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Searching for Argument-Counterargument Relationships in Vector Embeddings

Cherrie Chang and Joshua R. de Leeuw
Cognitive Science Department, Vassar College, Poughkeepsie, NY, USA.

cchang@vassar.edu, jdeleeuw@vassar.edu

Abstract

Vector embedding spaces are representational structures that
can capture both the similarity relationship between items and
various other semantic relationships. Current state-of-the-art
embedding models can generate embedding vectors for
individual words and longer strings of text, enabling vector
spaces to encode the similarity between entire documents of
text. We investigated three embedding models to see if
semantic relationships besides similarity are represented in
these spaces across three embedding models, focusing on the
relationship between arguments and counterarguments as a
specific example. While there was not a linear subspace that
captured the semantic relationship between an argument and
its counterargument, we found that neural networks with a
single hidden layer could partially learn the transformations
between an argument's embedding and the corresponding
counterargument's embedding in all three spaces. The trained
models generalized across three different datasets of
arguments, suggesting these partially learned transformations
are applicable to arguments and counterarguments in general,
not just tied to the semantic context of the models’ training
dataset. This approach has practical applications in designing
information retrieval systems for intelligent agents and,
potentially, in models of cognition that use vector embedding
spaces as a representational structure.

Keywords: semantic search; word embeddings; vector spaces

Introduction
Word embeddings are a powerful representational structure
for semantics. These spaces typically represent words or
part-words, together called tokens, as high-dimensional
vectors. Constructing the space using methods like word
co-occurrence (Globerson et al., 2004) and/or neural
networks trained to model each word in a paragraph as a
product of the conditional probabilities of the words
preceding it (Bengio et al., 2000) results in desirable
representational properties, such as vectors that are similar
to one another having similar semantic meaning. These
vector-based representations also show up in cognitive
models of memory (Jones et al., 2006; Kelly & West, 2012;
Kleyko et al., 2023), categorization (Surkova et al., 2020),
and semantics (Grand et al., 2022).

One remarkable aspect of these spaces is word embedding
arithmetic (Mikolov et al., 2013; Pennington et al., 2014), in
which it was shown that simple linear combinations of
vectors, like addition and subtraction, results in semantically
sensible changes. For instance, starting with the vector for
“Madrid”, subtracting vector(“Spain”) from it, then adding
vector(“France”) to it results in a vector very similar to the
vector(“Paris”) (Ngo et al., 2016; Palangi et al., 2016;

Parwita & Siahaan, 2019). This shows embedding spaces
represent relationships between tokens in a systematic way.

Until relatively recently, most embedding spaces focused
on representing individual tokens (words or part-words) in
the space. With this approach, the semantics of an entire
sentence, paragraph, or chapter of a book would be
extracted by a model operating on the individual token
embeddings (e.g. Wang et al., 2018). Recent approaches to
constructing embeddings have introduced methods for
generating embeddings for strings of multiple tokens. For
example, the text-embedding-ada-003 model has a
maximum window length of 8,192 tokens (Zhuang, 2024),
allowing it to generate an embedding that can represent a
large chunk of a document of text.

The possibility of embedding spaces that can capture
semantic concepts expressible only by combining individual
tokens into sentences or paragraphs raises questions about
the representational structure of these spaces. Do these
spaces capture semantic relationships that are not reducible
to the relation between individual tokens? If so, are there
linear subspaces that do it? Or are there non-linear
transformations we can use to discover these relationships?

We set out to explore these ideas for a particular kind of
complex semantic relationship: the relationship between
arguments and counterarguments. We were interested in this
relationship for a few reasons. First, it is certainly a
relationship that is not reducible to one or even a few tokens
— to make an argument, you would need a sentence at the
very least; Second, the relationship is multifaceted, with
many kinds of potential arguments and counterarguments
for any given topic; Third, and finally, there are interesting
applications for an embedding space that can capture
argument-counterargument relationships in the field of
argument mining (L. Li et al., 2017; Reimers et al., 2019).
For example, a popular technique for giving large language
models contextually relevant information that is not part of
their training data is vector-based document retrieval (Caid
et al., 1995; Roy et al., 2016). This typically involves
storing a set of documents indexed by their embeddings in
some embedding space. The language model can then be
prompted, e.g. through a chat dialog, and the embedding of
the prompt can be compared to all of the documents. The
most similar documents to the prompt embedding may
contain relevant information, so the text of those documents
can be passed to the LLM as part of a modified prompt.

