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Abstract

Purpose: To compare convolutional neural network (CNN) analysis of en face vessel density 

images to gradient boosting classifier (GBC) analysis of instrument provided, feature-based 

optical coherence tomography angiography (OCTA) vessel density measurements and OCT RNFL 

thickness measurements for classifying healthy and glaucomatous eyes.

Design: Comparison of diagnostic approaches.

Methods: 130 eyes of 80 healthy individuals and 275 eyes of 185 glaucoma patients with optic 

nerve head (ONH) OCTA and OCT imaging were included. Classification performance of a 

VGG16 CNN trained and tested on entire en face 4.5 mm × 4.5 mm radial peripapillary capillary 

OCTA ONH images was compared to performance of separate GBC models trained and tested on 

standard OCTA and OCT measurements. Five-fold cross-validation was used to test predictions 

for CNNs and GBCs. Areas under the precision recall curves (AUPRC) were calculated to control 

for training/test set size imbalance and were compared.

Results: Adjusted AUPRCs for GBC models were 0.89 (95% CI = 0.82, 0.92) for whole image 

vessel density GBC, 0.89 (0.83, 0.92) for whole Image capillary density GBC, 0.91 (0.88, 0.93) 

for combined whole Image vessel and whole image capillary density GBC, and 0.93 (0.91, 095) 

for RNFL thickness GBC. The adjusted AUPRC using CNN analysis of en face vessel density 
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images was 0.97 (0.95, 0.99) resulting in significantly improved classification compared to GBC 

OCTA-based results and GBC OCT-based results (P ≤ 0.01 for all comparisons).

Conclusion: Deep learning en face image analysis improves on feature-based GBC models for 

classifying healthy and glaucoma eyes.

Optical coherence tomography angiography (OCTA) is a non-invasive optical imaging 

technology that provides information about retinal vasculature in the form of vessel density 

measurements calculated automatically from two subsequent aligned OCT images.1–3 

Several studies have reported good OCTA measurement-based classification of healthy and 

glaucoma eyes.4–8 In addition, vessel density measurements are lower in glaucoma suspect 

and glaucoma eyes compared to healthy eyes. Moreover, vessel density decreases with 

increasing glaucoma severity.9 It also has been reported that baseline parapapillary and 

macular vessel density measurements can predict rapid glaucoma-related thinning of the 

retinal nerve fiber layer (RNFL) and that vessel density dropout is faster than ganglion cell 

thinning over two years of follow-up in glaucoma eyes.9–11

Over the past two decades, there has been increasing interest in employing machine learning 

(ML) analyses of structural and functional measurements in ophthalmology. In fact, an 

automated ML-based photographic diabetic retinopathy diagnostic system recently has 

gained FDA approval (IDx Technologies IDx-DR).12 Traditional ML methods have been 

applied to various imaging and visual function measurements to improve the classification of 

healthy, glaucoma suspect and glaucomatous eyes compared to instrument based parameters 

in a large number of studies.13–35 In addition, several studies also have used traditional and 

deep ML analyses of OCTA measurements to detect diabetic retinopathy and other ocular 

pathologies.36–40 However, relatively few studies have investigated ML analysis of OCTA 

measurements for detecting glaucoma.

Recently, deep learning approaches, including convolutional neural networks (CNNs),have 

been employed to classify fundus photographs and optical coherence tomography 

images from glaucoma eyes and to predict structural and visual field defects in those 

eyes.20, 21, 41–54 The current study sought to employ and compare CNNs trained and tested 

on entire radial peripapillary capillary (RPC) en face OCTA vessel density images (the RPC 

network extends from the internal limiting membrane to the lower boundary of the RNFL) 

to supervised gradient boosting classification (GBC) models trained and tested on individual 

