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EXPERT REVIEW OPEN

Psychological and biological mechanisms linking trauma with
cardiovascular disease risk
Jennifer A. Sumner 1✉, Shiloh Cleveland1, Tiffany Chen1 and Jaimie L. Gradus2

© The Author(s) 2023

Cardiovascular disease (CVD) is the leading cause of death and disability worldwide, and experiences of psychological trauma have
been associated with subsequent CVD onset. Identifying key pathways connecting trauma with CVD has the potential to inform
more targeted screening and intervention efforts to offset elevated cardiovascular risk. In this narrative review, we summarize the
evidence for key psychological and biological mechanisms linking experiences of trauma with CVD risk. Additionally, we describe
various methodologies for measuring these mechanisms in an effort to inform future research related to potential pathways. With
regard to mechanisms involving posttraumatic psychopathology, the vast majority of research on psychological distress after
trauma and CVD has focused on posttraumatic stress disorder (PTSD), even though posttraumatic psychopathology can manifest in
other ways as well. Substantial evidence suggests that PTSD predicts the onset of a range of cardiovascular outcomes in trauma-
exposed men and women, yet more research is needed to better understand posttraumatic psychopathology more
comprehensively and how it may relate to CVD. Further, dysregulation of numerous biological systems may occur after trauma and
in the presence of posttraumatic psychopathology; these processes of immune system dysregulation and elevated inflammation,
oxidative stress, mitochondrial dysfunction, renin-angiotensin system dysregulation, and accelerated biological aging may all
contribute to subsequent cardiovascular risk, although more research on these pathways in the context of traumatic stress is
needed. Given that many of these mechanisms are closely intertwined, future research using a systems biology approach may
prove fruitful for elucidating how processes unfold to contribute to CVD after trauma.

Translational Psychiatry           (2023) 13:25 ; https://doi.org/10.1038/s41398-023-02330-8

INTRODUCTION
Despite advances in prevention and intervention, cardiovascular
disease (CVD), encompassing a range of disorders of the heart and
blood vessels, remains the leading cause of death and disability
worldwide [1, 2]. Globally, CVD accounts for approximately one-
third of all deaths; in the United States, CVD claims more lives each
year than cancer and chronic lower respiratory disease combined
[1, 2]. The vast majority of CVD events are preventable, but the
burden of CVD has been growing faster than the ability to tackle it.
Identifying novel targets for reducing CVD risk is a critical step
toward reversing current CVD incidence trends.
Psychosocial factors have been increasingly recognized as risk

factors for CVD [3]. Indeed, depression and anxiety symptoms
have been found to predict cardiovascular conditions with similar
effect sizes as more traditional risk factors like smoking and
obesity [4]. Over the past few decades, research has documented
links between experiences of trauma with CVD onset [5, 6].
Trauma (e.g., natural disasters, unwanted sexual contact) is highly
prevalent; the majority of individuals will experience a psycholo-
gical trauma in their lifetime [7, 8]. Lifetime trauma exposure has
been linked to a range of cardiovascular outcomes across studies,
including coronary heart disease (CHD), myocardial infarction, and
stroke, even when accounting for potential confounders and
pathway variables [5, 9–12] Furthermore, in recent years, the

American Heart Association has drawn attention to these issues in
Scientific Statements highlighting the literature linking childhood
adversity [13] and traumatic stress [14] with cardiovascular risk.
Given evidence of associations between trauma with CVD, there

have been numerous efforts to understand underlying mechanisms.
Identifying pathways linking trauma with CVD can inform targeted
screening and intervention efforts to offset elevated cardiovascular
risk. In this narrative review, we summarize the evidence for
psychological and biological mechanisms linking trauma with CVD
risk. Although not a systematic review, we present a comprehensive
examination of the empirical literature on mechanisms, focusing in
particular on mechanisms that have not received as much attention
in the literature. Further, despite a robust preclinical literature, we
highlight research in humans in this review. To inform future research
in this area, we also describe various methodologies for measuring
mechanisms, especially potential biological pathways. Finally, we
highlight remaining gaps in understanding and recommend future
directions to advance research in this area.

PSYCHOLOGICAL MECHANISMS LINKING TRAUMA WITH CVD
RISK
Adverse psychological responses to traumatic events have been
posited as a key mechanism linking trauma with poor physical
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health [6]. Although many individuals are resilient after trauma, a
sizeable proportion subsequently experience emotional difficulties
[15]. Contingent upon trauma exposure, posttraumatic stress
disorder (PTSD) is the quintessential trauma-related mental
disorder [16]. However, PTSD is not the only mental disorder that
can onset after trauma; other stress-related conditions (e.g., acute
stress disorder) and mood, anxiety, and substance use disorders
can all develop in response to a traumatic event [17–21].
Furthermore, PTSD is often comorbid with depression, anxiety,
and substance misuse. Here, we summarize and evaluate the
empirical evidence for manifestations of posttraumatic psycho-
pathology as psychological mechanisms linking trauma with
CVD risk.