While this is a useful and widely adopted method,
similarity is only one kind of relation that we might want to
search with. In the case of an agent that has the goal to
provide counterarguments to the statements that it receives,
the most similar documents might not be the most useful, as
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they are likely to express views that align with the prompt
rather than oppose it. Instead, we want to find documents
that fulfill the particular kind(s) of semantic relation(s) that
exist between arguments and counterarguments.

In this paper, we test this idea in three studies, using three
different datasets of natural language arguments and three
different embedding spaces. In Study 1 we attempt to find a
linear subspace that captures the argument-counterargument
relation using PCA. In Study 2, we use simple neural
network models to find a non-linear relationship between
arguments and counterarguments in the embedding spaces.
Finally, in Study 3 we explore the ability of the trained
models to generalize to different datasets.

Datasets
We used three datasets of arguments and counterarguments.

The ArguAna Counterargs Corpus
For Study 1 and Study 2, we used the training dataset from
the ArguAna Counterargs Corpus, an English corpus
constructed by the NLP Group at Leibniz University
Hannover, Bauhaus-Universität Weimar and affiliations to
study the retrieval of counterarguments given an argument
(About – ArguAna, n.d.). The corpus has been used in
similar literature in information retrieval (e.g. Hashemi et
al., 2023), and is an important dataset used in many machine
learning benchmarks (Thakur et al., 2021). It was chosen
due to its large size and representativeness of real-life
debates: it contains 6,753 argument-counterargument pairs
crawled from idebate.org, divided into 15 broad debate
categories, such as “Science” and “Culture”. In each
category are ~30 debates (Wachsmuth et al., 2018), with
each debate comprising a labeled list of arguments ~100
words long labeled for or against the debate’s thesis
statement. After every argument is a counterargument that
corresponds to it.

Each debate contains 7 argument-counterargument pairs
on average [min=3, max=20]. The dataset was then
converted into a table with each row representing one
argument. An example row in the table would include a
“statement” column for the argument or counterargument
text, a “debate” column identifying the debate topic it
belongs to, a “pair_id'' unique to the argument and its
counterpart in the debate, a “type” column for whether the
row represents an argument or a counterargument, and a
“stance” column determining whether the argument is for or
against the debate’s thesis statement (Table 1).

The IBM GPR-KB-55 Dataset
For Study 3, we used one of the IBM Project Debater’s
datasets, the GPR-KB-55, which is composed of 55
arguments and their corresponding counterarguments
written by an expert human debater (Orbach et al., 2019).
These arguments are “general-purpose”, in that they are
topic-agnostic and broadly capture the general structure of
an argument and its counterargument without holding any
topic-specific information. An example argument from this
dataset would be “We need to think about how this affects
us right now;” and its corresponding counterargument
would be “The long-term effects in this case greatly
outweigh the short-term ones” (Table 2). This dataset was
chosen as an alternative from the ArguAna dataset to test the
models on, since it follows a similar paired
argument-counterargument structure. The topic-agnostic
nature of the arguments may also serve as a baseline for
determining whether the models have learned a relation
generalizable across all topics.

Table 2: Example rows in the GPR-KB-55 dataset

The IBM EACL Dataset
The EACL dataset is another dataset from IBM’s Project
Debater we used to test the models in Study 3. This dataset
is composed of 2,394 labeled arguments across 55 topics
manually extracted from Wikipedia (Bar-Haim et al., 2017).
The arguments in the dataset are manually annotated as for
or against their debate topic’s thesis, but are not paired. For
example, the thesis “This house would introduce year round
schooling” contains 11 arguments for it (e.g. “Parents are in
favor of the year-round schedule”) and 5 counterarguments
(e.g. “If schools are open longer the operating and
maintenance costs may increase”) against it. On average,
each topic has 24 arguments [min=2, max=121] and 19
counterarguments [min=2, max=161]. The total number of
arguments in each topic also vary, with each topic consisting
of ~44 [min=4, max=182] arguments and counterarguments.