OCTA measurements to correctly classify healthy and glaucoma eyes. The current study 

builds on a previous study from our group that determined that GBCs trained and tested 

on OCTA vessel density measurements improved disease classification compared to vessels 

density measurements alone.55

Because deep learning models tend to outperform traditional ML models for classification 

performance56, we hypothesized that CNN analysis of en face OCTA images would 

outperform GBC analysis of OCTA measurements. We also compared the performance 

of CNNs to GBC model predictions based on OCT RNFL thickness measurements and 

standard feature-based (i.e., instrument specific) univariate OCTA and OCT measurements.
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MATERIALS AND METHODS

This cross-sectional comparison of diagnostic techniques involved a group of patients with 

primary open-angle glaucoma (POAG, as defined below) and a group of healthy control 

participants from the Diagnostic Innovations in Glaucoma Study (DIGS) (ClinicalTrials.gov 

identifier: NCT00221897). The DIGS is an ongoing prospective, longitudinal study at the 

Hamilton Glaucoma Center, University of California, San Diego, designed to evaluate 

anatomical structure in glaucoma. Details of the DIGS protocol have been described 

elsewhere.57 All methods adhered to the tenets of the Declaration of Helsinki and the Health 

Insurance Portability and Accountability Act and were approved by the Institutional Review 

Board of the University of California, San Diego.

Participants

Eligible participants had best corrected visual acuity of 20/40 or better and open angles 

on gonioscopy at study entry. All participants were older than 40 years. Participants were 

excluded if they had a history of intraocular surgery (except for uncomplicated cataract 

or uncomplicated glaucoma surgery). Eyes with coexisting retinal disease, uveitis, or non-

glaucomatous optic neuropathy also were excluded. Diabetic participants with no evidence 

of retinal involvement were included.

Study group inclusion was determined at the participant level. Healthy participants had 

healthy appearing optic discs and RNFL OU based on masked assessment of digital 

stereoscopic photographs with no history of repeatable abnormal VF results (HFA II with 

24–2 testing using the Swedish Interactive Thresholding Algorithm, Carl Zeiss Meditec Inc., 

Dublin, CA) and no history of elevated intraocular pressure (IOP) (all IOP ≤ 21 mm Hg) in 

either eye. Normal VFs were defined as those with MD and pattern standard deviation (PSD) 

> 5% and a Glaucoma Hemifield Test (GHT) result within normal limits.

Glaucoma patient participants had ≥ 2 consecutive and reliable (defined below) VF 

examinations with either PSD ≤ 5% or a GHT result outside of the 99% normal limits 

with similar patterns of glaucoma-related defects in consecutive exams as determined by 

investigator assessment in at least one eye.

Visual Field Testing

All VFs were evaluated by UC San Diego Visual Field Assessment Center (VisFACT) 

personnel based on a standardized protocol.57 VF usability was assessed in a masked 

fashion from de-identified research participant data. VisFACT personnel includes Research 

Associates with 10+ years of VisFACT experience, MD glaucoma Research Fellows and 

Ph.D. glaucoma Research Scientist faculty. Visual fields with more than 33% fixation 

losses or more than 33% false-positive errors were automatically excluded. Visual fields 

exhibiting a learning effect (i.e., initial tests with reduced sensitivity followed by consistent 

improvement in a series of tests) also were excluded. Visual fields were further reviewed 

for lid and rim artifacts, fatigue effects, evidence that the visual field results were due to a 

disease other than glaucoma (e.g., homonymous hemianopia), and inattention. Test results 

indicating these characteristics were excluded.
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Optical Imaging

The commercially available Avanti Angiovue OCTA (Optovue Inc. Fremont, CA, software 

version 2017.1.0.151) was used to obtain images of the optic nerve head used for analysis in 

the current study. The Avanti system for measuring vessel density and tissue thickness has 

been described previously.6 Briefly, vessel density is defined as the proportion of measured 

area occupied by flowing blood vessels defined as pixels having decorrelation values 

acquired by the split-spectrum amplitude-decorrelation angiography (SSADA) algorithm 

above the threshold level.58 Vessel density in the peripapillary RNFL was assessed within 

a 4.5 × 4.5 mm field of view centered on the ONH. Vessel density within the RNFL was 

measured from the internal limiting membrane (ILM) to the RNFL posterior boundary 

using standard AngioVue software, and ONH en face whole image vessel density and 

circumpapillary vessel density were obtained over the entire 4.5 × 4.5 mm scan. According 

to the DIGS protocol, OCTA images were obtained from either undilated or dilated eyes. 

