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In the past decades, device scaling along the Moore’s Law trajectory has been the major focus of

technology innovation in the semiconductor industry. However, this scaling has in recent years slowed

down due to power limits, lithography complexity, and other physics limitations. The semiconductor

industry has identified several looming technology challenges and expected new design paradigms that

demand new “design-based equivalent scaling” approaches to enable continuation of Moore’s Law. This

thesis addresses several aspects of these challenges, for both the “More-Moore” and “More-than-Moore”

domains.
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Interconnect reliability increases the design uncertainty in advanced node technologies. Elec-

tromigration is a growing concern in sub-22nm technology. To close a costly “chicken-egg” loop that

spans library characterization and signoff in the presence of design adaptivity, we study the interlock

among front-end (device) aging, voltage scaling, and electromigration; we furthermore quantify timing

and power costs of meeting lifetime requirements. Based on this, we provide new signoff guidelines and

demonstrate that suboptimal choice of voltage step size and scheduling strategy can result in decreased

product lifetime.

As semiconductor technology advances, leading-edge product companies must rapidly improve

yield for designs that seek to reach mass production while still early in the adoption of a new technology

node. We study the possible mitigation of yield loss by opportunistic, last-stage redundant logic insertion

in early advanced-node production. We describe a yield estimation methodology, and propose an integer

linear programming-based optimization of redundant logic insertion for opportunistic yield optimization.

In sub-14nm processes, routability challenges arise from multiple patterning and pin access con-

straints that drastically weaken the correlation between global-route congestion and detailed-routing de-

sign rule violations. We present a method that applies machine learning techniques to effectively predict

detailed-routing design rule violations after global routing, as well as detailed placement techniques to

effectively reduce detailed-routing design rule violations.

Beyond conventional design paradigms, three-dimensional integrated circuits (3DICs) with mul-

tiple tiers are expected to achieve large benefits (e.g., in terms of power and area) as compared to con-

ventional two-dimensional designs. However, upper bounds on the potential power and area benefits

from 3DIC integration with multiple tiers are not well-explored. We use the concept of implementation

with infinite dimension to estimate upper bounds on power and area benefits achievable by 3DICs versus

2DICs. We observe that design power sensitivity to implementation with different dimensions correlates
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well with placement-based Rent parameter of the netlist. We show that the quality of netlist synthesis and

optimization benefits from awareness of the target implementation dimension (e.g., 2D versus 3D).

Last, aggressive requirements for low power and high performance in VLSI designs have led

to increased interest in non-conventional computation paradigms. Approximate and stochastic hardware

can achieve improved energy efficiency compared to accurate, traditional hardware modules. To exploit

any benefits of approximate and stochastic hardware modules, design tools should be able to quickly

and accurately estimate the output quality of composed approximate designs. We propose new accuracy

estimation methodologies for approximate hardware and stochastic hardware, respectively. For stochastic

circuits, we further investigate opportunities to optimize circuits under aggressive voltage scaling. We find

that logical and physical design techniques can be combined to significantly expand the already powerful

accuracy-energy tradeoff possibilities of stochastic circuits.
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Chapter 1

Introduction

This thesis proposes potential solutions to meet several major technology challenges inherent in

continued scaling as projected by Moore’s Law. The challenges are divided into two categories as shown

in Figure 1.1: (i) the “More-Moore” challenges of continued device scaling along the Moore’s-Law tra-

jectory, and (ii) the “More-than-Moore” challenges of enabling integration and design paradigms which

require new “design-based equivalent scaling” approaches to complement future device scaling. We dis-

cuss the More-Moore challenges in Chapter 2 and Chapter 3, covering reliability, yield and routability

issues. Then we discuss the More-than-Moore challenges in Chapters 4 through 6, including enablements

of 3DICs and of approximate and stochastic computing circuits. For each challenge, we start with new

analysis and modeling methodologies for design challenges, and then propose our optimization method-

ology.

1



Physical Design Methodologies for the More-than-Moore Era

More-Moore
Challenges

Ch. 2
Worse lifetime 
reliability and 
early-stage yield

Ch. 3
Complicated 
design rules and 
worse routability 
in sub-10nm

More-than-Moore
Challenges

Ch. 4
Missing 
3DIC 
enablements 

Ch. 5
Missing 
approximate 
computing 
enablements

Ch. 6
Missing 
stochastic 
computing 
enablements

./FIGS/C1/overview.pdf

Figure 1.1: The scope of this thesis and the topic(s) covered by each chapter.

1.1 Emerging More-Moore Challenges

In the past decades, device scaling as projected by Moore’s Law has been driving technology

innovations in the semiconductor industry. Designers have put forward numerous application innovations

with increased device integration in single chips, substantially reshaping end-users’ daily lives. However,

continued scaling has been challenged by power limits, lithography complexity, interconnect density,

margins for reliability, design rule explosion, early-stage yield loss, etc. More-Moore challenges refer

to various challenges of continued scaling. To maintain scaling, Kahng [107] proposes the concept of

“design-based equivalent scaling” to leverage design technologies. Electronics design automation (EDA)

technologies and tools have accordingly played an important role in response to the two challenges.

Recent research has explored new technologies that potentially help the continuum of the scaling, the

results of which are new scaling boosters (buried interconnects, backside power delivery, supervias),

next device architectures (vertical gate all around (VGAA) FETs), or improved design-technology co-

optimizations [159] [108] [109].
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./FIGS/C1/EM.pdf

Figure 1.2: The projection of increasing current density on metal interconnect, which leads to
deterioration of interconnect reliability due to electromigration [242].

./FIGS/C1/drc_explosion.pdf

Figure 1.3: The projections of design rule numbers in advanced nodes. The rapid growth is due to
complicated lithography and shrunk physical dimensions. The figure is reproduced from [234].

Among the More-Moore challenges, this thesis focuses on three main threats to scaling: (i) yield

loss, (ii) excessive margins for reliability, and (iii) design rule explosion. The first part of Chapter 2

discusses the yield loss problem due to the area scaling and complication of process tuning, and we

propose a strategy of redundancy logic insertion as a solution to the problem. The second part of Chapter 2

discusses the complicated relationship between interconnect reliability and signoff in the presence of

adaptive voltage scaling (AVS). The reliability challenge has been looming in recent technology nodes.

Figure 1.2 from the International Technology Roadmap for Semiconductors (ITRS) [242] shows that
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current density on metal interconnects has been growing rapidly due to shrunk wire dimensions and

relatively slow voltage scaling. The increasing current density leads to worse wire reliability, which may

worsen in the presence of AVS. The need for signoff corners that consider cell aging and AVS in design

flow also complicates the interactions among voltage, wire reliability, and cell aging.

Figure 1.3 points out that the explosion of layout rules is a severe challenge in advanced tech-

nology nodes, along with system-on-chip (SOC) and physical design complexity. Chapter 3 discusses

the challenge of predicting design-rule check (DRC) violation hotspots and proposes a machine learning-

based design methodology to tackle this problem.

1.2 Emerging More-Than-Moore Challenges

3A. B. Kahng, TAU 2016

IoT 

driver

Mobile 

driver

Projected timeline for technology enablement by ITRS 2.0 

Figure 1.4: Potential technology solutions for the More-than-Moore challenges, projected by [243].
Examples of the Mobile driver include smartphones and tablets. Examples of the Internet of things (IoT)
driver include low-power sensor nodes, smart home appliances, and smart power grids. The solutions are

proposed to fulfill identified application requirements, such as low-cost system integration and low
lifetime energy.
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Recent research has also advanced new design paradigms to enable additional scaling. For ex-

ample, designers now use the vertical dimension (heterogeneous multi-die integration, monolithic 3DIC)

and various “rebooting computing” paradigms such as quantum, approximate, stochastic, adiabatic, and

neuromorphic computing. ITRS 2.0 [243] has outlined new technology enablements to continue the scal-

ing. Figure 1.4 reproduced from the System Integration chapter of ITRS 2.0 has roadmapped timelines

for these “More-than-Moore” technology enablements. The sequential 3D integration (i.e., monolithic

3DIC), which fabricates devices on stacked layers sequentially, is in demand by Mobile driver to achieve

higher transistor densities in limited system form factors. The inexact (approximate and stochastic) com-

puting technologies are also in demand to accommodate the Internet of Things (IoT) driver’s ultra low-

power requirement. However, the EDA research community is still developing new enabling technologies

to maximize the benefits of leveraging these rebooting computing paradigms. Chapters 4 through 6 dis-

cuss the enablements for these rebooting computing paradigms. Chapter 4 deals with finding the upper

bound of benefits from the adoption of sequential 3DIC integration and proposes a heuristic to improve

3D benefits. Chapters 5 and 6 investigate two issues to exploit inexact computing for ultra low-power

design: (i) error estimation for approximate and stochastic computing, and (ii) optimization of stochastic

circuits for power and accuracy in the presence of delay skews.

1.3 New Opportunities of Machine Learning to Meet Scaling Challenges

A powerful tool to take up these challenges in both the More-Moore and More-than-Moore con-

texts is the use of machine learning (ML) techniques. ML applications in EDA research span a wide range,

covering function verification and physical design. The examples in the verification regime include speci-

fication mining, debugging and root cause identification, and logic structure identification [177] [67] [25].

The examples in physical design are detection of lithography hotspots [227], identification of datapath
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cells in placement [220], timing convergence [87] [114], pathfinding [40] [38], and routability estima-

tion and improvement [39] [41]. This thesis resorts to machine learning-based approaches to tackle new

design challenges in physical design. The example in the More-Moore context is the use of machine

learning-based classifiers to identify hotspots of DRC violations in Chapter 3. The example in the More-

than-Moore context is the use of a Markov chain model, trained in advance by simulation data, to estimate

errors of stochastic circuits in Chapter 6.

1.4 Organization of Chapters

The chapters of this thesis are organized as follows. Chapter 2 and Chapter 3 focus on design

methodologies for the “More-Moore” context, which concern yield, reliability, and routability challenges

to continue the Moore’s-Law scaling. The theme from Chapter 4 to Chapter 6 is design methodologies for

non-conventional design paradigms (3D and inexact computing) to accommodate technology demands in

the “More-than-Moore” context.

• Chapter 2 presents mitigations of two emerging design challenges rising from device and intercon-

nect scaling. The first challenge is yield loss during early technology adoption. While the device

dimensions keep shrinking, process tuning takes a longer time before design yield can ramp up

to mass production. The low yield during the adoption stage increases the risk of advancing to

new technology nodes, and moreover, slows down the Moore’s-Law scaling. The chapter proposes

a design methodology for opportunistically adding redundant logic into design to improve yield.

We first investigate a yield model that considers redundancy, and then we propose to use an itera-

tive min-cut partition algorithm to generate candidate logic clusters for duplication. Integer linear

programming (ILP) is employed to select optimum clusters and prevent timing violation due to
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excessive insertion of multiplexers. Finally, we demonstrate yield improvement and insignificant

timing impact after redundancy insertion.

The second challenge is the deterioration of reliability due to device and interconnect aging. Un-

like the yield challenge during the adoption stage of a new technology, reliability issues lead to

performance degradation or malfunction after manufacturing and testing. To guarantee perfor-

mance throughout the whole lifetime, guardbanding for reliability is necessary in advanced nodes,

and this reduces the benefit of scaling. In this thesis, we focus on two major reliability issues,

which respectively impact device performance (bias temperature instability, BTI) and intercon-

nect integrity (electromigration, EM). Conventionally, the two reliability issues are guardbanded

by flat constraints of timing margin and maximum current density. However, the flat guardband

approaches do not comprehend time-varying supply voltage in the presence of adaptive voltage

scaling (AVS). Although an elevated supply voltage compensates for degraded performance, the

higher voltage also hastens the aging of devices and interconnect. To find better design signoff cor-

ners that comprehend varying voltage, aging device, and degraded interconnect, we first investigate

the latest BTI and EM models, apply the models to quantify the suboptimality without awareness

of varying voltages, and then propose a methodology for selecting signoff corners.

• Chapter 3 presents a routability optimization work guided by a machine learning model. Routability

challenges are more severe in advanced technology nodes. Standard-cell design is constrained by

multiple patterning and the tendency toward fewer tracks in cell libraries for better area utilization.

However, compact cells potentially lead to worse pin accessibility. At the design level, physical de-

sign engineers may need to increase cell spacing to resolve possible DRC violations. But the added

spacing obstructs the benefit of scaling. The chapter proposes a cell spreader guided by a machine

learning model. In the first step, we demonstrate that the machine learning model can efficiently
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close the gap between the prediction by congestion map and the outcome of detailed routing. Then,

we demonstrate that our model-guided cell spreader can improve the design routability with little

design cost.

• Chapter 4 presents a design space exploration methodology for monolithic 3DIC design. 3DIC is

a promising design technology to extend the Moore’s-Law scaling. However, due to the lack of

golden 3DIC design flows, designers are unable to efficiently evaluate the achievable benefits of

implementing existing designs in 3D. We propose a concept of “infinite dimension” to evaluate 3D

benefits of a given design. It is observed that the 3D benefit correlates well with the designs’ Rent

exponents, which indicate the complexity of interconnect. Based on this observation, we heuristi-

cally modulate designs’ Rent exponents during synthesis to improve the power benefit obtained by

3D integration.

• Chapter 5 presents design methodologies for approximate computing paradigms. Approximate

computing allows errors in computation in order to relax the design cost requirement. However, a

lack of error estimation blocks the enablement of approximate computing. We propose a method-

ology for evaluating error metrics in approximate computing.

• Chapter 6 presents design methodologies for stochastic computing paradigms. To enable more ag-

gressive energy saved by stochastic computing, we exploit the timing-error resilience of stochastic

computing to achieve aggressive voltage scaling. In the literature, Najafi et al. [169] point out

that the study presented in this thesis is among the first to introduce and employ skew tolerance to

save energy in stochastic circuit design. We demonstrate significant energy savings without severe

output quality degradation compared to conventional binary computation paradigms.

• Chapter 7 concludes the thesis with a brief look toward the future.
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Chapter 2

Yield and Reliability Optimization

This chapter presents mitigations of two emerging design challenges due to device and inter-

connect scaling. The first challenge is the yield loss during the technology adoption. While the device

dimensions keep shrinking, process tuning takes longer before design yield can ramp up to enable mass

production. The low yield during the adoption stage increases the risk of advancing to new technology

nodes, and essentially slows down the Moore’s-Law scaling. The second challenge is the worsening of re-

liability issues due to device and interconnect aging. Unlike the yield challenge during the adoption stage

of a new technology, reliability issues lead to performance degradation or malfunction after manufactur-

ing and testing. To guarantee performance throughout the whole lifetime, guardbanding for reliability is

necessary in advanced nodes, and this reduces the benefit of scaling.

2.1 Yield Challenge in Early Stage of Technology Adoption

Defect-limited yield is always a challenge in new technology nodes because manufacturing recipes

are still being refined and processing steps are not tightly controlled. Low yield during the adoption stage

of a new technology node significantly impacts product schedules. Defect-limited yield can be improved
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through redundancy (by duplicating logic gates), but this approach has not been seriously considered

in mature nodes, and/or when designers can achieve high area utilizations, because it incurs obvious

gate area overheads. However, in advanced technology nodes, achievable placement utilization decreases

due to increasing placement and routing congestions, constrained pin accessibility, and complex design

rules. For example, more than 20% of a chip is whitespace in 7nm technology [34]. With the available

whitespace, designers can potentially add redundancy to a design without increasing chip area, given a

methodology for judiciously avoiding harmful perturbations of timing and congestion hotspots. Figure 2.1

qualitatively summarizes interactions among yield, amount of redundancy, and other design parameters.

The above-mentioned evolution of design consideration motivates us in this section to rethink the

potential benefits of adding redundancy for yield. Redundancy insertion in very early stages of technology

learning is preferable because of the greater uncertainties in tuning advanced-node processes. Any major

process tuning may lead to slower progress of defect reduction. Although redundancy insertion requires

(i) available whitespace for added cells, (ii) sufficient routing resource for control wires, (iii) sufficient

timing margin for potential timing overhead, and (iv) additional control logics, the chip designer and

product organization may still benefit from a new lever that gives some controllability of yield from the

design perspective. Figure 2.2 demonstrates the layouts after adding redundancy to visualize the outcome

of redundancy insertion. Our work focuses on preventing yield loss due to random defects. (Note that

parametric yield is beyond the scope of our study; we assume that parametric yield loss has been addressed

by proper signoff criteria.) We propose an algorithm aimed at reducing yield loss due to random defects,

by exploiting multiple facets of design slack – area, timing, routing congestion – that may exist in late

stages of physical implementation. In our approach, we add redundant (i.e., duplicate) logic cells to a

design and then add multiplexers (MUX cells) to switch between original logic cells and redundant logic

cells. Furthermore, we consider timing and congestion as we add the redundant logic and MUX cells.
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Figure 2.1: The interactions among yield, amount of redundancy, and other design parameters. Red
arrows indicate positive correlation between two design parameters, and blue arrows indicate negative
correlation. Red dashed arrows indicate tighter constraints to prevent addition of more redundant cells.

Blue dashed arrows indicate looser constraints due to more resources.

Original cells Redundant cells Overlay

./FIGS/C2/layout.pdf

Figure 2.2: Layouts of original cells, redundant cells and overlay.

We assume that the control logic to select clusters can be realized using programmable memories.

With extra testing effort, designers can reprogram the control logic to select non-defective logic. We
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leave the testing strategy and controller design for future work, and focus solely on the strategy to insert

redundancy.

2.1.1 Related Works

Since manufacturing yield has always been a major determinant of die cost, many previous works

have investigated yield improvement from different perspectives. Nardi and Sangiovanni-Vincentelli [170]

propose a synthesis framework to improve yield by reducing the number of instances of standard cells

with higher critical areas. Wo et al. [222] consider block-level critical areas during architecture optimiza-

tion. Iizuka et al. [100], and Bourai and Shi [23] focus on reducing critical areas by relaxing layouts of

standard cells at the cost of higher areas.

In the arena of placement and routing (P&R), yield improvement has been achieved by a wide

variety of approaches: (i) whitespace modulation during detailed placement [16]; (ii) track and layer

assignment with critical-area awareness during detailed routing [135] [61] [144]; and (iii) post-route

optimization to reduce critical area by widening wires [57], inserting redundant vias and wires [52]

[141] [140] [27], and non-tree routing [113]. Although introduction of redundant logic is considered

in the literature, previous works focus on using majority-voting to reduce single-event upset (SEU) of

important function blocks. By contrast, our goal here is to provide opportunistic redundancy insertion

when the utilization and timing criticality allow this.1 To the best of our knowledge, our work is the

first to present yield analysis and improvement by considering instance-level redundancy during physical

implementation.

1Razor [71] is a self-repair mechanism for parametric timing error. Although it can improve parametric yield, it addresses a
different yield loss mechanism and use case.
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2.1.2 Problem Statement and Methodology

The amount of yield improvement depends on the amount of redundancy that can be inserted into

a design. The redundancy insertion as shown in Figure 2.3 should consider identification of redundant

logic at a cluster level to reduce the hardware overhead, as shown in Figure 2.3(b). The MUX cells

used to select between original logic clusters and redundant clusters are critical since the MUX cells

have no redundancy. On the other hand, MUX cells are larger than logic cells,2 and their insertion

therefore detracts from the potential yield benefit of logic cell redundancy. Moreover, a higher number of

MUX cells will lead to more complicated connections after performing engineering change order (ECO)

placement and routing; this may lead to routing congestion issues or loss of back-end-of-line (BEOL)

yield. As shown in Figure 2.3(a), inserted MUX cells also cause timing degradation. (We do understand

that additional control logics are required at the full-chip integration to select proper redundant logic after

testing. Our present treatment does not include the discussion of testing strategy and controller design;

we leave this for future work, and focus solely on the strategy to insert redundancy.)

2The largest (resp. smallest) 2-input MUX cell in the 28nm FDSOI foundry library that we use is roughly six (resp. three)
times larger than the minimum-size NAND2 logic cell, and occupies 18 (resp. 9) placement sites.
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clusters
merge to reduce 

mux cells

to control pin

original

cluster

redundant

cluster

(a) (b)

Figure 2.3: Illustration of choosing redundant logic clusters. (a) Illustration of logic clusters and a MUX
cell to select between original cluster and redundant cluster. (b) Moving proper cells into a cluster can
reduce the overhead of MUX cells. The blue squares indicate fanout connections that will no longer

require MUX cells after merging the circled AND cell into the cluster.

We state our problem as follows. Our objective is to minimize random-defect yield loss. A prob-

lem instance consists of a routed design, with timing constraints, and a post-redundancy insertion target

utilization. We seek to determine a post-engineering change order (post-ECO) design that maximizes

redundant logic area while meeting timing and utilization constraints.
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Figure 2.4: The flowchart of our proposed methodology for yield improvement by inserting redundancy.

We describe our proposed methodology in Figure 2.4. We start from the existing P&R database

and extract netlist, critical paths, and available whitespace. Based on the extracted information, we gen-

erate cluster candidates and identify optimum combination of clusters. We then edit the netlist and insert

the redundant logic clusters. We add MUX cells to the output nets of clusters. The P&R tool uses the

edited netlist to execute ECO placement and route. We apply timing optimization and yield evaluation

after the ECO flow.

15



Table 2.1: Description of notations used in our formulation for redundancy insertion.

Term Meaning

T netlist

i grid index in yield analysis

k cluster index

Smin the minimum cell number in a cluster

Fnand defect rate of a NAND2 cell

Ui metal utilization of grid i

λ Poisson exponent used in the yield model

{a, b} fitting parameters in the yield model

Y , YBEOL, design yield, BEOL yield,

YFEOL, YMUX , FEOL yield, MUX yield,

Yredun, Ynon−redun yield of redundant area, and yield of non-redundant area

Ak, area of cluster k,

A, Aredun, AMUX area of design, area of redundant logic cells, area of MUX cells,

Achip, Ainit area of chip, and area of input layout

n, m index of timing paths and timing points

N number of extracted critical paths

Mn number of timing points of nth path

K number of candidate clusters

ck logic cluster

Ck binary variable of selection of a cluster

DMUX MUX cell delay

SLn path slack of nth path

SLmin minimum slack after redundancy insertion

Pm,n binary indicator of whether mth

timing point of nth path has a MUX

UT target utilization

|G| number of cells in a design
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In the remainder of Section 2.1, we first describe our yield model to evaluate the benefit of

inserting redundant logic in Section 2.1.3. Section 2.1.4 then presents our heuristics to identify logic

clusters to duplicate. We present experimental results in Section 2.1.5, and conclusions in Section 2.1.6.

Table 2.1. summarizes the notations that we use in the remainder of this section. Below, we present more

details of yield modeling in Section 2.1.3 and describe our approach to identify low-overhead clusters (for

potential replication) in Section 2.1.4.

2.1.3 Yield Improvement by Exploiting Redundancy

We describe our yield model and our methodology to improve yield by adding redundant logic

cells in this section. We propose a yield model that comprehends both (i) yield loss due to random defects

of cells or wires, and (ii) yield recovery due to redundant cells and wires. Then we propose our yield-

improving methodology by adding redundant logic cells.

Yield Impact Evaluation During Early Process Learning

For random defects, the probabilities of failure in redundant and non-redundant logic area are

independent. Therefore, we can calculate design yield (of a design with redundancy) as follows.

Y = Ynon−redun · ([YMUX ·Y 2
redun]+2 · [YMUX ·Yredun(1−Yredun)])

= Ynon−redun ·YMUX ·Yredun · (2−Yredun) (2.1)

where Y is design yield, Ynon−redun is yield of non-redundant area, Yredun is yield of redundant area, and

YMUX is yield of MUX area (for logic redundancy). The first curly bracket denotes the yield while original

and redundant areas have no defects, and the second curly bracket denotes the yield while exactly one of
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the original and redundant clusters is defective. For a design with area A, random defect yields can be

modeled by the Poisson Yield model [246]

Y = e−λ·A (2.2)

where λ is a process-dependent Poisson exponent. Given a design with area A, if we duplicate

Aredun area of the design, with MUX area AMUX , the yield of the design with redundancy is given by

Y = Ynon−redun · (YMUX ·Y 2
redun +2 ·YMUX ·Yredun(1−Yredun))

= Ynon−redun ·YMUX ·Yredun(2−Yredun)

= e−λ·(A−Aredun) ·e−λ·AMUX ·e−λ·Aredun · (2−e−λ·Aredun)

= e−λ·A ·e−λ·AMUX · (2−e−λ·Aredun)

yield gain = e−λ·AMUX · (2−e−λ·Aredun) (2.3)

Equation 2.3 shows that yield improvement from redundancy is a function of redundant logic and

MUX areas (and independent of A). Figure 2.5 shows yield improvements for various Aredun and AMUX

with λ = 10−6.3 Based on the figure, we can see that yield improvement increases with Aredun/AMUX ratio

and saturates for a fixed Aredun. This implies that achievable yield improvement is limited by Aredun. We

3The redundant area in the simulation starts from 20000 to match the realized redundant area we observed in our testcase
VGA. See Table 2.2.
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also notice that the Aredun/AMUX ratio must be sufficiently large (e.g., larger than 2) to achieve noticeable

yield improvement.
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Figure 2.5: Projected yield improvement by our model. Three different redundant areas (cell area in
redundant clusters) are projected in this simulation.

Yield Model

To connect the cluster-level yield calculation in Equation (2.1) with component-level (cells and

nets) yield, we split the yield of a logic cluster into back-end-of-line (BEOL) and front-end-of-line (FEOL)

yields. Therefore, the yield of a redundant cluster can be determined by Equation (2.5).

Ycluster = YBEOL(nets) ·YFEOL(cells) (2.4)

Yredun = YBEOL(redun nets) ·YFEOL(redun cells) (2.5)
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We then estimate YBEOL and YFEOL in different ways. For YFEOL, we make an assumption regard-

ing the defect rate of the minimum NAND2 cell and then extrapolate defect rates of other cells based on

the area ratio, as shown in Equation (2.6).4 The overall FEOL yield is given by the products of all the

cells in the cluster, as shown in Equation (2.7).

ln(Ycell) = ln((1−Fnand) ·Anand2/Acell) (2.6)

YFEOL = ∏
all cells

Ycell (2.7)

For the BEOL, we interpolate the yield based on the calibration of Mentor Calibre. We first

characterize the yield of a routed layout in a 28nm foundry FDSOI technology, and then use the yield

data for curve fitting. We first run through the P&R flow to generate a GDSII file, then use Mentor

Calibre Yield Analyzer [246] to estimate the BEOL yield for each 10µm by 10µm grid. The probability

distribution of defect sizes is obtained from the Calibre reference flow. We use six metal layers in this

yield characterization and other experiments. Since the pitches are the same for each layer, we use the

same BEOL yield model for all the six layers.

We observe the relationship between BEOL yield and the metal utilization on each layer. We use a

Poisson distribution assumption for the yield. The yield of a grid and the BEOL is given by Equation (2.8).

4If not stated, the NAND2 defect rate is assumed to be 1ppm in the rest of this section.
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YBEOL = ∏i∈all gridsYi,

where Yi = e−λ(Ui) (2.8)

The Poisson exponent is assumed to be a function of track utilization Ui, and the data points of

exponent λ(Ui) are given by the Calibre results. Based on the curve fitting in Figure 2.6, we use a =

3.91×10−7 and b = 2.9×10−9 in our yield evaluation.

λ(Ui) = a ·Ui + b, (2.9)

where i is the grid index

We obtain the YBEOL in Equation (2.8) by decomposing the design into grids, calculating Ui of

each grid, and using the fitting equation in Equation (2.9) to derive Yi. We need per-net yield for design

yield calculation in Equation (2.5) after adding redundancy. The per-net yield Ynet is then derived from

the yield YBEOL by the following equations.

YBEOL = ∏
allnets

Ynet (2.10)

Ynet = e
ln(YBEOL)
TOTAL WL ·NET WL (2.11)
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Figure 2.6: Fitting result for our yield model. The data points are from the analysis of a JPEG design in
a 28nm FDSOI technology by Calibre Yield Analyzer [246]. We use linear fitting as an approximation to

obtain BEOL yield. The details are described in Equation (2.8) to Equation (2.11).

Based on our yield model, we demonstrate how to emulate yield loss during early process learning

with different Ynand2. In order to demonstrate the capability to extrapolate severe yield losses of large

design blocks during early process learning stage, we start the yield simulation with a JPEG design and

expand the design size by duplicating the layout by {10×, 15×, 100×, 500×}. Figure 2.7 shows the

results of the yield simulation.
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Figure 2.7: Yield simulation of a JPEG block. Different values of Fnand are used to project yield loss at
the early process learning stage. We also duplicate the block multiple times to emulate the yield loss of

larger designs.

2.1.4 Redundant Logic Insertion

Analysis in Section 2.1.3 shows that to maximize the yield gain, we need to maximize redun-

dancy area with minimal MUX area overhead. Our redundant logic insertion methodology addresses this

problem through two optimization steps. First, we identify high-quality candidate clusters with large re-

dundancy to MUX area ratio. Second, we select clusters through an integer linear programming (ILP)

solver to maximize the redundancy area. Details of these optimization steps are described in the rest of

this section.

