
UCLA
UCLA Electronic Theses and Dissertations

Title
Some Classification Results for Symplectic Fillings of Contact 3-Manifolds

Permalink
https://escholarship.org/uc/item/56h5b9jc

Author
Christian, Austin Ryan

Publication Date
2021
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/56h5b9jc
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA
Los Angeles

Some Classification Results for Symplectic
Fillings of Contact 3-Manifolds

A dissertation submitted in partial satisfaction
of the requirements for the degree

Doctor of Philosophy in Mathematics

by

Austin Christian

2021



© Copyright by
Austin Christian

2021



ABSTRACT OF THE DISSERTATION

Some Classification Results for Symplectic
Fillings of Contact 3-Manifolds

by

Austin Christian
Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2021
Professor Ko Honda, Chair

We define splitting surfaces in contact manifolds, and develop a technique for decomposing
the strong or exact symplectic fillings of a contact manifold which admits such a surface,
using Eliashberg’s strategy of filling by holomorphic discs. We then apply this technique
to the symplectic filling classification problem for several families of contact manifolds.
In particular, we complete the classification of exact fillings for lens spaces, virtually over-
twisted torus bundles, and virtually overtwisted circle bundles over Riemann surfaces. We
also produce classification results for contact manifolds obtained by surgery on Legendrian
negative cables, and for large families of contact structures on Seifert fibered spaces.
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CHAPTER 1

Introduction

It is often said that contact geometry is an odd-dimensional cousin of symplectic geometry.
One manifestation of this mantra occurs when a symplectic manifold endows its boundary
with a contact structure. For instance, say we have a symplectic manifold-with-boundary
(W,ω) and a neighborhood U of the boundary ∂W . If there exist a 1-form λ and vector field
Z on U such that ιZω = λ and LZω = ω, with Z pointing transversely out of ∂W , then kerλ

gives us a contact structure on ∂W . In this case, we say that (W,ω) is a strong symplectic

filling of the closed contact manifold (∂W, kerλ).

In Chapter 2.3 we will additionally define weak symplectic fillings and exact symplectic

fillings. Each of these definitions leads to a classification problem: given a contact manifold
(M, ξ), can we enumerate the weak, strong, or exact symplectic fillings of (M, ξ)? The
purpose of this thesis is to answer questions of this type for a variety of contact manifolds.

Our primary tool for classifying fillings is Theorem 3.2, developed in Chapter 3. This
theoremextends [Men18, Theorem1.1.1] ofMenke and allows us to reduce the classification
problem for one contact manifold to the same problem for a (hopefully simpler) contact
manifold. Namely, Theorem 3.2 tells us that when our contact manifold (M, ξ) admits
a splitting surface, a symplectic handle may be removed from any of the strong or exact
fillings of (M, ξ) to produce a new symplectic manifold which either strongly or exactly
fills its boundary. In case the fillings of this new boundary have been classified, we can
often lift this classification to an analogous result for (M, ξ). Theorem 3.2 is inspired by
a similar result of Eliashberg for contact manifolds obtained by connected sum, and we
prove Theorem 3.2 using Eliashberg’s filling by holomorphic discs technique.

Once Theorem 3.2 is in hand, we set about using it to classify the symplectic fillings of
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several families of contact manifolds. We start in Chapter 4 by completing the classification
of exact fillings of lens spaces, up to diffeomorphism. Lisca classified the exact fillings of
universally tight lens spaces in [Lis08], and we use Theorem 3.2 to reduce the same problem
for virtually overtwisted lens spaces to the universally tight case. Our techniques produce a
diagrammatic calculus by which one may construct all exact fillings of a given virtually
overtwisted lens space from the fillings of a collection of universally tight lens spaces.

In Chapter 5 we reduce the classification of fillings for virtually overtwisted torus bun-
dles to the corresponding classification for lens spaces — the problem which is settled in
Chapter 4. We continue in Chapters 6, 7, and 8 to apply Theorem 3.2 to other families of
contact manifolds. In Chapter 6 we consider contact manifolds obtained by Legendrian
surgery along negative cables of Legendrian knots which have been stabilized both posi-
tively and negatively. Chapter 7 sees the classification problem for several families of Seifert
fibered spaces reduced to the same problem for lens spaces, and Chapter 8 completes the
classification of fillings for virtually overtwisted contact structures on circle bundles over
Riemann surfaces.
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CHAPTER 2

Background

This chapter introduces the recurring characters of the thesis, and collects several important
results which will be cited by later chapters.

2.1 Contact manifolds

The starting point for every discussion in this thesis is a given contact manifold, a notion we
now define.

Definition. A contact manifold is a pair (M, ξ) consisting of a smooth (2n + 1)-manifold
M and a maximally non-integrable hyperplane field ξ ⊂ TM , which we call the contact
structure on M . If there is a 1-form α on M such that ξ = kerα, then we say that ξ is
cooriented, and that α is a contact form for ξ.

Remark. Unless otherwise stated, we will assume that all contact structures are cooriented.
Moreover, we will assume thatM is oriented, and that ξ is positive, meaning that for any
contact form α for ξ, we have α ∧ (dα)n > 0.

Example 2.1. The standard contact structure ξstd on R2n+1 is the kernel of the 1-form

αstd = dz −
n∑
i=1

yi dxi,

where R2n+1 has coordinates x1, . . . , xn, y1, . . . , yn, z.

Rather famously, the standard contact structure on R2n+1 is in some sense the only
contact structure, locally.

3



Theorem 2.2 (Darboux’s theorem). Let (M, ξ) be a contact manifold of dimension 2n+ 1. For

any point p inM and any contact form α for ξ, there are coordinates x1, . . . , xn, y1, . . . , yn, z on a

neighborhood U ⊂M of p such that

α|U = dz −
n∑
i=1

yi dxi,

with p having coordinates (0, . . . , 0).

In contrast with the situation for symplectic structures on even-dimensional spheres,
all odd-dimensional spheres admit a standard contact structure.

Example 2.3. The standard contact structure ξstd on the sphere S2n+1 is obtained by realizing
S2n+1 as the unit sphere in R2n+2 and restricting the contact form

αstd =
n+1∑
i=1

(xi dyi − yi dxi),

where R2n+2 has coordinates x1, y1, . . . , xn+1, yn+1.

We will generally be interested in two notions of equivalence for contact structures:
contactomorphism and contact isotopy.

Definition. A contactomorphism between contact manifolds (M0, ξ0) and (M1, ξ1) is a dif-
feomorphism ϕ : M0 → M1 with the property that ϕ∗(ξ0) = ξ1. Given a contact manifold
(M, ξ), we say that another contact structure ξ′ onM is isotopic to ξ if there exists a contac-
tomorphism ϕ : (M, ξ)→ (M, ξ′) which is isotopic to the identity onM .

Example 2.4. For any point p in the standard contact sphere (S2n+1, ξstd), one can show that
the contact manifolds (S2n+1 \ {p}, ξstd) and (R2n+1, ξstd) are contactomorphic.

Remark. Though the above definitions are stated for contact manifolds of any (odd) di-
mension, we will restrict our attention to contact manifolds of dimension three, unless
otherwise specified.

4



With these notions of equivalence established, we immediately encounter the classifi-
cation question: how many contact structures exist on a given (closed, oriented) smooth
manifoldM , up to either contactomorphism or isotopy? Eliashberg discovered in [Eli89]
that there is an important class of contact structures for which the classification question is
answered (up to isotopy) by purely topological considerations.

Definition. Let (M, ξ) be a contact 3-manifold. We say that the contact structure ξ is
overtwisted if there is a smoothly embedded disc D ⊂M for which the distributions ξ and
TD agree along ∂D. If no such embedded disc exists, we say that ξ is tight.

Eliashberg showed that the contact isotopy class of an overtwisted contact structure is
determined by its homotopy class as a hyperplane distribution.

Theorem 2.5 ([Eli89]). Let M be a smooth, closed, oriented 3-manifold. Then two cooriented

overtwisted contact structures onM are isotopic if and only if they are homotopic as hyperplane

distributions.

Remark. The notion of overtwistedness also exists for higher-dimensional contact structures,
though this generalization took some time to navigate. See [BEM15] and [CMP19].

In combination with earlier results of Lutz [Lut77] and Martinet [Mar71], Theorem 2.5
settles the classification problem for overtwisted contact structures. The case of tight
structures has proven more difficult, but significant process has been made in many cases.
For instance, later chapters of this thesis will rely on classification results due to Honda,
presented in [Hon00a] and [Hon00b].

We close this section by presenting a dichotomy for tight contact structures which will
be needed in stating some of our results.

Definition. Let (M, ξ) be a tight contact 3-manifold, π̃ : M̃ →M the universal cover ofM .
We will say that ξ is universally tight if the contact manifold

(M̃, ξ̃ := π̃∗ξ)

5



is tight. We will call ξ virtually overtwisted if there is some finite cover π : M →M ofM for
which the contact manifold

(M, ξ := π∗ξ)

is overtwisted.

Remark. It is not immediately obvious that every tight structure on a 3-manifold must be
either universally tight or virtually overtwisted. However, every tight contact structure on
a manifold with residually finite fundamental group must fall into one of these categories,
andwork of Hempel ([Hem87]) along with the geometrization conjecture shows that every
3-manifold has this property.

2.2 Legendrian knots

By definition, a contact structure is maximally non-integrable; for a contact 3-manifold (M, ξ),
this means that there are no embedded surfaces inM which are everywhere tangent to ξ.
However, contact manifolds do admit embedded knots which are everywhere tangent to ξ,
and these play an important role in 3-dimensional contact topology.

Definition. A Legendrian knot (or Legendrian link) in a contact 3-manifold (M, ξ) is an
oriented knot (or link) inM which is everywhere tangent to ξ.

We will generally consider Legendrian knots up to Legendrian isotopy.

Definition. Legendrian knots L and L′ are said to be Legendrian isotopic if there is a 1-
parameter family Lt, t ∈ [0, 1], of Legendrian knots with L0 = L and L1 = L′.

In Section 2.7.2 we will discuss surgery diagrams for contact 3-manifolds, in which
Legendrian knots in (S3, ξstd) play an important role. These may be treated as Legendrian
knots in (R3, ξstd), for which we have the front projection.

Definition. The front projection of a Legendrian knot L in (R3, ξstd = ker(dz − y dx)) is the
image π(L) ⊂ R2 of L under the map π : R3 → R2 defined by π(x, y, z) := (x, z).

6



S+

S−

Figure 2.1: Stabilization of the x-axis in the front projection.

We point out that any smooth, closed, immersed curve in R2 with no vertical tangen-
cies lifts to a unique Legendrian knot in (R3, ξstd). Indeed, the y-coordinate of the lift is
determined by the equation y = dz

dx
, ensuring that dz − y dx = 0 along the lift. All figures

depicting Legendrian knots in this thesis are in fact front projections.

The front projection affords us a modification of Legendrian knots in (S3, ξstd) known as
stabilization. For now this modification will remain somewhat opaque, but we will discuss
a correspondence between stabilization and bypass attachment in Section 2.4.1.

Definition. Given an oriented Legendrian knot L in (S3, ξstd), the positive stabilization and
negative stabilization of L, denoted S+(L) and S−(L), respectively, are obtained bymodifying
the front projection of L as depicted in Figure 2.1.

Our discussion of Legendrian knots ends (for now) with a description of the classical
invariants of a Legendrian knot in (S3, ξstd). The first of these is the Thurston-Bennequin

number.

Definition. Given an oriented Legendrian knot L in a contact manifold (M, ξ), fix a Seifert
surface Σ for L. Choose a vector field v along L which is transverse to ξ, and let L′ be
the pushoff of L in the direction of v. The Thurston-Bennequin number tb(L) is the signed
intersection number of L′ with Σ.

Verifying that this definition is independent of choices is a standard exercise. The
second classical invariant is the rotation number.
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Definition. Given an oriented Legendrian knot L in a contact manifold (M, ξ), fix a Seifert
surface Σ for L. Let v be a non-zero vector field on Σ which is tangent to ξ|Σ, and let w be a
non-zero vector field on L which is tangent to L. The rotation number of L is the twisting of
w relative to v in ξ.

Again, verification of the definition of the rotation number is a standard exercise.

2.3 Symplectic fillings of contact manifolds

The story that we tell repeatedly in this thesis begins with a given contact manifold and
asks for a classification of its symplectic fillings. In this section we recall the definition of a
symplectic manifold and briefly describe symplectic fillings of contact manifolds.

Definition. A symplectic structure or symplectic form on a smooth manifold (which may
have boundary) is a closed, nondegenerate differential 2-form. A symplectic manifold is a
pair (W,ω) consisting of a smooth manifoldW and a symplectic form ω onW .

In certain conditions, a symplectic manifold-with-boundary will induce a contact struc-
ture on its boundary. We say that such a symplectic manifold fills its contact boundary.

Definition. Fix a cooriented contactmanifold (M, ξ) and suppose that (W,ω) is a symplectic
manifold with ∂W = M as oriented manifolds. We say that (W,ω) is

• a weak symplectic filling of (M, ξ) if ω|ξ > 0;

• a strong symplectic filling of (M, ξ) if there is a 1-form λ on W such that ω = dλ on
some neighborhood of ∂W and such that λ|∂W is a contact form for ξ;

• an exact filling of (M, ξ) if there is a 1-form λ onW such that ω = dλ on all ofW and
such that λ|∂W is a contact form for ξ.

We say that (M, ξ) is weakly symplectically fillable, strongly symplectically fillable, or exactly
fillable if it admits a symplectic filling of the corresponding type.
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Of course there is no reason to expect a generic contact manifold to admit any type
of symplectic filling. Indeed, a classic argument of Eliashberg and Gromov shows that
overtwisted contact 3-manifolds admit no symplectic fillings.

Theorem 2.6 ([Eli90],[Gro85]). A weakly symplectically fillable contact 3-manifold is tight.

Remark. Analogous results hold in higher dimensions, but we will continue to restrict our
attention to the case of contact 3-manifolds and 4-dimensional symplectic fillings.

It is clear that an exact filling is a strong symplectic filling, and that a strong symplectic
filling is a weak symplectic filling. In fact, we have the following sequence of inclusions:

{exactly fillable} ( {strongly fillable} ( {weakly fillable} ( {tight}

The first examples of tight contact manifolds admitting no symplectic fillings were given by
Etnyre-Honda in [EH02]. Eliashberg produced a weakly-but-not-strongly fillable contact
manifold in [Eli96], and Ghiggini constructed a family of strongly-but-not-exactly fillable
contact manifolds in [Ghi05].

2.4 Convexity in contact topology

Consider an embedded surface in a contact 3-manifold. Though we cannot hope for this
surface to be everywhere tangent to the contact structure, it is often the case that we can
recover the contact structure (locally) from the germ it leaves behind on the embedded
surface. This germ is known as the characteristic foliation.

Definition. Given a contact 3-manifold (M, ξ) and a smoothly embedded surface Σ ⊂M ,
the characteristic foliation Σξ of Σ is the singular foliation induced by ξ, defined so that Σξ(p)

is the intersection ξp ∩ TpΣ. We say that points p ∈ Σ with ξp = TpΣ are singular points.

Characteristic foliations can be terribly complicated, but when studying convex surfaces,
we will see that we can forget much of the information about the characteristic foliation,
remembering only its dividing set.
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Definition. A contact vector field on a contact 3-manifold (M, ξ) is a vector field X whose
flow preserves ξ. By this we mean that, for any contact form α for ξ, LXα = g α, for some
positive smooth function g onM . We say that a smoothly embedded surface Σ ⊂ M is
convex if there is a contact vector field for (M, ξ) which is transverse to Σ.

We point out that convex surfaces are not too hard to find in dimension 3.

Theorem 2.7 ([Gir91]). Any closed surface in a contact 3-manifold (M, ξ) isC∞-close to a convex

surface.

Remark. In higher dimensions, the current state of the art is due to Honda-Huang, who
give the foundations for convex hypersurface theory in [HH19]. There they show that
hypersurfaces in higher-dimensional contact manifolds are C0-close to convex surfaces;
experts generally suspect that the smooth version of the statement is false.

As mentioned above, much of the power of convex surface theory is that we may trade
characteristic foliations for dividing sets, which we now define.

Definition. If Σ ⊂ (M, ξ) is convex andX is a contact vector field transverse to Σ, then the
dividing set of Σ is the multi-curve

ΓΣ := {p ∈ Σ |X(p) ∈ ξp}.

Three important observations about ΓΣ are

(1) ΓΣ divides Σ into positive and negative regions: Σ \ ΓΣ = R+(Σ) tR−(Σ);
(2) ΓΣ is transverse to the characteristic foliation Σξ of Σ;
(3) Σ admits a volume form ω and a vector field Y such that Y points transversely out of

R+(Σ) along ΓΣ, directs Σξ, and dilates ω in the sense that ±LY ω > 0 on R±(Σ).

These three characteristics determine ΓΣ up to isotopy, so we will refer to the dividing set
ΓΣ and the regions R±(Σ) of a convex surface Σ without reference to a particular contact
vector field.

Giroux’s Flexibility Theorem explains the power of the dividing set.
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Theorem 2.8 ([Gir91]). LetΣ be a closed convex surface in a contact manifold (M, ξ), as witnessed

by a contact vector field X with dividing set ΓΣ, and consider some singular foliation F on Σ.

Suppose we can put a contact structure ξ′ on a neighborhood of Σ such that Σξ′ = F and such that

the dividing set of Σ is isotopic to ΓΣ. Then there is an isotopy ϕt, t ∈ [0, 1], of Σ in (M, ξ) such that

(1) ϕ0 = id and ϕt|ΓΣ
= id for all t;

(2) ϕt(Σ) is transverse to X for all t;

(3) ϕ1(Σ) has characteristic foliation F .

So the dividing set of a convex surface records all of the interesting contact topology
in a neighborhood of the surface. We now discuss two important applications of convex
surface theory.

2.4.1 Bypasses

A natural and interesting question in convex surface theory proceeds as follows: say we
have a 1-parameter family of surfaces in a contact manifold, and that each surface in the
family is convex, except at some finite number of distinguished parameters. (This is a
C∞-generic property for 1-parameter families of embedded surfaces.) We would like to
know how the characteristic foliation of the surface changes as we pass through these
distinguished parameter values. More accurately, we would like to know how the dividing
set changes. The fundamental modification to the dividing set is the bypass attachment,
developed by Honda in [Hon00a].

Definition. If Σ is a convex surface in a contact 3-manifold (M, ξ), then a bypass for Σ is an
oriented, embedded half-disc D such that

(1) ∂D is the union of two Legendrian arcs α1, α2 which intersect at their endpoints;
(2) D intersects Σ transversely along α1;
(3) D has positive elliptic tangencies at α1 ∩ α2, one negative elliptic tangency on the

interior of α1, and only positive tangencies along α2, alternating between elliptic and
hyperbolic;
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α

Figure 2.2: On the left, the dividing set ΓΣ0 in a neighborhood the attaching arc α. On the
right, the dividing set ΓΣ1 .

(4) α1 intersects the dividing set ΓΣ exactly at the elliptic points of α1.

We will refer to α1 ⊂ D as the attaching arc for the bypassD, and we say thatD straddles the
component c ⊂ ΓΣ containing the negative elliptic tangency.

Remark. The bypass attachment has been generalized to higher dimensions by Honda-
Huang [HH18].

When a bypass D for Σ exists, it is known that there is a neighborhood of Σ ∪ D,
diffeomorphic to Σ × [0, 1], such that the surfaces Σi = Σ × {i}, i = 0, 1, are convex, and
such that the dividing set ΓΣ1 is obtained from ΓΣ0 by Honda’s bypass attachment operation,
depicted in Figure 2.2. A bypass which does not change the dividing set (up to isotopy)
is said to be trivial. The effect of bypass attachment on the dividing set of Σ can also be
seen through Giroux’s contact handle decompositions. The surface Σ1 is obtained from Σ0

by attaching a contact 1-handle and then a contact 2-handle in a topologically canceling
manner. A detailed description of this process can be found in [Ozb11, Section 3].

Given a Legendrian arc α1 in a convex surface Σ, we have no assurances that a bypass
for Σ exists along α1. We can, however, produce bypasses with stabilizations. Namely,
if L ⊂ (M, ξ) is a Legendrian knot, then the symmetric difference of L and S±(L), once
oriented appropriately, bounds a bypass disc, with sign corresponding to the sign of the
stabilization.
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Figure 2.3: The Farey tessellation of the hyperbolic unit disc. The rational numbers p/q and
p′/q′ are each connected to (p+ p′)/(q + q′) by an arc.

2.4.2 Basic slices

Honda introduced the bypass in his quest to classify tight contact structures. For torus
bundles and lens spaces, another fundamental building block of the classification of tight
structures is the basic slice.

Throughout this thesis, whenever we have a convex torus T 2 ⊂ (M, ξ), we will assume
that the dividing set ΓT 2 has two parallel components. Under the identification T 2 = R2/Z2,
these components are isotopic to a line of rational slope s(T 2), which we refer to as the slope
of the dividing set.

Definition. Let (T 2×I, ξ) be tight, with convex boundary, and let si be the slope of T 2×{i},
i = 0, 1. We call (T 2 × I, ξ) a basic slice if

• s0 and s1 are connected by an edge of the Farey tessellation;

• for each t ∈ [0, 1], if T 2 × {t} is convex, then its slope s lies in the interval [s1, s0] on
the Farey tessellation.

The Farey tessellation is depicted in Figure 2.3, with [s1, s0] denoting a counterclockwise
arc from s1 to s0.
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Remark. The rational numbers s0 and s1 will be connected by an edge of the Farey tessellation
if and only if the minimal integral vectors representing s0, s1 form a basis of Z2.

For our purposes, the most pertinent fact about basic slices is the following: once we
fix rational slopes s0, s1 which are Farey neighbors, there are precisely two tight contact
structures ξ on T 2× I making (T 2× I, ξ) a basic slice with slopes s0, s1, and these structures
are distinguished by their relative Euler classes. Indeed, we have PD(e(ξ, s)) = ±(0, 1) in
Z2 ∼= H1(T 2;Z).

Basic slices are useful in the classification of tight contact structures because one can
decompose a tight thickened torus (T 2 × I, ξ) into basic slices, each of which admits two
tight contact structures. These basic slices naturally cluster into continued fraction blocks,
within which the basic slices may be shuffled. The standard model for a continued fraction
block is a tight structure on T 2 × [0,m] with boundary slopes sm = −1−m and s0 = −1,
for somem ≥ 1. We assume that this tight structure decomposes intom basic slices, with
sk = −1− k for 0 ≤ k ≤ m. There arem+ 1 tight structures satisfying these requirements,
distinguished by their relative Euler classes, which satisfy PD(e(ξ, s)) = (0, k) ∈ H1(T 2;Z)

for some k ∈ {−m, 2−m, . . . ,m− 2,m}.

Of them+ 1 tight contact structures on a continued fraction block T 2 × [0,m], just two
— those with PD(e(ξ, s)) = ±(0,m) — are universally tight. The remaining tight structures
will contain adjacent basic slices of opposite sign, which causes their lifts to the universal
cover to be overtwisted. More generally, a tight contact structure ξ on a thickened torus
T 2 × I can have each of its continued fraction blocks be universally tight, while ξ itself is
virtually overtwisted. Again, this occurs when the basic slice decomposition of (T 2 × I, ξ)

includes adjacent basic slices of opposite sign. See [Hon00b, Section 4.4.5] for details.

2.5 Liouville hypersurfaces and symplectic handles

Exact symplectic manifolds-with-boundary are also called Liouville domains. In addition to
filling their contact boundaries, Liouville domains will play an important role for us as the
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positive and negative regions of a convex surface.

Definition. A Liouville domain is a pair (ΣL, β), where

(1) ΣL is a smooth, compact manifold-with-boundary;
(2) dβ is a symplectic form on ΣL;
(3) the vector field Xβ defined by ιXβdβ = β points transversely out of ∂ΣL.

We call Xβ the Liouville vector field for (ΣL, β).

Once again, our definition works in any dimension, but we will focus on 2-dimensional
Liouville domains.

Definition. Let (M, ξ) be a contact 3-manifold and let (ΣL, β) be a 2-dimensional Liouville
domain. A Liouville embedding i : (ΣL, β) ↪→ (M, ξ) is an embedding for which there exists
a contact form λ on (M, ξ) satisfying i∗λ = β. We call the image of a Liouville embedding a
Liouville hypersurface and denote it by (ΣL, β) ⊂ (M, ξ).

The standard example of a Liouville hypersurface is the positive region of a convex
surface. The following result says that these regions are in fact the source of all Liouville
hypersurfaces.

Proposition 2.9 ([Avd12, Proposition 7.2]). A hypersurfaceΣL ⊂ (M, ξ) is Liouville if and only

if there is a convex hypersurface Σ ⊂ (M, ξ) for which ΣL isR+(Σ) minus some collar neighborhood

of ∂R+(Σ).

Given a Liouville hypersurface (ΣL, β), Avdek constructs a symplectic handle (HΣL , ωβ),
and we summarize this construction here. For full details see [Avd12].

The construction begins with a standard neighborhood N (ΣL) of (ΣL, β) in (M, ξ). If
λ is a contact form for (M, ξ) satisfying λ|TΣL = β, then there is a neighborhood N(ΣL) =

[−ε, ε]×ΣL with λ|N(ΣL) = dz+β, for some sufficiently small ε. This neighborhoodwill have
corners at {±ε} × ∂ΣL, but an edge-rounding process produces N (ΣL), a neighborhood of
(ΣL, β) with smooth, convex boundary.
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With an abstract copy of this standard neighborhood in hand, consider the symplectic
manifold

(HΣL , ωβ) = ([−1, 1]×N (Σ), dθ ∧ dz + dβ),

where θ and z are the coordinates on [−1, 1] and [−ε, ε], respectively. This is the symplectic
handle constructed from (ΣL, β). There is a vector field Vβ = z∂z + Xβ which points
transversely out of ∂HΣL along [−1, 1]× ∂N (ΣL) and whose flow dilates ωβ. This vector
field can be perturbed so that it also points into ∂HΣL along {±1} × N (ΣL), making this
portion of ∂H(ΣL) concave while [−1, 1]× ∂N (ΣL) is convex.

Remark. In the special case where (ΣL, β) ∼= (T ∗S1, λcan), we refer to (HΣL , ωβ) as a (four-
dimensional) round symplectic 1-handle.

Avdek’s construction generalizes the notion of a Weinstein 1-handle, which is produced
in dimension four by considering the Liouville domain (D2, 1

2
(p dq − q dp)), where D2 has

coordinates p, q. We will also refer in this thesis to (4-dimensional) Weinstein 2-handles,
which are Liouville domains of the form (D2 × D2, λ2), where the Liouville vector field
points transversely into the boundary along ∂D2×D2, points transversely into the boundary
along D2 × ∂D2, and admits a Morse Lyapunov function.

Let us describe how Avdek attaches the symplectic handle (HΣL , ωβ) to a strong sym-
plectic filling (W,ω). For this attachment to be possible there must exist a pair of disjoint
Liouville embeddings

i1 : (ΣL, β) ↪→ (M, ξ) and i2 : (ΣL, β) ↪→ (M, ξ),

where (M, ξ) is the boundary of (W,ω). These embeddings admit standard neighborhoods
N (i1(ΣL)) and N (i2(ΣL)), each contactomorphic to N (ΣL). We form a sort of symplectic-
filling-with-cornersW� by removing N (i1(ΣL)) and N (i2(ΣL)) from (W,ω) and attaching
HΣL along {±1} × N (ΣL). Because (W,ω) is a strong filling of (M, ξ), there is a Liouville
vector field onW pointing out of ∂W . We glue (HΣL , ωβ) to (W \(N (i1(ΣL))∪N (i2(ΣL))), ω)

in such a way that this vector field agrees with Vβ along {±1} × N (ΣL). The edges ofW�

16



are then rounded to produce a new symplectic filling (W ′, ω′). This new filling is the result
of attaching the handle (HΣL , ωβ) to (W,ω) along i1(ΣL) and i2(ΣL).

2.6 Contact handles

In this section we briefly describe standard models for 3-dimensional contact handles
of index 1 and 2. Our goal is to interpret the bypass attachment operation described in
Section 2.4.1 using contact handles. This idea is due to Giroux, and details can be found in
[Ozb11].

The models are given as subsets of (R3, kerα), where α = dz + y dx+ 2x dy. For some
small ε > 0 we have

H1 = {(x, y, z) ∈ R3 |x2 + z2 ≤ ε, y2 ≤ 1}

and
H2 = {(x, y, z) ∈ R3 |x2 + z2 ≤ 1, y2 ≤ ε}.