This is because annual visits include a dilated exam in addition to optical imaging and 

semi-annual visits do not.

OCTA image quality review was completed according to the UC San Diego Imaging Data 

Evaluation and Analysis (IDEA) Reading Center standard protocol. Image usability was 

assessed in a masked fashion from de-identified research participant data. IDEA Center 

personnel includes Research Associates with 10+ years of IDEA Center experience and 

M.D. glaucoma Research Fellows. Images with a quality index (QI) < 4, poor clarity, 

residual motion artifacts visible as irregular vessel patterns or disc boundaries on the en face 

angiogram, image cropping or local weak signal due to vitreous opacity, or segmentation 

errors that could not be corrected were excluded.

The Spectralis SD OCT (Spectralis HRA+OCT, software version 5.4.7.0; Heidelberg 

Engineering, Inc.) was used to measure circumpapillary RNFL (cpRNFL) thickness. 

Spectralis OCT incorporates a real-time eye-tracking system that couples a confocal laser-

scanning ophthalmoscope and SD OCT scanners to adjust for eye movements and to ensure 

that the same location of the retina is scanned over time. The cpRNFL thickness was 

measured using a high-resolution RNFL circle scan composed of 1,536 A-scan points from a 

12-degree circle centered on the optic disc. OCT images were obtained from either undilated 

or dilated eyes.

Quality review of Spectralis images was completed according to IDEA Center standard 

protocol. To be included, all OCT images required a signal strength > 15 dB and were 

deemed acceptable quality for use based on subjective assessment.

Convolutional Neural Network (CNN)

We fine-tuned the VGG16 model59 to detect glaucoma using OCTA-derived en face vessel 

density images. The CNN architecture VGG16 was utilized in the present study with 

weights pre-trained on the ImageNet dataset for fundus feature extraction using TensorFlow 

1.15.0 as a back-end for Keras 2.1.6 on Python 3.6.5 for Linux. The VGG16 network 

weights were frozen in the first four convolution blocks. Weights in the final convolutional 

block were allowed to update during fine-tuning. The two fully connected (FC) layers (FC1 
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and FC2) were initialized with new values and allowed to update during fine-tuning. FC1 

consisted of 256 units using the ReLU activation function. FC2 used the softmax function to 

provide the final glaucoma likelihood prediction. An Adam optimizer with a learning rate of 

1e−5 and dropout rate of 50% for FC1 was used to train the network.

Gradient Boosting Classifier (GBC) Model

The GBC is an ensemble classifier that attempts to decrease error by resampling and varying 

the weights for individual weak learners in order to increase classification accuracy.60 In an 

empirical comparison study of supervised learning algorithms61 comparing random forests 

and boosted decision trees, gradient boosting algorithms had the best overall performance 

with random forests being close second.

Because our CNN was trained and tested on ONH images only, the current study only 

considered OCTA-based GBCs composed of whole image vessel density (wiVD) and whole 

image capillary density (wiCD) parameters for comparison. We trained and tested 3 vessel 

density-based GBC models to compare to CNN analysis of en face OCTA images. The first 

GBC model, wiVD GBC, included whole image, superior hemiretina and inferior hemiretina 

vessel densities. The second GBC model, wiCD GBC, included whole image, superior 

hemiretina and inferior hemiretina capillary densities. The third GBC model, wiVD and 

CD GBC, included whole image, superior hemiretina and inferior hemiretina vessel and 

capillary densities.

To compare the classification success of GBCs trained and tested on vessel density 

measurements to GBCs trained and tested on retinal tissue thickness measurements, we 

also employed a fourth GBC model that included global cpRNFL, nasal RNFL, inferior 

RNFL, superior RNFL, and temporal RNFL thickness measurements (called cpRNFL GBC) 

obtained using Spectralis OCT. All described OCTA and OCT measurements are included in 

standard clinical printouts and can be automatically exported from the Avanti and Spectralis 

instruments.