2-Way FM-Based Cluster Generation

Quality of a logic cluster is closely related to its intrinsic Rent parameter [84], i.e., the ratio of

number terminals to cluster size. This is because intrinsic Rent parameter defines the minimum possible
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Rent parameter, which is defined by the ratio of logarithm of terminals to logarithm of cluster size. (Note

that number of terminals is the upper bound for MUX cell insertion, while cluster size is proportional to

redundant logic area.) This means that cluster candidates with a small Rent parameter is also a good clus-

ter for redundant logic insertion. Based on this observation, we propose to use the min-cut partitioning

algorithm to generate candidate clusters. In this section, we use MLPart library [30], a known-good im-

plementation of 2-way Fiduccia-Mattheyses (FM) [75] partition algorithm, to generate candidate clusters.

The flow to generate the clusters are described in Algorithm 1.

Algorithm 1 Cluster generation by recursive 2-way FM-based partitioning.
Input: Netlist T , minimum cluster size Smin

Output: The solution of cluster candidate
Sol = {c1, c2, ..., cK}

1: Sol ← T ; Sol′← /0;
2: stop← FALSE
3: while (!stop) do
4: for ck in Sol do
5: {c′k, c′′k} ← minCutPart(ck)

// tolerance of area balance = 10%
6: if (|c′k|< Smin or |c′′k |< Smin) then
7: stop← T RUE
8: break
9: end if

10: Sol′← Sol′ ∪ {c′k, c′′k}
11: end for
12: Sol ← Sol′

13: end while
14: return Sol

The iterative 2-way partition is implemented based on the infrastructure of RentCon [250]. We

first read in the design DEF and construct a hypergraph in C++, then we iteratively call MLPart to gener-

ate bipartitioned clusters until the constraint of lower bound of cluster size (Smin) is reached (Algorithm 1).

We avoid using extreme (large) Smin values because a large cluster is more difficult to be duplicated due to

placement and routing congestions. Also, a larger cluster is more likely to degrade circuit timing during
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logic redundancy insertion. On the other hand, a small Smin is likely to produce small clusters which are

sensitive to area overheads.

Figure 2.8: The cluster area to MUX area ratio versus cluster size of AES, JPEG, and VGA.
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To find a suitable Smin, we plot all the clusters generated from the initial bipartitioned logic clus-

ters to the clusters with more than five instances. The ratios between the number of MUX cells and logic

cells of different cluster sizes are reported in Figure 2.8. Figure 2.8 shows that the clusters with high area

ratios are fewer when cluster sizes are less than 200 (for AES). On the other hand, larger cluster sizes may

limit the solution space in ILP due to utilization constraint. Therefore, we fix Smin to 200 in this section.
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Figure 2.9: Algorithm runtime versus cell numbers in designs.

We analyze runtime complexity as follows. Let there be |G| cells in the design. The FM algorithm

is well-understood to have time complexity that is linear in |G|.5 Ignoring the (dominated) time to write

out / read in the input netlist for each given call to FM, assuming an O(1) bipartitioning cost for small

end-case netlists, and applying the Master Theorem for solution of divide-and-conquer recurrences, we

obtain the recurrence T (|G|) = 2 ·T ( |G|2 )+ Θ(1) for the runtime of the recursive bipartitioning process.

5The time complexity of FM is linear in the number of pins in the netlist, and this is a per-pass time complexity. However, in
practice, FM uses only a small (single-digit) number of passes, and the number of pins in the netlist is bounded by a (technology-
and library-dependent) constant times the number of cells.
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The complexity of the cluster generation is then Θ(|G|). (Including a Θ(|G|) term for the writing/reading

of each netlist would add a logarithmic factor to the solution of the recurrence.) Figure 2.9 shows the

runtime versus different design size.

ILP-based Cluster Selection

The quality of identified logic clusters during redundancy insertion has a significant impact on

P&R quality after ECO placement and route. As shown in Figure 2.10, we use MUX cells to provide

programmability to switch between original logic cluster and the redundant logic cluster. The inserted

MUX cells not only occupy available whitespace but also increase the risk of worse post-ECO timing. To

reduce the overhead, we propose our methodology to first identify low-overhead logic clusters and then

select compatible clusters which do not hurt the existing critical path. The details will be described in the

rest of this section.

sel
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Duplicated

cone

Path 0

Path 1

Path N
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……….

……….

By cluster 1

By cluster 2

By cluster k

(a) (b)Figure 2.10: Timing path and inserted MUX cells. For each near-critical timing path, we use a
corresponding constraint in ILP to constrain the delay. When any added MUXes appear in the

near-critical paths, we formulate the appearance as binary variables. The details are described in the ILP
formulation from Equation (2.12) to Equation (2.15).
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We duplicate logic clusters and then insert MUX cells to the output nets to switch between the

original logic and the insert redundant logic. In order to avoid timing impact on the design, we apply

an ILP-based cluster selection flow to duplicate the maximum amount of logic under given timing con-

straints. The formulation uses binary variables to denote if a selected cluster will impact any timing

critical path due to the MUX cells associated with the clusters in Figure 2.10. The details of our ILP

formulation are described from Equation (2.12) to Equation (2.15).

Maximize

K

∑
k=1

Ak ·Ck (2.12)

Subject to:

For 1≤ n≤ N,

SLn−
Mn

∑
m=1

Pm,n ·DMUX ≥ SLmin (2.13)

For 1≤ n≤ N, 1≤ m≤Mn, 1≤ k ≤ K

Pm,n ≥Ck, (2.14)

where Ck and Pm,n are binary variables,

(
K

∑
k=1

Ak ·Ck +Ainit)/Achip ≤UT (2.15)

Our objective in Equation (2.12) guides the ILP to maximize the area of redundant logic clusters.

To avoid the inserted MUX cells from hurting critical timing paths as illustrated in Figure 2.10, we extract

timing paths with less than 200ps slack from P&R tool and use Equations (2.13) and (2.14) to account
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for the timing slack after inserting redundancy. To prevent the inserted redundancy from excessively

using available whitespace, we use Equation (2.15) to constrain the target die utilization after redundancy

insertion. We will demonstrate our results based on our proposed approaches in Section 2.1.5.

2.1.5 Experimental Setup and Results

We implement our flow with C++ code and Cadence Innovus Implementation System [235] and

Synopsys Design Compiler [251]. We solve the ILP formulation by calling IBM ILOG CPLEX6 and feed

our solutions to commercial tools. We use a 28nm foundry FDSOI technology in our experiments. The

testcases AES, JPEG, VGA, LEON3MP, and NETCARD are obtained from OpenCores [247] and ISPD

Contests [175].
6The runtimes of the 2-way partitioning and ILP are less than 20 minutes for VGA on a Xeon E5-2690 machine.
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Evaluation of Generated Clusters

Figure 2.11: The histogram of cluster size ratios of AES, JPEG, and VGA.
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MLPart is two-way multilevel FM. RentCon is top-down application of MLPart to identify a

given netlist’s intrinsic (partitioning-based) Rent parameter (e.g., the lowest-slope trace possible in the

plot of log(T i) (y-axis) versus log(Ci) (x-axis), where Ci is the size of a cluster of logic gates and T i

is the associated number of terminals (cut nets at the boundary of the cluster)). (See Figure 4 of [84],

reproduced in Figure 2.12, for example.) Figure 2.11 shows the cluster to MUX area ratio across different

designs.

Figure 2.12: Number of terminals versus sizes of cluster of logic gates, reproduced from [84].

Yield Evaluation and P&R Metrics

The main results are presented in Table 2.2. Since the initial layouts constrained at lower frequen-

cies and initial utilizations show better yield improvement, we report details of these data points to show

the design tradeoffs under different settings. For redundant logic insertion, we target 10%, 20%, and 30%

of the total core area (up to 40% for the three smaller testcases: AES, JPEG and VGA ). Thus, for each

design, we show metrics targeting 60%, 70%, and 80% utilizations (up to 90% for the smaller testcases).
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The limited yield gain of AES is caused by the following reasons. First, achievable redundant

area is a strong function of original design area. AES has an original logic area of 84400um2, which is

much smaller than LEON3MP and NETCARD. Based on analysis in Figure 2.5, we do not expect any

significant yield gain for such a small design. To speculatively project the yield improvement in large

designs, we scale up the design footprints (except the two larger ones) so that the post-routed yield is

around 50%.7 Based on the same footprint sizes, we report extrapolated yield (Ex. Yield) in Table 2.2.

We observe significant yield improvement in this speculative context.

For LEON3MP (70× size of AES), the yield gain is noticeably larger. For the same testcase,

we observe that the yield improvement increases when more redundant logic cells are inserted. For

example, the yield improvements of LEON3MP are 1.20×, 1.41× and 1.62× when target utilizations

after redundancy insertion are 60%, 70% and 80%, respectively. We observe timing degradation right

after ECO place and route, and the timing slacks are restored after optimization, which is indicated by

near-zero worst negative slack (WNS) and total negative slack (TNS) in LEON3MP. NETCARD also

shows high yield improvement because of larger design area, but we notice that DRC violations (DRVs)

occur in NETCARD since its physical implementation is wire-dominated.

For all testcases, the power, leakage, and routed wirelength increase with higher amount of redun-

dancy. We observe high power overhead in the post-ECO results, due to the logic redundancy including

flip-flops. In addition, we propagate switching activity (we use an activity factor of 0.02) from output

pins of flip-flops in vectorless power estimation; this makes the flip-flop power overhead more obvious.

Note that the timing of AES is tight and hence the ILP is infeasible at high clock frequency. We use “–”

in those rows.

7The footprint area increase by the ratio X between log(post-routed yield) and log(50%). Then we scale the extrapolated
yield by equation Yex = Y X .
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Table 2.2: Yield improvement and P&R qualities of (i) original routed layouts (routed), (ii) post-ECO
layouts with redundant logic (ECO), and (iii) post-optimization layouts (opt). WNS denotes worst

negative timing slack and TNS denotes total negative timing slack. (For the two larger testcases
LEON3MP and NETCARD, we do not present the extrapolated yield because their yields at routed stage

are lower than 50%.)

Design Clock Init Target #Inst Area Util Yield WNS TNS Power Leak WL #DRV #MUX #dup MUX dup Ex.

(ns) util util (µm2) (ps) (ns) (mW) (mW) (µm) area area yield

JPEG 2.0 50% 60% routed 30110 42129 50.3% 91.8% 24 0.001 14.9 1.01 406459 0 0 0 0 0 49.9%

ECO 1.16× 1.17× 1.17× 1.01× -116 -2.251 1.23× 1.50× 1.24× 0 188 4526 552 6608 1.84×

opt 1.16× 1.17× 1.17× 1.01× 1 0.001 1.22× 1.50× 1.24× 0 188 4526 552 6608 1.84×

JPEG 2.0 50% 70% routed 30110 42129 50.3% 91.8% 24 0.001 14.9 1.01 406459 0 0 0 0 0 49.9%

ECO 1.28× 1.32× 1.31× 1.02× -300 -15.751 1.47× 2.15× 1.43× 0 412 8118 1210 12089 1.85×

opt 1.28× 1.32× 1.32× 1.02× 3 0.001 1.47× 2.16× 1.43× 0 412 8118 1210 12089 1.85×

JPEG 2.0 50% 80% routed 30110 42129 50.3% 91.8% 24 0.001 14.9 1.01 406459 0 0 0 0 0 49.9%

ECO 1.39× 1.44× 1.44× 1.03× -395 -59.621 1.72× 2.87× 1.66× 0 671 11086 1971 16439 1.84×

opt 1.40× 1.44× 1.44× 1.03× -1 0.001 1.73× 2.92× 1.66× 0 671 11086 1971 16439 1.84×

JPEG 2.0 50% 90% routed 30110 42129 50.3% 91.8% 24 0.001 14.9 1.01 406459 0 0 0 0 0 49.9%

ECO 1.43× 1.48× 1.48× 1.03× -410 -63.941 1.83× 3.11× 1.73× 0 749 12091 2200 18098 1.83×

opt 1.43× 1.49× 1.49× 1.03× -2 0.001 1.83× 3.18× 1.74× 0 749 12091 2203 18098 1.83×

JPEG 0.8 50% 90% routed 43478 52276 54.3% 89.9% -2 -0.011 46.3 6.96 466599 0 0 0 0 0 42.3%

ECO 1.06× 1.08× 1.08× 1.01× -307 -7.131 1.13× 1.08× 1.12× 0 108 2711 317 3654 2.13×

opt 1.07× 1.08× 1.08× 1.01× -19 -0.211 1.13× 1.10× 1.12× 0 108 2711 317 3705 2.13×

JPEG 0.8 80% 90% routed 43544 51522 85.6% 90.0% -3 -0.011 44.4 6.13 374089 4 0 0 0 0 42.8%

ECO 1.03× 1.03× 1.03× 1.00× -335 -25.401 1.06× 1.04× 1.10× 4 41 1320 120 1555 2.11×

opt 1.03× 1.03× 1.03× 1.00× -99 -1.011 1.08× 1.07× 1.11× 4 41 1320 120 1556 2.11×

AES 2.0 50% 60% routed 11487 8440 50.1% 98.3% 176 0.001 1.7 0.18 150243 44 0 0 0 0 50.0%

ECO 1.23× 1.19× 1.19× 1.00× -504 -12.941 1.12× 1.83× 1.44× 103 55 2559 161 1422 1.94×

opt 1.23× 1.19× 1.19× 1.00× 0 0.001 1.12× 1.94× 1.44× 93 55 2559 161 1430 1.94×

AES 2.0 50% 70% routed 11487 8440 50.1% 98.3% 176 0.001 1.7 0.18 150243 44 0 0 0 0 50.0%

ECO 1.42× 1.36× 1.36× 1.00× -549 -17.111 1.24× 2.83× 1.74× 102 125 4743 367 2685 1.91×

opt 1.42× 1.36× 1.37× 1.00× -8 -0.011 1.29× 2.89× 1.74× 67 125 4743 367 2692 1.91×

AES 2.0 50% 80% routed 11487 8440 50.1% 98.3% 176 0.001 1.7 0.18 150243 44 0 0 0 0 50.0%

ECO 1.57× 1.50× 1.50× 1.01× -990 -66.251 1.47× 4.00× 2.01× 171 221 6280 649 3608 1.87×

opt 1.57× 1.51× 1.51× 1.01× -21 -0.051 1.47× 4.22× 2.01× 183 221 6280 649 3616 1.87×

AES 2.0 50% 90% routed 11487 8440 50.1% 98.3% 176 0.001 1.7 0.18 150243 44 0 0 0 0 50.0%

ECO 1.67× 1.66× 1.67× 1.01× -1538 -134.501 1.82× 5.94× 2.30× 1000 380 7360 1116 4494 1.87×

opt 1.68× 1.67× 1.67× 1.01× 3 0.001 1.88× 6.56× 2.30× 1000 380 7360 1117 4504 1.87×

AES 0.8 50% 90% routed 11942 10242 60.8% 97.9% -5 -0.011 6.1 1.74 146107 65 0 0 0 0 50.0%

ECO – – – – – – – – – – – – – – –

opt – – – – – – – – – – – – – – –

AES 0.8 80% 90% routed 11719 9538 90.5% 98.1% -17 -0.161 5.8 1.5 120016 77 0 0 0 0 43.2%

ECO – – – – – – – – – – – – – – –

opt – – – – – – – – – – – – – – –
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Table 2.2 continued: Results of VGA, LEON3MP and NETCARD.

Design Clock Init Target #Inst Area Util Yield WNS TNS Power Leak WL #DRV #MUX #dup MUX dup Ex.

(ns) util util (µm2) (ps) (ns) (mW) (mW) (µm) area area yield

VGA 2.0 50% 60% routed 68924 96732 50.2% 82.1% 7 0.001 44.7 2.66 900535 29 0 0 0 0 45.7%

ECO 1.16× 1.17× 1.17× 1.03× -619 -517.711 1.17× 1.36× 1.22× 29 360 10457 1057 14906 0.00×

opt 1.16× 1.17× 1.17× 1.03× -4 -0.011 1.17× 1.36× 1.22× 29 360 10457 1057 14907 0.00×

VGA 2.0 50% 70% routed 68924 96732 50.2% 82.1% 7 0.001 44.7 2.66 900535 29 0 0 0 0 50.2%

ECO 1.29× 1.31× 1.31× 1.05× -744 -1568.201 1.35× 1.81× 1.43× 33 801 19174 2353 27368 1.67×

opt 1.29× 1.31× 1.31× 1.05× -12 -0.021 1.35× 1.85× 1.43× 35 801 19174 2358 27369 1.67×

VGA 2.0 50% 80% routed 68924 96732 50.2% 82.1% 7 0.001 44.7 2.66 900535 29 0 0 0 0 50.2%

ECO 1.41× 1.44× 1.43× 1.07× -796 -4050.701 1.53× 2.26× 1.64× 31 1208 27031 3549 38606 1.70×

opt 1.42× 1.44× 1.44× 1.07× -28 -0.111 1.54× 2.32× 1.65× 31 1208 27031 3559 38607 1.70×

VGA 2.0 50% 90% routed 68924 96732 50.2% 82.1% 7 0.001 44.7 2.66 900535 29 0 0 0 0 50.2%

ECO 1.52× 1.55× 1.55× 1.09× -833 -4917.701 1.70× 2.70× 1.88× 33 1666 34103 4894 48685 1.72×

opt 1.53× 1.56× 1.56× 1.09× -44 -0.201 1.70× 2.79× 1.89× 33 1666 34103 4904 48685 1.72×

VGA 0.8 50% 90% routed 69750 101968 52.8% 81.2% 0 0.001 121.1 6.48 914560 15 0 0 0 0 50.2%

ECO 1.12× 1.13× 1.13× 1.02× -200 -216.491 1.16× 1.24× 1.20× 15 433 7815 1272 11551 1.74×

opt 1.13× 1.13× 1.13× 1.02× -68 -1.041 1.18× 1.31× 1.20× 15 433 7815 1281 11558 1.74×

VGA 0.8 80% 90% routed 69476 99955 82.8% 81.5% -8 -0.011 118.2 5.06 754471 59 0 0 0 0 49.1%

ECO 1.06× 1.07× 1.07× 1.01× -479 -249.731 1.09× 1.14× 1.24× 57 184 4254 540 6161 1.67×

opt 1.09× 1.09× 1.09× 1.01× -175 -22.721 1.13× 1.32× 1.29× 63 184 4254 542 6163 1.67×

LEON3MP 4 50% 60% routed 442613 621758 50.4% 28.1% -13 -0.042 147.9 17.63 9562023 2 0 0 0 0 –

ECO 1.17× 1.18× 1.18× 1.21× -1213 -10854.600 1.20× 1.46× 1.21× 0 3456 71694 10153 102006 –

opt 1.17× 1.18× 1.18× 1.20× -18 -0.070 1.20× 1.47× 1.21× 1 3456 71694 10153 102029 –

LEON3MP 4 50% 70% routed 442613 621758 50.4% 28.1% -13 -0.042 147.9 17.63 9562023 2 0 0 0 0 –

ECO 1.33× 1.35× 1.35× 1.41× -1585 -30674.900 1.42× 2.09× 1.42× 7 8350 136489 24532 194484 –

opt 1.33× 1.36× 1.36× 1.41× -26 -0.082 1.43× 2.14× 1.42× 7 8350 136489 24533 194523 –

LEON3MP 4 50% 80% routed 442613 621758 50.4% 28.1% -13 -0.042 147.9 17.63 9562023 2 0 0 0 0 –

ECO 1.47× 1.51× 1.51× 1.63× -1694 -48297.300 1.67× 2.77× 1.66× 0 13324 196155 39145 279319 –

opt 1.48× 1.52× 1.52× 1.62× -31 -0.091 1.68× 2.87× 1.66× 1 13324 196155 39145 279361 –

NETCARD 4 50% 60% routed 303000 399021 50.2% 44.1% 39 0.000 98.1 12.84 12381761 90 0 0 0 0 –

ECO 1.15× 1.17× 1.17× 1.09× -2276 -755.229 1.24× 1.67× 1.19× 1000 3870 41472 11370 54595 –

opt 1.15× 1.17× 1.17× 1.09× -22 -0.038 1.24× 1.71× 1.19× 1000 3870 41472 11377 54725 –

NETCARD 4 50% 70% routed 303000 399021 50.2% 44.1% 39 0.000 98.1 12.84 12381761 90 0 0 0 0 –

ECO 1.29× 1.33× 1.33× 1.18× -3468 -5453.600 1.49× 2.46× 1.38× 1000 8546 79095 25108 104952 –

opt 1.29× 1.33× 1.33× 1.17× -234 -1.311 1.51× 2.61× 1.38× 1000 8546 79095 25151 105227 –

NETCARD 4 50% 80% routed 303000 399021 50.2% 39.1% 39 0.000 98.1 12.84 12381761 90 0 0 0 0 –

ECO 1.42× 1.48× 1.48× 1.43× -3506 -18876.000 1.76× 3.33× 1.56× 1000 13709 114146 40277 152329 –

opt 1.43× 1.50× 1.50× 1.41× -1590 -30.580 1.81× 3.68× 1.57× 1000 13709 114146 40436 152620 –

2.1.6 Conclusions

Yield is now a dominant challenge in a new technology node, and yield loss during early learning

stages of a new process can make leading-edge product chips economically unviable. To mitigate yield

loss due to random defects, we propose a redundant logic insertion methodology that copies clusters of

logic cells and connects their outputs (i.e., fanouts) to original nets through MUX cells. Based on a
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Poisson yield model, we derive yield gain as a function of redundancy cells and MUX areas. We show

that maximum achievable yield gain is determined by redundant cell area.

Our methodology optimizes redundant logic insertion through two optimization steps. First, we

extract candidate clusters with minimum cuts through a recursive bipartitioning algorithm. Second, we

maximize the area of redundant logic by selecting the best clusters via solution of an integer-linear pro-

gram. Experimental results on our benchmark circuits show that for large design areas, logic redundancy

can improve defect-limited yield by up to 1.62× from an initial value of 28.1%. Such a yield improve-

ment could be highly significant especially for products in a new technology node, where profit margins

are large due to the lack of competition.

Although our study focuses on defect-limited yield, the concept of opportunistic redundant logic

insertion, as well as our methodology, can be applied toward other purposes such as (i) improvement of

product lifetime against aging through redundancy and (ii) mitigation of impact of random soft defects

on chip performance. Our ongoing and future works include early stage routability consideration, timing

recovery, and exploration of algorithms to improve the quality of clusters for purposes of redundancy

insertion for yield gain. For example, the use of top-down multilevel FM bipartitioning might be adapted

to incorporate elements of classic “replication cut” approaches [99] [130]. Another potential direction is

to select optimum clusters from a richer set that is derived using multiple runs of partitioning. Intelligent

heuristics to choose the minimum cluster size for different designs may also improve the current approach.
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2.2 Reliability Challenge in Advanced Nodes

Reliability signoff is critical in modern sub-22nm technology nodes to guarantee that an IC prod-

uct operates at a minimum acceptable performance throughout its lifetime [115]. Recently, the most

important reliability mechanisms for IC design teams are bias temperature instability (BTI) and elec-

tromigration (EM) [115] [78] [19]. BTI degrades chip performance by slowing down device switch-

ing speeds in critical paths. To meet performance requirements, design teams overcome performance

degradation due to BTI by applying adaptive voltage scaling (AVS) [37]. EM can increase wire resis-

tance, which can cause voltage drop resulting in device slowdown; it can also cause permanent failures

in circuits due to shorts or opens. To meet lifetime requirements, design teams overcome mean time

to failure (MTTF) with respect to EM-induced interconnect voids and shorts by applying design guard-

bands [148] [116] [174] [164]. Sometimes, design teams can try to make interconnects ‘immortal’ by

limiting segment lengths to be less than or equal to the Blech length [21]. However, recent analysis shows

that immortality is not guaranteed under all operating conditions [164]. The authors of [164] demonstrate

that under long-time electrical stress, all power and ground interconnects suffer from EM degradation

which results in larger wire resistances and can cause supply voltage drop (IR drop). IR drop can result

in delay degradation and timing failures.

Even as modern designs use AVS to compensate for the delay degradation, the higher supply

voltages from AVS can accelerate EM failures [115]. Hence, design teams are forced to use larger margins

to guardband against delay degradation, that is, sign off at either a lesser lifetime or lesser performance.

This dilemma induces a “chicken-and-egg” loop in the signoff flow as shown in Figure 2.13. To our best

understanding, the interaction between BTI-induced AVS and EM in the context of this chicken-and-egg

loop has not been studied in previous works. This motivates us to study EM-aware signoff for systems

that use AVS.
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Figure 2.13: Illustration of the chicken-and-egg loop for circuit signoff with EM and AVS to
compensate for performance degradation due to BTI.

In Section 2.2, we study the effects of EM on both signal and power/ground interconnects using

recent models [164]. We quantify impact on circuit performance, power and lifetime in a system that

uses AVS. We empirically demonstrate that EM-awareness can change power and area tradeoffs when

designers choose corners for AVS signoff. Furthermore, we demonstrate that different AVS strategies

have different impacts on EM lifetimes. We conduct our experiments with a 28nm foundry fully depleted

silicon on insulator (FDSOI) technology and commercial tool flows.

Our contributions are summarized as follows.

1. We analyze interactions between EM degradation, and AVS signoff and scheduling, in a 28nm

foundry FDSOI technology using commercial EDA tool flows. We address the three-way interac-

tions between EM, BTI and AVS, and demonstrate that these interactions are significant at 28nm

and below.

2. We study the incremental design cost to account for EM during signoff. We perform our signoff

analyses in two ways: (i) modeling AVS and considering EM worsened by escalated voltages; and

(ii) ignoring escalated voltages assigned by AVS.
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3. We demonstrate that the inaccuracy (penalty) of EM lifetime due to improper guardband against

BTI at signoff can be as high as 30% in a 28nm technology. Furthermore, we demonstrate that

choice of AVS voltage step size and scheduling strategies can result in up to 1.5 years of decreased

EM lifetime.

4. We provide signoff guidelines which suggest that the EM lifetime penalty can be compensated by

paying an area penalty of up to 1.6% and a power penalty of up to 6%.

The remainder of Section 2.2 is organized as follows. In Section 2.2.1, we review related works

on AVS and EM signoff. In Section 2.2.2, we study implications of a recent statistical EM model in AVS

systems, and in Section 2.2.3, we describe our design of experiments and present results. In Section 2.2.4,

we describe future works and conclude the section.

2.2.1 Related Works

Several previous works address different aspects of EM. We taxonomize these works into three

categories.

(a) Models for lifetime and wire degradation due to EM. Black [20] proposes an empirical mean time

to failure (MTTF) model of wires, which is the well-known Black’s Equation. Arnaud et al. [14] and

Federspiel et al. [73] study the failure processes in copper wires and extend Black’s Equation. While

previous works focused on developing physical models, Mishra et al. [164] propose a statistical model of

the process of EM degradation. They demonstrate that their modeling approach can reduce the pessimism

in Black’s Equation-based EM signoff criteria.

(b) Approaches for EM evaluation and signoff. EM evaluations and optimizations in EDA tools rely

on CPU-intensive computations and layout optimizations to constrain current densities that satisfy EM

lifetime requirements with design tools, such as Apache Redhawk [233], Cadence Virtuoso [238], or
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Synopsys PowerRail [254]. As technology advances, more physical design factors such as temperature

[56], process variation [174], and growing dominance of BTI and AVS must be considered in order to

achieve accurate EM evaluation and signoff.

(c) Physical design approaches for EM-durable circuits. In this category, we include wire-sizing and

wire segmentation methods for the design of EM-durable circuits. Adler et al. [1] [2], Jiang et al. [102],

Lienig et al. [148] and Yan et al. [225] develop wire-sizing algorithms for current-aware routers that

avoid high current densities in circuits. They guarantee lifetime by ensuring that their algorithms always

deliver current densities that are within the limits specified in technology files. Li et al. [145] develop wire

segmentation and via insertion algorithms to create immortal wires by constraining interconnect segment

lengths to be less than the Blech length [145].

Previous works on BTI in AVS systems [17] [55] [133] [134] [139] [162] [200] focus on the

interactions between behaviors of AVS and BTI while ignoring EM degradation. Recently, Chan et al. [37]

study signoff strategies that consider interactions between AVS and BTI, but do not consider EM in their

work.

Our work falls at the intersection of categories (b) and (c), building on that of [37]. We consider

EM signoff strategies in the presence of BTI and AVS, and we investigate approaches to the design of

EM-durable circuits. To the best of our knowledge, we are the first to address the three-way interactions

between EM, BTI and AVS, and to demonstrate that these interactions are significant at 28nm and below.