Notice that Z = 2x ∂x−y ∂y +z ∂z is a contact vector field on (R3, kerα), and is transverse to
∂H1 and ∂H2 away from corners. So ∂H1 and ∂H2 are convex surfaces, and their dividing
sets are given by

∂H1 ∩ {z = 0} and ∂H2 ∩ {z = 0}.

Our standard model for a contact 1-handle is then (H1, kerα), with attaching region ∂H1 ∩

{y = ±1}. The attaching region is that portion of ∂H1 whereZ is inward-pointing. Similarly,
(H2, kerα) is the standard model for a contact 2-handle, though it is attached using −Z, so
that ∂H2 ∩ {x2 + z2 = 1} is the attaching region.

Now suppose that (M, ξ) is a contact 3-manifold-with-boundary whose boundary is
convex. We attach a 1-handle to (M, ξ) by identifying the attaching region of our standard
model with regular neighborhoods of a pair of points p, q ∈ ∂M . We require this identifi-
cation to match the dividing sets of the regular neighborhoods with that of the attaching
region, so that the contact structure on (M, ξ) matches up with that on the standard model,
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yielding a new contact manifold. We analogously define contact 2-handle attachment.

In Chapter 3 we will need contact handle attachment to extend the contact form (and
not just the contact structure). One circumstance in which this can be accomplished is
when (M, ξ) carries the structure of a sutured contact manifold, as defined in [CGH11, Section
2]. In this case, there is a neighborhood U(Γ) ⊂M of the dividing set Γ ⊂ ∂M on which
the contact structure admits a standard form, and this standard form will match (H1, kerα),
allowing us to extend the contact form as desired.

Finally, we remark on the connection to bypasses. Suppose that D is a bypass disc
for a convex surface Σ ⊂ (M, ξ). In Section 2.4.1 we described a neighborhood of Σ ∪D

which is diffeomorphic to Σ × [0, 1], with each surface Σi := Σ × {i} convex, and with
the dividing set ΓΣ1 obtained from ΓΣ0 via the bypass attachment operation depicted in
Figure 2.2. Consider now a one-sided neighborhood N(Σ) = Σ × [0, ε] of Σ. We choose
the coordinates on N(Σ) so that ξ has the form ker(dt+ β), for some 1-form β on Σ. Then
the boundary components Σ × {0} and Σ × {ε} are convex, with dividing sets ΓΣ × {0}

and ΓΣ × {ε}. By attaching a contact 1-handle to N(Σ) along Σ× {ε} and then a contact
2-handle to the resulting neighborhood, we obtain the desired neighborhood Σ× [0, 1].

2.7 Legendrian surgery diagrams

The overarching goal of this thesis is to classify the symplectic fillings of contact 3-manifolds.
In this section we introduce the construction which will define many of the contact 3-
manifolds of interest to us. This details of this construction can be found in a variety of
sources, including [OS13, Chapters 2 & 11].

2.7.1 Dehn surgery

Starting from the most basic closed 3-manifold, S3, we will use Dehn surgery to produce
more interesting smooth 3-manifolds. Dehn surgery removes a solid torusN ⊂ S3 from S3,

18



and then glues in a new solid torus S1 ×D2 via an orientation-reversing diffeomorphism

φ : ∂(S1 ×D2)→ ∂(S3 \ N̊).

The solid torus to be removed from S3 will be recorded by a choice of knotK ⊂ S3, with N
given by a tubular neighborhood N(K) ofK. Additionally, one can show that the result of
Dehn surgery is determined up to diffeomorphism by the homology class

φ∗([{pt} × ∂D2]) ∈ H1(∂(S3 \ N̊(K));Z).

So the data used for Dehn surgery consists of a knot K ⊂ S3, along with a homology class
a in H1(∂(S3 \ N̊(K));Z).

In fact, we can represent a via a rational number. If we choose an orientation for K, we
have canonical choices for a meridian µ and longitude1 λ of K, which together give a basis
for H1(∂(S3 \ N̊(K));Z) ∼= Z2. With this basis fixed, there exists a unique pair of relatively
prime integers p and q such that a = p µ+ q λ. These integers depend on the orientation we
have chosen for K: reversing this orientation reverses the signs of µ and λ, and thus of p
and q. However, the ratio p/q (which may be infinite, if q = 0) is orientation-independent.
So in fact the data fed into Dehn surgery consists of a knotK ⊂ S3 and a (possibly infinite)
rational number p/q.

Definition. Given a knotK ⊂ S3 and a rational number p/q ∈ Q∪{∞}, let S3
p/q(K) denote

the smooth manifold
(S3 \ N̊(K)) ∪φ (S1 ×D2),

where φ : ∂(S1 × D2) → ∂(S3 \ N̊(K)) is determined by the fact that φ∗([{pt} × ∂D2]) =

p µ+q λ. Here µ and λ are the meridian and longitude classes inH1(S3 \N̊(K)) determined
byK, with some fixed choice of orientation. We call the smooth manifold S3

p/q(K) the Dehn

surgery along K with slope p/q.

1In general, a knot in a 3-manifold does not necessarily admit a canonical choice of longitude. But all
knots in S3 are null-homologous, and therefore admit canonical framings.
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In case we have link L, each of whose components is decorated with a rational number,
we can tell this story again. Namely, we simply perform Dehn surgery along all of the
components simultaneously. We omit the details of this construction, but refer to the input
data (the decorated link) as a surgery diagram for the resulting 3-manifold.

Definition. A surgery diagram for a smooth 3-manifoldM is a link L in S3, along with a
choice of rational number for each component of L, such that Dehn surgery with this input
yields a manifold diffeomorphic toM .

A landmark result of Lickorish and Wallace tells us that the construction outlined here
produces all reasonably nice smooth 3-manifolds.

Theorem 2.10 ([Lic62, Wal60]). Every closed, oriented 3-manifold can be obtained via integral

Dehn surgery on a link in S3.

Remark. By integral Dehn surgery, we mean that each rational number which appears in
the surgery presentation is an integer. Integral Dehn surgery is particularly important,
because it is equivalent to 4-dimensional 2-handle attachment. That is, if p/q is an integer,
then S3

p/q(K) can be realized as the boundary of B4 ∪K,p/q X4
2 , the 4-manifold obtained by

attaching a 2-handle to B4 along K ⊂ S3 = ∂(B4) with framing p/q.

Remark. Theorem 2.10 tells us that every smooth 3-manifoldM admits a surgery diagram,
but of course there is no reason that this diagram should be unique. In [Kir78], Kirby gives
necessary and sufficient conditions for distinct surgery diagrams to produce diffeomorphic
3-manifolds, but we will not concern ourselves with this question here.

2.7.2 Contact surgery

Because we will be working in the contact setting, we would like a notion of Dehn surgery
which produces contact 3-manifolds. Here our starting point is again S3, this time with the
standard tight contact structure ξstd. This construction can be carried out in essentially the
same generality as above: given a Legendrian knot L ⊂ (S3, ξstd) and a rational number
p/q, we can perform (p/q)-surgery (measured with respect to the Thurston-Bennequin
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framing ofK) on S3 alongK, and produce a contact structure on the surgered manifold.
However, in this section we give a somewhat less delicate treatment which addresses only
(−1)-surgery, as this is the case of most interest to us.

Wementioned in Section 2.7.1 that integral surgery diagrams allow us to see 3-manifolds
as boundaries of 4-manifolds: the diagram can be used to construct a 3-manifold via Dehn
surgery or a 4-manifold via 2-handle attachment, and the 3-manifold will bound the 4-
manifold. In the contact setting, we will only define (−1)-surgery, and will do so via
4-dimensional handle attachment, rather than Dehn surgery. We start with the well-known
fact that the boundary of a symplectic fillingwith aWeinstein 2-handle attached is smoothly
equivalent to the result of (−1)-surgery.

Theorem 2.11. Suppose that (W,ω) is a symplectic 4-manifold which strongly (respectively, ex-

actly) fills its boundary, and that L ⊂ ∂W is a Legendrian curve with respect to the induced contact

structure. LetW ∪L X4
2 denote the 4-manifold obtained by attaching a 2-handle X4

2 toW along L

with framing−1 with respect to its canonical contact framing. Then ω may be extended toW ∪LX4
2

in such a way thatW ∪X4
2 strongly (respectively, exactly) fills its boundary.

The upshot of Theorem 2.11 is that we can associate to any Legendrian link L ⊂ (S3, ξstd)

an exactly fillable contact manifold (S3(L), ξL). This is because (B4, ωstd) is an exact sym-
plectic filling of (S3, ξstd), so we may define

(S3(L), ξL) := ∂(B4 ∪L X4
2 , ω),

where ω is obtained from ωstd via Theorem 2.11. As a smooth manifold, S3(L) is equivalent
to the result of surgery alongL ⊂ S3, with the componentLi ofL given framing tb(Li)−1. It
is a well-known fact (c.f. [DG04]) that, up to contactomorphism, (S3(L), ξL) is determined
by the isotopy class of L.

Definition. A Legendrian surgery diagram for a contact 3-manifold (M, ξ) is a Legendrian
link L ⊂ (S3, ξstd), identified up to Legendrian isotopy, such that (M, ξ) is contactomorphic
to (S3(L), ξL).
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Of course many contact 3-manifolds do not admit Legendrian surgery diagrams, since
a surgered contact manifold (S3(L), ξL) is necessarily fillable. But in this thesis our interest
will often be in contact manifolds constructed via this process.
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CHAPTER 3

Splitting symplectic fillings

When studying symplectic fillings of contact manifolds, one often wonders whether decom-
positions which exist for the contact manifold extend to its fillings. For instance, Eliashberg
proved the following result.

Theorem 3.1 ([Eli90, CE12]). Suppose that a 3-dimensional contact manifold (M, ξ) is obtained

from another contact manifold (M ′, ξ′) via connected sum. Then every symplectic filling of (M, ξ)

is obtained by attaching a Weinstein 1-handle to a symplectic filling of (M ′, ξ′).

So the symplectic fillings of a contact manifold obtained by connected sum are deter-
mined by the fillings of the parties to the connected sum. Thus, one may attempt to classify
the symplectic fillings of a contact manifold (M, ξ) by identifying an embedded sphere
along which (M, ξ) decomposes as a connected sum, and then classifying the symplectic
fillings of the contact manifold(s) resulting from this decomposition.

Our goal in this chapter is to produce an analogue of Theorem 3.1 for surfaces of higher
genus. That is, if there is a surface of genus g ≥ 1 along which our contact manifold (M, ξ)

decomposes, we would like to extend this decomposition to any filling of (M, ξ). This will
allow us to study symplectic fillings of (M, ξ) by instead analyzing fillings of the (hopefully
simpler) pieces into which (M, ξ) splits.

We call the surfaces which allow such a decomposition splitting surfaces, and will give a
precise definition in Section 3.1. The main result of this chapter is then the following.

Theorem 3.2. Let (M, ξ) be a closed, cooriented 3-dimensional contact manifold and let (W,ω) be

a strong (respectively, exact) filling of (M, ξ). If (M, ξ) admits a splitting surface Σ of genus g,

then there exists a symplectic manifold (W ′, ω′) such that
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(1) (W ′, ω′) is a strong (respectively, exact) filling of its boundary (M ′, ξ′);

(2) there are Legendrian graphs Λ1,Λ2 ⊂ ∂W ′ with standard neighborhoods N(Λ1), N(Λ2) such

that

M '

(
∂W ′ −

2⋃
i=1

int(N(Λi))

)
/(∂N(Λ1) ∼ ∂N(Λ2)),

where the boundaries ∂N(Λi) are glued in such a way that their dividing sets and meridians

are identified;

(3) (W,ω) can be recovered from (W ′, ω′) by attaching a symplectic handle (HR+(Σ), ωβ) con-

structed from the positive region of Σ.

Remark. The genus 1 version of Theorem 3.2 first appeared in Michael Menke’s thesis,
[Men18], and will be the version we use in later chapters. The generalization to higher
genus is the result of joint work with Menke.

Our proof strategy for Theorem 3.2 follows in the tradition of Eliashberg’s "filling by
holomorphic discs," initiated in [Eli90]. A splitting surface Σ ⊂ (M, ξ) of genus g gives
us two surfaces inM with genus 0 and g + 1 boundary components, each of which can
be lifted to a family of J-holomorphic curves in the symplectization ofM . If we have a
filling (W,ω) of (M, ξ), these families can be extended to a single 1-dimensional family of
J-holomorphic curves in the completion (Ŵ , ω̂), and the geometric conditions on Σ will
control the topology of this family. Removing a neighborhood of this family will lead us to
the new symplectic manifold (W ′, ω′).

3.1 Splitting surfaces

In this section we define the splitting surfaces which appear in Theorem 3.2. An unsurpris-
ing condition on a splitting surface Σ ⊂ (M, ξ) is that Σ should be convex; this ensures that
Σ admits a reasonably nice neighborhood in (M, ξ). Next, we want the regions R±(Σ) to be
diffeomorphic to one another, as these will appear as the ends of a 1-parameter family of
J-holomorphic curves. Our remaining conditions are much more technical, though their
purpose should become apparent as we pursue the proof strategy outlined above.
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e1 e2 eg

eg+1

Figure 3.1: A splitting surface Σg with dividing curves e1, . . . , eg+1, each of which is an
elliptic orbit with Conley-Zehnder index 1. Some of the attaching arcs are also depicted.

Definition. We call a closed, connected, oriented, convex surface Σ ⊂ (M, ξ) of genus g a
splitting surface if

(1) the regions R±(Σ) are planar, with g + 1 boundary components c1, . . . , cg+1;
(2) there exist bypasses D±1 , . . . , D±g ⊂ (M, ξ), attached to Σ along Legendrian arcs

α±1 , . . . , α
±
g , with α±i straddling ci and having its endpoints on cg+1;

(3) for i = 1, . . . , g, there is an arc ai ⊂ cg+1 which contains the endpoints of α+
i and α−i ,

and contains no endpoints of α±j for j 6= i;
(4) the bypassesD+

1 , . . . , D
+
g are attached from one side ofΣ and the bypassesD−1 , . . . , D−g

are attached from the other side.

A mixed torus is a splitting surface of genus 1.

Because of their appearance throughout the rest of this thesis, we point out that a mixed
torus can equivalently be defined to be an embedded convex torus T ⊂ (M, ξ) admitting
a virtually overtwisted neighborhood of the form T 2 × [0, 2], where T is identified with
T 2 × {1} and each of T 2 × [0, 1] and T 2 × [1, 2] is a basic slice. The notion of splitting (M, ξ)

along T is described as follows. Let si denote the slope of T 2 × {i}. The identification of
T 2 with R2/Z2 may be normalized so that s0 = −1 and s1 =∞. With this normalization,
Theorem 3.2 will produce a filling of (M ′, ξ′), the contact manifold obtained from (M, ξ) by
splitting along T with slope s, for some integer 0 ≤ s ≤ s2 − 1. We define

M ′ := S0 ∪ψ0 (M \ T ) ∪ψ1 S1,
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where each Si is a solid torus and ψi : ∂Si → Ti is chosen so that the image of a meridian
in ∂Si has slope s in Ti. Notice that the dividing set is vertical, and thus s must be an
integer. We define ξ′ to agree with ξ onM \T , and on Si ⊂M ′, ξ′ is the unique tight contact
structure determined by the characteristic foliation of ∂Si.

Having introduced this language for mixed tori, we may state the genus 1 version of
Theorem 3.2 somewhat more succinctly.

Theorem 3.3 ([Men18, Theorem 1.1.1]). Let (M, ξ) be a closed, cooriented 3-dimensional contact

manifold, and let (W,ω) be a strong (exact) symplectic filling of (M, ξ). If there exists a mixed torus

T 2 ⊂ (M, ξ), with normalized embedding T 2 × [0, 2], then there exists a (possibly disconnected)

symplectic manifold (W ′, ω′) such that:

• (W ′, ω′) is a strong (exact) filling of its boundary (M ′, ξ′);

• (M ′, ξ′) is the result of splitting (M, ξ) along T with some slope 0 ≤ s ≤ s2 − 1;

• (W,ω) can be recovered from (W ′, ω′) by round symplectic 1-handle attachment.

We also point out the first application of Theorem 3.3, which will be of use to us in later
chapters.

Theorem 3.4 ([Men18, Theorem 1.1.3]). Let L ⊂ (M, ξ) be a Legendrian knot in a contact

3-manifold, and let (M ′, ξ′) be the result of contact surgery on (M, ξ) along S+(S−(L)). Then every

strong (exact) symplectic filling of (M ′, ξ′) may be obtained, up to diffeomorphism, from a strong

(exact) symplectic filling of (M, ξ) by attaching a Weinstein 2-handle along S+(S−(L)).

3.2 Proof of Theorem 3.2

Throughout this section we take (M, ξ) to be a contact manifold satisfying the hypotheses
of Theorem 3.2. Let (W,ω) be a strong filling of (M, ξ) and Σg a splitting surface of genus g,
with dividing set ΓΣg = c1 ∪ · · · ∪ cg+1. There are attaching arcs α±1 , . . . , α±g and associated
bypasses D±1 , . . . , D±g as described in the definition of splitting surfaces.
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We will denote by (Ŵ , ω̂) the completion of (W,ω), obtained by attaching the positive
end ([0,∞)×M,d(etα)) of the symplectization ofM . We take J to be an almost complex
structure on Ŵ adapted to the contact form α for (M, ξ). That is, J is translation invariant,
Jξ = ξ, and J∂t = Rα, where t is the [0,∞)-coordinate on the symplectization and Rα is
the Reeb vector field for α.

Wewill prove Theorem3.2 by adapting the proof of [Men18, Theorem 1.1.1]. Specifically,
our goal is to use Σg to construct a 1-parameter family S which sweeps out a properly
embedded handlebody in (Ŵ , ω̂). Removing this handlebody from (W,ω) will leave us
with the desired manifold (W ′, ω′).

Because our proof is adapted from [Men18], many of our lemmas are arbitrary-genus
analogues of lemmas found there. Some of these require new proofs, while others, such
as the following standardization of the contact form onM , are genus-independent and
therefore survive unaltered.

Lemma 3.5 (c.f. [Men18, Lemma 1.3.1]). There is a choice of contact form on a neighborhood of

Σg such that the components ΓΣg are non-degenerate elliptic Reeb orbits of Conley-Zehnder index 1

with respect to the framing induced by Σg.

Denote the Reeb orbits constructed in Lemma 3.5 by e1, . . . , eg+1, with eg+1 containing
the endpoints of α±1 , . . . , α±g and ei the dividing curve straddled by α±i . Menke’s proof of
Lemma 3.5 produces an explicit model for Σg with these orbits comprising the dividing
set, and this model is depicted in Figure 3.1.

Lemma 3.6. Let Σg ⊂ (M, ξ) be a splitting surface of genus g > 1, with dividing set e1∪· · ·∪eg+1

and bypasses D±1 , . . . , D±g as described above. There is a one-sided neighborhood

N = N(Σg ∪D+
1 ∪ · · · ∪D+

g )

and an extension of the contact form α chosen in Lemma 3.5 to N . This neighborhood contains

contact 1-handles N i
1, contact 2-handles N i

2, and surfaces with corners Σi−1
g ,Σi

g+1 of genus g and

(g + 1), respectively, for i = 1, . . . , g. Moreover,
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(1) the boundary ∂N is given by Σg and Σ̃, where Σ̃ is another convex surface of genus g, with

dividing set given by elliptic orbits ẽ1, . . . , ẽg+1;

(2) Σ0
g = Σg, and for i = 1, . . . , g − 1, Σi

g meets Σ̃ in the orbits ẽ1, . . . , ẽi, meets Σg in the orbits

ei+1, . . . , eg, and has dividing set given by these orbits, along with an elliptic orbit ei+1
g+1;

(3) for i = 1, . . . , g we have a neighborhood

N(Σi−1
g ∪D+

i ) = N i
1 ∪Σig+1

N i
2,

with Σi
g+1 containing the orbits ẽ1, . . . , ẽi−1, ei, . . . , eg, e

i+1
g+1, as well as the elliptic orbit ei;

(4) all of the elliptic orbits listed have Conley-Zehnder index 1;

(5) the Reeb vector field Rα is positively (negatively) transverse to the positive (negative) region

of each of the surfaces listed;

(6) there are hyperbolic orbits hig+1, h̃i in N i
1 and N i

2, respectively, which have Conley-Zehnder

index 0 with respect to Σg;

(7) if γ is any other Reeb orbit in N and γ̄ is any of ei, hig+1, or h̃i, then

A(γ̄) < A(ēj),A(ẽj)� A(γ),

for all j. In particular, A(γ) is sufficiently large as to prohibit the existence of a pseudoholo-

morphic curve in the symplectization ofM from having γ among its negative ends while its

positive ends form a subset of the curves listed.

Proof. Our goal is to extend the neighborhood of Σg identified by Lemma 3.5 to a bypass
neighborhood; we accomplish this by succesively attaching to our neighborhood pairs of
contact 1- and 2-handles, and extending α over each of these handles.

We write Σg × [0, ε] for (half of) the neighborhood produced by Lemma 3.5. Within this
one-sided neighborhood, we find N1

1,ε, a neighborhood obtained by "thickening Σg away
from e1." The boundary ∂N1

1,ε has two components, which we call Σg × {0} and Σg × {ε},
and which meet along the elliptic orbit e1. Conflating eg+1 with a parallel copy in Σg × {ε},
we see that each of e1 and eg+1 is a dividing curve for the convex surface Σg × {ε}, and we
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e1

eg+1

e1

h1
g+1

Figure 3.2: We construct N1
1,ε by first thickening Σg away from e1, as on the left. Conflating

eg+1 with a parallel copy, we perform a convex-to-sutured modification, which introduces
the hyperbolic orbit h1

g+1, as seen on the right. Though not drawn, the Reeb orbit eg+1

persists on the right, becoming part of the interior of N1
1,ε.

know that the bypass D+
1 has endpoints on eg+1. According to [CGH11, Lemma 4.1], we

may modify N1
1,ε by introducing a canceling hyperbolic orbit h1

g+1 for eg+1, as depicted in
Figure 3.2. Following this modification, we attach a contact 1-handle to N1

1,ε along a pair of
points in h1

g+1, extending the contact form α as we go, to yield the neighborhood N1
1 . This

neighborhood has boundary components Σg and Σ1
g+1, where Σ1

g+1 is a surface of genus
g + 1 with dividing curves e1, e1, e2

g+1, and e2, . . . , eg. We choose our extension of α so that
the actions of e1 and e2

g+1 are much larger than those of e1, e
1
g+1, and h1

g+1.

We have now produced N1
1 ⊂ N(Σg ∪ D+

1 ), as depicted in Figure 3.3. Attaching a
topologically canceling contact 2-handle to N1

1 along Σ1
g+1 will give N(Σg ∪D+

1 ), allowing
us to identify N1

2 . An understanding of the Reeb dynamics of N1
2 is given by viewing N1

2 as
the result of attaching a contact 1-handle to N1

2,ε ⊂ Σg × [1− ε, 1] ⊂ N(Σg ∪D+
1 ). We now

repeat this process for i = 2, . . . , g to obtain the neighborhood N . The fact that all other
Reeb orbits intersecting N have sufficiently large action as to be irrelevant follows from
[Vau15, Theorem 2.1].

A schematic of the neighborhood N(Σi−1
g ∪D+

i ) is depicted in Figure 3.3.

As stated above, we will build a 1-parameter family of holomorphic curves in Ŵ that
will sweep out a handlebody of genus g. The splitting surface Σg will help us do this by
providing targets R±(Σg) for which our family can aim at its ends. That is, our 1-parameter
family will have its ends in the symplectization part [0,∞) ×M of Ŵ , and we want the
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Σi
g

Σi−1
g

ei
h̃i

ẽi ei+1
g+1

hig+1

eig+1
ei

Σi
g+1

Figure 3.3: Orbits in the neighborhoodN(Σi−1
g ∪D+

i ). The heavily shaded curves represent
the walls identified in Lemma 3.9. The segments on the far left and right are included in
Σi−1
g ,Σi

g, andΣi
g+1. Themiddle (dashed) segment is included only inΣi

g+1, while the dashed
segments in the upper left and lower right are also included in Σi−1

g and Σi
g, respectively.

projection π : [0,∞)×M →M to take the ends of our family to the regions R±(Σg). The
first step towards building our 1-parameter family is then to lift R±(Σg) to embedded
holomorphic curves

u± : S2 \ {p1, . . . , pg+1} → [0,∞)×M.

We can obtain these lifts by employing the following strategy: for each 1 ≤ i ≤ g + 1 we
construct a holomorphic half-cylinder

ui : [0,∞)× S1 → R×M

which is positively asymptotic to ei. These half-cylinders project under π to collar neighbor-
hoods of e1, . . . , eg+1 in R±(Σg), the deletion of which leaves R′±, a 2-dimensional Weinstein
domain. Our lifting problem is then solved if we can lift R′± to a holomorphic curve in
R ×M and then glue the holomorphic half-cylinders u1, . . . , ug+1 to the boundary. The
following lemma, proved in [Men18], allows us to lift R′±.

Lemma 3.7 (c.f. [Men18, Lemma 1.3.4]). Let (B, β = −df ◦ J) be a 2-dimensional Weinstein

domain, where f : B → R is a Morse function such that ∂B is a level set of f , and let α = dt+β be

a contact form on [−ε, ε]×B, where t is the coordinate on [−ε, ε]. Then there is an adapted almost

complex structure on R× [−ε, ε]×B such that we can lift B to a holomorphic curve by the map

u(x) = (f(x), 0,x).
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The construction of the holomorphic half-cylinders u1, . . . , ug+1 and the gluing of these
to our lifts is also carried out in [Men18]; this establishes the following result.

Lemma 3.8 (c.f. [Men18, Lemma 1.3.5]). There are embedded holomorphic curves

u± : S2 \ {p1, . . . , pg+1} → [0,∞)×M

such that

(1) both are Fredholm regular with index 2 and positively asymptotic to e1, . . . , eg+1;

(2) under the projection π : [0,∞)×M →M we have im(π ◦ u±) = R±(Σg).

The same holomorphic half-cylinder strategy is used in [Men18] to prove the next result
that we will need. Because Σg is a splitting surface, it admits collections of bypassesD+ and
D− from opposite sides, and Lemma 3.6 describes the orbits that appear in a neighborhood
N(Σg ∪D+ ∪D−). Specifically, Lemma 3.6 gives a list of relevant orbits in N(Σg ∪D+),
and produces a corresponding list in N(Σg ∪D−). We distinguish the orbits in N(Σg ∪D−)

from those in N(Σg ∪D+) with a prime (e.g., e′i instead of ei). Some of these orbits are
represented diagrammatically in Figure 3.4. In Lemma 3.6, the attachment of the bypass
D+
i was accomplished by attaching the contact handles N i

1 and N i
2; we use the handles

(N i
2)′ and (N i

1)′ to attach D−i . The same approach used to prove Lemma 3.8 produces a
collection of holomorphic curves which project to N(Σg ∪D+ ∪D−) and will be useful to
us in constructing our 1-parameter family.

Lemma 3.9 (c.f. [Men18, Lemma 1.3.6]). For i = 1, . . . , g, there are embedded holomorphic

curves

ū±,i, ū
′
±,i : S

2 \ {p1, . . . , pg+2} → [0,∞)×N(Σg ∪D+ ∪D−)

and

ũ±,i, ũ
′
±,i : S

2 \ {p1, . . . , pg+1} → [0,∞)×N(Σg ∪D+ ∪D−),

all Fredholm regular of index 2, all positively asymptotic to ẽ1, . . . , ẽi−1, ei+1, . . . , eg, and addition-

ally
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e1

ẽ1 e2
g+1

h̃1

eg+1

h1
g+1

(h1
g+1)′

(e2
g+1)′

e′1

ẽ′1

h̃′1

e1

Figure 3.4: Orbits in the neighborhood N(Σg ∪ D+
1 ∪ D−1 ). The heavily shaded curves

represent some of the walls identified in Lemma 3.9.

(1) ū±,i is positively asymptotic to ei, ēi, and ei+1
g+1;

(2) ū′±,i is positively asymptotic to ei, ē′i, and (ei+1
g+1)′;

(3) ũ±,i is positively asymptotic to ẽi and ei+1
g+1;

(4) ũ′±,i is positively asymptotic to ẽ′i and (ei+1
g+1)′.

Curves with the same asymptotic ends are distinguished by whether their projections to Σg ⊂M

agree with R+(Σg) or R−(Σg).

The holomorphic curves given by Lemma 3.9 serve as "walls" between the contact
handles that have been attached to Σg, and will be used to enumerate certain holomorphic
curves appearing in the symplectizationR×M . Some of these walls are depicted as heavily
shaded curves in Figure 3.4.

