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Abstract
We prove a generalization of the classical Klein–Maskit combination theorem, in the free
product case, in the setting of Anosov subgroups. Namely, if �A and �B are Anosov sub-
groups of a semisimple Lie group G of noncompact type, then under suitable topological
assumptions, the group generated by �A and �B in G is again Anosov, and is naturally iso-
morphic to the free product �A ∗ �B . Such a generalization was conjectured in Dey et al.
(Math Z 293(1–2):551–578, 2019).

The classical Klein–Maskit combination theorem for Kleinian groups (discrete isometry
groups of the hyperbolic spaceH

n) establishes sufficient conditions for a subgroup� < G =
Isom(Hn) generated by two discrete subgroups �A, �B of G to be discrete and isomorphic
to the free product �A ∗ �B , see [18–20, 22] as well as Maskit’s book [21, Theorem C.2, p.
149] and papers by Ivascu [7], Li, Ohshika and Wang [13]. In this situation, the group � is
said to be obtained via Klein combination of the subgroups �A, �B . Moreover, Maskit gave
sufficient conditions for the Maskit combination of two geometrically finite subgroups of �

to be again geometrically finite and described the limit set of � in terms of those of �A, �B .
Maskit’s condition was formulated in terms of fundamental domains of group actions on
the boundary sphere Sn−1 of H

n . Further generalizations of the Klein–Maskit combination
theorem in the context of group actions onGromov-hyperbolic spaces appear in [1, 6, 15–17].

In the last decade, Anosov subgroups of higher rank Lie groups have emerged as a higher-
rank generalization of convex cocompact Kleinian groups. The goal of this article is to prove
an analog of Maskit’s theorem in the setting of Anosov subgroups of semisimple Lie groups
G.1 An earlier form of such an analogue was proven in our paper with Bernhard Leeb, [4],
using the local-to-global principle for Morse quasigeodesics and extending the earlier work

1 We note that Maskit also proved some far-reaching generalizations of the above combination theorem,
dealing with the cases of amalgamated free products and HNN extensions. Such a generalization is not an
objective of the present paper but is discussed in our subsequent work in [3].
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by Kapovich, Leeb and Porti [9]. However, our earlier work required passage to certain finite
index subgroups in the given Anosov subgroups. In the paper [4] we conjectured a sharp
form of the combination theorem for Anosov subgroups, which exactly matches Maskit’s
conditions for Kleinian groups. Themain goal of the present paper is to prove this conjecture.
Unlike [4], the methods of the present paper are purely dynamical, relying upon another
characterization (given in the work of Kapovich, Leeb and Porti [10]) of Anosov subgroups,
asasymptotically embedded subgroups.The appropriate flag-manifoldsFlag(τmod) (quotients
of G by suitable parabolic subgroups Pτmod < G) serve as substitutes to the ideal boundary
sphere Sn−1 of H

n in Maskit’s setting. The subsets A, B ⊂ Flag(τmod) appearing below
act as replacements to the complements of the interiors of fundamental domains of the
subgroups �A, �B in Sn−1 used by Maskit. The antipodality condition in the theorem is
the appropriate higher-rank analogue of the disjointness condition imposed by Maskit. The
main difficulty in the proof of our main theorem is to establish that certain sequences of
nested images of the sets A, B under alternating sequences in the free product �A ∗ �B

have singleton intersections, see Lemma 3.5. (This intersection property allows us to prove
both τmod-regularity of � and construct a continuous equivariant embedding of the Gromov
boundary of � into Flag(τmod).) The intersection property would have been easy if we knew
that nontrivial elements of �A, resp. �B , uniformly contract on B, resp. A. Such uniform
contraction, in general, fails under the assumption of the Klein–Maskit combination theorem
even in the case of H

n , see Example 6.5.
Let G be a noncompact real semisimple Lie group with a finite center, X = G/K be

the associated symmetric space of noncompact type, σmod be a model spherical chamber (a
model facet) in the Tits building ∂TitsX of X , ι : σmod → σmod be the opposition involution,
and τmod ⊂ σmod be an ι-invariant face. We will assume some mild conditions on G, see
Sect. 1.3 for more details.

Our main result is:

Theorem A (Combination Theorem) Suppose that A, B ⊂ Flag(τmod) are (disjoint) compact
sets with nonempty interiors which are antipodal (see Definition 1.1) to each other. Let �A

and �B be τmod-Anosov subgroups2 of G such that all nontrivial elements α ∈ �A, β ∈ �B

satisfy

α(B) ⊂ int(A), β(A) ⊂ int(B).

Then:

(i) The subgroup � < G generated by �A, �B is naturally isomorphic to the abstract free
product �A ∗ �B.

(ii) The subgroup � < G is τmod-Anosov.
(iii) The τmod-limit set of � (see Sect.1.8) is contained in A ∪ B.

This theorem has an immediate generalization to the case of several Anosov subgroups
of G that we will discuss in Sect. 6.

To end this introduction, we would like to mention that Danciger, Guéritaud, and Kassel in
[2] announced a combination theorem for the free products of convex cocompact subgroups
of G = PGL(n,R). See Proposition 12.4 in their paper for a precise statement. Notably, by
Theorem 1.15 of their paper, the class of word-hyperbolic convex cocompact subgroups of

2 Although we do not state original definition of τmod-Anosov subgroups (due to Labourie [12]) in this paper,
an equivalent characterization of these as τmod-asymptotically embedded subgroups is discussed in Sect. 1.8.
The proof of our main result relies upon this characterization.
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G coincides with the class of projective Anosov subgroups of G preserving some properly
convex domain in P(Rn). Therefore, the combination theorem announced in their paper is
also closely related to our main result.

Organization of the paper

In Sect. 1, we prove some preliminary results needed for the proof of Theorem A. A crucial
result proven in this section is that the stars in flag-manifolds are connected, see Sect. 1.4,
which is also of independent interest. InSects. 2 and3,we show that under a suitable condition,
a pair of τmod-regular subgroups of G generate another one; see Theorem 3.1 for the precise
statement. In Sect. 4, we show that, under the hypothesis of Theorem A, the subgroup �A ∗
�B < G is τmod-boundary embedded. In Sect. 5, we conclude the proof of Theorem A. In
the final section, Sect. 6, we discuss some consequences.

1 Preliminary notions and results

The goal of this section is to set up our notation and terminology, and prove some preliminary
results which will be used in the later sections.

1.1 Reduced forms

Let �A and �B be two groups and let � = �A ∗ �B be their free product. We will regard �A

and �B as subgroups of � under their natural embeddings in �. Each element γ ∈ � can be
written as a unique word of the form

γ = γk · · · γ1, (1.1)

where k ∈ N depends on γ , such that the following conditions are satisfied:

(i) Each letter γi in the above expression belong to either �A or �B .
(ii) No two successive letters γi+1, γi in the above expression belong to the same group �A

or �B .

The unique expression (1.1) for γ is called the reduced form of γ , and the number of nontrivial
letters in the right side of (1.1) is called the relative (word-)length of γ and denoted by rl(γ ).

An element γ ′ ∈ � is called a leftmost (resp. rightmost) subword of γ ∈ � if the reduced
form of γ ′ is obtained by deleting some letters from the right (resp. left) of the reduced form
of γ . For example, if γ ∈ � has the reduced form γ = αβδ, then the elements α, αβ, and
αβδ of � are leftmost subwords of γ whereas the elements δ, βδ, and αβδ are rightmost
subwords of γ .

1.2 Hausdorff distance and convergence

Given a compact metric space (Z , d), we have the Hausdorff distance on the set C(Z) of
nonempty closed subsets of Z . This distance defines the topology of Hausdorff-convergence
on C(Z), which coincides with the Chabauty topology on C(Z). Under this topology, a
sequence (An) in C(Z) converges to a singleton {z} ∈ C(Z), denoted by

An → z,

123



   35 Page 4 of 25 S. Dey, M. Kapovich

if and only if the diameter of An ∪ {z} goes to zero as n → ∞.

1.3 Geometric background

Let G be a noncompact real semisimple Lie group with a finite center. We will impose some
additional assumptions on G given at the end of this subsection. Let K < G be a maximal
compact subgroup ofG. The symmetric space ofG is the simply-connected space X = G/K ,
equipped with a G-invariant Riemannian metric. It is a standard fact that such a Riemannian
metric has non-positive curvature, and moreover, X has no flat de Rham factors. We refer to
Eberlein’s book, [5], for a detailed discussion of symmetric spaces.

The ideal boundary of X is the set of asymptotic classes of geodesic rays in X . The ideal
boundary carries a natural G-invariant spherical building structure, called the Tits building
of X , and is denoted by ∂TitsX : The apartments in this building are the ideal boundaries of
the maximal flats in X . Top-dimensional simplices (facets) in ∂TitsX are called (spherical)
chambers and codimension one simplices are called panels. The group G acts transitively on
the sets of apartments and chambers of ∂TitsX . Let Fmod ⊂ X denote a chosen maximal flat;
the ideal boundary of this flat, denoted by amod, is called the model apartment. The action of
Gamod , the stabilizer of amod in G, on amod factors through a finite group W , called theWeyl
group associated to G. A chosen fundamental domain for the action W � amod is called the
model chamber, and is denoted by σmod. The other facets in ∂TitsX are the G-translates of
σmod.

