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RESEARCH Open Access

The matrikine acetyl-proline-glycine-proline
and clinical features of COPD: findings from
SPIROMICS
J. Michael Wells1,2,3*, Dongqi Xing1,2, Liliana Viera1,2, Robert M. Burkes4,5, Yixin Wu1,2, Surya P. Bhatt1,2,
Mark T. Dransfield1,2,3, David J. Couper6, Wanda O’Neal5, Eric A. Hoffman7, Amit Gaggar1,2,3, Igor Barjaktarevic8,
Jeffrey L. Curtis9,10, Wassim W. Labaki9, Mei Lan K. Han9, Christine M. Freeman9,10, Nirupama Putcha11,
Thomas Schlange12, J. Edwin Blalock1,2 and for the SPIROMICS Investigators,

Abstract

Background: Pulmonary and systemic inflammation are central features of chronic obstructive pulmonary disease
(COPD). Previous studies have demonstrated relationships between biologically active extracellular matrix
components, or matrikines, and COPD pathogenesis. We studied the relationships between the matrikine acetyl-
proline-glycine-proline (AcPGP) in sputum and plasma and clinical features of COPD.

Methods: Sputum and plasma samples were obtained from COPD participants in the SPIROMICS cohort at
enrollment. AcPGP was isolated using solid phase extraction and measured by mass spectrometry. Demographics,
spirometry, quality of life questionnaires, and quantitative computed tomography (CT) imaging with parametric
response mapping (PRM) were obtained at baseline. Severe COPD exacerbations were recorded at 1-year of
prospective follow-up. We used linear and logistic regression models to measure associations between AcPGP and
features of COPD, and Kaplan-Meier analyses to measure time-to-first severe exacerbation.

Results: The 182 COPD participants in the analysis were 66 ± 8 years old, 62% male, 84% White race, and 39% were
current smokers. AcPGP concentrations were 0.61 ± 1.89 ng/mL (mean ± SD) in sputum and 0.60 ± 1.13 ng/mL in
plasma. In adjusted linear regression models, sputum AcPGP was associated with FEV1/FVC, spirometric GOLD stage,
PRM-small airways disease, and PRM-emphysema. Sputum AcPGP also correlated with severe AECOPD, and elevated
sputum AcPGP was associated with shorter time-to-first severe COPD exacerbation. In contrast, plasma AcPGP was
not associated with symptoms, pulmonary function, or severe exacerbation risk.

Conclusions: In COPD, sputum but not plasma AcPGP concentrations are associated with the severity of airflow
limitation, small airways disease, emphysema, and risk for severe AECOPD at 1-year of follow-up.

Trial registration: ClinicalTrials.gov: NCT01969344 (SPIROMICS).
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Introduction
Chronic obstructive pulmonary disease (COPD) is a pro-
gressive inflammatory disease affecting the airways and
lung parenchyma, often as the result of chronic cigarette
smoking. COPD is classified based on symptoms, lung
function impairment, and risk for acute exacerbations of
COPD (AECOPD) [1]. There remains a need to identify
biomarkers that reflect the underlying molecular and
cellular processes responsible for development of lung
destruction (i.e. emphysema and airway remodeling) and
clinical features including rapid lung function decline,
chronic bronchitis, and exacerbation risk [2].
We have previously identified a matrikine (a bio-

logically active extracellular matrix peptide), acety-
lated proline-glycine-proline (AcPGP), as a pathogenic
regulator of cigarette-smoke-mediated emphysema devel-
opment in animal models and human smokers [3, 4]. In
this pathway, AcPGP is generated by the stepwise proteo-
lytic cleavage of collagen by matrix metalloproteases
(MMPs) and prolyl endopeptidase (PE) and avoids degrad-
ation by direct effects of cigarette-smoke on leukotriene
A4 hydrolase [3, 5–7]. AcPGP, as a matrikine, stimulates
neutrophil recruitment to sites of inflammation in the
lung and propagates a feed-forward cycle of inflammation.
Although our previous work has clearly demonstrated the
role of the AcPGP-pathway in disease pathogenesis [3, 4],
evaluation of the relevance of AcPGP in longitudinal
examination of clinical features of COPD including
pulmonary function, CT features, symptoms, and ex-
acerbations is required. Additionally, our previous work
has primarily focused on measuring AcPGP in the sputum
[4, 8], while little focus has been put on evaluating the
relevance of plasma AcPGP in COPD.
We hypothesized that the matrikine AcPGP, as a

marker of lung inflammation, will be associated with
meaningful clinical features of COPD including lung
function impairment, emphysema, symptoms, and risk
for AECOPD. We tested this hypothesis using plasma
and sputum samples from participants with COPD en-
rolled in the SubPopulations and InteRmediate Outcome
Measures in COPD Study (SPIROMICS) cohort.