LetM(e1, . . . , eg+1) be the index-2moduli space of curves u : S2\{p1, . . . , pg+1} → R×M

which are positively asymptotic to e1, . . . , eg+1 and homologous to either u+ or u−. This
space admits an obvious translation action by R, and the following lemma describes the
compactification ofM(e1, . . . , eg+1)/R.

Lemma 3.10. The compactificationM(e1, . . . , eg+1)/R contains a pair of closed intervalsN± such

that

(1) N± contains the equivalence class of u±;

(2) the boundary ∂N± contains a two-level holomorphic building with top level v1,± a cylinder

positively asymptotic to eg+1 and negatively asymptotic to h1
g+1, and with bottom level v0,±

positively asymptotic to e1, . . . , eg, h
1
g+1;
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(3) the other boundary element of ∂N± is a two-level holomorphic building with top level v′1,± a

cylinder positively asymptotic to eg+1 and negatively asymptotic to (h1
g+1)′, and with bottom

level v′0,± positively asymptotic to e1, . . . , eg, (h
1
g+1)′.

Proof. We assume that A(e1) = A(e2) = · · · = A(eg+1); we will use this action information
as well as a description of the homology classes of the relevant curves to determine ∂N±.
Consider

H1(N(Σg ∪D+ ∪D−)) ' H1(Σg) ' Z2g,

and notice that we may choose curves b1, . . . , bg ⊂ Σg so that [e1], . . . , [eg], [b1], . . . , [bg] forms
a basis for H1(Σg). Moreover, the curve bi is chosen so that if the attaching arc α±i is
joined with (a subarc of) the arc ai identified in the definition of a splitting surface, then
the resulting closed curve is homologous to bi. After orienting the curves b1, . . . , bg, we
compute the following homology classes1

[ẽi] = [ei]−
g−i∑
k=1

[bi+k], [eig+1] = [ei−1
g+1] +

g−i∑
k=1

[bi+k], and [ei] = [bi], (3.1)

where e1
g+1 := eg+1. The equation on the left is valid for 1 ≤ i ≤ g, the right is valid for

2 ≤ i ≤ g + 1, and we recall that ẽg+1 = eg+1
g+1. Similarly,

[ẽ′i] = [ei] +

g−i∑
k=1

[bi+k], [(eig+1)′] = [(ei−1
g+1)′] +

g−i∑
k=1

[bi+k], and [e′i] = −[bi], (3.2)

with the same conventions. Of course [h1
g+1] = [(h1

g+1)′] = [eg+1], while [hig+1] = [eig+1] and
[(hig+1)′] = [(eig+1)′] for 2 ≤ i ≤ g. We also have [h̃i] = [ẽi] for 1 ≤ i ≤ g. Now suppose we
have a (k+1)-level holomorphic building wk∪wk−1∪· · ·∪w0 in ∂N±, with top level wk and
bottom level w0. Let w+

i and w−i denote the sets of Reeb orbits to which wi is positively and
negatively asymptotic, respectively. We denote by A(w±i ) the sum of the α-actions of the
Reeb orbits in w±i and by [w±i ] the sum of their homology classes. Of course we must have
A(w−i ) < A(w+

i ) and [w−i ] = [w+
i ]. We also point out that the curves u±,i, u′±,i, ũ±,i, and ũ′±,i

1The curves b1, . . . , bg are not canonically oriented, but we fix their orientations according to equation 3.1.
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are all disjoint from the curves u± and hence, by the positivity of intersections, from our
holomorphic building. In particular, these curves are disjoint from each level wi. Moreover,
the projections of these curves toM remain disjoint, so for each i, the image of π ◦ wi is
contained in a neighborhood N j

1 or (N j
2 )′, for some j.

Now because u± is positively asymptotic to e1, e2, . . . , eg+1, we know that

w+
k ⊆ {e1, e2, . . . , eg+1}.

We now consider the neighborhoodsN j
1 or (N j

2 )′ in which π ◦wk might land. First, suppose
that π ◦ wk ⊂ N j

1 for some j > 2. Because Σj−1
g meets Σg in the curves ej, . . . , eg, we have

w+
k ⊂ {ej, . . . , eg} and w−k ⊂ {ej, . . . , eg, ej, e

j
g+1, h

j
g+1, e

j+1
g+1}.

The action bounds of Lemma 3.6 allow us to exclude other curves from w−k . From equa-
tion 3.1 we see that the homological requirement [w+

k ] = [w−k ] can only be satisfied if we
have w+

k = w−k , and this of course violates the action requirement A(w+
k ) > A(w−k ). We

conclude that π ◦wk cannot be contained in N j
1 if j > 1. A completely analogous argument

shows that π ◦ wk cannot be contained in (N j
2 )′ when j > 1.

So π ◦ wk is contained in either N1
1 or (N1

2 )′. In the first case we see that

w+
k ⊂ {e1, . . . , eg+1} and w−k ⊂ {e1, . . . , eg+1, e1, h

1
g+1, e

2
g+1},

again using the action bounds of Lemma 3.6. The homological requirement [w+
k ] = [w−k ]

then leads us to

w−k = (w+
k \ {eg+1}) ∪ {h1

g+1} or w−k = (w+
k \ {eg+1}) ∪ {e1, e

2
g+1}.

The latter case is ruled out by part (7) of Lemma 3.6 and the fact that A(w−k ) < A(w+
k ). So

if π ◦ wk is contained in N1
1 , then w−k = (w+

k \ {eg+1}) ∪ {h1
g+1}, and similarly if π ◦ wk is

contained in (N j
2 )′, then w−k = (w+

k \ {eg+1}) ∪ {(h1
g+1)′}.
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An important observation at this point is that w−k contains either h1
g+1 or (h1

g+1)′, and
thus so does w+

k−1. As with π ◦ wk, π ◦ wk−1 must be contained in a neighborhood of the
form N j

1 or (N j
2 )′. Indeed, if h1

g+1 ∈ w+
k−1, then π ◦ wk−1 ⊂ N1

1 and if (h1
g+1)′ ∈ w+

k−1, then
π ◦ wk−1 ⊂ (N1

2 )′. We now consider these two cases.

If π ◦ wk−1 is contained in N1
1 , then

w−k−1 ⊆ {e1, . . . , eg+1, e1, h
1
g+1, e

2
g+1}.

Now w+
k−1 must contain h1

g+1, must be homologous to w−k−1, and must satisfy A(w−k−1) <

A(w+
k−1). The first two conditions are satisfied if

w+
k−1 = {e1, . . . , eg, h

1
g+1} and w−k−1 = ∅

or if
w+
k−1 = {h1

g+1} ∪ w̄ and w−k−1 = {ē1, e
2
g+1} ∪ w̄

for some w̄ ⊆ {e1, . . . , eg}. However, the latter case is prohibited by the action bound, so
we conclude that w−k−1 = ∅, meaning that our building has height two. All that remains is
to verify that the top level of our building is a cylinder. To see that this is the case, notice
that wk−1 must be connected, since w+

k−1 = {e1, . . . , eg, h
1
g+1} and the only null-homologous

combination of these positive ends is e1 + · · · + eg + h1
g+1. So if wk has more than one

negative end, then the building wk ∪ wk−1 has nonzero genus. Of course this is impossible,
since all of the curves inM(e1, . . . , eg+1)/R are planar. So wk is a cylinder with positive
end eg+1 and negative end h1

g+1, as desired.

If instead the image of π ◦ wk−1 is contained in (N1
2 )′, then the same considerations lead

us to conclude that wk is a cylinder with positive end eg+1 and negative end (h1
g+1)′, and

that wk−1 is positively asymptotic to e1, . . . , eg, h
1
g+1, with no negative ends. We thus define

v0,± = wk−1 and v1,± = wk in the case that π ◦wk−1 is contained inN1
1 and define v′0,± = wk−1

and v′1,± = wk in the case that π ◦ wk−1 is contained in (N1
2 )′.
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Now letMŴ (e1, . . . , eg, h
1
g+1) be the index-1 moduli space of holomorphic curves in Ŵ

which are positively asymptotic to e1, . . . , eg, h
1
g+1 and represent the same homology class as

v0,+ or v0,−, the curves identified (up to translation) in Lemma 3.10. The following lemma
will allow us to use this moduli space to interpolate between v0,+ and v0,−, producing what
will serve as the middle part of our 1-parameter family.

Lemma 3.11. One component of the compactificationMŴ (e1, . . . , eg, h1
g+1) is a closed interval I

with ∂I = {v0,+, v0,−}.

Proof. We denoteMŴ (e1, . . . , eg, h
1
g+1) byMŴ and investigate the objects that could ap-

pear in the boundary of the compactification ofMŴ . Because this is an index-1 family,
the compactification will not contain any nodal curves, and the only possible boundary
elements are holomorphic buildings in the symplectization end of Ŵ . Suppose we have
such a building, and let

w : S2 \ {p1, . . . , pk} → R×M

be its topmost level. As in the proof of Lemma 3.10, the curves ū±,i, ū′±,i, ũ±,i, and ũ′±,i

are all disjoint from elements ofMŴ and hence, by the positivity of intersections, from
w. So the image of the projection π ◦ w must be contained in one of the neighborhoods
N j

1 , N
j
2 , (N

j
1 )′, (N j

2 )′ identified above. We claim that this is only possible if w is positively
asymptotic to e1, . . . , eg, h

1
g+1 and has no negative ends.

We first show that π ◦w cannot be contained in a neighborhood of the form N j
2 or (N j

1 )′.
To this end, suppose that π ◦ w is contained in N j

2 . Then

w+ ⊂ {e1, . . . , eg} and w− ⊂ {e1, . . . , eg, ej, ẽj, h̃j, e
j+1
g+1}.

But the homology classes computed in equation 3.1 tell us that curves chosen in this way
can only satisfy [w+

k ] = [w−k ] if in fact w+
k = w−k . Of course this violates the inequality

A(w+
k ) > A(w−k ), and we see that π ◦ w cannot be contained in N j

2 for any j. The same
reasoning shows that π ◦ w also cannot be contained in a neighborhood of the form (N j

1 )′.

Just as in the proof of Lemma 3.10, the projection π ◦w of the topmost level w cannot be
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contained in N j
1 or (N j

2 )′ if j > 1. These leaves two possibilities — either π ◦ w is contained
in N1

1 , or in (N1
2 )′—which we now consider.

Suppose that the image of π ◦ w is contained in N1
1 , meaning that

w+ ⊆ {e1, . . . , eg, h
1
g+1} and w− ⊆ {e1, . . . , eg+1, h

1
g+1, ē1, e

2
g+1}.

Again we must have [w+] = [w−]. Because we could have [w+] = 0, it is possible that w− is
empty, and we have a holomorphic building of height one. Suppose this is not the case.
Because [h1

g+1] = [e2
g+1] + [e1] = [eg+1], one homological possibility is that as we move from

w+ to w− we replace the curve h1
g+1 with eg+1 or with e2

g+1 and e1. That is, if w− 6= ∅, then
either w+ = w−,

w+ = {h1
g+1} ∪ w and w− = {eg+1} ∪ w

for some w ⊆ {e1, . . . , eg}, or

w+ = {h1
g+1} ∪ w and w− = {e2

g+1, e1} ∪ w.

However, all of these possibilities are prohibited by the action requirementA(w−) < A(w+).
The first possibility obviously violates this requirement, while the second and third do so
because A(h1

g+1) < A(eg+1) < A(e2
g+1) +A(e1). From all of this we conclude that w− = ∅

and thus w cannot be the topmost level of a building of height greater than one. The same
reasoning shows that if π ◦w is contained in (N1

2 )′ then w− = ∅. So in any case, w− is empty,
and π ◦ w is contained in either N1

1 or (N1
2 )′. But if π ◦ w is contained in (N1

2 )′, then

w+ ⊆ {e1, . . . , eg},

so we cannot have [w+] = 0. So in fact the image of π ◦ w lies in N1
1 , and w has no negative

ends.

So w is a holomorphic curve in the symplectization end of Ŵ positively asymptotic to
e1, . . . , eg, h

1
g+1. In Lemma 3.10 we showed that there are precisely two such curves — v0,+
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and v0,−— so w must be one of these two. We conclude that

∂MŴ (e1, . . . , eg, h1
g+1) = {v0,+, v0,−}.

SoMŴ (e1, . . . , eg, h1
g+1) contains the desired component I .

Lemma 3.12. There is a 1-parameter family

S = {ut : S2 \ {p1, . . . , pg+1} → Ŵ | dut ◦ j = J ◦ dut}t∈R

of embedded pseudoholomorphic curves in (Ŵ , ω̂) such that

(1) for t� 0, the images of ut and u−t are contained in the symplectization part of Ŵ ;

(2) for t � 0, the image of π ◦ u±t is R±(Σg), where π : [0,∞) × M → M is the obvious

projection;

(3) the images of ut1 and ut2 are disjoint whenever t1 6= t2.

Proof. Consider the interval I given by Lemma 3.11. We take this interval to be the "middle
part" of S and for t � 0 we take u±t to be v0,±, translated by t + c in the symplectization
end [0,∞)×M , where c is some constant. Property (1) follows immediately. Because v0,±

is positively asymptotic to h1
g+1 and not eg+1, we must isotope Σg to ensure that R±(Σg) =

im(π ◦ v0,±) and thus satisfy property (2). Finally, notice that if t1 6= t2 are large then
the images of ut1 and ut2 are disjoint; the positivity of intersections and the homotopy
invariance of the intersection number tells us that in fact ut1 and ut2 are disjoint for any
t1 6= t2.

Lemma 3.13. The map ι : R× (S2 \ {p1, . . . , pg+1})→ Ŵ defined by

ι(t, x) := ut(x),

with ut as identified in Lemma 3.12, is an embedding of a genus-g handlebody into Ŵ .

Proof. For an arbitrary t ∈ R the curve ut is an embedding and thus each curve ut′ , for t′

near t, can be thought of as a section of the normal bundle Nut . We can compute the first
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Chern number of this bundle according to

c1(Nut) = c1(u∗tTŴ )− χ(S2 \ {p1, . . . , pg+1}) = c1(u∗tTŴ ) + g − 1,

but first we must compute c1(u∗tTŴ ). For this we appeal to [Wen10a, Equation 1.1], which
says that

2c1(u∗tTŴ ) = ind(ut) + χ(S2 \ {p1, . . . , pg+1})− µCZ(ut),

where the last term is a signed count of the Conley-Zehnder indices of the orbits to which
ut is asymptotic. Then

2c1(u∗tTŴ ) = 1 + (1− g)− g = 2− 2g,

so c1(ut) = 1− g and it follows that c1(Nut) = 0. So sections of Nut are zero-free, meaning
that ι is an embedding.

The stage is now set for the construction of (W ′, ω′), the symplectic manifold promised
by Theorem 3.2. This construction proceeds exactly as in [Men18], with small changes to the
statements of the lemmas found there. The strategy is to remove fromW the handlebody
H ⊂ Ŵ embedded by ι in Lemma 3.13. This is done in stages. First W is enlarged to
WR := W ∪ ([0, R]×M), with R chosen large enough that there exists some T � 0 such
that im(u±T ) is contained in Ŵ \W , with im(π ◦ u±T ) equal to R±(Σg) minus a small collar
neighborhood. FromWR we remove Ñ(ΓΣg), a small tubular neighborhood of {R} × ΓΣg ,
leaving us withW ′

R := WR − Ñ(ΓΣg). This allows us to decompose ∂W ′
R into its horizontal

part

∂hW
′
R = ∂W ′

R − ∂WR '
g+1⊔
i=1

(S1 ×D2) (3.3)

and its vertical part ∂vW ′
R = ∂W ′

R − ∂hW
′
R. Note that the deletion of Ñ(ΓΣg) from WR

removes small collar neighborhoods from {R} ×R±, leaving us with {R} ×R′±. We now
begin modifying H in preparation for its removal fromW ′

R.

Lemma 3.14 (c.f. [Men18, Lemma 1.3.10]). There exists an embedding ΣL × [−T, T ] ↪→ W ′
R
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so that

(1) ΣL is a compact surface with genus 0 and g + 1 boundary components;

(2) ΣL × {±T} = {R} ×R′±;

(3) using the identification given in equation 3.3 we have

∂ΣL × {t} =

g+1⊔
i=1

(S1 × γ(t)) ⊂ ∂hW
′
R

for t ∈ [−T, T ], where γ(t) is the straight arc from (−1, 0) to (1, 0) in D2.

We denote the embedded copy of ΣL × [−T, T ] by H ′ ⊂ W ′
R and endow it with the

obvious coordinates (x, t). The following two results are proven in [Men18] and allow us
to cutW ′

R along H ′ to obtain a symplectic manifold (W ′, ω′) that strongly fills its boundary.

Lemma 3.15 (c.f. [Men18, Lemma 1.3.11]). Let B = [−T, T ]× [−ε, ε] with coordinates (t, w).

After slight adjustments of H ′ andW ′
R, there exists a neighborhood N(H ′) ' H ′ × [−ε, ε] ⊂ W ′

R

and a 1-form λ = λB + λΣL on N(H ′) such that

(1) ΣL × {±T} × [−ε, ε] ⊂ ∂vW
′
R and (∂ΣL)×B ⊂ ∂hW

′
R;

(2) λΣL is the Liouville form for R′±;

(3) λB = t dw;

(4) dλ is the symplectic form onW ′
R;

(5) λ agrees with the Liouville form onW ′
R near ∂W ′

R.

Lemma 3.16 (c.f. [Men18, Lemma 1.3.12]). There exists a modification

λ′ = λ+ d(tw) = 2t dw + w dt+ λΣL ,

whose Liouville vector field Z ′ = 2t∂t − w∂w + ZΣL points into N(H ′) along w = ±ε.

At last we defineW ′ := W ′
R −N(H ′) and ω′ := dλ′ and from Lemma 3.16 we conclude

that (W ′, ω′) strongly fills its boundary. In case our original symplectic filling was exact we
ask the same of (W ′, ω′). Once again we may appeal to [Men18], where the proof of the
following lemma is genus-independent.
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W ′
R

∂W ′
R

N(H ′) H ′ H1

H2

ΣL × {T}

ΣL × {−T}
W ′ ∂W ′

Figure 3.5: The removal of N(H ′) fromW ′
R. On the right, ∂W ′ has two connected compo-

nents.

Lemma 3.17 (c.f. [Men18, Lemma 1.3.13]). If (W,ω = dβ) is an exact filling, then there exists

a 1-parameter family of Liouville forms βτ , τ ∈ [0, 1], on W ′
R such that β0 = β and β1 = λ′ on

N(H ′) ∩ {−ε/2 ≤ w ≤ ε/2}.

Let us give an informal summary of the relationship between ∂W ′ andM . The first step
in constructingW ′ was to considerWR, whose boundary is contactomorphic toM . From
WR we deleted a neighborhood of the dividing set of Σg. This provided a decomposition
of ∂W ′

R into its horizontal and vertical parts, but the overall effect on ∂WR was trivial. The
last step in our construction — deleting N(H ′) from W ′

R — made the most substantive
changes to the boundary. We first identified H ′, a handlebody in W ′

R which picked out
for us two copies of ΣL in ∂W ′

R. Namely, H ′ distinguished the Liouville hypersurfaces
ΣL×{±T} = {R}×R′±. ThenN(H ′) is a neighborhood ofH ′, part of whose boundary lies
in ∂W ′

R. The part of ∂N(H ′) lying in the interior ofW ′
R consists of two disjoint copies ofH ′,

and the part lying in ∂W ′
R includes ΣL×{±T}. So deletingN(H ′) fromW ′

R cuts ∂W ′
R open

along the Liouville hypersurfaces ΣL × {±T} and glues in two handlebodies modeled on
H ′. This process is depicted in Figure 3.5.

All that remains is to use symplectic handle attachment to recover W from W ′. To
this end we observe that the neighborhood (N(H ′), dλ′) we have removed from W ′

R is
precisely the abstract symplectic handle (HΣL , ωλΣL

) constructed from the Liouville domain
(ΣL, λΣL). That is, we have obtained W ′ from W by removing a symplectic handle, and
thus may recoverW by reattaching said handle as described in Section 2.5.
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CHAPTER 4

Virtually overtwisted lens spaces

In this chapter we use Theorem 3.3 to classify the symplectic fillings of virtually overtwisted
contact structures on lens spaces up to diffeomorphism. We will define lens spaces via their
surgery diagrams, and recall the classification of tight contact structures on lens spaces due
to Giroux and Honda. The strong symplectic fillings of universally tight lens spaces were
classified by Lisca in [Lis08], and the main result of this chapter, Theorem 4.2, reduces the
analogous classification for virtually overtwisted structures to the universally tight case.

From the perspective of Dehn surgery, lens spaces give a very simple class of smooth
3-manifolds.

Definition. For any relatively prime integers p > q ≥ 1, the lens space L(p, q) is the smooth
manifold obtained via Dehn surgery on the unknot in S3, with framing −p/q.

With an eye towards Legendrian surgery diagrams, we prefer to present L(p, q) as the
result of integral surgery on a link in S3. First, let us write

−p
q

= [a0, a1, . . . , an] := a0 −
1

a1 −
1

a2 − · · ·
1

an

,

for some uniquely determined integers a0, a1, . . . , an ≤ −2. Then it is well-known that the
surgery diagram in Figure 4.1 produces the lens space L(p, q). One obtains this diagram
from the (−p/q)-framed unknot via a sequence of slam dunks.
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a0 a1 an

Figure 4.1: Handlebody diagram for a filling of L(p, q). We produce a contact structure on
L(p, q) by putting each of the unknots in Legendrian position and stabilizing appropriately.

4.1 Tight contact structures on lens spaces

From the surgery diagram for L(p, q) found in Figure 4.1 we can produce contact structures
on L(p, q). We do so by putting the link L = L0 ∪ L1 ∪ · · · ∪ Ln into Legendrian position
in (S3, ξstd), with tb(Li)− 1 = ai. In (S3, ξstd), the unknot is Legendrian simple, and thus
its Legendrian realizations are determined up to isotopy by their Thurston-Bennequin
invariants and rotation numbers. With the Thurston-Bennequin invariant fixed at tb(Li) =

ai + 1, there are |ai + 1| possibilities for the rotation number:

r(Li) ∈ {ai + 2, ai + 4, . . . , ai + 2|ai + 1|}.

In this way, we produce |(a0 + 1)(a1 + 1) · · · (an + 1)| distinct Legendrian surgery diagrams
for L(p, q). For instance, the nine diagrams associated to L(24, 7) are seen in Figure 4.2.
We make the important observation that all of the resulting contact structures are, by
construction, symplectically fillable.

This construction of contact structures on L(p, q) leaves open the questions of whether
structures corresponding to distinct Legendrian surgery diagrams are in fact distinct, and
whether there are any other fillable contact structures on L(p, q). These questions were
answered independently by Giroux and Honda.

Theorem 4.1 ([Gir00],[Hon00a, Theorem 2.1]). There are exactly |(a0 +1)(a1 +1) · · · (an+1)|

tight contact structures on L(p, q), up to isotopy, all obtained via the surgery diagrams described

above.

Remark. Because symplectically fillable contact structures are tight, Theorem 4.1 tells us
that L(p, q) admits no fillable structures other than those we have constructed.
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Figure 4.2: Legendrian surgery diagrams for L(24, 7)

Now that we are discussing the contact structures onL(p, q) in terms of their Legendrian
surgery diagrams, it will be convenient to identify these diagrams by their stabilizations.
Namely, we obtain a Legendrian surgery diagram for L(p, q) by first drawing a chain of
Legendrian unknots, each with tb(Li) = −1. We then perform |ai + 2| stabilizations on
Li, and the rotation number of Li will be given by the difference between the number of
positive stabilizations and the number of negative stabilizations.

We point out that Honda also proved in [Hon00a] that the universally tight contact
structures on L(p, q) are precisely those which have Legendrian surgery diagrams featuring
stabilizations of just one sign. Any Legendrian surgery diagram for L(p, q) which features
both positive and negative stabilizations will produce a virtually overtwisted contact
structure. For example, the top-left and bottom-right Legendrian surgery diagrams in
Figure 4.2 produce universally tight contact structures on L(24, 7). We refer to the structure
whose Legendrian surgery diagram has only positive stabilizations as the standard contact
structure on L(p, q).

4.2 History of the filling problem

Having produced a large class of contact manifolds with relatively simple topology, we
naturally wonder whether or not the symplectic fillings of these contact manifolds may be
classified. The earliest results in this direction were obtained before the work of Giroux
and Honda. For instance, Eliashberg showed in [Eli90] that the standard tight contact
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structure on S3 has a unique minimal symplectic filling, given by B4 with its standard
symplectic structure. Next, McDuff showed in [McD91] that the standard contact structure
on L(p, 1) has a unique minimal symplectic filling, provided p 6= 4. For L(4, 1) she showed
that the standard contact structure admits exactly two such fillings. Because the standard
structure is related by orientation-reversing diffeomorphism to the structure obtained with
only negative stabilizations, McDuff’s classification settles the filling problem for both
universally tight contact structures on L(p, 1), p > 2. (The lens space L(2, 1) ∼= RP 3 admits
just one tight contact structure, up to isotopy.)

Arguably the most substantial progress in the classification of symplectic fillings of lens
spaces was made by Lisca in [Lis08]. For any relatively prime integers p > q ≥ 1, Lisca
constructs a finite list of minimal symplectic fillings of (L(p, q), ξstd), and shows that in fact
any minimal symplectic filling of (L(p, q), ξstd) is diffeomorphic to one of these. As noted
above, ξstd is universally tight and, up to isotopy, −ξstd is the only other universally tight
contact structure on L(p, q). (If q = p− 1,−ξstd is isotopic to ξstd.) Lisca’s classification then
settles the symplectic filling problem for all universally tight lens spaces.

Following Lisca’s work, the symplectic filling problem remained open for virtually
overtwisted lens spaces. The first result in this direction was given by Plamenevskaya
and van Horn-Morris in [PV10], where it is shown that any virtually overtwisted contact
structure on L(p, 1), p > 2, has a unique (up to symplectic deformation equivalence)
minimal symplectic filling. As a result, the symplectic filling problem has been solved for
all contact structures on L(p, 1). The techniques used by Plamenevskaya and van Horn-
Morris — developed by Wendl in [Wen10b] — were pushed further by Kaloti in [Kal13]
to solve the symplectic filling problem for lens spaces of the form L(pm+ 1,m). Further
progress in the virtually overtwisted case was made by Fossati in [Fos19] and [Fos20],
using the work of Wendl as well as Theorem 3.3.
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4.3 Fillings of virtually overtwisted contact structures

4.3.1 The classification statement

In this section, we complete the classification of symplectic fillings of tight contact structures
on lens spaces, up to diffeomorphism. In particular, we reduce the classification problem for
a given virtually overtwisted lens space to the same problem on a corresponding collection
of universally tight lens spaces.

Theorem 4.2. Let ξ be a virtually overtwisted tight contact structure on the lens space L(p, q), with

p > q ≥ 1 and (p, q) = 1. Then every strong (respectively, exact) symplectic filling of (L(p, q), ξ) is

obtained by attaching a sequence of Weinstein 2-handles to a strong (respectively, exact) symplectic

filling of a connected sum of universally tight lens spaces.

Remark. This result appeared in [CL20], joint work with Y. Li, and independently in [ER20],
work of Etnyre-Roy. Etnyre-Roy more thoroughly examine the consequences of this classi-
fication result.

As noted, the virtually overtwisted contact structures on L(p, q) are those whose Legen-
drian surgery diagrams feature at least one stabilization of each sign. If any given knotK in
the diagram has been stabilized both positively and negatively, then we may immediately
apply Theorem 3.4 to conclude that all fillings of (L(p, q), ξ) result from attaching a Wein-
stein 2-handle to (L(p′, q′), ξ′)#(L(p′′, q′′), ξ′′), the connected sum that remains whenK is
removed from the diagram. Thus the work of proving Theorem 4.2 is reduced to the case
where each knot in the Legendrian surgery diagram for (L(p, q), ξ) features stabilizations of
only one sign, but for which these signs do not all agree. In such a case we are still able to
find a mixed torus (as Menke does when proving Theorem 3.4), but the contact manifold
∂(W ′, ω′) which results from applying Theorem 3.3 to a filling (W,ω) of (L(p, q), ξ) is not
uniquely determined. We will obtain Theorem 4.2 by enumerating the possibilities.