Table 1: Example argument-counterargument pair of rows in the ArguAna dataset

statement pair_id type stance topic category
0 The minimum wage aids in the propagation of

social justice and the fair treatment of workers.
Businesses operating in a free market are…

0 point PRO business-economic
…-minimum-wage

economy

1 There is no social justice in denying people the
ability to work. The minimum wage serves…

0 counter CON business-economic-
...-minimum-wage

economy

argument counterargument
0 We need to think

about how this
affects us right now.

The long-term effects in this
case greatly outweigh the
short-term ones.

1 <ACTION>
<TOPIC> will
benefit us in the
future.

There are many things that
could theoretically benefit us
in the future. Unfortunately
we have to…
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This structure lets us test the models in a more permissive
way, analyzing if given the embedding of a particular
argument, a model is able to generate an embedding vector
specifically near or within the subspace of counterarguments
in its topic, as opposed to any vector within the broader
subspace of the topic itself.

Table 3: Example rows in the EACL dataset

Embeddings

The embedding spaces generated by 3 embedding models,
text-embedding-ada-002 (ada-002), text-embedding-3-small
(ada-003-small) and Nomic Embed, were investigated. Both
ada- models are from OpenAI, the company behind
ChatGPT. ada-003-small succeeds ada-002 and is the "lite
version" of OpenAI’s newest, most powerful embedding
model. Nomic Embed is from Nomic AI, a start-up focused
on building explainable and accessible AI, positioned to be
as powerful as ada-003 based on popular benchmark scores
like MTEB (Greene et al., 2022; Nussbaum et al., 2024;
Zhuang, 2024). All three models are English-based and
general-purpose. ada-002 has a token window of 2048
tokens (roughly 2-3 pages of English); while ada-003-small
and Nomic Embed both have a token window 4x as large at
8192 tokens. Both ada- models generate embeddings with a
max dimensionality of 1536; while Nomic Embed generates
up to 768-dimensional embeddings. The most invaluable
thing about Nomic Embed is that it is fully reproducible,
open-source, open-weights and open-data; unlike the closed
source ada- models. Using Nomic Embed means our results
can be further investigated by looking into the model’s
source code, weights and training datasets; while using and
comparing the state-of-the-art, widely adopted ada- models
(X. Li et al., 2024; Patil et al., 2023) give us a sense of how
fast current capabilities of embedding spaces are growing.

Each of these embedding models takes in a string of text
and turns it into an embedding vector, which positions the
text in the model’s high-dimensional embedding space. The
closer the distance between two embeddings in this space,
the more similar their semantics are. We decided to use
cosine similarity as our similarity metric for measuring this
distance, due to its wide adoption in embedding space
semantic search (e.g. Thongtan & Phienthrakul, 2019),
including seminal papers such as Bolukbasi et al. (2016) and
Mikolov et al. (2013) where the systematic linear
relationship between word vectors with related semantics
was first reported. It is also advised to choose the same
similarity metric used to train the models (Schwaber-Cohen,
2023; Sitikhu et al., 2019), and cosine similarity was used as
a training metric in all three embedding models (Greene et
al., 2022; Nussbaum et al., 2024; Zhuang, 2024).

Study 1: Linear Subspaces
We started with analyzing whether the embedding spaces
already capture the semantic relation between arguments
and counterarguments through a linear subspace. To test
this, we ran principal components analysis (PCA) on a
dataset of argument-counterargument pairs and examined
whether the first few components could account for a
substantial portion of the variance. Our approach is
motivated by the historical success of using PCA to find
relations between words and concepts. Examples include the
visibly linear relationships in two-dimensional PCA
projections of country vectors and capital vectors (see
Mikolov et al., 2013); and the gender-coding of professions,
where roles like “homemaker” and “hairdresser” are
projected onto the she-gender direction in the embedding
space, while “captain” and “boss” share the he-gender
direction in their projections, exposing a gender bias in the
embedding space captured as linear transformations to these
professions from gender words (see Bolukbasi et al., 2016).