The reflection about a(ny) point x ∈ Fmod determines an involution inv : amod → amod

which preserves the chambers of amod. The longest element w0 ∈ W is the unique element
which sends the chamber inv(σmod) ⊂ amod toσmod.The compositionw0◦inv : σmod → σmod

is a simplicial map, called the opposition involution and denoted by ι.
The stabilizer of σmod in G is called the minimal parabolic subgroup, denoted by Pσmod .

More generally, the stabilizers of faces ηmod ⊂ σmod are the parabolic subgroups of G,
denoted by Pηmod . Therefore, the space of all simplices in ∂TitsX of type3 ηmod can be identified
with the partial flag variety

Flag(ηmod) := G/Pηmod .

It is easy to see that η′
mod ⊂ ηmod if and only if Pηmod < Pη′

mod
. The full flag variety,

Flag(σmod) = G/Pσmod , is also known as the Furstenberg boundary of X .
For a face ηmod ⊂ σmod, it is often convenient to use the notation±ηmod to denote the pair

ηmod, ιηmod, respectively. A pair of points η± ∈ Flag(±ηmod) is called antipodal if there
exists a complete geodesic line in X , which is forward (resp. backward) asymptotic to an
interior point of η+ (resp. η−). Equivalently, antipodal simplices in ∂TitsX are those which
are swapped by some Cartan involution of X . To avoid possible confusions, we remark here
that pairs of antipodal points in ∂TitsX are necessarily distinct.

For η ∈ Flag(ηmod), let

C(η) := {η− ∈ Flag(ιηmod) | η−is antipodal to η}. (1.2)

This is an open dense cell in Flag(ιηmod). The complement of C(η) in Flag(ιηmod), denoted
by E(η), is the exceptional subvariety for η.

In the following definition, we assume that τmod ⊂ σmod is an ι-invariant face, i.e., τmod =
ιτmod.

3 A simplex η ∈ ∂TitsX is called of type ηmod if there exists g ∈ G such that gηmod = η.
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Definition 1.1 (Antipodality) A subset � ⊂ Flag(τmod) is called antipodal if every pair of
distinct points λ± ∈ � is antipodal. If A and B are subsets of Flag(τmod), then they are called
antipodal to each other (or A is antipodal to B) if for all points a ∈ A, b ∈ B, a and b are
antipodal.

Throughout, we impose the following mild assumptions on G:

(i) The group G is commensurable with the full isometry group of X .
(ii) The Tits building of X is thick, i.e., every panel in ∂TitsX is a face of at least three

different chambers.

These are standing assumptions in the papers [8, 10, 11] by Kapovich, Leeb, and Porti we
rely upon in this work. Moreover, we also refer to these papers for more details on the notions
introduced in this section.

1.4 Flag varieties

Let ηmod ⊂ σmod be a face. Consider the canonical G-equivariant algebraic morphism

πηmod : Flag(σmod) → Flag(ηmod). (1.3)

The fiber of πηmod over any point η ∈ Flag(ηmod) is called the star of η, denoted by StFu(η),
and is the smooth subvariety of Flag(σmod) consisting of all chambers σ which contain η as
a face. These fibers are diffeomorphic to the quotients Pηmod/Pσmod .

Lemma 1.2 Let ηmod and τmod be any faces of σmod. Then:

(i) Fibers of the map πηmod in (1.3) are connected.
(ii) The projection of StFu(η) to Flag(τmod) is connected.

Proof (i) Any two chambers σ1, σ2 ∈ StFu(η) lie in a common apartment a in the spherical
building ∂TitsX . Then, there exists a gallery4 in a consisting of chambers in the star of η

and connecting σ1 and σ2. Hence, it suffices to prove that σ1, σ2 lie in the same component
of StFu(η), provided that σ1, σ2 share a panel τ and lie in a common spherical apartment
a ⊂ ∂TitsX . Let w denote an element of the Weyl group Wa of the apartment a fixing τ

(pointwise) and swapping the chambers σ1, σ2. (The element w comes from an isometry
gw ∈ G preserving the apartment a.)

Let τ̂ ⊂ a be the unique simplex of type ιτmod opposite to τ . Let f ⊂ X denote a flat of
dimension one less than the rank of X such that ∂∞ f ⊂ a and τ, τ̂ are both contained in
∂∞ f . The parallel set P( f ) ⊂ X of the flat f splits isometrically as the product of a rank
1 symmetric subspace Y ⊂ X and f and the apartment a is contained in the ideal boundary
of P( f ). The isometry group of P( f ) fixes (pointwise) the ideal boundary of f and, hence,
the simplex τ . We connect a generic point ξ ∈ τ to its antipode ξ̂ ∈ τ̂ by a geodesic γ1
on a passing through the interior of σ1. Then the geodesic w(γ1) = γ2 also connects ξ, ξ̂

and passes through the interior of σ2. There exists a (unique) point ζ1 ∈ γ1 which lies in the
ideal boundary of ∂∞ Y ∩ a. Hence, w(ζ1) = ζ2 is in the ideal boundary of Y as well. The
connected component of the isometry group of Y acts transitively on the ideal boundary of Y
(since Y has rank 1). If follows that there is a 1-parameter family ht , t ∈ [1, 2], of isometries
of X preserving Y and fixing ∂∞ f pointwise such that h1 = id and h2(ζ1) = ζ2. Thus,

4 A gallery is a finite sequence of chambers such that every two consecutive chambers in the sequence are
adjacent, i.e., share a panel (a codimension one face).
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   35 Page 6 of 25 S. Dey, M. Kapovich

h1(γ1) = γ2 and h(σ1) = σ2. We obtain a 1-parameter family σt = ht (σ1), t ∈ [1, 2] of
chambers in StFu(τ ), connecting σ1, σ2. Thus, σ1, σ2 are in the same component of StFu(η).
(ii) This follows immediately from part (i). ��
Lemma 1.3 Unless the projection of StFu(η) to Flag(τmod) is a singleton, it is not contained
in the antipodal set of any simplex τ− ∈ Flag(ιτmod).

Note that the condition that this projection is not a singleton amounts to saying that τmod

is not contained in ηmod.

Proof of Lemma 1.3 The projection of StFu(η) to Flag(τmod) consists of all simplices τ of
type τmod contained in the star of η. Consider one of these simplices, τ+, antipodal to a
simplex τ− (of type ιτmod). Then there exists an apartment a in the spherical building of the
symmetric space X , containing τ− and the chamber σ which, in turn contains τ+ and η. Since
τ+ is not contained in η, the stabilizer of η in the Weyl group W of a does not fix τ+, there
exists w ∈ W fixing η but not τ+. Thus, w(τ+) = τ also has type τmod and is contained in
the star of η in a. However, an apartment cannot contain two simplices of the same type both
antipodal to the same simplex. Thus, the simplex τ cannot be antipodal to τ−. ��
Corollary 1.4 Suppose that η is a simplex in the Tits building ∂TitsX of type ηmod which is not a
face of τmod. Then for any τ ∈ Flag(τmod), C(τ ) cannot contain the projectionπτmod (StFu(η))

for any simplex η of type ηmod.
In particular, if A and B are nonempty sets in Flag(τmod) which are antipodal to each

other, then neither A nor B can contain any stars as described above.

1.5 Contraction and regularity

Let τmod ⊂ σmod be a face (which is not necessarily ι-invariant). We equip

X̄ τmod := X � Flag(τmod).

with the topology of flag-convergence; see [11, Definition 3.90]. A sequence (gn) inG is said

to be flag-converging to τ+ ∈ Flag(τmod), denoted by gn
flag−−→ τ+, if the orbit-sequence (gnx)

flag-converges to τ+ in X̄ τmod . This notion is independent of the choice of x ∈ X . In particular,
if a sequence (gn) converges to τ+ then for h ∈ G, the sequence of compositions (gnh) also
flag-converges to τ+. At the same time, the sequence of compositions (hgn) flag-converges
to h(τ+).

Remark 1.5 We do not define the notion of a τmod-regular sequence in this paper. We refer
our reader to [8, Definition 4.7]. We note only that a sequence is not τmod-regular if and only
if it contains a subsequence, which has no accumulation points in Flag(τmod). Note that if
a sequence (gn) in G is τmod-regular, then for any h ∈ G the sequence (hgn) is also τmod-
regular. Moreover, a sequence (gn) in G is τmod-regular if and only if (g−1

n ) is ιτmod-regular.
In particular, if τmod is ι-invariant, then (gn) is τmod-regular if and only if the inverse sequence
(g−1

n ) is τmod-regular; see the fourth paragraph of [8, page 2560].

Proposition 1.6 Let (gn) be a sequence in G, and let τ± ∈ Flag(±τmod). The following are
equivalent:

(i) As n → ∞, gn |C(τ−) → τ+ uniformly on compacts.
(ii) As n → ∞, g−1

n |C(τ+) → τ− uniformly on compacts.
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(iii) The sequence (gn) (equivalently, (g−1
n )) is τmod-regular (ιτmod-regular), and g±1

n
flag−−→ τ±

as n → ∞.