46



4.3.2 Proof of Theorem 4.2

For the duration of this chapter, we consider a fixed lens space L(p, q), with virtually
overtwisted contact structure ξ obtained from a Legendrian surgery diagram as described
above. Namely,

−p
q

= [a0, a1, . . . , an]

for uniquely determined integers ai ≤ −2, and the stabilizations applied to the knots in
Figure 4.1 do not all have the same sign. We will prove Theorem 4.2 by showing that every
strong or exact symplectic filling of (L(p, q), ξ) can be obtained by attaching a Weinstein
2-handle to a filling of a connected sum of the form

(L(p′, q′), ξ′)#(L(p′′, q′′), ξ′′),

obtained by deleting a single knot from the diagram describing (L(p, q), ξ). Beginning
with an arbitrary filling of (L(p, q), ξ), this decomposition may be inductively applied (in
conjunction with Theorem 3.1) until we have a symplectic filling of a connected sum of the
form

`

#
i=1

(L(pi, qi), ξi),

where each (L(pi, qi), ξi) is a universally tight lens space. To produce a complete list of the
fillings of (L(p, q), ξ), we consider the fillings of all connected sums of this form which may
result from (L(p, q), ξ).

We noted above that the case where one of the knots in Figure 4.1 has been stabilized
both positively and negatively is easily dispatched. We now focus on the case where no
knots have been stabilized both positively and negatively. In this case wemay identify knots
K+ and K−, each of which has been stabilized at least once, with all stabilizations being
positive or negative, respectively. Moreover, we may chooseK+ andK− to be adjacent, in
that none of the knots between them have been stabilized. Finally, our argument loses no
generality by assuming that K+ is to the right of K− in Figure 4.1.
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We now define
− p′

q′
= [a0, . . . , an−1, an + 1], (4.1)

wherewe identify [a0, . . . , an−1, an+1]with [a0, . . . , an−2, an−1+1] if an = −2. Now [Hon00a,
Section 4.6] allows us to write L(p, q) = V0 ∪A V1, where V0 and V1 are solid tori with a map
A : ∂V0 → ∂V1, the dividing curves of ∂V0 are vertical, and the dividing curves of ∂V1 have
slope −p′/q′. Moreover, we may decompose V1 as

V1 = N ∪ (V1 \N),

with V1 \N ∼= T 2 × I , such that s0 = −1 and s1 = −p′/q′. Here we denote by si the slope of
the dividing curves of T 2 × {i}, for i = 0, 1.

The thickened torus T 2 × I has a basic slice decomposition which we now describe. Let

0 ≤ i1 < i2 < · · · < i` ≤ n

be the indices for which aij ≤ −3. Then T 2 × I decomposes into ` continued fraction blocks,
with a total of

|(ai1 + 2)(ai2 + 2) · · · (ai` + 2)|

basic slices. The basic slices in each continued fraction block will all be of a single sign,
and the continued fraction blocks corresponding to K+ and K− will be adjacent, and of
opposite sign. We immediately see that the boundary convex torus T sitting between the
continued fraction blocks associated to K+ and K− is a mixed torus, sandwiched between
basic slices S+ ⊂ K+ and S− ⊂ K− of opposite sign.

Let −p′1/q′1 be the slope of the dividing curves on T , and let −p′2/q′2, −p′0/q′0 be the
opposite slopes of S+, S−, respectively. We would like to normalize this neighborhood of
T . After observing that

q′1p
′
2 − p′1q′2 = 1 and q′0p

′
1 − p′0q′1 = 1,
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we see that applying the transformation
 1 0

p′2q
′
0 − q′2p′0 − 1 1

−p′1 −q′1
p′2 q′2

 ∈ SL(2,Z)

leaves us with the slopes

s0 = −1, s1 =∞, s2 = p′2q
′
0 − q′2p′0 − 1.

According to Theorem 3.3, applying the symplectic JSJ decomposition to a filling of
(L(p, q), ξ) will produce a filling of (M ′, ξ′), obtained from (L(p, q), ξ) by splitting open
along T with slope 0 ≤ s ≤ p′2q

′
0 − q′2p′0 − 2.

We now claim that p′2q′0 − q′2p′0 − 2 = m + 1, where m is the number of unstabilized
knots between K+ andK− in Figure 4.1. According to [Hon00a, Lemma 4.12], the slopes
of the basic slice decomposition of T 2 × I are obtained by incrementing the last entry of
the continued fraction expansion of −p′/q′ (as in 4.1) until we have −1. In particular, we
may write

−p
′
2

q′2
= [a0, a1, . . . , ak,

m+1︷ ︸︸ ︷
−2, . . . ,−2]

for some k < nwith ak ≤ −3 and then see that

−p
′
1

q′1
= [a0, a1, . . . , ak + 1]

and

−p
′
0

q′0
= [a0, a1, . . . , ak + 2], if ak ≤ −4 or − p′0

q′0
= [a0, a1, . . . , ak−1 + 1], if ak = −3.

We can now verify our claim inductively. If ak ≤ −4 we have

[ak + 2] = −ak + 2

−1
and [ak,

m+1︷ ︸︸ ︷
−2, . . . ,−2] = −(m+ 2)an + (m+ 1)

−(m+ 2)
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t

Figure 4.3: Every filling of the top lens space L(89, 24) with the given contact structure
is obtained by attaching a round symplectic 1-handle to a filling of the disjoint union
S3 t L(24, 7) below; the round 1-handle is attached along the dashed knots. Fillings of
L(24, 7) can be further decomposed as seen in Figure 4.4.

and observe that

(−1)((m+ 2)ak + (m+ 1))− (−(m+ 2))(ak + 2) = m+ 3.

If we instead have ak = −3, then

[ak−1 + 1] = −ak−1 + 1

−1
and [ak−1,−3,

m+1︷ ︸︸ ︷
−2, . . . ,−2] = −(2m+ 5)ak−1 + (m+ 2)

−(2m+ 5)
,

so
(−1)((2m+ 5)ak−1 + (m+ 2))− (−(2m+ 5))(ak−1 + 1) = m+ 3.

In either case, we may now apply the following inductive step. If a/b and a′/b′ satisfy
ab′ − a′b = m+ 3, then

[r, a/b] =
ar − b
a

and [r, a′/b′] =
a′r − b′

a′

satisfy
(ar − b)a′ − a(a′r − b′) = ab′ − ba′ = m+ 3.

This proves our claim, so we see that every filling of (L(p, q), ξ) is obtained by attaching
a round symplectic 1-handle to a filling of a contact manifold which is obtained from
(L(p, q), ξ) by splitting along T with slope 0 ≤ s ≤ m+ 1.

It is now straightforward to check that splitting along T with slope s = 0 produces a
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disjoint union of lens spaces, obtained from Figure 4.1 by deletingK+ and realizing the two
resulting chains of unknots in separate diagrams. Attaching a round symplectic 1-handle
to this disjoint union corresponds to first attaching aWeinstein 1-handle—which produces
the connected sum these lens spaces — and then attaching a Weinstein 2-handle alongK+.
Similarly, splitting (L(p, q), ξ) along T with slope s = m + 1 corresponds to deleting the
knotK−. Each intermediate slope corresponds to deleting an unstabilized knot between
K+ and K−. In any case, we see — as claimed above — that every filling of (L(p, q), ξ) can
be obtained by attaching a Weinstein 2-handle to a symplectic filling of a connected sum of
lens spaces which is obtained by erasing a single knot from Figure 4.1. If the constituent
lens spaces in this connected sum are virtually overtwisted, we may repeat this process
until we have a connected sum of universally tight lens spaces. This proves Theorem 4.2.

Theorem 4.2 and its proof provide a recipe for classifying the fillings of a virtually
overtwisted lens space (L(p, q), ξ). Given a depiction of the lens space as in Figure 4.1,
we can produce a tree whose leaves are disjoint unions of universally tight lens spaces,
and every filling of (L(p, q), ξ) can be obtained by attaching a specified sequence of round
symplectic 1-handles to a filling of one of these disjoint unions. An example of such a tree
is given in Figure 4.3. The root of our tree is (L(p, q), ξ), and we move to a new level of the
tree by applying the decomposition described in this section. If the mixed torus leading
to the decomposition comes from a knot which has been stabilized both positively and
negatively, we have a single branch. If the mixed torus is associated to a pair K+, K− of
adjacent knots with opposite signs, then we havem+ 2 branches, wherem is the number
of unstabilized knots between K+ and K−.

We observe that this argument recovers Fossati’s classification of fillings for virtually
overtwisted structures on lens spaces which result from contact surgery on the Hopf link
([Fos19, Theorem 1]). Consider −p/q = [a1, a2], for some a1, a2 ≤ −2, and let ξvot be a
virtually overtwisted contact structure on L(p, q). Our decomposition tells us that every
filling of (L(p, q), ξvot) is obtained by a specified Weinstein 2-handle attachment to a filling
of either L(−a1, 1) or L(−a2, 1), with a particular (not necessarily virtually overtwisted)
contact structure. With the exception of a universally tight structure on L(4, 1), each lens
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t

Figure 4.4: Applying the JSJ decomposition to a filling of L(24, 7) with the contact structure
seen in Figure 4.3 yields a filling of one of the three disjoint unions seen here. We recover a
filling of L(24, 7) by attaching a round symplectic 1-handle along the dashed knots.

space L(−ai, 1) has a unique exact filling. Moreover, we see from our decomposition that
attaching a Weinstein 2-handle to such a standard filling in the manner prescribed will
always yield the standard filling of (L(p, q), ξvot). So we have the following corollary.

Corollary 4.3 (c.f. [Fos19, Theorem 1]). Let (L(p, q), ξvot) be a virtually overtwisted lens space,

with −p/q = [a1, a2], for some a1, a2 ≤ −2. Then (L(p, q), ξvot) has

• a unique exact filling, up to diffeomorphism, if a1 6= −4 and a2 6= −4, or if at least one of

a1, a2 is −4 and the corresponding knot has been stabilized both positively and negatively;

• precisely two exact fillings, up to diffeomorphism, if at least one of a1, a2 is −4, and the

corresponding knot has stabilizations of a single sign.
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CHAPTER 5

Virtually overtwisted torus bundles

In this chapter we reduce the problem of classifying strong symplectic fillings of virtually
overtwisted contact structures on torus bundles to the same problem for tight lens spaces.
The tight contact structures on torus bundles which fiber over the circle were completely
classified by Honda in [Hon00b], and thus a natural next step is to ask geography and
botany questions about their symplectic fillings — which of these contact structures is
fillable, and what are their fillings? By construction, convex tori are abundant in torus
bundles; in case our contact structure is virtually overtwisted, we find a mixed torus which
is isotopic to a fiber of the bundle, and use Theorem 3.3 to decompose our contact manifold
and its fillings.

5.1 The classification

Given an element A ∈ SL(2,Z), we define the mapping torus

MA := (R2/Z2 × I)/ ∼,

where (x, 1) ∼ (Ax, 0). We callMA the torus bundle with monodromy A, and notice that the
diffeomorphism type ofMA depends only on the conjugacy class of A in SL(2,Z). We will
say thatMA is

• elliptic if | tr A| < 2;

• parabolic if | tr A| = 2;

• hyperbolic if | tr A| > 2.
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This trichotomy will be used in the statement of our classification result, as will generators

S =

 0 1

−1 0

 and T =

1 1

0 1


of SL(2,Z). It is known (c.f. [Hon00b, Lemma 2.1]) that every conjugacy class of SL(2,Z)

can be represented by one of

• A = ±S;

• A = ±T−1S,±(T−1S)2;

• A = ±T n, n ∈ Z;

• A = ±T r0ST r1S · · ·T rkS, ri ≤ −2, r0 < −2.

In the last case, the choice of conjugacy class representative is not unique, but in all cases
the ± sign is unique. We will refer to the monodromy A as positive or negative depending
on sign of its conjugacy class representative(s).

Ours is not the first study of symplectic fillings for contact torus bundles. In [DG01],
Ding-Geiges showed that every torus bundle admits an infinite family of weakly-but-not-
strongly symplectically fillable contact structures, all of which are universally tight. In
[BO14], Bhupal-Ozbagci show that for certain parabolic and hyperbolic torus bundles,
there are precisely two isotopy classes of Stein fillable contact structures, and along the
way they construct a Stein filling for every tight contact structure on a torus bundle with
positive hyperbolic monodromy. Golla-Lisca, in [GL15], construct Stein fillable structures
on a large family of torus bundles, with many of these structures being universally tight.
One of these constructions provides a Stein filling for each virtually overtwisted tight
contact structure on a torus bundle with negative hyperbolic monodromy. In [DL18],
Ding-Li consider the question of strong symplectic fillability for some contact structures
on negative parabolic and negative hyperbolic torus bundles, and construct a Stein filling
for the negative parabolic torus bundle with monodromy −T n, n ≤ −1.
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In the present chapter, we use Theorem 3.3 to obtain a classification result for fillings of
virtually overtwisted contact structures on torus bundles. Combined with (non-)existence
results previously established in [BO14], [GL15], and [DL18], our main result is the
following.

Theorem 5.1. Let M be a 3-dimensional torus bundle, ξ a virtually overtwisted tight contact

structure onM .

(A) IfM is an elliptic torus bundle, then (M, ξ) is not strongly symplectically fillable.

(B) IfM is the positive parabolic torus bundle with monodromy T n (n ≥ 2), then (M, ξ) is not

strongly symplectically fillable. IfM is any other parabolic torus bundle, then (M, ξ) admits

a unique strong filling up to symplectic deformation equivalence and blowup.

(C) IfM is a hyperbolic torus bundle, then there is a nonempty, finite list

(L(p1, q1), ξ1), . . . , (L(pm, qm), ξm)

of tight lens spaces such that every strong (exact) symplectic filling of (M, ξ) can be obtained

from a strong (exact) symplectic filling of (L(pi, qi), ξi), for some 1 ≤ i ≤ m, by attaching a

round symplectic 1-handle. In particular, (M, ξ) is fillable.

Remark.

(1) As noted above, some of the existence statements in Theorem 5.1 are not new. In-
deed, (A) is weaker than [EH02, Theorem 1.1], which says that virtually overtwisted
structures on elliptic torus bundles are not even weakly symplectically fillable. For
the parabolic torus bundles, Ding-Li established the existence of a symplectic filling
for the unique virtually overtwisted torus bundle with monodromy −T n, n ≤ −1,
in [DL18]. The existence statement for hyperbolic torus bundles was established in
[BO14] and [GL15].

(2) The proof of Theorem 5.1 produces explicit attaching data for the round symplec-
tic 1-handles that appear in (C). Namely, we identify Legendrian knots Li−, Li+ in
(L(pi, qi), ξi) so that attaching a round symplectic 1-handle to a filling of (L(pi, qi), ξi)

along standard neighborhoods of Li− and Li+ yields a filling of the torus bundle (M, ξ),
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for each 1 ≤ i ≤ m. Moreover, for 1 ≤ i ≤ m− 1, we obtain (L(pi+1, qi+1), ξi+1) from
(L(pi, qi), ξi) by performing (+1)-surgery along Li+ and (−1)-surgery along Li−.

(3) While the tight contact structure ξ is virtually overtwisted, the structures ξ1, . . . , ξm

could be either universally tight or virtually overtwisted.

In Section 5.3.3 we will give an explicit construction of the list of lens spaces specified
by (C) of Theorem 5.1. We will see that ifM has monodromy

A = ±T r0ST r1S · · ·T rkS, (5.1)

with r0 ≤ −3 and ri ≤ −2 for 1 ≤ i ≤ k, then each lens space in the list has the diffeomor-
phism type of L(p, q), where

−p
q

= [rk, . . . , r1] or − p

q
= [rj−1, rj−2, . . . , r0, rk, rk−1, . . . , rj+1]

for some 1 ≤ j ≤ k. By [a0, . . . , ak] we mean

[a0, . . . , ak] := a0 −
1

a1 −
1

a2 − · · ·
1

ak

,

as in Chapter 4.

This list of lens spaces (along with their contact structures) can be encoded diagramati-
cally as follows. Per [BO14] and [GL15], the standard filling of a tight torus bundle with
monodromy given by (5.1) is obtained from that of (S1 × S2, ξstd) by attaching Weinstein
2-handles along the link Λ ⊂ S1 × S2 depicted in Figure 5.1. (The knots in this link are
stabilized according to the contact structure ξ.) To each 1 ≤ i ≤ k we associate a tight
lens space (Li, ξi), with a filling obtained from Figure 5.1 by erasing the 1-handle and the
unknot Ki.
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Ki Ki−1 K0 Kk Ki+1 Ki

• • • • • •

Figure 5.1: The natural filling of (M, ξ), which has positive monodromy with coefficients
(r0, r1, . . . , rk), is obtained by attaching Weinstein 2-handles to the unique filling of (S1 ×
S2, ξstd) along the Legendrian knots K0, . . . , Kk ⊂ (S1 × S2, ξstd). For each 0 ≤ i ≤ k,
the knot Ki is stabilized to ensure that tb(Ki) = ri + 1, and that r(Ki) is determined by
the contact structure ξ. If the monodromy of M is negative, we modify Λ by requiring
lk(K0, Kk) = −1.

Now let
0 = i1 < i2 < · · · < im ≤ k

be precisely those indices for which rij ≤ −3. Then (M, ξ) decomposes intom continued
fraction blocks, with a continued fraction block associated to each ij . Because ξ is virtually
overtwisted, (M, ξ) admits a mixed torus T ⊂ (M, ξ), and we use T to build a list L of tight
lens spaces from whose fillings the fillings of (M, ξ) will be obtained. If T is interior to the
continued fraction block associated to ij , for some 1 ≤ j ≤ m, then L has just one element
— the lens space (Lij , ξij). Otherwise, T sits at the intersection of two continued fraction
blocks, say, associated to ij and ij+1 for some 1 ≤ j ≤ m. (Here im+1 = i1.) In this case

L = ((Lij , ξij), (Lij+1, ξij+1), . . . , (Lij+1
, ξij+1

)).

In words, each lens space in L is obtained by deleting the 1-handle and an unknot from
Figure 5.1. For each continued fraction block that T meets, L contains the corresponding
lens space, aswell as the intermediate lens spaces obtained bydeleting (−2)-framedunknots.
Our result says that every filling of (M, ξ) is obtained from a filling of some (Li, ξi) ∈ L by
attaching a round 1-handle. For the standard filling of (Li, ξi), obtained from Figure 5.1
as described, this round 1-handle is attached along knots K ′i, K ′′i ⊂ (Li, ξi) obtained from
Figure 5.1 by replacing each of the 3-balls with a cusp. See Figure 5.2.

If tb(Ki) 6= −1, there remains the ambiguity of how we distribute the stabilizations
of Ki among K ′i and K ′′i , but this is resolved by the mixed torus we are using. Namely,
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K ′i Ki−1 K0 Kk Ki+1 K ′i

• • • • • •

Figure 5.2: A diagram for the standard filling of (Li, ξi), obtained from Figure 5.1 by
deleting the 1-handle and the knotKi. Weinstein 2-handles are attached to (B4, ωstd) along
Ki−1, . . . , Ki+1 ⊂ (S3, ξstd), but not along the dashed knotsK ′i,K ′′i . These are obtained from
the knotKi in Figure 5.1 by replacing the 3-balls with cusps, with the stabilizations on K ′i
and K ′′i determined by our choice of mixed torus. Attaching a round symplectic 1-handle
to this filling along K ′i, K ′′i yields the standard filling of (M, ξ).

the continued fraction block associated toKi decomposes into basic slices, each of which
we think of as either positive or negative, and the stabilizations ofKi correspond to these
basic slices. The stabilizations ofKi are then distributed amongK ′i andK ′′i according to
the number of basic slices on either side of our mixed torus. In particular, if the mixed
torus lies at the boundary of two continued fraction blocks, then all of the stabilizations of
Ki will lie on one ofK ′i orK ′′i , with the other being a Legendrian unknot with Thurston-
Bennequin number −1. In all cases, attaching a round symplectic 1-handle along K ′i and
K ′′i corresponds to attaching a Weinstein 1-handle along p′i ∈ K ′i and p′′i ∈ K ′′i , followed by
a Weinstein 2-handle attachment alongKi. The resulting filling of (M, ξ) is the standard
filling depicted in Figure 5.1.

For each torus bundle (M, ξ) that we consider, our classification will follow the same
basic recipe. We begin by identifying a fiber-isotopic mixed torus Σ ⊂ (M, ξ). To identify
this torus, we realizeM as the result of identifying the boundary components of T 2 × I

via some monodromy A. In each case, the contact structure ξ on M lifts to a (perhaps
non-unique) tight contact structure on T 2 × I , which we also denote by ξ. We then use the
fact that (M, ξ) is virtually overtwisted to find basic slices of opposite sign on either side of
T 2 × {0} (perhaps after a contact isotopy), making T 2 × {0} a mixed torus.

Having identified a mixed torus in (M, ξ), we suppose that (W,ω) is an exact filling
of (M, ξ) and turn to Theorem 3.3. This produces (W ′, ω′), an exact filling of a contact
manifold (M ′, ξ′), and tells us how to obtain (W,ω) from (W ′, ω′), as well as providing a
relationship between (M, ξ) and (M ′, ξ′). Specifically, because our mixed torus is the fiber

58



T 2 × {0}, the decomposition theorem allows us to write

M ′ = S0 ∪ (T 2 × I) ∪ S1

for some identifications ∂Si → T 2×{i}, where S0 and S1 are solid tori. That is,M ′ is a lens
space. Moreover, Theorem 3.3 tells us that we can recoverM fromM ′ by removing the
interiors of S0 and S1 and identifying the dividing curves and meridians of the resulting
boundary components. At the level of fillings, this corresponds to attaching a round
symplectic 1-handle to a filling of the lens space along the cores of the solid tori — for the
lens space (L(pi, qi), ξi) produced by Theorem 5.1, these core curves are the Legendrian
knots Li− and Li+.

The dividing curves of ∂S0 and ∂S1 have slopes s0 and s1, respectively, determined by the
contact structure on T 2× I . If the meridians of S0 and S1 are denoted µ0, µ1, then Aµ1 = µ0.
These meridians are not a priori determined by Theorem 3.3, but by investigating different
choices for the meridian µ1, we are in many cases able to either completely determine
(M ′, ξ′), or able to show that no exact filling of (M, ξ) exists1.

Our primary technique for ruling out possible meridians µ1 involves an analysis of the
slopes of µ0, µ1, Γ0, and Γ1, where Γi is the dividing set of T 2×{i}. Because (M ′, ξ′) is fillable,
ξ′ must be a tight contact structure. Now consider a family of convex tori inM ′, beginning
with the boundary of a tubular neighborhood of the core of S1 ⊂M ′, passing through the
fibers of T 2 × I ⊂M ′, and tending towards the boundary of a tubular neighborhood of the
core of S0 ⊂M ′. Each torus in this family has a pair of dividing curves, and the slopes of
these curves will vary from the slope of µ1 to s1 to s0 to the slope of µ0 as we traverse the
family. Because ξ′ is tight, the total angle through which these dividing curves pass cannot
exceed π. We will rule out many possibilities for the meridian µ1 by showing that these
choices would cause this last condition to be violated.

1As noted, the material in this chapter first appeared in [Chr21]. At the time of writing that paper, the
portion of Theorem 3.3 which limits the contact manifolds which may result from applying the symplectic JSJ
decomposition had not yet been developed. Now that this statement has been added, the analysis contained
in this chapter could be abbreviated; we leave the analysis intact, as it may help to illuminate the slope
analysis in the proof of Theorem 3.3.
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Type Monodromy # of VOT structures

Elliptic (| tr A| < 2) A = S 1
A = (T−1S)2 2

Parabolic (| tr A| = 2)
A = T 2 1

A = T n, n > 2 2
A = T n, n ≤ −2 |n− 1| − 2
A = −T n, n < 0 1

Hyperbolic (| tr A| > 2) A = T r0ST r1S · · ·T rkS |(r0 + 1) · · · (rk + 1)| − 2
(r0 ≤ −3, ri ≤ −2) A = −T r0ST r1S · · ·T rkS |(r0 + 1) · · · (rk + 1)|

Table 5.1: Virtually overtwisted contact structures on torus bundles over S1

5.2 Tight contact structures on torus bundles

The contact manifolds of central interest in this chapter are torus bundles over S1. These are
smooth 3-manifolds whose tight contact structures were classified by Honda in [Hon00b].
The tight contact structures on the torus bundleMA are given in terms of the monodromy
A, and are each identified as being either universally tight or virtually overtwisted.

Honda’s classification is contained in Table 5.1, omitting torus bundles which admit
only universally tight contact structures. We continue to use the generators S and T of
SL(2,Z) identified in Section 5.1.

Honda constructs each of the contact structures figured in Table 5.1 by thinking of
(MA, ξ) as a thickened torus (T 2× I, ξ), with the ends T 2×∂I identified by the monodromy
A. (We will thus rely on the discussion in Section 2.4.2 of tight contact structures on T 2×I .)
When the monodromy A is negative (in the sense described above), this identification will
induce a change of sign, leading some universally tight contact structures on T 2 × I to
induce virtually overtwisted contact structures onMA. See [Hon00b] for full details.

5.3 Proof of Theorem 5.1

In this section we use Theorem 3.3 to prove Theorem 5.1. We treat the elliptic, parabolic,
and hyperbolic cases separately.
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5.3.1 Elliptic torus bundles

There are two elliptic torus bundles which admit a virtually overtwisted contact structure
— one with monodromy A = S, and the other with monodromy A = (T−1S)2. In both
cases we obtain a virtually overtwisted structure by starting with a minimally twisting
tight structure on T 2 × I with boundary slopes s1 = 0 and s0 = ∞ and then passing to
the torus bundleMA. There are two such structures on T 2 × I , and they become contact
isotopic onMA when A = S. When A = (T−1S)2, the structures remain distinct.

So there are three virtually overtwisted, elliptic torus bundles. None admit a strong
symplectic filling.

Proposition 5.2. Let (M, ξ) be a virtually overtwisted, elliptic torus bundle. Then (M, ξ) is not

strongly symplectically fillable.

Proof. As stated above, there are three contactmanifolds (M, ξ)which satisfy the hypotheses
of this proposition, and all three are obtained from a tight (T 2× I, ξ) with boundary slopes
s1 = 0, s0 =∞. We consider the case A = S; the case A = (T−1S)2 is similar.

Our first claim is that the image of the fiber T 2 × {0} in (M, ξ) is a mixed torus, and
our proof of this fact mimics Honda’s proof of the fact that ξ is an overtwisted contact
structure. (c.f. [Hon00a, Section 4]). In particular, we begin with a tight contact structure
ξ on T 2 × [0, 1] with boundary slopes s1 = 0 and s0 =∞. Because these slopes are Farey
neighbors, (T 2 × [0, 1], ξ) is a basic slice, and there are precisely two possibilities for ξ,
distinguished by their relative Euler classes. As in [Hon00a, Section 4.7], we compute these
relative Euler classes to be

PD(e(ξ, s)) = ±(v1 − v0) = ±((1, 0)− (0, 1)) = ±(1,−1) ∈ H1(T 2;Z),

where v0 and v1 are minimal vectors in Z2 representing the slopes s0 and s1, respectively.
Now we may decompose T 2 × [0, 1] into a pair of basic slices

(N1 := T 2 × [0, 1/2], ξ1 := ξ|N1) and (N2 := T 2 × [1/2, 1], ξ2 := ξ|N2)
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with boundary slope s1/2 = 1, since 1 is a Farey neighbor of both 0 and∞. The relative
Euler classes of these basic slices are then

PD(e(ξ1, s)) = ±(v1/2 − v0) and PD(e(ξ2, s)) = ±(v1 − v1/2),

where v1/2 = (1, 1). Because these basic slices glue to form the basic slice (T 2 × [0, 1], ξ),
their signs agree.

Now because the ends of T 2 × [0, 1] are identified to formM , we may also view N2 as
T 2× [−1/2, 0] by applying the monodromy A. Applying the monodromy alters the relative
Euler class:

PD(e(ξ2, s)) = ±A(v1 − v1/2) = ±(Av1 − Av1/2) = ±(−v0 − (v1 − v0)) = ∓v1.

Here we are using the fact that A = S is a rotation by −π/2. So the basic slice (T 2 ×

[−1/2, 0], ξT 2×[−1/2,0]) has a sign which is necessarily opposite that of the basic slice (T 2 ×

[0, 1/2], ξT 2×[0,1/2]), making the fiber T 2 × {0} sandwiched between them a mixed torus.

In [Hon00a], Honda uses this relative Euler class computation to show that (M, ξ) is
virtually overtwisted. An analogous computation for the monodromy A = (T−1S)2 allows
us to distinguish between the two virtually overtwisted tight contact structures on this
torus bundle, and to see that the fiber T 2 × {0} is a mixed torus in each of them.

As outlined in our strategy, we now suppose that (M, ξ) is fillable, with strong symplectic
filling (W,ω), using the notation from Section 5.1. Theorem 3.3, applied to (W,ω) and
T 2 × {0} ⊂ (M, ξ), produces a strong filling (W ′, ω′) of (M ′, ξ′), with

M ′ ' S0 ∪ (T 2 × I) ∪ S1.

