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Heart failure is associated with induction of endoplasmic
reticulum (ER) stress and the unfolded protein response (UPR).
The serine/threonine protein kinase/endoribonuclease IRE1�
is a key protein in ER stress signal transduction. IRE1� activity
can induce both protective UPR and apoptotic downstream sig-
naling events, but the specific role for IRE1� activity in the heart
is unknown. A major aim of this study was to characterize the
specific contribution of IRE1� in cardiac physiology and patho-
genesis. We used both cultured myocytes and a transgenic
mouse line with inducible and cardiomyocyte-specific IRE1�
overexpression as experimental models to achieve targeted
IRE1� activation. IRE1� expression induced a potent but tran-
sient ER stress response in cardiomyocytes and did not cause
significant effects in the intact heart under normal physiological
conditions. Furthermore, the IRE1�-activated transgenic heart
responding to pressure overload exhibited preserved function
and reduced fibrotic area, associated with increased adaptive
UPR signaling and with blunted inflammatory and pathological
gene expression. Therefore, we conclude that IRE1� induces
transient ER stress signaling and confers a protective effect
against pressure overload–induced pathological remodeling in
the heart. To our knowledge, this report provides first direct
evidence of a specific and protective role for IRE1� in the heart
and reveals an interaction between ER stress signaling and
inflammatory regulation in the pathologically stressed heart.

Cardiovascular diseases are the number one cause of mortal-
ity in the United States and worldwide (1). Treatments for heart
failure remain elusive due to the complexity of etiology and our

limited understanding of the underlying mechanisms. Protein
homeostasis is critical to cellular health, and defects in protein
synthesis, maturation, and turnover are implicated in many
human diseases (2–5), including heart failure (6). Protein
homeostasis in the ER5 lumen is monitored and maintained by
highly conserved quality control mechanisms (7). Disruptions
to ER homeostasis, including altered redox status, calcium flux,
protein aggregation, or accumulation of client proteins, cause
ER stress and activation of a highly conserved unfolded protein
response (UPR) (also known as ER stress response) (8 –10). The
UPR conveys stress from the ER to the nucleus (11, 12), culmi-
nating in activation of transcription factors to up-regulate
shaperone molecules and to suppress protein synthesis, leading
to restored ER homeostasis (13). There are three major ER
stress sensors and signal transducers involved in UPR, includ-
ing activating transcription factor 6 (ATF6), protein kinase-like
ER kinase (PERK), and inositol-requiring 1 (IRE1). They act in
concert to restore protein folding in the ER lumen by reducing
the client protein folding load, while increasing protein folding
capacities and enhancing protein degradation for misfolded
peptides, through coordinated induction of chaperone genes
and inhibition of protein synthesis (14 –18).

In the heart, ER stress signaling is activated in response to a
broad spectrum of myocardial injuries, including ischemia,
ischemia/reperfusion, hypoxia, and mechanical overload (6, 8,
19 –24). ER stress signaling is also implicated in metabolic
remodeling in the diseased heart (25). However, it remains
unclear whether ER stress signaling is protective or detrimental
to the heart. Some studies suggest that ER stress contributes to
myocyte apoptosis and heart failure (21, 22, 26, 27), whereas
other reports indicate that it is cardioprotective (24, 28, 29).
Different ER stress pathways appear to have specific roles in the
heart. ATF6-mediated signaling has been identified as a highly
protective pathway against ischemia/reperfusion injury (24) by
inducing BiP and GRP94. Similarly, Xbp1, downstream of
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IRE1� activation, was found to be protective against hypoxia
and myocardial infarction also by inducing BiP (30) and cou-
pling with hexosamine biosynthetic pathway (25). BiP expres-
sion can inhibit apoptotic signal CHOP and reduces apoptosis
in cardiomyocytes (31). However, ER stress can also activate
cell death signaling pathways (32–34). In particular, IRE1�
binds to TRAF2 and activates downstream ASK1, resulting
in JNK and p38 MAPK activation and apoptotic cell death (14,
35, 36). In contrast, other reports indicate that interactions
between IRE1� and TRAF2 and JNK activate autophagy to pro-
mote cell survival during ER stress (37). PERK can also contrib-
ute to apoptotic signaling by promoting expression of ATF4
(17, 38, 39), a transcriptional activator for CHOP (40, 41). Ang-
iotensin II, along with tunicamycin and thapsigargin, can
induce both adaptive protein folding chaperones and apoptotic
signal CHOP (6). ER stress can also induce hypertrophy gene
expression, including atrial natriuretic factor (ANF) and brain
natriuretic factor (BNF), suggesting that ER stress contributes
to both adaptive and pathological remodeling. Finally, ER stress
is implicated in cancer therapy Imatinib-induced cardiomyop-
athy (26). Although evidence is clear about the importance of
ER stress regulation in cardiac pathogenesis, the specific con-
tribution of IRE1-mediated signaling in the heart has not yet
been directly investigated.