Proof For (i) ⇐⇒ (ii), see [8, Lemma 4.4]. For the direction (iii) �⇒ (i), see [8,
Lemma 4.18]. We now show that (i) and (ii) together imply (iii). For (i) implies (gn) is τmod-
regular (similarly, (ii) implies (g−1

n ) is τmod-regular), see [8, Proposition 4.16]. It remains to

show that g±
n

flag−−→ τ±. If τ̂+ ∈ Flag(τmod) is any flag-accumulation point for the sequence

(gn), then there exists a subsequence (gnk ) of (gn) such that gnk
flag−−→ τ̂+. Applying the

direction (iii) �⇒ (i) and after extraction of (gnk ), there exists τ̂− ∈ Flag(ιτmod) such
that gnk |C(τ̂−) → τ̂+. By the uniqueness of the attractor, see [8, Lemma 4.6], we get that

τ+ = τ̂+. Hence, gn
flag−−→ τ+. Similarly, applying the direction (iii) �⇒ (ii), it follows that

g−1
n

flag−−→ τ−. ��

1.6 Pure sequences

In this section, our discussion concerns ηmod-pure sequences in G, where ηmod ⊂ σmod is a
face. We do not give a definition of ηmod-pure sequences here as it requires some lengthier
discussion, but we refer our readers to [8, Definition4.7].

Remark 1.7 The condition of being ηmod-pure is stronger than being ηmod-regular. Further-
more, if a divergent5 sequence (gn) in G is not τmod-regular, then it contains a subsequence
which is ηmod-pure for some face ηmod of σmod which does not contain τmod. See [8] for more
details.

The accumulation dynamics on the Furstenburg boundary of ηmod-pure sequences is
well-understood by [8, Prop. 9.5]; we record their result in the proposition below. For
η ∈ Flag(ηmod), let CFu(η) := π−1

ηmod
(C(η)). See (1.3) for the definition of the map πηmod .

Proposition 1.8 Suppose that a sequence (gn) in G is ηmod-pure and ηmod-contracting6 for
η± ∈ Flag(±ηmod). Then, after extraction,

gn |CFu(η−) → φ uniformly on compacts,

where the map

φ : CFu(η−) → StFu(η+)

is an open (in manifold topology) algebraic map. Moreover, for every η̂ ∈ C(η−), the
restriction φ|StFu(η̂) is given by the restriction of an element of g ∈ G, and hence is an
algebraic isomorphism.

Suppose that we have a ηmod-pure sequence (gn) in G, such that

g±1
n

flag−−→ η± ∈ Flag(±ηmod),

andwhich satisfies the the conclusionof the aboveproposition, i.e., gn|CFu(η−) → φ uniformly
on compacts as n → ∞. Consider a point η ∈ Flag(ηmod) antipodal to η−. Then, StFu(η) ⊂
5 That is, the sequence (gn) has no accumulation points in G.
6 That is, gn |C(η−) → η+ uniformly on compacts.
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Fig. 1 The algebraic map φ

CFu(η−). The proposition above implies that, for large n, gn : StFu(η) → Flag(σmod)

approximates the algebraic isomorphism φ : StFu(η) → StFu(η+).
After fixing a distance function d on Flag(σmod) which is compatible with the manifold

topology, we consider the quantity

Dm,n := max
y∈StFu(η)

d(gm y, gn y) = max
x∈StFu(gnη)

d(gmg
−1
n x, x).

See Fig. 1 for an illustration.

Lemma 1.9 Dm,n → 0 as m, n → ∞.

Proof Suppose that, on the contrary, there exist sequences of natural numbers (mk), and (nk)
such that mk, nk → ∞ as k → ∞, for which the following holds: For all k ∈ N, there exists
xk ∈ StFu(gnkη) such that

d(gmk g
−1
nk (xk), xk) ≥ ε > 0. (1.4)

Note that the sequence (xk) accumulates in StFu(η+), and yk := g−1
nk (xk) ∈ StFu(η).

Passing to a subsequence of the sequence (nk), we may assume that the sequence xk →
x+ ∈ StFu(η+), and yk → y0 ∈ StFu(η), as k → ∞.

We will show that φ(y0) = limm→∞ gm y0 = x+. Consider the compact set A = {yi |
i ∈ N} ∪ {y0} ⊂ StFu(η). Then,

gm |A → φ|A, as m → ∞.

Since the convergence is uniform, gm yi converges to φ(y0) whenever i → ∞ and m → ∞.
Now, since xk = gnk yk , and limk→∞ nk → ∞, we obtain that

φ(y0) = lim
i,m→∞ gm yi

= lim
k→∞ gnk yk = lim

k→∞ xk = x+.

In particular, we get gmk g
−1
nk (xk) = gmk yk → x+ as k → ∞. Since also xk → x+, we

must have

lim
k→∞ d(gmk g

−1
nk (xk), xk) = 0.

This contradicts (1.4). ��
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1.7 A regularity criterion

Let τmod ⊂ σmod be a face, which is not assumed to be ι-invariant. We equip Flag(τmod)

with a distance function d which is compatible with its manifold topology. Note that since
Flag(τmod) is compact, the notion of the convergence An → τ defined in Sect. 1.2, where
(An) is a sequence of nonempty compact subsets of Flag(τmod) and τ ∈ Flag(τmod), does
not depend on the choice of such a distance function d .

Lemma 1.10 Let (gn) be a sequence in G. If there exists a compact subset A ⊂ Flag(τmod)

with nonempty interior and a point τ+ ∈ Flag(τmod) such that gn A → τ+, then (gn) is
τmod-regular and (gn) flag-converges to τ+.

Proof Since gn A → τ+ as n → ∞ and A has nonempty interior, it is clear that the sequence
(gn) is divergent in G. Therefore, if (gn) is not τmod-regular, then, after extraction, (gn) is
ηmod-pure for some ηmod ⊂ σmod which does not contain τmod; see Remark 1.7. After further
extraction, there exists η± ∈ Flag(±ηmod) such that (gn) is ηmod contracting for η±. Let
φ : CFu(η−) → StFu(η+) be the surjective algebraic map that we obtain from Proposition
1.8. Since ˜A := π−1

τmod
(A) is Zariski dense (since it has nonempty interior), φ(˜A) is also

Zariski dense in StFu(η+). Now, under the hypothesis gn A → τ+, we obtain that

gn ˜A accumulates on StFu(τ+), as n → ∞.

Hence, we must have StFu(τ+) ⊃ StFu(η+), which leads to τmod ⊂ ηmod. This is a
contradiction.

The convergence gn
flag−−→ τ+ follows from Proposition 1.6. ��

Corollary 1.11 Let (gn) be a sequence in G. If there exists a compact subset A ⊂ Flag(τmod)

with nonempty interior such that

lim
n→∞ diam gn A = 0,

then (gn) is a τmod-regular sequence.

Proof If diam gn A → 0 as n → ∞, then, after extraction, gn A → τ+ for some τ+ ∈
Flag(τmod). Then, Proposition 1.10 implies that (gn) is τmod-regular. ��

1.8 Regular and Anosov subgroups

In this paper, we consider the following classes of discrete subgroups of G.
Let τmod ⊂ σmod be an ι-invariant face. A discrete subgroup � < G is called τmod-regular

if all sequences of distinct elements (γn) in � are τmod-regular. If � is such a subgroup, then
the τmod-limit set

�τmod (�) ⊂ Flag(τmod)

consists of all points τ ∈ Flag(τmod) such that there exists a sequence (γn) in � for which

γn
flag−−→ τ . This is a �-invariant closed subset of Flag(τmod).
The class of τmod-Anosov subgroups of G, a notion originally introduced by Labourie

[12], is a special class of regular subgroups that generalizes the convex cocompact Kleinian
groups into higher rank.
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Remark 1.12 There are several equivalent characterizations of τmod-Anosov subgroups. For
our purpose, we use the following characterization of τmod-Anosov subgroups as τmod-
asymptotically embedded subgroups, which was introduced by Kapovich, Leeb, and Porti
in [10]. See [10, Theorem 5.47] for the equivalence between these two (and several other)
definitions.

Definition 1.13 (Asymptotically embedded)A subgroup� < G is called τmod-asymptotically
embedded if it is τmod-regular and satisfies the following conditions:

(i) � as an abstract group is word-hyperbolic.
(ii) The τmod-flag limit set �τmod (�) is antipodal.
(iii) There exists a �-equivariant homeomorphism

ξ : ∂∞� → �τmod (�)

from theGromov boundary of� onto its τmod-flag limit set, which continuously extends
the orbit map ox : � → �x ⊂ X .

Note that the antipodality of �τmod (�) and injectivity of ξ is equivalent to the condition
that the map ξ is antipodal, i.e. it sends distinct elements of ∂∞� to antipodal elements of
Flag(τmod).

2 Discreteness

In what follows, τmod will always denote an ι-invariant face of σmod.

Definition 2.1 Let �A and �B be a pair of discrete subgroups of G. A pair (A, B) of disjoint
compact subsets of Flag(τmod) is called a ping-pong pair for (�A, �B) if the following
conditions are satisfied:

(i) A and B have nonempty interiors.
(ii) For all nontrivial elements α ∈ �A and β ∈ �B , we have that αB ⊂ int A and

βA ⊂ int B.