PTSD
The vast majority of research on posttraumatic psychopathology
and CVD has focused on PTSD, and PTSD has been increasingly
recognized as a key psychological mechanism underlying elevated
cardiovascular risk after trauma [22]. In an initial meta-analysis of
six studies, PTSD was associated with a 55% higher rate of incident
CHD; although attenuated when adjusting for depression, the
pooled hazard ratio (HR) for the PTSD-CHD association still
provided evidence of an effect (HR= 1.27, 95% CI: 1.08–1.49)
[23]. A more recent meta-analysis of nine longitudinal studies
estimated that PTSD was associated with a 61% higher rate of
incident CHD; again, depression did not account for the PTSD-
incident CHD relation entirely (HR= 1.46, 95% CI: 1.26–1.69) [24].
In addition to this meta-analytic evidence, methodologically
rigorous, longitudinal research has demonstrated that PTSD
precedes and predicts a range of cardiovascular conditions,
including myocardial infarction, stroke, venous thromboembolism,
heart failure, and atrial fibrillation [12, 25–36]. Furthermore, PTSD
has been associated with numerous cardiometabolic risk factors
(e.g., hyperlipidemia, hypertension, diabetes, obesity) [37–40]. In
these studies, PTSD has been measured in various ways, including
symptom questionnaires [12, 29], clinical interview-based diag-
noses [27], and diagnostic codes in electronic health records
[25, 35].
For years, PTSD and CVD was studied in predominantly male

veteran samples. This limited the ability to draw conclusions about
civilians and women—notable shortcomings given the wide-
ranging nature of trauma and established sex differences in PTSD
and CVD [7, 41]. However, prospective research in population-
based health registry samples has addressed this gap [25, 26]. In
addition, longitudinal research has demonstrated associations
between PTSD and incident CVD in community-dwelling women
and women veterans, with effect sizes similar to those observed in
men [12, 28, 35].
Together, this work provides substantial epidemiologic support

that PTSD may increase risk of CVD. Indeed, in light of this
evidence—and the potential public health implications—the
National Heart, Lung, and Blood Institute held a workshop in
2018 to outline important directions for future research [42]. One
such direction was to extend the research in observational cohorts
and improve causal inference with Mendelian randomization (MR)
using results from large-scale genome-wide association studies
(GWAS) of PTSD and CVD. MR is an instrumental variable method
that uses genetic instruments (which can be derived from publicly
available GWAS summary statistics) to address the causal relation
between a risk factor and health outcome [43]. Two MR studies on
PTSD and cardiovascular risk have been conducted, and they
suggest that genetically determined PTSD predicts hypertension
[44] and CHD [45]. In contrast, no evidence for genetic
predisposition for hypertension predicting PTSD was observed
[44], and genetic predisposition for CHD was associated with
reduced PTSD symptom severity [45]. The latter finding is contrary
to evidence from cohort studies suggesting that cardiovascular
events can serve as an index trauma for PTSD [22].

Other posttraumatic psychopathology
Even though posttraumatic psychopathology can manifest in
various ways, research that comprehensively considers a con-
stellation of posttraumatic psychopathology as predictors of CVD
is lacking. Research in national health registry samples has
considered other stress-related disorders that—like PTSD—are
contingent upon experiencing a severely stressful event (e.g.,
acute stress reaction, adjustment disorder); these stress-related
mental disorders were associated with elevated risk of incident
cardiovascular events and conditions [25, 26]. However, research
in trauma-exposed samples has generally treated other mental
disorders (e.g., depression) as confounders when evaluating PTSD
and CVD, rather than investigating these other expressions of
posttraumatic psychopathology as CVD predictors themselves
[12, 28, 29]. This gap in the literature is notable, because
depression, anxiety, and substance misuse are associated with
CVD in non-trauma-exposed samples [46–48].
The predominant focus on PTSD has thus resulted in an

incomplete characterization of the psychopathological effects of
trauma exposure on subsequent CVD risk. Moreover, initial
evidence suggests that considering psychiatric comorbidities after
trauma may help identify those most at-risk for adverse physical
health outcomes. Compared to women without trauma or
depression, trauma-exposed women with high PTSD and depres-
sive symptom levels had a nearly four-fold greater risk of all-cause
mortality, plus higher rates of death from CVD [49]. These findings
highlight the importance of considering co-occurrence of mental
disorders when studying cardiovascular risk after trauma.

Downstream pathways and shared genetic risk
Numerous behavioral and biological changes associated with
posttraumatic psychopathology may subsequently contribute to
cardiovascular risk. Here, we highlight some of these pathways,
often focusing on ones associated with PTSD in particular as it has
received the most attention within the literature. We describe
additional biological mechanisms relevant to trauma and related
psychopathology in more detail in Section 3.0. We also describe
evidence for shared genetic factors that may increase risk of
psychopathology and CVD after trauma.
Meta-analytic evidence has linked PTSD to numerous poor

health behaviors and conditions, including physical inactivity,
unhealthy diet, smoking, and obesity [50]. Additionally, medica-
tion nonadherence and greater substance use and abuse have
been observed in individuals with PTSD [51, 52]. Other psycho-
pathology such as depression and anxiety have also been linked
to unhealthy behaviors [53–55]. Although numerous studies
detect an association between PTSD and CVD even when
accounting for these behaviors, effect sizes are often attenuated,
suggesting these factors explain some of the excess cardiovas-
cular risk in individuals with posttraumatic psychopathology
[12, 27–29]. For example, unhealthy behaviors and obesity may
contribute to metabolic dysregulation and related conditions (e.g.,
insulin resistance, metabolic syndrome, diabetes) that, in turn,
increase vulnerability to CVD [56]. Furthermore, some research
suggests that PTSD may contribute to psychopathology like
depression, which—in turn—may contribute to unhealthy beha-
viors like physical inactivity and smoking, thereby increasing CVD
risk [57]. This research demonstrates that considering various
psychological consequences of trauma may help elucidate drivers
of CVD-relevant pathophysiology.
A substantial literature has also described a strong connection

