
UC Merced
Proceedings of the Annual Meeting of the Cognitive Science 
Society

Title
The Influence of Knowledge and Expectations for Color on Episodic Memory

Permalink
https://escholarship.org/uc/item/56k3m6r2

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 36(36)

ISSN
1069-7977

Authors
Persaud, Kimele
Hemmer, Pernille

Publication Date
2014
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/56k3m6r2
https://escholarship.org
http://www.cdlib.org/


The Influence of Knowledge and Expectations for Color on Episodic Memory 
 

Kimele Persaud (Kimele.persaud@rutgers.edu) 

Pernille Hemmer (Pernille.hemmer@rutgers.edu) 
Department of Psychology, Rutgers University 

 

Abstract 

Expectations learned from our environment are known to exert 

strong influences on episodic memory. Furthermore, people have 

prior expectations for universal color labels and their associated 

hue space—a salient property of the environment. In three 

experiments, we assessed peoples’ color naming preferences, and 

expectation for color. Using a novel experimental paradigm, we 

then assessed free recall for color. We found that people’s color 

naming preferences were consistent with the universal color terms 

(Berlin & Kay, 1969), as well as a strong subjective agreement on 

the hue values associated with these color labels. We further found 

that free recall for color was biased towards the mean hue value for 

each preferred color. We modeled this relationship between prior 

expectation and episodic memory with a rational model under the 

simple assumption that people combine expectations for color with 

noisy memory representations. This model provided a strong 

qualitative fit to the data. 

Keywords: Episodic memory; color; prior knowledge and 

expectations; Bayesian models. 

Introduction 

“Mere color, unspoiled by meaning, and unallied with 

definite form, can speak to the soul in a thousand different 

ways.” ― Oscar Wilde 

 

Color is fundamental to how we identify, define, and 

organize the world around us. As such, color stands as an 

essential feature in many facets of society, ranging from the 

identification of individuals of a racial or ethnic group to the 

facilitation of simple communication among people. 

Similarly, colors also serve to represent and unite members 

of social groups as illustrated by the colors of a country’s 

flag and the colors of sports teams. Color not only holds 

cultural relevance, but is also an invaluable domain for 

investigating human cognition.  

Color has been employed in efforts to understand 

cognition ranging from modelling  the emergence of 

language universals as a function of learning biases (Xu, 

Griffiths, & Dowman, 2010), to measuring the influence of 

categorization on perception (Webster & Kay, 2012). For 

example, color naming has been used to understand the 

perceptual commonalities among different languages and 

individuals of different cultures (e.g., Davies & Corbett, 

1997; Xu, Griffiths, & Dowman, 2010). An important 

finding from cross cultural studies of the universality of 

basic color terms is the existence of 11 basic colors: white, 

black, brown, gray, red, orange, yellow, green, blue, purple, 

and pink (Berlin & Kay, 1969).  

Additional support for the 11 universal color terms comes 

from studies of perception (Hardin, 2005; Uchikawa & 

Shinoda, 1996; Webster & Kay, 2012). These terms can be 

utilized to adequately partition the color space into 11 

regions (Uchikawa & Shinoda, 1996), and discretize this 

space into small sets for categorization and cognitive 

processing (Webster & Kay, 2012). Taken together, 

cognitive studies of color naming and color perception 

suggest that people have clear knowledge and expectations 

for colors.  

Across a broad range of domains, expectations learned 

from the underlying environment have been shown to 

influence performance on cognitive tasks, such as 

perceptual categorization (Huttenlocher, Hedges, and 

Duncan, 1991; Huttenlocher, Hedges, & Vevea 2000; Jern 

and Kemp, 2013; Galleguillos  and Belongie, 2010 ), visual 

perception (Eckstein, Abbey, Pham, & Shimozaki, 2004; 

Epstein, 2008; Todorovic, 2010), color perception (Mitterer 

& de Ruiter, 2008), and long term memory (Bartlett, 1932; 

Hemmer and Steyvers, 2009a). People appear to have strong 

prior expectations for their natural environment, and use this 

knowledge optimally. For example, Huttenlocher et al. 

(1991) showed that having prior knowledge of the 

underlying stimulus distribution improved average recall. 