2.2.2 Methodology for Reliability Analysis

We study the implications of a recent statistical EM model [164] on system performance. The

model is a function of wire geometry, electric field due to the supply voltage Vdd , and ambient temperature,

and estimates degradation due to increased resistance on wires. We first verify correctness of the model
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in a 28nm foundry FDSOI technology and then quantify the delay impact due to EM on AVS systems. In

our evaluations in Section 2.2.3, we use both the statistical as well as the traditional lifetime model using

Black’s Equation [20].

Characterization of EM Model

In previous works, such as [14] and [73], circuit measurements and empirical models demonstrate

that the failure of wires due to EM has two stages. In the first stage (nucleation), height of void is less than

the thickness of copper layer, so the wire resistance does not change significantly. Once the void occupies

the whole cross-section of the wire, the degradation enters the second stage (growth) and the resistance

of the wire suddenly jumps since the liner layer (tantalum, which has relatively higher resistance than

copper), below the copper layer becomes the only conducting path in the void region. The jump in

resistance occurs when the void height reaches the thickness of the copper layer. After this, the resistance

increases linearly and finally causes defects in the wire. We model the time to reach the growth stage and

the corresponding void lengths as random variables. We then apply the model in [164] to evaluate the

impact of EM on circuit performance.

We use similar EM parameters as in [164] and apply the model to a 28nm technology BEOL

process with W = 100nm (2× minimum width to avoid pessimism) and L = 50µm. Table 2.3 summarizes

all the parameters that we use, as confirmed with [163]. The simulation results of ∆R due to EM are

shown in Figure 2.14. When the current density is low (0.01MA/cm2), then the wire is immortal because

the process of nucleation is too slow to form voids in copper wires. When the current density is high

(0.1MA/cm2), the process of nucleation is fast, and enters the growth stage where the resistivity increases

rapidly and results in significant delay degradation. When the current density is in between the low and

high values (0.05MA/cm2), nucleation starts later than, but degrades at a similar rate as, when the current

density is high (0.1MA/cm2).
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Figure 2.14: Interconnect resistance increase in percentage due to different current densities in 28nm
BEOL technology.

Impact of EM-Induced Performance Degradation in AVS Systems

We now assess the impact of EM degradation on wires for logic and clock signals, and for power

and ground distribution.

Impact of EM stress on signal wires. To evaluate the impact of EM-induced resistance increase (∆R)

from its initial resistance R0 on circuits, we use Synopsys HSPICE to simulate a 30-stage chain of buffers

in a 28nm foundry FDSOI technology library. In Figure 2.15, we simulate delay of the buffer chain8 due to

increase in resistance because of EM. We vary resistance from the nominal resistance of the wire9 to 556%

of the nominal resistance. We use multiple fanout-of-four (FO4) capacitive loadings, that is, we multiply

8To consider the worst-case loading, we set the nominal buffer size to 8× the minimum-sized buffer from the 28nm library
FDSOI .

9For this buffering experiment, we assume the nominal wire resistance to be 600Ω, which is extracted from 28nm BEOL
technology with L = 150µm and W = 50nm.
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Table 2.3: EM and BEOL parameters.

Definition Value Units

ρCu Resistivity of copper 2.50×10−8 Ω/m

ρTa Resistivity of Tantalum liner 3.10×10−7 Ω/m

T Temperature 125 °C

σc Effective critical stress for void nucleation 4.10×107 Pa

σth Threshold for thermal stress 0 Pa

Z∗e f f Effective charge number 5

D0 Diffusivity constant in Arrhenius’ relation 9.80×10−9 m2/sec

kB Boltzmann constant 1.38×10−23 J/K

e Charge of single electron 1.60×10−19 C

ΩCu Atomic volume of copper 1.18×10−29 m3

B Effective bulk modulus 109 Pa

µEa Mean of activation energy 7.52×10−20 J

σEa Standard deviation of activation energy 8.00×10−22 J

W Copper wire width 100 nm

L Copper wire length 150 µm

Twire Thickness of (Cu + Ta) 100 nm

TTa Thickness of Ta 5 nm

the FO4 capacitive load by factors {1.0×, 1.6×, 2.1×}. EM stress slows down circuit performance by

increasing stage delay and by decreasing drive current due to increased output transition times.

We also study the impact of different gate sizes other than the 8× of the minimum-sized buffer

to evaluate the impact of ∆R after gate sizing. For the delay shown in Figure 2.16, we observe that larger

gates do not necessarily help to reduce the impact of ∆R. The possible reason is that the drive current of

larger gates cannot compensate for the increase in gate capacitance from the next stage. As we size up

all the cells at the same time, the capacitive load due to large input capacitances of large-sized gates also

increases. The experiments above indicate that for typical signal wires, the model from [164] estimates

that delay increases by ∼8% through cell chains with buffers smaller than 4× the minimum-sized buffer,
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Figure 2.15: Impact of ∆R on path delay with different capacitive loadings. Vdd = 1.1V .
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Figure 2.16: Impact of ∆R on path delay due to EM stress with different gate sizes. Vdd = 1.1V .
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when the wire resistance increases to high values (∼146%). According to our evaluation in Figure 2.14,

this is equivalent to 10 years’ degradation when the current density is 0.1MA/cm2.

Impact of EM stress on IR drop on power and ground mesh. We use the circuit shown in Figure 2.17

to study the IR drop impact of EM stress on power and ground mesh. We define the supply voltage used

by the core logic as Vdd and the voltage applied on the power and ground mesh (P/G mesh) and power ring

by the regulator as Vregulator. When the resistance of the P/G mesh (RPG) increases due to EM, the power

consumed increases when the drive current remains the same so as to achieve the same performance.

However, the degradation of P/G mesh depends on the scheduling of the supply voltage to compensate

for IR drop and BTI effects. Since different guardbands for BTI at signoff can change the behavior of

voltage scheduling, the impact of EM on P/G mesh also changes with different guardbands.

Table 2.4: Signoff corners for BTI. Vmin = 0.90V , and Vmax = 1.10V .

Vlib Vmax 0.98V 0.97V 0.96V 0.95V Vmin Vmin Vmin

VBTI Vmax 0.98V 0.97V 0.96V 0.95V Vmin N/A Vmax

Corner# 3 5 6 7 8 1 4 2

We choose eight different signoff corners defined by different VBT I and Vlib [37] as shown in

Table 2.4 to evaluate the impact on different-aged AES (from OpenCores [247]) implementations.10 From

[37], we estimate the final AVS voltage Vf inal , as obtained from cell chain simulations, to be 0.98V .

Therefore, we sweep Vdd across {0.98V , 0.97V , 0.96V , 0.95V} to cover different margins for our AVS

simulations. With the libraries characterized at the eight signoff corners, we perform synthesis, place and

route (SP&R), and sign off the implementations with Synopsys PrimeTime vH-2013.06-SP2 [253]. We

report core power (defined as the power consumed by the design other than P/G mesh) as well as the P/G

10Implementation #4 has no BTI degradation in the signoff libraries, so VBT I is not applicable.
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Figure 2.17: Illustration of P/G mesh, Vdd , and Vregulator.

mesh power. We account for EM stress and perform AVS simulations in MATLAB [245] and calculate the

core power by interpolating power simulation results obtained from PrimeTime.

We calculate the P/G mesh power by obtaining the initial RPG = 2Ω from 28nm FDSOI BEOL

foundry technology library, and the increase of wire resistance is modeled using the statistical EM model

in [164]. We obtain the average current on the P/G mesh to be 10mA from our SP&R implementation

and power simulations of the design AES. The calculated P/G power with the above assumptions are

shown in Figure 2.18. When there is EM stress, the statistical model predicts a ∼1% power increase

due to worst-case BTI degradation (Implementation #2). In summary, our experimental results with the
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statistical model in [164] indicate that it is optimistic with respect to the amount of EM degradation,

leading to smaller estimated delay and power penalties. Therefore, we use both this model as well as

Black’s Equation in our further studies.
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Figure 2.18: Power comparison between different signoff corners with EM stress ∆RPG > 0.

2.2.3 Experimental Setup and Results

Our studies in Section 2.2.2 indicate that cell chains with buffers or inverters of different sizes

have different behaviors due to EM stress. This relationship between gate sizes and EM vulnerability can

lead circuit designers to change the wire and gate widths to build more reliable circuits when both EM

and BTI can degrade the circuits.

In this section, we report experiments aimed at quantifying design costs in terms of power, life-

time and area of the implemented circuits. Total power changes with voltage scheduling due to AVS as

well as due to effects of both EM and BTI. We use the following steps to implement our test circuits and

evaluate design costs.
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1. We use Synopsys SiliconSmart v2013.06-SP1 [255] to re-characterize the 28nm FDSOI library at

different supply voltage Vdd and ∆Vth to obtain the impact of BTI on delay, dynamic power, and

leakage power. We characterize a total of 48 libraries by setting Vdd to {0.9V , 1.0V , 1.1V}, thresh-

old voltage of the PMOS Vthp to {0mV , 40mV , 80mV , 110mV}, and threshold voltage of the NMOS

Vthn to {0mV , 20mV , 40mV , 55mV}.

2. To compare the impact with different aging due to BTI, the circuits are synthesized, placed, and

routed at eight different corners shown in Table 2.4. We use Synopsys Design Compiler vH-

2013.03-SP3 [251] and Synopsys IC Compiler vI-2013.12-SP1 [252] in the flow.

3. The timing, dynamic power, and leakage power of the implemented circuits are measured using the

48 libraries, characterized above, with Synopsys PrimeTime vH-2013.06-SP2 [253].

4. The behaviors of AVS, BTI degradation, and EM degradation are simulated in MATLAB [245]. The

BTI analytical model is from [212] and calibrated to the data in [228]. For each time step, the circuit

power, delay, and the wire degradation due to EM are updated using the two models. When the Vdd

and ∆Vth are not exactly the same as the 48 data points in the previous step, we use interpolation to

calculate the values.

We conduct the following three experiments.

• Experiment 1. The goal is to demonstrate the impact of final AVS voltage on EM lifetime.

• Experiment 2. The goal is to quantify the design costs to fix EM in systems with AVS.

• Experiment 3. The goal is to demonstrate the impact of voltage step size and scheduling due to

AVS on EM lifetime.
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Experiment 1 Results

We study the impact of the final AVS voltage on EM lifetime by using the following steps.

• Step 1. Assume all the circuits have an initial lifetime of 10 years at a nominal voltage of 0.90V .

• Step 2. For each AVS timestep i, the remaining lifetime is calculated as follows [20] [116].

MT T F(i) = MT T F(i−1)×
(

Vdd(i−1)
Vdd(i)

)2

(2.16)

• Step 3. Update the lifetime after each AVS timestep until all the lifetime is used up.

Figure 2.19 shows how the final AVS voltage Vf inal affects EM lifetime for eight implementations

of the AES design from OpenCores [247]. EM lifetime decreases for implementation #3 more than others

because implementation #3 has large negative slack at signoff, hence higher Vdd is required to compensate

for the negative slack. The degradation for implementation #3 is 30% of its lifetime, that is, decrease

from 10 years to seven years. We notice that implementation #3 has significantly lower lifetime (> one

year difference) compared to #1 even though implementation #1 and #3 have similar Vf inal (difference <

50mV ). The reason is that implementation #3 increases the Vdd very early due to less margin for BTI, so

it degrades EM lifetime sooner than implementation #1. This figure demonstrates how AVS impacts EM

lifetime and thereby EM signoff. We further study the impact of voltage scheduling on EM lifetime in

Experiment 3.

Experiment 2 Results

To quantify design costs due to fixing EM, we implement two designs AES and DMA, and perform

gate-sizing for timing closure in Synopsys IC Compiler before signoff. We then apply EM constraints in

an ALF file to the test circuits and use the following steps to fix the violations.
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Figure 2.19: Lifetime and Vf inal of the eight implementations of the AES design.

1. Step 1. Generate initial EM violation report of wires with the EM constraints.

2. Step 2. For each wire segment that has EM violation, use non-default rules (NDRs) to fix EM

violations.

3. Step 3. Repeat Steps 1 and 2 until EM violations are fixed.

4. Step 4. Re-route and apply gate-sizing to fix the remaining EM violations, if any, and then perform

timing recovery to fix all setup and hold time violations.11

Figures 2.20 and 2.21 respectively show power and area for the AES and DMA designs across

eight implementations in Table 2.4, and for three cases: (i) BTI signoff is not aware of EM, (ii) BTI signoff

is EM-aware and uses the traditional Black’s Equation model, and (iii) BTI signoff is EM-aware and uses

the recent statistical EM model. As demonstrated in Section 2.2.2, the statistical EM model is optimistic

and has almost same power as Case (i) for most implementations. EM-awareness decreases power in

11Note that the baseline signoff corner is set at Vdd = 0.9V . We do not guardband BTI at signoff in this experiment, and assume
AVS will be used to compensate the aging. Since we downsize cells to fix EM violations, the circuit timing will be affected.
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AES for implementations #1 and #2 due to downsizing of gates and constraining maximum fanout in

the clock network. In DMA, EM-awareness increases area per the statistical model because of resistance

increase and addition of smaller buffers to fix setup violations. The worst-case area penalty (∼1.6%) is

for implementation #2 of DMA, and the worst-case power penalty (∼6%) is for implementation #6 of

AES. Note that the EM fixing may cause buffer downsizing and power reduction due to less wire delay.

However, this is at the cost of worse congestion and difficulty in detailed routing due to different wire-

sizing rules.
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Figure 2.20: Power and area due to EM fixes on AVS systems using both Black’s Equation and [164]
models for the AES design.

Experiment 3 Results

EM lifetime is affected due to voltage scheduling in systems using AVS. We use five different

voltage schedules S1–S5. The initial voltage for all these schedules is 0.90V . The steps by which each

schedule is increased is shown as the tuple (schedule, voltage step): (S1, 8mV ), (S2, 10mV ), (S3, 15mV ),
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Figure 2.21: Power and area due to EM fixes on AVS systems using both Black’s Equation and [164]
models for the DMA design.

(S4, 18mV ) and (S5, 20mV ), The voltage step is made whenever delay is higher than target due to EM

degradation. We conduct the experiment as follows.

• Step 1. Signoff the AES and DMA designs at 0.90V with no guardband for EM and assume that

AVS will compensate aging due to BTI.

• Step 2. Simulate the delay degradation with BTI [212] and EM [164] models. To compensate delay

degradation, increase the supply voltage Vdd to a higher value in each timestep according to the

schedule that is being used.

• Step 3. Update remaining lifetime using Equation (2.16) and repeat Steps 1 and 2 until the entire

lifetime is consumed.

Figures 2.22(a) and (b) show the EM lifetime for the five schedules for the DMA design. Figures

2.23(a) and (b) show the EM lifetime for the five schedules for the AES design. Implementation #4 is the
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baseline with no BTI degradation. We observe that a scheduling with voltage steps of 18mV or 20mV can

result in up to 1.5 years of decreased EM lifetime, which indicates that small fluctuations in guardband

can result in significant lifetime changes due to different voltage scheduling requirements.
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Figure 2.22: Impact on EM lifetime due to five different voltage schedules in AVS systems for DMA
implementations (a) #3 and (b) #4.
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Figure 2.23: Impact on EM lifetime due to five different voltage schedules in AVS systems for AES
implementations (a) #3 and (b) #4.
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2.2.4 Conclusions

Reliability signoff affects circuit performance, power and lifetime. In Section 2.2, we study the

joint impact of BTI, AVS and EM on signoff. We use a statistical EM model recently proposed by [164]

and apply it to our AVS simulations to study the signoff of both EM and BTI. We use two EM models

(i) resistance increase as predicted by the model in [164] in AVS systems and (ii) the traditional Black’s

Equation-based EM model, implement fixes in commercial tool flows, and use EM constraints from a

28nm foundry FDSOI library. The model from [164] is easier to apply in earlier implementation stage

by derating the resistance in commercial tools, but it tends to be optimistic in our characterization. Our

experimental results indicate that for signal wires, large drivers should be avoided as they suffer from

more delay degradation due to EM-induced resistance increase. For P/G mesh, we quantify the impact

of resistance increase and conclude that the area-power curve formed by different BTI signoff corners

is shifted due to EM. We empirically analyze the cost of fixing EM at signoff with different guardbands

against BTI. In our studies, this cost is up to 1.6% increase in area and 6% increase in power. Our

ongoing work seeks to (i) explore signoff methodologies for other reliability mechanisms at advanced

foundry nodes, (ii) improve accuracy of signoff by considering thermal gradient effects, and (iii) develop

a learning-based modeling approach to quantify design costs of reliability.
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Chapter 3

Machine Learning-based Routability

Optimization

This chapter presents a routability optimization work guided by a machine-learning model.

Routability issue is more severe in advanced technology node. Standard cell design is constrained by

multiple patterning and the design tendency of less tracks for better area utilization. However, compact

cells potentially lead to worse pin accessibility. At the design level, physical design engineers may need

to increase cell spacing to resolve possible design-rule check violations (DRVs). We first demonstrate

the machine-learning model can efficiently close the gap between the prediction by congestion map and

the outcome of detailed routing. Then, we demonstrate our model-guided cell spreader can improve the

design routability at insignificant design cost.
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3.1 Routability Challenge in Advanced Nodes

As semiconductor technology advances, the EDA and design communities have seen increasing

unpredictability in the IC implementation flow. In particular, design tapeouts are increasingly placed at

risk by the inability of the router to complete the routing successfully. Historically, any risk of unroutabil-

ity could be identified prior to the runtime-intensive detailed routing (DR) stage, based on congestion

maps generated using global routing (GR). However, the miscorrelation between these congestion maps

and the actual routing design rule check (DRC) violation maps has increased significantly at current pro-

cess nodes due to the many new, complicated design rules defined at these nodes. This unpredictability

causes added iterations (and consequent schedule slippage) during design implementation, sometimes

endangering the design tapeout itself.

At advanced process nodes, GR-based congestion maps do not correlate well with DRC violation

(DRV) maps obtained at the end of detailed routing. This is a consequence of the numerous compli-

cated design rules imposed upon design layouts to ensure viable fabrication; these DRVs, most of which

are not visible in the GR routing model, constrain the detailed router significantly. (The study of Han et

al. [85] quantifies wirelength overheads due to increasing numbers of design rules.) As a result, GR-based

congestion maps are no longer good predictors either for evaluating overall design routability or for iden-

tifying potential DRV hotspots prior to detailed routing. Therefore, they can easily mislead any routabil-

ity optimization engines that rely on these maps, resulting in poor effectiveness at resolving routability

problems, even as they sacrifice timing and area metrics to ameliorate spurious congestion problems. Fig-

ure 3.1 shows an example of such a miscorrelation on a sub-14nm design. The figure compares a map of

actual DRVs with a map of congestion hotspots obtained by running a state-of-the-art industrial global
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router on the same layout; an overlay of these two maps is also shown. The GR-based congestion map is

thresholded so that both maps display the same number of violating grid cells.12

© 2016 Synopsys, Inc. 11

GR Prediction Actual DRC

(a) (b) (c)
Figure 3.1: Comparison between the GR-based congestion map and the actual DRVs (gcells with DRC
violations) on a sub-14nm design. (a) Overflows extracted from GR-based congestion map (per gcell).

(b) DRVs after detailed routing. (c) An overlay of the GR-predicted overflows and actual DRVs,
highlighting the numerous false positive and false negative predictions. The placer and global router are

from a state-of-the-art industrial physical design platform.

The miscorrelation between the congestion map and the actual DRV hotspot map demonstrates

why the routability improvement techniques traditionally employed during physical synthesis are not

very effective at advanced process nodes (since they are driven by GR-based congestion maps). At the

same time, it is critical to model and optimize routability during the physical synthesis stage, since the

netlist and layout transforms that are permissible during routing-based optimization—when the DRVs

actually manifest themselves—are very limited in scope. This motivates the study of better DRV hotspot

prediction techniques and their use for routability improvement without hurting the timing convergence

of the design. In this chapter, we describe a new algorithm that employs machine learning to accurately

identify and optimize routability hotspots during physical synthesis without any timing or area overhead;

12We use the GR-based congestion map as the reference because this is still the most common way to estimate routability in
industrial physical implementation tools and flows. We generate the congestion maps by summing up numbers of overflows on
each metal layer.
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furthermore, we demonstrate the effectiveness of our approach on industrial benchmarks in a sub-14nm

process node from a leading foundry.

3.2 Related Works

Ensuring the routability of designs has always been a central challenge in IC implementation.

Attempts to address this problem are usually most effective at the physical synthesis stage. In parallel,

the problem of routability misprediction has also attracted interest in the EDA research community. We

categorize and summarize previous works in these domains as follows.

Congestion predictors. Taghavi et al. [208] propose MILOR to identify local routing hotspots by ex-

amining pin-shape layouts and their densities or proximities within the placed design. Chan et al. [39]

propose a learning-based methodology to predict the overall routability of a design by using placement

information. Zhou et al. [231] use MARS to model DR congestion.

Routability-aware global routing. Qi et al. [188] improve the DR model from [231] to guide the global

router. Wang et al. [219] and Zhong et al. [230] also propose the use of DR model-guided global routers.

However, such works typically apply only to the routing stage, during which the allowed netlist and layout

transforms are limited.

Congestion-aware placement. There has been significant work on congestion-aware placement in both

industrial and academic coarse placers. For example, [103] [94] [90] [150] [151] [152] [176] [121] use

global routers to predict congestion and feed the information back to the placer in order to improve

routability. The works [29] [211] [91] [205] [117] [194] [221] use spreading regions, densities of nets, or

routing patterns to estimate congestion and guide placement. However, such works are typically limited

by their reliance on GR-based congestion maps.
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Whitespace optimization. When the pin accessibility problem dominates the DRVs, it is effective to

use cell inflation during placement to improve the routability. Sadakane et al. [195] first addressed pin

accessibility in the context of metal gate arrays, using a simulated annealing approach. [93] and [24]

incorporate empirical heuristics to guide cell inflation in two academic placers to improve the routability.

Instead of considering added space as attachments to (bloated) cells, [226] [147] [31] [3] handle the

whitespace as separate components in placement, which enables more proactive control of whitespace

to improve routability. However, the introduction of whitespace typically involves a timing and area

overhead, especially when it is conservatively driven by poor routability predictor metrics such as GR-

based congestion maps.

Our work is different from the previous works in several significant ways. (i) Rather than merely

predicting routability, we show how to use machine learning to automatically improve the routability of

the design. (ii) Our engine focuses on improving route completion at the detailed routing stage, rather

than optimizing GR congestion (and, does so without hurting the timing closure of the design). (iii)

Rather than merely predicting whether the overall design is routable or not, we use learning to predict the

actual locations of the DRV hotspots. (iv) Our predictor comprehends global routing, netlist structure,

and cell-layout level information to capture routability risks due to both routing resource shortage and

complicated design rules.

3.3 Methodology for Routability Optimization

In order to overcome the miscorrelation between the GR-based congestion map and the actual

DRV map, we use machine learning to improve the accuracy of our identification of potential DRV

hotspots. We model this prediction problem as a supervised classification problem. We label DRC-

violating global routing cells (gcells) in our training set of IC layouts with true labels, and cleanly-routed
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gcells with false labels. We then extract various parameters from the training netlists and layouts and use

them to build an accurate predictor. Using this predictor, we propose an engine that minimally perturbs

the converged physical synthesis netlist in a way that surgically redistributes the whitespace in the vicinity

of the predicted DRV hotspots so as to ameliorate those hotspots without hurting timing, area or wire-

length. We demonstrate the effectiveness of this approach on several layouts at a sub-14nm process node

from a leading foundry. Our results show that we can reduce DRVs by up to 76.8% and by an average of

20.6%, without hurting design convergence.

The key contributions of our work are as follows.

1. We present the first application of the machine learning paradigm to actually optimize design

routability (in contrast to predicting routability, as in [39]).

2. We quantify the miscorrelation between a GR-based congestion map and the actual DRV map in

designs at a sub-14nm process node.

3. We use machine learning to predict actual DRV locations in a design layout and use the prediction

to improve post-placement routability. This is a significantly more difficult problem than the binary

prediction made in [39] on whether the overall design would be routable or not.

4. We develop an engine that employs our new learning-based predictor of DRV hotspots to ameliorate

these hotspots without hurting timing, area or wirelength.

3.3.1 Machine Learning-based Optimization for Routability

We use machine learning to generate a model to close the gap between DRV hotspot prediction

using congestion map and actual DRVs located after detailed routing. To enable accurate predictions, our

model incorporates diverse parameters that we describe in Section 3.3.2.
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With the help of this robust and accurate predictor, we are able to guide the optimization effec-

tively to improve design routability. We design an algorithm that can leverage this predictor to ameliorate

the DRV hotspots with minimal layout perturbation, thus avoiding timing or area penalties. This algorithm

is described in more detail in Section 3.3.3.

3.3.2 Predictor Design

We use hotspots to refer to gcells with DRVs. The objective of our predictor is to separate

hotspot gcells from non-hotspot gcells. In order to analyze the root causes of routability problems, we

first partition training layouts into small grids on top of gcells (we use the term local windows13 for these

grids) to generate training data. We extract numerous netlist and layout parameters for each local window.

These parameters include:

• Density parameters such as local pin density and local cell density;

• GR parameters obtained from a global routing invocation, such as local overflow, demand and

capacity of each metal layer and via layer;

• Pin proximity measuring the average and minimum spacings between pins in each local window

(proposed in [39]);

• “Unfriendly” cells, which are library cells that occur in the DRV hotspots (local windows with

more than one DRV) at a rate significantly higher than their overall rate of incidence in the netlist;

• Multi-height and sequential cells and parameters relating to their fanins, fanouts, and occurrence

frequencies in local windows;

13We use two sizes of local windows, including 1×1 (gcell itself) and 3×3 windows (including a central gcell and the
surrounding gcells). The 3×3 local windows have overlapping regions. Overlapping regions capture the influence among
gcells in the DRV prediction.
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• Connectivity parameters such as the number of buried nets completely enclosed inside the local

windows, the number of non-buried nets crossing these window boundaries [39], and the number

of connected pins lying outside the windows; and

• Structural parameters such as the number and depth of fanin and fanout logic stages in paths

crossing local windows.

Multi-height cells are cells with heights greater than that of a single cell row, which are typically

sequential cells in this technology. Fanin or fanout numbers refer to the numbers of sequential cells

transitively connected (incident or outgoing, respectively) to the cells within the current local window.

The intuition of “structural parameters” is to evaluate the likelihood of cells to be placed around the

sequential cells. The sequential cells are especially of interest because they have lower pin densities and

different track heights.

We then go through an iterative process of training the predictor model using our parameter list.

The iterative process contains both layout observation and evaluation of statistical significance.14 In each

iteration, we measure the statistical significance of the various parameters, and analyze the locations

of both false-positive and false-negative predictions, in order to refine the parameter list and identify

additional predictive features of the design. This process is repeated with several mathematical models

of machine learning, viz., linear regression, logistic regression, and support vector machines (SVM) [88]

with various kernel choices.15 As an illustration of the physical analysis involved in this iterative process,

consider the following example.

14For the layout observation, we check the DRV locations and the cell placements. We also examine the false-positive and
false-negative rates and the p-values (derived from the confusion matrices) after adding the parameters. We keep parameters that
contribute to accuracy improvement in the process.

15We test among linear, polynomial, and RBF kernels. We apply different weights to the DRC-violating gcells during model
training and evaluate the model accuracy with testing gcells. RBF shows the best true-positive rate with similar false-positive
rate with the first few parameters (density and GR). We choose RBF for our main experiments reported here.
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Figure 3.2: An example of the analysis of a false negative prediction.

Figure 3.2 shows an example of a DRV hotspot that was predicted to be DRV-clean in one of

our earlier predictor models.16 In our manual analysis of this hotspot, we find that the red false-negative

region itself has low pin and cell density but is located close to a region with higher pin and cell density.

We capture this anomaly (caused by the tendency of the router to introduce small detours around DRV

hotspots) in our predictor model by using larger local windows for such parameters, and by distinguishing

between the parameter values inside a gcell, and the parameter values in a larger window that is centered

on the gcell.

Besides incorporating different parameters to improve the prediction accuracy, we apply the fol-

lowing approaches to improve the accuracy and robustness of our local hotspot predictor. (i) Since the

majority of the gcells in a typical layout do not have DRVs, the training of the predictor is easily misguided

by the biased distribution of the few DRC-violating gcells and the many DRV-clean gcells. We address

16This reference predictor model has only basic parameters (density, GR overflow, etc.) and uses a single size (1×1) of local
windows. The mathematical model for prediction is SVM.
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this problem by emphasizing the DRC-violating gcells, increasing their weights17 during the training

stage. (ii) Given that there are very few real-world sub-14nm designs and layouts available at this time,

it becomes important to choose the training methodology carefully so as to avoid overfitting. We do this

by randomly choosing 20% of the gcells from the layout to be the training data set and use the remaining

80% for testing. We repeat this randomized 20%-80% evaluation 12 times and use the average and distri-

bution of the prediction accuracy from these 12 runs18 to draw any conclusions about the tested parameter

set and mathematical prediction model (viz., linear regression, logistic regression, or SVM). (iii) In order

to take the neighborhood effect into consideration, we use both small and large local windows to annotate

the central gcells. In addition to the multiple local window sizes, we also annotate the central gcell of

each window with the extremal (i.e., maximum and minimum) values of selected parameters within the

expanded observation windows.19

We use the R [248] statistical analysis package to prototype our predictor. As an illustration, the

average true-positive and false-negative rates (over the 12 evaluations) for a series of evolving parameter

sets are reported in Figure 3.3. We incrementally update the parameter set and mathematical model

from predictor P1 through to predictor P9 based on our physical and statistical analysis of each of these

predictors.