between PTSD and dysregulation of the biological stress response,
including the hypothalamic-pituitary-adrenal (HPA) axis and
sympathetic-adrenal-medullary (SAM) system; changes in these
systems may produce a cascade of effects conducive to poor
cardiovascular health. Studies of individuals with PTSD have
reported decreased cortisol levels, increased sensitivity of
glucocorticoid receptors, and enhanced negative feedback of
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the HPA axis, although inconsistencies in findings across studies
exist and may reflect differences in trauma exposure, manifestations
and/or duration of posttraumatic psychopathology, and methodo-
logical factors [58–60]. In addition, PTSD has been characterized by
hyperarousal of the sympathetic nervous system (SNS; e.g., elevated
heart rate, blood pressure, skin conductance) and diminished
parasympathetic activity (e.g., lower heart rate variability reflecting
reduced vagal tone) [59–61]. Changes in HPA and autonomic
functioning have implications for cardiovascular health (e.g.,
excessive catecholamines from SNS hyperreactivity can induce
cardiac injury [62]), and they can influence other cardio-relevant
biological mechanisms described in Section 3.0 (e.g., inflammation,
oxidative stress) [63]. Other psychopathology such as depression has
been characterized by HPA axis and autonomic dysfunction as well,
although often in distinct ways from PTSD (e.g., depression is
characterized by reduced feedback inhibition of the HPA axis,
whereas PTSD is characterized by enhanced negative feedback)
[58, 64], again suggesting a need to examine comprehensively the
psychological sequelae of trauma when delineating these pathways.
Finally, shared genetic risk factors may also contribute to poor

mental and cardiovascular health after trauma. For example, one
study found associations between candidate genes for PTSD and
CVD; of the 87 PTSD candidate risk genes, 37 were also risk genes
for CVD, with many implicated in pathways related to immune
function [65]. Research using results from GWAS of PTSD,
depression, and cardiovascular outcomes has also pointed to
positive genetic correlations between these mental and cardiovas-
cular conditions [44, 66]. These results thus provide initial evidence
for genetic overlap between PTSD and depression with cardiovas-
cular risk, situating these conditions in a shared genetic milieu.

BIOLOGICAL MECHANISMS LINKING TRAUMA WITH CVD RISK
Both trauma and posttraumatic psychopathology can contribute
to downstream processes that increase risk of CVD. For example,

as described in Section 2.3, PTSD is characterized by dysregulation
of the HPA axis and SAM system [58–60], and trauma exposure—
even without trauma-related psychopathology—is associated with
similar dysfunction, although generally to a lesser degree than
PTSD [67, 68]. These physiological changes can contribute to
alterations in biological processes relevant to cardiovascular
health, including immune dysregulation and elevated inflamma-
tion, oxidative stress, mitochondrial dysfunction, dysregulation of
the renin-angiotensin system, and accelerated biological aging
(Fig. 1). For each of these processes, we briefly introduce the
underlying biology, describe links to CVD and other biological
mechanisms, and review different measurement approaches to
support the incorporation of these mechanisms in future studies.
We then summarize and evaluate the empirical evidence for these
biological mechanisms, first focusing on links with trauma and
then with PTSD. Although some of these mechanisms are related
to other psychopathology (e.g., depression [69, 70]), we focus on
PTSD given the predominance of this disorder in the traumatic
stress-CVD literature to date. Additionally, we provide details for
some exemplar studies for each biological mechanism to convey
further information about notable methods and key findings
(Table 1).

Immune dysregulation and elevated inflammation
The immune system encompasses cells, chemicals, and processes
that defend the body from noxious stimuli, and inflammation is a
key component of the immune response [71]. Inflammatory
responses involve a complex cascade of signaling molecules;
although acute increases in inflammation in response to injury or
infection are critical for health, a chronic state of inflammation can
contribute to disease. Inflammation has been implicated in
cardiovascular event onset, disease progression, and adverse
prognosis [72]. For example, epidemiologic studies have demon-
strated that elevated inflammatory biomarkers predict CVD [73],
and atherosclerosis—the narrowing of arteries due to plaque

Fig. 1 Conceptual model of key psychological and biological mechanisms linking trauma exposure with incident cardiovascular disease
(CVD). Experiences of trauma and severe stress precede manifestations of posttraumatic psychopathology, such as posttraumatic stress disorder
(PTSD) and depression. Subsequent dysregulation of biological stress response systems, including the hypothalamic-pituitary-adrenal (HPA) axis
and sympathetic-adrenal-medullary (SAM) system, can contribute to further dysregulation in several interconnected biological systems,
potentially leading to immune dysregulation and elevated inflammation, oxidative stress, mitochondrial dysfunction, and dysregulation of the
renin-angiotensin system (RAS). Not only can these biological processes further influence one another (as indicated by the recursive arrows), but
they can also contribute to accelerated biological aging. Together, these biological alterations can lead to the accumulation of intermediary
cardiovascular risk factors, such as hypertension, endothelial dysfunction, and atherosclerosis, which—in turn—increase risk of developing CVD.
Furthermore, these psychological and biological processes may unfold after trauma within a milieu of shared genetic risk.
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accumulation, a major CVD risk factor—is now conceptualized as
an inflammatory condition [72].
Immune- and inflammation-related processes can be measured