Methods
Subjects
The design of SPIROMICS (ClinicalTrials.gov NCT01
969344) has been described [9]. Briefly, SPIROMICS is a
multi-center prospective observational study to identify
unique biomarkers and phenotypes that can be used as
intermediate outcomes to reliably predict clinical bene-
fits in future clinical trials. SPIROMICS enrolled partici-
pants between November 2011 and January 2015. COPD
was defined as a post-bronchodilator forced expiratory
volume in 1-s (FEV1) / forced vital capacity (FVC) < 0.70
[10]. Participants underwent baseline and in-person

follow-up visit 12-months later. Clinical data reported here
include results from the SPIROMICS Core5 dataset. For
these studies, we report data from subjects with COPD,
complete clinical information, and blood and sputum
AcPGP measurements. This study was approved by the
University of Alabama at Birmingham IRB (X110921005).

Blood and sputum collection and processing
Participants with a post-bronchodilator FEV1 ≥ 35% pre-
dicted were eligible to undergo sputum induction using
nebulized saline solutions administered via ultrasonic
nebulizer as previously described [11] and as outlined in
the Supplementary Methods. Briefly, the saline solutions
were given in three 7-min intervals and sputum was im-
mediately processed using a 1:4 (weight:volume) 0.1%
sputolysin solution followed by an additional 1:4 (volume:
volume) 1mM EDTA solution. Plasma was collected in
tubes containing EDTA and was immediately processed
and shipped to the Genomics and Informatics Center
(GIC) at the University of North Carolina at Chapel Hill
(UNC).

AcPGP measurement
Plasma was prepared by solid phase extraction using
Phree Phospholipid Removal Columns (Phenomenex,
Torrence, CA, USA). First, columns were washed with a
methanol:acetonitrile (60:40) solution. Next, an internal
standard peptide (IS) (13C,15NPGP/13C,15NAcPGP) mix-
ture was added to the plasma sample; plasma and IS
were then placed on the Phree column. Columns were
centrifuged at 4 °C for 60 min at 1300 xG followed by an
additional methanol:acetonitrile wash, re-centrifugation,
and collection. Afterwards, samples underwent evapor-
ation using a Nitrogen evaporator. Dried plasma samples
were then reconstituted using PBS. Sputum samples
were prepared as follows: 10,000 kDa molecular weight
cutoff filters were prepared by washing with an ethanol:
water (65:45) solution. Next, IS was added to the sputum
sample; this sputum-IS mixture was then added to the
washed filters and centrifuged at 4 °C for 30 min at 12,
500 xG. Finally, samples were washed using 1 mM HCl
followed by centrifugation and collection of superna-
tants. AcPGP was measured by tandem mass spectrom-
etry (MS/MS) as previously described [3, 4, 7, 8, 12].

Pulmonary function
Pulmonary function testing was performed according to
the SPIROMICS protocol and ATS/ERS criteria [9, 10]
and post-bronchodilator values were recorded using a
KoKo spirometer (nSpire Health, Longmont, Co.). Par-
ticipants were stratified according to Global Initiative for
Chronic Obstructive Lung Disease (GOLD) stage [1].
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Health status and respiratory symptoms
We assessed health status and quality of life using the
COPD Assessment Test (CAT) [13] and the St. George’s
Respiratory Questionnaire (SGRQ) [14], and dyspnea using
the Modified Medical Research Council Questionnaire
(MMRC) [15]. Chronic bronchitis was defined by answers
to chronic cough and phlegm questions on the SGRQ [16].
Six minute walk tests were performed following ATS guide-
lines [17].

Severe exacerbations
Given the impact of severe AECOPD on re-hospitalization
and mortality [18], we evaluated associations between these
events and sputum AcPGP. Prior severe AECOPD was de-
fined as self-reported hospitalization for AECOPD that oc-
curred within the 12-months preceding the baseline study
visit. Prospective severe AECOPD were recorded from the
time of the baseline study visit through the first year of
follow-up in SPIROMICS. Severe AECOPD were self-
reported during quarterly phone calls and were defined as a
worsening of respiratory symptoms lasting longer than
48 h that warranted an emergency department visit or
hospitalization for treatment of acute respiratory dis-
ease [19]. During the phone calls, participants (or their
representatives) were asked “Since your last [visit or
phone contact on [date], have you had a flare-up of
chest trouble?”; positive responses were followed up
with questions ascertaining the number of events, treat-
ments for each episode (antibiotics, steroids, both,
unsure, or can’t remember); participants were asked
“Were you evaluated in an Emergency Department?”
followed by questions on treatments; participants were
then asked “Were you admitted to the hospital?” and
further information was collected about dates and loca-
tion of the medical facility as well as treatments given
during the hospitalization.

