0 0.0 0.5 1.0 15 20 25 3.0
u u
(a) Plots of ¢ (u) and ¢} (). (b) Plots of ¢ (1) and 7} (u).

F1G. A2. The Lipschitz continuous functions (p;t (u) and lﬁét (u) witha =1and b = 2.

Furthermore, for each ¢;, we define its positive and negative components as ¢; L= max{g;, 0} and

&;_ = max{—¢;,0}. For any r > 0, taking a = ¢; . and b = 2r||8]| 5 yields

n

U,) = = > {6, 910 < £, < (x,,8)) + (~x, 8)1({x,.8) < ;= 0]
i=1

1 n
>~ Zl {eipod (6. 8) + &g ((x,8)))
1< 1 <&
> > e, (e DI 8) < 278l 5) > i i, (e 8)I({x;. 8) = ~2rl8]]5)
i=1 i=1
1< 1 <
> ;l 2‘5\[,+(ﬂ;+(<xi’ 6))1#;;”3”[((-‘:1" 4)) + ; Z‘gi’—w;_(<xi7 5))1//2:”5”2((3‘71'7 4)). (A.8)

i=1

Vi (8) Vi (8)

To bound V,(8) = V,F (§) + V,, () from below, we follow a two-step procedure: in step one, we derive
a lower bound on the expectation E{V, ()}, and in step two, we show concentration of V, (8) around
E{V,(8)} uniformly over § € R¢ with high probability.
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STEP 1. Along each direction § € R? \ {0}, deflne the one -dimensional marginal ng = (x, 8)/||8]| 5 that
satisfies E(n 5) = 1. Using the lower bounds of <pa and wb given in (A.5) and (A.6), we obtain

] n
+ _ . . .
BV, 0} = ~ > Ble 1126, < (x;.8) <781},

i=1
E(V, ()} > - ZE{a,J( P8l s < (x.8) < —2¢; )},
Together, with Condition 2 and the law of total expectation, we have

1 (x;.8)/2
EWV,®) > ~ > E /0 tfy, (0 A1 - 10 < (x,,8) < 18] 5)
i=1

+1 ZE/ e O 135 = b 8) <O

1
> 21815 - E{f O3l (sl < )} - —0||6||E E{InsI*I(Ins| < »}
(— — —r||6||z) 18115 E{nzI(Ins| < n}. (A.9)
Under Condition 1, P(|ng/vyl > 1) < 2e™" 212 for allt > 0and § € RY. Therefore,
r2 o0
E{n;1(Insl > 1} = (/0 +/2 ) P{n3I(nsl > r) > t}di
I
2 © 2
= 2vu; // P(Ing/vol = Dtdt + r'P(Ing /vyl > r/vp)
r/vy

o0
< 2126~ r1v0)* /2 + 4U§/ e ¥ds = (2;"2 + 4U§)€_(r/UO)2/2.

(r/v0)2/2
Taking r = 4ug with vy > 1, it follows that E{n3I(Ins| < r)} > 1 — sup,, > (32v; + 4vf)e” 85 >
1 — 36¢8. Substituting this into (A.9) yields
E{V,(8)} > (2/9 — 8¢ ®)f 18113 (A.10)

for all § € RY satisfying 0 < [|8]l 5 < £/(6Lyv3), where f and L, are defined in Condition 2.

SteP 2. We prove the concentration of V,(8) around E{V,(8)} uniformly over § via the peeling
technique, which is widely used in empirical process theory (van de Geer, 2000). For some 6 > 0
to be specified, define @ (8) = {§ € R? : 18]Iy = 6} = U2, 0,(8) with

0,) = {6 e R : 2025 L8|l <228}, €=1,2....
For any R > §, define

A,R) =fwy,...,wR) = sup  {EV,(8) — V, (@)}, (A.11)
<8z <R
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where w; = (x;,¢;) € R? x R. For § € RY, write
EGw) = &, 0l (i 8DV g, (060 8) + &0 (0 8)Y5,5,, (612 8).

Note that for any b > 0 and u € R, at most one of 8~’+(p;f+(u)1/fb+(u) and ¢; _¢. (W)Y, (u) can be

1

non-zero. When (x;, 8) > 0, by (A.4) and (A.7), we have

0<EGw) =¢; 0, (0,85, (23, 8)

1 if (x;,8) <rlélly
SRLLIAN PR ifr)8ly < (x;,8) <2r|8]
ST rl8lls z 0 S z
0 otherwise
.
< =18l 5.
2|| 5

Following a similar argument, the same upper bound applies to £(8; w;) when (x;, §) < 0. Consequently,
we have |£(8; w;)| < Rr/2, so that for any index i and an independent copy wg = (x;., 8:») of w, = (x;,¢;),

Rr
W Wio oo s W s R) = fWy, o Wi w5 R)| < —

Hence, applying McDiarmid’s inequality (McDiarmid, 1989), we obtain that for any ¢ > 0,

A, (R) <EA,(R) + Rr\/zz (A.12)
n

with probability at least 1 — e~'. Next we evaluate EA, (R). Again, using (A.7) it can be shown that
for any a,b > 0, the functions u a(pét(u)lﬁg: (u) are 1-Lipschitz continuous. Thus, for any sample
w; = (x;,€) € R x R and parameters 8,8’ € R4, we have

E@:w) — E@ )| < 2/(x,.8) — (x,,8)].