In the current study, we investigated the direct impact of
IRE1� activation in the heart. In cardiomyocytes in culture,
IRE1� overexpression induced significant IRE1� autophosphor-
ylation and Xbp1 activation, as expected. However, there was
no evidence of induction in cell death, stress signaling, or
hypertrophy upon prolonged IRE1� expression. Using an ani-
mal model with heart-specific, tamoxifen-inducible IRE1�
overexpression, we investigated the direct impact of IRE1�
expression in vivo. Overexpression of IRE1� did not lead to any

pathological phenotype at baseline. Following pressure over-
load induced by trans-aortic constriction, IRE1� expression in
transgenic hearts showed better preserved function, blunted
pathologic marker gene induction, and better preserved ER
stress signaling. More interestingly, the expression of inflam-
matory cytokines TNF� and IL-6 was significantly blunted by
IRE1� expression, suggesting that IRE1�-mediated ER stress
signaling inhibits inflammatory cytokine induction in the heart.
Thus, IRE1� activity has a direct protective effect in the heart
against pressure overload–induced cardiac pathology, involv-
ing suppression of pro-inflammatory gene expression.

Results

IRE1� induces adaptive and transient UPR in cardiac myocytes

To investigate the functional impact of IRE1� activity, we
generated adenoviral vectors expressing WT IRE1�. To vali-
date the functionality of this expression vector, we tested the
adenoviral vector in INS-1 cells. As shown in Fig. 1, IRE1�
expression in INS-1 cells led to significant cell death 2 days after
transfection (Fig. 1A). Xbp1 splicing was induced in a dose-de-
pendent manner by IRE1� expression, similar to tunicamycin
(TM) treatment (Fig. 1B). In addition, IRE1� autophosphoryla-
tion, BiP expression, phospho-EIF2� (Fig. 1C), and JNK kinase
activity (Fig. 1D) were also induced in a dose-dependent fashion
by IRE1� expression in INS-1 cells. These data are consistent
with previous literature where IRE1� expression promotes cell
death, associated with elevated RNase and stress kinase signal-
ing via oligomerization in INS-1 cells (42, 43). In contrast, neo-
natal rat ventricular myocytes (NRVMs) with IRE1� overex-
pression did not show significant difference in morphology or
cell sizes (Fig. 2A), although autophosphorylation and down-
stream Xbp1 activation were detected as in INS-1 cells (Fig. 2, B