Radiologic measurements
The methods for quantitative computed tomography (CT)
were published previously [20]. Briefly, inspiratory and ex-
piratory lung CT scans were performed at the baseline
SPIROMICS visit. Parametric Response Mapping (PRM)
(Imbio, Minneapolis, MN) was used to calculate amounts
of emphysema (PRMemph) and functional small airways dis-
ease (PRMfSAD) as previously defined [21, 22]. This tech-
nique was recently demonstrated to correlate significantly
with histologically-confirmed small airways disease in lung
specimens from patients with advanced COPD [23].

Statistical analyses
Due to the study design, there were only 2 participants
with GOLD spirometry stage 4 who underwent sputum
induction; therefore, spirometric GOLD stages 3 and 4
were combined into a single group defined as severe

airflow obstruction. Sputum and plasma AcPGP was di-
vided into quartiles; elevated sputum or plasma AcPGP
were defined as values above the median. Descriptive sta-
tistics, including means and standard deviations for con-
tinuous data, frequencies and percentages for categorical
data, were calculated for all study variables of interest.
Bivariate analyses were conducted by using the unpaired
t-test for normally distributed continuous variables, Wil-
coxon rank-sum test for continuous variables that were
not normally distributed, or the chi-square test for cat-
egorical variables. Spearman’s rho was used to measure
correlations between sputum AcPGP and lung function
measured by pulmonary function testing. Analysis of vari-
ance (ANOVA) was used to compare sputum AcPGP
values across spirometric GOLD stages. Associations be-
tween AcPGP and pulmonary function tests were ex-
plored using linear regression models adjusted for age,
sex, and current smoking status. Additional linear regres-
sion models were further adjusted for FEV1 percent
predicted to measure associations between AcPGP and
quality of life assessments and quantitative CT measure-
ments. To identify associations between sputum or plasma
AcPGP and any severe AECOPD at 1-year of follow-up,
we used logistic regression models, adjusted for age, sex,
FEV1 percent predicted, prior severe AECOPD (within
one year before enrollment), and current smoking status.
Kaplan-Meier survival analysis with log-rank test was used
to identify time-to-first severe AECOPD based on the
presence or absence of elevated sputum AcPGP. All
statistical tests were two-sided and were performed
using a significance level of P < 0.05. Statistical analyses
were conducted using SPSS software (Version 23, IBM
Corporation).

Results
Characteristics of the participants
We measured sputum and plasma AcPGP at the base-
line SPIROMICS visit in 271 participants, including
182 subjects with COPD. The CONSORT diagram is
shown in Additional file 1 Figure S1. We limited this
analysis to participants with COPD; information on
the excluded participants without COPD is shown in
Additional file 1. Participants with COPD were 66 ± 8
years old (mean ± SD), 62% male, 84% white race, had
a post-bronchodilator FEV1 percent predicted 68 ± 21,
and 39% were current smokers (Table 1). Among
COPD subjects, concentrations of AcPGP were 0.60 ±
1.13 ng/mL in plasma and 0.61 ± 1.89 ng/mL in spu-
tum. Subjects were generally symptomatic, with CAT
scores of 14 ± 8, SGRQ scores of 33 ± 19, and more
than 50% had chronic bronchitis. Ten percent (n = 18)
had a self-reported previous severe AECOPD in the
previous 12-months before the baseline visit.
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Sputum AcPGP and COPD symptoms and severity
Participants with severe airflow obstruction (GOLD spir-
ometry stage 3–4) had higher mean sputum AcPGP
concentrations compared to individuals with mild-to-
moderate obstruction (GOLD 1–2; 0.98 ± 1.02 vs 0.52 ±
2.11 ng/ml; P = 0.05). There were no associations between
sputum AcPGP and GOLD 2017 (ABCD) stages. There
were significant correlations between sputum AcPGP quar-
tiles and spirometric GOLD stage (Spearman’s Rho = 0.20;