They found that responses regressed toward the mean of the 

overall stimulus distribution, which enhanced performance.  

Furthermore, this influence of prior knowledge has been 

shown to be hierarchical, such that the structure of the 

natural environment interacts with recall at multiple levels 

of abstraction. For instance, recall for the size of objects was 

shown to be biased towards the overall size distribution, or 

the distributions associated with specific objects, as a 

function of familiarity (Hemmer & Steyvers, 2009a; 2009b). 

Similarly, prior knowledge about the height of people 

influences recall, not only towards the general height of 

people, but also at a more fine-grained level based on 

gender - i.e., knowledge that females on average are shorter 

than males (Hemmer, Tauber & Steyvers, in revision). 

Such behavior is well modeled by a rational model of 

memory which assumes that noisy data in the mind is 

optimally combined with prior knowledge about the 

environment. The question is, how does an observer in a 

task integrate noisy and incomplete information stored in 

episodic memory with prior knowledge of the environment? 

In a real world example, imagine that an individual has 

witnessed a car accident. Later, when questioned by the 

police, that individual is asked to recall certain aspects of 

the event, such as the color of a car seen fleeing the scene. 

The witness might only have a vague recollection of the 

events that transpired - the car was greenish. However, they 

are also likely to have prior knowledge about the possible 
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colors of cars - green cars tend to be darker green, and are 

unlikely to be neon green. This knowledge might provide a 

useful cue when trying to reconstruct the event from 

memory. In this scenario, and many other real world 

situations, having prior knowledge and expectations for the 

regularities of the environment can help fill in vague and 

uncertain memories and improve average recall. 

In this paper, we investigate peoples’ prior expectation for 

color, and the influence of prior knowledge for color on 

episodic memory. The goals of this investigation are three-

fold. First, we seek to determine people’s color naming 

preferences and quantify prior expectation for hue values 

associated with their preferred color labels. Second, we 

quantify the contribution of prior knowledge on episodic 

memory for color. Third, we model this relationship in a 

simple rational model of memory. We develop a novel 

experimental approach for assessing free recall for color, 

where participants generate the hue values associated with 

color labels using a continuous color wheel, as opposed to 

recognition of color patches, as has been previously 

conducted (e.g., Uchikawa & Shinoda, 1996). This paper 

gives the first characterization of the influence of 

expectation on free recall for color. 

Knowledge and Expectations for Color 
In the following two experiments, we determine peoples 

color naming preferences, and assess their prior expectation 

for the hue values associated with the preferred color labels.  

Experiment 1: Color-Naming Task 
The goal of the color naming task was to determine 

peoples color naming preferences over the hue color space. 

We predict that color naming preferences will correspond to 

the universal color terms (Berlin & Kay, 1969). The task 

required subjects to provide the color label that best 

represented a given hue value. We will take this as a 

measure of peoples’ preferences for color labels. 

Method 
 

Participants Forty-seven Introductory Psychology 

undergraduate students at Rutgers University participated in 

this study in exchange for course credit. Participants’ ages 

ranged from 18-23 years of age.  All participants provided 

self-reports of normal color vision. Data from one subject 

was discarded because no responses were recorded. 

Materials The stimuli consisted of 48 colors sampled from 

the hue color space. Colors varied in hue by 5 units (i.e. hue 

values of 0, 5, 10, etc) along the full hue range from 0-239, 

based on the ability to perceptually differentiate two 

sequential colors in the range. Saturation and luminance 

were held constant at 100% and 50%, respectively. Stimuli 

were presented on 23 inch Dell monitors that were all color 

calibrated using Windows 7 Display Color Calibration. All 

experiments were written and presented in Matlab. 

Procedure A color patch measuring three-by-three inches 

was presented in the center of the computer screen. 

Participants were asked to provide a color label for that 

specific patch by typing their answer in a response box 

below the color patch. The patch remained on the screen 

until the participant was satisfied with their response and 

clicked continue to view the next patch. Each of the 48 color 

patches were presented twice in random order, for a total of 

96 trials. The experiment was self-paced, and took on 

average 20 minutes to complete. 