in research in various ways. Quantifying levels of peripheral
inflammation-related biomarkers, such as C-reactive protein (CRP)
and interleukin-6 (IL-6), are common in the field of traumatic stress
[74, 75], although imaging-based approaches that capture cellular
glycolysis (e.g., fluorodeoxyglucose positron emission tomogra-
phy) have begun to be used to detect vascular inflammation
[76, 77]. Immune function can also be captured, for example, by
considering in vitro stimulated measures of inflammatory
cytokine- and/or chemokine-producing immune cells [78].
Trauma, PTSD, and inflammation-related biomarkers have been

studied extensively, with several meta-analyses on these relations.
A meta-analysis of 36 independent samples found moderate
positive correlations between trauma exposure and several
inflammation-related biomarkers [CRP, IL-1β, IL-6, tumor necrosis
factor-α (TNF-α)]; no associations were observed for fibrinogen, IL-
2, IL-4, IL-8, or IL-10 [75]. In addition, childhood trauma was
associated with elevated CRP, IL-6, and TNF-α levels with small
effects in a meta-analysis of 25 studies [79]. Several systematic
reviews and meta-analyses examining PTSD and inflammatory
markers have also been conducted [74, 80–82]. In the most recent
meta-analysis of 54 studies examining over 15 inflammatory
markers, elevated levels of CRP (moderate effect), IL-6 (large
effect), and TNF-α (large effect) were observed in individuals with
PTSD compared to controls; there was also weak evidence of a
small effect for PTSD and IL-1β [82]. Together, these results
suggest that trauma and PTSD are associated with elevations in
peripheral inflammatory markers. However, most studies have
been cross-sectional, which limits the ability to draw directional
and causal conclusions. Indeed, bidirectional associations between
PTSD and inflammation have been postulated, and the relatively
few existing longitudinal studies have yet to provide robust
evidence that a proinflammatory milieu leads to PTSD and/or that
trauma and PTSD promote inflammation [83]. In addition to
studies of peripheral biomarkers, preliminary research in small
samples of individuals with PTSD has examined vascular
inflammation using imaging-based approaches, although findings
have been mixed [76, 77].
Nevertheless, support for links between trauma, PTSD, and

inflammation has been observed across omics studies. For
example, hypothesis-free genetic, epigenetic, and gene expression
studies of PTSD have identified genes related to the immune
system [e.g., genes in the HLA region and those encoding
inflammatory cytokines (IL-8, IL-16)] [84–86], which parallels work
with candidate genes [65]. Additionally, some studies have found
that variation in and/or methylation of immune-relevant genes
underlie associations of PTSD and inflammation. For instance, in
some (but not all) studies of military veterans, methylation of the
Absent in Melanoma 2 (AIM2) gene, which has been implicated in
the inflammatory response, partially accounted for associations of
PTSD with elevated inflammatory markers [87–89]. Furthermore,
MR research has begun to address causality in the PTSD-
inflammation and inflammation-PTSD relations, with an initial
study documenting small bidirectional associations between PTSD
and CRP [90]. Finally, several metabolomics studies have identified
metabolites related to inflammation and immune function (e.g.,
sphingolipids, glycerophospholipids) in profiles distinguishing
individuals with and without PTSD [91–93].

Oxidative stress
Oxidative stress may also underlie associations of trauma and
PTSD with CVD. Cellular energy production generates pro-oxidants
[e.g., reactive oxygen species (ROS)] as naturally occurring
byproducts, and regulation by an antioxidant defense system is
key for cellular functioning [94, 95]. Oxidative stress arises when
there is an imbalance between ROS and other pro-oxidant

molecules and their neutralization by antioxidants [94, 95]. A
prolonged state of oxidative stress can result in cellular damage
and death. Oxidative stress and inflammation often co-occur and
influence one another; inflammatory signaling can trigger ROS
production, and oxidative stress stimulates the immune response
[94, 95]. Furthermore, oxidative stress has been linked to CVD [96].
Traditional cardiovascular risk factors like hyperlipidemia and
hypertension contribute to ROS production [97], and oxidative
stress can contribute to endothelial dysfunction [98]—an early
indicator of reduced capacity of blood vessels to respond to
cardiovascular demand [99]—and atherosclerosis [97].
Although it is challenging to measure pro-oxidant molecules

like ROS directly due to short half-lives and low concentrations,
approaches have been developed to quantify oxidative stress
[100]. For example, biomarkers indicative of damage induced by
oxidative stress to lipids, proteins, and DNA (e.g., F2-isoprostanes,
protein carbonyls, 8-hydroxy-deoxyguanosine, respectively) can
be measured using immunoassays or mass spectrometry
[100, 101]. Alternatively, antioxidant-based measures can be used
to capture oxidative stress. Such approaches include quantifying
antioxidant enzyme levels and activity, as well as the antioxidant
capacity in bodily fluids—an in vitro metric that uses color or
fluorescence changes to quantify the extent to which pro-oxidants
are counteracted by antioxidants [101, 102].
Although some research has linked life stress (e.g., chronic