P = 0.007), FEV1 percent predicted (Spearman’s rho = −
0.14, P = 0.041), and FEF25–75% predicted (Spearman’s
rho = − 0.18, P = 0.016), but not with FVC percent pre-
dicted (P = 0.49) or FEV1/FVC (P = 0.069). The distribution
of log-transformed AcPGP in sputum and plasma across
spirometric GOLD stages is shown in Fig. 1. Sputum
AcPGP was not correlated to mean sputum neutrophil
count (P = 0.14).
In multiple linear regression models adjusted for age,

sex, and current smoking status, sputum AcPGP
remained independently associated with FEV1/FVC,
FEF25–75, and spirometric GOLD stage (Table 2). Spu-
tum AcPGP was associated with PRMemph (Beta 1.72, SE
0.70, P = 0.015) and PRMfSAD (Beta 1.67, SE 0.81, P =
0.040) in similarly adjusted linear regression models. In
separate models adjusting for the above covariates plus
FEV1%, associations between sputum AcPGP and PRM-
emphysema remained statistically significant.
Sputum AcPGP was not associated with health status

as measured by CAT, SGRQ (data not shown), or with
dyspnea as measured by MMRC scores (data not
shown). Nor was there a difference in mean sputum
AcPGP among individuals with chronic bronchitis com-
pared to those without chronic bronchitic symptoms
(0.53 ± 1.18 versus 0.79 ± 2.78 ng/mL, P = 0.44 by Chi
square testing).

Sputum AcPGP and severe exacerbations
After 1-year of follow-up, 10% (n = 18/173) individuals
had at least one severe AECOPD (median 0 events/year,
range 0–3). Although sputum AcPGP was not statistically
significantly different in participants that had a self-
reported prior severe AECOPD (P = 0.21), sputum AcPGP
was significantly associated with a severe AECOPD at 1-
year of follow-up (P = 0.019) (Table 3). Likewise, 83% (15/
18) of participants that had a severe AECOPD during
follow-up had sputum AcPGP above the median values
compared to 45% (69/155) who did not have a severe
AECOPD (P = 0.002). In multivariable logistic regression

Table 1 Baseline Characteristics

Cohort (n = 182)

Age, years 66 ± 8

Male sex 112 (62%)

White race 153 (84%)

FEV1, percent predicted 68 ± 21

FVC, percent predicted 94 ± 19

FEV1/FVC 0.54 ± 0.11

GOLD Stage

GOLD 1
GOLD 2
GOLD 3
GOLD 4

48 (26.4%)
88 (48.4%)
44 (24.2%)
2 (1.0%)

Current Smoker 70 (39%)

Pack-year history 51 ± 21

CAT 14 ± 8

SGRQ score, total 33 ± 19

CB-SGRQ 101/173 (56%)

MMRC dyspnea score 1 [0–1]

6-min walk distance, m 412 ± 101

PRM-emph (%) 7.3 ± 10.4

PRM-fSAD (%) 23.4 ± 11.7

Severe AECOPD in the previous year 18/175 (10%)

Plasma AcPGP ng/ml 0.60 ± 1.13

Sputum AcPGP ng/ml 0.61 ± 1.89

Data expressed as mean ± S.D.; median [IQR]; or n (%)

Fig. 1 Associations between AcPGP and COPD severity. Log-transformed AcPGP in A) sputum was significantly higher in GOLD 3/4
COPD compared to GOLD 1 or 2 but there were no differences in plasma AcPGP across spirometric GOLD stages. 1-way ANOVA with
Tukey’s post-hoc testing was used for analyses; *P = 0.0019 between GOLD 1 and GOLD 3/4; **P < 0.0001 between GOLD 2 and
GOLD 3/4
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models adjusted for age, FEV1% predicted, prior severe
AECOPD, and current smoking status (Table 4), for each
higher quartile sputum AcPGP value there were 75% in-
creased odds (OR 1.75; 95% CI 1.04–2.97, P = 0.037) of
having a severe AECOPD in the next year; alternatively, if
the baseline sputum AcPGP was above the median, there
was a 486% increased odds of a subsequent severe
AECOPD (OR 4.86; 95% CI 1.28–18.4, P = 0.02). Partici-
pants with elevated sputum AcPGP (above the median)
also had shorter time-to-first severe AECOPD compared
to individuals with non-elevated sputum AcPGP (195 days
[95% CI 139–252] versus 305 days [259–351], P = 0.030 by
log-rank test) (Fig. 2).