Let �A and �B are discrete subgroups of G such that (�A, �B) admits a ping-pong pair
(A, B) in Flag(τmod). The classical ping-pong argument of Felix Klein (cf. [23]), shows that
the subgroup � := 〈�A, �B〉 generated by �A and �B in G is naturally isomorphic to the
free product �A ∗ �B :

Lemma 2.2 (Ping-pong) Let �A and �B be two discrete subgroups of G such that (�A, �B)

admits a ping-pong pair (A, B) in Flag(τmod). Then, the natural homomorphism φ : �A ∗
�B → G extending the embeddings �A → G, �B → G, is injective.

Proof In the free product �A ∗ �B , pick any nontrivial element γ .
Suppose that the rightmost letter of the reduced form of γ is in�A and the leftmost letter of

the reduced form of γ is in �B (see Sect. 1.1). Then, φ(γ )A ⊂ int A. Hence, φ(γ ) �= 1 ∈ G.
Similarly if the rightmost/leftmost letters of the reduced form of γ are both in �A, then
φ(γ )B ⊂ int A. Hence, φ(γ ) �= 1 ∈ G as well. The verification of the non-triviality of φ(γ )

in the other two possibilities on the location of rightmost/leftmost letters in the reduced form
of γ is similar; we leave the details to the reader. ��
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In what follows, we reserve the notation � to denote the subgroup of G generated by �A

and �B ,

� := 〈�A, �B〉 ∼= �A ∗ �B .

Next, we impose the τmod-regularity condition for the groups�A and�B . Recall the notion
of the τmod-flag limit set from Sect. 1.8. The lemma below shows that the limit sets of �A

and �B are contained in A and B, respectively.

Lemma 2.3 Let �A, �B , A, and B be as in Lemma 2.2. Assume that �A (resp. �B) is τmod-
regular. Then,

�τmod (�A) ⊂ A (resp. �τmod (�B) ⊂ B).

Proof Let us verify that �τmod (�A) ⊂ A. The verification of �τmod (�B) ⊂ B is similar.
Pick arbitrary point τ+ ∈ �τmod (�A). There exists a sequence (αn) in �A such that

α±1
n

flag−−→ τ±, where τ− is some point in the limit set �τmod (�A). Since B has nonempty
interior, and C(τ−) is an open dense subset of Flag(τmod), B ∩ C(τ−) �= ∅. Pick any point
τ̂ ∈ B ∩ C(τ−). Then, by Proposition 1.6, limn→∞ αn τ̂ = τ+. On the other hand, for all
n ∈ N, αn τ̂ ∈ αn(B) ⊂ A, as long as αn �= 1. By the compactness of A, we get τ+ ∈ A.
Hence, �τmod (�A) ⊂ A. ��

Now, we state and prove the main result of this section.

Proposition 2.4 (Discreteness) Let �A and �B be τmod-regular subgroups of G such that
(�A, �B) admits a ping-pong pair (A, B) in Flag(τmod). If A is antipodal to B, then the
group � := 〈�A, �B〉 ∼= �A ∗ �B is a discrete subgroup of G.

Proof Suppose, to the contrary, that � is not discrete. Then, there exists a sequence (γn)n∈N
of distinct elements of � such that γn → 1 ∈ G. After passing to a subsequence, we may
assume that

(i) either, for all n ∈ N, the rightmost letter in the reduced form of γn (see Sect. 1.1) is in
�A,

(ii) or, for all n ∈ N, the rightmost letter in the reduced form of γn is in �B .

Since the two cases differ by relabelling, we make the additional assumption that (i) holds.
By the assumption γn → 1, we have

γn B → B, (2.1)

i.e., the Hausdorff distance between γn B and B converges to zero as n → ∞.
Since for all b ∈ B, limn→∞ γnb = b, we must have the following: For all large n ∈ N,

the (nontrivial) leftmost letter of γn is βn ∈ �B . In particular, for all large n ∈ N,

β−1
n γn B ⊂ A. (2.2)

Case 1 Suppose that the sequence (βn) is bounded in G. After extraction, we may assume
that βn ≡ β ∈ �B\{1}, i.e., (βn) is a constant sequence. By (2.2), for all large n ∈ N,

γn B ⊂ βA ⊂ int B ⊂ B.

In particular, any accumulation point in Flag(τmod) of the sequence of subsets (γn B) is
contained in βA, which is properly contained in B. This contradicts (2.1).
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Case 2 Suppose now that the leftmost letter sequence (βn) associated to (γn) is unbounded
in G. Since the sequence (βn) comes from �B , and �B is τmod-regular, after extraction of
the sequence, we obtain that there exist points b± ∈ �τmod (�B) such that

βn |C(b−) → b+, as n → ∞,

uniformly on compact subsets. Recall that, by Lemma 2.3, �τmod (�B) ⊂ B.
Since A and B are antipodal to each other and b− ∈ B (see Lemma 2.3), we obtain that

A ⊂ C(b−); cf. (1.2). Then, by Proposition 1.6, βn A → b+ as n → ∞. Moreover, by (2.2),

γn B ⊂ βn A, ∀n � 1.

Hence, we also have that γn B → b+ as n → ∞. This contradicts (2.1).

Combining the above two cases, we complete the proof of this proposition. ��

3 Regularity

The main result of this section stated below shows that the subgroup � in the conclusion of
Theorem A is τmod-regular.

Theorem 3.1 (Regularity) Let �A and �B be τmod-regular subgroups of G. Suppose that
(�A, �B) admits a ping-pong pair (A, B) in Flag(τmod). If A is antipodal to B, then � :=
〈�A, �B〉 < G is a τmod-regular subgroup.

In special the case G = Isom(Hn), the regularity of subgroups of G is equivalent to
discreteness. Recall that, for general semisimple Lie groups G, we have already established
the discreteness of � in the conclusion of the above result; see Proposition 2.4. However, if
G is of higher rank (e.g., G = PSL(3,R)), then regularity of subgroups is a much stronger
property than just discreteness. Therefore, Theorem 3.1 is nontrivial when G is of higher
rank.

Before discussing the proof of Theorem 3.1, we introduce the following definition:

Definition 3.2 A sequence of distinct elements of G is τmod-irregular if it contains no τmod-
regular subsequences.

Note that a discrete subgroup � < G is τmod-regular if and only if it contains no τmod-
irregular sequences.

Theorem 3.1 is a key step in the proof of our main theorem (Theorem A) and the proof of
it occupies the rest of this section. Here we lay out our plan for the proof of Theorem 3.1. The
main technical step in the proof is to show that a certain kind of sequences in � (the resulting
subgroup in the conclusion of Theorem 3.1), which are called special, are τmod-regular; see
Lemma 3.4. The proof of this lemma relies upon several results established in Sects. 1.4,
1.6 and 1.7. An immediate consequence of this lemma is that alternating sequences in �

are τmod-regular, which is then used (with the help of Proposition 1.6) to show that certain
sequences of nested images of the subsets A, B under alternating sequences have singleton
intersections; see Lemma 3.5 for a precise statement. With this knowledge, we finish the
proof of Theorem 3.1 by contradiction: Assuming � is not τmod-regular, we may obtain a
τmod-irregular sequence (γ ′

n) in �. Using the τmod-irregularity property, we are able to find
a subsequence (γn) of (γ ′

n) and a special sequence (ωn) in � such that for all n ∈ N, ωn

is a rightmost subword of γn . Then, with the help of Lemma 3.5, we can easily extract a
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subsequence of (γ −1
n ) under which the images of some (fixed) compact subset of Flag(τmod)

with nonempty interior converge to a point, whichwould imply (by Proposition 1.10) that this
subsequence (hence, its inverse sequence, which is a subsequence of the original sequence
(γ ′

n)) is τmod-regular; see Lemma 3.6. This would be a contradiction to the assumption of
τmod-irregularity of (γ ′

n).
We now discuss our proof in detail:

Proof of Proposition 3.1 By Proposition 2.4, we know that � is discrete. Thus, we have to
show that � does not contain any τmod-irregular sequences consisting of distinct elements.
We first show that such sequences in � cannot have uniformly bounded relative length (see
Sect. 1.1 for the definition). ��
Lemma 3.3 If a sequence of distinct elements of � has uniformly bounded relative length,
then it is τmod-regular.

Proof Let (γn) be such a sequence. After passing to a subsequence, we can (and will) assume
that there exists N ∈ N such that, for all n ∈ N, rl(γn) = N . If N = 1, then clearly the
sequence lies in �A ∪ �B , and hence it is τmod-regular (since both subgroups �A, �B of G
are assumed to be τmod-regular).

We prove the claim by an induction on N . Suppose that any sequence in � whose relative
length is constant and < N is τmod-regular.

Let (γn) be a sequence such that, for all n ∈ N, rl(γn) = N . Deleting the leftmost letter
δn ∈ �A ∪ �B from the reduced form of each element in (γn), we obtain a new sequence
(γ ′

n), i.e., for each n ∈ N, γn = δnγ
′
n . We consider two possibilities.

��
Case 1 Suppose that {δn | n ∈ N} is finite. In this case, using the induction hypothesis (γ ′

n)

and, consequently (γn), is τmod-regular (see the discussion in Sect. 1.5).