Since it is evident that PCA projections uncover the
vector representations of these semantic relations between
single word embeddings, it is reasonable to next see if PCA
projections of semantically-related paragraph embeddings
also uncover a linear relationship between them, which
would mean current embedding spaces do represent more
complex semantic relationships, such as those between
arguments and counterarguments. This is especially viable
in the current technological landscape, where embedding
models are able to generate embeddings for larger and larger
bodies of text, as demonstrated by the token window size
difference between ada-002 and its successor, ada-003-small
(Greene et al., 2022; Zhuang, 2024).

Method
We generated embeddings for each statement in the
ArguAna dataset (described above) using all three models
separately. These statements are paired into arguments and
corresponding counterarguments. We took each pair,
calculated the mean, then generated two opposite-direction
embeddings by subtracting the mean from the argument
embedding and counterargument emb​​edding respectively
(Bolukbasi et al., 2016). This is important for identifying
subspaces as it forces the PCA to work with the differences
along the relevant argument-counterargument characteristic,
not other aspects of the embeddings (e.g. the topic).

Results
After removing statements that lacked a counterpart, we ran
PCA with 10 components on the remaining three sets of
ArguAna 8,130 embeddings (one from each model). If there
is a linear subspace, we would expect to see the first PCA
components explain substantially more variance than the
others, because the mean-centering approach above would
result in argument and counterargument vectors that point in
opposite directions, and all lines joining arguments and their
counterarguments would point in approximately the same

topicID stance argument
0 644 PRO Parents are in favor of the…
1 644 CON If schools are open longer….

4919

https://huggingface.co/nomic-ai/nomic-embed-text-v1.5
https://huggingface.co/nomic-ai/nomic-embed-text-v1.5


Figure 1: The ratio of explained variance explained by each
of the 10 principal components we extracted, ordered from
the component explaining the most variance to the one
explaining the least, for all three embedding models.

Figure 2: The projection of the argument-counterargument
pairs in ArguAna onto the first two PCA components
(PCA_0, PCA_1) for all three models (ada-002 in blue,
ada-003 in red, nomic in green). Each pair is connected with
a straight line, and pairs belonging to the “business
economic policy economy general house believes national
minimum wage” topic are highlighted in black. Circular
markers mark the argument, and triangular markers mark
the counterargument for each pair in this topic.

directions in the embedding space. Instead, the first
components explained relatively little (~2.4%) variance, and
differences between first and second components were low
across all three models (Figure 1). Figure 2 visualizes the
embedding spaces projected onto the first two components.

Discussion
Unlike previous work on embedding spaces that found
linear operations to move between conceptually related
words (e.g. KING-MAN+WOMAN=QUEEN), none of the
embedding spaces showed clear linear subspaces capturing
the relationship between arguments and counterarguments.
The lines connecting arguments and counterarguments in
Figure 2 visualize this, pointing in different directions even
in a single topic. This may not be surprising, as arguments
and counterarguments represent a complex set of relations,
with many possible kinds of pairings (Bentahar et al., 2010).

Study 2: Nonlinear Transformations
In our second study, we see if there are consistent nonlinear
relationships between argument and counterargument pairs.

Method
We used the same 4,074 embedding pairs from the ArguAna
training set as Study 1 for training, and generated 1403
embedding pairs from the ArguAna test set to use for
validation. We did not mean-center either embedding sets.
Instead, we used a supervised learning approach to try and
learn a mapping between an argument's embedding vector
and its counterargument's embedding vector. To do this, we
trained a three-layer (input, hidden, and output) neural
network to take an embedding vector as input and generate
as output its counterargument embedding, repeated for all 3
embedding models. All three layers had the same number of
units as the embedding dimensions. Each hidden layer used
a ReLU activation function. There were 4,721,664 trainable
parameters in the ada- models and 1,181,184 in the Nomic
model. The models were compiled with the Adam optimizer
(learning rate=0.001) and cosine similarity as the loss
function, then trained over 20 epochs with a batch size of 1.