caregiving, examination stress) with greater oxidative stress
[103, 104], few studies have considered traumatic experiences,
with all focused on early-life adversity. In two small studies of
adolescents, those with a history of early-life adversity had
elevated markers of oxidative damage to lipids (F2-isoprostanes)
and proteins (protein carbonyls), and an increased enzymatic pro-
oxidant/antioxidant defense ratio and lower non-enzymatic
antioxidant capacity [105, 106]. Furthermore, one small study of
postpartum women found that more severe childhood maltreat-
ment was associated with serum metabolites associated with
greater oxidative stress and lower antioxidant capacity [107].
However, some studies in children [108] and adults [109] have
failed to detect associations between early-life adversity and
oxidative stress markers. Notably, all studies employed retro-
spective reports of early-life adversity in relatively small samples,
and research on lifetime experiences of trauma is lacking.
Whereas the research on trauma and oxidative stress has been

limited, numerous studies have assessed oxidative stress in
individuals with PTSD. A recent meta-analysis did not find an
association between PTSD with malondialdehyde (a product of
lipid peroxidation) or two antioxidant enzymes (catalase, para-
oxonase-1) [82], although only five studies were included and
three drew participants from the same sample [110–114]. Overall,
additional studies of PTSD and oxidative stress—most conducted
among combat veterans [115–118]—have had mixed results
[119–121]. Furthermore, studies have varied widely in measures of
oxidative stress, which complicates comparisons. Some additional
evidence for a link between PTSD and oxidative stress comes from
omics studies. For example, a variant in the retinoic acid orphan
receptor (RORA) gene, involved in oxidative stress-related biology,
was identified in the first GWAS of PTSD [122], and findings from
epigenetic and gene expression studies of PTSD have implicated
genes related to oxidative stress [123–125]. Additionally, metabo-
lite profiling studies comparing individuals with and without PTSD
have identified differences in metabolites related to oxidative
stress (e.g., proline, hydroxyproline, 4Z,15E-bilirubin IXa)
[91, 93, 126].

Mitochondrial dysfunction
Given their critical role in energy production, mitochondria are key
producers of ROS that are closely connected with immune
modulation and inflammation-related processes [127]. Mitochon-
dria have their own DNA—mitochondrial DNA (mtDNA)—with
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critical genes for energy production. In addition, mitochondria can
change in structure and function as a result of environmental
signals they detect; some of these changes can contribute to
mtDNA damage, which can lead to mitochondrial dysfunction
and adversely impact energy metabolism, ROS production, and
signaling [127, 128]. Changes in mitochondrial structure and
function can contribute to cardiometabolic dysregulation, includ-
ing obesity, hypertension, and hyperlipidemia [129], and mito-
chondrial dysfunction can lead to endothelial dysfunction and
atherosclerosis [130].
Multiple mitochondria-relevant metrics exist; measuring aspects

of mitochondria function and content provides the most
comprehensive assessment [127]. Functional measures include
quantifying oxygen consumption rate in living cells and respira-
tory chain enzymatic activity in frozen cells [131]. Additionally,
mitochondria morphology can be assessed with electron micro-
scopy [132], and activity of the mitochondrial enzyme citrate
synthase can be quantified to measure the density of the
mitochondrial network per cell [133–135]. Several mtDNA-
related measures [e.g., mtDNA copy number (mtDNAcn) per cell,
mutations, deletions] can also be assessed as potential indicators
of mitochondrial dysfunction [127, 136]. Additionally, circulating
cell-free mtDNA (ccf-mtDNA) is a pro-inflammatory mitochondria-
derived signaling molecule detectable in peripheral samples [127].
As with research on oxidative stress, most research has

examined stress and mitochondrial dysfunction [127, 131, 133],
but some studies have examined early-life adversity. One small
sample of postpartum women found that more severe experi-
ences of childhood maltreatment were associated with greater
mitochondrial routine physiological activity and augmented
energy and ROS production, but not with citrate synthase activity
[107]. These findings were partially replicated in a larger sample of
mother-newborn dyads in the My Childhood-Your Childhood
study from the same research group; mothers with vs. without a
history of childhood maltreatment had higher mitochondrial
routine physiological activity, augmented energy production, and
higher citrate synthase activity [137]. However, no associations
between maternal childhood maltreatment and newborns’
mitochondrial measures were observed. My Childhood-Your
Childhood study investigators also examined whether maternal
childhood maltreatment was related to differential change in
mitochondrial metrics within the first year after birth [138]. At the
1-year follow-up, childhood maltreatment-related differences in
mitochondrial function and intracellular density at baseline
(reported in Gumpp et al. [137]) were no longer observed,
suggesting that these mitochondrial changes may have only been
detectable after the physiological demands of childbirth.
Whereas links between early-life adversity and mitochondrial

function have been examined predominantly in postpartum
women, associations between early-life adversity and mtDNAcn
have been investigated in more diverse samples [136]. For
example, history of childhood maltreatment was associated with
greater mtDNAcn in adults [139] and children [140], however, in
one additional study, the positive association between childhood
sexual abuse and mtDNAcn was only observed in individuals with
depression [141]. In contrast, maternal lifetime trauma exposure
was negatively associated with mtDNAcn in placenta, but not cord
blood [142]. Additionally, no significant differences in mtDNAcn
were observed in Holocaust survivors or their descendants
compared to age-matched controls [143]. With respect to
circulating mitochondrial-related markers, two studies of trau-
matic injury patients observed higher concentrations of mtDNA in
plasma compared to controls [144, 145], and women who
experienced sexual trauma during adolescence had significantly
more ccf-mtDNA than women with no sexual trauma or who
experienced sexual trauma during childhood or adulthood [146].
Studies of PTSD and mitochondria are even fewer than those