Figure 1. The functional impact of IRE1� activity in cells. A, representative images of adv-GFP– and adv-IRE1�–treated INS-1 cells. B, RT-PCR detection of
spliced Xbp1 (sXbp1) levels in adv-IRE1�–treated INS-1 cells and quantification of the signal intensity as labeled. TM-treated cells are used as a positive control.
C, immunoblots for the expression and autophosphorylation of IRE1� as well as ER stress–related proteins in adv-IRE1�–treated INS-1 cells and quantification
of the signal intensity normalized by actin as labeled. D, immunoblots for stress-activated proteins p38 MAPK and JNK in adv-IRE1�–treated INS-1 cells and
quantification of the signal intensity normalized by actin as labeled. ND, not detected.
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and C). Other ER stress effectors, such as BiP expression, were
also significantly induced by IRE1� overexpression, whereas
the pro-apoptotic ER stress gene CHOP was not (p � 0.09) (Fig.
2D). As expected, expression of a kinase-dead IRE1�-KA
mutant did not affect any of the ER stress molecules (Fig.
2E). These results revealed an unexpected myocyte-specific
response to IRE1� expression, where only a subset of cytopro-
tective ER stress response was triggered in primary cardiomyo-
cytes without activating the pro-apoptotic downstream path-
way. Remarkably, prolonged IRE-1� expression (5 days) failed
to sustain downstream Xbp1 activation or other UPR gene
expression, although IRE1� autophosphorylation remained
elevated (Fig. 2, F–H). These observations have revealed two
specific features in IRE1� function in cardiomyocytes; one is a
selective induction of IRE1�-mediated cytoprotective response
versus stress signaling, and another involves the transient
nature of the IRE1�-induced downstream Xbp1 activation,
most likely due to a yet to be identified negative feedback
inhibition.

Heart-specific and inducible expression of IRE1� in mice

To elucidate IRE1� function in intact heart, we generated an
animal model where IRE1� expression was both inducible and
heart-specific using a Cre-loxP–mediated gene switch strategy
(Fig. 3A) (44). Cre-dependent expression of IRE1� was demon-
strated in 293 cells, validating the efficacy of the construct (Fig.
3B). As shown in vitro, the Flox-GFP-IRE1� transgenic mice
showed widespread expression of GFP but not the IRE1� trans-
gene. After cross-breeding with �MHC-Mer-Cre-Mer mice
(45–47), the transgenic gene IRE1� was induced only in ven-
tricular tissue only after tamoxifen treatment (Fig. 3, C–E).
Four weeks after transgene induction, no abnormal phenotype
was observed in the IRE1�-expressing hearts compared with
the littermate controls, including non-transgenic or single-
transgenic mice, based on morphometric, histological, and
functional analysis (Fig. 4). Furthermore, mRNA levels of
sXbp1, BiP, and CHOP (Fig. 5A) were not affected by IRE1�
expression, consistent with our in vitro observation after long-
term IRE1� expression. The molecular profiles of ANF,

Figure 2. The functional impact of IRE1� activity on the cardiomyocyte. A, representative images of mock– and adv-IRE1�–treated NRVMs and cell-surface
area. B, immunoblots of phospho-IRE1�, total IRE1�, Myc, and actin in NRVMs treated with mock, adv-IRE1�, and adv-IRE1�KA vectors 2 days post-transfection.
C, RT-PCR detection of sXbp1 versus uXbp1 levels in adv-IRE1�–treated NRVMs at 2 days post-transfection. D, quantitative measurements of mRNA for IRE1�, BiP,
and CHOP in NRVMs treated with adv-IRE1� for 2 days. n � 3. *, p � 0.05. E, quantitative measurements of mRNA for IRE1�, BiP, and CHOP in NRVMs treated with
adv-IRE1�KA for 2 days. n � 3. *, p � 0.05. F, immunoblots for phospho-IRE1� in NRVMs treated with adv-IRE1� or adv-IRE1�KA for 5 days. G, RT-PCR detection
of sXbp1 levels in adv-IRE1�– or adv-IRE1�KA–treated NRVMs for 5 days. H, mRNA expression of IRE1�, BiP, and CHOP in NRVMs treated with adv-IRE1� for 5
days. n � 3. A.U., arbitrary units; error bars, S.D.
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�-MHC, and TNF� were all unchanged following IRE1� over-
expression (Fig. 5B). Together, these observations suggest that
IRE1� expression was not sufficient to sustain ER stress
response and did not exert any detrimental effect in the adult
mouse heart.

