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92697, USA
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Abstract

The development and application of nonlinear optical (NLO) microscopy methods in biomedical 

research has experienced rapid growth over the past three decades. Despite the compelling 

power of these methods, optical scattering limits their practical use in biological tissues. 

This tutorial offers a model-based approach illustrating how analytical methods from classical 

electromagnetism can be employed to comprehensively model NLO microscopy in scattering 

media. In Part I, we quantitatively model focused beam propagation in non-scattering and 

scattering media from the lens to focal volume. In Part II, we model signal generation, 

radiation, and far-field detection. Moreover, we detail modeling approaches for major optical 

microscopy modalities including classical fluorescence, multi-photon fluorescence, second 

harmonic generation, and coherent anti-Stokes Raman microscopy.

1. INTRODUCTION

Both deterministic and stochastic approaches have been taken to model the processes 

involved in optical microscopy of scattering media. One class of approaches considers 

the medium to consist of randomly distributed scatterers and applies a stochastic model 

to simulate electromagnetic beam propagation in the scattering media [1-4]. Another 

class of approaches utilizes a 3D Green’s function with a series of convolutions to 

calculate forward and backward scattered fields [5-7]. While such approaches may provide 

qualitative agreement with experimental observations, they are unable to properly quantify 

field characteristics for specific scattering configurations. In contrast to these approaches, 

the finite difference time domain (FDTD) method has been successfully used to model 

the propagation of tightly focused beams in scattering media for specific scattering 

configurations [8-10]. However, FDTD approaches require special techniques to define 

optical sources that possess spatially varying intensity distributions. Moreover, FDTD 
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methods demand significant computational resources in terms of memory and run time, 

which scale with the total volume of the system considered [10-13].

In this two-part tutorial, we show how existing analytic electromagnetic techniques can be 

synthesized into a unified, comprehensive, modeling framework for nonlinear optical (NLO) 

microscopy in scattering media. One of the advantages of the approach presented in these 

tutorials is that the computational cost does not depend on the volume of the computational 

domain as in FDTD, but rather on the number of scatterers and number of locations where 

we compute the field.

This is Part II of the tutorial. In Part I [14], we formulated the mathematical representation 

of the incident beam, and presented several electromagnetic methods to propagate focused 

fields from the lens to the focal volume. The processes discussed in Part I [14] are included 

in the dotted gray boxes in Fig. 1. We presented three solutions to propagate focal fields in 

non-scattering media based on the Debye–Wolf integral (DWI), Kirchhoff’s vector integral 

(KVI) theorem, and Huygens–Fresnel principle (HFP). To propagate focused fields in 

scattering media, we considered the computationally efficient HFP solution because the 

DWI solution [15] is less flexible in a densely scattering medium, and the KVI solution 

is computationally expensive due to partial derivative calculations. We elucidated the HFP 

solution and included a step-by-step guide to calculating scattered fields in the focal volume 

and limited our scope to spherical scatterers. Since Part II uses some of the equations of Part 

I [14], readers are advised to read it before proceeding.

In Part II, we determine with high spatial resolution the electric field distribution proximal 

to the focal volume, use those results to compute the induced NLO polarization within 

the sample, and describe the subsequent radiation that propagates into the far field. Each 

element of the process is considered, beginning with sampling of the electric field near the 

focal volume followed by signal generation within, and radiation from, the focal volume, 

and concluding with far-field detection in the microscope system as shown in Fig. 1. Note 

that even though the excitation pulses used in NLO microscopy are broadband, for the 

purpose of modeling propagation effects, we maintain a monochromatic description.

The structure of Part II is as follows: in Section 2, we show how to calculate the electric 

field distribution near the focal volume, and in Section 3, we use these results to compute 

the distribution of the resulting induced nonlinear polarization within the sample. In Section 

4, we treat signal radiation from the focal volume that propagates in the direction of 

the detector. In Section 5, we describe a method to display far-field data and continuous 

propagation of NLO signals in a 4f system. Finally, in Section 6, we provide case studies 

that illustrate results obtained at each stage of this process for second harmonic generation 

(SHG) and two-photon excitation (TPE) microscopy.

2. FOCAL SAMPLING

In Part I [14], we outlined methods to compute the electric field distribution E(ρ) (Fig. 

1) generated by focused beam propagation in non-scattering and scattering media. The 

Cartesian components of E(ρ) are represented by Ex(ρ), Ey(ρ), and Ez(ρ), and the origin of 

Ranasinghesagara et al. Page 2

J Opt Soc Am A Opt Image Sci Vis. Author manuscript; available in PMC 2023 October 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the Cartesian coordinate system is placed at the focal point. Proper sampler placement is 

critical to adequately resolve the electric field distribution within the focal volume. Here, we 

outline two sampling configurations that we employ to record the electric field distribution 

within the focal volume. These field distributions, in turn, serve as an input to calculate the 

subsequent radiation/emission from the focal volume.

A. Cuboidal Grid Sampler

Accurate determination of the NLO signals generated in the focal region requires adequate 

sampling of the field within a finite volume surrounding the focal point. To accomplish this, 

we can define a volumetric grid sampler composed of cuboidal-shaped voxels. A volumetric 

grid is a 3D grid of values organized into rows, columns, and depth stacks. Each node of the 

grid sampler represents a field collection point as shown in Fig. 2(a). The computational cost 

scales linearly with the number of voxels and is independent of their size. Therefore, for a 

fixed volume, the computational cost scales with (1 ∕ ΔR)3, where ΔR is the desired voxel 

resolution.

B. Planar Sampler Perpendicular to the Optical Axis

For microscopy systems with continuous signal propagation, conservation of energy 

demands that the total energy passing through any plane perpendicular to the optical axis 

remains constant. To compute the field distribution within the focal plane, we can consider 

a sampler plane oriented perpendicular to the optical axis and intersecting at any desired z
location in the vicinity of the focal point. Such a plane, possessing a fully open aperture, 

would capture the complete energy content of the incident beam. Practically, it is more 

feasible to capture the field within a finite region surrounding the focal point. In this case, 

we utilize a plane grid sampler in the form of a finite circular aperture [Fig. 2(b)]. If one 

intends to use a solution from the KVI to propagate fields in non-scattering media discussed 

in Section 5.B, two additional parallel plane samplers at z′ = z − Δz and z′ = z + Δz will be 

necessary to obtain partial derivatives.

3. SIGNAL GENERATION

Once we have obtained the total electrical field distribution within the focal volume, we 

are in a position to compute the generation of any linear or nonlinear signal of interest. In 

this section, we outline the approaches we utilize to calculate the generation of linear and 

nonlinear signals most frequently encountered in biological microscopy.

After the focal fields are captured with a cuboidal grid sampler, we can determine 

the signal generation efficiency at a given grid location of a voxel. For instance, for 

conventional fluorescence and multi-photon microscopy, we assign a fluorescence signal 

generation efficiency (≤1) to each grid location. For the other microscopy techniques in this 

section, we assign nonlinear susceptibility tensors to each voxel. The second-order nonlinear 

susceptibility is a tensor of rank 3, with 27 elements. The third-order nonlinear susceptibility 

is a tensor of rank 4, with 81 elements. More information regarding nonlinear susceptibility 

tensors can be found in [16-19].
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A. Conventional Fluorescence Microscopy and Multi-Photon Microscopy

In single-photon and multi-photon excitation microscopy, a fluorescent molecule is excited, 

after which it radiates as a harmonically oscillating electric dipole. This radiation occurs 

incoherently relative to other radiating dipoles. We formulate the magnitude of the dipole 

moment ∣ p(ρ) ∣ and its excitation and emission unit vectors (pex, pem) separately. pex and pem

are the randomly oriented dipole moment unit vectors of the excitation and emission dipoles, 

respectively.