Results 
Figure 1 shows label frequencies for the 48 color hue 

values. The top panel shows the 7 most frequent labels (red, 

orange, yellow, green, blue, purple and pink). Because 

saturation and luminance were held constant, the presented 

hue values did not include black, white, brown or gray. The 

7 labels comprised 28% of all responses in the experiment. 

The bottom panel of Figure 1 shows label frequencies for 

the top 21 labels, comprising 59% of total labels. The cutoff 

for including the 21 labels was based on a label being given 

a minimum of 40 times. The results show that participants 

expressed a large degree of agreement. Furthermore, the 7 

preferred color labels coincide with the universal color 

terms of Berlin & Kay (1969).   

Experiment 2: Color Generation Task 
The goal of the color generation task was to invert the 

color naming task, and determine the hue values that people 

associate with given color labels. In this task, given a 

specific color label, participants were asked to 'generate' the 

hue value that best represented that label.  We develop a 

novel experimental approach to allow participants to freely 

generate color hue responses. We predict a systematic 

agreement between subjects for the hue values 

corresponding to the labels centered on the universal color 

terms. We take this as a measure of peoples’ prior 

expectation for color. 

 

 
 
Figure 1. Frequency distributions over color labels in Experiment 1. 

The top panel illustrates the frequency distributions over the 7 most 

frequent colors labels. Each bar represents a 5 unit range on the hue 

scale from 0-239.  The colors are presented below the corresponding 

hue values. The bottom panel illustrates the frequency distributions 

over the 21 most frequent labels.   
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Method 
 

Participants Forty-nine undergraduate students at Rutgers 

University participated for course credit or monetary 

compensation of $10. All participants provided self-reports 

of normal color vision. Participants were not involved in 

Experiment 1. 

Materials The stimuli consisted of the 21 most frequent 

color labels provided in Experiment 1. All stimuli were 

presented on the same calibrated monitors used in 

Experiment 1. 

Procedure The procedure of Experiment 2 was the inverse 

of Experiment 1. Participants were presented with a color 

label and were instructed to generate the color hue 

corresponding to that label using a color wheel. The label 

was presented in 24 point Georgia font at the upper right 

side of the computer screen. To generate a color hue 

response, participants moved a cursor over a large black 

circle presented on the left side of the computer screen. The 

black circle was a mask over a color wheel that varied in 

hue only. The participant could not see the underlying color 

wheel - only the black mask
1
. When the participants clicked 

on the black circle, the corresponding color from that 

location of the underlying color wheel was shown in a three-

by-three inch patch to the right of the wheel and below the 

color label. The three-by-three inch square was presented in 

black at the beginning of each trial in order to prevent 

biased responses. The color wheel, hidden beneath the black 

mask, was rotated randomly by 45 degrees for each trial so 

that it was not possible to predict a color’s location on the 

wheel from trial to trial. Participants could click as many 

times as they wished to generate the color they thought best 

                                                           
1 The color wheel was masked to discourage selection of values 

only at the edges or directly in the center of each color category. 

(see Goldstone (1995) for a similar approach). 

 

corresponded to the given color label. Once participants 

were satisfied with the color they generated, they pressed 

the “space bar” to continue to the next trial. Participants 

generated colors for 21 labels twice each, for a total of 42 

trials, presented in random order.  The experiment was self-

paced, and took on average 30 minutes to complete. 

Results 
Figure 2 shows frequency distributions over the hue 

values generated to reflect the given color labels. The color 

wheel allowed participants to generate colors that differed 

by 1 unit of hue, resulting in 239 possible hue values. To 

facilitate comparison between Experiments 1 and 2, 

responses where binned into the same 48 hue values, as in 

Experiment 1 (varying by 5 units on the hue range from 0-

239, such that all hue values that ranged between 2.5-7.5, 

where included in the first bin, hue values between 7.5-12.5 

fell in the second, and so on). The top panel of Figure 2 

shows the hue value frequency distributions for the 7 most 

frequent labels from Experiment 1 (red, orange, yellow, 

green, blue, purple and pink). As in Experiment 1, 

participants expressed a large degree of agreement. Because 

of the circular nature of the hue space, we fit the frequency 

distributions with von Mises distributions (a.k.a. the circular 

normal distribution). Outliers more than 40 hue values from 

the highest or lowest value in a given colors hue range (see 

Table 1) were removed before fitting the von Mises 

distributions, resulting in the removal of 11 responses. The 

means and standard deviations from the von Mises fits are 

shown in Table 1. The distributions reflect the notion that a 

given color label is best represented by a small range of hue 

values, with some overlap at the edges of the distribution 

and strongest agreement for the hue value that resulted in 

the most frequent response of that label in the color naming 

task. Figure 2, bottom panel shows the hue value frequency 

distributions for all 21 stimulus labels. 