Training and Evaluation

Five-fold cross-validation was used to provide out-of-sample predictions for deep learning 

CNN and GBC models to avoid over optimistic estimates of classification accuracy. Both 

healthy and glaucoma eyes were randomly divided at the patient level into 5 subsets. Then, 

for each model, we used four subsets to train the model and then we used the fifth subset 

to assess model performance. This sequence was repeated 5 times, with each subset serving 

as the test set one time, so that each tested eye was never part of its own training set and 

was tested only once. Each training subset included 230 (95% CI = 211, 240) eyes of 148 

glaucoma patients and 102 (95% CI = 94, 110) eyes of 60 healthy individuals. The testing 

subset included 45 (95% CI = 42, 50) eyes of 37 glaucoma patients and 28 (95% CI = 26, 

34) eyes of 20 healthy individuals.

Statistical Analyses

Descriptive statistics included mean and standard deviation for normally distributed 

variables and median, first quartile, and third quartile values for non-normally distributed 
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variables. Student’s t-tests or Mann-Whitney tests were used to evaluate demographic and 

clinical differences between glaucoma patients and healthy individuals.

Areas under the precision-recall curves (AUPRC) curves and sensitivities at fixed 

specificities were used to assess the ability to discriminate eyes with glaucoma from healthy 

eyes to control for training/test set size imbalance62. As measurements from both eyes of 

the same subject are likely to be correlated, the cluster of data for the study subject were 

considered as the unit of resampling and bias corrected SEs were calculated. AUPRCs were 

covariate adjusted for inclusion of both eyes and for age, image quality, axial length and 

pseudophakia as suggested by Janes and Pepe63, and compared statistically using the Wald 

test based on clustered bootstrap covariance.64

Statistical analyses were performed using Stata 14.2 (StataCorp LLC, College Station, TX). 

P values less than 0.05 were considered statistically significant.

RESULTS

Images from 130 eyes of 80 healthy individuals and 275 eyes of 185 glaucoma patients were 

included in the analyses. A summary of the demographic variables and measurements of the 

healthy participants and glaucoma patients are shown in Table 1. Glaucoma patients were 

significantly older (P < 0.001) than healthy individuals and glaucoma eyes had worse VF 

mean deviation (MD) (P < 0.001) than healthy eyes.

For univariable analyses, the adjusted AUPRCs for classifying healthy and glaucoma eyes 

were 0.85 (95% CI = 0.76, 0.88) for wiVD, 0.86 (95% CI = 0.79, 0.88) for wiCD and 0.86 

(95% CI = 0.81, 0.87) for cpRNFL thickness.

Overall, GBC model performance was somewhat better than univariable analyses. The 

adjusted AUPRCs were 0.89 (95% CI = 0.82, 0.92) for the wiVD GBC model, 0.89 (95% CI 

= 0.83, 0.92) for the wiCD GBC model, 0.91 (95% CI = 0.88 0.93) for the combined wiVD 

and CD GBC model, and 0.93 (95% CI = 0.91, 0.95) for the Spectralis cpRNFL thickness 

GBC model.

The adjusted AUPRC using CNN analysis of RPC en face vessel density images was 0.97 

(95% CI = 0.95, 0.99) resulting in improved classification compared to all GBC results and 

all univariable results (P < 0.01 for all comparisons). These values along with sensitivities at 

fixed specificities of 0.80, 0.85, 0.90 and 0.95 for all analyses are shown in Table 2.

Figure 1 shows examples of en face images from a glaucoma eye and a healthy eye 

classified correctly by CNN analysis and incorrectly by all investigated GBCs.