To describe the excitation of the molecular dipole, we consider four relevant cases as 

depicted in Fig. 3. The unit vector of the polarized excitation electric field at the molecules 

is given by E(ρ) ∕ ∣ E(ρ) ∣. Cases I and III consider a molecular structure with an isotropic 

polarizability [20,21]. In these cases, the molecular dipole is driven with the full amplitude 

of the excitation field, and the direction of the excited dipole pex always coincides with 

the direction of E(ρ). Cases II and IV describe molecules with a transition dipole moment 

directed along a main axis within the molecule. We may assume a single dipole axis, and 

thus a specific direction pex. In these cases, the dipole is excited only by the component of 

the electric field parallel to the dipole moment [20,21].

In general, a randomly oriented dipole moment unit vector can be expressed as

pex∕em =
cos ϕdp sin θdp

sin ϕdp sin θdp

cos θdp

, (1)

where pex∕em represents either pex or pem. Angles ϕdp and θdp can be obtained by randomly 

sampling the surface of the unit sphere using the following expressions [22]:

ϕdp = 2πξ,
θdp = arccos(2ξ − 1), (2)

where ξ is a uniformly distributed random number in the range [0,1].

In multi-photon microscopy, the magnitude of the driven dipole moment is proportional to 

the intensity to the power N, where N is the order of the multi-photon process. N = 1 thus 

represents conventional fluorescence microscopy. The dipole moment ∣ pF(ρ) ∣ of a molecule 

at point ρ can now be written as

∣ pF(ρ) ∣ =
η ∣ E(ρ) ∣ 2 Case I and III
η ∣ E(ρ) ⋅ pex ∣ 2 Case II and IV,

(3)

where η represents the signal generation efficiency (≤1). Similarly, we can write the 

relationship for TPE (N = 2) and three-photon excitation (N = 3) microscopy as

∣ pMP(ρ) ∣ =
η ∣ E(ρ) ∣ 2N Case I and III
η ∣ E(ρ) ⋅ pex ∣ 2N Case II and IV.

(4)
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Once the molecule is excited with a probability proportional to the polarization amplitudes 

of Eqs. (3) and (4), the molecule may radiate through the process of fluorescence. 

Fluorescence emission can also be modeled with a radiating dipole model, albeit that the 

wavelength of emission differs from that of the excitation field. For single-photon excitation, 

the emission wavelength is longer than the excitation wavelength, whereas for multi-photon 

excitation, the emission wavelength is shorter than the excitation wavelength.

In addition, the dipole axis for the radiating molecule, pem, need not be identical to pex. If the 

molecule is fixed on the time scale of the fluorescence lifetime τ, we may assume that pem

has a fixed orientation (cases III and IV). However, for fluorescent probes that freely diffuse 

through the aqueous phase, the molecule typically displays orientational motion on the time 

scale of τ. This effectively decouples the dipole orientation for excitation and emission, and 

we may assume that pem is randomly oriented (cases I and II) and apply Eq. (1) to find its 

orientation [21,23] as shown in Fig. 3.

B. Second Harmonic Generation

SHG is commonly used to image biological structures that are non-centrosymmetric, 

including collagen, microtubules, and myosin [24]. Second harmonic signals are generated 

when two photons of the same frequency ω interact with a material possessing a non-

vanishing second-order nonlinear susceptibility. In such a material, the photons can combine 

to generate a single photon at double the optical frequency of the incident photons (2ω or 

half the wavelength). The nonlinear polarization density P l
SHG(ρ) generated by the electric 

field distribution within the focal volume for SHG can be computed using

P l
SHG(ρ) = ε0∑

m, n
χlmn

(2) (ρ) Eω, m(ρ) Eω, n(ρ), (5)

where l, m, n = x or y or z. χlmn
(2) (ρ) is the spatial distribution of the second-order nonlinear 

susceptibility tensor within the sample [19]. Eω, m(ρ) and Eω, n(ρ) are electric field components 

at location ρ. ε0 is the vacuum permittivity. SHG is a coherent technique, which means that 

there is a phase relation between the molecular dipoles that radiate at 2ω in the focal volume.

C. Third Harmonic Generation

Third harmonic generation (THG) is used to image biological interfaces formed between 

structures with different (non-resonant) third-order susceptibilities [25]. Strong THG signals 

are obtained from structures such as cell organelles, red or white blood cells, lipid droplets, 

adipose tissue, myelinated axons, etc [26]. In THG, three photons of the same frequency ω
interact within a material with a finite third-order susceptibility and generate a single photon 

at 3ω. The nonlinear polarization density P l
THG(ρ) generated by the electric field distribution 

within the focal volume for THG oscillates at 3ω and can be obtained using

P l
THG(ρ) = ε0 ∑

m, n, q
χlmnq

(3) (ρ) Eω, m(ρ) Eω, n(ρ) Eω, q(ρ), (6)
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where l, m, n, q = x or y or z. χlmnq
(3) (ρ) is the spatial distribution of the third-order nonlinear 

susceptibility tensor within the sample. Like SHG, THG is a coherent technique.

D. Second-Order Sum-Frequency Generation

Second-order sum-frequency (SFG) is a coherent technique that uses an excitation field 

of frequency ωIR in the mid-infrared range to drive infrared-active modes in the sample. 

A second probe field of frequency ωPR in the visible or near-infrared range is used to 

generate an upconverted signal at ωIR + ωPR. SFG microscopy allows imaging with vibrational 

spectroscopic contrast of biological samples. SFG depends on the second-order nonlinear 

susceptibility, and its polarization density is given as

P l
SFG(ρ) = 2ε0∑

m, n
χlmn

(2) (ρ) Em
IR(ρ) En

PR(ρ), (7)

where Em
IR(ρ) are the electric field components of the mid-infrared beam, and En

PR(ρ) are the 

electric field components of the probe beam.

E. Coherent Anti-Stokes Raman Scattering

Coherent anti-Stokes Raman scattering (CARS) microscopy is useful for generating images 

of biological samples with contrast based on Raman-active molecular vibrations [27]. 

Among other applications, CARS is a popular tool for visualizing lipids in cells and tissues 

[28,29]. Dual-color CARS uses two excitation fields, called pump (at frequency ωP) and 

Stokes (at frequency ωS) to drive a Raman-active mode at ωP − ωS. The CARS signal derives 

from the third-order nonlinear susceptibility of the sample and produces a polarization in the 

sample that oscillates at 2ωP − ωS. The CARS polarization density is given as [30]

P l
CARS(ρ) = ε0 ∑

m, n, q
χlmnq

(3) (ρ) Em
p(ρ) En

p(ρ) Eq
S(ρ) ∗, (8)

where [Eq
S(ρ)]∗ is the complex conjugate of the Stokes field. To compute P l

CARS, we first 

propagate the monochromatic pump and Stokes fields independently to find the focal fields. 

We then take the product in Eq. (8) to determine the polarization density in focus.

The polarization density expressed in Eqs. (5)-(8) can be written as P(ρ) = Np(ρ), where N
is the molecular number density, and p(ρ) is nonlinearly driven molecular polarization or 

dipole moment.

4. SIGNAL RADIATION

For all the nonlinear signals considered in Section 3, we can apply the dipole radiation 

equation (DRE) [31] to propagate the generated signal toward the far field. We consider each 

node within our cuboidal grid to radiate as a single dipole.