IRE1� preserves heart function after transverse aortic
constriction (TAC)

To test the effect of IRE1� expression on pathological stress
response in heart, IRE1� transgenic mice were subjected to
pressure overload implemented by TAC (48, 49). Pressure over-
load led to significant loss of cardiac function over time in the
control mice. In contrast, the IRE1� transgenic mice demon-
strated preserved function even at 4 weeks post-TAC (Fig. 6A),
associated with reduced chamber dilation at the systole (Fig.
6B) based on echocardiograph measurements. Furthermore,
the induction of pathological marker genes, including ANF and
�MHC, was significantly blunted in response to TAC in the
IRE1� transgenic heart versus the controls (Fig. 6C). However,
cardiac hypertrophy as measured from tissue weight and his-
tology was induced by TAC to the same levels in the control
versus the IRE1� transgenic hearts (Fig. 6, D and E). Interest-
ingly, fibrotic induction in myocardium was also significantly
blunted in response to TAC in the IRE1� transgenic heart ver-
sus the controls (Fig. 6, E and F).

To investigate the potential mechanism, we analyzed the
expression of UPR genes and stress-signaling molecules in

post-TAC hearts. Although there was a trend for lower BiP
expression in the post-TAC hearts, the IRE1� heart showed a
modestly but significantly higher level of BiP expression than
controls after TAC (Fig. 7A). In contrast, the mRNA level of
CHOP was not affected by IRE1� expression, whereas there was
trend for lower expression of ATF4 in the post-TAC IRE1�
transgenic heart (38) (Fig. 7A). Therefore, IRE1� expression
in the heart leads to better preserved heart function following the
TAC with only modest impact on ER stress downstream mole-
cules. ER stress signaling by IRE1� and TRAF2 has been
reported to activate inflammatory signals (50). As shown in Fig.
7B, IRE1� transgenic hearts showed significantly reduced
TAC-induced mRNA expression for both TNF� and IL-6 cyto-
kines after comparing with the controls. Furthermore, whereas
NF-�B induction was not affected by IRE1� expression in the
post-TAC hearts, the IkB kinase � induction was significantly
blunted in the IRE1� transgenic hearts, suggesting that attenu-
ated NF-�B signaling may in part contribute to reduced TNF�/
IL-6 induction in the IRE1� TAC heart. In summary, IRE1�
expression in the heart protects cardiac dysfunction associated
with blunted induction of pro-inflammatory genes.

Discussion

This study provided first comprehensive characterization of
the specific function of IRE1� as one of the three major ER
stress-signaling branches in pressure overload–induced car-
diac remodeling and dysfunction. In cultured cardiomyocytes,

Figure 3. Establishment of IRE1� transgenic mouse line. A, schematic diagram for cardiac-specific inducible IRE1� transgenic construct and expected
Cre/Lopx-mediated deletion. B, immunoblots of phospho-IRE1�, total IRE1�, GFP, and actin in HEK293 cells transfected with flox-GFP-IRE� vector. C, repre-
sentative RT-PCR detection of IRE1� expression in different transgenic ventricular tissues from control (Cre�/GFP�IRE��) and IRE1� transgenic (Cre�/
GFP�IRE��) hearts, with or without tamoxifen (TMX) treatment. D, quantification of IRE1� mRNA expression in heart tissue from the same cohorts as in C. E,
immunoblots of total IRE1� and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) in ventricle, lung, liver, kidney, and skeletal muscle from control (C) and
IRE1� transgenic (I) mice. A.U., arbitrary units; error bars, S.D.
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we observed transient induction of canonical Xbp1 activation
following IRE1� expression without significant effects on cell
death and hypertrophy. In intact heart, IRE1� expression did
not affect pressure overload–induced cardiac hypertrophy but
significantly attenuated cardiac dysfunction and pathological
marker gene expression. Interestingly, IRE1� expression mark-
edly blunted the induction of pro-inflammatory cytokine gene
expression following TAC. Therefore, our results provide
direct in vitro and in vivo evidence that IRE1�-mediated sig-
naling is cardioprotective, at least in the setting of pressure
overload–induced cardiac dysfunction.