Because s1 = 0 and s0 =∞, the dividing sets Γi of ∂Si can be represented by

Γ0 =

0

1

 , Γ1 =

1

0

 .
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µ1

Γ1

Γ0
µ0

(a) A = S.

µ1

Γ1

Γ0
µ0

(b) A = (T−1S)2.

Figure 5.3: Slope analysis for virtually overtwisted, elliptic torus bundles.

The shortest integer vector representing the meridian µ1 must form an integral basis with
Γ1 for Z2, and we have µ0 = Aµ1. So we have representatives

µ1 =

m
1

 and µ0 =

 1

−m


for somem ∈ Z.

Notice that ifm ≥ 0, then a counterclockwise rotation from µ1 to Γ1 passes through an
angle of at least π/2, and a counterclockwise rotation from Γ1 to Γ0 takes us through an
angle of precisely π/2. The rotation from Γ0 to µ0 is then non-trivial, and we see that our
dividing curves pass through an angle in excess of π as we move from the core of S1 to
T 2× I , and on to the core of S0. The same rotation occurs whenm ≤ 0. In fact, this rotation
is always 3π/2 — regardless of the value ofm— as can be seen in Figure 5.3a.

The case A = (T−1S)2 is not much different. The dividing curves will rotate through an
angle of 3π/2− θ(m), where θ(m) is the acute angle between (1,m)T and (1,−m− 1)T . In
particular, the dividing curves rotate through an angle greater than π. The casem = 2 is
depicted in Figure 5.3b.

In either case, we see that (M ′, ξ′) contains a thickened torus with non-minimal twisting
whichmay be completed to a solid torus S ′ strictly containing S1. The non-minimal twisting
means that (S ′, ξ|S′) is overtwisted (c.f. [Hon00a, Section 2.3]), and thus so is (M ′, ξ′). Note
that this is the case no matter the value ofm. But of course this contradicts the fillability of
(M ′, ξ′), so we conclude that no strong symplectic filling (W,ω) of (M, ξ) exists.
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5.3.2 Parabolic torus bundles

Topologically, the parabolic torus bundles admitting virtually overtwisted contact structures
are all circle bundles, with base either the torus or the Klein bottle. The virtually overtwisted
structures on these manifolds then fall into three families.

For n ≥ 2, the monodromy A = T n produces a circle bundle over T 2 with Euler number
n. This bundle admits a unique virtually overtwisted contact structure if n = 2, and admits
two such structures if n > 2. These structures are exceptional in that they are the only
virtually overtwisted contact structures on any torus bundles which fail to be minimally
twisting. We will show that these structures are not strongly symplectically fillable.

Proposition 5.3. Fix n ≥ 2 and letMn be the torus bundle with monodromy A = T n. Let ξ be a

virtually overtwisted contact structure onM . Then (Mn, ξ) is not strongly symplectically fillable.

Proof. Per the classification in [Hon00a], there are two tight contact structures on T 2 × I

with boundary slopes s0 = s1 = 0, and these pass to tight contact structures on Mn. In
[Hon00b], Honda shows that these structures are distinct when n > 2, and for n ≥ 2 give
all virtually overtwisted contact structures onMn. Let ξ be one of these structures on T 2×I ,
passing to ξ (via notational abuse) onM .

Because (T 2 × I, ξ) is not minimally twisting, the dividing curves rotate through an
angle of π as we move from T 2 × {0} to T 2 × {1}, and thus all slopes are achieved by some
boundary-parallel torus. We take T 2 × {1/2}with slope s1/2 =∞. Because∞ is connected
to 0 by an edge of the Farey tessellation, each of T 2× [0, 1/2] and T 2× [1/2, 1] is a basic slice,
and the fact that their union T 2× I is not universally tight makes T 2×{1/2} a mixed torus.

Now suppose that (Mn, ξ) admits a strong symplectic filling (W,ω), and let (M ′, ξ′) be
the strongly symplectically fillable manifold that results from applying Theorem 3.3 to
(W,ω), using the mixed torus T 2 × {1/2}. In order to split (Mn, ξ) open along T 2 × {1/2},
we think of this torus bundle as the result of identifying the ends of (T 2 × [−1/2, 1/2], ξ)

via the monodromy. Then, as above, M ′ results from gluing solid tori S−1/2 and S1/2 to
the boundary components of T 2 × [−1/2, 1/2], and we are left to determine the meridians
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µ1/2

Γ1/2

Γ−1/2

µ−1/2

(a) m ≥ 1.

µ1/2

Γ1/2

Γ−1/2

µ−1/2

(b)m ≤ −1.

Figure 5.4: Slope analysis for a VOT torus bundle with monodromy T n, n ≥ 2.

µ−1/2, µ1/2. Notice that the dividing curves Γ−1/2 and Γ1/2 have slopes s−1/2 = 1/n and
s1/2 =∞, respectively. Because the shortest integer vectors representing Γ1/2 and µ1/2 must
form an integer basis for R2/Z2, we may represent µ1/2 by the vector (1,m)T , for some
m ∈ Z.

Suppose we have m = 0, so that µ1/2 = (1, 0)T . Then µ−1/2 = A(1, 0)T = (1, 0), so the
counterclockwise rotation from µ1/2 to Γ1/2 to Γ−1/2 to µ−1/2 takes us through an angle of
2π, and we find that (M ′, ξ′) is overtwisted. Som 6= 0.

Next, suppose m ≥ 1, meaning that µ−1/2 is represented by A(1,m)T = (1 + mn,m).
Because n ≥ 2, we have

0 <
m

1 +mn
<

1

n
< m <∞,

which is to say that

0 < slope(µ−1/2) < slope(Γ−1/2) < slope(µ1/2) < slope(Γ1/2).

In this case, the dividing curves rotate through an angle in excess of 3π/2, and again (M ′, ξ′)

is overtwisted. Som < 0.

But ifm < 0 then we find that

slope(µ1/2) < 0 < slope(Γ−1/2) < slope(µ−1/2) < slope(Γ1/2),
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sincem < 0 < 1/n < m/(1 +mn). In this case, counterclockwise rotation from µ1/2 to Γ1/2

to Γ−1/2 to µ−1/2 takes us through an angle of 3π/2, for any choice ofm < 0 and n ≥ 2, and
again we find that (M ′, ξ′) is overtwisted. Because there are no suitable choices for the
meridian µ1/2, we must conclude that (Mn, ξ) does not admit a strong filling (W,ω). The
overtwistedness whenm 6= 0 is seen in Figure 5.4.

When n ≤ −2, the monodromy A = T n will again give us a circle bundle over T 2

with Euler number n, but in this case we have |n− 1| − 2 virtually overtwisted structures.
These bundles admit a unique strong filling, up to symplectic deformation equivalence
and blowup, for any virtually overtwisted structure. As a corollary, the exact fillings of
these bundles are unique up to symplectomorphism.

Proposition 5.4. Fix n ≤ −2 and letMn be the torus bundle with monodromy A = T n. Let ξ be a

virtually overtwisted contact structure onMn. Then (Mn, ξ) admits a unique strong filling, up to

symplectic deformation equivalence and blowup.

Proof. Consider a tight contact structure ξ′ on T 2 × I with boundary slopes s0 = −1
1−n and

s1 = −1. Honda showed in [Hon00a] that there are 1− n such structures, distinguished
by the number k of positive basic slices they have in a continued fraction block. Concretely,
each such structure ξ′ admits a decomposition into −n basic slices

(
T 2 ×

[
0,

1

n

])
∪
(
T 2 ×

[
1

n
,

2

n

])
∪ · · · ∪

(
T 2 ×

[
n− 1

n
, 1

])
, (5.2)

and we can identify ξ′ by counting the number of these basic slices which are positive.
These structures remain tight and distinct when we pass toMn, and if k is neither 0 nor
1− n, the resulting structure is virtually overtwisted. If k = 0 or k = 1− n, the basic slices
above all have the same sign, and the structure onMn is universally tight.

Let ξ be a virtually overtwisted structure onMn, induced by a structure ξ′ on T 2 × I .
Because ξ is virtually overtwisted, the basic slices in the decomposition (5.2) do not all
have the same sign. In particular, we may shuffle the basic slices so that that the first and
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last basic slices have opposite sign, ensuring that the image of T 2×{0} in (Mn, ξ) is a mixed
torus.

Now suppose that (W,ω) is an exact filling of (Mn, ξ) and let (W ′, ω′) be the symplectic
manifold-with-boundary produced by splitting (W,ω) open along our mixed torus. This
manifold exactly fills its boundary (M ′, ξ′), and we may write

M ′ = S0 ∪ (T 2 × I) ∪ S1,

where the boundary slopes of T 2 × I are s0 = −1
1−n and s1 = −1. Denote by Γi and µi

the dividing curves and meridian, respectively, of ∂Si, for i = 0, 1. Then Γ0 and Γ1 are
represented by the vectors (n−1, 1)T and (1,−1)T , respectively. Because the shortest integer
vectors representing µ1 and Γ1 must form an integral basis for Z2, we may represent µ1 by
(m, k)T , withm ≥ 0 and k = ±1−m. It follows that µ0 is represented by

A

 m

±1−m

 =

±n−m(n− 1)

±1−m

 .

We now begin ruling out candidate values form.

First, m must be positive. Indeed, if m = 0 then the slopes of µ1 and µ0 are given by
∞ and 1/n, respectively. It follows that as we move a convex torus from the core of S1

to T 2 × {1}, then to T 2 × {0}, and finally on to the core of S0, the dividing curve slopes
will range from ∞ to −1 to −1

1−n and on to 1/n, rotating through an angle greater than
π, as indicated in Figure 5.5a. This would mean that (M ′, ξ′) is overtwisted, violating its
fillability.

Next, we must have k = 1−m. To this end, notice that for n ≤ −2 andm ≥ 1 we have

−1−m
m

< −1 <
−1−m

−n−m(n− 1)
<
−1

1− n
.
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µ1

Γ1
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µ0

(a) Rotation in the casem = 0.

µ1

Γ1

Γ0

µ0

(b) The case k = −1−m.

µ1

Γ1

Γ0

µ0

(c) The casem ≥ 2, k = 1−m.

Figure 5.5: Slope analysis for the monodromy A = −T n, n ≤ −1 or A = T n, n ≤ −2.

This tells us that if k = −1−m, then

slope(µ1) < slope(Γ1) < slope(µ0) < slope(Γ0),

and again the dividing curves pass through too great an angle for (M ′, ξ′) to be tight. This
rotation is seen in Figure 5.5b. So k = 1−m and µ1 is represented by a vector of the form
(m, 1−m)T , withm ≥ 1.

Finally we show thatm = 1. Ifm ≥ 2 then we have

−1 <
1−m
m

<
−1

1− n
<

1−m
n−m(n− 1)

,

so
slope(Γ1) < slope(µ1) < slope(Γ0) < slope(µ0),

and yet again the counterclockwise rotation from µ1 to Γ1 to Γ0 to µ0 takes us through an
angle in excess of π. This rotation can be seen in Figure 5.5c.

So the meridians are given by µ1 = (1, 0)T and µ0 = (1, 0)T , meaning that M ′ '

S2 × S1. This determines ξ′, since S2 × S1 has a unique tight contact structure ξstd, and in
fact determines (W ′, ω′), since (S2 × S1, ξstd) has a unique strong filling up to symplectic
deformation equivalence and blowup. Because we have a recipe for reconstructing (W,ω)

from (W ′, ω′) — namely, by attaching a round symplectic 1-handle to (W ′, ω′) along S0 and
S1 —we see that this filling is uniquely determined by (Mn, ξ).

68



Finally, for n ≤ −1 we consider the monodromy A = −T n, which produces a non-
orientable circle bundle over the Klein bottle. This bundle admits a unique virtually
overtwisted contact structure, and in [DL18], Ding and Li constructed a Stein filling for this
structure. We show that Ding-Li’s filling is the unique exact filling of this torus bundle, up to
symplectomorphism. Indeed, theirs is the only strong filling, up to symplectic deformation
equivalence and blowup.

Proposition 5.5. Fix n ≤ −1 and let (Mn, ξ) be the virtually overtwisted torus bundle with

monodromy A = −T n. Then (Mn, ξ) admits a unique exact filling, up to symplectic deformation

equivalence and blowup.

Proof. As mentioned, Ding and Li construct a Stein filling of (Mn, ξ) in [DL18]. We use
the mixed torus approach to show that no other exact fillings exist. Honda showed in
[Hon00b] that the 1− n distinct tight contact structures on T 2 × I with boundary slopes
s0 = −1

1−n and s1 = −1 all descend to ξ onMn. Each of these structures on T 2 × I is divided
into −n basic slices

(
T 2 ×

[
0,

1

n

])
∪
(
T 2 ×

[
1

n
,

2

n

])
∪ · · · ∪

(
T 2 ×

[
n− 1

n
, 1

])
,

and the contact structure on T 2 × I is determined by the number of positive basic slices
in this decomposition. If n ≤ −2, then there are −n ≥ 2 basic slices, and we can choose a
structure on T 2 × I for which the basic slices T 2 × [0, 1

n
] and T 2 × [n−1

n
, 1] are positive. The

change of sign induced by Awill then cause the image of T 2×{0} in (Mn, ξ) to sit between
basic slices of opposite sign — that is, T 2 × {0}will be a mixed torus.

In case n = −1, either of the contact structures on T 2 × I with s1 = −1 and s0 =

−1/(1− n) = −1/2 is a basic slice. There is some t0 ∈ I so that the convex torus T 2 × {t0}

has slope st0 = −2/3, so we may further divide T 2 × I into a pair of basic slices

T 2 × I =
(
T 2 × [0, t0]

)
∪
(
T 2 × [t0, 1]

)
,

each with the same sign. As before, the change of sign produced by the monodromy allows
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us to realize T 2 × {0} as a mixed torus, sitting between the basic slices T 2 × [0, t0] and
T 2 × [t0 − 1, 0] of opposite sign. In any case, T 2 × {0} is a mixed torus.

Once again we suppose that (W,ω) is an exact filling of (Mn, ξ) and let (M ′, ξ′) be the
exactly fillable contact manifold produced by Theorem 3.3. We write

M ′ = S0 ∪ (T 2 × I) ∪ S1

and let Γi, µi denote the dividing curves and meridian of ∂Si, for i = 0, 1. Because s1 = −1,
Γ0 is represented by (1,−1)T ∈ T 2 = R2/Z2. The shortest integer vectors representing Γ1

and µ1 form an integral basis for Z2, so µ1 = (m, k)T , where k = ±1 −m and m ≥ 0. It
follows that µ0 is represented by

A

 m

±1−m

 = −

±n−m(n− 1)

±1−m

 .

Our first claim is that m ≥ 1. If m = 0, then the meridians µ1 and µ0 are represented by
(0,±1)T and (±n,±1), respectively. Thus the counterclockwise rotation from µ1 to Γ1 to Γ0

to µ0 takes us from a slope of∞ to a slope of −1 to a slope of −1
1−n , and then on to a slope

of 1/n. In particular, the dividing curves of tori in (M ′, ξ′) rotate through an angle greater
than π, and (M ′, ξ′) is overtwisted. The casem = 0 is depicted in Figure 5.5a.

Next we claim that k = 1−m. Notice that form ≥ 1 and n ≤ −1,

−1−m
m

< −1 <
1 +m

n+m(n− 1)
<
−1

1− n
< 0.

So if k = −1−m, then

slope(µ1) < slope(Γ1) < slope(µ0) < slope(Γ0) < 0.

As before, this tells us that the contact planes of (M ′, ξ′) will rotate through an angle in
excess of π, making (M ′, ξ′) overtwisted. The case k = −1−m is depicted in Figure 5.5b.
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Finally, we claim thatm = 1. Ifm ≥ 2 and n ≤ −1, then

−1 <
1−m
m

≤ −1

1− n
<

1−m
n−m(n− 1)

< 0,

which is to say
slope(Γ1) < slope(µ1) ≤ slope(Γ0) < slope(µ0) < 0,

since k = 1−m. Once again, this causes (M ′, ξ′) to be overtwisted. See Figure 5.5c.

At last we see that m = 1 and k = 0, so that µ1 is represented by (1, 0)T . Then µ0 is
represented by A(1, 0)T = (−1, 0)T , andM ′ ' S2 × S1. But S2 × S1 admits a unique tight
contact structure, and this structure has a unique strong symplectic filling up to symplectic
deformation and blowup. That is, the output (W ′, ω′) of Theorem 3.3 is independent of the
filling (W,ω) of (Mn, ξ) with which we start. Because the decomposition recovers (W,ω)

from (W ′, ω′), the filling (W,ω) is unique.

5.3.3 Hyperbolic torus bundles

Hyperbolic torus bundles represent the generic case for torus bundles, where the mon-
odromy A has | tr(A)| > 2. The monodromy has the form

A = ±T r0ST r1S · · ·T rkS,

where r0 ≤ −3 and ri ≤ −2 for 1 ≤ i ≤ k and S, T are the generators of SL(2,Z) identified
in Section 5.1. Honda showed in [Hon00b] that the torus bundle with this monodromy
admits |(r0 + 1) · · · (rk + 1)|minimally twisting tight contact structures. If the monodromy
is positive, then two of these structures are universally tight; otherwise they are all virtually
overtwisted.

We will find it convenient to change our monodromy by a conjugation, and to relabel
our coefficients. Given a ≤ −3 and τ ≥ 0, set

Ca,τ = T a+1S(T−2S)τT−1.
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We determine the monodromy A by choosing integers a0, . . . , ak ≤ −3 and τ0, . . . , τk ≥ 0

and setting

A = ±Ca0,τ0 · · ·Cak,τk = ±T a0+1S(T−2S)τ0 · · ·T akS(T−2S)τkT−1.

Then T−1AT has the form identified above. Notice that with this notation the count of tight
contact structures is |(a0 + 1) · · · (ak + 1)|. The primary benefit to this new notation is that
we may easily identify a basic slice decomposition of (M, ξ). Namely, our decomposition
will have |a0 + · · ·+ ak + 2(k + 1)| basic slices, divided into k + 1 continued fraction blocks.

With this notation established, we may state more explicitly our result for hyperbolic
torus bundles.

Proposition 5.6. Let M be a hyperbolic torus bundle and let ξ be a virtually overtwisted tight

contact structure onM . Then there is a nonempty, finite list (L1, ξ1), . . . , (Lm, ξm) of tight lens

spaces and a corresponding list L1
±, . . . , L

m
± of Legendrian knots Li± ⊂ (Li, ξi) such that every

strong (exact) symplectic filling of (M, ξ) can be obtained from a strong (exact) symplectic filling

of (Li, ξi), for some 1 ≤ i ≤ m, by attaching a round symplectic 1-handle along Li±. Moreover,

(1) if (M, ξ) has a virtually overtwisted continued fraction block, we havem = 1;

(2) if the monodromy of M has coefficients a0, a1, . . . , ak and τ0, . . . , τk, then we have m ≤

2 + max{τi}.

Remark. The lists (L1, ξ1), . . . , (Lm, ξm) and L1
±, . . . , L

m
± are determined by the choice of a

mixed torus in (M, ξ). We will construct this list for each mixed torus in (M, ξ), and prove
the last two statements of the proposition by showing that (M, ξ) admits a mixed torus
leading to a list of the desired length.

As in the previous cases, our strategy is to identify a mixed torus in (M, ξ), and then
to determine which lens spaces may result from cutting (M, ξ) open along this torus and
gluing on solid tori. We then use Theorem 3.3 to conclude that all fillings of (M, ξ) result
from fillings of these lens spaces via round symplectic 1-handle attachment. Notice that
Theorem 3.3 specifies the attaching regions for these lens spaces. We will follow Honda
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[Hon00b] in identifyingM with a quotient of T 2×I , where T 2×{1} has slope s1 =∞. The
basic slice decomposition of T 2 × I will then have k + 1 continued fraction blocks, with a
block corresponding to each coefficient ai. The continued fraction block associated to ai will
consist of |ai + 2| basic slices, and will have |ai + 1| tight contact structures, distinguished
by the number of basic slices in the block which have positive Euler characteristic.

Because there are |ai + 1| tight contact structures on the continued fraction block associ-
ated with ai, we see that there are |(a0 + 1) · · · (ak + 1)| tight contact structures on T 2 × I

with the desired boundary slopes. Honda shows in [Hon00b] that these pass to distinct
tight contact structures onM . Exactly two of the structures on T 2 × I are universally tight
— those two for which every basic slice has the same sign. If our monodromy is positive,
these two structures remain universally tight when we pass toM ; if A is negative, these
structures become virtually overtwisted.

Our basic slice decomposition ofM shows us that there are ` = |a0 + · · ·+ ak + 2(k+ 1)|

tori which appear along the boundary of a basic slice. If (M, ξ) is virtually overtwisted,
then at least one of these ` tori sits between basic slices of opposite sign, and is thus a mixed
torus. We choose such a torus T 2 × {t0} and call it T 2.

Now A has an oriented eigenbasis {v1, v2} with associated eigenvalues λ1 > 1 and
0 < λ2 < 1. These vectors are necessarily irrational, and we denote their slopes by

Λs := slope(v1) and Λu := slope(v2).

These are the stable and unstable slopes, respectively. On the Farey tessellation, the slopes
corresponding to the dividing sets of fibers of our T 2×I are located in the counterclockwise
arc connecting Λu to Λs. In particular, slope(T 2) and slope(AT 2) are in this sector.

The slopes slope(T 2) and slope(AT 2) will play the roles played by s1 and s0, respectively,
in previous cases. Namely, the lens space (M ′, ξ′) that results from Theorem 3.3 will have
the form

St0 ∪ (T 2 × [t0, t0 + 1]) ∪ St0+1,
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with boundary slopes st0+1 = slope(T 2) and st0 = slope(AT 2). We now identify the possible
slopes for the meridian µ of St0+1. Certainly s(µ) must be connected to st0+1 by an edge on
the Farey tessellation, since the shortest integral vectors representing these slopes form an
integral basis for Z2. Our next claim is that s(µ) must not lie in the same sector of the Farey
tessellation as T 2 × I .

Lemma 5.7. On the Farey tessellation, s(µ) lies in the counterclockwise arc connecting Λs to Λu.

Proof. As in the previous cases, rotating from s(µ) to st0+1 to st0 to s(Aµ) must not take us
through an angle in excess of π, lest (M ′, ξ′) be overtwisted. On the Farey tessellation, this
means that the counterclockwise path connecting these slopes (in this order) must not
overlap itself. Now if s(µ) lies on the counterclockwise arc [s(T 2),Λs] between s(T 2) and Λs,
then s(Aµ) lies on [s(µ),Λs]. But then the arc [s(µ), s(T 2)] contains s(Aµ), meaning that the
rotation described above is through an angle greater than π, and (M ′, ξ′) is overtwisted. On
the other hand, if s(µ) lies on [Λu, s(T 2)], then s(Aµ) is contained in [s(µ), s(AT 2)]. Again
this means that our path of slopes overlaps itself, and (M ′, ξ′) is overtwisted. We conclude
that s(µ) lies on [Λs,Λu].

With Lemma 5.7 in hand, we quickly obtain the finite list (L1, ξ1), . . . , (Lm, ξm) guaran-
teed by Proposition 5.6. Indeed, suppose we have a sequence (s(µi)) of meridian slopes
connected to s(T 2) on the Farey tessellation (as all candidate meridian slopes must be).
Then this sequence converges to s(T 2), and thus only finitely many of the slopes are con-
tained in [Λs,Λu], since s(T 2) is not contained in this interval. So there are only finitely
many possible meridians µ for St0+1, and hence only finitely many lens spaces to whichM ′

could be diffeomorphic. Notice that the contact structure ξ′ onM ′ is determined by ξ, so
we now know that we have a finite list of tight lens spaces. Moreover, each of these lens
spaces has a pair Li± ⊂ (Li, ξi) of distinguished Legendrian knots, along which we attach
symplectic 1-handles to produce fillings of (M, ξ). Each of these is constructed along with
its lens space as the core curves of St0 and St0+1, respectively. We will obtain parts (1) and
(2) of Proposition 5.6 by examining the slopes which appear in a continued fraction block.
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Figure 5.6: The interval [Λs,Λu] for A = C−5,2. Notice that s1 =∞ is connected to 0, 1, 2, 3,
while 0 is the only element of [Λs,Λu] to which either of −1 or −1/2 is connected.

Lemma 5.8. Choose a ≤ −3 and τ ≥ 0, and let A = Ca,τ , with stable and unstable slopes Λs

and Λu. Let (T 2 × I, ξ) be tight and have boundary slopes s1 and s0 corresponding to (0, 1)T and

A(0, 1)T , respectively, and let T 2 ⊂ T 2 × I be a boundary component for a basic slice. Then

(1) if T 2 is not a boundary torus, there is exactly one slope s connected to s(T 2) in the arc [Λs,Λu]

on the Farey tessellation;

(2) if T 2 = T 2 × {1}, there are τ + 2 slopes connected to s(T 2) in the arc [Λs,Λu].

Proof. First, note that the boundary torus T 2×{1} has slope∞, and that (T 2×I, ξ) contains
|a + 2| basic slices. In particular, there are |a + 3| non-boundary tori which lie between
basic slices, and these have slopes

−1,−1/2, . . . , 1/(a+ 3).

Wewill prove this lemma by showing that 0 is the only value in [Λs,Λu] that is connected to
any of these slopes on the Farey tessellation, and by counting the values in [Λs,Λu] which
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are connected to∞. Note that expanding A gives

A =

−τ − (τ + 1)(1 + a) a+ 2

−(τ + 1) 1

 ,

and thus T 2 × {0} has slope 1
a+2

. In particular, since [Λs,Λu] ⊂ [s0, s1], we have 1
a+2

< Λs.
Similarly, because

A−1 =

 1 −a− 2

τ + 1 −τ − (τ + 1)(1 + a)

 ,

A−1(0, 1)T has slope 1 + τ + 1
|a+2| > Λu. At the same time,

A

 1

Λu

 = λ

 1

Λu


for some 0 < λ < 1. An explicit calculation shows that

Λu =
1

2
(1 + τ +

√
(1 + τ)2 + 4(1 + τ)/|a+ 2|) > 1 + τ.

So 1 + τ < Λu < 1 + τ + 1
|a+2| < 2 + τ . Similar reasoning shows that 1

a+2
< Λs < 0. On

the Farey tessellation,∞ is connected only to integers, and we see that [Λs,Λu] contains
precisely τ + 2 integers: 0, 1, . . . , τ, 1 + τ . So s1 is connected to τ + 2 slopes in [Λs,Λu],
proving part (2). We also notice that each of the slopes−1,−1/2, . . . , 1/(a+ 3) is connected
to 0 on the Farey tessellation, and, with the exception of −1, is connected only to rational
numbers p/q < 1/(a+ 2). In particular, 0 is the only value in [Λs,Λu] to which any of the
slopes −1,−1/2, . . . , 1/(a+ 3) is connected. See Figure 5.6. This proves part (1).

While the precise slopes identified by Lemma 5.8 change when we compose to obtain

A = ±Ca0,τ0 · · ·Cak,τk ,

the counts do not. Indeed, each Cai,τi is an element of SL(2,Z) and will therefore pre-
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serve connections and order on the Farey tessellation. So while the finite list of slopes
s1 = ∞,−1,−1/2, . . . , 1/(a + 3), 1/(a + 2) = s0 and the interval [Λs,Λu] will change af-
ter composition, the connections between the former and elements of the latter will be
unaltered.

In particular, if (M, ξ) has a virtually overtwisted continued fraction block, then there
is a mixed torus T 2 which is interior to this block. According to Lemma 5.8, applying
Theorem 3.3 along this mixed torus leaves us with precisely one possible meridian µ for
St0+1. Another possibility is for (M, ξ) to be virtually overtwisted, but to have continued
fraction blocks which are all universally tight. In this case we find a mixed torus T 2 which
lies between two continued fraction blocks. Lemma 5.8 tells us that s(T 2) is connected to at
most 2 + max{τi} distinct slopes in [Λs,Λu], and thus there are at most 2 + max{τi} distinct
lens spaces which may result from applying Theorem 3.3 along T 2. This completes the
proof of Proposition 5.6.

Example 5.9. LetM be the positive hyperbolic torus bundle with coefficients (a0, a1, a2) =

(−4,−5,−4) and (τ0, τ1, τ2) = (0, 2, 0). That is,M has monodromy

A = T−4ST−5ST−2ST−2ST−4S =

119 −83

−43 30

 .