We can express the radiation emitted by a single dipole located at ρ as [31-33]
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E(rc) = − k2

4πε0
r × (r × p(ρ)) − [3r(r ⋅ p(ρ)) − p(ρ)]

× 1
k2 ∣ R ∣ 2 − i

k ∣ R ∣
1

∣ R ∣ exp(ik ∣ R ∣ ),
(9)

where R is a vector from ρ to rc, and r is its unit vector. p(ρ) represents the molecular 

polarization or dipole moment at ρ.

We consider the use of a lens to collect the far-field signal, which we represent as a spherical 

reference surface with a focal length f2. The collector location at the spherical reference 

surface rc can be expressed as (−f2 sin θc cos ϕc, −f2 sin θc sin ϕc, f2 cos θc). The azimuthal angle 

ϕc is measured relative to the +x axis in the counterclockwise direction, and the polar angle 

θc is defined with respect to the +z axis.

We consider two categories of signal radiation: incoherent and coherent. We apply 

incoherent radiation for techniques such as conventional fluorescence microscopy and multi-

photon fluorescence microscopy where the dipole phases are uncorrelated. For all other 

microscopy techniques discussed in Section 3, we apply coherent radiation.

A. Signal Radiation in Non-scattering Media

We now apply the DRE to model signal radiation from the focal region to the far field as 

shown in Fig. 4. For far-field detection, it can be simplified because ∣ R ∣ ≫ 1 ∕ k. The result 

is that the signal collected by the spherical reference surface from a single dipole located at ρ
can be expressed as [20,34,35]

Ersc(rc) ∣ 1DP = − k2

4πε0
[r × (r × p)] 1

∣ R ∣ exp(ik ∣ R ∣ ), (10)

where p = p(ρ) = [px, py, pz]T . Superscript “rsc” denotes “reference surface collection” by the 

collection lens, and subscript 1DP denotes one dipole. The unit vector of ∣ R ∣, r is given by

[r]T =
r x

r y

r z

=
(xc − x) ∕ ∣ R ∣
(yc − y) ∕ ∣ R ∣
(zc − z) ∕ ∣ R ∣

, (11)

where

∣ R ∣ = [(xc − x)2 + (yc − y)2 + (zc − z)2]
1
2 . (12)

Applying vector identity −r × (r × p) = p − r(r ⋅ p) in Eq. (10), we can write the electric field 

at the collector location rc from the jth dipole at ρ as

Ersc(rc) ∣ j = k2

4πε0
[pj − rj(rj ⋅ pj)] 1

∣ R ∣ j
exp(ik ∣ R ∣ j), (13)

Ranasinghesagara et al. Page 7

J Opt Soc Am A Opt Image Sci Vis. Author manuscript; available in PMC 2023 October 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



wherer r ⋅ p = r xpx + r ypy + r zpz.

1. Coherent Radiation—In coherent radiation, electric fields are superposed to 

compute the final electric field at the collector. When we expand Eq. (13) for all dipoles 

in volume V , the electric field at rc can be expressed as

Ersc(rc) = k2

4πε0
∫∫∫

V
[p − r(r ⋅ p)] 1

∣ R ∣ exp(ik ∣ R ∣ )dV . (14)

To compute the above integral, we apply Simpson’s 1/3 rule for a 3D volume (Appendix A) 

as follows:

Ersc(rc) = k2

4πε0
∑
j = 1

nυ
px − r x(r ⋅ p)
py − r y(r ⋅ p)
pz − r z(r ⋅ p)

j

W j

∣ R ∣ j
exp(ik ∣ R ∣ j), (15)

where nυ represents all radiating nodes, and j represents the jth dipole at the cuboidal nodes 

m, n, q. All r components in the matrix are from node m, n, q. ∣ R ∣ j provides the distance 

from (xm, yn, zq) to rc, and all unit vector components in the matrix should be computed as 

emanating from m, n, q to rc. The coherent intensity can then be expressed as

Icoh
rsc (rc) ∝ ∣ Ersc(rc) ∣ 2 . (16)

2. Incoherent Radiation—For the case of incoherent radiation, we can disregard 

electric field interference and consider intensity contributions from individual dipoles 

collected at rc. In the case of a single dipole, we can use and write the intensity at the 

collector location rc as

Iincoh
rsc (rc) ∣ j ∝ Ersc(rc) ∣ j

2
. (17)

When we consider the contribution from all dipoles in volume V , incoherent intensity is 

formulated as

Iincoh
rsc (rc) ∝ ∫∫∫

V
Ersc(rc) ∣ j

2dV . (18)

To calculate the integral above, we apply Simpson’s 1/3 rule for a 3D volume (Appendix A). 

In the case of multiple random dipole orientations, the orientationally averaged incoherent 

intensity can be expressed as

Iincoh
rsc (rc) ∝ ∑

υ
Ersc(rc) ∣ j

2
W υ . (19)

Ranasinghesagara et al. Page 8

J Opt Soc Am A Opt Image Sci Vis. Author manuscript; available in PMC 2023 October 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Similar to Eq. (15), υ represents the cuboid node m, n, q. Rυ provides the distance from (xm, yn, 

zq) to rc.

B. Radiation of Signals in Scattering Media

We next discuss the case where scatterers are present in the volume between the focal 

volume and the far-field collector. Note that this section employs equations in Part I and 

readers are advised to read Section 5 of Part I [14] before proceeding. Consider a scatterer 

located at Q(xq, yq, zq) as shown in Fig. 5. We can use the DRE to determine the incident 

electric field on the scatterer from a dipole located at ρ as [8,23,34,36]

Ex
in

Ey
in

Ez
in

= − k2

4πε0
r × (r × p(ρ)) − [3r(r ⋅ p(ρ)) − p(ρ)]

× 1
k2 ∣ R ∣ 2 − i

k ∣ R ∣
1

∣ R ∣ exp (ik ∣ R ∣ ),

(20)

where ∣ R ∣ is the distance from ρ to Q, and the unit vector r is

[r]T =
r x

r y

r z

=
(xq − x) ∕ ∣ R ∣
(yq − y) ∕ ∣ R ∣
(zq − z) ∕ ∣ R ∣

. (21)

The unit vector r represents the propagation direction, uq. We can find the θ and ϕ angles of 

the propagation vector as

θ = arccos (r z),
ϕ = arctan r y

r x
. (22)

To apply Eq. (63) in Part I [14] for calculating the scattered fields, we first cast the electric 

field in terms of parallel and perpendicular components. In the far zone, the electric field lies 

in a plane perpendicular to r. We can define unit vectors mq and nq that are perpendicular to 

r as

mq

nq = cos θ cos ϕ cos θ sin ϕ − sin θ
− sin ϕ cos ϕ 0 . (23)

The orthogonal electric field components on the plane perpendicular to r from the jth dipole 

can be written as
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E∥
in

E⊥
in

j

= mq

nq

Ex
in

Ey
in

Ez
in

j

,
(24)

where [Ex
in, Ey

in, Ez
in]T  is given in Eq. (20).

We next assume that a field collector or a second scatterer is located at rc = (xc, yc, zc). The 

components of the unit vector us are given by

[us]T =
(xc − xq) ∕ ∣ Rs ∣
(yc − yq) ∕ ∣ Rs ∣
(zc − zq) ∕ ∣ Rs ∣

, (25)

where ∣ Rs ∣ is the distance from Q to rc. Note that [E∥
in, E⊥

in] in Eq. (24) is analogous to [E∥
in, 

E⊥
in] in Eq. (63) in Part I [14]. Furthermore, the [mq, nq] unit vectors in Eq. (23) are analogous 

to the [mq, nq] unit vectors in Eq. (60) in Part I. Also, us in Eq. (25) is analogous to us in Eq. 