ER stress-signaling pathways and the ensuing unfolded pro-
tein response are important cellular responses to various insults
and have been found to be activated in human congestive heart
failure (6), ischemic heart disease (21), and heart failure in
response to the cancer drug imatinib (26). Experimental models

have also recapitulated these observations (6, 24), but it is
unclear whether ER stress signaling plays protective (24, 30, 31)
or pathological roles in heart (22, 26, 51, 52). Expression of a
constitutively active ATF6 shows a strong protection against
ischemia reperfusion injury in mice (24). CHOP inhibition in
NRVMs was also protective against apoptosis in the setting of
ER stress by proteasome inhibition (31), and CHOP inactiva-
tion in vivo protected mouse hearts against apoptosis following
ischemia/reperfusion injury (52). Among the three major UPR
pathways (i.e. IRE1, PERK, and ATF6), IRE1 is unique in terms
of diverse downstream outcome. IRE1 activation is capable of
both protective and apoptotic signaling through Xbp1 or
TRAF2 and stress-activated MAPK signaling cascades, respec-
tively, as demonstrated previously (14, 18, 42, 43, 53, 54) (Fig. 1).
However, the molecular nature of IRE1� function and regula-
tion appears to be highly cell type–specific. Whereas constitu-

Figure 4. Characterization of IRE1� transgenic mouse heart at basal conditions. A, echocardiogram analysis of ejection fraction (EF) and fractional
shortening (FS) in the IRE1� transgenic and control mice. B, echocardiogram analysis of diastolic/systolic diameter in the left ventricle (LVID) and diastolic/
systolic posterior wall thickness in the ventricle (LVPW). C, representative image of H&E-stained hearts from IRE1� transgenic and control mice. D, heart
weight/body weight ratio in IRE1� transgenic and control mice. E, body weights 4 weeks after vehicle or tamoxifen injection in both male and female mice. Error
bars, S.D.
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tive expression of IRE1� led to cell death in nonmyocytes, such
as INS-1 cells (42), as well as other cell types (54), similar
expression in cardiomyocytes achieved only transient induc-
tion of Xbp1 but without cell death induction. More remark-
ably, prolonged expression led to sustained autophosphoryla-
tion of IRE1� in cardiomyocytes, but only transient induction
of Xbp1, suggesting the presence of a negative inhibitory feed-
back mechanism for IRE1 signaling in cardiomyocytes. It is well
established that the RNase activity of IRE1 is induced by oli-
gomerization and trans-molecular autophosphorylation (55).
However, its inhibition is poorly characterized but may involve
Bax inhibitor 1 (56), Hsp90 –Cdc37 complex (57), or an ER-spe-
cific protein phosphatase (PP2Ce) (58). In cardiomyocytes,
Xbp1-splicing activity is attenuated over time, whereas the
IRE1� phosphorylation level remains elevated, suggesting that
the underlying molecular mechanism may involve uncoupling
of its autophosphorylation status and the Xbp1-splicing activ-
ity. The molecular basis of such negative feedback regulation
should be further studied.