We also investigated performance of the same models and univariate measurements in a 

subset of 183 eyes with early glaucoma defined as MD ≥ −6 dB. In this subset analysis, 

patterns of results were similar but AUPRCs and sensitivities at fixed specificities were 

lower, as expected. For univariable analyses, the adjusted AUPRCs for classifying healthy 

and glaucoma eyes were 0.81 (95% CI = 0.77, 0.83) for wiVD, 0.82 (95% CI = 0.78, 0.85) 

for wiCD and 0.84 (95% CI = 0.79, 0.87) for cpRNFL thickness.
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For GBC models, adjusted AUPRCs were 0.85 (95% CI = 0.81, 0.87) for the wiVD GBC 

model, 0.86 (95% CI = 0.82, 0.88) for the wiCD GBC model, 0.87 (95% CI = 0.84, 0.09) 

for the wiVD and CD GBC model and 0.89 (95% CI = 0.86, 0.92) for the cpRNFL GBC 

model. The adjusted AUPRC for CNN analysis of RPC en face vessel density images was 

0.94 (95% CI = 0.92, 0.96) resulting in improved classification compared to all GBC results 

and all univariable results (P ≤ 0.002 for all comparisons, Table 3).

Finally, an ablation-like analysis was conducted to investigate the relative strength of effect 

of different machine learning classifiers and the effect of transfer learning using four 

additional ML models described below:

1. LeNet-5: A classic shallow neural network that consists of two sets of 

convolutional and average pooling layers, followed by a flattening convolutional 

layer, then two fully connected layers and finally a softmax classifier.

2. VGG16 without transfer learning.

3. Resnet-50 without transfer learning. ResNet50 contains 50 layers (16 residual 

layers and 2 fully connected layers, each residual layer contains 3 convolutional 

layers).

4. Resnet-50 with transfer learning.

Results from these analyses are shown in Table 4 and indicate that using other ML 

models including DL models with and without transfer learning still significantly improved 

classification performance compared to that of all univariate variables and most GBCs.

DISCUSSION

For classifying measurements from healthy and glaucoma eyes with early to moderate 

disease, the current study compared CNNs trained and tested on en face radial peripapillary 

images to GBCs trained on combinations of whole image and regional OCTA optic 

nerve head measurements and global and regional RNFL thickness measurements. It also 

compared them to individual OCTA and OCT parameters. The CNN trained on OCTA 

images showed significantly better diagnostic accuracy than the four investigated GBCs 

and instrument-provided whole image vessel density, whole image capillary density and 

circumpapillary RNFL thickness measurements. Specifically, the en face vessel density 

image-based CNN resulted in an AUPRC of 0.97 compared to AUPRCS for GBCs ranging 

from 0.89 to 0.93 and AUPRCS from individual OCTA and OCT measurements ranging 

from 0.85 to 0.86. Similar improvement in diagnostic accuracy remained when only the 

early glaucoma group was included in the analysis (AUPRC of 0.94 for CNN compared 

to OCTA and OCT measurements ranging from 0.81 to 0.89. We also have demonstrated 

that other ML models trained and tested on en face images differentiate between healthy 

and glaucoma eyes significantly better than most GBCs investigated and all individual 

OCTA and OCT parameters investigated (Table 4). These results show promise for using 

deep learning image-based analyses for improved detection of early to moderate glaucoma 

using OCTA. Moreover, they provide general support for using deep learning image-based 

analyses of optical imaging measurements in the broader context.
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To the best of our knowledge, this is the first study to compare CNN-based image analysis 

to shallow learning analyses of OCTA measurements. In the current sample, sensitivity 

at 95% specificity from the investigated CNN was 72.1% while the highest sensitivities 

at this specificity were 66.7% and 62.5% for GBC models and for individual parameters, 

respectively. Sensitivities at various specificities were provided because depending on the 

clinical application, target specificities may be different. For instance, a very high specificity 

may be important for glaucoma screening where false positives are undesirable and a relaxed 

specificity may be important when attempting to detect glaucoma in a young glaucoma 

suspect where a false negative may result in delayed treatment, leading to a preventable 

decrease in visual function.