According to the classification of tight contact structures on torus bundles ([Hon00b]),
the tight contact structures onM are in one-to-one correspondence with the tight contact
structures on T 2 × I which have boundary slopes s0 = −1 and s1 = [−4,−2,−2,−5,−3] =

−119/36. Each such tight structure decomposes into seven basic slices, distributed among
three continued fraction blocks, visualized as follows:

−1 −2 −3
−13

4
−23

7
−33
10

−76
23

−119
36

0 1

The long tick marks at slopes −1,−3,−33/10, and −119/36 indicate divisions between
continued fraction blocks. The tori T 2×{0} and T 2×{1} (whose dividing sets have slopes
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K4 K3 K2 K1 K0

−4 −2 −2 −5 −4

Figure 5.7: The standard filling of any tight structure on the torus bundle with positive
monodromy coefficients (r0, r1, r2, r3, r4) = (−4,−5,−2,−2,−4) is obtained from Legen-
drian surgery along the above link in (S1 × S2, ξstd). Each knot Ki is stabilized so that
its Thurston-Bennequin number exceeds its framing by 1, and the rotation numbers are
determined by the tight structure ξ onM . The lens spaces produced by Theorem 5.1 may
be obtained by erasing the 1-handle and an unknot, leaving a link in (S3, ξstd).

−1 and −119/36, respectively) will be identified by the monodromy A.

We now determine a tight structure onM by decorating each basic slice with a sign,
indicating the sign of the relative Euler class of the tight structure when restricted to this
basic slice. Because basic slices may be shuffled within a given continued fraction block,
there are 3 · 4 · 3 = 36 tight contact structures onM . As observed by Bhupal-Ozbagci in
[BO14], each of these structures admits a Stein filling, depicted in Figure 5.7.

Each of the three continued fraction blocks inM has a corresponding tight lens space.
Stein fillings of these lens spaces may be obtained from Figure 5.7 by erasing the 1-handle
along with one of the unknotsK0,K1, orK4. So the lens spaces associated to the continued
fraction blocks have topological types L(43, 13), L(37, 10), and L(49, 34), respectively. The
tight structure on the resulting lens space is determined by Figure 5.7. If a given continued
fraction block in (M, ξ) is virtually overtwisted, then (M, ξ) admits a mixed torus interior
to this continued fraction block, and each exact filling of (M, ξ) may be obtained from an
exact filling of the corresponding lens space by round 1-handle attachment.

There are eight tight contact structures onM which are virtually overtwisted, but for
which all three continued fraction blocks are universally tight. In these cases, (M, ξ) admits
a mixed torus which lies at the boundary of two continued fraction blocks, and the list of
lens spaces produced by Theorem 5.1 consists of the lens spaces corresponding to these
two continued fraction blocks, as well as all lens spaces between these. These extra lens
spaces are obtained from Figure 5.7 by deleting the round 1-handle and an unknot with
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a −2-framing. For instance, if we have a mixed torus of slope −33/10 — sitting at the
boundary of the second and third continued fraction blocks — then the list of lens spaces
produced by Theorem 5.1 has topological type

(L(37, 10), L(123, 26), L(127, 71), L(49, 34)).

A mixed torus between the first and second or third and first continued fraction blocks
will yield a list of exactly two lens spaces, as there are no intermediate lens spaces in these
cases.

The following diagram summarizes this example:

−1 −2 −3
−13

4
−23

7
−33
10

−76
23

−119
36

0 1

L(43, 13)

L(49, 34) L(43, 13)

L(37, 10)

L(43, 13) L(37, 10) L(37, 10)

L(49, 34)

L(127, 71)

L(123, 26)

L(37, 10) L(49, 34)

If ξ is a virtually overtwisted tight contact structure onM , then there must be a mixed torus
at one of the seven slopes above. (Because T 2 × {1} is identified with T 2 × {0}, we need
not consider this torus separately.) Below each slope we see the diffeomorphism types
of the lens spaces produced by Theorem 5.1 when a mixed torus occurs with this slope.
As mentioned above, the tight structures on these lens spaces will be determined by ξ, as
depicted in Figure 5.7.

5.4 Distinct decompositions of fillings

Even with the classification of fillings of lens spaces completed in Chapter 4, the only
immediate consequence of Theorem 5.1 is a recipe which is guaranteed to construct all
fillings of such a torus bundle, but these constructions need not be unique. Indeed, if
(L(p1, q1), ξ1), . . . , (L(pm, qm), ξm) is the list of lens spaces provided by Theorem 5.1 for some
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hyperbolic torus bundle (M, ξ), it is possible that there are fillings (Wi, ωi) of (L(pi, qi), ξi)

for i = 1, . . . ,m, each of which yield the same filling (W,ω) of (M, ξ) after round 1-handle
attachment.

To fully explicate such overcounting of the fillings of (M, ξ) will require a detailed
understanding of the fillings of (L(p1, q1), ξ1), . . . , (L(pm, qm), ξm). The proof of Theorem 5.1
establishes a relationship among the lens spaces (L(p1, q1), ξ1), . . . , (L(pm, qm), ξm) that al-
lows us to identify one source of overcounting. In particular, the construction associates to
each lens space (L(pi, qi), ξi) a pair of distinguished Legendrian knotsLi−, Li+ ⊂ (L(pi, qi), ξi)

which arise as the core curves of the solid tori which are glued onto T 2 × {0} and T 2 × {1},
respectively, after (M, ξ) is cut open along its mixed torus. For 1 ≤ i ≤ m− 1, we obtain the
lens space (L(pi+1, qi+1), ξi+1) by simultaneously performing (+1)-surgery along Li+ and
(−1)-surgery along Li−.

This relationship between the lens spaces gives us an algorithm for building fillings of
(L(pi+1, qi+1), ξi+1) from fillings of (L(pi, qi), ξi). If (Wi, ωi) is a strong symplectic filling of
(L(pi, qi), ξi) in which Li+ bounds a Lagrangian disc, then we may remove a neighborhood
of the disc from (Wi, ωi) to obtain a symplectic manifold strongly filling its boundary (c.f.
[CET21, Theorem 3.1]), and the effect on the boundary is to perform (+1)-surgery alongLi+.
We may then attach a Weinstein 2-handle to this new filling along Li−, and at the boundary
this has the effect of performing a (−1)-surgery along Li−. The result is (Wi+1, ωi+1), a
strong symplectic filling of (L(pi+1, qi+1), ξi+1), and Proposition 5.10 will tell us that this
filling leads to the same filling of (M, ξ) as does (Wi, ωi) after round 1-handle attachment.

To make the statement of Proposition 5.10 less cumbersome, we establish some no-
tation. Suppose we have a strong symplectic filling (X,ω) of a contact manifold (M, ξ),
with Legendrian knots L0, L1 ⊂ (M, ξ). Moreover, suppose that L0 is the boundary of a
Lagrangian disc D ⊂ (X,ω) which meets ∂X transversely. As alluded to above, we may
identify a neighborhood N ⊂ X of D with a neighborhood of the cocore of a Weinstein
2-handle, and remove this neighborhood to obtain a new symplectic filling (X,ω). (The
existence of such a neighborhood is proven in Theorem 3.1 of [CET21].) With (X,ω), D,
L0, and L1 understood, we denote by (X ′, ω′) the strong symplectic filling which results
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from attaching a Weinstein 2-handle to (X,ω) along L1. Each of L0 and L1 has a natural
Legendrian pushoff in ∂(X ′, ω′), given by the boundary of the core and cocore of the asso-
ciated 2-handle, respectively, which we denote L′0 and L′1. With this notation in hand, we
have the following result.

Proposition 5.10. Let (X,ω) and (X ′, ω′) be strong symplectic fillings related by the construction

above. Let (W,ωW ) be the strong symplectic filling obtained by attaching a round symplectic 1-

handle to (X,ω) along L0, L1, and let (W ′, ω′W ) be the analogous filling for (X ′, ω′). Then (W,ω)

and (W ′, ω′W ) are symplectomorphic fillings of (M, ξ).

Our strategy for proving this result is to realize round symplectic 1-handle attachment as
a sequence ofWeinstein handle attachments, and then to reorder theWeinstein handles. The
decomposition of a round 1-handle into Weinstein handles is explained in great generality
in [Avd12, Section 7.2], but the precise statement we need here is the following.

Lemma 5.11. Fix a strong symplectic filling (X,ω) of a contact 3-manifold (M, ξ), and identify

Legendrian knots L0, L1 ⊂ (M, ξ). Consider the following symplectic fillings:

(1) (Xr, ωr), obtained by attaching a round symplectic 1-handle to (X,ω) along the knotsL0, L1 ⊂

(M, ξ);

(2) (Xw, ωw), obtained by attaching a Weinstein 1-handle to (X,ω) along points pi ∈ Li, i = 0, 1,

and then attaching a Weinstein 2-handle to the resulting filling along the knot L obtained by

surgering L0 and L1 along p0 and p1.

Then (Xr, ωr) is symplectomorphic to (Xw, ωw).

Before providing a proof of Lemma 5.11, let us say what we mean by surgering L0 and L1

along p0 and p1. A 4-dimensional Weinstein 1-handle H1 admits a Lagrangian submanifold-
with-boundary Λ ⊂ H1 to which the Liouville vector field on H1 is tangent, and such
that this vector field gives Λ the structure of a 2-dimensional Weinstein 1-handle. We
then have Legendrian submanifolds ∂inΛ ⊂ ∂inH1 and ∂outΛ ⊂ ∂outH1. Now we attach H1

to (X,ω) along p0, p1 by choosing a contactomorphism from the attaching region ∂inH1

to a neighborhood of the points p0, p1. This contactomorphism can be chosen so that
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∂inΛ ⊂ ∂inH1 is mapped to arcs a0, a1 of the Legendrians L0, L1. In the boundary of the
symplectic filling that results, we will have a Legendrian knot

L = (L0 \ a0) ∪ ∂outΛ ∪ (L1 \ a1),

and it is this knot that we consider to be the result of surgering L0 and L1 along p0 and p1.

Proof of Lemma 5.11. Once we identify our round symplectic 1-handle with a symplectic
handle in the sense of Avdek, this fact follows from the discussion in [Avd12, Section 7.2].
We will present Avdek’s argument in our particular case.

As mentioned in Chapter 2, Avdek defines an abstract round symplectic 1-handle as
follows. Let (Σ, β) = (D∗S1, λcan) be the unit disc bundle in (T ∗S1, λcan), and consider the
contact manifold

(N(Σ) = [−ε, ε]× Σ, α = dz + β), (5.3)

where z is the coordinate on [−ε, ε]. Avdek rounds the edges of N(Σ) to obtain N (Σ), and
then defines the symplectic manifold

(HΣ, ωβ) = ([−1, 1]×N (Σ), dθ ∧ dz + dβ), (5.4)

where θ is the coordinate on [−1, 1]. After more edge-rounding, this is an abstract copy of
a round symplectic 1-handle, to be attached along the ends {±1} ×N (Σ). In particular, we
have the Liouville form

λΣ = −θ dz − 2z dθ + β,

and (HΣ, λΣ) carries a Liouville vector field Z which points into HΣ along {±1} × N (Σ)

and out of HΣ along [−1, 1]× ∂N (Σ).

Now (Σ, β) has an obvious handle decomposition as a Weinstein domain, given by
attaching a Weinstein 1-handle to a Weinstein 0-handle, and yielding the filtration

(D2, λstd) = (Σ0, β0) ⊂ (Σ, β)
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of (Σ, β). By carrying out the constructions of (5.3) and (5.4) for (Σ0, β0), we obtain
filtrations

(D3, αstd) = (N (Σ0), α0) ⊂ (N (Σ), α) and (HΣ0 , λΣ0) ⊂ (HΣ, λΣ),

and it is clear that (HΣ0 , λΣ0) is symplectomorphic to a Weinstein 1-handle. It remains to
verify that we obtain (HΣ, λΣ) from (HΣ0 , λΣ0) by attaching a Weinstein 2-handle.

To this end, we identify a Legendrian ribbon (Σi, βi) ofLi ⊂ (M, ξ) with (Σ, β), using the
filtration of (Σ, β) to define (Σi

0, β
i
0) ⊂ (Σi, βi), for i = 0, 1. Now the Liouville hypersurfaces

(Σ0, β0) and (Σ1, β1) admit standard neighborhoods N(Σ0), N(Σ1) ⊂ (M, ξ) along which a
round symplectic 1-handle may be attached to (X,ω) to yield (Xr, ωr). On the other hand,
let (X1, ω1) denote the result of attaching the Weinstein 1-handle (HΣ0 , λΣ0) to (X,ω) along
N(Σ0

0) andN(Σ1
0). By definition, we obtain (Xw, ωw) from (X1, ω1) by attaching a Weinstein

2-handle, but the filtration (HΣ0 , λΣ0) ⊂ (HΣ, λΣ) above allows us to view (X1, ω1) as living
inside of (Xr, ωr). We will use this perspective to see (Xr, ωr) as the result of attaching a
Weinstein 2-handle to (X1, ω1) and thus obtain the desired symplectomorphism.

For i = 0, 1, let Λi ⊂ Li ⊂ (Σi, βi) be the core disc of the 1-handle attached to (Σi
0, β

i
0) to

yield (Σi, βi). This is a Legendrian chord in the boundary of (X1, ω1), and we identify Λi

inside of N(Σi) as
Λi = {z = 0} × Λi ⊂ [−ε, ε]× Σi = N(Σi).

At the same time, consider the disc

Λ̃ = [−1, 1]× Λ ⊂ (HΣ \ intHΣ0),

where Λ ⊂ (Σ, β) is the analogous chord in Σ. Viewing (X1, ω1) as a subset of (Xr, ωr),
we see that (X1, ω1) ∩ Λ̃ = Λ0 t Λ1, and that Λ̃ represents the core disc of the Weinstein
2-handle (HΣ \ intHΣ0 , λΣ). The latter statement follows from the fact that Λ is the core
disc of the Weinstein 1-handle (Σ \ Σ0, β), meaning that β vanishes along Λ, and thus λΣ

83



vanishes along Λ̃. Up to smoothing, this disc has boundary

∂Λ̃ = Λ0 ∪ ([−1, 1]× ∂Λ) ∪ Λ1 ⊂ (X1, ω1),

which is the result in (X1, ω1) of surgering L0 to L1. So (Xr, ωr) is obtained from (X1, ω1)

by attaching a Weinstein 2-handle along this surgered knot, as desired, and thus round 1-
handle attachmentmay be realized asWeinstein 1-handle attachment followed byWeinstein
2-handle attachment.

We are now prepared to prove Proposition 5.10.

Proof of Proposition 5.10. We continue using the notation established before the statement
of Proposition 5.10. In particular, we have a symplectic filling (X,ω) with Legendrian
knots L0, L1 ⊂ ∂(X,ω) such that (X,ω) and (X ′, ω′) are obtained from (X,ω) by attaching
a Weinstein 2-handle along L0 and L1, respectively.

Now since Lemma 5.11 tells us that round symplectic 1-handle attachment consists
of a Weinstein 1-handle attachment followed by a Weinstein 2-handle attachment, we
see that (W,ω) and (W ′, ω′) are each obtained from (X,ω) by a sequence of Weinstein
handle attachments. In particular, we obtain (W,ω) by attaching a Weinstein 2-handle
along L0, then attaching a Weinstein 1-handle along points in L0, L1 ⊂ ∂(X,ω) — knots
which are Legendrian pushoffs of L0, L1 — and then attaching a Weinstein 2-handle along
the resulting surgered knot. By considering L1 instead of L0, we obtain (W ′, ω′). In either
case, we may reorder our handle attachments so that the round symplectic 1-handle is
attached first to produce a filling (X

′
, ω′), leaving us to attach a Weinstein 2-handle along

either L′0 or L
′
1 — these being Legendrian pushoffs of the corresponding knots in (X,ω).

But since we have attached a round symplectic 1-handle along L0, L1, their pushoffs are
Legendrian isotopic in ∂(X

′
, ω′), with the isotopy being witnessed by a cylinder in the

boundary of the round 1-handle. So (W,ω) and (W ′, ω′) are obtained from (X,ω) by the
same sequence of Weinstein handle attachments, and thus are symplectomorphic.

The practical upshot of Proposition 5.10 is this: for 1 ≤ i ≤ m − 1, the lens space
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(L(pi, qi), ξi)produced byTheorem5.1 comeswith distinguishedLegendrian knotsLi−, Li+ ⊂
L(pi, qi) which are used to produce (L(pi+1, qi+1), ξi+1) as described above. Proposition 5.10
says that if we have a filling of (L(pi, qi), ξi) in which Li+ bounds a Lagrangian disc, then the
filling of (M, ξ) produced by round 1-handle attachment is also obtained from the corre-
sponding filling of (L(pi+1, qi+1), ξi+1). In particular, if we are using Theorem 5.1 to tabulate
the fillings of (M, ξ), then any filling of (L(pi, qi), ξi) in which Li+ bounds a Lagrangian disc
may be ignored, as there is a filling of (L(pi+1, qi+1), ξi+1) which will produce the same
filling of (M, ξ). Concretely, we have the following corollary.

Corollary 5.12. Let (M, ξ) be a virtually overtwisted hyperbolic torus bundle, and let

(L(p1, q1), ξ1), . . . , (L(pm, qm), ξm)

be the list of tight lens spaces produced by Theorem 5.1, with distinguished Legendrian knots

L1
−, L

1
+, . . . , L

m
− , L

m
+ . For 1 ≤ i ≤ m−1, if (Wi, ωi) is a strong symplectic filling of (L(pi, qi), ξi) in

whichLi+ bounds a Lagrangian disc, then there is a strong filling (Wi+1, ωi+1) of (L(pi+1, qi+1), ξi+1)

such that (Wi, ωi) and (Wi+1, ωi+1) yield symplectomorphic fillings of (M, ξ) after round symplectic

1-handle attachment along Li−, Li+ or Li+1
− , Li+1

+ .

Corollary 5.12 provides just one answer to the following question: under what con-
ditions do fillings (Wi, ωi) and (Wi+1, ωi+1) of (L(pi, qi), ξi) and (L(pi+1, qi+1), ξi+1), respec-
tively, yield the same filling of (M, ξ) after round symplectic 1-handle attachment? A full
answer to this question will complete the classification of fillings for virtually overtwisted
contact structures on torus bundles.
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CHAPTER 6

Surgeries on Legendrian negative cables

In this chapter we aim to classify symplectic fillings for spaces obtained from (S3, ξstd)

via contact surgery along certain Legendrian knots. Theorem 1.1.3 of [Men18] is the first
instance of such a result, showing that these surgeries have unique fillings (up to diffeo-
morphism) when the Legendrian knot has been stabilized both positively and negatively.
In this section we study fillings in the case that our knot is a Legendrian negative cable of a
Legendrian with stabilizations of opposite sign.

6.1 The result

First defined in [Ng01], a thorough study of Legendrian satellite knots can be found in
[EV18], some notation of which we now recall. We consider a contact manifold (V, ξV )

defined by V = D2
y,z × S1

θ , ξV = ker(dz − y dθ). Any Legendrian knot L ⊂ (S3, ξstd) has a
neighborhood ν(L) which is contactomorphic to (V, ξV ), and given any Legendrian knot
Q ⊂ V , we denote by Q(L) ⊂ ν(L) the image of Q under this contactomorphism. We
pay special attention to the case where Q ⊂ V is a Legendrian (p, q)-torus knot, for some
coprime p, qwith q > 0, in which case we callQ(L) a Legendrian cable of L. We point out that
if Q is a (p, q)-torus knot and K is the knot type of L, then the knot type of Q is Kp+q tb(L),q,
that of a smooth (p+q tb(L), q)-cable of L. The reason for this is that the contactomorphism
between ν(L) and V identifies the product framing on V with the contact framing on ν(L);
see [EV18, Section 5] for more details.

We will also need a particular embedding of (V, ξV ) into itself. Notice that the core C of
V is a Legendrian curve, and that (V, ξV ) = ν(C) is a standard neighborhood of C. We may
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stabilizeC to obtain S+(C) ⊂ V and identify a standard neighborhood ν(S+(C)) ⊂ V of the
stabilization. We have a contactomorphism between ν(C) = (V, ξV ) and ν(S+(C)) ⊂ (V, ξV ),
giving us an embedding ζ : (V, ξV ) ↪→ (V, ξV ).

Next we point out that a Legendrian knot Q ⊂ V which is smoothly a (p, q)-torus knot
can be used to determine a tight contact structure ξQ on L(q2, pq − 1). The construction
is as follows: let S ∼= (D2 × S1, ξstd) be a tight solid torus, glued to V in such a way that
V ∪ S ∼= (S2 × S1, ξstd). Then (L(q2, pq − 1), ξQ) is the result of Legendrian surgery on
(S2 × S1, ξstd) along ζ(Q).

Our final preparation before stating the result of this chapter is to explain how we may
represent a Legendrian knot L ⊂ (S3, ξstd) as a knot in (L(q2, pq − 1), ξQ). First, consider
the knot K = {pt} × S1 in (S2 × S1, ξstd); we take K to be disjoint from Q ⊂ S2 × S1.
By performing the contact connected sum (S2 × S1, ξstd)#(S3, ξstd) along points x ∈ K

and y ∈ L, we obtain K#L as a Legendrian knot in (S2 × S1, ξstd). Finally, we perform
Legendrian surgery on (S2 × S1, ξstd) along ζ(Q), andK#L passes to a Legendrian knot in
(L(q2, pq − 1), ξQ). Abusing notation, we call this Legendrian knot L.

We are now prepared to state our result.

Theorem6.1. LetL ⊂ (S3, ξstd) be a Legendrian knot with smooth knot typeK, and letQ(S+S−(L))

be a Legendrian negative cable of S+S−(L), the smooth knot type of which is Kp,q. Suppose

that the Thurston-Bennequin number of Q(S+S−(L)) is maximal among such Legendrian knots,

and let (M, ξ) be the contact manifold which results from Legendrian surgery on (S3, ξstd) along

Q(S+S−(L)). Then every strong symplectic filling of (M, ξ) may be obtained, up to diffeomor-

phism, by attaching a Weinstein 2-handle to a strong symplectic filling of (L(q2, pq − 1), ξQ) along

S−(L) ⊂ L(q2, pq − 1).

Remark.

(1) Because Q(S+S−(L)) has the smooth knot type Kp,q, this knot is a Legendrian (p +

q(2− tb(L)), q)-cable of S+S−(L). Since Q(S+S−(L)) is a Legendrian negative cable,
p < q(tb(L)− 2).

(2) According to [EV18, Theorem 5.16], the Thurston-Bennequin number of Q(S+S−(L))
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is pq, and thusM is the result of (pq − 1)-surgery along Kp,q. By [Gor83, Corollary
7.3], this surgery is diffeomorphic to (pq − 1)/q2-surgery along K.

6.2 Proof of Theorem 6.1

Throughout this section we let L ⊂ (S3, ξstd) be a Legendrian knot with smooth knot type
K, and let Q(S+S−(L)) be a Legendrian negative cable of S+S−(L) with smooth knot type
Kp,q, p < q(tb(L)− 2). We suppose that the Thurston-Bennequin number of Q(S+S−(L))

is maximal among such knots, and we let (M, ξ) be the contact manifold obtained by
Legendrian surgery along Q(S+S−(L)).

We may use the stabilizations on S+S−(L) to identify a mixed torus in (M, ξ). In par-
ticular, let N(S−(L)) ⊂ (S3, ξstd) be a standard neighborhood of S−(L). We let V1 be the
solid torus obtained from this neighborhood via Legendrian surgery along Q(S+S−(L)),
and let V2 = S3 \N(S−(L)). ThenM = V1 ∪ V2, and we claim that the common boundary
∂V1 = ∂N(S−(L)) = ∂V2 is a mixed torus. Indeed, consider the three convex tori ∂N(L),
∂N(S−(L)), and ∂N(S+S−(L)). The tori ∂N(L) and ∂N(S−(L)) cobound a negative ba-
sic slice in M . The tori ∂N(S−(L)) and ∂N(S+S−(L)) cobound a positive basic slice in
N(S−(L)), but this may not survive to a basic slice in M , since Q(S+S−(L)) may not be
disjoint from ∂N(S+S−(L)). However, we can subdivide this basic slice to find a boundary
parallel convex torus cobounding a positive basic slice with ∂N(S−(L)) (c.f. [EH01, Lemma
3.15]). So ∂N(S−(L)) sits between basic slices of opposite sign, and is therefore a mixed
torus.

Now because of our assumptions that p < q(tb(L)−2) and that the Thurston-Bennequin
number ofQ(S+S−(L)) is maximal, [EV18, Theorem 5.16] tells us that tb(Q(S+S−(L)) = pq.
So the Legendrian surgery used to produce V1 from N(S−(L)) is smoothly (pq− 1)-surgery.
According to Lemmas 7.2 and 7.3 of [Gor83], V1 is then a solid torus D2 × S1 whose
meridional curves have slope (pq − 1)/q2 in the coordinates of ∂N(S−(L)) given by the
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µS

Γ∂N(L)
Γ∂N(S−(L))

µV1

Figure 6.1: If the slope of µS were negative, then V1 ∪ S would be overtwisted; if the slope
were positive, then V2 ∪ S would be overtwisted. So µS is horizontal.

meridian µ and the preferred longitude λ. We now apply
 1 0

1− tb(L) 1

 ∈ SL(2,Z)

to the coordinates of ∂N(S−(L)). In the original coordinates, the dividing curves of ∂N(L)

and ∂N(S−(L)) had slopes 1/ tb(L) and 1/(tb(L)− 1), respectively. In our new coordinates
we find that Γ∂N(L) has slope 1, Γ∂N(S−(L)) is vertical, and the meridional slope of µV1 is
represented by the vector (pq − 1 + q2(1− tb(L)), q2) in Z2.

Having made these preparations, we now suppose that (W,ω) is a strong symplectic
filling of (M, ξ). Applying Theorem 3.3 to this filling yields (W ′, ω′), a strong symplectic
filling of its boundary (M ′, ξ′), which we may write as

M ′ = M1 tM2 := (V1 ∪ S) t (V2 ∪ S),

for some identifications ∂S → ∂Vi, where S is a solid torus. The gluing maps ∂S → ∂Vi

identify dividing curves, but the meridian µS of S could in principle take any number of
values. Our first observation is that, because ΓVi is vertical, µS = (1,m) ∈ Z2 for some
m ∈ Z. Next, the fact that (M ′, ξ′) is fillable means that each of M1 and M2 is tight. On
M1, we see that as we move from the core of S to ∂V1 and then towards the core of V1,
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the contact planes rotate from the slope of µS towards that of ΓV1 , and finally towards the
slope of µV1 . Because of our assumption that p < q(tb(L)− 2), we find that −1 < µV1 < 0.
Tightness demands that the total rotation of the contact planes is through an angle smaller
than π, meaning thatm ≥ 0. See Figure 6.1. OnM2 we see that the contact planes rotate
counterclockwise from 1, the slope of Γ∂N(L), to the slope of Γ∂N(S−(L)), and finally to the
slope m of µS . Because this rotation must be smaller than π, we see that m ≤ 0. So we
conclude thatm = 0.

Because the solid torus S is attached with slopem = 0, we find thatM1 = L(q2, pq − 1)

andM2 ∪ S = S3. Moreover, we see from the definition ofM1 thatM1 results from surgery
on (S2 × S1, ξstd) along ζ(Q), as described in Section 6.1. SoM1

∼= (L(q2, pq − 1), ξQ); on S3

we have the unique tight contact structure ξstd. Now Theorem 3.3 tells us that we recover
(W,ω) from (W ′, ω′) by attaching a round symplectic 1-handle along the cores of the two
copies of S — one inM1 and the other inM2. InM1 this core is given byK, the image of
{pt} × S1 ⊂ (S2 × S1, ξstd) after performing surgery along ζ(Q) ⊂ S2 × S1. InM2 the core
is given by S−(L). We attach the round symplectic 1-handle by first attaching a Weinstein
1-handle along a pair of points x ∈ K and y ∈ S−(L), and then attaching a Weinstein
2-handle along the resulting knot K#S−(L). That is, we obtain (W,ω) from (W ′, ω′) by
attaching a Weinstein 2-handle to

(L(q2, pq − 1), ξQ)#(S3, ξstd) ∼= (L(q2, pq − 1), ξQ)

along K#S−(L) ∼= S−(L), proving Theorem 6.1.
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CHAPTER 7

Seifert fibered spaces

In this section we apply Theorem 3.3 to large classes of contact structures on spaces which
are Seifert fibered over S2, with at least three singular fibers. Our results reduce the
classification of fillings of these spaces to the classification problem for lens spaces — a
problem which is settled by Theorem 4.2. We will first consider Seifert fibered spaces
whose Euler number e0 is non-negative, and then consider spaces with e0 ≤ −3. Here the
Euler number of a Seifert fibered spaceM(r1, . . . , rn) over S2 is defined to be e0 := Σbric.
Starkston [Sta15] and Choi-Park [CP19] have previously studied fillings of small Seifert
fibered spaces satisfying e0 ≤ −3, but we consider a distinct collection of contact structures
on these spaces.