We observed that IRE1� transgenic mice had preserved
heart function in response to pressure overload. The underly-
ing mechanism is yet to be uncovered. It is known that inflam-
matory cytokines are induced in stressed myocardium, contrib-

Figure 6. Preservation of cardiac function in IRE1� transgenic heart in response to pressure overload. A, echocardiogram analysis of EF and FS in the
IRE1� transgenic versus control mouse after TAC. *, p � 0.05. B, echocardiogram analysis of diastolic/systolic LVID and diastolic/systolic LVPW 4 weeks post-TAC.
*, p � 0.05. C, hypertrophic marker ANF and �MHC expression after 4 weeks post-TAC. *, p � 0.05. n � 3– 4. D, heart weight/body weight in IRE1� transgenic and
control mice 4 weeks post-TAC. ***, p � 0.001. E, representative image of H&E staining and trichrome staining in IRE1� transgenic and control mice 4 weeks post-TAC.
F, quantification results of fibrotic area in IRE1� transgenic and control mice 4 weeks post-TAC. *, p � 0.05. n � 4–6. A.U., arbitrary units; error bars, S.D.

Figure 5. ER stress, hypertrophic, and inflammatory gene expression in
IRE1� transgenic mouse heart at basal conditions. A, mRNA levels of ER
stress–related gene BiP, sXbp1, and CHOP expression in IRE1� transgenic ver-
sus control mouse heart at basal conditions. B, hypertrophic markers ANF and
�MHC and inflammatory gene TNF� expression in IRE1� transgenic versus con-
trol mouse heart at basal conditions. n � 3. A.U., arbitrary units; error bars, S.D.
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uting to cardiac dysfunction and pathological remodeling.
Indeed, both TNF� and IL-6 expressions were markedly
reduced in the post-TAC IRE1� transgenic hearts. It is reported
that both TNF� and IL-6 are induced by stress signaling, such as
p38 MAPK (59, 60) and NF-�B pathway. Although we did not
observe any effects on p38 activation, IKK� induction was sig-
nificantly attenuated by IRE1� expression. The data are consis-
tent with the notion that IRE1� expression in cardiomyocytes
promotes cytoprotective ER stress signaling but not down-
stream stress signaling and offer a potential mechanistic link
between ER stress signaling and anti-inflammatory gene induc-
tion in pathologically stressed myocardium. Establishing the
cardioprotective role of IRE1� in the intact heart illustrates the
potential contribution of ER stress signaling to the pathogene-
sis of heart failure as well as the feasibility of targeted manipu-
lation of ER stress signaling for treating the disease.

Experimental procedures

Animal models and surgical procedures

The investigation conformed with the Guide for the Care and
Use of Laboratory Animals published by the National Institutes
of Health (Publication number 85-23, revised 1985). All proce-
dures were performed in accordance with UCLA animal wel-
fare guidelines and approved by the UCLA institutional animal
care and use committee. IRE1� was cloned into a vector for
generation of transgenic animals with Cre-regulated expres-
sion of the transgene of interest (61, 62). Transgenic animals
were generated in C57/Bl6 background through collaboration

with the UCLA Molecular Genetics Technology Center. Foun-
der animals were identified by PCR with transgene-specific
primers.

Animals with heart-specific, inducible IRE1� overexpression
were generated by crossing transgenic founder animals with
previously established �MHC-Mer-Cre-Mer (MCM) trans-
genic mice (47) (45). IRE1� transgene overexpression was
induced by intraperitoneal injection of tamoxifen citrate salt
(Sigma), 20 mg/kg body weight/day for 5 days (45). WT and
floxed single-transgenic littermate animals treated with tamox-
ifen or double-transgenic flox-GFP/CRE animals treated with
vehicle were also used as controls. Both male and female mice
age 12–16 weeks were included in this study.

TAC was performed as described previously with modifica-
tions (49). Mice were anesthetized with ketamine (80 mg/kg)/
xylazine (20 mg/kg) by intraperitoneal injection. Respiration
was provided by mechanical ventilation with 95% O2 (tidal vol-
ume 0.5 ml, 130 breaths/min). Left parasternal thoracotomy
was performed to access the transverse aorta, which was tied
with a 5-0 nylon suture on a 27-gauge needle. The needle was
removed, leaving in place a 65–70% constriction of the aortic
lumen. Constriction of the aorta was confirmed by measuring
differential blood flow through the right and left carotid arteries
1 week after surgery.