Published ML analyses of OCTA measurements are sparse. A recent study by Meng et al65 

used local phase quantization, a blur insensitive texture descriptor66, to extract features from 

en face OCTA images of healthy individuals and glaucoma patients. Principle component 

analysis was then used for dimensionality reduction and the most significant features used in 

the classification task were identified using a decision tree classifier. Classification based on 

the best identified features using AdaBoost resulted in a best sensitivity/specificity trade-off 

of 94.4%/94.0% in 157 en face optic disc images from healthy individuals and 52 images 

from glaucoma patients using only 6 features. Reported accuracy was 94.3%. These results 

are not directly comparable to the current results because en face images from several 

retinal layers (superficial, deep, and outer) and the choriocapillaris were incorporated in their 

models. In addition, methods for classifying glaucoma and healthy eyes were not described 

and severity of disease information in patient eyes was not included.

Providing additional evidence that deep learning methods can outperform shallow learning 

methods for classifying glaucoma and healthy eyes, a recent publication by Maetschke 

and colleagues48 investigated CNN analysis of raw OCT optic nerve head volumes and 

compared results to many feature-based supervised ML methods. Parameters included 

in feature-based ML classifiers were clock-hour RNFL thicknesses, quadrant thicknesses, 

average thickness, rim area, disc area, average cup-to-disc ratio, vertical cup-to-disc ratio, 

and cup volume. Average MD (range) in glaucoma eyes, defined based on two consecutive 

abnormal VFs, was −6.8 dB (−32.9, −2.17). CNN analysis of OCT volumes resulted in an 

area under the receiver operating characteristic curve (AUROC) of 0.94 for the classification 

task while feature-based traditional machine learning analysis AUROCS ranged from 0.82 

for support vector machine and gradient boosting classifiers to 0.89 for logistic regression.

The current study has several possible limitations. First, significantly more glaucoma 

patients than healthy participants had hypertension and diabetes (Table 1), both of which 

can damage micro-vessels and influence blood flow. In a previous study55 we performed 

an exploratory analysis of differences in vessel density measures among healthy subjects 

with and without hypertension. We did not find a significant difference in any ONH vessel 

density measures and thus did not pursue an adjusted analysis in the current study. Due to 

the low number of diabetic healthy subjects, we were unable to adjust for this covariate in 

any analysis herein. In addition, more glaucoma eyes than healthy eyes were pseudophakic. 

For this reason, all models were adjusted for this variable. Second, it has been reported 

that parapapillary OCTA measurements are not ideal for discriminating between healthy and 
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glaucoma eyes8, 67, 68 possibly due, in part, to vascular crowding of large vessels in the 

optic disc decreasing visibility of microvasculature in this region.69 Third, results of CNN 

and GBC models were not tested on an external, independent test dataset so results may be 

somewhat worse in other populations, although five-fold cross-validation with independent 

test and training sets was used to control for overfitting of models. Fourth, our use of strict 

OCTA image quality control likely reduced the available number of usable images available 

from the DIGS cohort. Previous reports indicate that a significant number of OCTA images 

include artifacts that make them potentially unusable.70, 71 Such images were excluded 

based on IDEA Center image assessment protocol. It also is possible that reliance on 

previously suggested VF reliability criteria (percent fixation loss and false positive cut-offs) 

decreased the available number of study participants72, although a retrospective analysis of 

63,000 VisFACT processed VFs indicates that less than 1% were excluded based on these 

criteria.

In conclusion, the current results indicate that convolutional neural networks trained and 

tested on en face OCTA images can improve diagnostic accuracy and sensitivities at 

fixed specificities in glaucoma eyes compared to gradient boosting classifier models that 

combine structural measurements from OCTA and OCT measurements independently and 

single OCTA and OCT parameters. Such techniques could be incorporated into instrument 

software to improve clinical utility.
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Figure 1: 
Example enface vessel density maps of a glaucoma eye (left) and a healthy eye (right) 

correctly classified by CNN analysis (probability of glaucoma = 0.72 and probability of 

glaucoma = 0.19, respectively) but incorrectly classified by whole image vessel density 