Plasma AcPGP and clinical outcomes

Sputum and plasma AcPGP concentrations in individual
participants were not significantly correlated (R = -0.07;
P = 0.82). Unlike the associations observed between spu-
tum AcPGP and features of COPD, plasma AcPGP was
not associated with pulmonary function, GOLD stage,
symptoms or quality of life, or risk for severe AECOPD
(Fig. 1b; Tables 2-4).

Discussion
Results of this analysis of a sizeable prospective cohort
provide the first direct evidence that matrikines present
in the sputum of patients with COPD are associated
with salient, measurable parameters that impact disease
progression and morbidity. We clearly demonstrate that
induced sputum AcPGP was related to more severe
airflow limitation, emphysema, and small airways dis-
ease. Additionally, we observed that sputum AcPGP was
associated with a significantly increased risk for severe
AECOPD within the first year of follow-up when ad-
justed for known risk factors including previous severe
exacerbation. Sputum AcPGP was not associated with
respiratory symptoms or respiratory health status mea-
surements. We did not observe any relationships be-
tween circulating AcPGP and COPD outcomes.
These findings provide clinically relevant evidence that

AcPGP has the potential to serve as a biomarker for
COPD, extending previous studies showing that AcPGP
is present in sputum and bronchoalveolar lavage samples
in individuals with COPD as compared to healthy
controls or smokers without COPD [4, 8]. Identification
of measurable endpoints including pulmonary function,

Table 2 Associations between Sputum AcPGP and clinical features of COPD

Model 1 Model 2#

Beta S.E. P-value Beta S.E. P-value

FEV1, percent predicted −2.58 1.38 0.063 n/a n/a n/a

FEV1/FVC −0.02 0.007 0.018 n/a n/a n/a

FEF25–75, percent predicted −2.40 1.20 0.046 n/a n/a n/a

GOLD Stage 0.14 0.05 0.004 n/a n/a n/a

CAT 0.93 0.52 0.073 0.55 0.49 0.27

PRM-emph 1.72 0.70 0.015 1.26 0.63 0.040

PRM-fSAD 1.67 0.81 0.040 1.08 0.70 0.127

Model 1 = Linear regression models included sputum AcPGP, age, sex, current smoking status. #Model 2 = Linear regression model was adjusted for FEV1 percent
predicted in addition to previously listed covariates (model 2 was not used for spirometric based outcome variables)

Table 3 Associations between AcPGP and COPD exacerbations

No severe AECOPD (n = 155) Severe AECOPD (n = 18) P-value

Sputum AcPGP 0.019

Q1
Q2
Q3
Q4

42 (28%)
41 (27%)
38 (25%)
31 (20%)

2 (11%)
1 (6%)
7 (39%)
8 (44%)

Sputum AcPGP above median 69 (45%) 15 (83%) 0.002

Plasma AcPGP 0.96

Q1
Q2
Q3
Q4

37 (24%)
38 (25%)
41 (27%)
39 (25%)

5 (28%)
4 (22%)
4 (22%)
5 (28%)

Plasma AcPGP above median 73 (47%) 11 (61%) 0.27

Data expressed as n (percent). Chi square testing was used for analyses
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findings on CT imaging, and COPD exacerbations are
vital to understanding the translational significance of bio-
logical pathways implicated in COPD pathogenesis. These
observations provide links between mechanisms of neu-
trophil chemotaxis, pulmonary inflammation, and alveolar
destruction and relevant translational endpoints. Our find-
ings support sputum AcPGP as an indicator of COPD se-
verity as well as a marker of increased odds for AECOPD
development. Importantly, we have shown that sputum
AcPGP is responsive to the use of daily azithromycin and
roflumilast, two oral anti-inflammatory agents used for
AECOPD risk reduction [8, 12]. In both studies, treatment
with either agent reduced sputum AcPGP as compared to
individuals treated with placebo. Although in the MACRO
study we previously observed temporal rise and fall in spu-
tum AcPGP related to the time of an AECOPD, we did
not find any correlation between AcPGP and pulmonary
function or exacerbation risk, possibly due to the small
sample size [12]. The current study addresses this gap in
understanding the clinical relevance of this matrikine by

directly linking it to lung structure/remodeling, pulmon-
ary function, and prospective exacerbation risk.
The utility of sputum versus blood-based biomarkers in