We use true-positive rate and false-negative rate to evaluate the statistical significance of predic-

tion results. We compare the true-positive rates among combinations of different weighting20 and the 12

evaluations for P{i} with or without a new set of parameters (unfriendly cells, sequential cells, etc.) If

17The DRV-clean cells are always weighted with one. We swept the weight of DRC-violating gcells with {2, 3, 4, 5,.... 10,
20, 30, 40, 50}.

18We pick 12 evaluations (larger than two times of 100%/20%) to avoid overfitting on specific training sets since we can only
access one design in this technology.

19Two types of windows are mentioned in our discussion. The first type is the local window with two sizes (1×1 and 3×3
gcells) to extract per-layer GR information and other parameters. The second type is the expanded observation window with
four sizes (3×3, 5×5, 7×7, 9×9) to keep track of max/min values within a certain range.

20We then choose the weight according to the true-positive rate for those runs with false-positive rates lower than a certain
threshold (typically 0.5%).
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Figure 3.3: Accuracy comparisons between different parameter sets and mathematical models. (a)
Linear regression; (b) logistic regression; and (c) SVM classifier.
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improvement is observed in the true-positive rate with the same false-positive rate constraint (typically,

0.5%), we accept the P{i} with new parameters as the P{i+1} predictor.

In Figure 3.3, P1 is the baseline set of predictors with 1×1 local windows, including pin density,

cell density, and per-layer (metals and vias) GR capacity, demand, and overflow. P2 to P3 are variations of

P1 with 3×3 windows and combinations of 1×1 and 3×3 windows.21 P4 to P8 are the baseline predictors,

combined with pin proximity, number of multi-height cells, number of unfriendly cells, connectivity

parameters, and structural parameters. P9 uses the Leaps [249] package in R to pick predictors with high

correlation to DRVs.22

Table 3.1: Learning-based prediction: confusion matrix of our learning-based predictor. True-positive
rate = 74% and false-positive rate = 0.2%.

Actual

FALSE TRUE

Pr
ed

ic
tio

n

FALSE 98571 117

TRUE 170 344

We observe significant improvements in the prediction accuracy, especially in the false-positive

rate, across this series. These plots also show that SVM (with a radial basis function (RBF) kernel)

can provide better separation between DRV gcells and non-DRV gcells than linear or logistic regression

models. We also plot the predicted DRV hotspots (red squares) and actual DRV hotspots (blue squares)

in Figure 3.4. The contrast with the corresponding figure (Figure 3.1) for GR-based predictions is readily

21P1 to P3 are the same predictors with different local window sizes. We observe significant false-positive rate improvement
when we compare P2 and P3 with P1 (∼ 1% vs. > 6%), due to different local window sizes.

22Note that P1 essentially uses only cell and pin density parameters from global routing and thus has a high false-positive rate
even if SVM is used (∼6%). This again indicates that global routing is not sufficient to predict DRV hotspots.
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Table 3.2: GR-based prediction: confusion matrix of prediction by GR shown in Figure 3.1.
True-positive rate = 24% and false-positive rate = 0.5%.

Actual

FALSE TRUE

Pr
ed

ic
tio

n

FALSE 98260 350

TRUE 481 111

apparent.23 Our learning-based predictor provides a significantly more accurate prediction of the DRV

hotspots, achieving 74% true-positive rate with a false-positive rate less than 0.2% (see Table 3.1). This

is in contrast to a true-positive rate of 24% and a false-positive rate of 0.5% obtained from the GR-based

predictor (Figure 3.1), as shown in Table 3.2.
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Learning-based Prediction Actual DRC

(a) (b) (c)

Figure 3.4: Comparison between our learning-based DRV hotspot map and the actual DRVs (gcells with
DRVs) on a sub-14nm design. (a) DRV hotspots predicted by our learning-based model. (b) Actual

DRVs after detailed routing (note that this is the same as Figure 3.1(b) presented earlier, and is
reproduced here merely for comparison with the predicted map in (a)). (c) An overlay of the predicted

and actual DRVs.

23Note that the learning-based model has an advantage over GR-based congestion map because it generates proper thresholds
(i.e., support vectors) in the training stage.
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3.3.3 Predictor-guided Routability Optimization

We present an optimization engine to improve the routability of a converged netlist with mini-

mal perturbation of the layout. This algorithm is summarized in Figure 3.5. Given the placement of a

timing-converged netlist, we first use our DRV prediction model to identify the potential DRV hotspots in

that layout. We have developed a local whitespace optimization engine that redistributes the whitespace

already present in the neighborhood of the predicted DRV hotspots in a way that improves the routabil-

ity of these hotspots. Real-world physical implementation flows are almost invariably run under some

form of local cell density constraints in order to improve the flow convergence. Such constraints ensure

the existence of whitespace everywhere in the layout when measured at some level of spatial granular-

ity. However, this granularity is typically much larger than that of individual cells; therefore, this default

whitespace distribution is not always able to resolve detailed routing DRV problems. This shortcoming

is addressed effectively in our work by introducing a new, detailed whitespace redistribution stage that

relies on our hotspot prediction model to minimize the perturbation to the layout while maximizing the

routability impact of the redistribution.

The spreading is constructed based on the legalizer. First, the available whitespace size is col-

lected in a given window. Then, we distribute a certain fraction of the available whitespace by adding

small temporary keepout regions adjacent to the cells in the window, and run the legalizer to increase the

cell spacing. This step incrementally moves the cells from the initial locations obtained from the original

converged layout. The legalizer tends to abut the cells in order to minimize the routed wirelength; the

temporary keepouts help counter this behavior by introducing porosity in order to improve routability.

During the whitespace redistribution process, we first mark out local windows around each

hotspot, and calculate the amount of whitespace available in these windows in order to compute a local

whitespace budget (splitting overlapping windows appropriately during this process). We then incremen-
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Figure 3.5: The predictor-guided routability optimization algorithm.

71



tally distribute this budget among the cells in a row-major scanning sequence by gradually adding the

aforementioned keepout region instances within the windows until the space budget is used up.

Subsequent to this whitespace redistribution step, the detailed routing engine can use the newly

introduced space between problematic cell instances to handle the complicated design rules. This ap-

proach of applying redistribution to only the potential DRV hotspots and avoiding the introduction of

any new whitespace there, while leaving the rest of the layout untouched, minimizes the perturbation to

the already-converged layout, which in turn minimizes the likelihood of incurring any significant tim-

ing penalty. Indeed, our experimental results (discussed in Section 3.4) demonstrate large routability

improvements from the application of this algorithm, without hurting timing.

3.4 Experimental Setup and Results

In this section, we describe the experimental methodology that we have used to evaluate the

effectiveness of our predictor-guided routability optimization algorithm. We then present the results of

this evaluation.

Our experimental methodology is shown in Figure 3.6. Our routability optimization engine is

implemented in C++ as part of a state-of-the-art industrial physical implementation platform. The pre-

dictor model generation code is implemented using scripts in the R [248] statistical analysis package.24

We evaluate our algorithm using an industrial benchmark design at a sub-14nm process node from a lead-

ing foundry. Given the difficulty of obtaining additional real-world sub-14nm benchmarks at this time,

we generate multiple widely-differing netlists and layouts from our benchmark design by running the

design through an industrial congestion-aware physical synthesis flow with different (but still realistic)

placement and optimization settings.

24The extraction and training scripts are split across several machines to reduce turnaround time.
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Figure 3.6: The experimental methodology used to evaluate the proposed predictor-guided routability
optimization algorithm.

The input to our evaluation is an optimized netlist and a legalized placed layout obtained from

the physical synthesis flow as described above. The layout has already been optimized using traditional

congestion alleviation techniques during physical synthesis. Our base flow is the typical physical imple-

mentation flow that takes netlist and layout through standard global routing, track assignment and detailed

routing using the state-of-the-art router embedded in our industrial physical implementation platform. For

our test flow, we first use the pre-stored predictor to predict DRVs hotspots in our starting layout. This

prediction is then used by our routability optimization engine for localized whitespace redistribution,

followed by legalization. The resulting layout is fed to the same router as in the base flow.

We report the number of DRVs, total negative timing slack (TNS), wirelength, and number of
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Table 3.3: Comparisons between the default and the learning-optimized layouts. There are under one
million instances in this design.

#DRVs Wirelength (µm) TNS (ns) #FEPs

Base Test %Change Base Test %Change Base Test %Change Base Test %Change

eg1 8478 1964 -76.8% 1742804 1747685 0.3% -153.43 -158.4 3.2% 7289 7352 0.86%

eg2 1502 927 -38.3% 1750698 1753047 0.1% -168.23 -163.5 -2.8% 7406 7374 -0.43%

eg3 2017 1819 -9.8% 1772889 1773701 0.0% -215.75 -213.6 -1.0% 7817 7751 -0.84%

eg4 2026 1780 -12.1% 1735185 1735227 0.0% -151.36 -149.6 -1.2% 7195 7143 -0.72%

eg5 4252 4255 0.1% 1831492 1836060 0.2% -264.34 -275.6 4.3% 7865 7975 1.40%

eg6 3440 3891 13.1% 1790059 1794184 0.2% -195.65 -203.5 4.0% 7587 7562 -0.33%

Avg -20.6% Avg 0.2% Avg 1.1% Avg -0.01%

Max 13.1% Max 0.3% Max 4.3% Max 1.40%

Min -76.8% Min 0.0% Min -2.8% Min -0.84%

failing timing endpoints (#FEP) at the end of detailed routing in the base and test flows. The results are

shown in Table 3.3.25 In this table, negative values in the “%Change” columns refer to improvements

achieved in the test flow (relative to the base flow), and positive values in these columns refer to degra-

dations. As is evident from this data, we achieve significant reduction of the DRV count in the test flow.

Moreover, these routability improvements are obtained without any significant impact on design closure:

the timing and wirelength impacts are neutral, and the design area is unchanged. More specifically, we see

that the number of DRVs reduces by an average of 20.6% and a maximum of 76.8%, with TNS degrading

by an average of 1.1%, and the number of failing timing endpoints improving by an average of 0.01%,

and wirelength degrading by an average of 0.2%.

3.5 Conclusions

In this chapter, we have addressed the route completion problem for designs at advanced pro-

cess nodes. We make the case that traditional routability amelioration approaches that rely on GR-based

congestion maps during physical synthesis are no longer effective at these advanced nodes due to the com-

25In our experiments, we do not retrain the model for these regenerated layouts.
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plexity of the design rules. We quantify this difficulty by measuring the accuracy of a GR-based prediction

of routability hotspots. We then propose a machine learning based algorithm to automatically improve

the routability of these designs without hurting timing convergence. We evaluate the effectiveness of this

algorithm on design layouts at a sub-14nm process node from a leading foundry, using an industrial physi-

cal implementation platform. Our experiments show that we are able to reduce the number of DRVs by an

average of 20.6% and a maximum of 76.8%, with no adverse impact on design closure. Our future works

include (i) improving the prediction accuracy and spreading results, (ii) guiding the routability optimiza-

tion by applying the machine-learning model to coarse placement, and (iii) applying our methodology to

other advanced node technologies.
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Chapter 4

Design Space Exploration for 3DIC

This chapter presents a design space exploration methodology for monolithic 3DIC design. 3DIC

is a promising design technology to extend the Moore’s-Law scaling. However, due to the lack of golden

3DIC design flows, designers are unable to efficiently evaluate the achievable benefits of implementing

existing designs in 3D. We propose our “infinite dimension” concept to evaluate 3D benefits of a given

design. We observe that the 3D benefit correlates well with the designs’ Rent exponents, which indi-

cate the complexity of interconnect. Based on this observation, we heuristically modulate designs’ Rent

exponents during synthesis to improve the 3D benefit.

4.1 Background of 3DIC

Three-dimensional integrated circuits (3DIC) with multiple tiers is a promising technology in the

“More-than-Moore” era to integrate more functionality with greater bandwidth and less power. Many

previous works propose 3DIC optimization approaches to achieve better design quality over conventional

planar implementations. Further, due to higher integration and reduced wirelengths, 3DICs with more
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than two tiers are expected to offer larger benefits (e.g., less power). A recent work [204] shows that

3DICs with three tiers achieve 15% more power reduction as compared to corresponding two-tier 3DIC

implementations and 36% power reduction as compared to 2D implementations. A much smaller body

of work addresses the fundamental question of predicting 3DIC benefits over conventional 2D implemen-

tation, and upper-bounding these benefits. Chan et al. in [40] derive a 67% upper bound of wirelength

reduction from a two-tier 3DIC over 2D designs. However, no previous works propose upper bounds on

the power and total cell area reductions achievable by 3DICs over 2D designs.26

In this chapter, we revisit the 3DIC benefits in terms of power and area with multiple tiers.

More specifically, we propose the concept of implementation in infinite dimension (that is, where all

gates can be placed as close as possible – essentially, adjacent – to each other) to derive an upper bound

on 3D power and area benefits for given design, technology, and tool/flow. Such implementation in

infinite dimension is achieved by synthesis and netlist optimization with zero wireload model (0-WLM).27

Our studies show that the power benefits can only be 18% for particular designs, even with an infinite-

dimensional layout resource. Moreover, we study the maximum potential (performance, power, area/cost)

benefits of 3DICs. None of our testcases is able to achieve more than (10%, 10%, 10%) improvement from

3D integration, a somewhat disappointing observation relative to the hoped-for benefits from 3DIC. We

further evaluate design power across various dimensions (i.e., pseudo-1D, 2D, 3D with multiple tiers).

We observe that design power sensitivity to different implementation dimensions correlates with Rent

parameters of netlists, especially placement-based Rent parameters. Based on this observation, we suggest

that netlist synthesis should be aware of the implementation dimension so as to minimize design power.

263D benefits refer to the power and total cell area reductions as well as frequency improvements achievable by 3DICs over
2D designs.

27We note that the upper bound on 3D benefits is specific to the given optimization tool/flow. However, since we use a
leading-edge commercial P&R tool in our experiments, we believe our estimated upper bound is not far from the true upper
bound.
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We summarize our contributions as follows.

• We propose the concept of implementation with infinite dimension (i.e., netlist optimization with

0-WLM), based on which, we study the upper bound on power and area benefits of 3DICs.

• We show that upper bounds on 3DIC power and area benefits can be quite small – at most 39%

power reduction and 10% area reduction even with infinite dimensions.

• We perform 3D benefit estimation across various technologies and compare the 3D benefits versus

the benefits from an improved P&R tool/flow in 2D implementation.

• We study the maximum potential (performance, power, area/cost) benefits of 3DICs. Our results

indicate that it is typically difficult to achieve a simultaneous (10%, 10%, 10%) improvement of

(performance, power, area/cost) from pure logic-logic 3D integration.

• We study design power sensitivity to various implementation dimensions (i.e., pseudo-1D, 2D, 3D

with different tier numbers and infinite dimension) and show the empirical evidence of a correlation

between the power sensitivity and the Rent parameter of the netlist.

• We suggest that there is potential benefit from netlist synthesis optimizations being aware of the

implementation dimension.

• Using a simple example with macros and/or blockages, we show that 3D benefits can be large for

(block-based) SoC designs.

The remainder of this chapter is organized as follows. Section 4.2 reviews related works on 3DIC

optimization and prediction of 3DIC benefits. Section 4.3 describes our implementation flows as well as

design power and area estimation flows in different dimensions. In Section 4.4, we describe experimental
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setup and results that quantify 3DIC power benefits and power sensitivity to dimensions. Section 4.5

concludes and gives directions for ongoing work.

4.2 Related Works

Various approaches have been proposed for implementation and optimization of 3DICs. Ta-

ble 4.1 summarizes area, power and wirelength benefits reported in previous works. In the table, “—”

indicates “not applicable”, i.e., not addressed in the cited work. We note that although we show total

cell area reported by previous works in the table, area reduction is typically not the major objective in

3DIC optimization. Instead, most of these works use wirelength reduction as their major design objec-

tive [18] [65] [66] [69] [70] [120] [122] [127] [180] [182].

We first review previous works for integration and optimization of 3DICs. Liu et al. [153] propose

transistor-level 3D monolithic integration. Bobba et al. [22] propose a cell-mapping and placement flow

for monolithic 3D. Thorolfsson et al. [209] propose a 3D placer based on mPL. Lim [149] obtains power

benefit by studying the capacitance reduction in through-silicon via based (TSV-based) 3D implementa-

tions. Song et al. [204] propose a block-level folding approach and show corresponding power benefits

of three-tier stacking. Chang et al. [48] apply the flow [179] to 7nm technology node. Nayak et al. [171],

Athikulwongse et al. [15], and Panth et al. [178] study the power benefits from various 3D integrations

(e.g., monolithic 3D, mini-TSV, and TSV-based integration). Song et al. [203] study power reduction

with consideration of the power distribution network. Jung et al. [105] [106], Lee et al. [142], and Ok

et al. [173] achieve power benefits by applying block-level integration to the OpenSparcT2 processor, a

multicore GPU, and a stereo image processor.

Estimation of 3D power benefits has also drawn much attention. Priyadarshi et al. [186] propose

an architectural framework to estimate 3DIC power for design space exploration. Kim et al. [124] [123]

79



Table 4.1: Summary of 3D benefits studied in previous works.

Work % Benefit (area) % Benefit (power) % Benefit (WL) # tier

[15] 7% 9% WL increases 2

[18] — — 50% 2

[22] — 15% 13% 2

[40] — 39% — 2

[48] — 17% 46% 2

[65] — — 54% 4

[66] — — 50% 2

[69] — — 30% 2

[70] — — 26% 3

[105] 8% 21% 26% 2

[106] — 20% 9% 2

[120] — — 20% 2

[122] — — 4% 2

[124] — — 37% 2

[123] — 28% 41% 4

[125] — 23% 28% 4

[127] — — 32% 2

[142] — 22% — 2

[149] — 3% 25% 2

[153] — 7% 16% 2

[143] — 37% 48% 2

[171] — 37% — 2

[173] — 13% 14% 2

[178] — 35% 33% 2

[180] — — 19% 2

[182] — — 40% 2

[186] — 20% — 2

[203] — 19% — 2

[204] 3% 36% 42% 3

[209] — 13% 21% 2

[125] propose models to estimate wirelength and power reductions based on buffer insertion. Chan et

al. [40] propose a machine learning-based methodology to estimate power benefits of (3DIC) design
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flows, and apply their methodology to the flow proposed by Panth et al. [179]. However, no existing work

studies potential upper bounds on 3DIC power and area benefits. To our knowledge, ours is the first work

to address this gap.

In this chapter, we also examine the correlations between netlist properties and 3D power benefits.

Our studies suggest that netlist synthesis could benefit from awareness of implementation dimensions.

Previous works which study the relationship between netlist structures and placement and routing (P&R)

quality of results (QoR) include those of Liu and Marek-Sadowska [154] [155], which propose metrics to

predict 2D P&R wirelength from netlist structure. They also propose optimization during the technology

mapping stage of logic synthesis to improve 2D P&R results. Rahman et al. [193] propose a low-power

gate-sizing scheme using a rich library with complex and large-size cells for logic synthesis, and a library

with only simple cells for P&R. Seo et al. [198] argue that the benefit of using complex cells in advanced

nodes will diminish due to routing congestion. However, [198] does not consider how 3D integration

might mitigate the routing congestion seen in a 2D design implementation. (We consider this aspect of

3D integration below.)

4.3 Methodology for 3D Benefit Estimation

We now describe our implementation and benefit estimation flows across various dimensions –

pseudo-1D, 2D, 3D with multiple tiers, and infinite dimensions.

4.3.1 Pseudo-1D Implementation

To estimate the power penalty of design implementations in a limited dimension, we propose

pseudo-1D implementation, that is, design implementation with a high aspect ratio layout. In this chapter,

we refer to an implementation with layout aspect ratio 0.1 (block height equal to block width / 10) as a

pseudo-1D implementation.
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4.3.2 Optimal 2D Implementation

We pursue an “optimal” 2D implementation so as to quantify the true benefits from 3D integration

with multiple tiers and from implementation in infinite dimension. To achieve this, we obtain multiple

conventional planar implementations by sweeping several key parameters such as synthesis clock period,

placement utilization and BEOL stack options; we then select the best (e.g., minimum power) outcome.

Figure 4.1 shows an example where we vary the synthesis clock period and placement utilization for

different 2D implementations. We observe that when the design has tight timing constraints, slightly

smaller synthesis clock period eventually leads to smaller power after placement and routing. On the

other hand, for a design with loose timing constraints, slightly larger synthesis clock period results in

smaller design power after routing.

Figure 4.1: Design power with (a) varying synthesis clock period, and (b) placement utilization. Design:
JPEG. Technology: 28nm FDSOI.

Furthermore, design power versus placement utilization exhibits a roughly unimodal behavior.

In other words, if a placement is too compact, the power increases due to routing congestion (detouring,

crosstalk, etc.). On the other hand, if the placement is too sparse, the power again increases due to longer

wirelength (larger wire capacitance). Regarding BEOL stack options, we vary the number of layers from

six to 11 in our experiments and compare the resultant design power after routing. However, we observe

that the power variation is quite small (e.g., less than 3% for design JPEG). This is because the six-layer
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stack is able to offer enough routing resources for the designs and technology used in our experiments.

We therefore implement our design testcases by varying (i) synthesis clock period (e.g., 0.9×, 1.0× and

1.1× of clock period used in P&R) and (ii) placement utilization (e.g., 60%. 70%, 80%, 90%), then

selecting the outcome with minimum power consumption.28

We also apply such implementation flows to other dimensions to obtain (as far as we are able)

fair comparisons.

4.3.3 Power Benefit Estimation for 3DICs

Given that there is no “golden” 3DIC implementation flow, we propose an implementation flow,

based on the conventional 2D implementation tools, to achieve an optimistic estimation of design quality

of 3DICs with multiple tiers. With the Shrunk2D flow proposed in [179] as a starting point, we perform the

flow described in Algorithm 2 to estimate 3DIC benefits with multiple tiers.29 To estimate the reduction

of wire parasitics from shrunk footprint area, we shrink the cell LEF by a factor of 1/
√

T in both height

and width, where T is the number of tiers. We also apply the same scaling ratio to shrink the BEOL

LEF to ensure that routing resources remain adequate. We implement designs based on the shrunk LEF

(Line 1). With the shrunk LEF implementations, we then divide the die area into M x M grids. For

each grid, we perform iterative min-cut partitioning to divide the cells within the grid into T clusters

which are assumed to be placed on T tiers (Line 3). Details of our partitioning procedure are described

in Algorithm 3. In the procedure, we iteratively apply min-cut partitioning based on Fiduccia-Mattheyses

28Our separate studies perform implementations with fine-grained choices of synthesis clock period (e.g., 0.8× to 1.2× with a
step size of 0.05× of the P&R clock period) and placement utilization (e.g., 50% to 90% with a step size of 5%). Results for the
JPEG testcase show that the optimal solution (i.e., solution with minimum power) found with fine-grained parameter sweeping
is only 2% better than the solution found with our reported methods. We also attempt to vary the synthesis utilization (i.e., the
utilization of floorplan as input to physical synthesis). However, experimental results show that for the technology and design
testcases studied, sweeping of synthesis utilization does not lead to any power benefits as compared to a flow without physical
synthesis.

29We have Shrunk2D flow from [179]. Since the flow runs on an old version of P&R tool (i.e., Cadence SoC Encounter
vEDI10.1) where the results are even worse than the 2D implementation with Cadence Innovus Implementation System v15.2,
we do not use the Shrunk2D flow for 3D benefits estimation.
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(FM) algorithm to partition the cells into two parts with area ratio of (T −k) where k is the iteration index.

The min-cut bipartitioning is performed with MLPart [244]. After each partitioning, the cells from the

smaller-area part will be assigned to a new tier. We then collapse the cells in the smaller-area part into

one super cell, fix the super cell in the first partition, set its area to zero and continue with the partitioning

procedure. The iterative partitioning optimization terminates when all cells are assigned to a tier. Based

on the partitioning solution, we annotate parasitics to nets which have cells from different tiers. More

specifically, we calculate the maximum delta in tier depth across all cells connected to the net, and for

each unit of (delta in tier) depth, we annotate RC corresponding to one TSV and vias across six metal

layers (Line 4). With the annotated RC, we perform incremental sizing, VT-swapping and buffer insertion

optimization to fix timing violations.

Note that in our estimation flow, we can estimate the benefits from wire parasitic reduction in

3DICs. In addition, we ignore the potential performance and power penalties from placement legalization

(when we allocate cells to different tiers), from routing congestion caused by cross-tier power delivery,

from difficulties in clock tree synthesis in a 3DIC, and from additional die-to-die variability margin. Our

proposed flow therefore provides an optimistic estimation of 3DIC design qualities.30 In our study, we

also attempt to back-annotate placement solution with shrunk LEF to physical synthesis optimization.

However, our experimental results show that such a back-annotation loop does not lead to further power

benefits in the routed design.31 We therefore apply a one-pass flow in our experiments.

30Due to the lack of production-quality 3D design tool/flow, we are unable to precisely capture the penalties from routing
congestion, cross-tier power delivery networks, clock tree synthesis, etc. In our estimation flow we do not consider area impact
of vertical interconnects (e.g., through silicon vias), as in [160]. This results in an optimistic estimation of 3D area benefits, with
degree of optimism dependent on area overheads of vertical interconnects.

31Based on our experience, physical synthesis typically improves maximum performance when the clock constraints are tight.
However, due to the pessimism of wireload in the physical synthesis, we rarely observe power reduction from physical synthesis
optimization.
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Algorithm 2 Evaluation of 3DIC benefits with T tiers.

1: Perform 2D implementation with shrunk LEF (scaling ratio = 1/
√

T in cell height and cell width)
2: Divide die area into M x M grids uniformly
3: Apply FM-based min-cut partitioning for T tiers
4: Annotate RC according to tier assignment based on partitioning solution
5: Perform incremental optimization
6: Report design power

Algorithm 3 FM-based min-cut partitioning for T tiers.
Input: Netlist N, number of tiers T
Output: Subnetlists Sol = {N1, N2, ..., NT}

1: Sol ← /0

2: for k = 1 : T −1 do
3: area1← N.area/T
4: area2← T−k

T ·N.area
5: {Nk, Nk+1} = 2WayMinCutPart(N, area1, area2)

// tolerance = 5%
6: N← collapse Nk into one super cell ck
7: ck.area← 0
8: fix ck in the first partition
9: Sol ← Sol ∪ {Nk \{c1, c2, ..., ck}}

10: end for
11: return Sol

4.3.4 Implementation in Infinite Dimension

To estimate the upper bound on power and area benefits from 3DICs, we propose the concept of

implementation with “infinite dimension”, where we ignore wire parasitics during the implementation.

To achieve this, we perform netlist optimization with zero wireload model (0-WLM).32,33 Given that

benefits from 3D integrations mainly come from the reduced wire parasitics in a shrunk footprint area,

such implementation with infinite dimension is able to provide an upper bound on 3DIC benefits.

32To ensure a fair comparison to implementations at 2D and 3D, we perform netlist optimization with the same synthesis,
placement and clock tree synthesis tool/flow but with 0-WLM and without any routing. Specifically, we use Synopsys Design
Compiler vH-2013.12-SP3 [251] to synthesize the netlist, and use 0-WLM during the synthesis; we use Cadence Innovus
Implementation System v15.2 [235] to perform placement and clock tree synthesis, and scale the interconnect RC by a very
small number (i.e., 10−6) during the placement and clock tree synthesis.

33Since our testcases are not hold-critical, the number of hold buffer insertions is negligible even when testcases are imple-
mented with infinite dimension. To achieve an upper bound on 3DIC benefits, one might need to disable hold timing optimization
during the implementation with infinite dimension.
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4.4 Experimental Setup and Results

We perform experiments in a 28nm/12-track FDSOI foundry technology with dual-VT libraries,

and 0.85V nominal supply voltage. We perform experiments on an ARM CORTEX M0 core, three de-

sign blocks (AES, JPEG, VGA) from OpenCores [247], and LEON3MP from the ISPD-12 benchmark

suite [175]. Parameters of these five testcases are shown in Table 4.2. For each design, we determine a

range of clock periods starting from a clock period with relative loose timing constraint, up to the clock

period which is close to the minimum clock period of the given design and technology. These designs are

synthesized using Synopsys Design Compiler vH-2013.12-SP3 [251] and then placed and routed using

Cadence Innovus Implementation System v15.2 [235]. We further use Cadence Tempus Timing Signoff

Solution v15.2 [237] for timing and power analysis, with wire parasitics (SPEF) obtained from Innovus.