(62) in Part I [14].

We can follow Eqs. (73)–(75) in Part I [14] for multiple scattering and write the scattered 

field of a radiating dipole in the presence of multiple scatterers as follows:

Ersc, s(rc) ∣ j = Epri
rsc, s(rc) ∣ j + Esec

rsc, s(rc) ∣ j . (26)

Using the notation in Part I [14], Epri
rsc, s(rc) and Esec

rsc, s(rc) can be expressed as

Epri
rsc, s(rc) ∣ j = ∑

q = 1

nScat ms

ns
a

T

i
kdq

exp(ikdq) Sq [ℝ2qρ]
E∥

in

E⊥
in

j

(27)

and

Esec
rsc, s(rc) ∣ j = ∑

q = 1

nScat
∑

r( ≠ q) = 1

nScat ms

ns
r

T

i
kdr

exp(ikdr) Sr

[ℝ2rρ ] i
kdqr

exp(ikdqr) Sq [ℝ2qr ] E∥
in

E⊥
in

j

,
(28)

respectively. To determine ms and ns, we use the relationships expressed in Eq. (64) in Part I 

[14].

The total electric field at the collector is given by the superposition of the non-scattered field 

[Eq. (13)] and the scattered field [Eq. (26)]:
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Ersc, ns + s(rc) ∣ j = Ersc(rc) ∣ j + Ersc, s(rc) ∣ j . (29)

Rigorous computation of the scattered field for non-spherical scatterers is beyond the 

scope of this tutorial. The consideration of non-spherical scatterers introduces off-diagonal 

elements of the scattering matrix shown in Part I, Eq. (65). Moreover, the elements of the 

scattering matrix become functions of both polar and azimuthal angles, as opposed to the 

polar angle only for the case of spherical scatterers. The introduction of azimuthal angle 

variation also complicates the axis rotations necessary for the scattering field calculations. 

Nevertheless, in principle, these can all be accommodated within our framework, but will 

require additional computation of the scattering matrix elements. Here, we have limited our 

consideration to spherical scatterers and apply a formulation of Mie theory that was derived 

for incident plane waves to obtain the scattering matrix elements [14].

When considering dipole radiation that is incident on a stationary scatterer located in the far 

zone, we approximate the incident field as a plane wavelet. In the case of large spherical 

scatterers, the beam incident upon the scatterer may deviate significantly from a plane wave. 

In such instances, the generalized Lorenz–Mie theory (GLMT) [37,38] should be applied to 

accurately model the effects of wave curvature on the scattered field. While the treatment of 

GLMT is outside the scope of the current work and requies a more expensive computation of 

the distance-dependent elements in the scattering matrix, our framework can accommodate 

the use of GMLT if the scattering matrix elements are computed.

1. Coherent Radiation—In the case of coherent radiation, the total field is found from 

the coherent addition of the contributions from all individual dipoles in volume V . We may 

thus write

Ersc, tot(rc) = ∫∫∫
V
Ersc(rc) ∣ j + Ersc, s(rc) ∣ jdV

= ∫∫∫
V
Ersc, ns + s(rc) ∣ jdV .

(30)

To evaluate the integral, we can apply Simpson’s 1/3 rule to evaluate the integral over the 3D 

grid volume (Appendix A) and write the integrand in the form of [Ex(rc), Ey(rc), Ez(rc)]T  for 

the non-scattering field and [Ex
s(rc), Ey

s(rc), Ez
s(rc)]T  for the scattered field. Now, Eq. (30) can be 

expressed as

Ersc, tot(rc) = ∑
j = 1

nυ
Ex(rc) + Ex

s(rc)
Ey(rc) + Ey

s(rc)
Ez(rc) + Ez

s(rc)
j

W j (31)

or
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Ersc, tot(rc) = ∑
j = 1

nυ Ex(rc)
Ey(rc)
Ez(rc)

j

W j + ∑
j = 1

nυ
Ex

s(rc)
Ey

x(rc)
Ez

s(rc)
j

W j, (32)

where j represents the jth radiating dipole at cuboidal node m, n, q. W j is the Simpson’s 

weight at node mnq (Appendix A). For the case of coherent radiation, we can compute the 

non-scattered and scattered fields either together or separately and superpose them at the 

end. Finally, the intensity at the spherical reference surface following collimation can be 

expressed as

Icoh
rsc, tot(rc) ∝ ∣ Ersc, tot(rc) ∣ 2 . (33)

An example for the case of coherent radiation in a scattering medium is given in Fig. 

6, where we have considered a simple scattering configuration and separately applied the 

method presented in Eqs. (26)-(32) and the FDTD method. The objective of this example 

is to compare methods for various scatterer sizes and to show the potential limitations 

of applying Mie theory to the simulation of dipole radiation incident on large spherical 

scatterers. The simulated configuration contains 27 x-polarized dipoles spaced 50 nm apart 

in both horizontal and vertical directions. The center dipole is located at the origin. Three 

scatterers are placed between the dipole assembly and the collector. Four different scatterer 

sizes are considered for this analysis.

We place an array of nodes with 50 nm spacing in the x‐y plane located at z = 7 μm to 

collect the coherent intensity. By selecting a location proximal to the focal plane to obtain 

the electric field, we can ignore the near- to far-field (NTFF) transformation [39,40], which 

is necessary to obtain far-field results using FDTD. In this way, we avoid the effect of 

extraneous factors that may influence FDTD accuracy. The differences between the two 

computational methods are calculated by direct subtraction of the FDTD results from the 

results obtained using Eq. (32) and normalized by the maximum FDTD intensity. It is 

evident from Fig. 6 that the prediction provided by Eqs. (26)-(32) shows good agreement 

with the FDTD results for smaller scatterers, but gradually deviates for larger scatterers. 

Note that the FDTD data cannot be assumed as the absolute reference because it may 

suffer from discretization errors and unavoidable reflections from the perfectly matched 

layer (PML) boundary condition. On the other hand, the Mie solution for light scattering 

that is considered here is derived for an incident plane wave. For larger scatterers located 

close to the source, this assumption no longer holds. These factors may account for the more 

pronounced differences that we observe when examining larger scatterers.

The results of Fig. 6 allow calculation of the normalized integrated intensity in the detector 

plane. Such a calculation using either FDTD simulations or Eqs. (26)-(32) reveals that 

scattering can produce increases in the integrated intensity. Note that both our results and 

FDTD simulations predict similar spatial variations in the coherent intensity. For larger 

scatterers, high-intensity spots are observed in the detector plane. When the scatterers are 
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placed at specific locations very close to a large number of closely packed sources, they may 

function as focusing lenses, and thus concentrate intensity in certain regions [41].