Case 2 Thus, we now assume that {δn | n ∈ N} ⊂ �A ∪ �B infinite. Then, after passing to a
subsequence of (γn), (δn) is τmod-regular and, either (δn) is a sequence in �A, or a sequence
in �B . It suffices to consider the former case, i.e., (δn) is a sequence in �A (the other case is
obtained by relabelling). Moreover, after further extraction of (γn), we also assume that the
rightmost letters of the reduced form of all the elements of (γ ′

n) come from either �A or �B ;
suppose that all the rightmost letters are in �A (again, the other case when all the rightmost
letters are in �B is similar, and we skip that case). Since (δn) is τmod-regular, after passing

to a subsequence, δ±1
n

flag−−→ d± ∈ A. Since B ⊂ C(d−), we obtain

γn(B) ⊂ δn(B) → d+, as n → ∞.

Using Proposition 1.10, the above shows that (γn) is τmod-regular. ��
By the above lemma, our study of τmod-irregular sequences (γn) in � is reduced to the

case when (γn) has unbounded relative length. In particular, if (γn) is τmod-irregular, then
after passing to a subsequence, we further assume that

rl(γn) < rl(γn+1), ∀n ∈ N. (3.1)

We next study the τmod-regularity property of a certain kind of sequences which we call
special: A sequence (γn) in � is called special if it satisfies (3.1), and, for all n ∈ N, γn is a
rightmost subword of γn+1 (see Sect. 1.1 for the definition).

Lemma 3.4 Special sequences in � are τmod-regular.
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Proof Let (γn) be a special sequence. Suppose that the rightmost and leftmost letters of the
reduced form of each element γn in the sequence are in �A (there are three more possibilities,
and the analysis in each case is similar). After extraction, we reduce to one of the following
two cases: ��
Case 1 Assume that the leftmost letter sequence (αn) of (γn) is unbounded. In this case, after
passing to a subsequence of (γn), we assume that the leftmost letter sequence (αn) of (γn)

flag-converges:

∃a± ∈ A such that α±1
n

flag−−→ a±, as n → ∞.

Since the B is antipodal to a−, we deduce that

γn(B) ⊂ αn(B) → a+, as n → ∞.

Applying Proposition 1.10, we get that (γn) is τmod-regular.

Case 2 Next, we look at the complementary case: For all n ∈ N, the leftmost letters of the
reduced form of all γn come from a finite subset S ⊂ �A.

Note that, since (γn) is special, for each n ∈ N, the rightmost letter of γn+1γ
−1
n is in �B ,

and

γn+1γ
−1
n

˜A ⊂ S˜B ⊂ int ˜A, (3.2)

where

˜A =
⋃

a∈A

StFu(a), ˜B =
⋃

b∈B
StFu(b).

Note that since S˜B is a union of a finite number of compact sets, the subset S˜B is compact.
We observe that (˜A, ˜B) is a ping-pong pair for (�A, �B) in Flag(σmod).

Suppose that (γn) is not τmod-regular. After extraction, the sequence (γn) is ηmod-pure,

and γ ±1
i

flag−−→ η±, for some η± ∈ Flag(±ηmod), where ηmod ⊂ σmod is a face such that

τmod �⊂ ηmod, (3.3)

see Remark 1.7. Recall from Sect. 1.6 that, after further extraction of (γn), there exists a
surjective algebraic map φ : CFu(η−) → StFu(η+) such that γk |CFu(η−) → φ uniformly on
compacts. See Proposition 1.8.

We pick a point z ∈ CFu(η−) ∩ ˜A.7 Then, z is contained in a subvariety StFu(η), for some
(unique) η ∈ C(η−). Since, for all n ∈ N, γn(z) ∈ S˜B, and S˜B ⊂ int ˜A, it follows that
StFu(γnη) intersects the interior of ˜A.

Let us fix a background distance function d on Flag(σmod) which is compatible with the
manifold topology. By Lemma 1.9,

Dn+1,n = max
x∈StFu(γnη)

d(γn+1γ
−1
n x, x) → 0, as n → ∞. (3.4)

Next, we observe that, for all n ∈ N, StFu(γnη) �⊂ ˜A: For if StFu(γnη) ⊂ ˜A, then we must
have that πτmod (StFu(γnη)) ⊂ A, where πτmod is the projection map given by (1.3). In this
case, in view of (3.3), we obtain a contradiction with Lemma 1.4.

Since StFu(γnη) is connected (see Lemma 1.2), the preceding paragraph ensures that the
intersections StFu(γnη) ∩ ∂ ˜A are nonempty, where ∂ ˜A denotes the frontier of the subset ˜A

7 Since ˜A has nonempty interior, CFu(η−) ∩ ˜A �= ∅.
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of Flag(σmod). For each n ∈ N, choose xn ∈ StFu(γnη) ∩ ∂ ˜A. By (3.4) and the triangle
inequality, we have

lim
n→∞ d(γn+1γ

−1
n xn, ∂ ˜A) = 0. (3.5)

However, since xn ∈ ˜A, by (3.2), the quantity d(γn+1γ
−1
n xn, ∂ ˜A) must be uniformly (over

n) bounded below by a positive number. This contradicts (3.5).

Combining the above two cases, we complete the proof of the lemma. ��
A sequence (ωn) in � is called alternating if, there exist sequences (αn) in �A\{1} and

(βn) in �B\{1} such that

Type A : Either, ∀n ∈ N, ωn = α1β1 . . . αn−1βn−1αn,

Type B : Or, ∀n ∈ N, ωn = β1α1 . . . βnαn .
(3.6)

Applying ωn to B, we obtain a sequence of compact subsets (ωn B) of Flag(τmod). Note that,
for all n ∈ N, ωn+1B = ωnβn(αn+1B) ⊂ ωn(βn A) ⊂ ωn(B); cf. item (ii) in Definition 2.1.
Thus, we obtain a nested sequence of compact subsets

ω1B ⊃ ω2B ⊃ · · · . (3.7)

Moreover, by definition of being alternating, for all n ∈ N, ωn is a leftmost subword of ωn+1,
and therefore, (ω−1

n ) is special.

Lemma 3.5 If (ωn) is alternating, then (ωn) is τmod-regular and intersection
⋂

i∈N
ωn B

is singleton. In particular, as n → ∞, ωn B converges to a point in Flag(τmod).

Proof We first assume that (ωn) is of type A.
The first claim about τmod-regularity follows directly by the observation that (ω−1

n ) is
special, and then by applying Lemma 3.4 to conclude that (ω−1

n ) is τmod-regular. Hence,
(ωn) is also τmod-regular, see Remark 1.5.

By τmod-regularity, there exists a subsequence, (ωnk ) of (ωn) and τ± ∈ Flag(τmod) such

that ω±1
nk

flag−−→ τ±. By Proposition 1.6, as k → ∞,

ω±1
nk |C(τ∓) → τ±, uniformly on compacts.

Because of the special form of ωn given in (3.6), we observe that τ± ∈ A: For if τ̂ ∈ B is
any point antipodal to the pair τ±, then, for all k ∈ N, ωnk τ̂ ∈ ωnk B ⊂ A, where the last
inclusion follows from the fact that (ωn) is of type A. In particular, ωnk τ̂ ∈ A. Furthermore,
since ωnk τ̂ → τ+ and A is compact, we obtain that τ+ ∈ A. On the other hand, since we
also have ω−1

nk B ⊂ A, applying a similar argument, we get that τ− ∈ A as well.
In particular, B ⊂ C(τ−). Hence, ωnk B → τ+, as k → ∞. The lemma then follows by

the nesting in (3.7).
Next, we consider the complementary case that (ωn) is of type B. However, this case

follows from the previous one by observing that (β−1
1 ωn) is of type A, where β1 ∈ �B is the

common leftmost letter of the reduced form of the elements in (ωn). ��
Now we finish the proof of Theorem 3.1. Suppose, to the contrary, that (γ ′

n) is a τmod-
irregular sequence in �. We can (and will) assume that (γ ′

n) satisfies (3.1), cf. Lemma 3.3
above.
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We construct two sequences (ωn) and (γn) in �, such that (ωn) is special, (γn) is a
subsequence of (γ ′

n), and for each n ∈ N, ωn is a rightmost subword of γn : After passing to
a subsequence of (γ ′

n), we assume that the rightmost letters αn of the reduced form of the
elements of (γ ′

n) are all in either �A or �B . We assume that αn ∈ �A for all n ∈ N; the other
possibility is analyzed by relabelling. Note that the rightmost letter sequence (αn) must be
bounded in G because, otherwise, by Case 1 in the proof of Lemma 3.4, (γ ′

n
−1

), and hence
(γ ′

n), would contain a τmod-regular sequence. Thus, (γ ′
n) has a subsequence (γ ′

ni ) such that
the rightmost letters of the reduced form of γ ′

ni ’s are all the same, say all these are equal
to α1 ∈ �A. Set ω1 := α1 and γ1 := γ ′

n1 . Applying a similar argument (to the sequence

(γ ′
ni α

−1
1 )i∈N), we obtain a further subsequence (γ ′

nik
) of (γ ′

ni ) such that second letters from

the right in the reduced form of γ ′
nik

’s are all the same, say all these are equal to β1 ∈ �B . Set

ω2 := β1α1 and γ2 := γ ′
ni1

. Proceeding inductively, we construct a special sequence (ωn) in

� and a subsequence of (γn) of (γ ′
n) such that

ωn is an rightmost subword of γn, ∀n ∈ N.