Memory for Color 
In the following experiment, we assess free recall for 

color. We use the hue values from Experiment 1 as the 

experimental stimuli. Responses were solicited using both 

the naming task and the color generating task from the two 

previous experiments. The novelty of this experiment is the 

 
Figure 2 Frequency distributions over hue values from Experiment 

2. The top panel shows the frequency at which a particularly hue 

value was generated on the color wheel for one of the 7 preferred 

colors. The 7 color labels are presented below their corresponding 

hue values. The bottom panel shows the hue values generated from 

the 21most frequent labels from Experiment 1. Each bar represents 

a 5 unit range on the hue continuum from 0-239. 

Table 1. Mean (SD) of hue values and hue ranges for top 7 

color labels 
                              Mean (SD)         Hue Range 

Red 1.1 (2.56) (230–239, 0 – 5) 

Orange 20.23(5.59) (10-30) 

Yellow 40.05 (3.04) (35-50) 

Green 79.79 (10.34) (55-110) 

Blue 153.53(12.13) (115-170) 

Purple 189.41 (6.27) (175-190) 

Pink 215.60 (9.57) (195-225) 
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methodology employed to assess free recall of color. We 

predict that recall will be systematically biased towards the 

mean of the hue range associated with each preferred color 

label. For example, for hue values associated with the color 

label 'red', we predict that darker shades of red (above the 

mean of the hue range) will be recalled as being lighter, 

while lighter shades of red (hue values below the mean of 

the hue range) will be recalled as being darker.  

Experiment 3: Color Memory Task 
The color memory task was a combination of the two first 

experimental tasks, in that participants studied a continuous 

sequence of shapes filled with color selected along the hue 

range in the same manner as the color patches presented in 

Experiment 1. At test, participants were then asked to both 

provide a color label for the color they recalled studying, as 

well as use the same color wheel as that used in Experiment 

2 to generate their reconstruction of the studied color. The 

goal was to measure the influence of prior expectations for 

color hue on free recall for color. 

Method 
Participants Eighteen Introductory Psychology 

undergraduate students at Rutgers University participated 

for course credit. All participants provided self-reports of 

normal color vision. These participants were not involved in 

Experiments 1 or 2. 

Materials The stimuli consisted of 48 shapes uniformly 

filled with the same 48 hue values used in Experiment 1. 

The purpose of the shapes was only to cue subjects on test 

trials to recall the fill-color of the shape. The shapes and 

colors were paired randomly, and pairings were randomized 

across subjects. Participants studied each shape and color 

only once. Stimuli were presented on the same calibrated 

monitors used in Experiments 1 and 2. See Figure 3 for 

sample stimuli. 

Procedure Participants were shown a continuous study-test 

sequence of color filled shapes. Shapes were presented one 

at a time at the center of the computer screen for 2 seconds. 

They were told to study the color of each shape as they 

would be asked to recall the color of the shapes. Test trials 

were randomly interleaved between study trials (see Figure 

3 for a sample study test sequence). On a test trial, a shape 

from a previous study trial, but filled with gray, would 

appear at the center of the screen. Participants were asked to 

make three responses: 1) whether or not they recalled 

studying the shape presented. They responded by clicking 

either on a yes or a no button presented at the bottom of the  

screen. 2) the color of the shape at study (this question was 

posed regardless of their response to the recognition 

question). Responses were typed into a text box and 

participants pressed “enter” to continue. 3) to recreate the 

studied color of the shape using the same color wheel as was 

used in Experiment 2. Test trials were self-paced. 