2. Incoherent Radiation—When we consider radiation from a single dipole, the 

scattered and non-scattered fields are still combined coherently at the detector. But as 

mentioned before, the electric field interference is ignored among dipoles in the case of 

incoherent radiation. We can consider all dipoles in volume V  and express the intensity at 

the detector as

Iincoh
rsc, tot(rc) ∝ ∫∫∫

V
(Ersc(rc) ∣ j + Ersc, s(rc) ∣ j)

2
dV

∝ ∫∫∫
V

(Ersc, ns+s(rc) ∣ j)
2
dV

∝ ∫∫∫
V
I ∣ jdV ,

(34)

where I ∣ j is the intensity at the detector contributed by radiation from the jth dipole. After 

applying Simpson’s 1/3 rule for integration over the 3D grid volume (Appendix A) and 

considering multiple dipole orientations in the simulation, the average incoherent intensity 

can be expressed as

Iincoh
rsc, tot(rc) ∝ ∑

j = 1

nυ

I ∣ j W j . (35)

5. FAR-FIELD DETECTION AND CONTINUOUS PROPAGATION

In Section 4, we used a condenser lens represented by a spherical reference surface for 

collecting far-field data. In some microscopy designs, the detection module incorporates 

a 4f system [42] to produce an image of the focal region onto the detector. We refer to 

light propagation through such an optical relay system as continuous propagation of the 

far-field signal. In this section, we discuss tools that can be used to describe the continuous 

propagation in a 4f system, i.e., light propagation from the spherical reference surface to the 

location of the detector. In addition, we also highlight methods that can be used for properly 

displaying the far-field data on a spherical collection surface in ways that facilitate their 

interpretation.

A. Displaying Far-Field Data on a Spherical Reference Surface

As mentioned before, the location rc at the spherical reference surface is given by 

(−f2 sin θc cos ϕc, −f2 sin θc sin ϕc, f2 cos θc). We first discuss how these angle-dependent 

collection points can be distributed on the spherical reference surface to display the data 

in different formats.

When comparing the far-field collected signal with the incident field, it is convenient 

to choose uniformly distributed points on the spherical reference surface [43] that are 

rotated by 180° relative to the optical axis. The use of a uniform point distribution on 

the spherical surface enables comparison of the input and output fields. Displaying electric 
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field components or intensity data at the surface in some existing approaches may require a 

representation of the spherical reference surface with triangular elements. Here, we discuss 

some alternate approaches to display the data.

We can display the directional dependence of far-field radiation by constructing a (ϕ, θ) 

mesh of distributed points at the spherical reference surface. To do so, we need to consider 

the azimuthal angle (ϕ) in the range from 0° to 360° (2π) and the polar angle (θ) in the range 

from 0° to θmax, where θmax = sin−1(NA ∕ nm). We then choose the ϕ mesh to contain repeated 

rows of gradually increasing ϕ values as shown in Fig. 7(a), and the θ mesh to contain 

repeated columns of gradually increasing θ values as shown in Fig. 7(b). Now, each pixel 

location of a (ϕ, θ) mesh contains a ϕ value from the ϕ mesh and a θ value from the θ mesh. 

These (ϕ, θ) mesh values are used in rc to capture the far-field data. In the case of mapping 

the field in the epi-propagating radiation, f in rc should be replaced with −f. Figures 7(c) 

and 7(d) show the (θ, ϕ) distributed points on the forward hemispherical reference surface 

and the epi-hemispherical reference surface.

In another approach, the far-field information is displayed following refraction at the 

collection lens, as shown in Fig. 8(a). The electric field output Eout(xf, yf) can be measured 

using a rectangular x‐y plane detector placed perpendicular to the optical axis. To plot the 

data without interpolation, the rectangular x‐y plane detector contains uniformly distributed 

rows and columns in the detector plane. However, when considering the point distribution at 

the spherical reference surface as either uniformly distributed on the spherical surface or the 

previously presented (ϕ, θ) assignment, the mapped data locations at the x‐y plane detector 

will not lie on a uniformly distributed grid. In this case, data interpolation is required 

to display 2D data, and the interpolation may obscure important details of the spatially 

varying fields. Alternatively, we can define uniformly distributed x‐y coordinates on the 

plane detector and map them back to a location rc on the spherical reference surface with a 

corresponding (ϕ, θ) location. Figure 8(b) provides a graphical representation of the lens as a 

spherical reference surface and the detector as an x‐y plane detector.

Regardless of the distribution of rc locations used on the spherical reference surface, the 

output electric field Eout(xf, yf) detected on the x‐y plane detector can be related to the 

electric far field on the reference sphere Ersc(θc, ϕc) using the following transformation 

[34,35,44]:

Eout(xf, yf) = nm

nout

1
a(θc)ℝc

−1 ⋅ Lc
−1 ⋅ ℝc ⋅ Ersc(θc, ϕc), (36)

where nm and nout are the refractive indices of the medium before and after the lens, 

respectively. nm
nout

1
a(θc)  reverses the radiometric effect provided in Eq. (7) of Part I [14]. 

The matrix ℝc provides rotation around the z axis, and Lc provides rotation around the axis 

perpendicular to the meridional plane. The transpose of ℝc gives ℝc
−1. We can write ℝc and Lc

−1

as
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ℝc =
cos ϕc sin ϕc 0

− sin ϕc cos ϕc 0
0 0 1

(37)

and

Lc
−1 =

cos θc 0 sin θc

0 1 0
− sin θc 0 cos θc

. (38)

Note that Eout(xf, yf) is rotated by 180° relative to the incident field, Einc(xf, yf). If we wish 

to rotate the detected field to match the orientation of the incident field, we can apply the 

following coordinate transformation:

xf
new

yf
new = −1 0

0 −1
xf

yf
, (39)

where (xf
new, yf

new) are the new coordinates, so that Eout(xf
new, yf

new) represents the rotated electric 

field.

Note that the ℝc
−1 ⋅ Lc

−1 ⋅ ℝc transformation in Eq. (36) is not required for plotting intensities. 

We can write an expression for the intensity at the x‐y plane detector as

Iout(xf, yf) = nm

nout

1
a(θc)

2
Irsc(θc, ϕc), (40)

where Irsc(θc, ϕc) is provided by the expressions in Eq. (16), (19), (33), or (35).

B. Continuous Propagation

So far, the focal fields calculated in Part I [14] have been applied to generate linear or NLO 

signals from objects in the focal volume. Instead of detecting the field with a planar sampler 

after the collection lens, we may consider an additional 4f relay system that projects the 

field onto a detector. The continuous propagation of Eout(xf, yf) through such a system can 

be described using different approaches. Here, we provide a description based on the current 

framework, which proceeds in two steps.

First, Eout(xf, yf) is propagated towards a focal plane sampler containing a circular aperture 

[Fig. 8(c)]. Second, the field that reaches the sampler [Fig. 8(d)] is propagated towards 

the far-field lens. For the first step, we can use one of the three solution integrals we 

have presented in Section 4 of Part I [14]. For the second step, we can consider an 

electromagnetic propagation method such as KVI or HFP. Since a KVI-based solution 

requires calculation of partial derivatives, we utilize the HFP-based solution. Similar to 

obtaining the integral solutions in Secion 4 of Part I [14], we can follow Eqs. (26) and (27) 

in Part I [ 14] to define the electric field beyond the focal plane as
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Ersf(rf) = −ik
2π ∬ A

E(ρ) 1 + cos β
2

1
∣ R ∣ exp(ik ∣ R ∣ ) dA, (41)

where A is the circular aperture, r is the unit vector of R, and β is the angle between u
and r. The superscript rsf denotes the spherical reference surface of the lens. We can apply 

Simpson’s 1/3 rule (Appendix A) or another method for the evaluation of the 2D integral 

and write the electric far field as

Ersf(rf) = −ik
2π ∑

m, n
E(ρmn)

1 + cos βmn

2
W mn

Rmn
exp(ikRmn) . (42)

The accuracy of the far-field data depends on the size of the focal plane aperture. A bigger 

aperture provides better accuracy because it considers a larger area of the electric field 

distribution passing through the focal plane. In an ideal case using a fully open aperture 

at the focal plane, the far-field signal is the inverted image of the incident beam when 

Herschel’s condition [a(θ) = 1)] is satished.