In particular, for all n ∈ N, γn = δnωn , where δn = γnω
−1
n is a leftmost subword of γn .

After an extraction of (γn), we can assume that the leftmost letters of the reduced form of
the elements of (δn) all come from the same group, say �A. Moreover, by the construction,
the sequence (ω−1

2n+1)n∈N is type A alternating (see (3.6)).

Lemma 3.6 (γ2n+1) is a τmod-regular sequence.

Proof We will prove the equivalent statement: (γ −1
2n+1) is a τmod-regular subsequence, see

Remark 1.5.
We observe that γ −1

2n+1 has the following form:

γ −1
2n+1 = ω−1

2n+1δ
−1
2n+1 = α−1

1 β−1
1 · · · α−1

n+1
︸ ︷︷ ︸

ω−1
2n+1

β
(2n+1)
1 α

(2n+1)
1 · · · α(2n+1)

q
︸ ︷︷ ︸

δ−1
2n+1

Therefore,

γ −1
2n+1B ⊂ ω−1

2n+1B.

Since (ω−1
2n+1)n∈N is type A alternating, by Lemma 3.5, ω−1

2n+1B converges to a point τ+ ∈
Flag(τmod). Therefore, by the above inclusion, we also obtain

γ −1
2n+1B → τ+, as n → ∞.

By Proposition 1.10, (γ −1
2n+1) is τmod-regular subsequence. ��

Hence, the sequence (γ ′
n) contains a τmod-regular subsequence, namely (γ2n+1). This is a

contradiction!

4 Boundary embedding

In this section, we work under the hypothesis of Theorem A, i.e., we assume that �A and
�B are τmod-Anosov subgroups admitting a ping-pong pair (A, B) in Flag(τmod) such that
A and B are antipodal to each other. By Lemma 2.3, we know that �τmod (�A) ⊂ A,
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and �τmod (�B) ⊂ B. Moreover, since τmod-Anosov subgroups of G are τmod-regular (see
Sect. 1.8), by Theorem 3.1, � := 〈�A, �B〉 ∼= �A ∗ �B is a τmod-regular subgroup of G.

Anosov subgroups are intrinsically word-hyperbolic (see Definition 1.13). Hence, the free
product �A ∗ �B is also word-hyperbolic. We fix a finite generating set S = SA ∪ SB for
�A ∗ �B , where SA and SB generate �A and �B , respectively. Using this choice of S we
define the Cayley graph of �A ∗�B . We equip �A ∗�B with the corresponding word-metric.

The goal of this section is to construct a �-equivariant antipodal embedding

ξ : ∂∞� → A ∪ B ⊂ Flag(τmod),

such that

ξA = ξ |∂∞�A and ξB = ξ |∂∞�B , (4.1)

where the homeomorphisms ξA : ∂∞�A → �τmod (�A) and ξB : ∂∞�B → �τmod (�B) are
the asymptotic embeddings for �A and �B , respectively.

We first recall that there exists a �-invariant decomposition

∂∞� = �(∂∞�A � ∂∞�B) � ∂∞T

where T is the Bass–Serre tree of the free product �A ∗ �B , see e.g. [14]. For the notational
convenience, we introduce the following notation:

∂I� := �(∂∞�A � ∂∞�B) and ∂II� := ∂∞T .

We will first define the map ξ separately on these two disjoint subsets ∂I� and ∂II�. Then
we will piece them together and check that ξ is an equivariant antipodal embedding.

4.1 Construction of �

We define a map

ξ : ∂I� → Flag(τmod) (4.2)

as follows: Let ε ∈ ∂I� be arbitrary. There exists some γ ∈ � such that γ −1ε ∈ ∂∞�A �
∂∞�B . Suppose, for instance, that8 γ −1ε ∈ ∂∞�A. Define

ξ(ε) = γ ξA(γ −1ε).

To check well-definedness, we note that such a γ is unique up to right multiplications by ele-
ments of �A. Thus, if γ1 ∈ � is another choice such that γ −1

1 ε ∈ ∂I�, then α = γ −1γ1 ∈ �A.
Hence, γ1 ξA(γ −1

1 ε) = γα ξA(α−1γ −1ε) = γ ξA(αα−1γ −1ε) = γ ξA(γ −1ε). Moreover,
by the construction, the map ξ : ∂I� → Flag(τmod) is �-equivariant and satisfies (4.1).

Proposition 4.1 Let ε ∈ ∂I�, and let (γn) be any sequence in �A ∗�B such that γn
Cay−−→ ε in

the compactified (by adding the Gromov boundary) Cayley graph of �A ∗ �B. Then, viewing

(γn) as a sequence in G, γn
flag−−→ ξ(ε).

Moreover, the image ξ(∂I�) is contained in A ∪ B.

Proof Recall that by Lemma 2.3, �τmod (�A) ⊂ A and �τmod (�B) ⊂ B.
For the first part, it is enough to assume that ε ∈ ∂∞�A � ∂∞�B . Suppose that ε ∈ ∂∞�A

(the other case when ε ∈ ∂∞�B is treated similarly). Since γn
Cay−−→ ε ∈ ∂∞�A, possibly

8 The other possibility that γ −1ε ∈ ∂∞�B can be treated by relabelling.
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Fig. 2 Fellow traveling ray

after disregarding the first few terms, the leftmost letter sequence (αn) of (γn) comes from

�A and αn
Cay−−→ ε. Since �A < G is τmod-regular and B is antipodal relative to �τmod (�A),

αn(B) → {ξ(ε)} in Flag(τmod). Now, Proposition 1.10 implies that γn
flag−−→ ξ(ε); see Case 2

in the proof of Lemma 3.3 for a similar argument.
Weprove the secondpart by inductionon the relative lengths of elementsγ ∈ � = �A∗�B .

If, say, ε ∈ ∂∞�A and γ ∈ �A∪�B \{1}, then either γ (ε) ∈ �τmod (�A) ⊂ A (when γ ∈ �A)
or γ (ε) ∈ B (since γ (A) ⊂ B in this case). Inductively, assume that for each element γ ∈ �

of the relative length n − 1 and of the reduced form α1β1 · · · , then γ (ε) ∈ A, while if γ

is of the reduced form β1α2 · · · , then γ (ε) ∈ B. Consider an element γ = α1β1 · · · of the
relative length n. Then, by the induction assumption,

e′ = β1α2 · · · (ε) ∈ B.

Then γ (ε) = α1(e′) ∈ A by the assumption of Theorem A. Similarly, if γ = β1α2 · · · , then
γ (ε) ∈ B. ��

To define a map ξ : ∂II� → Flag(τmod), we use the following result.

Proposition 4.2 Let ε ∈ ∂II�, and let (γn) be any sequence in �A ∗ �B such that γn
Cay−−→ ε

in the compactified Cayley graph of �A ∗ �B. Then, there exists τ+ ∈ Flag(τmod) depending

only on ε such that in Flag(τmod), γn
flag−−→ τ+.

Proof Consider a sequence (ωn) in�A ∗�B such thatωn
Cay−−→ ε and which is alternating, see

(3.6). We remark that the alternating sequence lies on the geodesic ray �ε in the Cayley graph
of �A ∗ �B that emanates at the identity element and is asymptotic to ε. Such an alternating
sequence is uniquely determined by ε ∈ ∂II�. ��

Let (γn) be a sequence as in the statement of the proposition. Since γn
Cay−−→ ε, the sequence

(γn) “fellow travels” the geodesic ray �ε . See Fig. 2. More precisely, there exists a sequence
(δn) in �A ∗ �B such that the following hold:

(i) There exists a nondecreasing function f : N → N such that limn→∞ f (n) = ∞ and
n0 ∈ N such that, for all n ≥ n0, γn = ω f (n)δn .

(ii) For n ≥ n0, if δn is nontrivial and the leftmost letter of the reduced form of δn is in �A

(resp. �B ), then the rightmost letter of the reduced form of ω f (n) is in �B (resp. �A).
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We further assume that the sequence (ωn) is of type A in (3.6) (type B sequences can be
analyzed in a similar way). So, for n ≥ n0, γn has the following form

γn = α1β1 · · · β f (n)−1α f (n)
︸ ︷︷ ︸

ω f (n)

β
(n)
1 α

(n)
1 · · ·

︸ ︷︷ ︸

δn

.

Next, we split the sequence (γn) into two disjoint subsequences: The first (resp. second)
subsequence (γ ′

n) (resp. (γ
′′
n )) consists of all elements of (γn)whose rightmost letters in their

reduced forms are in �A (resp. �B ). Let

τ+ :=
⋂

i∈N
ωn B = lim

n→∞ ωn B (4.3)

(cf. Lemma 3.5). Then, applying Lemma 3.5, we get

γ ′
n(B)

flag−−→ τ+, γ ′′
n (A)

flag−−→ τ+, as n → ∞,

and then Proposition 1.10 implies γ ′
n

flag−−→ τ+ and γ ′′
n

flag−−→ τ+. Compare with the proof of
Lemma 3.6. Hence, γn → τ+. ��

Using Proposition 4.2, we define a map

ξ : ∂II� → Flag(τmod), ε �→ τ+, (4.4)

where τ+ is the unique point in Flag(τmod) corresponding to ε obtained by the proposition.
This map is �-equivariant: Let γ ∈ � and ε ∈ ∂II�. If (ωn) is an alternating sequence
converging to ε, then the sequence (γωn) converges to γ ε. By Proposition 4.2 and the
definition of τ+ in (4.3),

ξ(γ ε) = lim
n→∞(γωn)B = γ

(

lim
n→∞ ωn B

)

= γ ξ(ε).