Animals were continuously anesthetized with 1.5% isoflu-
rane and 95% oxygen. VisualSonics Vevo 770 and Vevo 2100
imaging systems and a 30-mHz scan head (Toronto, Canada)
were used to collect short and long axis B-mode and M-mode

Figure 7. ER stress and inflammatory gene expression in IRE1� transgenic mouse heart in response to pressure overload. A, ER stress marker BiP, CHOP,
and �TF4 mRNA expression. *, p � 0.05. n � 3– 4. B, mRNA levels of inflammatory genes TNF� and IL-6 and NF-�B signaling genes NF�B and IkB kinase � in
control and IRE1� transgenic hearts following sham or pressure overload. ****, p � 0.0001; ***, p � 0.001; **, p � 0.01; *, p � 0.05. n � 3– 4. A.U., arbitrary units;
error bars, S.D.
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views. Reported values refer to short-axis measurements and
calculations.

Histology

Hearts were perfused and fixed in 10% formalin before
embedding in paraffin. All short-axis sections were prepared
from mid-ventricle. Sections of 4-�m heart were deparaffinized
and rehydrated before staining by hematoxylin and eosin
(H&E) or Masson trichrome and Verhoeff–Van Gieson stain.
Stained tissue sections were recorded as digital images by the
Aperio XT whole-slide scanning system, and snapshot images
were taken using the ImageScope software (Aperio Technolo-
gies, Vista, CA).

Cell culture

293 cells were maintained in Dulbecco’s modified Eagle’s
medium supplemented with 10% fetal bovine serum (FBS) and
1% penicillin/streptomycin. Lipofectamine reagent (Life Tech-
nologies, Inc.) was used according to the manufacturer’s proto-
col to achieve overexpression of the flox-GFP-IRE1� construct.
INS-1 cells were cultured in RPMI1640 according to published
methods (57). NRVMs were harvested from 1–3-day-old
Sprague–Dawley rat pups as described previously (63) and cul-
tured in serum-free Dulbecco’s modified Eagle’s medium supple-

mented with 1% penicillin/streptomycin and 1� Insulin-Trans-
ferrin-Selenium (ITS). NRVMs were infected with adenovirus
(multiplicity of infection of 10) and incubated for 2 days before
additional treatment with 5 g/ml TM for 4 h. Experiments with
prolonged IRE1� expression were incubated for 5 days before
RNA or protein analysis.

Western blotting

Cells were harvested for protein analysis with standard lysis
buffer containing 1% Triton X-100, 1 mM �-glycerophosphate,
2.5 mM Na4P2O7, 20 mM NaF, 1 mM Na3VO4, 1 mM phenyl-
methylsulfonyl fluoride, and protease inhibitor mixture (Roche
Applied Science). Proteins were boiled for 5 min in LDS loading
buffer containing 0.1% �-mercaptoethanol and separated on a
4 –12% BisTris SDS-PAGE (Life Technologies). Specific pro-
teins were detected with antibodies directed against p-IRE1�
(Novus Bio), IRE1�, actin (Santa Cruz Biotechnology), BiP/
Grp78 (Stressgen), p-p38, p38, p-JNK, JNK, p-IEF2�, eIF2�,
GFP, and CHOP (Cell Signaling Technologies), as shown in
Table 1.

RNA and RT-PCR analysis

Total RNA was isolated from heart or cells with TRIzol (Life
Technologies). For animal studies, cDNA was prepared using
iScript Reverse Transcription Supermix and amplified with
SsoFast EvaGreen Supermix on a CVX96 thermal cycler (all
from Bio-Rad). For cell studies, cDNA was prepared using
Superscript II (Invitrogen) and amplified with SYBR Green
supermix on a MyIQ system (Bio-Rad). Melt curves were gen-
erated for each primer set during each experiment, and analysis
was performed using the ��CT method (Table 2).