Table 4.2: Summary of benchmarks used to evaluate 3D benefits.

Design #Instances #Flip-flops Clock period range

CORTEX M0 ∼9K 840 0.8ns - 1.0ns

AES ∼12K 530 0.6ns - 0.9ns

JPEG ∼43K 4712 0.8ns - 1.1ns

VGA ∼72K 17057 0.7ns - 1.0ns

LEON3MP ∼460K 108817 1.1ns - 1.3ns

4.4.1 Evaluation of 3D Benefits

We first compare design power and total cell area across various implementation dimensions and

different clock periods. Figure 4.2 shows the power and area comparison. All the implemented designs

have no hold violation and a setup violation less than 10ps. We observe that the maximum power benefits

(i.e., the gap between the red curve versus the orange curve) from implementations in infinite dimension

are respectively 36%, 39%, 20%, 18% and 26% for CORTEX M0, AES, JPEG, VGA and LEON3MP. The

results show a large variation of 3D benefits across different designs. In addition, the power benefits from
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3D integration with two, three and four tiers are less than 10% for designs JPEG, VGA and LEON3MP.

Furthermore, we observe that the area benefits are small (i.e., < 10% for all designs, and < 4% for designs

JPEG and VGA).

We further assess the upper bounds on potential PPAC (performance, power and area/cost) im-

provements from 3D integration based on our concept of infinite dimension.34 Specifically, we implement

designs in infinite dimension and sweep the clock period from a relatively large value (e.g., the maximum

clock period shown in Figure 4.2) to the minimum achievable clock period, with a step size of 50ps.

We also implement designs in infinite dimension at a higher supply voltage (i.e., 0.95V) to explore the

power-area tradeoff (i.e., more area benefits at the cost of larger power). We then compare the perfor-

mance, power and area of the implementations in infinite dimension versus those of our “best possible”

2D implementations, and obtain tuples of potential maximum (performance, power, area/cost) benefits.

Figure 4.3 shows the (performance, power, area/cost) tuples, where the results in the left col-

umn use low-frequency 2D implementations (i.e., clock periods = {1.1ns, 1.1ns, 0.9ns, 1.0ns, 1.4ns} for

designs {CORTEX M0, JPEG, AES, VGA, LEON3MP}) as references; and the results in the right col-

umn use high-frequency 2D implementations (i.e., clock periods = {0.8ns, 0.8ns, 0.6ns, 0.7ns, 1.1ns}

for designs {CORTEX M0, JPEG, AES, VGA, LEON3MP}) as references. Furthermore, we only show

data points with all non-negative values in the tuple. Figure 4.3 shows that for a single metric, the maxi-

mum improvement of performance, power or area can be ∼40%, ∼40% or ∼10%, respectively, without

degradation on the other two metrics. However, no design is able to achieve (10%, 10%, 10%) benefits

from 3D integration, and only one design (i.e., CORTEX M0) shows more than (10%, 10%, 5%) benefits.

Moreover, we observe that the area benefits from 3D integration are typically small (i.e., ≤5% for most

34For “area/cost”, we mean “area or cost”. We assume that the cost is measured as area.
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of the data points); this matches the results in Figure 4.2. These results may indicate a limited upside of

pure logic-logic 3D integration.
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Figure 4.2: Design power and total cell area evaluated across various implementation dimensions.
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Figure 4.3: Maximum potential (performance, power, area/cost) improvements from 3D integration.
Left: Using low-frequency 2D implementations as references. Right: Using high-frequency 2D

implementations as references. Blue, red and green dots are respectively projections on
performance-power, performance-area and power-area planes.
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4.4.2 A More Realistic Evaluation

As discussed in Section 4.3, our 3D power estimation ignores potential larger clock skew due to

inter-tier process variation [224]. To achieve a more realistic estimation of 3D benefits, we quantify the

impact of clock skew on 3D power reduction. In our experiments, we enable multi-corner optimization

by using both slow- and fast-corner libraries during the P&R stage. We further model potential clock

skew increase due to difficulties in 3D clock tree synthesis (CTS) as well as inter-tier process variation by

applying 0%, 5% and 10% clock uncertainties of the clock periods. The power benefits against the clock

uncertainties are shown in Figure 4.4. The results show that the 3D power benefits diminish when the

clock uncertainties increase from 0% to 10% even for two designs which originally have the largest 3D

benefits among our benchmarks. More specifically, the power benefit of a two-tier 3D implementation

decreases from 11% to 1% for AES and from 5% to -21% for CORTEX M0. Our observation indicates

that it is critical for 3D clock tree optimization to minimize the impact of inter-tier variation on clock

skew and latency.

Figure 4.4: The impact of larger clock skew (due to complexity of 3D CTS as well as inter-tier
variation) on 3D power benefits.
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4.4.3 Comparison Between Improved 2D versus 3D

In this section, we study the power and area benefits from an improved P&R tool/flow in the

conventional 2D implementation, and compare these benefits versus the estimated 3D benefits. Figure 4.5

shows the normalized power and area values of the 2D implementation using the latest version of a

commercial P&R tool (i.e., Cadence Innovus Implementation System v16.1) (2D+) and the estimated 3D

benefits with two tiers based on Cadence Innovus Implementation System v15.2 (3D (2 tier)), with respect

to 2D results using Cadence Innovus Implementation System v15.2. We observe similar power reductions

from the improved 2D P&R tool/flow and 3D integration with two tiers. Quite interestingly, for particular

designs (e.g., CORTEX M0 and LEON3MP), the power benefits from the improved P&R tool/flow are

even lower than the estimated 3D benefits. The results may indicate that even one EDA company’s year-

to-year improvement is of similar magnitude to 3D benefits for particular designs. Figure 4.5 further

shows that the area benefits from both the improved P&R tool/flow and 3D integration are small in our

results.

Figure 4.5: Comparison between estimated 3D power and area benefits with two tiers versus power and
area reductions from the latest version of a commercial P&R tool (i.e., 2D+).
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4.4.4 Assessment of 3D Benefit Across Technologies

We further assess the upper bound on 3D benefits across different technologies. Figure 4.6 shows

the power and area benefits estimated in infinite dimension in 28nm FDSOI, 28nm LP (with 8T and 12T

cells) and 45nm GS technologies. We use tight timing constraints with respect to each technology in our

implementation. We observe consistent results across different technologies – (i) benefits on CORTEX

M0 and AES are relatively higher than those on other designs, and (ii) area benefits are typically smaller

than power benefits (especially on JPEG and VGA). Moreover, we observe larger benefits in technologies

with weaker driving strength (i.e., 28LP with 8T cells), where the wireload impact is larger on cell area

and power.

Figure 4.6: 3D benefits assessed in infinite dimension showing consistency across various technologies.
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4.4.5 Netlist Study

We additionally study the possibility of correlations between (3D) power benefits and various

netlist parameters (such as fanout distribution, slack distribution, sequential graph, Rent parameter, etc.)

of designs. We observe that the power benefits are well correlated with Rent parameters.

We use the Rentian circuit generator gnl by Stroobandt et al. [207] to generate netlists with differ-

ent Rent parameters, and we evaluate these netlists’ power consumption across various implementation

dimensions. The inputs to gnl are (i) number of cells, (ii) the target Rent parameter, (iii) the ratio be-

tween flip-flops and combinational cells, and (iv) the maximum path delay constraint. The gnl software

starts with a set of standard cells and randomly inserts connections among the cells to form logic cones.

The gnl software determines number of pins (of standard cells) and input/output terminals according to

the user-specified Rent parameter. During the netlist generation, gnl recursively clusters logic cones to

form larger ones. The number of terminals on the boundaries of the merged logic cones also follows the

specified Rent parameter. The generated netlists thus have desired Rent parameters by construction.35

Table 4.3 summarizes our generated testcases. We generate netlists using cells from the foundry 28nm

12-track FDSOI library and implement them using the flows described in Section 4.3.3. The initial gen-

erated netlists (with different Rent parameters) have similar power and area (i.e., within 3% difference)

to help establish a fair comparison of power benefits across various Rent parameters. We define timing

constraints such that the initial generated netlists have negative slacks, thus inducing non-trivial P&R op-

timizations.36 Furthermore, to maintain a similar Rent parameter throughout the P&R flow (i.e., avoiding

netlist restructuring), we apply a size-only restriction to all cell instances during the P&R optimization

flow.
35We constrain gnl to instantiate equal numbers of DFFX8, INVX8, BUFX8, AND2X8, NAND2X7, OR2X8, NOR2X7,

NAND3X12, NOR3X13 and XOR2X8 cells in the generated netlists.
36The gnl software constrains the maximum delays of the generated netlists by limiting the depths of the logic cones (i.e.,

inserting flip-flops at the boundary of the logic cones).

94



Table 4.3: Summary of Rentian testcases with different Rent parameters.37

Rent (input / actual) Power (mW) Area (µm2) Slack (ps)

0.50 / 0.63 46.4 (100%) 39552 (100%) -72

0.55 / 0.66 46.8 (101%) 40262 (102%) -74

0.60 / 0.69 46.7 (101%) 40404 (102%) -68

0.65 / 0.71 47.4 (102%) 40532 (102%) -110

0.70 / 0.74 46.9 (101%) 40607 (103%) -73

Figure 4.7 shows the relationship between post-P&R power and netlist Rent parameter across

various implementation dimensions. We observe that the power of the conventional 2D implementation

increases with higher Rent parameters, and that the power increase (with Rent parameter) is smaller with

3D implementations. This suggests that implementations in higher dimensions can mitigate power penal-

ties due to higher-degree topologies of interconnections, which are indicated by larger Rent parameter

values. Accordingly, more 3D power benefits may be expected with netlists having larger Rent param-

eters. We also observe the existence of thresholds of Rent parameters beyond which 3D power benefits

seem to increase more rapidly (e.g., 0.69 in Figure 4.7). Quantitative analysis of the relationship between

power benefits and Rent parameter values will be one of our future works.

37The target clock period is 1ns. We show both input Rent parameters to the gnl software and actual Rent parameters of the
generated netlists (placement-based) in the table.
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Figure 4.7: Power and power benefits versus Rent parameters for the 2D and the 3D implementations
with different tiers.

We also perform similar studies with realistic designs. Figure 4.8 shows the correlation between

the maximum 3DIC power benefits estimated in infinite dimension, and Rent parameter values. We ex-

tract Rent parameters of the netlists using both partitioning-based and placement-based methods, where

we assume that one pin (terminal) is induced by each cut hyperedge. Partitioning-based Rent parame-

ter values are extracted based on recursive bipartitioning using the min-cut hypergraph partitioner ML-

Part [244]. To calculate placement-based parameter values, we perform fast placement with a commercial

P&R tool [235] without any sizing, VT-swapping or buffering optimizations. We then perform rectangle

sampling based on the placement solutions to estimate Rent parameters.
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Figure 4.8: Power benefits correlate with Rent parameters.

Even for a larger testcase (LEON3MP with 436K instances), the runtime of the placement used

to evaluate the placement-based Rent parameter is only 16 minutes. Our results show that the placement-

based Rent parameter can possibly be a simple indicator of 3DIC power benefit for a given netlist.

In light of the correlation between power sensitivity to implementation dimensions and the netlist

Rent parameter, we propose to modulate the cell usage during the synthesis stage to control the Rent

parameters and achievable 3D power benefits. We categorize library cells in the 28nm FDSOI design

enablement according to their input pin numbers – (i) one-input cells (buffers and inverters) (ii) two-input

cells (NAND2, NOR2, etc.) (iii) three-input cells (NAND3, AOI21, etc.) (iv) four-input cells (NAND4,

OAI22, etc.), and (v) >four input cells (AOI212, MUX41, etc.). We then scale cell area in Liberty files

to modulate the cell usage during synthesis so as to achieve netlists with different Rent parameters. More

specifically, we choose the JPEG design (which originally has a small Rent parameter) and scale down

the area of complex cells; this induces the synthesis tool to use more complex cells and to increase the

netlist Rent parameter.38 We plot the placement-based Rent parameters against the portion of complex

38We synthesize JPEG with area scaled by {1×, 2×} for 2-input cells, and by {1×, 0.5×} for 3-input, 4-input and >4-input
cells. An alternative way to modulate cell usage and Rent parameters during synthesis is to set a dont use attribute for certain
Liberty cells. However, the dont use attribute cannot be assigned to NAND2, NOR2 cells in our EDA tooling. In addition,
setting the dont use attribute for a group of cells might degrade the synthesis solution quality due to limited available cell types.
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cells (cells with more than three input pins) of various synthesized netlists in Figure 4.9. We observe

that the Rent parameters are highly correlated to the incidence (proportion) of three-input cells. This

demonstrates that we can modulate Rent parameters of the synthesized netlist. However, more precise

control of Rent parameters during synthesis optimization remains as a direction for future work.

Figure 4.9: Correlation between incidence of cells with >3 inputs vs. Rent parameter.

Figure 4.10: Power vs. Rent parameter with Rent Modulation.

In Figure 4.10, we further show power (after routing) of six synthesized netlists of design JPEG

which have the maximum and minimum Rent parameters (Table 4.4). As highlighted in blue dotted circles

in Figure 4.10, we observe that although a particular netlist shows small power after synthesis (indicated

by infinite dimension), due to its large Rent parameter its power can be larger with a 2D implementation.
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Table 4.4: Area scaling ratios of logic cells during synthesis in Figure 4.10.

Implementation Rent 2-input 3-input 4-input >4-input

O 0.600 1 0.5 1 1

X 0.605 2 0.5 1 1

� 0.611 1 1 1 1

3 0.653 2 1 0.5 0.5

+ 0.656 2 0.5 0.5 0.5

* 0.663 1 0.5 1 0.5

However, power penalty with a 3D implementation is smaller. This suggests that netlist synthesis should

be aware of the implementation dimension. For instance, while a netlist with a small Rent parameter is

desirable for a 2D implementation, there are fewer constraints on (or, sensitivities to) Rent parameters for

a 3D implementation.

4.4.6 SoC-Level 3D Benefits

The above discussion, as well as many previous works on 3D wirelength benefits, all focus on

blocks with only standard cells (i.e., pure logic-logic integration). For example, the work of [104] applies

Rent’s rule-based estimation to derive wirelength distribution in 3DICs. However, our P&R results indi-

cate that their estimated benefits (e.g., 3.9× increase in frequency) might be optimistic. Mak et al. [160]

compare 3D wirelength and 2D wirelength (where the 2D placement is simply assumed as side-by-side

placement of tiers from the 3DIC) to estimate an upper bound on 3D wirelength benefits. Their results

show an average of 18% wirelength reduction from 3D integration. Further, [40] uses an example to show

that the maximum wirelength reduction from 3D integration is 66.7%. We show in Figure 4.11 that for

a testcase with three blocks, the wirelength reduction can be close to 100%. In the example, there are

connections between the north edge of Block A and the south edge of Block B (e.g., net a), the north edge

of Block C and the south edge of Block A (e.g., nets b and c), as well as the south edge of Block C and the
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north edge of Block B (e.g., nets d and e). As shown in Figure 4.11(a), the 2D wirelength is at least 4·H.

Figure 4.11(b) shows that the 3D wirelength can be zero if the vertical wirelength is ignored. Therefore,

the example with ∼100% wirelength reduction indicates that there remain potential large 3DIC benefits

versus 2DIC for (block-based) SoC designs. From the example in Figure 4.11, we see that there are

possible gains from 3D integration for designs with memory cells. Since data access latency of a large

memory system is typically limited by large interconnect delays, usage of die-to-die vertical interconnects

and/or side-by-side integration of a 3D stacked memory and a processor on a silicon interposer to reduce

memory access latency can improve the system performance [156] [187] [223] [229]. For example, the

study of [187] shows a 47% latency reduction for a 4 MB 4-die stacked 3D SRAM array.

Figure 4.11: Potential 3D benefit in block-level planning. (a) 2D implementation with connections
(shown in red) between the north edge of Block A and the south edge of Block B, the north edge of

Block C and the south edge of Block A, the south edge of Block C and the north edge of Block B, where
the wirelength is at least 4·H. (b) 3D implementation with zero wirelength. a-e are five 2-pin nets.

4.5 Conclusions

In this chapter, we revisit previous assessments of the benefits of 3DIC implementation with

respect to area, power and wirelength. Ours is the first work to estimate upper bounds on 3D power and

area benefits based on the concept of implementation with infinite dimensions.

We examine several designs with our “infinite dimension” bounding methodology, and use the

available area and power gaps between “best possible” 2D implementation to estimate upper bounds on

100



3D benefits. We further perform such 3D benefit estimation across various technologies. From our re-

sults, we observe that the 3D power and area benefits estimated in previous works (shown in Table 4.1)

basically align with our proposed upper bounds. However, due to the design dependency of 3D bene-

fits, benefits estimated in infinite-dimensional implementation can be small (e.g., power benefits as low

as 18%) for some designs. Our study also indicates that although 3DIC might provide relatively large

benefits in power or performance, it is typically difficult for pure logic-logic 3D integration to achieve a

simultaneous (10%, 10%, 10%) improvement in (performance, power, area/cost) compared to the con-

ventional 2D implementation. Such results indicate that 3D benefits are more likely to be achieved from

the SoC-level and architectural-level optimizations instead of traditional P&R physical implementation

optimizations. We use a simple example to show that there remains potential large 3DIC benefits versus

2DIC for (block-based) SoC designs. We also observe that inter-tier variation causes further significant

reduction of available 3D power benefits.

In addition, we study design power across various dimensions and observe a correlation between

design power and netlist Rent parameter. Modulation of the netlist Rent parameter during synthesis (that

is, by changing the usage and distribution of fanins) suggests that a synthesis optimization that is aware of

implementation dimensions may be helpful for reduced power in the final physical implementation. We

also note that architecture-level improvements enabled by 3D integration (e.g., larger memory bandwidth)

are still very promising, but are not addressed in our work.

Open directions for future research include (i) dimension-aware synthesis (i.e., synthesis for

multi-tier 3D), (ii) quantitative analysis of the relationship between power benefits and Rent parameters,

and (iii) architectural-level benefit exploration.
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Chapter 5

Modeling for Approximate Computing

This chapter explores approximate computing. Approximate computing allows errors in compu-

tation in order to relax the design cost requirement. However, lack of error estimation blocks enabling of

approximate computing. We propose a methodology to evaluate error metrics in approximate computing.

5.1 Background of Approximate Computing and Related Works

Modern VLSI designs face increasingly significant challenges in meeting the power and perfor-

mance constraints demanded by present and future computing systems. Recently, approximate comput-

ing has been explored as a means of improving energy efficiency for noise-tolerant applications. While

approximate computing circuits have been shown to be effective at improving energy efficiency at the ex-

pense of perfect functional correctness, modern CAD tools are ill-equipped to perform design automation

for designs that contain approximate computing circuits. One key building block required for CAD tools

that can create efficient approximate designs is the ability to quickly and accurately estimate the output

quality of designs composed of approximate computing circuits. Such functionality is necessary for CAD
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tools that would minimize the energy of a design during synthesis, optimization, etc. while maintain-

ing acceptable output quality, as specified by system designers. In this chapter, we propose a flow that

can analyze how errors originate and propagate in designs composed of approximate computing circuits

to quickly and accurately estimate the output quality at nets in an approximate design. The following

terminology is relevant to our treatment of approximate circuit design.

• Error metric (EMT): a unit of measure that quantifies the deviation between the outputs produced

by a functionally correct design and an approximate design. We review several commonly-used

EMTs from the existing literature in Section 5.2.1 below.

• Approximate hardware module: a hardware module that is functionally incorrect by design (e.g.,

approximate adders and multipliers).

• Approximate circuit: a circuit that contains one or more approximate hardware modules. Figure 5.1

compares an approximate circuit to its accurate counterpart.

• Composed EMT (EMTcomposed): the estimated EMT value at an output or internal net in an approx-

imate circuit.

• Pre-characterized EMT (EMTchar): a sampled EMT for an individual approximate hardware mod-

ule that has been stored in a library. We measure EMTchar using Gaussian random variables as

inputs and propose composition rules for different EMTs.

• Composition function: a function that maps EMTchar to EMTcomposed .

• Dre f (X): the output of a correct circuit (not approximate) for an input distribution X .

• Dappx(X): the output of an approximate circuit for an input distribution X .
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Given the above definitions, the error metric composition problem seeks to find a composition

function for a composed EMT as described in Equation (5.1), where EMT i
char denotes the EMTchar of the

ith approximate module in an approximate circuit. Values of EMTchar for different approximate hardware

modules may be stored in a library for quick reference during computation of EMTcomposed .

EMTcomposed = f
(
EMT 1

char, EMT 2
char, ..., EMT n

char
)

(5.1)

Correct output Approximate output

Arithmetic 
module 
replacement

Accurate 
module

Approximate 
module

Figure 5.1: Illustration of approximation module replacement, in which accurate hardware modules are
replaced by approximate ones.

In this chapter, we propose an automated methodology to estimate EMTcomposed at the outputs

and internal nodes of an approximate circuit. Our approach accounts for the relationship between EMT

behavior, input distribution statistics, and hardware characteristics of approximate hardware modules.

We use lookup tables parameterized by approximate hardware module statistics to accelerate EMT com-

position; we further incorporate regression-based models that capture how errors propagate through the

topology of an approximate circuit. We demonstrate and validate our methodology with several randomly

generated benchmark circuits with varying complexity as well as designs evaluated in previous work [97]

(e.g., FIR filter).
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We make the following contributions.

• We analyze the interval-based approach in [97] [98], and explore the potential drawbacks of the

approach.

• We propose composition rules for estimating the EMT observed at any net within an approximate

circuit.

• We develop an approach to build pre-characterized libraries for individual approximate hardware

modules and demonstrate how to accelerate the computation of composed EMTs using the libraries.

Our approach reduces runtime for characterization and results in improved accuracy compared to

previous works [97] [98].

• Compared to previous works, we improve the accuracy of EMT estimation by 3.75× for the same

runtime. We achieve 1.36× and 8.4× runtime improvements, respectively, for library characteriza-

tion and error composition.

• We demonstrate that our proposed approach achieves accurate estimates for approximate FIR cir-

cuits as well as random artificial circuits with various topologies.

The remainder of the chapter is organized as follows. Section 5.2 reviews related works according

to different system abstraction levels and error sources. Section 5.3 describes the motivation of error

metric composition and our search for rules that govern composition of error distributions. In Section 5.4,

we show how to apply our composition rules and pre-characterized error libraries to analyze arbitrary

circuit topologies. Section 5.5 concludes the chapter and gives directions for our future work.
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5.2 Related Works

5.2.1 Error Metrics

Definitions of EMTs from the literature are given in Equations (5.2) to (5.7). Note that E[·]

indicates the expected value of a random variable and max[·] indicates the maximum value.

ER = ∑
Xs.t.Dappx(X)!=Dre f (X)

Pr(X) (5.2)

ES = E[Dappx(X)−Dre f (X)] (5.3)

ARES = E[(Dappx(X)−Dre f (X))/Dre f (X)] (5.4)

MSE = E[|Dappx(X)−Dre f (X)|2] (5.5)

SNR = E[|Dre f (X)|2/|Dappx(X)−Dre f (X)|2] (5.6)

MAXE = max
X

[|Dappx(X)−Dre f (X)|] (5.7)

• Error rate (ER) [129] is used to evaluate the likelihood of correctness in arithmetic operations.

An accurate estimation of ER is important in the case where approximate circuits spend additional

cycles for error corrections.

• Error significance (ES) [213] addresses the magnitude of errors. We define ES as the signed average

difference between correct and erroneous results.

• Average relative error significance (ARES) is used to measure the impacts of errors for image

processing in [111] [232]. ARES is defined as the average absolute difference between correct and

erroneous results, normalized to correct results. In digital signal processing (DSP) circuits, the

magnitude of errors is important because small errors may be masked by other noise sources.

• Mean squared error (MSE) in [62] [216] and signal-to-noise ratio (SNR) in [62] [83] are common

metrics to measure signal degradation in communication and image processing systems.
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• Maximum error (MAXE) is defined as the maximum absolute value of produced errors. In [97], the

MAXE metric is used to evaluate approximate circuits.

5.2.2 Approximate Arithmetic Modules

Various approximate arithmetic modules have been proposed in previous works, where aggressive

timing and power benefits are obtained by breaking critical paths in the approximate module. To achieve

a bounded error significance or configurable error rate, several techniques have been applied to reduce

the severity of errors in these approximate hardware modules. ETAI [232] limits the maximum error by

detecting a carry propagation and setting all lower sum bits to “1”. A similar compensation approach is

used in Shin’s approximate adder [201], which detects a carry propagation using a specially designed truth

table. By using error compensation approaches, the error can be reduced compared to simply breaking

the carry chain. ETAIIM [232], ACA-SD [111], Lu’s adder [158], and ACA-X [215] use a carry-look-

ahead (CLA)-based approach to shorten the longest carry propagation path in the adder. These adders are

composed of CLA submodules, and the numbers and sizes of the submodules can be configured at design

time. The error significance and error rate can be configured by changing the length of carry propagation

paths. Kahng et al. [111] also show that the errors can be detected and corrected in each CLA block, and

that the accuracy can be configurable during runtime.

5.2.3 Analysis and Composition of Errors

We categorize existing works on hardware error analysis into four categories as shown in Ta-

ble 5.1. In category (C1), the works focus on searching for useful approximations during logic synthesis.

Venkataramani et al. [213] work with existing commercial synthesis tools and simplify logic based on

approximate don’t-care (ADC) information under a given error significance bound. Miao et al. [161]
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Table 5.1: Categories of error analysis, propagation, and optimization works.

Category (C1) (C2) (C3) (C4)

Manipulated
Logic cell Arithmetic Arithmetic

Multiple

Elements Levels

Error Appx.
Rounding

Appx. Over-scaled

Source HW HW VDD

Probabilistic
N N N Y

Errors

Reference
[213] [161] [72] [206] [49] [50] [96] [98] [118] [58]

[201] [165] [132] [138] [128] [97] [59] [214]

focus on a methodology to design more efficient adders by combining logic components to reduce the

maximum error. In [201], Shin et al. provide a heuristic to search for useful approximations based on a

truth table to study the tradeoff between the error rate and literal terms (hardware cost). Previous works in

category (C2) address rounding errors between floating-point and fixed-point conversions. In these works,

the rounding errors are determined by the wordlength of hardware, and so are different from the errors in-

duced by approximate hardware. In category (C3), [97] and [98] use an interval-based approach (interval

arithmetic or affine arithmetic) to propagate errors. The interval-based approach uses pre-characterized

libraries for error estimations, but the runtime of characterization can increase when more intervals are

required for large ranges of signals. In category (C4), existing works assign overscaled supply voltages

to achieve a graceful accuracy degradation. Kedem et al. [118] analyze propagations of errors induced

by the degraded supply voltage, and they simplify the analysis by assuming that no error cancellations

occur between multiple adders. Venkatesan et al. [214] propose the MACACO flow to evaluate propa-

gations of errors induced by overscaled supply voltage. They also apply this approach to characterize

errors for different approximate adders. Chippa et al. in [58] [59] propose methodologies to analyze and
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optimize computing effort at different levels of abstraction, and also consider errors due to overscaled

voltage supplies.

Compared to previous works, our work focuses on (i) the error propagation at arithmetic-level

instead of gate-level computation, (ii) the errors induced by approximate hardware as opposed to the

overscaled supply voltage, and (3) awareness of both ER and ES. Furthermore, we simplify the composi-

tion of errors with a pre-characterized library and regression coefficients.

5.3 Methodology for Error Estimation

5.3.1 Analysis of Existing Interval-based Approach

Huang et al. address the issue of error rate estimation for approximate circuits in [97] [98].

Their flow first characterizes approximate hardware modules by simulating the error probabilities for

different input value intervals. Then, with given input operand distributions, they use interval arithmetic

to estimate the probability mass function (PMF) of errors produced and propagated in an approximate

arithmetic circuit. After propagating and composing errors with interval arithmetic, the error metrics are

obtained from PMFs. Their interval-based approach samples the probability distribution functions (PDFs)

or PMFs of errors to generate sampled PMFs. The height of each interval in the sampled PMF represents

the probability of error.

Figure 5.2 shows an example PMF which is used in the interval-based approach. Due to the

limited number of intervals used for characterization, the error magnitudes will be clamped to ±2max or

±2min if they are out of range. As a result, the accuracy of the interval-based approach will be impacted

if the range of characterization does not match the inputs.