Corollary 4.3 The piecewise-defined map ξ : ∂∞� → Flag(τmod) from (4.2) and (4.4) is a
�-equivariant map satisfying (4.1).

4.2 � is antipodal

In this subsection, we show that the map ξ in Corollary 4.3 is antipodal: That is, if ε, ε̂ ∈ ∂∞�

are distinct points, then ξ(ε) is antipodal to ξ(ε̂) in Flag(τmod). In the proof, we repeatedly
use the fact that

the action G � Flag(τmod) preserves antipodality. (4.5)

The discussion naturally divides into three mutually exclusive cases.

Case 1 Suppose that ε and ε̂ both lie in ∂I�. By (4.5), without loss of generality, we assume
that ε ∈ ∂∞�A � ∂∞�B . If ε̂ is also in ∂∞�A � ∂∞�B , then clearly ξ(ε) is antipodal to
ξ(ε̂) because ξA � ξB : ∂∞�A � ∂∞�B → Flag(τmod) is an antipodal embedding. Thus, we
assume that ε̂ /∈ ∂∞�A � ∂∞�B . Suppose further that ε ∈ ∂∞�A (the other case ε ∈ ∂∞�B

can be analyzed similarly). Pick some γ ∈ � of least relative length such that γ ε̂′ = ε̂ for
some ε̂′ ∈ ∂∞�A � ∂∞�B .

Suppose that ε̂′ ∈ ∂∞�A. Then, by the assumption that γ has the least relative length, the
rightmost letter of the reduced formof γ is in�B\{1}. If the leftmost letter of the reduced form
of γ is some element α ∈ �A\{1}, then wemust have rl(γ ) ≥ 2. In this case, the second letter
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from the left of the reduced formof γ is some elementβ ∈ �B , which is now the leftmost letter
of the reduced formofα−1γ . Thus,α−1ξ(ε̂) = α−1ξ(γ ε̂′) = α−1γ ξ(ε̂′) ∈ βA ⊂ Bwhereas
α−1ξ(ε) ∈ �τmod (�A) ⊂ A, Hence, α−1ξ(ε̂) and α−1ξ(ε) are antipodal, and consequently,
by (4.5), ξ(ε̂) and ξ(ε) are antipodal. Similarly, if the leftmost letter of the reduced form of γ
is in �B \ {1}, then we must have ξ(ε̂) ∈ B, and since ξ(ε) ∈ A, ξ(ε̂) and ξ(ε) are antipodal.

Now we assume that ε̂′ ∈ ∂∞�B . Since γ has the least relative length, the rightmost letter
of the reduced form of γ lies in �A \ {1}. If the leftmost letter in the reduced form of γ is
some element α ∈ �A \ {1}, then one may check that α−1ξ(ε̂) = α−1γ ξ(ε̂′) ∈ B, which is
antipodal to α−1ξ(ε) ∈ �τmod (�A) ⊂ A. Thus, by (4.5), ξ(ε̂) and ξ(ε) are antipodal. Else,
if the leftmost letter in the reduced form of γ is some element β ∈ �B \ {1}, then rl(γ ) ≥ 2
(since the rightmost letter lies in �A \ {1}). In this case, by a similar reasoning as in the
preceding paragraph, it follows that β−1ξ(ε̂) ∈ A is antipodal to β−1ξ(ε) ∈ β−1A ⊂ B,
which implies (again, by (4.5)) that ξ(ε̂) and ξ(ε) are antipodal.

Case 2 Suppose that ε and ε̂ both lie in ∂II�. Then ε (resp. ε̂) determines9 an alternating
sequence (ωn) (resp. (ω̂n)) in �. If the sequences (ωn) and (ω̂n) are of different types (see
(3.6)), then clearly, ξ(ε) and ξ(ε̂) lie in different sets A and B. Hence, ξ(ε) and ξ(ε̂) are
antipodal.

Otherwise, the sequences (ωn) and (ω̂n) have the same type, say type A. Let N ∈ N be the
least number forwhichωN �= ω̂N . Clearly, the sequences (ω

−1
N ωn)n≥N+1 and (ω−1

N ω̂n)n≥N+1

are still alternating, but of different types. Therefore, by the previous paragraph, ω−1
N ξ(ε) =

ξ(ω−1
N ε) andω−1

N ξ(ε̂) = ξ(ω−1
N ε̂) are antipodal. Hence, by (4.5), ξ(ε) and ξ(ε̂) are antipodal.

Case 3 Suppose that ε ∈ ∂I� and ε̂ ∈ ∂II�. By (4.5), without loss of generality, we assume
that ε ∈ ∂∞�A � ∂∞�B . Suppose further that ε ∈ ∂∞�A; the other case ε ∈ ∂∞�B can be
analyzed by relabelling. Let (ωn) be the alternating sequence in � determined by ε̂. If (ωn)

is of type B, then ξ(ε̂) ∈ B and, hence, it is antipodal to ξ(ε). Otherwise, if (ωn) is of type
A, then ω1 ∈ �A \ {1}. In this case, by a similar argument as in Case 2, ω−1

1 ξ(ε) is antipodal
to ω−1

1 ξ(ε̂) which, in conjunction with (4.5), implies that ξ(ε) is antipodal to ξ(ε̂).

Combining the above cases, we obtain the following:

Proposition 4.4 The map ξ : ∂∞� → Flag(τmod) in Corollary 4.3 is antipodal.
In particular, ξ is injective.

4.3 � is an embedding

Finally, we prove that the map ξ : ∂∞� → Flag(τmod) in Corollary 4.3 is an embedding
whose image lies in A ∪ B. Since ξ is injective (see Proposition 4.4), domain of ξ is a
compact space, and the codomain is Hausdorff, it is enough to show that ξ is continuous. It
suffices to prove that for each point ε ∈ ∂∞� and every sequence γn ∈ � converging to ε,
the sequence (γn) in G flag-converges to ξ(ε). This, however, is the content of Lemma 4.1
and Proposition 4.2.

In order to prove that ξ(∂∞�) ⊂ A ∪ B, we observe that ∂I� is dense in ∂∞ � and that
ξ(∂I�) ⊂ A ∪ B (see the second part of Lemma 4.1). Thus, continuity of ξ and the fact that
A ∪ B is closed, implies that ξ(∂∞�) ⊂ A ∪ B.

9 See the beginning of the proof of Proposition 4.2.
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5 Conclusion of the proof of Theorem A

Recall that a τmod-regular subgroup� ofG, which is word-hyperbolic as an abstract group, is
τmod-asymptotically embedded (see Definition 1.13) if there exists an equivariant antipodal
homeomorphism f : ∂∞� → �τmod , the flag-limit set of � in Flag(τmod), which extends
continuously the orbit map

ox : � → �x ⊂ X

to the symmetric space X , where continuity is understood with respect to the topology of
flag-convergence. The equivariant map f is said to be the asymptotic embedding of �.

Proposition 5.1 Under the assumption of Theorem A, the subgroup � of G generated by �A

and �B is τmod-asymptotically embedded with the asymptotic embedding given by the map
ξ whose image lies in A ∪ B.

Proof We already know that the subgroup � < G is τmod-regular. See Theorem 3.1.
The discussion in Sect. 4.3 shows that ξ : ∂∞� → Flag(τmod) is a continuous antipodal

mapwhose image is contained in the flag-limit set of� in Flag(τmod) andwhich continuously
extends the orbit map ox . The fact that the map ξ is onto �τmod follows from the fact that
every sequence in � subconverges to a point ε ∈ ∂∞�. Let (γn) denote that convergent
subsequence. Then, as we noted above, ox (γn) converges to ξ(ε), i.e. the flag-limit of the
sequence γn ∈ � < G is ξ(ε) ∈ ξ(∂∞�). ��

This concludes the proof of the Theorem A.

6 Consequences of Theorem A

Below we present some applications of the main theorem of the paper.

6.1 Schottky subgroups

A subgroup � of G is said to be a τmod-Schottky subgroup if it is free and τmod-Anosov.
Starting with a subset of pairwise antipodal points {a±, b±} in Flag(τmod), let α, β ∈ G
be axial isometries of X which preserves some τmod-regular geodesic lines La± , Lb± ⊂ X ,
respectively, such that La± (resp. Lb± ) is forward/backward asymptotic to a± (resp. b±). It
was shown in [9, Section 7.6] that, after passing to sufficiently large powers of α and β, the
subgroup 〈αm, βn〉,m, n � 1, is a τmod-Schottky subgroup ofG, and is naturally isomorphic
to the two-generator free group. Below, as a consequence of Theorem A, we show that under
suitable conditions, 〈α, βn〉, n � 1, is a τmod-Schottky subgroup of G, i.e., under these
conditions, we need to take a large power of only one of the generators. In particular, this
construction produces a large family of 2-generated τmod-Schottky subgroups such that one
of the generators can be assumed to have arbitrarily small translation length in X . We remark
that the constructions of such groups do not follow from the results of [9] or [4].