investigating trauma and mitochondrial dysfunction. In male

combat veterans, individuals with vs. without a current PTSD
diagnosis had lower mtDNAcn; this was driven by individuals with
mild or severe symptoms [147]. In a prospective pregnancy cohort,
greater prenatal PTSD symptoms were associated with lower
mtDNAcn in placenta [148]. However, in trauma-exposed women,
there was no significant correlation between current PTSD
symptoms and ccf-mtDNA [146]. Indirect support for a link
between PTSD and mitochondrial function also comes from
mitochondrial GWAS [149], along with epigenetic [150], gene
expression [125], and metabolomics studies [93].

Renin-angiotensin system (RAS) dysregulation
Dysregulation of the RAS, which interacts with the HPA axis and
SAM system, represents another biological mechanism potentially
linking traumatic stress with CVD risk [151–153]. The RAS is a key
regulator of blood pressure, along with fluid and salt balance
[152, 154]. The enzyme renin leads to the production of
angiotensin I and II in blood and tissues. As the main effector
molecule of the RAS, angiotensin II has numerous functions,
including constricting blood vessels, stimulating sodium reabsorp-
tion and triggering the adrenal cortex to release aldosterone, and
promoting norepinephrine release [152]. RAS activation can
contribute to cardiovascular risk via elevated SNS activity, blood
pressure, inflammation, oxidative stress, and endothelial dysfunc-
tion [63, 154], and elevated renin predicts myocardial infarction
[155, 156]. Furthermore, elements of the RAS have become
cardiovascular pharmacotherapy targets; angiotensin converting
enzyme inhibitors (ACE-Is) and angiotensin receptor blockers
(ARBs) are RAS blockers commonly used to manage hypertension
and have been shown to reduce SNS activity [63, 154].
RAS components can be assessed from peripheral samples. For

example, plasma renin activity, a measure of renin’s capacity to
generate angiotensin I, can be determined by activity assay;
immunoassays can also be used to estimate renin concentration in
plasma [157, 158]. Additionally, immunoassays can be used to
quantify endogenous angiotensins (e.g., angiotensin II) and the
steroid hormone aldosterone [158, 159].
Although acute stress has been associated experimentally with

increases in RAS components (renin, aldosterone) [153], only three
studies have examined trauma, PTSD, and the RAS. In a large
general population sample from the Study of Health in Pomerania,
greater childhood trauma was associated with higher plasma
concentrations of aldosterone—but not renin—and greater
adulthood trauma exposure was associated with higher plasma
renin—but not aldosterone—concentrations [160]. In a second
Study of Health in Pomerania investigation, individuals with
trauma but without PTSD and individuals with PTSD had elevated
renin (but not aldosterone) levels compared to individuals without
trauma; those with PTSD showed the most pronounced renin
elevations [161]. Additionally, middle-aged women with chronic
PTSD had lower aldosterone levels compared to women without
trauma [162]. Although findings have been mixed from the few
studies examining traumatic stress and RAS components, further
indirect evidence for a PTSD-RAS link comes from ACE-I/ARB
studies. Specifically, use of ACE-Is/ARBs (but not other antihyper-
tensive medications) has been associated with lower PTSD
symptoms [163, 164], with some evidence of moderation by
genetic variation or sex [164, 165]. However, there was no
evidence for clinical benefit of ARB use for PTSD in a 10-week
randomized, placebo-controlled trial [166].

Accelerated biological aging
Many of the biological processes described above, including
elevated inflammation and oxidative stress, may contribute to
CVD via accelerated biological aging (BA). Indeed, trauma and
PTSD have been linked to early-onset CVD [12, 34, 35], prompting
interest in whether the pace of cellular aging may be hastened
after trauma and contribute to premature disease [167]. Cellular
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markers of BA associated with aging-related process and CVD
include telomeres, epigenetic clocks, and composite biomarker-
based estimates. For example, telomeres—noncoding DNA
sequences at the ends of chromosomes—shorten with age,
although telomere attrition can accelerate due to environmental
factors [168]. Cellular senescence is triggered when telomeres
shorten to a particular length, and shortened telomeres predict
mortality and incident CVD [169, 170]. Further, MR research
suggests a causal link between telomere length and CVD [171].
Numerous “epigenetic clocks” have also been developed that
estimate age based on DNA methylation (DNAm) data across the
genome [172]. The extent to which these DNAm age estimates are
accelerated relative to chronological age predicts mortality and
CVD [173, 174]. In addition, BA estimators that integrate
information from clinical biomarkers across multiple physiological
systems have been developed that predict mortality and
morbidity [175–177].
Multiple methods can be leveraged to quantify these BA