We observe two drawbacks in the interval-based approach. First, there is a quantization error,

since the approach represents multiple error values with a single interval. If the actual error distribution
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abs(log(Probability)) 

PDF PMF 
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-2max, ⋯ ⋯ ⋯ ⋯ ,  -2min 

Figure 5.2: Probability mass function (PMF) used in the interval-based approach is shown. Note that the
error magnitudes are in log scale. The error magnitudes will be clamped to ±2max or ±2min if they are

out of range.

varies greatly within one interval, the estimation will be inaccurate. This may particularly be an issue for

large intervals closer to ±2max. For such large intervals, quantization error may be quite substantial. For

example, an error value of 2max−1 +1 is placed in the bin for 2max, and the quantization error (2max−1−1)

is essentially as large as the error value itself (2max−1 +1). This example also illustrates another potential

drawback. Unless the error value is an exact power of two, the quantization error for a large interval tends

to be large. Perhaps counter-intuitively, error values that are very close to an interval value may cause very

large errors. Second, the interval-based approach requires consecutive intervals to cover the range from

maximum to minimum error magnitude (±2max and±2min in Figure 5.2). If the errors fall out of±2max or

±2min, the interval-based approach will clamp the estimated errors to the ±2max or ±2min values, and the

estimation error will be saturated. If a large portion of errors or data experience this saturation issue, the

estimation inaccuracy will be high. To address these drawbacks, the interval-based approach requires re-

characterization of the libraries to increase the number of intervals, incurring significant runtime overhead.

For better understanding of the strengths and weaknesses of the interval-based EMT composition, we

evaluate the EMT estimation with a testcase shown in Figure 5.3(a). We vary the input distribution to

evaluate accuracy for different input distributions and hardware configurations. We collect results from
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100 combinations (10 Gaussian distributions with different standard deviations and 10 sets of ETAIIM

configurations). Figure 5.3(b) shows the runtime of library characterization performed by the interval-

based approach for different numbers of samples per interval. The accuracy results of the interval-based

approach compared to Monte Carlo simulation are shown in the form of a correlation plot in Figure 5.3(c).

From Figure 5.3(b) we notice that increasing the sample size to 18.5M requires 1.7 hours for library

characterization, but estimation errors (offsets) are still observed in Figure 5.3(c). Possible reasons for

the inaccuracy are (i) the use of discrete PMF and (ii) inaccurate propagation of EMTs from the pre-

characterized library.

5.3.2 Analysis for Computation of Error Metrics

We analyze an ETAIIM adder to understand the error generation of approximate modules. ER of

the ETAIIM adder is given in Equation (5.8). N is the total bit width of the adder; bits-per-block (BPB) is

the size of carry-lookahead (CLA) blocks; and k is the number of connected CLA blocks, an architectural

parameter used to control error magnitudes. From 5.4, we observe that the errors are related to the input

values of CLA blocks because errors occur when all input bits of the CLA block are in carry-propagate

state. For example, if most of the input values are small, then the probability of generating larger errors

will be small. This observation regarding ETAIIM motivates us to study the sensitivity of EMTs to input

distributions.

ERETAIIM = 1− (1− 1
2BPB

2BPB−1
2BPB+1 )

N
BPB−2−k

×(1− 1
2(BPB·k)

2(BPB·k)−1
2(BPB·k)+1 )

(5.8)

-

112



0.23 0.26
0.39

1.78

0.10

1.00

10.00

1 100 10000To
ta

l C
ha

ra
ct

er
iz

at
io

n 
R

un
tim

e 
(h

r)

Sample Size (K)
n1 n2 n3

n4

n5

A B C D E F
(a) (b)

(c)

n5=((A+B)+(C+D))+(E+F)

Figure 5.3: (a) Five-node testcase. (b) Runtime from interval-based approach for each sample size. (c)
ER estimation results from interval-based approach. The results are generated from 100 testcases (10

hardware configurations and 10 combinations of input distributions).

5.3.3 Proposed Approach to Estimate EMTs

The analytical expression in Equation (5.8) is based on the assumption that distributions of the

input values are uniform and the ranges cover from the most significant bit (MSB) to least significant

bit (LSB). However, this is not always the case, and we need to consider input distributions for the

accurately-estimated EMTs. To analyze the relationship between input distributions and EMTs, we use

24-bit ETAIIM adders and simulate the EMTs for different BPB and k. In this motivating experiment,
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Figure 5.4: The structure of an ETAIIM approximate adder. CLAs are carry-lookahead sub-adders.
RCAs are ripple-carry sub-adders.

both operands are assumed to have the same standard deviation for simplicity. Figure 5.5 shows each

simulated EMT value (y-axis) with respect to the standard deviation of input data (x-axis).

Figure 5.5 shows that EMT values change with respect to both the standard deviations of input

values and hardware configuration (k). Based on the results, we construct lookup tables to model the error

metric of approximate modules instead of using analytical expressions. Modeling with lookup tables is

preferred since it is difficult to derive an analytical expression if input values are not uniformly distributed.

Figure 5.6 illustrates our EMT formulation. To estimate the output EMT (EMTZ), we consider in-

trinsic EMT values (EMTin) which are generated by the approximate module itself, and propagated EMT

values (EMTA, EMTB) which come from the previous stages. We propose a lookup table (LUT)-based

approach to consider different input distributions. The lookup tables for different hardware configura-

tions are merged to become the pre-characterized library. We construct two types of lookup tables, as

illustrated in Figure 5.8(b). The EMTin and ST DZ tables respectively contain (intrinsic) EMT values and

output standard deviations with respect to the input standard deviations.

Our LUT-based approach can be divided into three steps as described in Figure 5.8(a). Step 1:

Value distribution propagation in the circuit topology. We generate statistical properties with pre-

characterized libraries. To obtain the statistical property of each node in the circuit, we traverse all the

114



ER ES: log(abs()) ARES: log(abs())

MSE: log(abs()) SNR MAXE: log(abs())

Figure 5.5: The simulated EMT results for input distributions. A 24-bit signed ETAIIM adder is
simulated in the analysis. 20 bits are used for the fractional part, and the MSB guard block size k takes on
values from one to four. For simplicity, both operands are assumed to have the same standard deviation.

nodes in the circuit in a topological order from primary inputs to a primary output. During the traversal, we

look up the statistical property (standard deviation) from a pre-characterized table (ST DZ), and annotate

the standard deviation values at all nodes. The results in the upper-left plot in Figure 5.7 demonstrate the

feasibility of this approach.

Step 2: EMT estimation for approximate modules. With standard deviations of the internal nodes, we

estimate EMT values using a pre-characterized table (EMTin) for each internal node. The lookup table,
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EMout=EMin+α1EMA+α2EMB  (Except ER)
ERout=1‐(1‐EMin) ∙(1‐EMA) α2 ∙(1‐EMB) α2

{STDA, EMTA} {STDB, EMTB}

{STDz, EMTZ}

EMTin

+* +*

 +*: approximate additions

  EMTin (Intrinsic EMT):
  EMT generated by approximate module itself

  {STD{A,B}, EMT{A,B}} (Propagated EMT):
  Standard deviations/EMTs from previous stages s

  {EMTZ, STDZ}: 
  EMT and STD observed at the output

+*

Figure 5.6: EMT estimation at a given node (approximate module) considering intrinsic and propagated
EMTs.

EMTin, is characterized by simulating EMT values as shown in Figure 5.5. We generate the LUTs for

different approximate modules to estimate intrinsic error metric (EMTin), which is generated by modules

themselves without input errors. By combining Steps 1 and 2, we can estimate the EMTin of each node in

any circuit topology.

Step 3: Error composition with EMTs of each approximate module. With the generated EMTs

(EMTin) of each approximate module, we apply a regression approach to find the composed EMT values

in the primary output. The error rate (ER) can be computed by multiplying pass rate (1-ER), and the

composed ER is generated with Equation (5.9), where ERZ is the composed ER, ERA and ERB are the

propagated ERs to the inputs in Figure 5.6, ERin is an intrinsic ER, and α{in,P} are regression coefficients.

Other EMTs (ES, ARES, MSE, SNR and MAXE) are amplitude-based error metrics, and we generate

the composed EMT from Equation (5.10), where α{in,P,C} are regression coefficients. These composition

rules are developed for adders, and their generalization to multiplication and other arithmetic operations

is a subject of future work.

ERZ = 1−10αC · (1−ERin)αin · ((1−ERA) · (1−ERB))αP (5.9)

EMTZ = αinEMTin +αP(EMTA +EMTB)+αC. (5.10)
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Figure 5.7: Estimated ST DA or ST DB and EMTin values obtained from lookup tables. The x-axes are
simulated values and y-axes are estimated values. The red lines show the ideal estimations and the blue

dots show the estimated results from our proposed method.
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To verify the correctness of our table lookup method in Step 2, we estimate the standard deviation

(STD) and EMTin as shown in Figure 5.7. We test with 10 combinations of hardware configurations and

10 combinations of different input distributions (Gaussian distribution with different standard deviations).

Figure 5.7 shows the correlations between the estimated and simulated STD/EMT values from all internal

nodes. The results show that we can obtain correct STD values from the lookup table with the topology

traversal. With the estimated STD, we observe correct estimation for EMTin (ER and ES). We find that

ARES results are less accurate compared to the results of ER and ES. This is because ARES measures

error relative to input data. If the magnitude of input data is small (near zero), the range of the ARES

value will be large. In such a context, accurate estimations are difficult, given the limited number of grids

in the lookup table.

Table 5.2 shows our regression results for improved EMT estimations. The upper part (a) of the

table shows regression coefficients derived with different hardware configurations. The lower parts of

the table show (b) the estimation inaccuracy and (c) the absolute estimation inaccuracy, as defined in

Equation (5.11) and (5.12), where Rc and Re are the simulated and estimated results, respectively. The

two inaccuracy metrics are shown for both “without regression” and “with regression” cases.

Estimation inaccuracy = |Rc−Re|/|Rc| (5.11)

Absolute estimation inaccuracy = |Rc−Re| (5.12)

Without regression, we report the results with αIN = αP = 1 and αC = 0 for the coefficients in

Equations (5.9) and (5.10); this is a pessimistic assumption (i.e., that there are no overlap effects from

the composition). To obtain the coefficients in Equation (5.9) and (5.10) with regression, we simulate

a single approximate adder with different operating conditions, which we model by changing the input
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distributions (Gaussian distributions with zero mean and different standard deviations), and applying

artificial errors. The artificial errors are also assumed to have Gaussian distributions with zero mean and

different standard deviations. Using (i) the EMTA, EMTB, and EMTZ measured from the simulation, as

well as (ii) the EMTin values obtained from lookup tables, we generate the regression coefficients using

the linear regression toolbox in MATLAB [245].

After obtaining the regression coefficients, we apply them in EMT estimations and report the

two inaccuracy metrics of EMT results. We observe from Table 5.2 that the regression coefficients help

improve absolute inaccuracy of estimated ER, ES, ARES and SNR. However, the absolute inaccuracy

slightly increases for MSE, and increases over 50% for MAXE. One possible reason could be that the

data points that dominate MAXE are outliers for linear regression. Compared to absolute inaccuracy, the

benefit of regression for estimation inaccuracy degrades for ES, MSE, and MAXE. This is because the

linear regression applied to Equation (5.10) implies minimizing |Rc−Re|, and |Rc| in the denominator

of Equation (5.11) is not considered. Improving the regression model to address both inaccuracy metrics

mentioned above is one of our ongoing works.

5.4 Experimental Setup and Results

To evaluate the accuracy and performance of our EMT estimation approach, we perform several

experiments. (For pessimistic evaluation, we use estimation inaccuracy in Equation (5.11) unless oth-

erwise specified.) First, we demonstrate that our approach can be applied to a four-tap finite impulse

response (FIR) filter. In the FIR experiment, the accuracies of six error metrics are evaluated. Second,

we use multiply-accumulator (MAC) circuits with different sizes to compare the accuracy and runtime

between our approach and the interval-based approach. Finally, we evaluate the accuracy of estimated
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Table 5.2: (a) Regression coefficients derived with different hardware configurations, (b) estimation
inaccuracy with and without regression, and (c) absolute estimation inaccuracy with and without

regression.

Regression Parameters

ER ES ARES MSE SNR MAXE

αIN 1.03E+00 1.00E+00 2.42E-02 1.00E+00 3.46E-01 9.40E-01

αP 1.26E+00 9.98E-01 9.76E-01 1.00E+00 7.15E-02 7.98E-01

αC -5.85E-03 5.74E-08 -5.92E-03 -5.55E-09 -1.27E+00 8.65E-05

Estimation Inaccuracy

w/o Reg. 4.15E-02 7.77E-02 8.38E+02 1.08E-01 1.35E+02 1.28E-01

with Reg. 7.40E-03 5.55E-01 2.09E+02 4.44E+04 4.04E-01 1.88E+01

Absolute Inaccuracy

w/o Reg. 4.01E-02 2.90E-05 1.09E+01 2.24E-07 2.96E+03 9.37E-04

with Reg. 7.17E-03 2.71E-05 1.46E-01 2.90E-07 1.31E+01 1.52E-03

results for randomly-generated topologies. In the experiments, we use 64-bit ETAIIMs with different k

parameters. The adders are assumed to have 60 fractional bits.

FIR filter. To demonstrate that our approach is applicable to realistic computing circuits, we estimate

EMTs for the FIR filter design illustrated in Figure 5.9(a). Lookup table characterization for each error

metric and standard deviation is performed for 12×12 different combinations of standard deviations (20,

2−2,... 2−22). For each entry in the tables, we use 90K samples to obtain standard deviations and EMTs.

The runtime for building this set of lookup tables is 1.37 hours on a 2.8GHz Intel Xeon E5-2640 Linux

workstation with 128GB of memory. With our lookup tables, we implement the flow in Figure 5.8 with

MATLAB [245].

Table 5.3 shows inaccuracy results of the estimations for each EMT. We assume that the constant

multipliers are accurate, and the adders in the FIR filter are approximate modules. In the second column

(error type), “IN” means an intrinsic EMT value generated by the approximate modules themselves, and
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Figure 5.8: (a) Our proposed approach for error estimation, and (b) the lookup tables in the

pre-characterized libraries for EMTin and ST DZ .

“P” means a propagated EMT value composed from the EMTs in previous stages. Based on the results

in Table 5.3, our approach provides accurate EMT estimations for ER, ES, MSE and MAXE metrics. For

the same testcase, the inaccuracies of the interval-based approach are 17.6% and 60.2% for ER and ES,

respectively.

Table 5.3: Estimation inaccuracy of a four-tap FIR filter shown in Figure 5.9(a).

Estimation Inaccuracy

Net Type ER ES ARES MSE SNR MAXE

NET9 IN 0.3% 6.4% 17.0% 6.4% 19.1% 0.0%

NET10 IN 1.3% 2.6% 61.9% 3.3% 10.7% 0.0%

NET11 IN 1.0% 6.3% 419.6% 6.2% 6.1% 0.0%

NET11 P 13.4% 5.8% 692.3% 5.8% 436.4% 0.7%
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Figure 5.9: Configuration of (a) finite impulse response (FIR) filter and (b) multiply-accumulator

(MAC) circuits used in the experiments.

MAC circuits. We test the accuracy and runtime of our approach against the interval-based approach for

the MAC circuits shown in Figure 5.9(b), which are the general case of the FIR filter. We use 280 MAC

circuits, having 14 different levels and 20 different configurations (parameters of each adder, constant

values Ci, and input distributions).39 We estimate EMTs for the MAC circuits using our approach and the

interval-based approach. Figures 5.10 and 5.11 show correlation plots for ER and ES, respectively. For

ER, we observe that our approach achieves 1.28× better accuracy than the interval-based approach with

8.4× faster runtime. For ES, we observe that the estimated results from the interval-based approach are

clamped to -2−20 on the right end. This is due to the saturation issue mentioned in Section 5.3.1. For the

same testcases, our approach is not affected by the saturation problem because the estimates of ES are

interpolated or extrapolated from the lookup tables.

We evaluate runtime and accuracy for increasing circuit complexity by increasing the number of

circuit levels in Figure 5.9(b). Figure 5.12(a) shows how runtime scales with circuit complexity. We ob-

serve that the runtime of error composition increases linearly for both our approach and the interval-based

approach. Our approach is 8.4× faster than the interval-based approach. Figure 5.12(b) shows inaccuracy

39Note that the multipliers are assumed to be accurate, so they only change the distribution of data but do not increase the
number of errors.
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Figure 5.10: Comparison of ER metrics between our approach and the interval-based approach.

results. Our approach demonstrates improved accuracy compared to the interval-based approach, espe-

cially for the ES metric. The inaccuracy is reduced by 3.75× compared to the interval-based approach

excluding saturation.40

Randomly generated topologies. To study the accuracy of EMT estimation with respect to the size

and topology of testcases, we use randomly generated testcases as in [110]. We use the following three

components to generate the random testcases; (i) primary inputs (PI) with different standard deviations,

(ii) adders with different hardware configurations, and (3) arbitrary connections among adders and con-

stant multipliers. We generate 50 artificial testcases with different numbers of nodes (adders or constant

multipliers). The number of nodes ranges from 10 to 30 with a step size of five. The accuracy results

for each EMT are plotted in Figure 5.13. We evaluate the estimated results from our approach with the

regression coefficients generated from the model in Section 5.3.2. In the plot, inaccuracy results from 10

different topologies are averaged for each circuit size.

40Note that when the number of nodes is small (the left side of the figure), the magnitude of estimation errors tends to be large
relative to the magnitude of data, and the inaccuracy of the interval-based approach is very high due to the saturation issue.
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Figure 5.11: Comparison of ES metrics between our approach and the interval-based approach. The
inaccuracy on the right side is (2×109).

(a) (b)

Figure 5.12: Comparison of (a) runtime for error composition and (b) inaccuracy of EMT estimation for
the MAC circuits with different testcase sizes. Our average inaccuracy improvement against the

interval-based approach is 3.75× excluding saturation.

For randomly generated circuits, we observe that ER, ES, MSE and MAXE show relatively ac-

curate results with 4.18%, 8.30%, 12.2% and 12.9% inaccuracy, respectively. Moreover, the accuracy

does not degrade as circuit complexity (number of nodes) increases. The estimates of ARES and SNR

are inaccurate (1.28×103 and 1.35×102). Inaccuracy in these metrics arises because they measure error
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relative to input data, and accurate estimation is difficult, as we have discussed in Section 5.3.3. Methods

that would accurately handle their composition are obvious directions for our future work.
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Figure 5.13: Comparison of inaccuracy with respect to the number of nodes in randomly generated
circuits.

5.5 Conclusions

We propose an approach for output quality estimation of approximate designs. Our LUT-based

approach characterizes the statistical properties of approximate hardware modules, and a regression-based

technique improves the accuracy of EMT estimation. With our composition approach, we achieve 1.36×

and 8.4× runtime improvements for library characterization and error composition, respectively. We also

achieve 3.75× accuracy improvement for ES compared to [97] [98] on a set of MAC circuits. We also

demonstrate that our approach is applicable to general designs using the randomly generated testcases

with up to 30 nodes in the configuration.

Our ongoing work seeks to improve the accuracy of EMT estimation for relative error metrics

(e.g., ARES and SNR). We will also extend our approach to other approximate modules, including mul-

tipliers. In addition, we are working to develop a synthesis flow for approximate circuits using our EMT
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estimation approach. We further anticipate broadening our current studies to include more approximate

arithmetic units and different input distributions. Currently, we assume that the input distributions are

given; however, different applications have different distributions. Our follow-on work will seek (i) ap-

proaches that track the change of input distributions and reconfigure the hardware during runtime, in order

to adapt the distributions such that error metric requirements are maintained; and (ii) approaches that con-

struct error metrics by decomposing arbitrary distributions into combinations of some basis distributions.
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Chapter 6

Modeling and Optimization for Stochastic

Computing

This chapter presents design methodologies stochastic computing. To enable more aggressive

energy saving by exploiting stochastic computing, we exploit the timing-error resilience of stochastic

computing to achieve aggressive voltage scaling. In the literature, we are among the first to introduce and

exploit skew tolerance to save energy in stochastic circuit design, pointed out by Najafi et al. [169]. We

demonstrate significant energy savings without severe output quality degradation compared to conven-

tional binary computation paradigms.

6.1 Background of Stochastic Computing and Related Works

As we approach the limits of the traditional Moore’s-Law scaling, energy and power constraints

pose major challenges for IC designers. Many embedded systems such as wearable devices and medical

implants have strict power and energy requirements due to battery capacity and physiological limita-
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tions [136]. For example, body tissue may be damaged by excessive power dissipation in a poorly de-

signed implantable circuit [64]. Various approaches have been proposed to overcome such energy/power

problems. Notably, embedded systems are usually designed for specific applications; this allows designers

to use dedicated hardware with more desirable physical and/or logical characteristics than conventional

designs.

Stochastic computing (SC) [76] [185] has been proposed as an alternative low-power computing

technique for several important embedded processing applications. SC circuits perform complex compu-

tations on (pseudo-)random bit-streams by means of simple logic gates. Figure 6.1 shows an SC circuit

implementing the function Z = 1
4 + 1

2 X1X2. The number represented by each bit-stream is the probability

of seeing a 1 in it. For example, the stochastic numbers (SNs) X1,X2,Z appearing at x1,x2,z represent

9
12 , 8

12 , 6
12 , respectively. The circuit has two primary inputs x1 and x2, and two auxiliary inputs r1 and

r2. The auxiliary inputs are constant SNs of value 1
2 . The NAND gate of Figure 6.1 implements the

stochastic function Y1 = 1−X1X2, which involves multiplication and subtraction. The OR gate imple-

ments Y2 = R1 + R2−R1R2, and since R1 = R2 = 1
2 , we have Y2 = 3

4 . Finally, the XOR gate implements

the function Z = Y1 +Y2−2Y1Y2 = 1
4 + 1

2 X1X2.

x1
101110110111

110110110101

010011011100

100110010011

110111011111

101110010001x2

r1
r2

z

y1

y2

011001001110

Figure 6.1: Stochastic computing circuit implementing the function Z = 1
4 + 1

2 X1X2. The stochastic
number represented by each bit-stream is the probability of seeing a 1 in a randomly chosen position.

The main benefit of SC, as is evident from Figure 6.1, is that simple logic gates implement

complicated arithmetic functions. For example, a single AND gate implements multiplication. Compared
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to a conventional binary multiplier, the SC multiplier is orders of magnitudes smaller in size. This however

comes at the cost of speed. SC circuits need to operate on bit-streams that grow exponentially as the

precision increases, thus they take much more time to complete a computation. This has always been

the main drawback of SC. The exponential loss in runtime not only hurts the performance, but also leads

to excessive energy consumption when long bit-streams are used [166]. Consequently, SC circuits are

mainly useful for low-precision computations [4]. Some recent work has focused on addressing this

problem by reducing the runtime of SC circuits through the use of deterministic number sources [8], or

by eliminating the power overhead of the clock distribution tree [168].

This chapter exploits SC’s error tolerance in order to reduce the energy consumption of SC cir-

cuits via voltage/frequency scaling. SC circuits are error-tolerant because a single error on one of the

bits has minimal effect on the numerical value of a long bit-stream, and multiple errors tend to cancel

each other out. Finally, SC circuits provide a natural energy-accuracy tradeoff: the bit-stream length N,

i.e., the number of clock cycles an SC circuit uses to perform a computation, directly affects its energy

consumption and its accuracy.

SC, when first introduced in the 1960s, was attractive because it allowed simple implementation

of arithmetic functions. However, it was dominated by conventional binary computing in the decades that

followed, mainly because transistors became cheaper and performance became the primary design target.

Throughout those decades, SC remained useful in certain applications, including efficient implementation

of artificial neural networks [126] [26] [32].

After the turn of the century, SC regained attention because of its potential in low-power em-

bedded processing applications. Some recent successful applications include low-density parity check

(LDPC) decoding [77] [137] [81] and image processing [146] [12] [74]. Other recent applications of SC

include data recognition and mining [60] [167], machine learning [82], and dynamical systems [217].
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Figure 6.2: Example showing how a representative SC circuit (a) operates under aggressive

voltage/frequency scaling and (b) shows the normal mode of operation, in which the period of the clock
is the same as the propagation delay of the circuit. In this case, the input remains unchanged until the
propagation to the output is complete. (c) shows a voltage/frequency scaled scenario where the clock
period is approximately three times smaller than the propagation delay of the circuit. As soon as the

input propagates through the first level, a new input is applied. The circuit levels therefore operate like a
pipeline.

Note that [137] and [74] have silicon-validated SC designs that outperform their conventional binary

counterparts.

As mentioned, we investigate the application of low-power techniques such as voltage scaling

to SC with the goal of obtaining circuits with ultra-low energy needs. Voltage scaling, i.e., reducing the

supply voltage of a circuit, reduces the circuit’s energy consumption but increases its latency. If the appli-

cation allows some latency overhead, aggressive voltage scaling can be employed at the cost of occasional

erroneous outputs. Thus, voltage scaling allows designers to trade accuracy for energy. This approach has
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been extensively studied in the non-SC literature [89] [92] [112], and methods of tolerating and/or cor-

recting timing errors have been proposed. However, the probability of timing violations increases rapidly

with voltage scaling, necessitating complicated error-correcting methods.

In this chapter, we show that representative SC circuits can tolerate up to 40% voltage reduction

with no significant error. Figure 6.2 shows an example circuit and illustrates why, intuitively, we can

aggressively scale the voltage/frequency of SC circuits. The idea is that we can apply new sets of inputs

before the previous inputs have completely propagated through the circuit. In the ideal scenario (shown in

Figure 6.2(c)), all the input signals propagate through different levels with the same speed; this scenario

is very similar to the concept of wave-pipelining [28].

A major contribution of this chapter is an optimization method that improves the accuracy-energy

tradeoff of SC circuits under voltage/frequency scaling. This is based on the observations of Figure 6.2.

In order to achieve the ideal scenario shown in Figure 6.2(c), we need to modify the circuit to make sure

signals propagate simultaneously. For this purpose, we employ synthesis and physical design techniques

that keep the circuit’s functionality intact, while effectively winning back any lost accuracy.

In the synthesis step, we employ circuit structures that are naturally balanced. Note that this is

different from logic-level balancing of circuits because we look at circuits that are stochastically equiva-

lent [53], meaning that their underlying logic function may not be the same, even though they implement

the same stochastic function. Existing logic-level tools do not understand such equivalences.

Ideally, a conventional P&R (place and route) flow balances path delays as much as possible (e.g.,

trading the slacks of non-critical paths for power and area reductions). However, due to design constraints

(e.g., maximum transition or maximum capacitance) and limited gate sizes, path delays are typically not

perfectly balanced, especially when the paths have large differences in their depths. Figure 6.3 illustrates

our proposed optimization. Assume that gate G1 is already sized to its smallest size and is using high
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Figure 6.3: (a) SC circuit implemented via conventional P&R tools, where the main objectives are area
and power reduction. (b) SC circuit implemented via the proposed optimization flow, where path delays

are balanced to improve accuracy. Inserted buffers are shown in red.

Vth (threshold voltage), but due to the difference in the depths of the paths, delays from x{1,2,3,4} to z and

those from x{5,6} to z are still not completely balanced. Our study shows (in Section 6.3) that such un-

balanced path delays increase the computation error of voltage/frequency-scaled SC circuits. To improve

the computation accuracy of SC circuits, we propose to further balance path delays using buffer insertion

and wire detouring. As indicated in Figure 6.3(b), we insert buffers (shown in red) into the non-critical

path. Although the inserted buffers incur a power penalty, they enable more frequency and/or voltage

scaling and hence reduce the latency and the energy consumption of the circuit for a given accuracy re-

quirement. To our knowledge, this is the first time such techniques have been employed in the context of

SC. In addition, to guide the design space exploration, we demonstrate an improved Markov chain model

of computation errors in Section 6.2.3 based on the model from [6]. We improve the modeling accuracy

in [6] by applying least squares regression.

Note that the term “stochastic computing” has also been used recently to describe conventional

circuits involving probabilistic behavior, including scenarios with voltage/frequency scaling [197] [199].

What we refer to as SC is the computation technique that was proposed in the 1960s [76] [185], and is

unrelated to the concepts used in [197] [199].
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In this chapter, we focus only on combinational SC circuits. Qian and Riedel [190] and Qian

et al. [191] show a connection between combinational SC circuits and Bernstein polynomials [157] and

prove that SC combinational circuits only implement certain types of polynomial functions. In this chap-

ter, we use ReSC [191] as the main method of implementing most of our testcases. As we will discuss

later in the chapter, the rival design method [7] is not as energy-efficient as ReSC.

We note that sequential SC circuits that implement a larger class of functions also exist in the

literature [146] [196] [26]. Brown and Card [26] are among the first to develop the theory of sequential

SC circuits in the context of neural networks. In particular, they implement a sigmoid function by using a

simple finite-state machine. However, addressing sequential circuits is beyond the scope of this chapter;

we leave it as a subject for future work. The Sigmoid testcase used in this chapter is a combinational

implementation and is unrelated to the circuit designed by [26]. We also note that combinational circuits

can implement non-polynomial functions by exploiting correlation [9], and that our optimization method

is capable of handling them.