Let {a±, b±}, α, and β be as above. We will assume that there exists a one-parameter
closed subgroup Hα of G containing the element α and such that all elements of Hα preserve
the geodesic La± . (This holds, for instance, if α is a transvection along La± .)

Lemma 6.1 All but finitely many elements of α̂ ∈ Hα satisfy the following: The subset
{b+, b−} is antipodal relative to α̂{b+, b−} in Flag(τmod).
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Proof Let f : R → Hα < G be the isomorphism normalized by f (1) = α. Under
this identification, we have an analytic action R � Flag(τmod)

2 given by r · (τ+, τ−) =
( f (r)τ+, f (r)τ−). In particular, if C ⊂ Flag(τmod)

2 is an analytic subset and (τ+, τ−) is an
arbitrary point, then EC (τ+, τ−) := {r ∈ R | r · (τ+, τ−) ∈ C} is an analytic subset of R.

Recall the notion of exceptional subvariety E(τ ) ⊂ Flag(τmod) for τ from Sect. 1.3.
Setting

C = (E(b±) × Flag(τmod)) ∪ (Flag(τmod) × E(b±)),

we get that EC (b+, b−) is an analytic subset of R. Furthermore, (τ+, τ−) ∈ Flag(τmod)
2 lies

in the complement of C if and only if {τ+, τ−} is antipodal relative to {b+, b−}. Since
lim

r→±∞ r · (b+, b−) = (a±, a±)

and {a+, a−} is antipodal relative to {b+, b−}, EC (b+, b−) must be a compact subset of R.
Hence, EC (b+, b−) is finite. ��

Now we return to the construction of τmod-Schottky subgroups of G. Suppose that the
axial isometries α and β of X are chosen so that:

1. As before, the forward/backward asymptotic points of Lα and Lβ in Flag(τmod) are
pairwise antipodal points a± and b±, where Lα (resp. Lβ ) is a τmod-regular line in X
preserved by α (resp. β).

2. For all k ∈ Z \ {0}, αk{b+, b−} is antipodal relative to {b+, b−}.
Note that Lemma 6.1 guarantees that all but at most countably many elements of Hα

satisfy the second condition above. In particular, one can choose α to have an arbitrarily
small translation length in X .

We have:

Proposition 6.2 (Schottky subgroups) For all large n, the subgroup 〈α, βn〉 of G is τmod-
Anosov, and is naturally isomorphic to the free group of rank two.

Proof We observe that A1 = {αkb± | k ∈ Z\{0}} ∪ {a±} and B1 = {b±} are compact
sets, which are antipodal relative to each other (by the condition 2 above). Moreover, by our
choice of A1, αk(B) ⊂ A for all k �= 0. There exist subsets A and B of Flag(τmod) such that
A and B are antipodal relative to each other, and int A ⊃ A1, int B ⊃ B1, see [4, Lemma
4.24]. Moreover, for all large k ∈ N, α±k B ⊂ int A. Making B smaller we can assure that
αk B ⊂ int A, for all k ∈ Z \ {0}.

On the other hand,

lim
k→±∞ αk(A) = {b±}.

Hence, for all sufficiently large n ∈ N, β±n A ⊂ int B. Applying the TheoremA to�A = 〈α〉,
�B = 〈βn〉, n � 1, and the subsets A and B as above, we finish the proof. ��

6.2 A general version of the Theorem A involving several Anosov subgroups

Our second application of themain theorem is its generalization to the case of several Anosov
subgroups:
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Corollary 6.3 Suppose that the subgroups �1, . . . , �n of G are τmod-Anosov, A1, . . . , An ⊂
Flag(τmod) are pairwise antipodal compact subsets with nonempty interiors such that for
every nontrivial element γi ∈ �i ,

γi (A1 ∪ · · · ∪ An \ Ai ) ⊂ int Ai , (6.1)

i = 1, . . . , n. Then:

(i) The subgroup� < G generated by�1, . . . , �n is naturally isomorphic to the free product
�1 ∗ �2 ∗ · · · ∗ �n.

(ii) The subgroup � < G is τmod-Anosov.
(iii) The τmod-limit set of � is contained in A1 ∪ · · · ∪ An.

Proof The proof is by induction on n. Set �A := 〈�1, . . . , �k−1〉, �B = �k ,

A := A1 ∪ · · · ∪ Ak−1, B := Ak, k ≤ n.

We assume that �A is τmod-Anosov, naturally isomorphic to �1 ∗ �2 ∗ · · · ∗ �k−1, and that
each nontrivial element α ∈ �A satisfies

α(B) ⊂ int A

(it is clear that every nontrivial element β ∈ �B satisfies β(A) ⊂ int B). Then Theorem
A implies that �k := 〈�A, �B〉 is naturally isomorphic to the free product �A ∗ �B ∼=
�1 ∗ �2 ∗ · · · ∗ �k and is τmod-Anosov. In order to prove that each nontrivial element γ ∈ �k

satisfies γ (A j ) ⊂ A ∪ B, j = k + 1, . . . , n, one argues by induction on the relative length
of γ ∈ �A ∗ �B , similarly to the proof of Lemma 4.1. We leave the details to the reader. ��
Remark 6.4 We show that the main result (Theorem 1.3) of our paper with Bernhard Leeb
[4], follows from the Corollary 6.3: If �1, . . . , �n are pairwise antipodal,10 residually finite,
τmod-Anosov subgroups, then consider compact neighborhoods A1, . . . , An of the limit sets
of �1, . . . , �n , respectively, such that Ai and A j , for all i �= j , are pairwise antipodal
(cf. [4, Lemma 4.24]). For each i , the subset of �i not satisfying (6.1) is finite. This can
be seen as follows: Suppose, to the contrary, that there exists an infinite sequence (γk)

of distinct elements in �i such that, for all k ∈ N, γk(A1 ∪ · · · ∪ An\Ai ) �⊂ int Ai . In
particular, the Hausdorff distance (with respect to a metric on Flag(τmod) compatible with
themanifold topology) between γk(A1∪· · ·∪An\Ai ) and any point in�τmod (�i ) is uniformly
bounded below by a positive number. However, passing to a subsequence, we can ensure that

γk
flag−−→ τ+ ∈ �τmod (�i ) ⊂ int Ai . Hence, γk(A1 ∪ · · · ∪ An\Ai ) → τ+, a contradiction.
Thus, by the residual finiteness assumption, for each i , we pass to a finite index subgroup

�′
i < �i such that (6.1) is satisfied for the collections �′

1, . . . , �
′
n and A1, . . . , An . Applying

Corollary 6.3 to these collections, we obtain that the subgroup 〈�′
1, . . . , �

′
n〉 of G is τmod-

Anosov and naturally isomorphic to the abstract free product �′
1 ∗ · · · ∗ �′

n , which is the
conclusion of [4, Theorem 1.3].

6.3 Another example of a Schottky group

In this sectionwe give an example (claimed in the introduction) of a Schottky group failing the
uniform contraction property but otherwise satisfying the assumptions of the Combination
Theorem.

10 That is, the τmod-limit sets of �i and � j , for all i �= j , are antipodal relative to each other.
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Fig. 3 A Schottky group in
PSL(2,R)

Example 6.5 Consider G = PSL(2,R), the group of orientation-preserving isometries of the
hyperbolic plane (in the unit disk model), acting on the unit circle S1. Take two pairwise
disjoint closed round disks B±, A± whose boundary circles have the same radii and meet
S1 orthogonally. Take α, β ∈ G such that α sends A+ to the complement (in the extended
complex plane) of A− and β sends B+ to the complement of B−. See Fig. 3. The elements
α, β can be chosen so that their restrictions to the boundary circles of A−, B+ respectively
are isometries of the angular metrics on the respective circles. For instance, one can take α

(respectively, β) the composition of the inversion in ∂A− (respectively, ∂B−) and a reflection
in a line passing through the center of the unit disk. Then the subgroups �A = 〈α〉, �B = 〈β〉
and the subsets A = A− ∪ A+, B = B− ∪ B+ satisfy the assumptions of the Combination
Theorem in the extended complex plane. It remains to modify A, B to new subsets A′, B ′,
still satisfying the assumptions of the Combination Theorem (for the G-action on S1), so
that β is no longer is a strict expansion on B ′. We let c denote the (compact) arc on S1

connecting a point of ∂A− to a point of ∂B− and, otherwise, disjoint from A ∪ B. (Such
an arc always exists if we are willing to replace α with α−1.) See again Fig. 3. Now set
A′ := (A+ ∩ S1) ∪ (A− ∩ S1) ∪ c. We also replace B− ∩ S1 with a slightly smaller compact
subarc b− ⊂ B− ∩ S1 and B+ ∩ S1 with a slightly larger compact subarc b+ ⊂ B+ ∩ S1, so
that

β±1(A′) ⊂ b+ ∪ b−.

Lastly, set B ′ = b− ∪ b+. Then the quadruple �A, �B , A′, B ′ satisfies the assumptions of
the Combination Theorem, but β is not expanding on B, specifically, the expansion fails at
the intersection point x of c and the circle ∂B−.

Acknowledgements We are grateful to our anonymous referee for carefully reading this paper and making
several useful comments.
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