measures. Telomere length can be measured in several specimens,
including blood and saliva, using various methods (e.g., terminal
restriction fragment length analysis by Southern blot, quantitative
polymerase chain reaction with DNA analytes [178, 179]); however,
tissue type and analytic approach have been found to influence
reliability [179–181]. Recently, a DNAm estimator of telomere
length was also developed [182]. Additionally, multiple epigenetic
clocks are available, including first-generation clocks calibrated to
predict chronological age (the pan-tissue Horvath clock [183] and
blood-based Hannum clock [184]) and second-generation clocks
trained to predict morbidity- and mortality-related outcomes
(PhenoAge [176] and GrimAge [185]). Most of these clocks can be
applied to DNAm from blood samples in adults, although the
Horvath clock was calibrated across various tissues and in youths
and adults [177, 183]. In addition, individual variability in the pace
of biological aging was recently distilled into a single timepoint
DNAm measure (DunedinPACE) [186]. Finally, composite biomar-
ker estimates of BA can be calculated from various biomarkers
(e.g., CRP, creatinine) often collected in clinical settings; several
computational methods are available (e.g., Klemera-Doubal
method, Phenotypic Age algorithm [175, 176]). Calculation of
various DNAm age estimates and composite biomarker estimates
is facilitated by the availability of online calculators and statistical
packages [183, 187]. Interestingly, relatively low agreement has
been found between various BA measures, suggesting that they
capture different aspects of aging-related processes [188].
Trauma, PTSD, and telomeres have been studied extensively, as

summarized in several systematic reviews and meta-analyses.
Early-life adversity has generally been linked to shorter telomere
length, despite heterogeneity across investigations [189–194]; in
the largest meta-analysis of 41 studies in youths and adults, there
was a small-to-medium overall association between early-life
adversity and reduced telomere length [190]. Furthermore, there is
some meta-analytic evidence that early adverse experiences
characterized by threat—not deprivation or socioeconomic
disadvantage—are associated with accelerated BA in youths
(measured across telomere and DNAm age metrics) [195]. In
several studies of early-life adversity and telomeres published
since these review papers, most—but not all—have demonstrated
negative associations between early-life adversity and telomere
length [196–203], yet there has been mixed evidence for
intergenerational transmission of trauma via telomere length
[204–206]. Fewer studies have examined traumatic experiences in
adulthood (e.g., military service, solitary confinement during war
captivity, lifetime trauma) and telomere length, with mixed results
[203, 207–209]. Research on PTSD and telomeres has also been
summarized in reviews. One meta-analysis of five studies found a
small overall effect of PTSD on shorter telomere length; as with
research on early-life adversity, substantial heterogeneity was
detected [191]. A more recent systematic review included

13 studies of PTSD and telomeres, with six finding a negative
association, three (all in military samples) not detecting an
association, one finding a positive association, and three finding
mixed results [210]. More recent studies have continued to have
inconsistencies or nuance in results, with some observing a
negative PTSD-telomere length relation only for older individuals
[211] or for re-experiencing symptoms [212], and others detecting
a positive association between PTSD and telomere length
[213, 214]. A few studies of telomeres in trauma-exposed
individuals have also considered manifestations of posttraumatic
psychopathology beyond PTSD, detecting shorter telomeres in
former prisoners of war with greater depressive symptoms [215]
and in women with comorbid PTSD and depressive symptoms
[216].
Although fewer studies have examined associations between

trauma, PTSD, and DNAm age compared to the telomere
literature, this is an area of growing interest. A recent systematic
review identified 10 studies of traumatic stress and DNAm age in
adults; four of these examined early-life adversity, with one finding
an association with advanced DNAm age relative to chronological
age (i.e., epigenetic age acceleration) [217]. In a large meta-
analysis of individuals across nine cohorts, childhood trauma was
associated with Hannum (but not Horvath) epigenetic age
acceleration, however only when measured with the Childhood
Trauma Questionnaire [218]. Greater experiences of early-life
adversity were also linked to DNAm age acceleration based on
several epigenetic clocks in two large longitudinal cohorts
[219, 220]. In youths, early-life adversity has been linked to
epigenetic age acceleration, with nuances in the findings
detected. For example, in the Avon Longitudinal Study of Parents
and Children (ALSPAC) cohort, early-life adversity during early and
middle childhood was associated with Hannum (but not Horvath)
epigenetic age acceleration—suggesting sensitive periods, rather
than cumulative or recency effects—when it comes to early-life
adversity and BA [221]. Additional work in ALSPAC found that
greater early-life adversity was associated with Horvath (but not
Hannum) epigenetic age acceleration in adolescent girls and not
boys [222]. In contrast, as noted in the Lim and colleagues [217]
systematic review, relatively few studies have detected a link
between lifetime trauma and epigenetic age acceleration, a
finding echoed in more recent investigations [218, 223]. Research
on PTSD and DNAm age has more consistently demonstrated
evidence for epigenetic age acceleration, although there is
variability in which epigenetic clocks have effects detected. The
Lim and colleagues [217] systematic review and a recent review
[224] reported that 5 of 7 studies and 7 of 11 studies, respectively,
observed an association between PTSD and accelerated epige-
netic age. Recent studies have a similar overall finding, although
again which epigenetic clock is accelerated varies [225–228].
There is also initial evidence that other posttraumatic psycho-
pathology may be relevant to DNAm age. For example, current
alcohol use disorder—but not depression or generalized anxiety
disorder—was associated with a faster pace of the Horvath
epigenetic clock in a longitudinal study of veterans [229].
Additionally, although PTSD diagnosis was not related to pace
of the epigenetic clock, avoidance and numbing symptoms of
PTSD were predictors.
To date, only a handful of studies have investigated early-life

adversity and composite biomarker-based BA measures. Across
three studies in large longitudinal cohorts, early-life adversity was
associated with more advanced BA based on the Klemera-Doubal
method, Phenotypic Age algorithm, and a multi-biomarker
indicator of pace of BA [230–232].