The batch size of 1 was to make implementing a custom
metric easier: To analyze how close a model’s output
embedding for an input embedding is to the target
counterargument embedding, we defined a metric function
that, given an output embedding from a model, calculates its
cosine similarity to every embedding in the entire dataset,
returning the vector closest to it. A model is considered to
successfully predict a counterargument embedding if the
vector it is closest to is the target embedding. This approach
echoes previous work on evaluating embedding space
arithmetic (e.g. Bolturk & Kahraman, 2018; Ng, 2017). We
also chose this metric because it closely simulates a memory
or document retrieval use case, in which a probe vector is
compared to entries in a memory store to retrieve the most
similar instances (Jamieson et al., 2018; Wagenpfeil et al.,
2021; Zhang & He, 2019).
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Figure 3: The accuracy of the models in predicting the
correct counterargument for a given argument in the training
set (dashed) and validation set (solid) over 20 epochs of
training on the unshuffled (top) vs. shuffled-within-topic
(bottom) versions of the ArguAna dataset respectively.

Results
All models trained on unshuffled data achieved ~39.7%
[min=33.8%, max=43.2%] (Figure 3) accuracy on the
held-out argument pairs after 20 epochs of training (chance
performance would be 1 in 8,130). While there was clearly
overfitting to the training data (~90.4% accuracy on training
samples), accuracy on the validation data improved
throughout training. 39.7% accuracy is perhaps too low for
consistent and reliable retrieval, but it does demonstrate that
even a simple 3-layer neural network architecture can
partially learn the non-linear relationship between
arguments and counterarguments in the embedding space.

We worried our estimate of the models’ performances
may be misleading because the models could learn a
strategy that focused less on the relationship between
arguments and counterarguments and more on preserving
the topical information. For example, given an embedding
vector about pro-voting-reform, the models may output a
vector simply reflecting any statement about voting reform.

To test this, we trained the models again using a shuffled
dataset. Within each argument topic, we randomly paired
arguments with counterarguments. Thus, during training the
models could only learn a general mapping between
arguments and counterarguments from the same topic, but
could not learn the mapping between an argument and its
specific counterargument. We trained these models for 20
epochs. Performance on the hold-out validation data reached
only ~5.94% [0.86%, 8.61%], well below the performance
of the models trained on unshuffled data. Figure 3 shows the
learning curves of all models.

Discussion
The results from our second study show that a simple
three-layer neural network can partially learn a mapping
between the embedding vectors for an argument and its
specific counterargument, and that this performance is not
unique to a particular embedding space. This also shows the
models are not learning a general mapping that captures
only topic-level information, but can identify specific
counterarguments. Our validation data for the models
included novel argument pairs and novel topics, suggesting
that the mappings learned may be generalizable.

Study 3: Generalization
In Study 3 we explored the generalizability of the mappings
learned in Study 2 to other kinds of data. If the models in
Study 2 really discovered non-linear subspaces in the three
embedding models’ embedding spaces that capture the
argument-counterargument relationship, then we would
expect the models to generalize to other datasets that are
more distinct from the arguments the models were trained
on. To evaluate this, we tested the model on two new
datasets: the GPR-KB-55 dataset and the EACL dataset.
Both were constructed for IBM’s Project Debater, an AI
system trained to write well-structured arguments given a
short description of a controversial topic (Bar-Haim et al.,
2017). As described above, the GPR-KB-55 dataset contains
55 general argument-counterargument pairs that are not
specific to any topic; and the EACL dataset consists of
2,394 arguments spanning 55 topics, each labeled as either
an argument for the topic or a counterargument against it,
but not paired with another argument or counterargument.

These two datasets therefore differ from the ArguAna
dataset we trained the models on in two distinct ways:
unlike the topic-tagged arguments in the ArguAna dataset,
all arguments and counterarguments in the GPR-KB-55
dataset are completely general, so the models’ performances
on this dataset affirms whether their learned mappings
between arguments and counterarguments are based on the
argument-counterargument relation solely, independent from
the effect of the arguments’ topics; the EACL dataset
provides a more permissive and realistic measure of the
models’ ability: the arguments and counterarguments are not
paired in the dataset, so each counterargument in a topic is
equally weighed as a target embedding for the models to
predict from an argument embedding of the same topic. This

4921



is closer to real-world debates, where an argument can be
relevantly countered by multiple counterarguments. The
models’ performances on the EACL dataset demonstrates
whether their mappings are overfit to the training dataset’s
rigid one-to-one relationship between specific arguments
and counterarguments, testing their robustness in fetching
relevant counterarguments from more realistic documents,
where arguments and counterarguments are more coarsely
divided as two pools of data to draw from.