In other words, £(8;w;) is a 2-Lipschitz continuous function in (x;,8). Let e|,. .., e, be independent
Rademacher variables that are independent of the initial sample. By a classical symmetrization argument
and the Ledoux—Talagrand contraction inequality (see, e.g. (4.20) in Ledoux & Talagrand, 1991),

1 1
EA (R)gZEH sup — E e~€(6;w-)} <4E< sup — E e»(x<,8)}
! s<Islz<R M = l s<lslz<Rn =

< 4R\/§. (A.13)
2 n

Combining (A.12) and (A.13) yields that, with probability at least 1 — e™,

[t Id
A, (R) < Rr,| — + 4R,/ —. (A.14)
2n n

1

1 S —1/2
§4RIEH;ZI:eil Iy,
=
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With the above preparations, we derive that for any 7, > 0,

2d
P[aa € O©)st. — V,(8) +EV,(8) = [181%rty + 41181l 54/ ]

n

) 1 [d
< IP[36 € 0,(8)s.t. — V, () + EV,(8) > 5(24/25)2% + 4(2%8) —]
n

2/24 Y2
P[An(zma) > (2@/25)”/(2%8) +4(2‘/25)\/§|
n

o
—(2¢/24,8)2 _ -1 2
e (%%198)"n/2 _ 2 :e 20~ (t98)*n
(=1

INE:

iMe LMz

INE

Mo [Me

iv o~ (109)%n

<

—~
=

—0(to8)%n _ ._
e = T P(n, 1, 8), (A.15)

~
I

1

where step (i) uses the union bound along with the decomposition & (8) = U72, @,(8), step (ii) follows
from the definition of A, (-) in (A.11), step (iii) uses the concentration inequality (A.14) with R = 2072
for each £ > 1 and step (iv) uses the elementary inequality that 2¢=! > ¢.

Putting (A.1), (A.2), (A.8), (A.10) and (A.15) (with r = 4U§) together, we conclude that with
probability at least 1 — P(n, t,, §),

_ 2d
(g — Ege B — B7) > {(2/9 = 8¢~ — 405to} 18115 — 418115/ — (A.16)
uniformly over § = B — B* satisfying § < ||8]5 < [/ (6L0v§). In particular, we take #, = (2/9 —
8e~® — 1/8)f/(4v?) and recall that v, > 1 from Condition 1, then the right-hand side of (A.16) is

bounded from below by
1 2d
—f181% — 40211811 51/ —.
8fII s —4vgllidll 5 o

By the convexity of O, (§ g g B> B — B*) is always non-negative. Therefore, for any ¢ > 0, we may

assume
- B 2(d +
I8 Ny =68:= (321}3/[) ( _ t);

otherwise, (4.4) holds trivially. The above choices of (#,, §) guarantee that P(n, #,,8) < e '/2in (A.15).
Putting together the pieces, we conclude that with probability at least 1 — e~7/2,

1 2(d
G~ &g B— B > LL1B— B1% —4B1B — Bl 2D

for all B satisfying 0 < [|B — B* ||y < [/ (6L0U§). This completes the proof.

A.3  Proof of Proposition 4.3

By (4.3) and (4.5), every subgradient &” = (&/,...,£)T € 30, (8*) coincides with (1/n) 3, w,Cx;
with probability one. Thus, without loss of generality, we assume & " = (1/n) > wigx;. Note that
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E*&" = (1/n) >, ¢ix;. Using a standard covering argument again, for any € € (0, 1), there exists an
e-net N, C S with |N| < (1 +2/€)? such that

1212 —E*EM, <3

Ze( u,z;)

where e¢; are independent Rademacher random variables. For any u € A_ and y > 0, by Hoeffding’s
1nequahty we have

172 )
[ Ze; u,z;) (2y2§ u,z;) ) Z]ge).

Moreover, note that ¢; are bounded random variables that satisfy E({izlxi) =1(l—-1) < 1/4, IE(g“i4 lx;) <
1/12 and |¢;| < 1. Following the calculations as in the proof of Proposition 4.1, for every u € N_ we
have

k!4 _
B z) < S 30 k=23,

Using Bernstein’s inequality, we obtain

1 2x —x .
Z;, (u,z;) +21)0 n +2v0 < e, valid for any x > 0.