(wiVD) GBC (probability of glaucoma = 0.33 and probability of glaucoma = 0.72, 

respectively), whole image capillary density (wiCD) GBC (probability of glaucoma = 0.24 

and, probability of glaucoma = 0.85, respectively), wiVD and CD GBC (probability of 

glaucoma = 0.19 and probability of glaucoma = 0.74, respectively), and cpRNFL GBC 

(probability of glaucoma = 0.43 and probability of glaucoma = 0.66, respectively). A cut-off 

of > 0.50 was used to classify eyes as glaucomatous.
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Table 1:

Patient and eye characteristics by diagnosis. Mean values and 95% confidence intervals are shown for 

continuous variables. Statistical significance of differences in continuous and categorical variables are 

determined by two-sample t-tests and Fisher’s exact test for patient level variables (respectively) and linear 

mixed effects models for eye level variables.

Diagnosis

Healthy (n = 80, 130 Eyes) Glaucoma (n = 185, 275 Eyes) p-value

Age (years) 62.1 (57.6, 66.3) 71.8 (70.2, 74.5) <0.001

Sex (% Female) 72.0% 51.5% <0.001

Race (%)

 Non-White 41.0% 38.0% 0.15

 White 59.0% 62.0%

Hypertension (%) 41.5% 53.1% 0.031

Pseudophakia 10.1% 43.0% <0.001

Diabetes (%) 5.0% 15.2% 0.022

MD (dB) 0.02 (−1.22, 1.34) −5.40 (−6.32, −4.77) <0.001

IOP (mmHg) 15.1 (13.7, 16.0) 14.1 (13.8, 15.1) 0.52

AL (mm) 23.8 (23.4, 24.4) 24.2 (24.1, 24.3) 0.049

CCT (μm) 547.4 (536.2, 558.7) 536.6 (529.1, 543.7) 0.08

BMO Area (mm2) 1.9 (1.8, 2.1) 1.9 (1.8, 2.0) 0.54

MD = Mean Deviation, IOP = Intraocular Pressure, AL = Axial Length, CCT = Central Corneal Thickness, BMO = Bruch’s Membrane Opening

Am J Ophthalmol. Author manuscript; available in PMC 2023 March 27.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Bowd et al. Page 17

Table 2:

Estimated areas under the receiver operating curves (AUROC) and sensitivities at fixed specificities for all 

investigated univariable OCTA and OCT parameters, gradient boosting classifier (GBC) models and 

convolutional neural network (CNN) analyses. (130 healthy eyes from 80 subjects and 275 glaucoma eyes 

from 185 patients).

Sensitivity At Adjusted AUROC p-
value compared to 

Deep LearningAUROC (95% CI) 80% Spec. 85% Spec. 90% Spec. 95% Spec.

Univariate variable

Whole image vessel density (wiVD) 0.81 (0.75, 0.82) 81.4% 77.0% 72.1% 60.1% <0.001

Whole image capillary density 
(wiCD)

0.82 (0.77, 0.84) 82.1% 80.2% 73.8% 61.7% <0.001

Circumpapillary RNFL thickness 
(cpRNFL)

0.85 (0.81, 0.87) 84.3% 81.4% 75.9% 62.5% <0.001

Gradient Boosted Classifiers

WiVD GBC 0.83 (0.78, 0.84) 82.5% 80.1% 74.3% 62.1% <0.001

WiCD GBC 0.84 (0.79, 0.86) 83.9% 82.2% 75.4% 64.6% <0.001

WiVD VD and CD GBC 0.86 (0.82 0.88) 86.3% 81.3% 75.9% 65.2% <0.001

cpRNFL GBC 0.88 (0.84, 0.89) 87.4% 83.2% 77.1% 66.7% 0.004

CNN

En face RPC density image 0.92 (0.90, 0.95) 89.9% 86.6% 79.1% 72.1%

RPC = radial peripapillary capillary
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Table 3:

Estimated areas under the receiver operating curves (AUROC) and sensitivities at fixed specificities for all 

investigated univariable OCTA and OCT parameters, gradient boosting classifier (GBC) models and 

convolutional neural network (CNN) analyses for early glaucoma (130 healthy eyes from 80 subjects and 183 

early glaucoma eyes, with mean deviation ≥ -6 dB, from 135 patients).