This chapter is organized as follows. Section 6.1 gives a brief review of SC, as well as an error

analysis under voltage/frequency scaling conditions. It also illustrates the effect of stochastic number

generation on the accuracy of SC circuits. Section 6.2 poses two related optimization problems, along

with a straightforward way to find the minimum-energy operating point of an SC circuit for a desired

accuracy level. It also discusses a fast error estimation method for SC circuits. Section 6.3 examines

the opportunities for optimizing SC circuits at different voltage levels. Section 6.4 presents experimental

results and conclusions are given in Section 6.5.

A stochastic circuit C is a logic circuit that operates on (pseudo-)random bit-streams, called

stochastic numbers (SNs). Each wire xi of C carries an SN Xi. The information conveyed by Xi, also

conveniently denoted by Xi when no confusion is possible, is the rate or frequency of its 1-pulses and is
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independent of bit-stream length. Formally, a bit-stream of length N with N1 1’s and N−N1 0’s is called

an SN with value or magnitude Xi = N1/N. This is usually interpreted as the probability of seeing a 1 in

a randomly chosen position of the bit-stream [76]. SN values range over the unit interval [0,1], and their

precision is determined by N.

Comparatork
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Figure 6.4: Basic SC components: (a) multiplier, (b) scaled adder, (c) stochastic number generator, and
(d) stochastic-to-binary converter.

Figure 6.4 shows several basic SC components. As mentioned earlier, a single AND-gate (shown

in Figure 6.4(a)) implements SC multiplication. Figure 6.4(b) shows a multiplexer that implements SC

addition. Since SNs are in the unit interval, the sum of two SNs falls into the interval [0,2] which cannot

be represented by an SN. To mitigate this problem, a scaling factor of 1/2 is usually applied to bring

the result back into the unit interval. Thus, the circuit of Figure 6.4(b) implements the scaled addition

Z = (X +Y )/2.

When used along with conventional binary circuits, the inputs and outputs of stochastic circuits

must go through a conversion process. Figure 6.4(c) shows a binary-to-stochastic converter which is

usually referred to as stochastic number generator (SNG). At each clock cycle, the SNG compares its

k-bit binary input with a uniformly distributed random number. As a result, the probability of seeing a

1 at the output of the comparator becomes proportional to the binary input. Several studies have shown

that the random number generator of Figure 6.4(c) can sometimes be replaced by simple counters [8].

As we will show later in this section, the choice of random number generators can impact the power and
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accuracy of an SC circuit. Converting SNs back to binary form can be done by counting the number of

1’s, so the binary counter shown in Figure 6.4(d) suffices for this task.

6.1.1 Error Analysis

The inherent error tolerance of SC circuits stems from the fact that a single bit-flip in an SN of

length N alters its magnitude by 1/N, which is insignificant when N is sufficiently large. For example, the

SN at the output of the circuit in Figure 6.1, where N = 12, represents Z = 6
12 . If one of the 1’s or 0’s of

the bit-stream changes due to an error, the erroneous SN is Z∗ = Z± 1
12 , a minimal change. Furthermore,

multiple errors tend to cancel each other out if they occur in opposite directions, since it is the number of

1’s, and not their positions, that determines the magnitude of an SN [51] [189] [191]. The probabilistic

nature of SC circuits, along with the cancellation possibilities, makes it difficult to evaluate the accuracy

of SC circuits.

Even though we will be dealing with the effect of timing errors in this chapter, it is worth men-

tioning how errors of bit-flip type affect SNs. The mean square error (MSE) of an SN in the presence of

bit-flips can be calculated by the following equation [51]. Assuming Z is the error-free SN and Z∗ is the

erroneous SN, we have

MSE = E[(Z−Z∗)2] = p2
e · (1−2 ·Z)2 +

1
N
·
(

Z · (1−Z)+ pe · (1− pe) · (1−4 ·Z · (1−Z))
)

(6.1)

where E[∗] denotes the expected value (averaging) operator, pe is the probability of getting a bit-flip on

each bit of the SN, and N is the SN’s length. Equation (6.1) reflects the effect of error cancellation:

when Z = 1/2, the error becomes zero for large N. However, the cancellation does not help much when

Z 6= 1/2. In the extreme case of Z = 0 (or Z = 1), the error is maximized because no cancellation occurs.

This chapter investigates the application of voltage and frequency scaling to SC circuits. Voltage

scaling refers to the systematic reduction of the power supply voltage (i.e., “undervolting”), which is
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a standard technique used to reduce the power consumption of digital circuits. However, such scaling

tends to produce timing violations that may cause output errors. Overly aggressive voltage scaling can

induce many timing errors in conventional binary circuits and the resulting degradation of computational

correctness can be catastrophic. By frequency scaling, we refer to the clocking of the circuit at higher than

its nominal speed, at the cost of timing errors. It is possible to use design methods such as Razor [71] to

make conventional circuits more resilient to timing errors that are induced by frequency scaling. However,

these techniques are only effective when the error rate is relatively low. SC circuits, on the other hand,

have the potential to achieve graceful degradation of computational correctness when the voltage (or

frequency) scaling is extremely aggressive and the timing error rate is relatively high. In addition, we

may also be able to retrieve lost accuracy by employing the optimization method proposed in this chapter.

The types of errors that affect an SC circuit are quite different than bit-flips when voltage (or

frequency) scaling is applied. In general, SC circuits tolerate errors of the bit-flip type, so one would

expect them to tolerate scaling-induced timing errors as well. As we show next, SC circuits are much

better at tolerating such timing errors.

Timing errors may occur in an SN Z when a transition from 0 to 1 is delayed, in which case the

1 will not be captured in time, and the magnitude of Z will be reduced by 1/N, where N is the bit-stream

length. Similarly, on a 1-to-0 transition, the 0 may be missed because of a timing error, and the magnitude

of Z will increase by 1/N. Since the numbers of 0-to-1 and 1-to-0 transitions are almost the same for any

bit-stream (the difference is at most one), these timing errors tend to cancel each other out. Figure 6.5

shows an example of an SN affected by transition errors. In this figure, Z has three 0-to-1 and three 1-to-0

transitions denoted by arrows. Due to delay errors, some of the transitions are missed in the erroneous

case Z∗, but the resulting number value remains the same due to error cancellation. In a very recent work,

Najafi et al. [168] show that SC circuits can tolerate timing variations caused by unsynchronized clocks.
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Their observation is in agreement with the results of our work. Similarly, Perez-Andrade et al. [184] have

shown that SC LDPC decoders can operate satisfactorily when clock-scaling-induced timing errors are

present.

 0 0  1 1  0 0 0  1  0 0  1 1  0 0 (5/16)

 0 0 1 0 01 1 0 01 1 0 0 0 (5/16)

Error-free Z 

Erroneous Z*  0 0

 0 0

Figure 6.5: Effect of delay errors on an SN.

Now let us denote the 0-to-1 and 1-to-0 error rates by e0→1 and e1→0, respectively. We want to

analyze their effect on an SN Z. We assume that the event of having a transition error at a certain clock

cycle is an independent sample from a Bernoulli random variable with parameter e0→1 or e1→0, depending

on the direction of the transition. This simplifying assumption is not a precise model, because after all,

the underlying circuit is deterministic. However, there are several phenomena that produce seemingly

random behavior in voltage/frequency-scaled SC circuits. First, since (pseudo-)random bit-streams are

used in most cases, signals in two consecutive clock cycles will be statistically independent. This implies

that an input signal does not always activate the same circuit paths; the activated paths depend on the

signals of the previous clock cycles, which are pseudo-random. Second, the output of an SC circuit

is usually collected at a flip-flop of a counter, and due to timing violations, the output flip-flop may

become metastable and produce a seemingly random result. Third, when the supply voltage is reduced,

the circuits become more susceptible to environment noise of a random nature. We do not consider the

direct effect of each of these phenomena in this chapter; we model their collective effect by a Bernoulli

random variable. We note that if deterministic bit-streams are used, as in our EdgeDetection testcase, the

simplifying assumption of Bernoulli random variable fails to model the circuit behavior correctly.

137



For simplicity, we also assume that Z has equal numbers of 0-to-1 and 1-to-0 transitions. These

numbers depend on two factors: the value of Z and its “activity”. If Z = 0 or Z = 1, then the number of

transitions will be zero. The maximum number of transitions usually occurs when Z = 1/2, if (pseudo-

)random number sources are used in generating Z. But as we will show in Section 6.1.2, the choice of

the random number source affects the number of transitions. We define the activity factor A as a number

between 0 and 1 with the following properties. When A = 1 in Z, the number of transitions becomes

maximum, and when it is 0, the number of transitions drops to the minimum. In the case of Z = 1/2, the

maximum number of transitions will be N, where N is the length of the SN. This corresponds to an SN

that transitions on every clock cycle, e.g., 01010101010... The SN Z = 1/2 with A = 0 corresponds to a

bit-stream with the minimum number of transitions, e.g., 00000001111....

We are now ready to calculate the effect of transition errors. Following the analysis in [51], we

observe that they cause output errors in two ways; they change the average value and the variance of Z∗.

For the error-free number Z of length N and activity factor A we have

E[Z∗] =
1
N
·E[Z ·N−N0→1 · e0→1 +N1→0 · e1→0]

where ei→ j denotes the error rate on i-to- j transitions and Ni→ j denotes the number of i-to- j transitions

calculated by

N0→1 = N1→0 = 2 ·Z · (1−Z) ·A ·N

Hence

E[Z∗] = Z +2 ·Z · (1−Z) ·E[e1→0− e0→1]) ·A (6.2)

Equation (6.2) has two important implications. First, and more importantly, if e0→1 = e1→0, then

Z and Z∗ will be equal on average. Second, the activity factor A has also a direct effect on the error. We

will address impact of the activity factor in Section 6.1.2. For now, let us assume that e0→1 = e1→0 = e

is correct. Even though the expected value of Z∗ is the same as the error-free Z, we may still see random
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fluctuations due to the probabilistic nature of e0→1 and e1→0. Once again, if only deterministic signals are

used, no random fluctuation will be seen. We compute the MSE using an approach similar to that in [51],

i.e.,

MSE = E[(Z−Z∗)2] =
1

N2 ·E
[(

Z ·N− (Z ·N−N∗0→1 +N∗1→0)
)2]

in which N∗i→ j is a random variable denoting the number of i-to- j transition errors. We now have

MSE =
1

N2 ·E
[
(N∗0→1−N∗1→0)

2] =
1

N2 ·
(
E[(N∗0→1)

2]+E[(N∗1→0)
2]−2E[N∗0→1 ·N∗1→0]

)

Since N∗0→1 is a binomial random variable with parameters N0→1 and e, we can evaluate the first

term of the above equation by finding the second moment of N∗0→1.

E[(N∗0→1)
2] = e2 ·N0→1 · (N0→1−1)+ e ·N0→1

and, since E[(N∗0→1)
2] = E[(N∗1→0)

2], we get

MSE =
1
N
·
(

4 ·A ·Z · (1−Z) · e · (1− e)
)

(6.3)

Equation (6.3) has several important and counterintuitive implications:

• The errors due to voltage scaling can be reduced by increasing the number length N. While it is

well known that increasing N reduces the random fluctuation errors in SC [76], Chen et al. have

observed that when bit-flips are present, increasing N will not help [51].

• The activity factor A can also play an important role, since reducing A decreases the MSE.

• If the transition error rate e = 1/2, then the error is maximized. Obviously, if we set e = 0, we

reduce the error to zero, but somewhat surprisingly, if we increase the error rate to e = 1, we also

get MSE = 0. This is a scenario in which every transition of Z is erroneous, and since the numbers

of transitions are equal, the errors all cancel each other out. Note that when e = 1, no random
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fluctuation is seen in the circuit, and the circuit behaves deterministically. This scenario is similar

to the desirable behavior shown in Figure 6.2(c).

Among the three preceding implications, increasing N is the least desirable because it increases

the runtime of the circuit, and hence its energy consumption. The activity factor can be controlled by

generating suitable SNs at the input (see Section 6.1.2). Balancing the transition errors e0→1 and e1→0 is

the main target of this chapter, and will be addressed in the following sections.

We emphasize that Equations (6.2) and (6.3) are based on several simplifying assumptions and

only reflect the result of delay errors on a single signal Z. In reality, the assumptions may not hold

due to circuit complications. For example, the assumption of having e0→1 = e1→0, which is based on

Equation (6.2), leads to desirable error reduction, and cannot be easily achieved in real-world examples.

We use Equation (6.2) as a guideline or ideal case that we want to approach. Similarly, Equation (6.3)

sets guidelines for error reduction, some of which are not easily achieved. For instance, the e = 1 scenario

where the final error becomes zero is never seen in our experiments. Also, A = 0 is another unachievable

case that reduces the final error to zero. However, as we show next, reducing A decreases the final error.

6.1.2 Stochastic Number Generation

Stochastic number generation is an important step of a stochastic computation and directly affects

parameters such as accuracy and area cost. It has been studied fairly extensively in the SC literature [101]

[192]. While most of the early work on SC assumed that SNs must be (pseudo-)random, several recent

studies suggest that deterministic SNs can also be successfully employed in SC [74] [8].

Equation (6.3) shows that the activity factor A of an SN directly affects its error. Interestingly,

the activity factor also affects dynamic power consumption [183], so reducing A leads to both power and

error reduction. While A cannot be completely fixed in a general SC circuit, it is possible to control it
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to some extent by a careful choice of stochastic number generators. Figure 6.6 shows three SNs with

different activity factors representing 1/2. The most commonly used method of SN generation, i.e., using

(pseudo-)random number generators [101], yields numbers with medium activity factor. The SN genera-

tion method of [8] yields SNs with high activity factors, and hence is not suitable for the purposes of this

chapter. The low activity factor SN shown in Figure 6.6 is generated by the method of [74]. This number

has only one transition, so it is very tolerant of transition errors and consumes very little dynamic power.

Figure 6.7 compares the impact of different SN generation methods on a voltage-overscaled SC

circuit. The supply voltage of the circuit under test has been reduced from the nominal value of Vdd =

1.0V to Vdd = 0.72V . As a result, the output Z∗ deviates from the correct output Z. As seen in the figure,

the deviation is higher when a high-activity stochastic number generator (SNG) is used. Based on this

observation, we employ the SN generation method of [74] to the extent allowed by the SC design. Note

that SC circuits usually require independence (zero correlation) among their inputs, so in many cases it is

not possible to generate all the inputs using the same method. In other words, we do not have complete

control over the activity factors of all the signals.

0000000011111111Low activity factor A ≃ 0 

0010011010111100

0101010101010101

Medium activity factor A = 1/2 

High activity factor A = 1 

Figure 6.6: Three SNs with different activity factors representing Z = 1/2.

6.2 Problem Description and Proposed Solutions

This section defines the two main problems that are addressed in this chapter. An error estimation

method, which allows quick evaluation of SC circuits under voltage/frequency scaling, is also discussed.
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6.2.1 Finding the Minimum Energy Point

First, we pose and answer the following question: “Given an SC circuit, what is the lowest energy

required for computation with a given required accuracy (errgoal)?” To quantify the accuracy of a circuit,

several error metrics, such as maximum error, MSE, etc. can be employed. From this point forward, we

use the “average error” metric

err = E[|Z−Z∗|]

where Z is the correct or “golden” value of the circuit output and Z∗ is the erroneous output. The difference

between Z and Z∗ is averaged over all possible inputs. This average-error metric will be used to measure

the accuracy of both SC and conventional binary circuits. It is important to note that our choice of average

error as the accuracy metric is because of its simplicity. The general approach that we propose below is

not limited to a specific error metric. However, due to the probabilistic nature of SC circuits, all of the

deduced error bounds will be probabilistic.

The length N of the SNs used in a stochastic computation controls the accuracy and the total

energy consumed by the circuit. Thus, by decreasing N, one can trade away accuracy for energy or
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power savings. This natural tradeoff has been successfully used in the past [12]. Our work here shows

that voltage/frequency scaling adds new dimensions to the accuracy-power tradeoff possibilities for SC

circuits. In effect, SC circuits have three control knobs – (i) supply voltage Vdd , (ii) clock frequency

f , and (iii) bit-stream length N (or, equivalently, clock cycle count) – that determine their accuracy and

energy/power consumption. Finding the best operating point for a circuit is thus a new and challenging

problem.

Previous methods search for the minimum N for which the average error is less than the given

errgoal . However, as discussed, it is possible to adjust all three parameters (supply voltage Vdd , clock

frequency f , and SN length N) concurrently in order to find the best solution. We will refer to the triplet

(Vdd , f ,N) as an operating point of an SC circuit. We now formalize the above question in the following

problem statement.

Minimum-Energy Operating Point (MEOP) Problem. Given an SC circuit, find the operating point

(Vdd , f ,N) that has minimum energy consumption while satisfying the accuracy requirement of average

error ≤ errgoal .41

In addition to providing a solution to the MEOP problem, which we do in Section 6.2.2 below,

we also consider optimization to improve error behavior under voltage scaling conditions. Excessive

supply-voltage downscaling and/or increase of the operating frequency can result in the misalignment of

signal actual arrival times (AAT) at output z with respect to the clock capture phase. Without loss of

generality, for any pair of timing paths from inputs xi and x j to output z in an SC circuit, we assume the

corresponding arrival times at z are AATi and AATj, respectively, such that ki · T ≤ AATi ≤ (ki + 1) · T

and k j ·T ≤ AATj ≤ (k j +1) ·T , where T is the clock period. We say that these two timing paths exhibit

41It is practically impossible to search the entire solution space given that f and Vdd are continuous, and N is an arbitrary
integer. Here “minimum energy” refers to the minimum energy point among a given set of (Vdd , f ,N) combinations. Since
varying N has been extensively studied in the literature, we only consider one choice of N in our search space. This means that
the energy savings reported in this chapter are obtained only from voltage/frequency scaling.
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arrival time misalignment if ki 6= k j. In other words, the two signals cannot be captured in the same clock

cycle. We will show that the arrival time misalignment has significant impact on computation accuracy

for SC circuits. Figure 6.8 shows one example of two timing paths (arcs x1− z, x2− z) to illustrate that

arrival time alignment matters. In the example, Case (a) assumes no timing violation for both paths. This

case generates the correct output sequence 1, 0, 1. Case (b) has timing violations on both timing paths.

However, the two arrival times are captured within the same clock cycle (i.e., T2). Therefore, there is no

arrival time misalignment. Although both signals are delayed by one cycle, the output sequence at z is

still correct, i.e., it is 1, 0, 1.42 In Case (c), due to unbalanced path delay, signals from x1 and x2 arrive at

z in two different cycles. Thus, Case (c) has an arrival time misalignment which leads to a computation

error, as shown by the red-dotted oval in Figure 6.8. Moreover, the output sequence cannot be recovered

by adjusting the capture phase.

T1 T2 T3 

x2 

x1 z 

T4 T1 T2 T3 T4 T1 T2 T3 T4 

x1 

x2 

z 

1 0 1 1 0 1 1 1 1 

(a) (b) (c) 

Figure 6.8: Misalignment of arrival times at z with respect to the clock capture phase can lead to a
computation error.

Motivated by the discussion above, we propose to employ logical and physical design techniques

to align the arrival times at the output of an SC circuit. As observed in Equation (6.2), it is desirable to

have equal error rates on 0-to-1 and 1-to-0 transitions (e0→1 and e1→0), because balanced errors reduce
42In Case (b), the output at the end of T2 (derived from propagated signals in T1 of Case (a)), can be incorrect. However, the

corresponding impact on computational accuracy is negligible given that N is typically large, e.g., N = 4,096.
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the average error. Accordingly, we define the following problem statement, whose solution is discussed

in Section 6.3 below.

SC Circuit Optimization (SCOpt) Problem. Given a stochastic function and a range of supply voltages,

find a circuit implementation that has minimum average error across the given supply voltage range.

6.2.2 Solution of the MEOP Problem

We now present our solution to the MEOP problem defined in the previous section. Briefly, given

an SC circuit, we want to find the most energy-efficient operating point (Vdd , f , N) for a given accuracy

metric. Our approach to this problem is a straightforward search within the operating-point space. In

other words, we try different operating points and, for each, evaluate the accuracy and energy of the

corresponding circuit. We then choose the point that has the lowest energy while satisfying the accuracy

requirements.

Unlike conventional binary circuits, errors in SC circuits tend to cancel each other out. In addi-

tion, SC circuits have a non-deterministic nature, i.e., their behavior can be described by probabilities. For

these reasons, evaluating the accuracy of SC circuits is not trivial. Exhaustive simulation can be used to

evaluate the accuracy of small stochastic circuits. However, for larger circuits it is impractical to perform

exhaustive simulation for every operating point. With this in mind, we propose a method for fast error

estimation. We note that our search strategy is not novel, but we are proposing a new model that enables

fast exploration of the solution space.

6.2.3 Error Estimation using a Markov Chain

We propose a Markov chain (MC) model [80] to estimate errors. This model assumes that an

SC circuit involving timing errors can be in correct or incorrect states. In a correct state, the circuit is
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producing the same output as the circuit with no timing errors. Since there are two possible output values,

we have two correct states: C0 in which the output is 0, and C1 in which the output is 1 (Figure 6.9).

In addition to the correct states, there are four incorrect ones. In an incorrect state, the SC circuit is

producing an incorrect result due to a timing violation. Timing violations occur in two forms: (i) delay

errors that appear when a 0-to-1 or 1-to-0 transition is missed at the output, and (ii) glitches that appear

when the output was not supposed to have a transition. We distinguish between these two error types and

allocate different states to them. State Di (i ∈ {0,1}) is a state in which the output is the incorrect value

i due to a delay error, and Gi is a state caused by a glitch in the output signal. Table 6.1 summarizes the

MC model states.

Table 6.1: Description of each state in the MC model.

Term Meaning

C0 Output is 0 and is correct

C1 Output is 1 and is correct

D0 Output is 0 and is incorrect due to a delay error

D1 Output is 1 and is incorrect due to a delay error

G0 Output is 0 and is incorrect due to a glitch

G1 Output is 1 and is incorrect due to a glitch

The edges of the MC model indicate the transition probabilities between the states. For simplicity,

we only show edges for the error cases and assume that the output magnitude is 0.5. In general, the

magnitude of the output also affects the transition probabilities. Furthermore, there are implicit edges

that are the complements of the shown edges and land on correct states. For instance, the implicit edge

that goes from C0 to C1 is the complement of the edge that goes from C0 to D0, and so has transition

probability 1− pe1. As an example, let us assume that pe1 = 0.1. This means that if the circuit is in state

C0, and the next output is going to be 1, there is a 10% chance that the output transition is not captured
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Figure 6.9: Markov chain (MC) model for the proposed error estimation approach. The states are
described in Table 6.1.

due to a delay error, and hence the circuit lands in D0 with probability pe1. The other 90% of the time,

the transition is successfully made and the circuit goes to the correct state C1.

Figure 6.10: Flow to construct MC model and estimate computation errors across various operating
points.

If the transition probabilities are known, we can find the equilibrium probability, i.e., the station-

ary distribution, of the MC and then we can evaluate the accuracy of the circuit in question. We do so

by calculating the probability of seeing a 1 at the output of the circuit, i.e., the probability of being in

states C1, D1, or G1, and comparing it with the correct output probability. Figure 6.10 illustrates our MC-

based error estimation flow. We obtain the transition probabilities by generating a small input sample set
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(uniformly selected from the input space) and simulating the circuit. We perform logic simulation based

on gate-level netlists. We then gather statistics for the transition rates between different states of the MC

model. The size of the sample set determines the tradeoff between simulation runtime and the accuracy of

the constructed MC model. We gradually increase the input sample size and find that in our testcases, the

transition probabilities always converge when the input sample size is less than or equal to 20 (increasing

the sample size to 21 does not lead to a significant change in the collected data). We therefore use 20

input samples in our experiments. Once the transition probabilities are estimated, we plug them into the

MC model of Figure 6.9 and evaluate the accuracy of the circuit.

Our experimental results show that although the estimated errors from our MC model correlate

well with the actual errors from simulation, they are typically pessimistic. We therefore apply a least

squares regression (LSQR) technique to improve the estimation accuracy. The LSQR step uses the final

error values observed during the simulations. To further clarify, we simulate the circuits for 20 evenly

distributed input samples from the big space of possible inputs. We collect two data sets from the simula-

tions: (i) transition probabilities that are used to construct the MC model and (ii) final error values that are

used to correct the MC model. Figure 6.11 shows an example where the LSQR technique improves the

estimation accuracy. The MC model enables fast design space exploration by avoiding exhaustive simu-

lation. Note that the MC model is constructed only once for each (design, operating point) combination.

We verify our modeling flow by comparing the average error values predicted by the MC model

(i.e., MC + LSQR) and by post-layout simulation. We use six representative testcases throughout this

chapter. These testcases are mostly from image processing and artificial neural network applications. A

list of the testcases appears in Section 6.4. Although the MC model can be employed in all cases, it is

mostly useful for the bigger testcases (GammaCorrection [191], Neuron [26], Sigmoid and BilateralFilter)

since exhaustive simulation would be time consuming in these cases.
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Figure 6.11: Distribution of the estimation errors across different operating points. Left: Estimation
from the MC model without LSQR (i.e., the method proposed earlier in [6]) is pessimistic. Right:

Application of the LSQR technique significantly improves the estimation accuracy.

After logic synthesis, placement and routing (SP&R), each testcase is simulated in Cadence NC-

Verilog [236] with delays that are annotated from the SP&R flow results. To show the ability of the MC

model to predict errors under aggressive voltage and frequency scaling, the circuit is signed off at Vdd =

1.0V , worst process corner, 125◦C; it is then operated at lower voltages (Vdd = {0.6, 0.64, ...0.96}V) and

boosted clock frequencies (e.g., up to 5× of the signoff frequency).

Figure 6.12 shows that the predicted average errors are well-correlated with the post-layout sim-

ulation results of the majority of the testcases. The MC model does not perform well for small test-

cases (EdgeDetection and PolySmall) mainly because they exhibit deterministic behavior (especially the

EdgeDetection testcase). But as noted, the MC model may not be useful in small testcases, since exhaus-

tive simulation is feasible and fast.

The estimation error is relatively larger in the low-error cases (e.g., GammaCorrection) compared

to the high-error cases (e.g., Neuron). The low-error cases happen when the transition errors e0→1 and

e1→0 are either very small or very large. In such cases, the behavior of the circuit becomes mostly

deterministic. For example, as discussed along with Equation (6.3), when e0→1 = e1→0 = 1, all the
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transitions acquire an error, yielding a zero error for the SN. Our MC model’s main limitation is that it

cannot model such deterministic scenarios.

Figure 6.12: Plots showing correlation between the errors estimated by our proposed Markov chain
(MC) model and the errors obtained from post-layout simulations. A 25% margin added to the MC

estimated errors is sufficient to guard against small discrepancies for most of the testcases.

Furthermore, the MC error estimation involves some discrepancies, as seen in Figure 6.12. We

observe that in most of our testcases, a 25% margin is sufficient to guard against the discrepancies of the

larger testcases. However, this makes the MC model pessimistic; we may discard acceptable operating

points. As we discuss in Section 6.4, using the MC model does not always find the optimum operating

point that is found via exhaustive simulation. Nevertheless, we believe that the MC model is still useful

for the following scenarios: (i) estimating the error of a big circuit for which exhaustive simulation is

impossible, and (ii) exploring the huge space of operating points.

To further clarify the second scenario, consider an MEOP problem with errgoal = 0.01 on a

relatively large circuit. Our approach is to search the space of possible operating points and choose one
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that meets the errgoal with the least amount of energy consumption. For each operating point, we first

run the MC model to quickly assess its error behavior. If the MC model shows a high error, say 0.1, then

we can safely dismiss the current operating point and move on to the next one. Otherwise, we perform

exhaustive simulation on the operating point to precisely assess its error behavior. Thus, the MC model

saves valuable simulation time for many operating points.

6.3 Methodology for Circuit-Level Optimization

The previous section dealt with a scenario in which an SC circuit is already implemented and

we can only choose an operating point for it, i.e., the MEOP problem defined in Section 6.1. In this

section, we consider how to optimize the circuit using logic synthesis and physical design techniques to

improve its energy efficiency (the SCOpt problem). We first discuss the timing behavior of SC circuits

and highlight the main causes of errors, as well as the opportunities to eliminate them in Section 6.3.1.

We then discuss the proposed optimization methods in Section 6.3.2.

6.3.1 Arrival Time Misalignment Matters

To examine the impact of arrival time misalignment on computation accuracy in an SC circuit,

we insert and gradually increase the delays at the circuit’s inputs; in the example shown in Figure 6.13,

we sweep the delay from 0ps to 450ps, i.e., 3× the clock period, with a step size of 15ps. We record the

change in the average computation error. We perform this experiment on two implementations of testcase

PolySmall, where one implementation uses the conventional P&R flow and the other is optimized to have

more balanced path delays. Figure 6.13(a) shows the path delay distribution of the two implementations.