RECOMMENDATIONS AND FUTURE DIRECTIONS
There is now an extensive literature suggesting that CVD risk is
elevated after trauma. The psychological response to trauma
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appears to be a key mechanism linking these experiences with
adverse cardiovascular health. Not only is dysregulation of cardio-
relevant biological processes generally more pronounced in those
with posttraumatic psychopathology than with trauma alone
[67, 68, 233], but studies that directly compare risk of incident CVD
in trauma-exposed individuals with and without posttraumatic
psychopathology generally detect larger effects in individuals with
psychological distress after trauma [12, 34]. These findings have
been observed in a variety of trauma-exposed samples using
rigorous longitudinal designs that account for numerous potential
confounders, and this work has been complemented by MR
studies that further suggest a causal association. However, despite
the many ways in which posttraumatic psychopathology man-
ifests, the vast majority of research has focused on PTSD. This is a
notable limitation, especially as the few studies considering
multiple forms of posttraumatic psychopathology have often
found more pronounced health risks in individuals with comorbid
symptoms, suggesting the value of looking beyond just PTSD
[49, 216].
Going forward, it is critical to consider whether other

posttraumatic psychopathology has an etiologic effect on
cardiovascular health. For example, it is unclear whether there
are combinations and/or sequences of psychopathology after
trauma that are particularly cardiotoxic, and whether these
combinations vary for different groups (e.g., men vs. women),
trauma types (e.g., interpersonal vs. non-interpersonal trauma),
and cardiovascular outcomes. Furthermore, given racial and ethnic
inequities in trauma exposure, risk of trauma-related psycho-
pathology, access to treatment, and CVD risk, studies in diverse
populations are critical [1, 234]. In addition, research is needed
that extends beyond traditional diagnostic categories and
investigates how transdiagnostic symptom dimensions relate to
cardiovascular risk after trauma. Such an approach may identify
key posttraumatic symptoms that may be targeted to reduce
cardiovascular risk. For example, initial research suggests that fear-
related symptoms after trauma may be particularly associated
with cardiovascular risk [235–237].
Extensive research also suggests dysregulation of a variety of

inter-related biological processes that may contribute to elevated
cardiovascular risk both after trauma and in individuals with PTSD.
Immune- and inflammation-related processes are some of the
most well-studied and supported mechanisms to date, with
evidence from meta-analyses and multiple omics studies. How-
ever, most investigations have been cross-sectional, and long-
itudinal research is needed to better understand risk processes
after trauma. There is also considerable support for accelerated BA
after trauma and in those with posttraumatic psychopathology,
particularly for telomeres. Despite clear connections between
stress-related biological systems that are dysregulated after
trauma and in PTSD and the other biological mechanisms
highlighted in this review (e.g., oxidative stress, mitochondrial
dysfunction, RAS dysregulation), the latter processes have yet to
be the subject of ample empirical study. Further, most studies
have focused on early-life adversity—typically reported retro-
spectively—and sample sizes have generally been small and
methods varied.
More comprehensive research on how experiences of trauma

over the lifespan, and a range of posttraumatic psychopathology,
relate to downstream biological processes is thus needed.
Furthermore, although some research has considered potential
sex differences in the traumatic stress-CVD relation [25, 26],
research that extends this consideration to biological mechanisms
is needed. For example, gonadal hormones (e.g., estradiol,
testosterone) have documented effects on many of the biological
mechanisms discussed in this review (e.g., inflammation, the RAS)
[238, 239], and an important future direction is to consider sex
differences in these mechanisms after trauma and potential
consequences for CVD risk. Additionally, given the interconnections

between processes, an integrative systems biology approach is
likely to be valuable for understanding mechanisms contributing to
cardiovascular risk. Preclinical experimental studies of trauma and
PTSD offer elegant examples for studying processes across multiple
levels of analysis and their impact on cardiovascular metrics
[240, 241]. Although systems biology research is of growing interest
in the traumatic stress field [242], this approach has yet to be
implemented in trauma and CVD research. Additionally, examining
dynamic changes in biological mechanisms in response to stress
and trauma-related stimuli may shed light on how risk processes
unfold—and how interventions may affect these processes
[243, 244].
Ultimately, a more refined understanding of psychological and

biological mechanisms can inform CVD intervention efforts. Initial
evidence suggests that PTSD treatment may attenuate cardiovas-
cular risk [245, 246], and a trial of gold-standard treatment for
PTSD is underway to investigate potential impact on cardiovas-
cular risk markers [247]. Although treating PTSD to improve
mental health itself is an important goal, it is of interest to
examine whether trauma-focused psychotherapies for PTSD may
improve cardiovascular risk markers and related biological
mechanisms directly or via reductions in posttraumatic psycho-
pathology. Nevertheless, a longitudinal study in veterans did not
find that clinically meaningful reductions in PTSD symptoms were
associated with reduced incidence of CVD [248]. Investigating
interventions that engage behavioral and/or biological mechan-
isms linking trauma with adverse cardiovascular health (e.g., anti-
inflammatory or antioxidant treatments [95], physical activity
interventions [249]) may also prove fruitful for developing multi-
modal treatment approaches for reducing cardiovascular risk after
trauma.
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