6. CASE STUDY

In previous sections, we have presented methods for simulating field propagation and signal 

generation as relevant to microscopy experiments in scattering and non-scattering media. To 

illustrate the utility of these methods, we present a case study to examine and compare the 

effects of scattering on TPE and SHG microscopy.

A. Effect of Scatterers on the Excitation Field

The first step of the process is to model the excitation field. We consider an x-polarized 

incident beam with λ = 800 nm. The focal length and NA of the lens are 1000 μm and 0.866, 

respectively. The refractive index of the medium is 1.333.

To analyze the focal field, we place a 3 μm × 3 μm × 9 μm cuboid grid detector with cubic 

voxels of 50 nm centered within the focal volume. The focal point is considered the origin 

and has a node. In this example, the scattering medium consists of six spherical scatterers at 

fixed locations: (−2 μm, −1 μm, −5 μm), (1.5 μm, 1 μm, −4 μm), (0.5 μm, −1 μm, −3 μm), (2 μm, 

1 μm, 5 μm), (−1.5 μm, −1 μm, 4 μm), and (−0.5 μm, 1 μm, 3 μm). Three scatterer diameters are 

considered: 0.5 μm, 0.75 μm, and 1 μm. The refractive index of the scatterers is chosen to be 

1.49 providing a relative refractive index of 1.12. In this study, we consider three scenarios: 

(i) scatterers placed “upstream” from the focal plane, (ii) scatterers placed beyond the focal 

plane, and (iii) scatterers placed on both sides of the focal plane. Examination of these 

scenarios allows the evaluation of the effect of the scatterer location on the focal fields and 

the collected far-field signal.

We utilize our computational framework based on Mie scattering and apply Eq. (77) in Part 

I [14] to determine the excitation field. Figure 9 shows the excitation amplitude obtained 

for three scenarios with three different scatterer sizes. Only a few selected slices are shown 

in the figure for clarity. The results are normalized relative to the maximum amplitude 
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in a non-scattering medium. To better reveal the effect of scatterers on the electric field 

distribution in the focal plane, in Fig. 10, we display the percent amplitude difference 

relative to the unscattered case and apply Eq. (B2) in Appendix B to obtain the phase 

difference at the focal plane relative to the non-scattering case. As shown in Fig. 10(i), 

for scatterers placed prior to the focal plane, the amplitude and phase distortion increases 

with the scatterer size. By contrast, as shown in Fig. 10(ii), scatterers placed beyond the 

focal field, provide minimal amplitude distortion in the focal plane. This is due to the low 

amplitude of the backscattered field for Mie scatterers. Note that when scatterers are small, 

the overall scattered field amplitude is weak, even though the portion that is backscattered 

is larger as compared to larger scatterers. In contrast, for large scatterers, even when the 

amplitude of the overall scattered field is strong, the relative amount of backward scattered 

light is smaller than for small scatterers. When scatterers are placed on both sides of the 

focal plane, the amplitude and phase distortions at the focal plane are governed primarily by 

the scatterers placed “upstream” from the focal plane.

B. Signal Generation for TPE and SHG Microscopy

With the focal field defined, we are now in a position to calculate the NLO signal. To do 

this, we first define an object polarized by the focal field.

For the TPE fluorescence simulation, we consider a 1 μm diameter spherical fluorescent 

particle, positioned at the origin of the focal volume. For simplicity, we assume that the 

refractive index of the fluorescence particle is the same as the surrounding medium to avoid 

the effect of scattering by the fluorescent particle. The excitation amplitude at the particle 

in a non-scattering medium is shown in Fig. 11(a). The excitation field drives molecular 

dipoles within the spherical fluorescence particle, which subsequently radiate incoherently. 

We apply Eqs. (1)-(4) to compute them for cases I and III. While the excitation wavelength 

is set at 800 nm, the emission wavelength is assumed to be λ = 500 nm. The 1 μm diameter 

spherical fluorescence particle is represented by 50 nm × 50 nm × 50 nm voxels with each node 

representing a radiating dipole.

For the SHG simulation, we consider a 3 μm × 3 μm × 1 μm slab possessing a non-vanishing 

second-order nonlinear susceptibility that mimics the properties of collagen fibrils aligned 

in the x‐y plane. The second-order nonlinear susceptibility tensor elements of the slab are 

chosen as χxxx
(2) = 1 and χxyy

(2) = χxzz
(2) = χyxy

(2) = χzxz
(2) = χzzx

(2) = 0.536 [45]. The excitation amplitude at 

the slab in a non-scattering medium is shown in Fig. 11(b). We apply Eq. (5) to compute the 

nonlinear polarization density. Similar to TPE microscopy, the slab volume is represented 

by 50 nm × 50 nm × 50 nm voxels, and each node represents a radiating dipole. The SHG 

emission wavelength is 400 nm.

We use the same source objects for the simulation in a scattering medium. Similar to the 

non-scattering case, we apply Eqs. (1)-(4) to compute the dipole moment and the nonlinear 

polarization density, followed by Eq. (35) to calculate the incoherent radiation in TPE 

microscopy and Eq. (33) to compute the coherent radiation in SHG microscopy.
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C. Far-Field TPE and SHG Signals

To visualize the far-field emission, we utilize the techniques discussed in Section 5. We 

place a full hemispherical (θ, ϕ) collector with θmax = 90°
 and radius f( = 1000 μm) to visualize 

the entire radiation pattern in the forward hemisphere. This provides full visualization of the 

far-field radiation profile for both NLO modalities. We can also place a collection lens with 

NA = 0.866 and an x‐y plane detector to display the signal following capture and collimation 

with a lens. We consider Herschel’s condition (a(θc) = 1).

After signal generation, the NLO signal propagates in a non-scattering medium and reaches 

the x‐y plane detector. Figure 11 depicts the far-field radiation profile and the x‐y plane 

detector signal. In TPE microscopy, the molecules in cases I and III are excited with the 

full amplitude of the excitation field because pex aligns with the excitation field as shown in 

Fig. 3. Case I provides an isotropic radiation profile in the far field for randomized pem. In 

contrast, case III provides a Hertzian dipole type radiation profile in the far field because pem

is fixed. In SHG, the radiation profile depends not only on the polarization of the excitation 

field but also on the nonlinear susceptibility tensor and the excited volume of the object. As 

we expected, the epi-detected radiation amplitude is heavily attenuated.

Figure 12 shows the signals at the forward x‐y plane detector for various scattering scenarios 

in TPE (case I) and SHG microscopy, while Fig. 13 depicts the corresponding signals at 

the epi x‐y plane detector. The results are normalized by the maximum amplitude in a 

non-scattering medium. For easy comparison, the SHG results are shown under the TPE 

results in Figs. 12 and 13. Recall that the size of the fluorescence object used in TPE is a 

1 μm sphere, and the size of the object used in SHG is a 3 μm × 3 μm × 1 μm.

In the first case (i), scatterers are placed prior to the focal plane, in which case they distort 

the excitation field (Figs. 9 and 10). Even though Fig. 10 shows only the percentage of 

amplitude change at the focal plane, it highlights the effect of scatterers on the amplitude 

and phase of the excitation field. In both TPE and SHG microscopy, the excitation fields are 

attenuated, and the degree of attenuation increases with scatterer size. In TPE, the forward 

radiation profile is no different from isotropic radiation because the attenuated signal 

incoherently radiates in a non-scattering medium. In contrast, the SHG forward signals in a 

non-scattering medium give rise to different spatial patterns because the generated signals 

are radiated coherently, and they depend on both the amplitude and phase of the excitation 

field.