Xbp1 activation

IRE1� RNase activity toward Xbp1 mRNA was monitored by
semiquantitative PCR. Both unspliced and spliced Xbp1 mRNA
were amplified with primers targeting the region surrounding
the IRE1�-dependent splicing site (forward, 5�-GTTCCA-
GAGGTGGAGGCCA-3�; reverse, 5�-CATGACAGGGTCC-

Table 1
Antibodies

Antibodies Vendor
Catalog

no. Dilution

p-IRE1� (Ser-724) Novus Bio NB100-2323 1:1000
IRE1� Santa Cruz Biotechnology SC-20790 1:500
Actin Santa Cruz Biotechnology SC-1616 1:1000
CHOP Santa Cruz Biotechnology SC-7351 1:500
BiP/Grp78 Santa Cruz Biotechnology SC-1050 1:500
p-p38 Cell Signaling 9211 1:1000
p38 Cell Signaling 9212 1:1000
p-JNK Cell Signaling 9251 1:1000
JNK Cell Signaling 9252 1:1000
p-eIF2� Cell Signaling 9721 1:1000
eIF2� Cell Signaling 9722 1:1000
GFP Cell Signaling 2956 1:1000

Table 2
Primers

Target
Sequence

Forward Reverse

For mouse
Xbp1 Total TGGACTCTGACACTGTTGCC CTCTGGGGAAGGACATTTGA
sXbp1 CAGTGGTCGCCACCGTCCATC TGCCGCGCCCAGCCTTTCTA
Xbp1 splicing GTTCCAGAGGTGGAGGCCA CATGACAGGGTCCAACTTGTCC
CHOP TATCTCATCCCCAGGAAACG GGGCACTGACCACTCTGTTT
BiP GAGGCTGTAGCCTATGGTGC TTTGTTAGGGGTCGTTCACC
Rps26 GCCTCTTTACATGGGCTTTG GCCATCCATAGCAAGGTTGT

For mouse/rat
IRE1� ACGGTGGACATCTTTTCGC TGGGGATCCATAGCAATCAT
IRE1� MYC TCAGGAGACGCTGGGCTCCATC AGAGATCAGCTTCTGCTCGCCTC
ANF CTGATGGATTTCAAGAACCTGCT CTCTGGGCTCCAATCCTGTC
�MHC CTCAACTGGGAAGAGCATCCA CCTTCAGCAAACTCTGGAGGC
TNF� CTCTTCAAGGGACAAGGCTG TGGAAGACTCCTCCCAGGTA
GAPDH TCCTGCACCACCAACTGCTTAG GATGACCTTGCCCACAGCCTTG

For rat
RatXBP1 CTCAGAGGCAGAGTCCAAGG ACAGGGTCCAACTTGTCCAG
sXBP1 TCTGCTGAGTCCGCAGCAGG CTCTAAGACTAGAGGCTTGG
uXBP1 CAGACTACGTGCGCCTCTGC CTTCTGGGTAGACCTCTGGG
CHOP CCTTCACTACTCTTGACCTGC CGCTCGTTCTCTTCAGCAAG
BIP TTCCGCTCTACCATGAAACC CTTATTGTTACGGTGGGCT
RPS26 GCGTCTTCGACGCTTACGTGC ACCTCTTTACATGGGCTTTGGTGGA
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AACTTGTCC-3�). Products were amplified with the cycling
protocol of 95 °C for 30 s, followed by 35 cycles of 95 °C for 30 s,
60 °C for 30 s, and 72 °C for 25 s, followed by 72 °C for 10 min.
PCR products were separated on 4% agarose gel.

Statistical analysis

Data are presented as mean 	 S.D. Means of two groups were
compared by two-tailed Student’s t test. Means of more than
two groups were compared by analysis of variance and Turkey
post hoc test. Differences between groups were considered sta-
tistically significant when p � 0.05.
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