On small Seifert fibered spaces— thosewith precisely three singular fibers— the contact
structures satisfying e0 ≥ 0 or e0 ≤ −3 have been classified by Ghiggini-Lisca-Stipsicz
[GLS06] and Wu [Wu04], and we will see that Theorem 3.3 applies to a great many of
these structures. For Seifert fibered spaces over S2 with more than three singular fibers,
the tight structures have not been fully classified, but we can construct large classes of tight
structures for which Theorem 3.3 applies.

7.1 The results

We present our results in two sections, depending on the Euler number e0.
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7.1.1 The case e0 ≥ 0

We now consider a Seifert fibered space over S2 with n ≥ 3 singular fibers. Choose coprime
integers qi, pi > 0, i = 1, . . . , n, which satisfy qi < pi for i = 1, . . . , n− 1. We may construct
a tight contact structure ξ onM = M( q1

p1
, · · · , qn

pn
) by realizingM as the boundary of a Stein

domain with handlebody description as in Figure 7.1. Here

− pi
qi

= [ai0, a
i
1, . . . , a

i
li
] for i = 1, . . . , n, (7.1)

for some uniquely determined integers

an0 ≤ −1 and a1
0, . . . , a

n−1
0 , ai1, . . . , a

i
li
≤ −2.

We obtain a Stein structure on the handlebody in Figure 7.1 by putting each unknot in
Legendrian position with clockwise orientation and stabilizing until the framing coefficient
becomes −1 with respect to the contact framing. It is possible for distinct choices of
stabilizations to lead to the same tight contact structure onM—that is, there are equivalence
relations among the handlebody diagrams. For small Seifert fibered spaces, Ghiggini-Lisca-
Stipsicz show in [GLS06] that there are precisely

∣∣∣∣∣
(

3∏
i=1

(ai0 + 1)−
3∏
i=1

ai0

)
3∏
i=1

li∏
j=1

(aij + 1)

∣∣∣∣∣
positive tight contact structures onM , up to isotopy. IfM has four singular fibers,Medetoğullari
shows in [Med10] that the number of distinct Stein fillable contact structures is between
∣∣∣∣∣
(

4∏
i=1

(ai0 + 1)−
4∏
i=1

ai0

)
4∏
i=1

li∏
j=1

(aij + 1)

∣∣∣∣∣ and 2

∣∣∣∣∣
(

4∏
i=1

(ai0 + 1)−
4∏
i=1

ai0

)
4∏
i=1

li∏
j=1

(aij + 1)

∣∣∣∣∣ .
Generally, if n ≥ 4, thenM contains incompressible tori and therefore admits infinitely
many tight contact structures according to work of Colin [Col01a, Col01b] and Honda-
Kazez-Matić [HKM02].
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K1a1
0

a1
1

a1
2 a1

l1

Knan0
an1

an2 anln

Figure 7.1: Handlebody decomposition of a Stein filling ofM = M( q1
p1
, · · · , qn

pn
). A contact

structure is produced on M by putting each of the knots in Legendrian position and
stabilizing appropriately.

Our first result for spacesM which are Seifert fibered over S2 applies to tight contact
structures which are thoroughly mixed, a notion we will define precisely in Section 7.2. The
definition is designed so that each singular fiber of M admits a tubular neighborhood
whose boundary is a mixed torus. Applying Theorem 3.3 to a filling of (M, ξ) will then
leave us with a boundary connected sum of fillings of lens spaces. In Section 7.2 we will
also define lightly mixed tight contact structures, in which all but two singular fibers admit
mixed tori. With these provisional definitions, we may state our results.

Theorem 7.1. Let ξ be a tight contact structure on the Seifert fibered spaceM = M( q1
p1
, · · · , qn

pn
),

for some n ≥ 3 and coprime positive integers qi, pi with qi < pi for 1 ≤ i ≤ n − 1 and pi ≥ 2

for 1 ≤ i ≤ n. If ξ is thoroughly mixed, then there are tight contact structures ξi on L(qi,−pi)

for i = 1, . . . , n and Legendrian knots L−i ⊂ (L(qi,−pi), ξi), L+
i ⊂ (L(qi+1,−pi+1), ξi+1) for

i = 1, . . . , n− 1 such that every strong symplectic filling of (M, ξ) is obtained from a disjoint union

of strong fillings of (L(q1,−p1), ξ1), . . . , (L(qn,−pn), ξn) by attaching a round symplectic 1-handle

along L±i , for i = 1, . . . , n− 1.

Several families of tight lens spaces are known to have unique exact fillings, and from
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these we obtain families of tight Seifert fibered spaces with unique exact fillings.

Corollary 7.2. Let ξ be a thoroughly mixed tight contact structure onM = M
(
q1
p1
, · · · , qn

pn

)
, with

qi < pi for 1 ≤ i ≤ n − 1 and pi ≥ 2 and gcd(qi, pi) = 1 for 1 ≤ i ≤ n. If any of the following

conditions hold, then (M, ξ) admits a unique exact symplectic filling, up to diffeomorphism:

(a) qi ∈ {1, 2, 3};

(b) for some b(i)
0 − 2 > b

(i)
1 ≥ 2 andm1, . . . ,mn−1 ≥ 2,mn ≥ 1, we have

qi
pi

=
b

(i)
0 b

(i)
1 + 1

mi(b
(i)
0 b

(i)
1 + 1)− b(i)

1

for i = 1, . . . , n;

(c) for some b(i)
0 , b

(i)
1 ≥ 5 andm1, . . . ,mn−1 ≥ 2,mn ≥ 1, we have

qi
pi

=
b

(i)
0 b

(i)
1 − 1

mi(b
(i)
0 b

(i)
1 − 1)− b(i)

1

for i = 1, . . . , n.

Proof. Theorem 7.1 provides a recipe for constructing any exact filling of (M, ξ) from fillings
of (L(qi,−pi), ξi), so this is simply a matter of observing that if any of these conditions
hold, then (L(qi,−pi), ξi) is uniquely fillable. If condition (a) holds, then either L(qi,−pi) =

L(qi, 1) or L(qi,−pi) = L(3, 2). In either case, the tight contact structures on L(qi,−pi) are
all uniquely fillable by work of Eliashberg [Eli90], McDuff [McD91], and Plamenevskaya–
Van Horn-Morris [PV10]. When condition (b) holds, we are considering tight contact
structures on L(b

(i)
0 b

(i)
1 + 1, b

(i)
1 ). Universally tight structures on such a lens space were

shown to be uniquely fillable by Lisca [Lis08]. In particular, we have p = b
(i)
0 b

(i)
1 + 1 and

q = b
(i)
1 , so

p

p− q
=

b
(i)
0 b

(i)
1 + 1

b
(i)
0 b

(i)
1 + 1− b(i)

1

= [2, . . . , 2, b
(i)
1 + 1],

where the number of copies of 2 at the start of this continued fraction is b(i)
0 . In Lisca’s

notation, it follows that the unique exact symplectic filling of L(p, q) isWp,q((1, 2, . . . , 2, 1)).
The virtually overtwisted structures on L(b

(i)
0 b

(i)
1 + 1, b

(i)
1 ) are uniquely fillable according to
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work of Kaloti [Kal13, Theorem 1.10]. Similarly, condition (c) produces lens spaces of the
form L(b

(i)
0 b

(i)
1 −1, b

(i)
1 ), the fillings of which are known to be unique by work of Lisca [Lis08]

in the universally tight case and Fossati [Fos19, Theorem 1] in the virtually overtwisted
case. The relevant continued fraction for applying Lisca’s work to these lens spaces is

b
(i)
0 b

(i)
1 − 1

b
(i)
0 b

(i)
1 − 1− b(i)

1

= [2, . . . , 2, 3, 2, . . . , 2],

which begins with b(i)
0 − 2 copies of 2 and ends with b(i)

1 − 2 copies. Once again, the unique
exact filling is given byWp,q((1, 2, . . . , 2, 1)) in Lisca’s notation. The observation that

b
(i)
0 b

(i)
1 − 1

b
(i)
1

= [b
(i)
0 , b

(i)
1 ]

allows us to apply Fossati’s result.

Strong symplectic fillings of lightly mixed contact structures on Seifert fibered spaces
may also be decomposed into lens space fillings, though one of the lens spaces will have a
slightly more complicated expression.

Theorem 7.3. Let ξ be a tight contact structure on the Seifert fibered spaceM = M( q1
p1
, · · · , qn

pn
),

for some coprime positive integers qi, pi with qi < pi for 1 ≤ i ≤ n− 1 and pi ≥ 2 for 1 ≤ i ≤ n.

Let each −pi/qi have continued fraction as above. Suppose that ξ is lightly mixed about Ki and Kj ,

and let

−p
′

q′
= [aili , . . . , a

i
1, a

i
0 + aj0, a

j
1, . . . , a

j
lj

].

Then there exist (1) a tight contact structure ξk on L(qk,−pk), for each k 6= i, j; (2) a tight

contact structure ζ ′ on L(p′, q′); (3) Legendrian knotsK ′k in #k 6=i,j(L(qk,−pk), ξk)#(L(p′, q′), ζ ′)

for k 6= i, j, such that every strong (exact) symplectic filling of (M, ξ) is obtained from a strong

(exact) symplectic filling of

#
k 6=i,j

(L(qk,−pk), ξk)#(L(p′, q′), ζ ′)

by attaching a symplectic 2-handle along each K ′k, k 6= i, j.
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As with Theorem 7.1, we may use Theorem 7.3 and the classification of strong fillings
of some lens spaces to identify families of tight Seifert fibered spaces whose strong fillings
we may classify. One example of such a family is given by the following corollary.

Corollary 7.4. Choose p1, p2, p3 ≥ 2. If ξ is a tight contact structure on M = M( 1
p1
, 1
p2
, 1
p3

)

which is lightly mixed about Ki−1 and Ki+1 — where subscripts are labeled modulo 3 — and

pi−1 + pi+1 6= 4, then (M, ξ) admits a unique exact filling, up to diffeomorphism.

Proof. Applying Theorem 7.3 to such a filling leaves us with a filling of S3#L(pi−1 +pi+1, 1),
with some tight contact structure. By work of Eliashberg [Eli90] this filling must be the
boundary connected sum of a filling of (S3, ξstd) with a filling of (L(pi−1 + pi+1, 1), ζ).
Because pi−1 + pi+1 is not equal to 4, results of McDuff [McD91] and Plamenevskaya–Van
Horn-Morris [PV10] show that (L(pi−1 + pi+1, 1), ζ) is uniquely fillable, as is the case for
(S3, ξstd). So (M, ξ) is uniquely fillable.

Wewill see in Section 7.2 that there are precisely six tight contact structures onM( 1
p1
, 1
p2
, 1
p3

)

which are neither lightly nor thoroughly mixed, and we will show that each of these struc-
tures is universally tight. According to Corollaries 7.2 and 7.4, these six are the only tight
structures on M( 1

p1
, 1
p2
, 1
p3

) which we cannot conclude have unique exact fillings if, say,
p1, p2, p3 ≥ 3.

Corollary 7.5. Choose integers p1, p2, p3 ≥ 2, no two of which sum to 4. If ξ is a virtually

overtwisted tight contact structure onM = M( 1
p1
, 1
p2
, 1
p3

), then (M, ξ) admits a unique exact filling

(W,ω), up to diffeomorphism. Moreover,W is simply connected, and has H2(W ) = Z2.

Proof. The uniqueness of the filling (W,ω) follows from Corollaries 7.2 and 7.4. To see
thatW is simply connected and has H2(W ) = Z2, consider the handlebody diagram for
W given by Figure 7.1. This diagram consists of a single 1-handle, with three 2-handles
attached along parallel knotsK1, K2, K3 which pass over the 1-handle. Wemay handleslide
K2 and K3 over K1 and then cancel K1 with the 1-handle to obtain a handlebody diagram
forW which consists of two 2-handles attached to a 0-handle. Such a handlebody is simply
connected, with H2(W ) = Z2.
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Wrapping up loose ends, we have the following result.

Theorem 7.6. Let ξ be a tight contact structure on a small Seifert fibered spaceM , with surgery

diagram as in Figure 7.1. If any of the horizontal links have both positive and negative stabilizations,

then every strong symplectic filling of (M, ξ) can be obtained from a disjoint union of a filling of a

universally tight small Seifert fibered space, along with fillings of universally tight lens spaces, by

attaching a sequence of round symplectic 1-handles.

7.1.2 The case e0 ≤ −3

Finally, we discuss Seifert fibered spaces over S2 with Euler number e0 ≤ −3. In particular,
we considerM = M(− q1

p1
, · · · ,− qn

pn
) with pi ≥ 2, qi ≥ 1, and (pi, qi) = 1 for i = 1, . . . , n. The

Euler number is then given by

e0 =
n∑
i=1

⌊
−qi
pi

⌋
≤ −n.

We have continued fraction expansions

−qi
pi

= [ai0, . . . , a
i
li
],

for some uniquely determined integers satisfying ai0 = −(b qi
pi
c+ 1) and aij ≤ −2 for j ≥ 1.

ThenM admits a surgery diagram as in Figure 7.2. Notice that e0 = Σn
i=1a

i
0.

We may construct contact structures on M by putting the knots in Figure 7.2 into
Legendrian position and stabilizing until the framing coefficient becomes −1 with respect
to the contact framing. We see that there are

∣∣∣∣∣(e0 + 1)
n∏
i=1

`i∏
j=1

(aij + 1)

∣∣∣∣∣
choices for these stabilizations, and in case we have a small Seifert fibered space, Wu shows
in [Wu04] that each such choice leads to a distinct contact structure up to isotopy, and
indeed all tight contact structures onM can be constructed in this way.
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e0

a1
1 an1

a1
2 an2

a1
`1−1 an`n−1

a1
`1

an`nK1
1

Kn
1

K1
2

Kn
2

K1
`1−1

Kn
`n−1

K1
`1

Kn
`n

Figure 7.2: A surgery diagram forM(− q1
p1
, · · · ,− qn

pn
), e0 ≤ −3.

e0

a1
1 a1

2 a1
`1

an1 an2 an`n

Figure 7.3: The plumbing graph associated to the surgery diagram in Figure 7.2.

Definition. LetM = M(− q1
p1
, · · · ,− qn

pn
) be as above, and construct a tight contact structure

ξ onM by putting the knots of Figure 7.2 into Legendrian position. We say that (M, ξ) is
centrally mixed if the central knot of Figure 7.2 is stabilized both positively and negatively.

Remark. Notice that if (M, ξ) is centrally mixed, then e0 ≤ −4.

Our Seifert fibered spaceM admits a canonical contact structure as the boundary of a
plumbing 4-manifold. The 4-manifold is a plumbing of disc bundles of 2-spheres, with
plumbing graph as in Figure 7.3. Each node of the graph corresponds to a symplectic
2-sphere, and each edge represents an orthogonal intersection between them; in this way
we produce a symplectic structure on the plumbing 4-manifold, and a canonical contact
structure on its boundaryM . The fillings of this canonical contact structure were studied
by Starkston [Sta15] and Choi-Park [CP19], each under some additional assumptions onM .
Starkston provided topological restrictions on the strong symplectic fillings of dually positive
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Seifert fibered spaces over S2. In some cases, these restrictions produce classifications up
to diffeomorphism of minimal strong symplectic fillings. Choi-Park classified all minimal
symplectic fillings of small Seifert 3-manifoldsM(− q1

p1
,− q2

p2
,− q3

p3
), with e0 ≤ −4 and with

the canonical contact structure. An infinite family of Seifert fibered spaces with canonical
contact structure and e0 = −3 also saw their fillings classified by Schönenberger in [Sch07,
Theorem 4.4].

We point out that the canonical contact structure is not centrally mixed. Indeed, the
Legendrian surgery diagram for the canonical contact structure has all of its stabilizations
of a single sign.

Proposition 7.7. Let M = M(− q1
p1
, · · · ,− qn

pn
) have canonical contact structure ξ as described

above, and Legendrian surgery diagram as in Figure 7.2. All the stabilizations in the Legendrian

surgery diagram are of a single sign.

Proof. As described above, there is a symplectic 4-manifold (W,ω), obtained by plumbing
disc bundles of 2-spheres, which fills (M, ξ). For each symplectic sphere Sji , the adjunction
formula takes the form

〈c1(W ), [Sji ]〉 = [Sji ] · [S
j
i ] + 2.

At the same time, Sji corresponds to surgery along the Legendrian knotKj
i in Figure 7.2,

and thus
[Sji ] · [S

j
i ] = fr(Kj

i ) = tb(Kj
i )− 1.

So 〈c1(W ), [Sji ]〉 = tb(Kj
i ) + 1. Finally, [Gom98, Proposition 2.3] allows us to compute the

rotation number of Kj
i :

r(Kj
i ) = 〈c1(W ), [Sji ]〉 = tb(Kj

i ) + 1.

This rotation number can only be obtained by taking every stabilization to be negative. Note
that taking all stabilizations to be positive gives a contactomorphic (though not isotopic)
contact structure.
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A straightforward consequence of the definition of centrally mixed and Theorem 1.1.3
of [Men18] is the following.

Proposition 7.8. LetM = M(− q1
p1
, . . . ,− qn

pn
), with pi ≥ 2, qi ≥ 1, with n ≥ 3. If ξ is a centrally

mixed tight contact structure onM , then every strong (respectively, exact) symplectic filling of

(M, ξ) may be obtained from a strong (respectively, exact) symplectic filling of

n

#
i=1

(L(p′i, q
′
i), ξi)

by attaching a symplectic 2-handle in a specified manner, where −p′i
q′i

= [ai1, . . . , a
i
li
] and ξi is a tight

contact structure determined by ξ.

More generally, we have the following result for any contact structures constructed
from Figure 7.2.

Theorem 7.9. LetM = M(− q1
p1
, · · · ,− qn

pn
) be as above, and let ξ be a tight contact structure onM

obtained by putting the knots of Figure 7.2 into Legendrian position. Then every strong symplectic

filling of (M, ξ) can be obtained by attaching a sequence of round symplectic 1-handles to a disjoint

union of fillings of universally tight lens spaces and a Seifert fibered space with canonical contact

structure.

This result will bemademore precise through a sequence of propositions in Section 7.3.2.
We point out that, together with Lisca’s classification of fillings for universally tight lens
spaces and Choi-Park’s classification of fillings for the canonical contact structure on
M(− q1

p1
,− q2

p2
,− q3

p3
), e0 ≤ −4, Theorem 7.9 allows us to classify the minimal symplectic

fillings of any contact structure onM(− q1
p1
,− q2

p2
,− q3

p3
), e0 ≤ −4.

7.2 Mixed contact structures on Seifert fibered spaces

In this section we define what it means for a tight contact structure ξ on a Seifert fibered
spaceM = M( q1

p1
, · · · , qn

pn
) to be thoroughly or lightly mixed, andwe identify the universally

tight contact structures on small Seifert fibered spaces. As in Section 7.1, we take n ≥ 3,
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qi, pi > 0 coprime, and assume that qi < pi for i = 1, . . . , n − 1. We also have continued
fraction expansions as in (7.1), and we denote by e0 = b qn

pn
c the Euler number ofM .

To accommodate for the fact that we may have qn > pn, we introduce auxiliary coeffi-
cients bn0 , . . . , bnl′n defined by

−pn
qn

= [an0 , a
n
1 , ..., a

n
ln ] = [−1,−2, ...,−2, bn0 − 1, bn1 , ..., b

n
l′n

],

where l′n = ln − e0, so that these continued fractions each have length ln + 1.

The thoroughly mixed tight contact structures will be those which result from a par-
ticular construction. We let Σ be a planar surface with n boundary components, and
write

−∂(Σ× S1) = T1 + T2 + · · ·+ Tn

for the torus boundary components of Σ × S1. Now let ξ be an S1-invariant, virtually
overtwisted tight contact structure on Σ× S1 such that

(1) each Ti is a minimal convex torus, with dividing curves of slope −1 for i < n and
slope −e0 − 1 for i = n;

(2) adjacent to each Ti is a positive basic slice Li, with ∂Li = Ti − T ′i ;
(3) each T ′i is a minimal convex torus, with dividing curves of slope∞.

Such a contact structure exists by [Hon00b, Section 5].

For each i = 1, . . . , n− 1, we will attach −2− ai0 basic slices to (Σ× S1, ξ), with slopes

−1,−1

2
,−1

3
, . . . ,

1

ai0 + 1
,

starting at Ti. Similarly, we attach −2− bn0 basic slices, starting from Tn, with slopes

−e0 − 1,−e0 −
1

2
, . . . ,−e0 +

1

bn0 + 1
.

For i = 1, . . . , n, we call the boundary of the outermost basic slice T ′′i . Finally, we let Vi be a
solid torus and choose a tight contact structure on Vi such that ∂Vi is minimal, convex, and
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∞
+

−e0 − 1

T ′n

Tn

−1

T1

+

T ′1

∞

−1

T2

+

T ′2

∞

−1

Tn−1

+

T ′n−1

∞

Figure 7.4: The first layer of basic slices attached to Σ× S1.

has dividing curves of slope
[aili , a

i
li−1, . . . , a

i
2, a

i
1 + 1]

for 1 ≤ i ≤ n− 1, and slope
[bnl′n , b

n
l′n−1, . . . , b

n
2 , b

n
1 + 1]

for i = n. Notice that there are |∏li
j=1(aij + 1)| (respectively, |∏l′n

j=1(bnj + 1)|) such tight
structures on Vi, per Honda’s classification [Hon00a]. We then attach each Vi to Σ × S1

by identifying the dividing curves and meridians of ∂Vi with those of T ′′i . The result is a
tight contact structure onM , and we call any structure resulting from this construction
thoroughly mixed. Note that this construction is not unique. For instance, we may shuffle
the order in which we attach basic slices within a given continued fraction block without
changing our contact structure. But the important feature is that by ensuring that the
innermost basic slice around each boundary component is positive, we may find nmixed
tori.

Lemma 7.10. In a thoroughly mixed tight contact structure, each torus T ′i , 1 ≤ i ≤ n, is a mixed

torus with vertical dividing curves.
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∞
+

−e0 − 1

T ′n

Tn

−
1 T ′

−1

T1

+

T ′1

∞

A1 −1

T2

+

T ′2

∞

A2 −1

Tn−1

+

T ′n−1

∞

An−2

Figure 7.5: Each torus T ′i is mixed.

Proof. We show that T ′n is mixed; the other tori are similar. In Σ× S1, consider a collection
A1, . . . , An−2 of vertical annuli as in Figure 7.5, with Ai connecting Ti to Ti+1. Each annulus
will have parallel horizontal dividing curves, and we consider the neighborhood

N = N(T1 ∪ · · · ∪ Tn−1 ∪ A1 ∪ · · · ∪ An−2),

whose boundary is given by ∂N = T1 ∪ · · · ∪ Tn−1 ∪ T ′. Here T ′ has dividing curves of
slope 1, measured in the coordinates of Tn. Because each of the basic slices Li is positive,
the toric annulus

(Σ× S1) \ (N ∪ Ln)

is a negative basic slice with boundary slopes∞ and 1. So T ′n is sandwiched between basic
slices of opposite sign whose slopes are −e0 − 1,∞, and 1, meaning that T ′n is a mixed
torus.

There are also tight contact structures on Seifert fibered spaces which are not thoroughly
mixed, but for which some of the tori Ti (not T ′i) are mixed tori. Such structures are most
easily identified using the construction in Figure 7.1.
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K1

K2

K3

(a) A thoroughly mixed contact structure.

K1

K2

K3

(b) A lightly mixed contact structure.

Figure 7.6: Contact structures onM(1
3
, 1

2
, 1

2
).

Definition. Let ξ be a tight contact structure onM( q1
p1
, · · · , qn

pn
). We will call ξ lightly mixed

if ξ is not thoroughly mixed, but admits a Stein filling as in Figure 7.1 for which at least n−2

ofK1, . . . , Kn have been stabilized both positively and negatively. We say that ξ is lightly
mixed about Ki and Kj to indicate that ξ admits a Stein filling for which each of K1, . . . , Kn

except Ki and Kj have been stabilized positively and negatively.

Remark. Every thoroughly mixed tight contact structure can be realized as in Figure 7.1 as
well, and the condition of being thoroughly mixed may be stated in terms of stabilizations.
In case e0 = 0, ξ is thoroughly mixed if each ofK1, . . . , Kn has been stabilized positively (or,
equivalently, if each has been stabilized negatively). For e0 > 0,Kn has no stabilizations, so
ξ is thoroughly mixed if each ofK1, . . . , Kn−1 has been stabilized positively and the nearest
stabilized unknot adjacent to Kn has also been stabilized positively (or, equivalently, each
of these stabilizations is negative). See Figure 7.6.

Consider the tight contact structures on a small Seifert manifold M = M( q1
p1
, q2
p2
, q3
p3

),
with pi, qi > 0 chosen as above, so that e0 ≥ 0. According to [GLS06], each of these can
be represented as in Figure 7.1. Let K ′3 be the nearest unknot adjacent to K3 which has
been stabilized —meaning thatK ′3 = K3 if e0 = 0. If each ofK1, K2, K

′
3 has been stabilized

positively at least once (or, according to the classification in [GLS06], if each has been
stabilized negatively at least once), then the tight contact structure is thoroughly mixed.
On the other hand, if one of K1, K2, K3 has been stabilized both positively and negatively
while the other two have stabilizations of a single sign (the signs on the two knots being
opposite), then the tight structure is lightly mixed. This leaves precisely 6|Π3

i=1Πli
j=1(aij + 1)|
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s3

0

T3−
∞

T ′3

0

s1

T1

+

T ′1

∞

0

s2

T2

+

T ′2

∞

Figure 7.7: The surface Σ× S1 sits inside of a Seifert fibered spaceM( q1
p1
, q2
p2
, q3
p3

) which is
neither lightly nor thoroughly mixed. This surface may be extended to Σ̃ × S1, whose
boundary components have horizontal dividing curves.

tight contact structures onM which are neither lightly nor thoroughly mixed. In these
structures, each ofK1, K2, K

′
3 has all of its stabilizations of a single sign, but the three knots

do not all use the same sign. If the stabilizations of adjacent knots in Figure 7.1 always
match, then the following lemma says that we have a universally tight contact structure;
note that there are precisely six such structures.

Lemma 7.11. Let ξ be a tight contact structure onM( q1
p1
, q2
p2
, q3
p3

) for some 0 < qi, pi, with qi < pi

for i = 1, 2, which is neither lightly mixed nor thoroughly mixed. If each of the horizontal links in

Figure 7.1 has stabilizations of only one sign, then ξ is universally tight.

Proof. Notice that the Euler number of M satisfies e0 ≥ 0. Per the classification of tight
contact structures due to Wu [Wu04] and Ghiggini-Lisca-Stipsicz [GLS06] on such Seifert
fibered spaces, we may write

M = M

(
q1

p1

,
q2

p2

,
q3

p3

)
∼= (Σ× S1) ∪(ϕ1∪ϕ2∪ϕ3) (V1 ∪ V2 ∪ V3),

where each Vi is a soid torus,−∂(Σ×S1) = T1 +T2 +T3, and ϕi : ∂Vi → Ti is an orientation-
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preserving diffeomorphism. Moreover, we may take si, the slope of the dividing curves of
Ti = ∂Vi in the coordinates of Ti, to satisfy

1

ai0 + 1
< si < −

qi
pi

for i = 1, 2, and − e0 +
1

b3
0 + 1

< s3 < −
q3

p3

.

Here ai0 and b3
0 are as above. In particular, we have s1, s2 ∈ (−1, 0) and s3 < 0.

Continuing to follow [Wu04, Section 3.3], we may thicken each Vi to a solid torus V ′i
such that T ′i := ∂V ′i is a minimal convex torus with vertical dividing curves when measured
in the coordinates of Ti. Now V ′i \ Vi is a toric annulus bounded by Ti and T ′i which we may
factor into basic slices. Because ξ fails to be thoroughly or lightly mixed, all of the basic
slices between Ti and T ′i must have the same sign, but the signs for i = 1, 2, 3 are not all the
same. For instance, Figure 7.7 depicts a case where the basic slices between Ti and T ′i are
positive for i = 1, 2, but negative for i = 3. Now consider attaching basic slices of matching
sign to each Ti until we obtain Σ̃× S1, whose boundary components all have horizontal
dividing curves. According to [Hon00b, Lemma 5.1], Σ̃× S1 is universally tight; because
Σ̃× S1 contains Σ× S1, we see that Σ× S1 is also universally tight. Each solid torus Vi is
universally tight because the stabilizations used to produce the tight structure on Vi are all
of one sign. Moreover, the homomorphism

i∗ : π1(Σ× S1)→ π1(M)

induced by inclusion is a surjection. We conclude thatM is universally tight.

Following this observation, Corollary 7.5 follows from Corollaries 7.2 and 7.4.