Method
We processed both datasets similarly as in Study 2, grabbing
the embeddings for each statement without mean-centering
them. We ran the trained models from Study 2 on every
vector from both datasets, with each model predicting
embeddings generated by the same embedding model as the
one that generated the embeddings it was trained on. We
followed the procedure in Study 2 for the GPR-KB-55
dataset, measuring the models’ performance on each
argument by whether their output embedding is closest to
the target counterargument. For EACL, we retrieved the list
of top-k embeddings from the dataset closest to the models’
output embeddings for each argument. We then used the
proportion of correct matches, i.e. embeddings that share the
same topic as the input and are of the opposite stance, as the
performance measure for the models on the input vector.

Results
Out of the 55 arguments in GPR-KB-55, the Nomic Embed
model correctly output an embedding closest to the target ~8
times, giving it an accuracy of 14.5% (0.02% by chance).
The ada-002 model achieved a similar accuracy level at
12.7%, but the ada-003-small model presented unexpected
results, achieving only 1.81% accuracy. For EACL, the
models’ accuracies were measured by the proportion of
correct vectors (matching topic; opposite stance) in the
top-k vectors closest to its output for each argument. The
results for k = 1, 2, 5, 10, 30, 200 are shown in Table 4.

The models do not seem to show consistent trends in their
accuracies from k=2 to k=30, which may be explained as
differences in their rate of approaching the correct vectors
without precisely distinguishing similar candidate vectors.

Table 4: Top-k accuracy for argument retrieval

Proportion of retrieved arguments that are correct
k ada-002 ada-003-small Nomic Embed
1 0.107 0.052 0.149
2 0.179 0.054 0.156
5 0.238 0.051 0.145
10 0.257 0.050 0.143
30 0.256 0.046 0.128
200 0.122 0.035 0.068

Discussion
The models did not perform as well on GPR-KB-55 as they
did on the ArguAna validation set, though still better than
chance (0.02%). This shows apart from ada-003-small, the
models learned mappings that generalize to novel topics
and, to a lesser extent, topic-agnostic arguments; suggesting
the models’ learned mappings partially capture the semantic
relation between arguments and counterarguments, one that
is able to correlate arguments and counterarguments that do
not share topical context, and also delineate the argument
and counterargument subspaces within a topic subspace.

General Discussion
Our three studies demonstrate that embedding spaces can
partially capture semantic relationships between paragraphs
beyond simple similarity. As an example, we found that
while the relation between arguments and counterarguments
is not captured by linear subspaces, it is discoverable via
three-layer neural networks and supervised training on
argument-counterargument pairs. These learned mappings
between arguments and counterarguments generalized
across three embedding spaces generated on three datasets,
all with different argument characteristics, suggesting the
mappings capture something general about this relationship.

Overall performance levels were above chance, but well
short of consistent accuracy. It is unclear whether this is a
limitation of the particular embedding spaces, the neural
networks doing the mapping, or the dataset used to train the
models. Like most machine learning problems, it is
probably a little bit of all the above, and future work on this
problem could explore variations on our simple model
architecture and training over larger, more diverse datasets.
Nevertheless, these performances are likely still strong
enough to be useful in application. Vector-based document
retrieval methods for providing LLMs with specific context
often select several documents for any given query. A model
that is 20-40% accurate at finding relevant documents
would still pull useful information a lot of the time.

Beyond LLMs, we speculate that the approach of learning
a non-linear transformation in embedding spaces may be
fruitful in other models, like cognitive models of semantic
memory. Verbal fluency test models have demonstrated that
participants engage in a memory search strategy resembling
switching between various patches (Lundin et al., 2023):
when participants are asked to name as many food items as
they can in a limited time, they may begin by naming foods
sharing one kind of relationship, like “different Japanese
foods”, then shift to another patch of a different relation
kind, like “things eaten last week”. Sushi and corn may be
very similar in the second reference frame, yet dissimilar in
the first. This kind of change could be modeled as different
transformations applied to the semantic space, such that the
same probe/query results in different matches. Generalizing
from this, our approach may be extended to other kinds of
models that deal with the retrieval of information based on
semantic relations. Whether this ends up being a useful way
to think about these kinds of problems remains to be seen.
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