The intensity of the maxima increases with the scatterer size. We also observe shadows of 

the scatterers in the far-field spatial profiles. For epi-SHG radiation, we also observe the 

effect of scattering on the heavily attenuated signal.

In the second case (ii), scatterers are placed beyond the focal plane. In this case, the 

excitation field is minimally distorted. This case bears a similarity to the epi-radiation signal 

in the first case. The excitation field is attenuated by scatterers, and the generated signal 

radiates in a scattering medium, giving rise to significant distortion of the radiated field. 

Note that interference-like spatial features are more prominent in the far-field SHG profiles 
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compared to the TPE profiles. In epi-TPE radiation, the scatterers placed beyond the focal 

plane have no significant effect in the far field.

In the third case (iii), scatterers are placed on each side of the focal plane, in which case 

the results are very similar to the second case in forward radiation and to the first case in 

epiradiation, because the scatterers beyond the focal plane have a dominant effect in the far 

field.

In conclusion, when scatterers are placed prior to the focal plane, the excitation field is 

distorted. As a result, SHG and TPE signals are attenuated. When scatterers are placed 

beyond the focal plane, the spatial profile of the generated signal is affected. When scatterers 

are placed both upstream and downstream relative to the focal plane, both the excitation 

field and the generated signal are affected. This case study illustrates that the information 

provided through this framework is useful for understanding the effect of scattering on 

microscopy signals.

D. Focus Beam Distortions

To illustrate the utility of the electromagnetic field propagation methods developed in this 

tutorial, we consider a sample configuration of three cells as was considered in [10].

In that work, 3D FDTD simulations were performed on cells represented by nuclei and 

a large number of small organelles. Each cell was represented by a cuboid with a major 

diameter of 15 μm and minor diameter of 13 μm. Nuclei and half of the organelles were 

represented by ellipsoids. The major and minor diameters of the ellipsoidal nuclei were 

considered as 6 μm and 5 μm, respectively. The major and minor diameters of the ellipsoidal 

organelles were considered as 1.5 μm and 0.5 μm, respectively. The rest of the organelles were 

represented by spheres with a diameter of 0.5 μm. The locations of all cellular components 

were chosen randomly.

We simulate a similar scenario involving three cells placed along the optical axis. We 

represent the nucleus as a spherical scatterer with a diameter of 5 μm and other organelles in 

a cell as a mixture of a total of 99 spherical scatterers with diameters of 0.5 μm, 1 μm, and 

1.5 μm. Thus the three cells were represented using a total of 300 spherical scatterers. We 

assume that the center of each nucleus is in the x‐z plane and place the organelles at random 

locations within the cell. The refractive indices of the nuclei and organelles are 1.4 and 

1.38, respectively. The medium is matched to that of cytoplasm (n = 1.36 [46]), and the lens 

NA is 0.68 for n = 1.36. The wavelength and filling factor [47] of the x-polarized Gaussian 

incident beam are 800 nm and 0.55, respectively. The results are shown in Fig. 14. Because 

the additional terms used in Gaussian source implementation and positions of the nuclei 

and organelles in the prior work are unknown to us, and the ellipsoids are approximated by 

spheres, this result does not provide an exact match with that provided in [10]. Nonetheless, 

there is a good qualitative agreement between the methods. Importantly, the HFP-based 

simulation can be completed in a small fraction of the time required to perform the FDTD 

simulation.
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7. CONCLUSION

In Part I of the tutorial [14], we provided a framework that utilizes existing analytical 

electromagnetic field propagation methods to comprehensively model optical microscopy 

in scattering samples with fixed scatterer configurations. In Part II, we discussed methods 

for mapping light distributions near focus, presented signal generation within, and radiation 

from, the focal volume, and concluded with far-field detection in the microscope system.

Our case studies illustrate the usefulness of the information that can be provided through 

this framework for understanding the effect of scattering on microscopy signals. Moreover, 

the case studies show how this comprehensive framework can be utilized as a foundation 

in laser scanning microscopy. The integrated intensity of the far-field signal given in case 

studies represents the intensity of the signal detected with the laser placed at a fixed location 

within the 3D sample. By moving the source and lens laterally and performing simulations 

at each location, one can obtain the signal intensities required to generate a full 2D image. 

By setting various z depths, one can generate 3D volumetric renderings.

This comprehensive framework serves as a stepping stone toward understanding factors that 

control the degradation of image resolution and penetration depth within scattering media in 

optical microscopy.
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APPENDIX A: SIMPSON’S 1/3 RULE FOR NUMERICAL INTEGRATION

Simpson’s 1/3 rule is based on the use of a quadratic polynomial to approximate the function 

over the range of the integral.

The 1D function g(x) is
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∫
x1

xM

g(x) dx = ℎx

3 [g(x1) + 4g(x2) + 2g(x3) + 4g(x4)
+ … + 2g(xM − 2) + 4g(xM − 1) + g(xM))]

= ℎx

3 ∑
m = 1

M
wmg(xm)

= ∑
m

W mg(xm),

(A1)

where M is the number of partitions between x1 and xM ⋅ wm represents 1D Simpson’s 

weights. ℎx = (xM − x1) ∕ (M − 1), and W m = ℎxwm ∕ 3.

The 2D function g(x, y) is

∫
y1

yN∫
x1

xM

g(x, y) dx dy = ℎx

3
ℎy

3 ∑
m = 1

M
∑

n = 1

N
wm

2Dwn
2Dg(xm, yn)

= ∑
m, n

W mng(xm, yn),
(A2)

where N is the number of partitions between y1 and yN. wm
2D and wn

2D are 2D arrays 

that represent 1D Simpson’s weights as shown in Fig. 15. ℎy = (yN − y1) ∕ (N − 1), and 

W mn = ℎx ℎy wm
2D wn

2D ∕ 9.

The 3D function g(x, y, z) is

∫
z1

zQ∫
y1

yN∫
x1

xM

g(x, y, z) dx dy dz

= ℎx

3
ℎy

3
ℎz

3 ∑
m = 1

M
∑

n = 1

N
∑

q = 1

Q
wm

3Dwn
3Dwq

3D g(xm, yn, zq)

= ∑
m, n, q

W mnqg(xm, yn, zq),

(A3)

where Q is the number of partitions between z1 and zQ. wm
3D, wn

3D, and wq
3D are 3D 

arrays that represent Simpson’s 1D weights. It is achieved by creating an M × N × Q
data cube and assigning 1D array values similar to Fig. 15. ℎz = (zQ − z1) ∕ (Q − 1), and 

W mnq = ℎx ℎy ℎz wm
3D wn

3D wq
3D ∕ 27.

APPENDIX B: COMPLEX VECTOR PROPERTIES TO COMPUTE PHASE 

ANGLE

It is customary to display the phase of individual components when a complex electric field 

is represented by its Cartesian components. The phase of the individual components may not 

correctly represent the actual phase of the complex electric field. Here, we show how we 

apply complex vector properties [48] to compute the phase angle of a complex electric field.
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Let us assume that E is a complex electric field with phase angle α, and S is a reference 

electric field with phase angle β. We can write the following complex vector relationship 

[48]:

ES∗ = ∣ E ∣ exp(iα) ∣ S ∣ exp( − iβ)
= ∣ E ∣ ∣ S ∣ exp(i(α − β))
= ∣ E ∣ ∣ S ∣ exp(iψ)
= ∣ E ∣ ∣ S ∣ (cos ψ + i sin ψ),

(B1)

where S∗ is a conjugate of S. Ψ = α − β gives the phase angle of E relative to S. Ψ can be 

calculated as

ψ = tan−1 (Ex
iSx

r − Ex
rSx

i) + (Ey
iSy

r − Ey
rSy

i) + (Ez
iSz

r − Ez
rSz

i)
(Ex

rSx
r + Ex

iSx
i) + (Ey

rSy
r + Ey

iSy
i) + (Ez

rSz
r + Ez

iSz
i) , (B2)

where E = (Ex
r + i Ex

i) i + (Ey
r + i Ey

i)j + (Ez
r + i Ez

i)k, and 

S = (Sx
r + i Sx

i) i + (Sy
r + i Sy

i)j + (Sz
r + i Sz

i)k. Superscripts r and i are used to represent real and 

imaginary, respectively.