Finally, we consider the remaining tight contact structures on M( q1
p1
, q2
p2
, q3
p3

) — those
which are neither thoroughly nor lightly mixed, and to which Lemma 7.11 does not apply.
All such contact structures are virtually overtwisted.

Lemma 7.12. Let ξ be a tight contact structure on M( q1
p1
, q2
p2
, q3
p3

), with surgery diagram as in

Figure 7.1. If any of the horizontal links have both positive and negative stabilizations, then ξ is

virtually overtwisted.
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The proof of Lemma 7.12 will make use of the following topological fact about small
Seifert fibered spaces.

Lemma 7.13. Any small Seifert fibered space M admits a finite sheeted cover M̃ such that the

induced Seifert fibration on M̃ has no exceptional fibers.

Proof. In case the fundamental group π1(M) is infinite, this follows from [Bri07, Lemma
2.4.22], so we focus on the case where π1(M) is finite. The universal cover of a small Seifert
fibered space with finite fundamental group is S3, so we have a diagram

S3 M

B̃ B

p

π̃ π

p

,

whereB is S2 with three cone points, π : M → B is the Seifert fibration onM , p : S3 →M is
the covering map, and π̃ : S3 → B̃ is the induced Seifert fibration on S3. Because π1(M) is
finite, we have B = S2(a, b, c) for some (a, b, c) ∈ {(2, 2, n), (2, 3, 3), (2, 3, 4), (2, 3, 5)}. That
is,M is a platonic Seifert fibered space. The map p : B̃ → B is an orbifold covering map.
We notice that since B has positive orbifold characteristic, the same is true of B̃, and also
that B̃ has at most two cone points, since B̃ is the base of a Seifert fibration of S3. So p is a
positive orbifold covering map of the form S2(a′, b′)→ S2(a, b, c); such maps are classified
by [Boy18, Proposition 5.5], from which we conclude that B̃ = S2(d, d) for some d ≥ 1.

At the same time, we use [GL18, Proposition 5.2] to write the Seifert fibration π̃ as

M(0; (α1, β1), (α2, β2)),

for some natural numbers α1 ≥ α2 and integers β1, β2 satisfying 0 ≤ β1 < α1 and α1β2 +

β1α2 = 1. The base of this Seifert fibration is S2(α1, α2), sowe conclude thatα1 = α2 = d ≥ 1.
But this means that dβ2 + β1d = 1, so we must have d = 1. We conclude that B̃ = S2(1, 1)

has no cone points, and thus π̃ has no exceptional fibers.

Proof of Lemma 7.12. Let us decomposeM := M( q1
p1
, q2
p2
, q3
p3

) as in the proof of Lemma 7.11,
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writing
M = (Σ′ × S1) ∪(ϕ1∪ϕ2∪ϕ3) (V ′1 ∪ V ′2 ∪ V ′3),

where −∂(Σ′ × S1) = T ′1 + T ′2 + T ′3, and the dividing curves on each T ′i have slope∞. For
i = 1, 2, 3, we may express the orientation-preserving diffeomorphism ϕi : ∂Vi → Ti via

ϕi =

 pi −ui

−qi vi

 ,

for some ui, vi satisfying pivi − qiui = 1. In the coordinates of ∂V ′i , the dividing curves thus
have slope represented by

ϕ−1
i

0

1

 =

vi ui

qi pi

0

1

 =

ui
pi

 .

So V ′i is a solid torus whose boundary has dividing curves of slope pi/ui, for i = 1, 2, 3.
If V ′i is virtually overtwisted, then lifting ξ|V ′i via the pi-fold cover Ṽ ′i → V ′i produces
an overtwisted contact structure on Ṽ ′i . (See, for example, [Etn, Exercise 6.45].) Now
Lemma 7.13 allows us to construct a finite-sheeted cover p : M̃ → M such that V ′i lifts to
several copies of Ṽ ′i , for i = 1, 2, 3. Because (M, ξ) has a horizontal link with both positive
and negative stabilizations, at least one of V ′1 , V ′2 , and V ′3 is virtually overtwisted, and thus
a lift of this solid torus in M̃ is overtwisted. We conclude that (M̃, p∗ξ) is overtwisted, and
thus that (M, ξ) is virtually overtwisted.

Lemma 7.12 applies to any contact structure which is neither thoroughly nor lightly
mixed, and to which Lemma 7.11 does not apply. Lemma 7.12 also applies to all lightly
mixed contact structures and, if e0 > 0, all but two thoroughly mixed contact structures.
If e0 = 0 and M( q1

p1
, q2
p2
, q3
p3

) does not have qi = pi − 1 for i = 1, 2, 3, then each horizontal
link in Figure 7.1 has more than one stabilization, and the classification of tight contact
structures allows us to change the sign of one stabilization on each horizontal link to ensure
that Lemma 7.12 applies to at least one of these links. On the other hand, if qi = pi − 1

for i = 1, 2, 3, then each horizontal link has exactly one stabilization, so Lemma 7.12 does
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Kiai0

ai1

ai2 aili

K ′

Kjaj0

aj1

aj2 ajlj

Figure 7.8: In the handlebody diagram for (Mn−2, ζn−2), both Ki and Kj pass over the
1-handle. To realize (Mn−2, ζn−2) as a lens space, we slideKj overKi to produce K ′, which
has framing ai0 + aj0, and then cancel Ki with the 1-handle.

not apply. Altogether, we see that if e0 > 0 there are at most 8 universally tight contact
structures on M( q1

p1
, q2
p2
, q3
p3

), while if e0 = 0, there are at most 7 universally tight contact
structures. If e0 = 0 and qi 6= pi−1 for some i = 1, 2, 3, then there are precisely 6 universally
tight contact structures onM( q1

p1
, q2
p2
, q3
p3

).

7.3 Proofs

As we did when stating the results, we divide our proofs according to the Euler number e0

of our Seifert fibered space.

7.3.1 The case e0 ≥ 0

Theorem 7.3 is a straightforward consequence of Theorem 1.1.3 of [Men18] and the defini-
tion of lightly mixed contact structures, so we prove this result first.

Suppose thatM = M( q1
p1
, · · · , qn

pn
) is a Seifert fibered space, for some n ≥ 3 and coprime

positive integers qi, pi. If ξ is a lightly mixed tight contact structure onM , then we may
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realize (M, ξ) as the boundary of a Stein handlebody as in Figure 7.1, with n − 2 of the
horizontal knotsK1, . . . , Kn having been stabilized both positively and negatively. Without
loss of generality, we may assume that each of K1, . . . , Kn−2 has been stabilized both
positively and negatively. Notice that (M, ξ) is obtained from the contact manifold

(L(q1,−p1), ξ1)#(M1 := M(
q2

p2

, · · · , qn
pn

), ζ1)

by Legendrian surgery alongK1. Here we are using the fact that if −pi/qi = [ai0, a
i
1, . . . , a

i
li
],

then
qi

pi + ai0qi
= [ai1, a

i
2, . . . , a

i
li
].

The contact structures ξ1 and ζ1 are the obvious ones, obtained from the Stein handlebody
diagram in Figure 7.1 by erasing K1. According to [Men18, Theorem 1.1.3], every strong
symplectic filling of (M, ξ) is obtained from a strong filling of (L(q1,−p1), ξ1)#(M1, ζ1) by
attaching a symplectic 2-handle along K1. In the language of round handles, we have
Legendrian knots L−1 ⊂ (L(q1,−p1), ξ1) and L+

1 ⊂ (M1, ζ1) along which we may attach a
round symplectic 1-handle to a filling of (L(q1,−p1), ξ1) t (M1, ζ1).

We have presented (M1, ζ1) as the boundary of the Stein handlebody depicted in Fig-
ure 7.1, with the chain of knots with framings a1

0, a
1
1, . . . , a

1
l1
deleted. By its construction,

(M1, ζ1) is lightly mixed, with K2, . . . , Kn−2 having been stabilized both positively and
negatively. We may thus repeat the above procedure to decompose a filling of (M, ξ) into a
filling of

(L(q1,−p1), ξ1) t (L(q2,−p2), ξ2) t (M2, ζ2).

We continue this procedure until we are left with

(L(q1,−p1), ξ1) t · · · t (L(qn−2,−pn−2), ξn−2) t (Mn−2, ζn−2),

where (Mn−2, ζn−2) is as in Figure 7.8: there are two horizontal knots, neither of which has
stabilizations of both signs. This is a Seifert fibered space over S2, and thus a lens space.
Indeed, after sliding K2 over K1, we may cancel the 2-handle attached along K1 with the
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∞

−1

T ′1

T1

−
+

e0 + 1

T2

−1

A

T3

−e0 − 1

Figure 7.9: IfM( q1
p1
, q2
p2
, q3
p3

) is thoroughly mixed, then T ′1 is a mixed torus.

1-handle. We are left with a chain of unknots whose framings are given by

ai−1
li−1

, . . . , ai−1
1 , ai−1

0 + ai+1
0 , ai+1

1 , . . . , ai+1
li+1

,

and thusMn−2
∼= L(p′, q′), where

−p
′

q′
= [ai−1

li−1
, . . . , ai−1

1 , ai−1
0 + ai+1

0 , ai+1
1 , . . . , ai+1

li+1
].

See Figure 7.8. This proves Theorem 7.3.

There are some thoroughly mixed contact structures for which n − 1 of the knots
K1, . . . , Kn have been stabilized both positively and negatively. For these, the proof of
Theorem7.1 proceeds as did the proof of Theorem7.3. But the condition of being thoroughly
mixed is more relaxed than this, and we will in fact use Theorem 3.3 directly in our proof,
rather than Theorem 3.4.

Our argument proceeds by induction on the number n of singular fibers. Consider
first the case where n = 3. Then, as depicted in Figure 7.9, we have a mixed torus T ′1 with
vertical dividing curves, sandwiched between basic slices whose other boundary tori have
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dividing curves of slope −1 and e0 + 1, respectively. Theorem 3.3 would have us split
M = M( q1

p1
, q2
p2
, q3
p3

) open along this torus and attach a solid torus to each of the resulting
pieces. Because the dividing curves of T ′1 are vertical, the meridian µ(S) of the solid torus
S must have slopem ∈ Z. In fact, Theorem 3.3 tells us that we must have 0 ≤ m ≤ e0, since
the slopes adjacent to our mixed torus are −1 and e0 + 1.

Now one of the two closed contact manifolds is L1 = S ∪T ′1 V
′

1 , a gluing of two solid
tori. The meridian of V ′1 has slope q1/p1, with 0 < q1 < p1. We may consider a family
of tori T 2 × [0, 1] in L1 such that T 2 × {0} ⊂ V ′1 has dividing curves with slope q1/p1,
T 2 × {1/2} = T ′1, and T 2 × {1} ⊂ S has dividing curves of slopem. As the dividing curves
rotate counterclockwise from q1/p1 to∞ to m, they must not rotate through an angle in
excess of π, since L1 is fillable and thus tight. This restriction is only satisfied whenm = 0.
So we conclude thatm = 0 and L1 = L(q1,−p1). See Figure 7.10.

The other closed contact manifold produced by our application of Theorem 3.3 is
obtained fromM by deleting the neighborhood V ′1 of a singular fiber and replacing it with
the solid torus S, glued in with horizontal meridians. The result isM(0

1
, q2
p2
, q3
p3

) = M( q2
p2
, q3
p3

).
We may now apply Theorem 3.3 to this Seifert fibered space (which is in fact a lens space)
along the mixed torus T ′2. Arguing as before, we find that the solid torus which is glued in
at this stage must have horizontal dividing curves. The result of this decomposition is a
disjoint union of fillings of some contact structures on

L(q2,−p2) and M

(
0

1
,
q3

p3

)
= L(q3,−p3).

Altogether, we have decomposed a filling of M with a thoroughly mixed tight contact
structure into a disjoint union of fillings of L(qi,−pi), i = 1, 2, 3, with some tight contact
structures, and Theorem 3.3 provides the Legendrian knots described in Theorem 7.1. This
establishes the base case of our induction.

For the inductive step, the analysis above proceeds as before. Splitting a filling of
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µS

ΓT ′1

µV ′1

Figure 7.10: Because 0 < q1/p1 < 1, we must havem = 0.

M = M( q1
p1
, . . . , qn

pn
) open along the mixed torus T ′1 produces symplectic fillings of

L(q1,−p1) and M

(
0

1
,
q2

p2

, . . . ,
qn
pn

)
.

The latter is a thoroughly mixed Seifert fibered space with n− 1 singular fibers, for which
we assume that Theorem 7.1 holds, and thus the decomposition may continue until we
have a disjoint union of filling of L(qi,−pi), for i = 1, . . . , n. This proves Theorem 7.1.

At last, we address fillings of those contact structures on small Seifert fibered spaces
which have at least one horizontal link with both positive and negative stabilizations —
these structures are considered in Lemma 7.12. In this case, each of K1, K2, and K ′3 has
stabilizations of a single sign, but these signs do not all agree. Here, as above, K ′3 is the
nearest unknot adjacent toK3 which has been stabilized, meaning thatK ′3 = K3 if e0 = 0.
For i = 1, 2, 3, we let K̂i denote the nearest knot adjacent to Ki with a stabilization of a
different sign from those onKi (orK ′3). By our assumption, at least one K̂i exists. Let us
write

M = M

(
q1

p1

,
q2

p2

,
q3

p3

)
∼= (Σ× S1) ∪

(
3⋃
i=1

li⋃
j=1

Li,j

)
∪

(
3⋃
i=1

Vi

)
, (7.2)

where each Vi is a solid torus, −∂(Σ × S1) = T1 + T2 + T3, and each Li,j ∼= T 2 × I is
a continued fraction block corresponding to a knot in the surgery diagram for (M, ξ).
Specifically, let Li,ji be the continued fraction block corresponding to K̂i, for i = 1, 2, 3.
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K1

K2

K3

K1

K2

K3

K1

K2

K3

Figure 7.11: Decomposing a filling of a contact structure which is neither thoroughly nor
lightly mixed. The result is a filling of a disjoint union of a universally tight small Seifert
fibered space and some universally tight lens spaces.
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Then the boundary torus T̂i between Li,ji and Li,ji−1 is a mixed torus, and each continued
fraction block preceding Li,ji has basic slices of a single sign, matching the stabilizations of
Ki.

Notice that simultaneously splitting (M, ξ) along the mixed tori T̂1, T̂2, and T̂3 yields
a disjoint union of a universally tight small Seifert fibered space and three lens spaces,
independent of the slopes which are used to perform this splitting. It follows that by
applying the symplectic JSJ decomposition to a strong symplectic filling of (M, ξ), we may
obtain this filling from a disjoint union of a strong filling of a universally tight small Seifert
fibered space with strong fillings of three lens spaces. By applying Theorem 4.2 to the three
lens space fillings, we prove Theorem 7.6.

Observe that for contact structureswhich are thoroughly or lightlymixed, the conclusion
of Theorem 7.6 follows from Theorems 4.2, 7.1, and 7.3. So, with the small number of
exceptions pointed out at the conclusion of Section 7.2, we have reduced the problem of
classifying strong symplectic fillings for small Seifert fibered spaces to the same problem
for universally tight lens spaces and for universally tight small Seifert fibered spaces. See
Figure 7.11.

7.3.2 The case e0 ≤ −3

Throughout this section, we will consider a Seifert fibered spaceM = M(− q1
p1
, · · · ,− qn

pn
)

with pi ≥ 2, qi ≥ 1, and (pi, qi) = 1 for i = 1, . . . , n. Every tight contact structure ξ onM
that we consider will be constructed by putting the knots of Figure 7.2 into Legendrian
position and stabilizing appropriately.

In case ξ is centrally mixed —meaning that the central knot of Figure 7.2 is stabilized
both positively and negatively — Proposition 7.8 tells us that the strong symplectic fillings
of (M, ξ) are obtained by attaching a sequence of round symplectic 1-handles to a disjoint
union of fillings of lens spaces. If ξ is not centrally mixed, then the central knot has
stabilizations which are either all positive or all negative; notice that, since e0 ≤ −n ≤ −3,
the central knot must have at least one stabilization. The following proposition considers
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the case in which the stabilizations of the central knot are all of a single sign.

Proposition 7.14. Let (M, ξ) be as above, with the central knot in Figure 7.2 having stabilizations

which are all of a single sign. Then every strong symplectic filling of (M, ξ) may be obtained by

attaching round symplectic 1-handles to a disjoint union of fillings of lens spaces and a canoni-

cal Seifert fibered space (M ′, ξ′). Moreover, (M ′, ξ′) admits a Legendrian surgery diagram as in

Figure 7.2, with each leg of the diagram having stabilizations of a single sign.

Proof. If the Legendrian surgery diagram for (M, ξ) is such that no leg has both positive and
negative stabilizations, then we have nothing to do — (M ′, ξ′) is simply (M, ξ). Otherwise,
we lose no generality by assuming that the first leg of Figure 7.2 has both positive and
negative stabilizations. We will reduce to a case where the first leg does not have both
positive and negative stabilizations; by applying this argument to each leg of the diagram,
we obtain the desired result.

Note that if the first leg of our diagram contains a knot which is stabilized both positively
and negatively, then we may apply Theorem 3.4 to this knot, amputating from the diagram
this knot and all those below it in the leg. Thus we assume that each knot in the first
leg of our diagram has stabilizations of a single sign. We then have knots K1

i and K1
j ,

1 ≤ i < j ≤ `1, which have stabilizations of opposite signs, and are such that any knot
K1
k , with i < k < j, has no stabilizations. Let us assume that i and j are minimal among

such indices. (Here we are using the notation established in Figure 7.2.) We will identify a
mixed torus in (M, ξ) associated to this mismatch of signs.

To this end, we decompose (M, ξ) as

M ∼= (Σ× S1) ∪(ϕ1∪···∪ϕn) (V1 ∪ · · · ∪ Vn),

where

• Σ is a planar surface such that −∂(Σ× S1) = T1 + · · ·+ Tn;

• each Ti is a minimal convex torus with dividing curves of slope b qi
pi
c;
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• each Vi is a solid torus, and ∂Vi has dividing curves of slope −
qi − b qipi cpi
q′i − b

qi
pi
cp′i

, where
pi ≥ p′i > 0, qi ≥ q′i > 0, and piq′i − qip′i = 1;

• the gluing maps ϕi : ∂Vi → Ti are defined by

ϕi =

pi p′i

qi q′i

 .

The solid torus (V1, ξ|V1) may be further decomposed by peeling off basic slices until we
are left with a solid torus whose boundary has dividing curves of slope −1. In this decom-
position, we have a continued fraction block of basic slices for each knotK1

1 , . . . , K
1
`1
which

has been stabilized. In particular, the knots K1
i and K1

j correspond to adjacent continued
fraction blocks. By assumption, these continued fraction blocks are universally tight and of
opposite sign, and thus their common boundary T is a mixed torus. We may normalize the
slope of the dividing curves on T to be∞, and on the opposite boundary of the negative
basic slice to be −1. As in previous iterations of this argument, the slope s on the opposite
boundary of the positive basic slice will depend on the number of unstabilized knots which
exist between K1

i andK1
j . In particular, s will be two more than the number of these knots.

We now apply Theorem 3.3 to a filling of (M, ξ) along T . There are s contact manifolds
which might be produced by this decomposition, and these correspond diagrammatically
to deleting eitherK1

i ,K1
j , or one of the intermediate knots from Figure 7.2. In any case, the

contact manifold is a disjoint union of a lens space (whose surgery diagram is given by the
link below the deleted knot) and a Seifert fibered space (M ′, ξ′). The stabilizations in the
first leg of the Legendrian surgery diagram for (M ′, ξ′) — of which there may be none —
all have the same sign as those ofK1

i . In particular, the first leg does not have both positive
and negative stabilizations. By applying this theorem to each leg with both positive and
negative stabilizations, we reduce to the case of lens spaces and Seifert fibered spaces each
of whose legs has stabilizations of a single sign.

Proposition 7.15. Let (M, ξ) be as above, with the central knot in Figure 7.2 having stabilizations
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Figure 7.12: In this example, there are three contact manifolds which might result from the
JSJ decomposition for symplectic fillings. Notice that each consists of universally tight lens
spaces, and possibly a Seifert fibered space with canonical contact structure.

which are all of a single sign, and with each leg having stabilizations of a single sign. Then every

strong symplectic filling of (M, ξ) may be obtained by attaching round symplectic 1-handles to a

disjoint union of fillings of lens spaces and a canonical Seifert fibered space.

Proof. We lose no generality by assuming that the stabilizations of the central knot of (M, ξ)

are all positive — as noted above, the central knot must have at least one stabilization. If
the ith leg of the Legendrian surgery diagram for (M, ξ) has negative stabilizations, we will
identify a mixed torus which allows us to amputate this leg. Now consider decomposing
(M, ξ) as

M ∼= (Σ× S1) ∪(ϕ1∪···∪ϕn) (V1 ∪ · · · ∪ Vn),

as in the proof of Proposition 7.14. Namely, −∂(Σ× S1) = T1 + · · ·+ Tn, where each Ti is a
minimal convex torus with dividing curves of slope b qi

pi
c. We claim that there is a positive

basic slice adjacent to Ti in Σ × S1. For ease of notation, let us assume that i = n. Then
we have a collection A1, . . . , An−2 of vertical annuli in Σ× S1, with Ai connecting Ti to Ti+1

(c.f. the proof of Lemma 7.10). Each annulus will have parallel, horizontal dividing curves,
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and we consider the neighborhood

N = N(T1 ∪ · · · ∪ Tn−1 ∪ A1 ∪ · · · ∪ An−2),

the boundary of which is ∂N = T1∪· · ·∪Tn−1∪T . Theminimal convex torus T has dividing
curves of slope −(n− 2)−Σn−1

i=1 b
qi
pi
c, and thus the toric annulus (Σ× S1) \N is a continued

fraction block with boundary slopes −(n− 2)−Σn−1
i=1 b

qi
pi
c and b qn

pn
c. This continued fraction

block consists of
⌊
qn
pn

⌋
−

(
−(n− 2)−

n−1∑
i=1

⌊
qn
pn

⌋)
= (n− 2) +

n∑
i=1

⌊
qn
pn

⌋
= |e0 + 2|

basic slices, each of which is positive, since the stabilizations of the central knot are all
positive. In particular, we have a positive basic slice adjacent to Tn whose opposite slope is
b qn
pn
c − 1, measured in the coordinates of Tn. We may normalize via the map

 b qn
pn
c −1

1− 2b qn
pn
c 2


to obtain a positive basic slice with slopes −1 and∞. The same holds for any 1 ≤ i ≤ n.

Finally, because the ith leg of our Legendrian surgery diagram has a negative stabi-
lization, we identify a negative basic slice in the solid torus Vi which is adjacent to ∂Vi.
After gluing via ϕi, we see that Ti = ∂Vi is a mixed torus. The opposite slope s of the basic
slice in Vi will depend as usual on the number of unstabilized knots (if any) which lie
between the central knot and the first stabilized knot of the ith leg. In particular, s will be
two more than the number of such knots. There are then s possible results of applying the
symplectic JSJ decomposition along the mixed torus Ti, and these correspond to deleting
either the central knot of our surgery diagram, the first stabilized knot of the ith leg, or an
intermediate, unstabilized knot. Deleting the central knot leaves us with a connected sum
of lens spaces, while deleting a knot contained in the ith leg leaves us with a disjoint union
of a lens space and a Seifert fibered space whose ith leg has no stabilizations.
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Clearly the above argument may be applied to each leg with negative stabilizations
(still assuming that the central knot is stabilized positively), allowing us to reduce to the
case where all stabilizations in our surgery diagram have the same sign.

From Propositions 7.14 and 7.15 we see that the problem of classifying strong symplectic
fillings for Seifert fibered spaces as in Figure 7.2 is reduced to the same problem for lens
spaces, and for canonical Seifert fibered spaces. Per above results, the lens spaces may be
further reduced to universally tight lens spaces, and thus Theorem 7.9 is established. The
results of this chapter provide us with the usual diagrammatic calculus for reducing the
classification of fillings problem; see Figure 7.12 for an example.

120



CHAPTER 8

Circle bundles

Our final application of Theorem 3.3 completes the classification of strong symplectic fillings
for virtually overtwisted tight contact structures on circle bundles over closed surfaces. We
let π : M → Σ be a circle bundle over a closed Riemann surface Σ of genus g, and we let ξ
be a tight contact structure onM . Honda [Hon00b] defines the twisting number t(S1) ≤ 0

of ξ to be the maximum non-positive twisting number achieved by a closed Legendrian
curve inM which is isotopic to the S1-fiber. Here the twisting number is measured relative
to the fibration framing, and is defined to be zero ifM admits a fiber-isotopic Legendrian
curve with positive twisting number. In [Hon00a] and [Hon00b], Honda classifies the
tight contact structures onM , and in this chapter we classify the exact symplectic fillings
ofM , provided ξ is virtually overtwisted and t(S1) < 0.

8.1 The result

Theorem 8.1. LetM → Σ be a circle bundle over a closed Riemann surface of genus g > 1, and

let ξ be a virtually overtwisted tight contact structure onM with t(S1) < 0. Then (M, ξ) admits a

unique exact symplectic filling, up to diffeomorphism.

Remark. The only circle bundles overS2 which admit virtually overtwisted contact structures
have the form L(|e|, 1), where e ≤ −2 is the Euler number of the circle bundle. Any
virtually overtwisted contact structure on such a lens space is uniquely exactly fillable, per
Plamenevskaya–Van Horn-Morris [PV10, Theorem 1.2], so the conclusion still holds. In
the g = 1 case we have a circle bundle over T 2, which can also be realized as a parabolic
torus bundle over S1. This case is covered in Chapter 5, where we see that if e ≤ −2, the
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conclusion continues to hold, but for e ≥ 2 there are virtually overtwisted structures which
admit no strong symplectic fillings.

The only virtually overtwisted circle bundles not addressed by Theorem 8.1, Theorem 4.2
(specifically the special case covered by [PV10]), or Theorem 5.1 are those with g > 1 and
t(S1) = 0. In [LS02, LS03] Lisca-Stipsicz verify a conjecture of Honda, which says that
these structures are not symplectically semi-fillable, and thus are not symplectically fillable.
Altogether, we have the following corollary.

Corollary 8.2. Let M → Σ be a circle bundle over a closed Riemann surface, with virtually

overtwisted tight contact structure ξ, and let t(S1) ≤ 0 be the twisting number. If t(S1) = 0, then

(M, ξ) does not admit a strong symplectic filling; if t(S1) < 0, then (M, ξ) admits a unique exact

symplectic filling, up to diffeomorphism.

8.2 Proof of Theorem 8.1

We borrow the notation of [Hon00b, Part 2] here, letting π : M → Σ be an oriented circle
bundle over a closed, oriented surface Σ with genus g. Once we have fixed a contact
structure onM , Honda defines the twisting number t(S1) to be the maximum non-positive
twisting number among all closed Legendrian curves inM isotopic to the S1-fiber, relative
to the fibration framing. The twisting number is taken to be zero ifM admits a fiber-isotopic
Legendrian curve with positive twisting number. We denote by e the Euler number of the
bundle π : M → Σ.

If 2g− 2 > e, Honda shows that there are (2g− 1)− e tight contact structures onM with
t(S1) = −1; of these, exactly two are universally tight. There are no virtually overtwisted
contact structures onM with t(S1) < −1. There are some exceptional cases of virtually
overtwisted contact structures on circle bundles with t(S1) = 0, but these are not subject to
Theorem 8.1. Instead, these exceptional cases are treated by Lisca-Stipsicz [LS02].

Theorem 8.1 follows immediately from Honda’s description of these virtually over-
twisted contact structures, as well as Theorem 1.1.3 of [Men18]. Namely, Honda constructs
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stabilizations K

Figure 8.1: Stein handlebody diagrams for filling the tight contact structures on a circle
bundle π : M → Σ with t(S1) = −1. The diagram has 2g 1-handles, and the knot K has
2g − 2− e stabilizations in the marked region.

each of the (2g − 1)− e tight contact structures onM by performing Legendrian surgery
on a knot K in (#2g(S1 × S2), ξstd) which has been stabilized (2g − 2)− e times. Here ξstd

is the unique-up-to-isotopy tight contact structure on #2g(S1 × S2). The universally tight
structures on M are precisely those for which all of these stabilizations have the same
sign, while each virtually overtwisted contact structure ξvot results from surgery along
a knot which has been stabilized both positively and negatively. According to [Men18,
Theorem 1.1.3], every exact filling of (M, ξvot) is therefore obtained from such a filling of
(#2g(S1×S2), ξstd) by attaching a symplectic 2-handle alongK. But (#2g(S1×S2), ξstd) has
a unique exact filling up to diffeomorphism, and thus the same is true of (M, ξvot). This
proves Theorem 8.1.
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