Sensitivity At Adjusted AUROC p-
value compared to 

Deep LearningAUROC (95% CI) 80% Spec. 85% Spec. 90% Spec. 95% Spec.

Univariate variable

Whole image vessel density 
(wiVD)

0.73 (0.70, 0.76) 74.5% 73.1% 68.9% 50.2% <0.001

Whole image capillary density 
(wiCD)

0.75 (0.71, 0.80) 76.1% 74.4% 69.6% 53.6% <0.001

Circumpapillary RNFL thickness 
(cpRNFL)

0.77 (0.73, 0.81) 78.2% 75.4% 71.6% 58.5% <0.001

Gradient Boosted Classifiers

WiVD GBC 0.80 (0.74, 0.81) 78.5% 75.1% 70.7% 60.8% <0.001

WiCD GBC 0.82 (0.77, 0.83) 76.9% 77.5% 72.2% 61.9% <0.001

WiVD and CD GBC 0.83 (0.78, 0.85) 81.3% 79.7% 73.6% 62.5% <0.001

cpRNFL GBC 0.85 (0.83, 0.87) 81.9% 80.4% 74.1% 63.1% 0.002

CNN

En face RPC density image 0.90 (0.88, 0.94) 87.1% 85.3% 77.2% 69.3%

RPC = radial peripapillary capillary
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Table 4:

Estimated areas under the precision recall curves (AUPRC) and classification comparisons for all investigated 

univariable OCTA and OCT parameters, gradient boosting classifier (GBC) models and machine learning 

models (130 healthy eyes from 80 participants and 275 glaucoma eyes from 185 patients).

AUPRC (95% 
CI)

Adjusted 
AUPRC p-

value 
compared to 

Lenet-5

Adjusted 
AUPRC p-

value 
compared to 

VGG16 
without 
transfer 
learning

Adjusted 
AUPRC p-

value 
compared to 

Resnet-50 
without 
transfer 
learning

Adjusted 
AUPRC p-

value 
compared to 
VGG16 with 

transfer 
learning

Adjusted 
AUPRC p-

value 
compared to 

Resnet-50 
with transfer 

learning

Univariate variable

Whole image vessel density 
(wiVD)

0.85 (0.76, 0.88) <0.001 <0.001 <0.001 <0.001 <0.001

Whole image capillary density 
(wiCD)

0.86 (0.79, 0.88) <0.001 <0.001 <0.001 <0.001 <0.001

Circumpapillary RNFL 
thickness (cpRNFL)

0.86 (0.81, 0.87) <0.001 <0.001 <0.001 <0.001 <0.001

Gradient Boosted Classifiers

WiVD GBC 0.89 (0.82, 0.92) 0.08 <0.001 <0.001 <0.001 <0.001

WiCD GBC 0.89 (0.83, 0.92) 0.07 <0.001 <0.001 <0.001 <0.001

WiVD VD and CD GBC 0.91 (0.88 0.93) 0.12 0.03 0.04 <0.001 <0.001

cpRNFL GBC 0.93 (0.91, 0.95) 0.35 0.1 0.12 0.01 0.02

Lenet-5

En face RPC density image 0.92 (0.90, 0.95) 0.06 0.07 0.02 0.03

VGG16 without transfer 
learning 

En face RPC density image 0.95 (0.94, 0.97) 0.06 0.42 0.18 0.21

Resnet-50 without transfer 
learning 

En face RPC density image 0.95 (0.94, 0.97) 0.07 0.42 0.36 0.38

VGG16 with transfer learning 

En face RPC density image 0.97 (0.95, 0.99) 0.02 0.18 0.36 0.64

Resnet-50 with transfer 
learning 

En face RPC density image 0.97 (0.95, 0.99) 0.03 0.21 0.38 0.64
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