Note that the initial designs have the maximum path delay around 140ps. Therefore, the designs will have

timing violations due to the inserted input delays.
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The results in Figure 6.13(b) show that changing the input delay results in periodic fluctuation of

computation accuracy, which indicates the impact of arrival time misalignment with respect to the capture

phase. More specifically, when a large number of paths exhibit arrival time misalignment, e.g., when the

delay ranges between 15ps to 65ps for the balanced case, the corresponding computation error is large.

On the other hand, when there is no arrival time misalignment, e.g., when the delay ranges between 60ps

to 150ps for the balanced case, although the design has larger timing violations, the computation error is

small. Further, due to a wider range of path delays in the unbalanced case, the unbalanced implementation

shows more data points with non-minimum average error (as seen in Figure 6.13(b)). Therefore, to reduce

the likelihood of the misalignment of arrival times and to minimize the computation error, we propose

buffer insertion and route detouring to minimize input-output path delay differences in SC circuits.

Figure 6.13: Simulation results of the PolySmall testcase synthesized in 28nm FDSOI technology and
clocked at 6.7GHz: (a) path delay distributions of two implementations, and (b) computation error for

different input delays.
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6.3.2 Optimization Methodologies

To resolve the arrival time misalignment issue and reduce the computation errors at a low supply

voltage or with an overscaled frequency, we perform optimization during SC circuit implementation (i.e.,

SP&R) to balance the circuit’s path delays.

First, we examine two major SC design styles: STRAUSS (Spectral TRAnsform Use in Stochas-

tic circuit Synthesis) [7] and ReSC (Reconfigurable Stochastic Computing) [191]. We then compare their

path delays and computation errors for a given range of supply voltages. Figure 6.14 compares STRAUSS

and ReSC for testcase PolySmall in 28nm FDSOI technology. We observe that the SC circuit implemented

with ReSC tends to have more balanced path delays and smaller errors than that designed by STRAUSS.

The ReSC architecture, which consists of an adder and a multiplexer, is very symmetric with respect to

the primary inputs of the circuit. The STRAUSS-based circuits, on the other hand, have an asymmetric

structure, which makes them smaller than the ReSC circuits, but leads to unbalanced path delays, and

hence greater sensitivity to timing errors. We therefore only implement SC circuit designs based on ReSC

in the experiments reported in the rest of this chapter.

To optimize the circuit, we perform buffer insertion and/or route detouring at the post-routing

stage to balance path delays.43 Various mathematical programming methods have been applied in the

previous literature to guide the buffer insertion and wire sizing/route detouring for minimization of clock

skew or data path delay [63] [86]. Given that SC circuits typically have small sizes44, we formulate a

Mixed Integer-Linear Program (MILP) to search for the optimal solution based on a given set of buffering

candidates.
43We note that buffer insertion and route detouring techniques are not novel. They have been used to balance clock paths for

skew minimization [86], and to balance signal paths to prevent power side-channel attacks in smartcards [210]. However, we
appear to be the first to apply such optimization techniques to balance path (datapath) delays in SC circuits in order to improve
their accuracy.

44Typical image-processing SC circuits have only around 20 gates [12], while the largest known SC circuits have no more
than 1,250 gate instances [146].
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Figure 6.14: Path delays (top) and average computation errors (bottom) at supply voltages ranging from
0.72V to 0.98V for testcase PolySmall at 28nm FDSOI. Each trace in (a)(c)(e) denotes a timing path with

a unique combination of rise/fall transitions. (a-b) STRAUSS [11]; (c-d) ReSC [191]; and (e-f)
optimized circuit using our proposed MILP-based method.

We formulate our MILP as follows. The objective of the optimization is to minimize the normal-

ized maximum delay difference (denoted by U) among timing paths of a design across a given range of

supply voltages. Constraints are upper bounds on the maximum path delay and design leakage power.

The notation used in the formulation is given in Table 6.2.
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Table 6.2: Description of the notation used in the MILP.

Term Meaning

Vk Supply voltage, (1≤ k ≤ K; VK is the highest voltage)

Pi Timing path, (1≤ i≤M)

Dk
i Path delay of Pi at Vk

U Upper bound on maximum normalized delay difference

Gk Leakage power of the design at Vk

nr Wiring net (1≤ r ≤ R)

dk
j Delay increase due to buffer insertion and/or routing at Vk, (1≤ j ≤ Q)

gk
j Leakage power penalty of buffer insertion choice at Vk, (1≤ j ≤ Q)

cr j Indicator of buffer insertion and/or routing detour on nr

α Normalized upper bound on delay increase

β Normalized upper bound on leakage power penalty

Minimize U (6.4)

subject to D′ki = Dk
i + ∑

1≤i≤M,1≤ j≤Q
cr j ·dk

j (6.5)

∑
1≤ j≤Q

cr j ≤ 1, ∀ 1≤ r ≤ R (6.6)

Dk
max = max

1≤i≤M
Dk

i , ∀ 1≤ k ≤ K (6.7)

α ·Dk
max ≥ D′ki , ∀ 1≤ i≤M, 1≤ k ≤ K (6.8)

D′kmax ≥ D′ki , ∀ 1≤ i≤M, 1≤ k ≤ J (6.9)

D′kmin ≤ D′ki , ∀ 1≤ i≤M, 1≤ k ≤ K (6.10)

U ≥ DK
max

Dk
max
· (D′kmax−D′kmin) (6.11)

β ·Gk ≥ ∑
1≤r≤R,1≤ j≤Q

cr j ·gk
j, 1≤ k ≤ K (6.12)

where D′ki is the optimized path delay of path Pi, with the buffer insertion and/or routing detour solu-
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tion indicated by cr j. D′kmax and D′kmin are, respectively, the maximum and minimum path delays at supply

voltage Vk with buffer insertion and routing detour. U is the upper bound on the normalized path delay dif-

ference at all supply voltages. The MILP model minimizes U , thus minimizing the maximum normalized

path delay difference at all supply voltages. In addition, Gk is the leakage power of the original design.

The parameter gk
j is the leakage power penalty of buffer insertion at supply voltage Vk. Our formulation

constrains the optimization to not result in more than α times the original maximum path delay, or more

than β times the original leakage power at each supply voltage.

Our initial studies attempted to include gate sizing and Vth swapping in the optimization process.

However, this leads to a significant runtime and complexity increase in our MILP optimization, where

each gate instance can have six to 22 candidate library cells for gate sizing and Vth swapping in the

technology used. Furthermore, small sizing and/or Vth-swapping moves do not have a large impact on path

delay, and so are not helpful in balancing path delays. On the other hand, large sizing and/or Vth-swapping

moves might cause maximum-capacitance and maximum-transition violations due to weak drive strength

for downsizing and/or swapping to a higher Vth, or large input pin capacitance for upsizing. We therefore

only apply buffer insertion and/or route detouring in our optimization.

Figures 6.14(e)-(f) show the resultant path delays and computation errors of the optimized SC

circuit. They indicate significant improvement over both the unoptimized STRAUSS and ReSC imple-

mentations.

There is a tradeoff between power overhead due to inserted buffers and wire segments versus

the energy benefits from improved accuracy with more balanced path delays (e.g., greater supply voltage

downscaling is enabled by more balanced path delays). Our optimization reduces energy only when

the power benefits from voltage downscaling outweigh the power overhead due to inserted buffers and

wire segments. A small design with simple netlist structure might already have relatively balanced path

156



Figure 6.15: Energy of designs optimized with different β values. The target average error rate is 0.02.
Operating points are selected based on exhaustive simulation so as to minimize energy.

Figure 6.16: Energy comparison of three GammaCorrection circuits optimized with different β values.
The optimum operating point for a given accuracy requirement (errgoal) is selected via exhaustive

simulation. Black arrows indicate the minimum achievable error of each circuit.

delays and be sensitive to the power overhead of buffer insertion (i.e., the relative power overhead of

buffer insertion is large), where the potential benefit from our optimization is small. On the other hand,

power overhead due to buffer insertion is relatively small with respect to the total design power in a large

design. Therefore, a large design is more likely to benefit from our optimization. Figure 6.15 shows

the design energy optimized with different β values for a given accuracy requirement (i.e., errgoal =

0.02). We observe that for the small testcase EdgeDetection (with ∼5 instances), a larger β value always

increases design energy.45 On the other hand, for the relatively large testcase GammaCorrection (with

∼100 instances), the change of design energy with various β values shows a unimodal behavior due to the

45Given that the EdgeDetection testcase only has ∼5 instances, even insertion of the minimum-size buffer leads to relatively
large power overhead.
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tradeoff between the power overhead of buffer insertion and the energy benefits from improved accuracy.

These results support our intuition that large designs are more likely to benefit from optimization.

Figure 6.16 compares energy use across different accuracy requirements for testcase Gamma-

Correction, which is optimized with different β values. The black arrows in Figure 6.16 indicate the

minimum achievable error for each optimized circuit. We observe that a larger β value leads to higher

accuracy. However, due to the tradeoff between power overhead of buffer insertion and route detouring

versus energy benefits from improved accuracy, a higher β value does not necessarily provide smaller de-

sign energy. We therefore sweep the value of β to explore such a tradeoff and to minimize design energy.

This optimization procedure is illustrated in Algorithm 4, in which we iteratively increase the value of β

by δ (in our experiments δ = 0.05) until there is no further energy reduction.

Algorithm 4 SC circuit optimization.

1: β← 1; Energy← in f ; is improved ← true
2: while is improved do
3: Solve MILP; Perform buffer insertion and/or route detouring as ECOs
4: Perform exhaustive simulation to search for min-energy operating point for each errgoal
5: Calculate average energy over all errgoal ; Update Energy
6: β← β + δ

7: if Energy reduces then
8: is improved ← true
9: else

10: is improved ← false
11: end if
12: end while

To evaluate the influence of process corners and temperature variation, we characterize standard

cell libraries in different corner cases (worst corner and best corner) and temperatures (125◦C and 25◦C)

using Synopsys SiliconSmart [255]. We choose the same GammaCorrection testcase and simulate the

circuits over different supply voltages. The result is shown in Figure 6.17. The differences among the

corners are within 60% (normalized to the largest error at the same voltage) when the supply voltage

decreases from 1.2V to 0.72V . This results in a maximum of 5% change in the output error.
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Figure 6.17: Evaluation of the impact of process and temperature variations on the average error. The
testcase GammaCorrection is optimized at 125◦C and simulated at different corners and temperatures.

WC 125C  BC 125C  WC 25C  

Figure 6.18: Path delay for the four different corners in Figure 6.17.

Figure 6.18 further shows the path delays at different supply voltages for various corners. We ob-

serve that due to smaller gate delays, the maximum path delay difference reduces in the best-corner cases,

leading to smaller errors. In addition, lower temperature increases the maximum path delay difference

(temperature inversion effect), especially at low supply voltages, which leads to larger errors as compared

to the default (worst corner, 125◦C) case.

To ensure the feasibility of ECOs (engineering change orders), we characterize lookup tables

(LUTs) based on buffer insertion and/or route detouring candidates with different input slew and load

capacitance values. We then formulate our MILP and optimize circuits based on the characterized LUTs.

The approach is similar to that of [86]. To balance path delays at a range of supply voltages and reduce

the MILP runtime, we select buffer insertion and/or routing detour candidates that cover a wide range of

delay-voltage tradeoffs, but with a small set of choices. We study the delay-voltage tradeoffs with various
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gate types, gate sizes, threshold voltages, and wirelengths. We observe that the delay-voltage tradeoff

is greatly affected by threshold voltage, gate size and wirelength, which matches the observations made

in [42]. Therefore, we apply two buffering styles—a single-stage non-inverting buffer, and an inverter

pair with routing detour in between—as shown in Figure 6.19. Our approach selects from buffers and

inverters of various sizes based on the delay requirements. We use both low Vth (LVT) and regular Vth

(RVT) cells. The detoured wirelength, L, ranges from 10µm to 50µm with a step size of 10µm. Based

on the LUTs, we further extend the buffering candidates with multiple cell stages (e.g., five stages of

X100 buffers) to cover a wide range of delays. However, a large number of buffering candidates can

significantly increase the MILP runtime. We therefore prune the candidates such that for a range of delay

and delay-voltage tradeoffs, we uniformly divide the solution space into 4×4 sub-regions. We then select

the buffering solution with minimum leakage power from each sub-region. Figure 6.20(a) shows the

solution space with up to five stages of buffering candidates. Figure 6.20(b) shows the pruned buffering

candidates with delay ranges from 20ps to 120ps. Our experiments show that the pruning significantly

reduces the runtime, while leading to negligible degradation in solution quality.46

Figure 6.19: Applied buffering styles: a single-stage non-inverting buffer, and an inverter pair with
routing detour.

Using the MILP solution, we perform buffer insertion and routing detour as ECO steps. Given

that single-stage non-inverting buffer insertion is trivial, we use ECO commands from the P&R tools to

perform buffer insertion and placement legalization. For insertion of an inverter pair with routing detour,

we perform the ECO steps described in Algorithm 5. In the design flow, we start by inserting the first

46For the largest design with ∼500 gate instances, the MILP runtime is less than 20 seconds on a 24-core 2.5GHz Intel Xeon
server.
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Figure 6.20: (a) Buffering solution space, i.e., delay range and delay-voltage tradeoff range, with
multiple stages of buffers/inverter pairs. The circle colors denote different numbers of stages of

buffers/inverter pairs. (b) Pruned buffering candidates.

inverter. We then legalize the location of the inserted inverter so that there is enough space for wire detour,

e.g., by moving the inverter away from the block boundary, and to ensure there is no overlap with previous

routing detours. We then insert the second inverter such that the distance is 25 sites in the horizontal

direction and two rows in the vertical direction with respect to the first inverter. Last, we perform routing

detour with the 1W2S (single-width double-spacing) routing rule on layers M3 and M4, between two

inverters. An example of detoured routing is shown in Figure 6.21. Our current optimization method

does not comprehend switching activity information. However, function-aware and input-pattern-aware

optimization will be one of our future directions.

Algorithm 5 Insertion flow of inverter pairs.

1: Place first inverter
2: Legalize the location of the first inverter
3: Insert second inverter such that its distance to the first inverter is 25 sites and two rows in horizontal and vertical

directions
4: Perform routing detour with 1W2S
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Figure 6.21: Layout of routing detour (in red). The detoured wirelength is 40µm. Shaded blocks are
standard cells.

6.4 Experimental Setup and Results

The experiments are implemented in 28nm FDSOI technology. We synthesize the testcases using

Synopsys Design Compiler vH2013.03-SP3 [251], and place and route them using Synopsys IC Com-

piler vI-2013.12-SP1 [252]. We use Synopsys PrimeTime vH-2013.06-SP2 [253] and Synopsys PT-PX

vH-2013.06-SP2 for timing and power analyses, respectively. We perform gate-level simulation using

Cadence NC-Verilog v8.2 [236]. We construct the Markov chain model using MATLAB R2013a [245].

The MILP solver used in our optimization flow is CPLEX v12.5 [241]. Our testcases (see Table 6.3)

are representative circuits obtained from the SC literature and employed in typical applications such as

image processing and neural network design. For input generation, we convert binary input vectors to

pseudo-random bit-streams via SNGs.

6.4.1 Circuit Optimization Results

To evaluate the effectiveness of our optimization methods, we apply them to the testcases of

Table 6.3 and compare the results with those of the unoptimized circuits. Figure 6.22, for example, shows

how our optimization method changes the 0-to-1 and 1-to-0 error rates of the GammaCorrection testcase.

It also shows that reducing the difference of the two error rates leads to output error reduction, even
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Table 6.3: Summary of stochastic circuit testcases.

Testcase #cells Description

GammaCorrection ∼100 A common image processing task [191]

EdgeDetection ∼5 A common image processing task [12]

PolySmall ∼20
A simple polynomial of degree 3 implemented using

methods of [7] and [191]

Neuron ∼500 A 128-input neuron [26]

Sigmoid ∼120 A common function used in artificial neural networks

BilateralFilter ∼300 An edge-preserving smoothing filter; used in image processing

Figure 6.22: Optimization results for the GammaCorrection testcase: (a) 0-to-1 and 1-to-0 error rates of
the unoptimized circuit; (b) 0-to-1 and 1-to-0 error rates of the optimized circuits; (c) error rate

difference for both circuits, where the optimized circuit has a lower error rate difference even though the
error rates are higher for some cases; and (d) average output error for both circuits, where the optimized

circuit has a lower error.

though the error rates are increased. For example, for the voltage range Vdd = 0.88–0.96V , we see that the

optimized circuit has more 0-to-1 and 1-to-0 errors. The final results shown in Figure 6.23 also confirm
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the error reductions of the optimized circuits, i.e., optimized circuits have less energy per data word for

a given fixed accuracy constraint. However, because the difference between the error rates is lower than

that of the unoptimized circuit, we see a better output error behavior for the optimized circuit.

Figure 6.23 shows the minimum energy required for each design to meet a given average er-

ror constraint errgoal (within the space of possible operation points). A cross sign (×) indicates that

no suitable operating point was found for the given errgoal . Note that a circuit with a large number of

inserted buffers (more balanced path delays) might have a small energy consumption when the error con-

straint is high because of voltage scaling, but it can have a large energy consumption when the error

constraint is low due to the power penalty of the inserted buffers. Thus, it is difficult to find an optimized

circuit that achieves minimum energy for all error constraints. To address this, we consider multiple op-

timized circuits, each optimized with a different β value. Note that we show different optimized circuits

in Figure 6.23 to illustrate our optimization performance. Designers can choose their own accuracy re-

quirements and use our method to find an optimized circuit tailored for their requirements. Furthermore,

multiple accuracy-energy requirements are also supported in our optimization. A key observation here is

that the optimized circuits are able to achieve lower errgoal values than the unoptimized circuits, especially

for large testcases and/or tight error constraints..

In spite of the power overhead of added buffers and wires, the improved accuracy of the optimized

circuits enables more aggressive voltage scaling, yielding lower power. We observe that when the error

constraints are tight, the optimized circuits can meet the constraints at a lower Vdd , leading to significant

energy savings. For example, up to 49% energy reduction occurs in the GammaCorrection testcase with

errgoal = 0.02. In addition, the results show that tighter error constraints require larger β values (i.e., more

balanced path delays) for circuit optimization (especially in the large testcases). This indicates that SC

circuits with more balanced path delays are able to achieve higher accuracy. On the other hand, when
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Figure 6.23: Energy comparison for different accuracy requirements (errgoal) between unoptimized
implementations (blue solid line) and optimized circuits (green dashed line). Operating points are

selected based on exhaustive simulation. The Vdd range is 0.6V to 1.0V with a step size of 4mV . A cross
sign (×) indicates that no suitable operating point was found for the given errgoal . β values

corresponding to the optimized circuits are shown in red font.

the error constraints are loose, or when the initial design is fairly well-balanced, e.g., the EdgeDetection

testcase, the unoptimized circuits (i.e., with β = 1) can also perform satisfactorily at low supply voltages.

In such cases, especially for circuits with a small number of instances, where the relative power overhead

of buffer insertion is large, optimizations with buffer insertion and route detouring are not efficient because

the inserted buffers and wires increase the overall energy consumption. Therefore, our optimization flow

(illustrated in Algorithm 4) chooses not to insert any buffer or wire for the small testcases EdgeDetection

and PolySmall, and the optimized circuits are the same as the unoptimized circuits.
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Figure 6.24: Energy comparison between operating points from MC-based search (green dashed line)
and exhaustive search (blue solid line) for different accuracy goals (errgoal). A cross sign (×) indicates
that no suitable operating point was found. The MC-based approach uses far fewer samples for circuit

simulation, thus significantly reducing the simulation runtime. (Runtime unit: minutes.)

6.4.2 Validation of MC Model

To gauge the effectiveness of our MC model, we perform an energy-accuracy comparison be-

tween the operating points selected by the MC-based flow and the ones selected via exhaustive simulation;

see Figure 6.24. In this experiment, we only consider the unoptimized implementation of the testcases.

The results show that our MC-based flow finds operating points that are similar in terms of energy to those

selected via exhaustive simulations for most of the designs and error constraints. Moreover, Figure 6.24

shows that the MC-based flow reduces runtime significantly especially for large design, e.g., ∼50% for

BilateralFilter. We observe that the energy penalty of using the MC-based flow is relatively high for small

designs (e.g., PolySmall) where the computation errors are typically small and the MC-based estimation

is less accurate.
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6.4.3 Comparison with Conventional Circuits

We now perform a comparison between the optimized SC GammaCorrection and EdgeDetection

and their binary counterparts. Figure 6.25 shows images generated by conventional binary and SC circuits

at different supply voltage levels. We use both the SNR (signal to noise ratio) and MS-SSIM (multi-scale

structure similarity) [218] error metrics to quantify the quality of the output images.47 The results show

that while the SC circuits tolerate aggressive voltage scaling, the binary circuits’ output quality quickly

drops, even with modest voltage changes.48 This leads to significant energy savings in the SC case.

Figure 6.25 shows that for the GammaCorrection testcase, the SC circuit consumes more energy than

the conventional binary circuit at Vdd = 1V. However at Vdd = 0.6V, the SC circuit achieves the same

accuracy as the conventional circuit at Vdd = 1V, making it more energy efficient (about 44% less energy).

Similarly, for the EdgeDetection testcase, the SC circuit at Vdd = 0.6V achieves the same accuracy as the

conventional circuit at Vdd = 0.9V, thus achieving 95% energy reduction. In Figure 6.25, we also report

the area and the runtime of the circuits. As expected, the SC circuits have lower area than their binary

counterparts, but longer runtime.

6.5 Conclusions

We present several optimization and modeling methodologies to exploit voltage/frequency scal-

ing in SC circuits for reduced energy consumption at the cost of timing errors. We also demonstrate that

47MS-SSIM evaluates the similarities of luminance, contrast and structure components between original image and processed
image. We use the MATLAB function from [54] in our experiments to calculate MS-SSIM.

48SNR and MS-SSIM do not change monotonically with the supply voltage. There are several explanations for this. First,
voltage reduction increases the rate of 0-to-1 and 1-to-0 errors (e0→1 and e1→0), but the changes are not necessarily linear,
meaning that the difference |e0→1− e1→0| may decrease due to voltage reduction, thus yielding a lower error. Second, based
on Equation (6.3), the MSE decreases when e increases beyond 0.5. So a non-monotonic error behavior is not surprising.
We also note that both GammaCorrection circuits (SC and binary) approximate the original gamma correction function (i.e.,
Z = X0.45 [191]), and that the SC circuits have inherent random fluctuation errors. So even at a high supply voltage, some error
exists. When timing errors are introduced via voltage reduction, they can cancel out the other errors and cause non-monotonic
error behavior similar to that seen in Figure 6.25.
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Figure 6.25: Voltage scaling results of GammaCorrection (top, design obtained from [191]) and
EdgeDetection (bottom, design obtained from [12]) executed by conventional and stochastic circuits,

both implemented in 28nm FDSOI technology. After applying our proposed optimization techniques, the
stochastic circuits show better tolerance against aggressive voltage scaling. Test images are from [240]

and [239].

SC circuits are extremely tolerant of timing errors. Hence, they can operate successfully under highly

aggressive voltage/frequency scaling with very little loss of accuracy, unlike almost all conventional logic

circuits. Based on these results, we define and solve the problem of finding the minimum-energy operat-

ing point of an SC circuit for a desired accuracy level. To enable rapid exploration of the operating-point

space, we introduce a Markov chain-based technique for error estimation. We further observe that the

accuracy of an SC circuit under scaled conditions can be improved by balancing its path delays. Accord-

ingly, we perform optimizations during the logical and physical design phases to balance path delays.
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These methods have been successfully applied to several representative SC circuits, achieving substantial

energy reduction without significant accuracy loss. To determine the robustness of our optimization ap-

proach, we also demonstrate that process and temperature variation have little impact on the error behavior

of the optimized SC circuits, even under voltage scaling.
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Chapter 7

Conclusion and Future Directions

This thesis presents several analyses and promising techniques for emerging physical design chal-

lenges. The identified and analyzed challenges are consistent with the latest scaling challenges projected

by the EDA research community and semiconductor industries [159] [108] [243].

The first challenge discussed in Chapter 2 is the complication among active voltage scaling,

signoff, and BEOL degradation. Before this thesis, the three issues are discussed separately, and we have

shown the connections among them. To quantify the impact of the complication and provide guidance

for signoff, Chapter 2 indicates that for signal wires, large drivers should be avoided as they suffer from

more delay degradation due to EM-induced resistance increase. For P/G mesh, we quantify the impact

of resistance increase and conclude that the area-power curve formed by different BTI signoff corners

is shifted due to EM. We empirically analyze the cost of fixing EM at signoff with different guardbands

against BTI. In our studies, this cost is up to 1.6% increase in area and 6% increase in power.

The second challenge discussed in Chapter 2 is the yield loss during process learning. We com-

pensate this yield loss with opportunistic, redundant logic insertion. Our methodology for redundant logic

insertion extracts candidate clusters with small terminal count using recursive bipartitioning, then maxi-
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mizes duplicated logic by selecting clusters via integer-linear programming. Experimental results on our

benchmark circuits show that for large design areas, logic redundancy can improve defect-limited yield

by up to 1.62×.

Chapter 3 demonstrates the potential to tackle physical design problems by using machine learn-

ing techniques. We first present the miscorrelation of prediction against detailed routing results with con-

ventional congestion estimation. To tackle the miscorrelation, the thesis demonstrates a learning-based

model and improves the layout routability on top of the model. Our experiments show that we are able to

reduce the number of DRC violations by an average of 20.6% and a maximum of 76.8%, with no adverse

impact on design closure.

Chapter 4 proposes a methodology to estimate 3D benefits of given designs. We examine several

designs with our “infinite dimension” bounding methodology, and demonstrate the area and power gaps

between “best possible” 2D implementations and estimated upper bounds of 3D benefits. We further

perform such 3D benefit estimation across various technologies. Our study also indicates that although

3DIC might provide relatively large benefits in power or performance, it is typically difficult for pure

logic-logic 3D integration to achieve a simultaneous (10%, 10%, 10%) improvement in (performance,

power, area/cost) compared to the conventional 2D implementation. This suggests that SoC-level and

architectural-level optimizations instead of traditional P&R physical implementation optimizations are

more essential for 3DIC.

Chapter 5 explores approximate computing. We propose an approach for output quality estima-

tion of approximate designs. Our LUT-based approach characterizes the statistical properties of approxi-

mate hardware modules and a regression-based technique improves the error metric estimation. With our

composition approach, we achieve 1.36× and 8.4× runtime improvements for library characterization
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and error composition, respectively. We also achieve 3.75× accuracy improvement for error significance

(ES) compared to previous works.

Chapter 6 explores stochastic computing. We present several optimization and modeling method-

ologies to exploit voltage/frequency scaling in stochastic circuits. We also demonstrate that SC circuits

are extremely tolerant of timing errors. Hence, they can operate successfully under highly aggressive

voltage/frequency scaling with very little loss of accuracy. We also introduce a Markov chain-based tech-

nique for error estimation. We further observe that the accuracy of an SC circuit under scaled conditions

can be improved by balancing its path delays. Accordingly, we perform optimizations during logical

and physical design to balance path delays. These methods achieve substantial energy reduction without

significant accuracy loss.

Looking beyond this thesis, future directions and ongoing works include the following.

• Machine learning in design automation is not only a promising solution but also a new perspective

to formulate problems. In the short term, there are many miscorrelations between the successive

stages of the current design flow. Such miscorrelations have increased the difficulty of meeting de-

sign constraints, and the resulting uncertainties in the design process have increased risk in project

management. As shown in previous works and this thesis, machine learning is a promising direction

to compensate such miscorrelations.

Many design tasks are still difficult to solve by automation, and rely heavily on experienced en-

gineers’ knowledge. Examples of these problems are floorplan and design of power distribution

network (PDN). Recently, artificial intelligence has proved its success in many applications. With

the help of artificial intelligence [68], design automation may enable the design framework of “no

human in the loop”, where design software can start from existing design database, generate repre-

sentative training data, and improve quality of results by learning from data.
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• 3DIC integration is a promising technology to continue area scaling. In this thesis, we have demon-

strated its benefit bound. However, the 3D benefit considering memory architecture still remains

unexplored. Furthermore, close integration of CMOS logic, emerging memory devices, and high-

density interconnects has been demonstrated by recent work [202]. Pathfinding for such 3DIC

integration, navigating a path from system specification to implementation while exploring a large

range of design choices along the way, is still unaddressed.

• Inexact hardware’s applications still remain open. Recent research strongly motivates the use of

inexact hardware for neuromorphic computing. Determining system-level tradeoffs between energy

efficiencies and accuracies of neuromorphic computing platforms is challenging due to a very large

design space that includes such parameters as static/dynamic bit-width optimization, mapping to

approximate or stochastic circuits, and truncation of arithmetic circuits in critical neurons.
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