Finally, we set € = 2/(e*> — 1) so that (1 + 2/€)? = ¢2. Taking the union bound twice over all
u e N_ withx =y =2(d + 1) yields

d+t 2d+t
- 8 +8
nirel?\)f(nzg u.zi) + UO 3 Yo

(A.17)

with probability at least 1 — e/, and with P*-probability at least 1 — e~ % conditioned on the event that

(A.17) holds,
d+t
1Z-12E - B, < 2,
n

provided that n > Cvg (d 4 t) for some universal constant C > 0. Putting together the pieces completes
the proof of (4.6).

A4 Proof of Proposition 4.4

We keep the notation used in the proof of Proposition 4.2 and follow a similar argument. To begin with,
note that every E; = (&Z s E; DT E 8QZ(,B) can be written as

1 n
£p, = Zw, X1 < (x, >>—r}—;;w, S+ (L= DY, = (x, B)),
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where v; € [t — 1, t]. As before, the bound (“;';, — E;*,ﬁ - B* = U,bl(S) holds with probability one,
where

U°(8) = Zw 8){I(s; < (x;,8)) — I(g; < 0)) for § = B — B*.
Again, introducing Lipschitz continuous functions ¢} +(u) and wb (u) asin (A.3) and (A.4), we obtain

1 n
Up@® > = > wie 00, (0 V35, (X, 8))
i=1

+- Zw, 61— 0e (0 85,50, (52 8)) 1=V, (8) + V,(3), (A.18)

where V,(8) = V,;5 (8) + V,, (8) is defined in (A.8) and

1n
Vi®) == > e a0 (e 85y, (b 8) + Z,l,gog, X ) Wars 5 (05 8).

i=1

Notice that E*{Vz(é)} = 0. For any R > 4, define I, (R) = f(e;,...,e,;R) := SUPs < |15]| £ <R —V,E(S).
For each index i and an independent copy ¢; of ¢;, we have

- Rr
lfeq,....ep...,esR) —fleq,....e,...,e,;R)| < o

Applying McDiarmid’s inequality gives
t
I,(R) <EY{I,®)} + Rr\/zj (A.19)
n

with P*-probability at least 1 — e~’. Using the Lipschitz continuity of u > ¢, i+95 i(u)lpst(u), and
Talagrand’s contraction principle, we obtain

E¥{I,(R)} < 2E* < _E*
1 () < (s<|ﬁslﬁ§<knze ) Zez

2R [ & 1/2 d
< (i) =25, (220
i=1

where z; are defined in (4.5) and M2d = (1/nd) Zl 1 Z/ 1 zl] Together, (A.19) and (A.20) imply

d t
I,(R) < 2RMM,J; + Rr,/ n (A.21)

t

with P*-probability at least 1 — e~
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Note that inequality (A.21) holds for every R > §. Again, via the slicing technique and taking
—(r 2n
e 012 =1_P(n’t178)’

r= 4v§, it can be shown that for any 7; > 0, with P*-probability at least 1 — Py

2d
Vo(8) = —2M, 41815/ — — 4,05 1811%

uniformly over ||8]| »>3. For the data-dependent quantity M, ;, note that M, 3 4 SMax|gicy 1/m >0, zi

Under Condition 1, we have ]ET(lej) =landfork=2,3,...,
o0 k!
E(zp)* = vg'2k / Pyl > vpox ™ dr < 2 otk = S16u5 Qug) 2.
0
It then follows from Bernstein’s inequality that, for any 1 <j < dandx > 0,
1< 2 5 [2x 2 X _
IP’(;L ;z] > 1+ 4ugy — +2UO;) <e ™.
Taking x = log(2d) + t and applying the union bound, we obtain

2log2d) + 2t . ,log(2d) +t
M2, <1+403, Og(n)+ +202 Og(n)+ (A22)

with probability at least 1 — e~ 7/2.
Turning to V,(8) in (A.18), it follows from (A.15) and (A.16) that with probability at least 1 —
P(na th 8)5

2d
V(8 > {(2/9 = 8e™)f — 4vj1o 111 — 4||5||z\/; (A.23)

for all  satisfying § < [|8] 5 < f/(6L0v§). Let G(t, 1, 8) be the event that (A.22) and (A.23) hold. Then
P{G(t,15,8)} = 1 — e /2 — P(n,1,,8). Taking 1, = t; = (2/9 — 8e™8 — 1/8)[/(81)3) yields that with
P*-probability at least 1 — P(n, t;, 8) conditioned on G(t, #,, §),

1 2d
(65— &g B — B > L1815 ~ 8v§||6||2\/;

uniformly over § < 8|5 < f/ (6L0U§) aslongasn > C ug { log(d) + t} for some universal constant
C > 0. For any ¢ > 0, we assume that

2d

otherwise, (4.7) holds trivially, and the above choices of (¢y,#;,8) guarantee that P(n,t,,8) =
P(n,1,8) < e~!/2. This completes the proof.

B. Additional simulation studies

This section presents additional numerical results under various combinations of the design and error
distributions.

B.1 Confidence estimation

B.2  Goodness-of-fit testing
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