When S is set to be a non-complex electric field, β becomes zero, and Ψ provides the phase 

of E.
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Fig. 1. 
Basic microscopy system (red dashed box). The processes involved in the dotted gray boxes 

are discussed in Part I [14] of this tutorial. The number in front of the process indicates the 

related sections in this tutorial.

Ranasinghesagara et al. Page 25

J Opt Soc Am A Opt Image Sci Vis. Author manuscript; available in PMC 2023 October 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. 
Intensity maps captured with a (a) cuboidal grid sampler and (b) flat sampler with a circular 

aperture. Size of the cuboidal volume is 4 μm × 4 μm × 6 μm. Only selected slices and lines 

are shown for clarity (not to scale). If a solution from the KVI is considered in continuous 

signal propagation in Section 5.B, additional sampling locations are required at z′ = z − Δz
and z′ = z + Δz to compute the partial derivatives.
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Fig. 3. 
Excitation electric field unit vector E(ρ) ∕ ∣ E(ρ) ∣, dipole moment unit vector of excited 

dipole pex, and dipole moment unit vector of emission dipole pem in cases I–IV.
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Fig. 4. 
Signal propagation from a cuboidal grid to the spherical reference surface of the far-field 

collector.
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Fig. 5. 
Signal propagation from a cuboidal node to the far-field spherical reference surface in a 

scattering medium.
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Fig. 6. 
Comparison of the coherent intensity collected using the electric field computed in Eq. (32) 

and FDTD in a medium with spherical scatterers of different sizes. (i) Schematic (not to 

scale). Total field radiation predicted by (ii) the method in Eqs. (26)-(32) and (iii) FDTD. 

(iv) Intensity difference between two methods as a percentage of maximum FDTD intensity; 

27 dipoles are placed within the focal volume. The central dipole is placed at the origin, 

and each row and each column contain three dipoles. The dipoles are spaced 50 nm apart 

horizontally and vertically. (a) The case of no scatterers is provided as a reference. Scatterer 

sizes are (b) 0.5 μm, (c) 0.75 μm, (d) 1 μm, and (e) 1.25 μm. Scatterer locations in (b)–(e) are 

(−0.5 μm, 1 μm, 3 μm), (−1.5 μm, −1 μm, 4 μm) and (2 μm, 1 μm, 5 μm). A circular x‐y plane 

collector is placed at z = 7 μm to collect fields. The relative refractive index of all scatterers 

is 1.2, and the wavelength of the incident beam is 800 nm.
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Fig. 7. 
(ϕ, θ) mesh and far-field radiation. (a) ϕ mesh and (b) θ mesh. (θ, ϕ) mesh maps on to 

a hemispherical reference surface for (c) forward collection and (d) epi-collection. The 

spacings between two consecutive ϕ values and θ values are ϕ1 and ϕ1, respectively. For full 

hemispherical collection, θmax in (c) and (d) is 90°.
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Fig. 8. 
(a) Detection of signal by a plane detector following lens refraction. (b) Graphical 

representation of the lens and detector. Each (xf, yf) has a corresponding (ϕc, θc). (c) Part 

of a 4f system and (d) signal propagation from the focal plane to the spherical reference 

surface (lens).
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Fig. 9. 
Nine different simulations illustrating the excitation amplitude (log10) at the focal volume 

in a medium with different sizes of spherical scatterers at different locations using Eq. (77) 

in Part I [14]. (i) Scatterers are placed prior (“upstream”) to the focal plane; (ii) scatterers 

are placed beyond (“downstream”) the focal plane; (iii) scatterers are placed both prior to 

and beyond the focal plane. The scatterer sizes in each column are: (a) 0.5 μm, (b) 0.75 μm, 

and (c) 1 μm. x‐y plane slices are shown at z = − 4.5 μm, −3 μm, −1.5 μm, 0, 1.5 μm, 3 μm, 

and 4.5 μm. The scatterer locations are: (−2 μm, −1 μm, −5 μm), (1.5 μm, 1 μm, −4 μm), (0.5 μm, 

−1 μm, −3 μm), (2 μm, 1 μm, 5 μm), (−1.5 μm, −1 μm, 4 μm), and (−0.5 μm, 1 μm, 3 μm). Some 

scatterers are not visible because they are hidden behind adjacent slices.
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Fig. 10. 
Percentage of amplitude difference relative to the maximum amplitude in the non-scattering 

case (% Amp. Diff.) and phase difference (Ph. Diff.) at the focal plane (z = 0) in a medium 

with spherical scatterers. Sizes of the scatterers are (a) 0.5 μm, (b) 0.75 μm, and (c) 1 μm. 

(i) Scatterers are placed prior to the focal plane; (ii) scatterers are placed beyond the focal 

plane; (iii) scatterers are placed on each side of the focal plane.
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Fig. 11. 
TPE and SHG excitation and far-field radiation. Left: excitation amplitude (log10) at the 

focal volume for x-polarized incident light. Middle: far-field radiation profiles in TPE 

microscopy (case I with 15 random orientations of pem and case III) (forward only) and SHG 

(forward and epi). Right: far-field x‐y profile after the collection lens with NA = 0.866. (i) 

1 μm spherical fluorescence particle; (ii) 3 μm × 3 μm × 1 μm slab centered at the focal point 

(not to scale). The number above the plot represents the normalized integrated intensity.
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Fig. 12. 
Forward detected TPE signal (case I with 15 random orientations of pem) and SHG signal 

in the far field. (i) Scatterers are placed prior to the focal plane; (ii) scatterers are placed 

beyond the focal plane; (iii) scatterers are placed both prior to and beyond the focal plane. 

Scatterer diameters are (a) 0.5 μm, (b) 0.75 μm, and (c) 1 μm. The number above each plot 

represents the integrated intensity relative to the forward non-scattering integrated intensity.
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Fig. 13. 
Epi-detected TPE signal (case I with 15 random orientations of pem) and SHG signal in the 

far field. (i) Scatterers are placed prior to the focal plane; (ii) scatterers are placed beyond 

the focal plane; (iii) scatterers are placed both prior to and beyond the focal plane. Scatterer 

diameters are (a) 0.5 μm, (b) 0.75 μm, and (c) 1 μm. The number above each plot represents the 

integrated intensity relative to the forward non-scattering integrated intensity.
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Fig. 14. 
Intensity (log10) distribution in x‐y plane (y = 0) in the focal volume. Intensity in (a) non 

scattering medium and (b) a medium with three cuboidal cells that contain 300 spherical 

scatterers. White lines show the approximate boundaries of each cuboidal cell. Black circles 

represent the nuclei and organelles present at y = 0 slice. Other organelles in the volume are 

not shown.
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Fig. 15. 
wm

2D and wn
2D 2D arrays with 1D Simpson’s weights.
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