COPD is the subject of debate and ongoing investigation
[2]. On one hand, blood-based assays are attractive to clini-
cians and investigators due to the wide availability of sam-
ples, ease in collection, standardized methodology, costs,
and quality control issues as compared to induced sputum
acquisition. However, it is not clear that blood-based bio-
markers accurately reflect the active pathologic processes
occurring in the lungs. One of the first major examples of
this phenomenon in COPD was described by Singh and
colleagues in the Evaluation of COPD Longitudinally to
Identify Predictive Surrogate Endpoints (ECLIPSE) study.
In that analysis, the investigators measured associations be-
tween sputum neutrophils as a potential biomarker for
COPD among 488 participants [24]. They found sputum
neutrophils were associated with pulmonary function and
health status, but no association between sputum neutro-
phils and AECOPD or emphysema, suggesting a role for

Table 4 Associations between AcPGP and Severe COPD exacerbations

Unadjusted Adjusted

OR 95% CI P-value OR 95% CI P-value

Sputum AcPGP (quartiles) 2.03 1.21–3.40 0.007 1.75 1.04–2.97 0.037

Elevated sputum AcPGP (above median) 6.01 1.67–21.6 0.006 4.86 1.28–18.4 0.020

Plasma AcPGP (quartiles) 0.98 0.63–1.51 0.92 1.01 0.65–1.58 0.95

Elevated plasma AcPGP (above median) 0.94 0.35–2.49 0.90 1.18 0.41–3.3 0.77

Logistic regression models were adjusted for age, sex, FEV1 percent predicted, prior severe AECOPD, and current smoking status

Fig. 2 Kaplan-Meier curve for severe AECOPD. COPD subjects with elevated sputum AcPGP had shorter time-to-first severe AECOPD compared to
individuals with non-elevated sputum AcPGP (195 days [95%CI 139–252] versus 305 days [259–351], P = 0.030)
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sputum based biomarkers in COPD. Likewise, Hastie and
colleagues reported high degree of discordance between
blood and sputum eosinophils in SPIROMICS, with spu-
tum eosinophilic inflammation being a more robust bio-
marker for disease severity, exacerbation frequency, and
more quantitative CT emphysema than blood eosinophils
[25]. As in our current study, neither group found robust
associations between sputum and blood biomarkers. Al-
though systemic markers are commonly consider to result
from excess inflammation in the lung milieu that spillover
into the circulation, it is increasingly recognized that
markers present in pulmonary and systemic compartments
may result from separate mechanisms [26]. Hence, our un-
expected lack of relationships between plasma AcPGP and
COPD outcomes in the current study may indicate that cir-
culating AcPGP reflect processes unrelated to COPD. In
addition to the neutrophil-chemoattractant properties of
AcPGP, there is increasing evidence that AcPGP plays crit-
ical roles in endothelial dysfunction, angiogenesis, and car-
diovascular injury [27, 28]. Thus, circulating AcPGP may
reflect a cardiac or pulmonary vascular disease, conditions
that are highly prevalent in COPD and should be studied in
the future. Nevertheless, this work provides additional sup-
port for continuing pursuit of sputum-based biomarker
panels for COPD.
Our study has limitations that deserve mention.

First, participants with very severe COPD were ex-
cluded from sputum induction given concerns of
safety in advanced disease. Thus, our findings reflect
a moderate-to-severe COPD population, which re-
mains highly relevant given that this group accounts
for most individuals with COPD. Another limitation
is the lack of a validation cohort. While this diminishes
the generalizability of the findings, we and others have
demonstrated the biological relevance of this matrikine
pathway in the pathogenesis of COPD. Additionally, we
only analyzed sputum AcPGP at one time point. However,
we have previously shown that sputum AcPGP values
remain consistent when measured repeatedly over a 12-
week period [8]. Further, the small number of severe
exacerbations increases the risk for type 1 error in our ob-
servations of increased odds of severe AECOPD and ele-
vated sputum AcPGP. These findings should be validated
in other cohorts. Finally, because of the observational
nature of the study, we cannot determine the causality
of the associations between elevated sputum AcPGP
and features of COPD. Nevertheless, the known prop-
erties of AcPGP suggest that it warrants investigation
as a potential therapeutic target to modify COPD
progression.

Conclusions
Our data support sputum but not systemic AcPGP as asso-
ciated with the severity of airflow limitation, emphysema

and small airways disease, and risk for severe exacerbations
in established COPD. Future prospective studies are needed
to better elucidate the impact of elevated pulmonary
AcPGP in patients at high risk for disease progression or
exacerbations.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12931-019-1230-8.

Additional file 1. Supplementary Methods. Figure S1. CONSORT
Diagram.
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