Results 
To measure the influence of prior knowledge, we 

calculated recall bias as the difference between the recall 

hue value and the studied value. We restricted the analyzed 

sample to include only cases in which subjects provided the 

correct label on the second (color label) question of the test 

trials (e.g. datum was excluded if the subject recalled blue, 

when the color studied was red (based on the most frequent 

label for that hue value in the color naming task), however, 

responses such as light blue, if the studied color was blue, or 

yellowish-green if the studied color was green, were 

acceptable). Hue range for a color category (listed in Table 

1) was determined based on the lowest point between two 

response distributions in the color naming task. 

Furthermore, hue responses that deviated by more than 6 

standard deviations from the mean of the determined hue 

range were excluded. In essence this corresponded to 

someone correctly providing the label ‘blue’ to a blue hue 

value, but then reconstructing it as red with the color wheel. 

This resulted in the removal of 4 data points. Five test trials 

were also excluded because no response was recorded. 

For simplicity and visual clarity, only analysis of the 7 

primary labels is presented. Thus, 55% of the data was used 

in this analysis. The results from this experiment revealed 

regression to the mean affects as illustrated in Figure 4 top 

panel. For each of the 7 colors, subjects overestimated 

values below the mean of each color’s hue range and under 

estimated the values above the mean of each color labels 

corresponding hue range. A linear regression model was 

fitted to each subject for each of the 7 preferred colors 

assuming a single slope and separate intercept for each 

regression line (see Figure 4 top panel). A one-way analysis 

of variance revealed a significant main effect of intercepts 

(F[694]=664, p<.001) across color categories. The negative 

slope of the lines indicates a regression to the mean effect, 

such that studied hue values below the mean of that color 

 

Figure 3. Sample of continuous study/ test sequence.  S denotes 

a study trial with the trial number in subscript. T denotes a test 

trial for the study trial number in subscript.  

Table 2. Mean slopes and intercepts by color label 

 
 

 

 Slope  Intercept 

                         Mean SD  Mean SD 

Red -.046 0.13  -3.4137 3.26 

Orange -.046 0.13  10.6451 2.63 

Yellow -.046 0.13  18.2125 3.61 

Green -.046 0.13  37.0389 8.79 

Blue -.046 0.13  64.9861 4.43 

Purple -.046 0.13  88.1715 4.90 

Pink -.046 0.13  92.4914 6.79 

 Note. N=18 
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category were overestimated at recall and studied hue values 

above that color category were underestimated at recall. The 

different intercepts for each of the color categories indicate 

regression towards a different mean hue value for each of 

the color categories. Table 2 shows the slope and intercepts 

for the 7 color labels. 

Modeling 
The results show that each of the 7 preferred color labels 

are associated with pre-experimental prior knowledge of the 

associated hue range, each exerting an influence on 

reconstructive memory. That is, hue values less than the 

mean of the basic color were overestimated and hue values 

greater than the mean were underestimated. 

We propose that this behavior can be modeled with a 

simple rational model which assumes that prior knowledge 

for different color categories exert an influence on episodic 

recall. This rational analysis emphasizes the relationship 

between behavior and the structure of the environment. For 

recall, this assumes that the goal of the memory system is to 

efficiently store and retrieve relevant information, which 

needs to be combined with prior knowledge and 

expectations about the environment. 

Suppose the observer in our task studies a stimulus 

feature θ. Based on our experiment, we will assume that the 

studied features (i.e., hue values) are Gaussian distributed, θ 

~ N (μ, σ
2
), with the prior mean μ and variance σ

2 
of the 

features drawn from the environment. When the specific 

feature θ is studied, we assume that this leads to memory 

traces y, drawn from a Gaussian distribution centered on the 

original studied value, and a memory noise process ψ, y ~ 

N(θ, ψ). The noise process determines how closely the 

stored memory trace resembles the original studied stimulus 

feature. We will further assume the observer has a prior 

expectation for the stimulus distribution that mirrors that of 

the distribution in the environment. At test, the goal of the 

observer is to recall the studied stimulus feature θ using 

noisy samples y retrieved from memory and their prior 

expectation for the distribution of the stimulus. Bayes’ rule 

gives a principled account of how to combine noisy memory 

representations with prior expectations to calculate the 

posterior probability, 

         p (ϴ|y) ∝ p (y |ϴ)  p (ϴ)                Eq (1) 

The posterior probability p(θ|y) describes how likely 

feature values θ are given the noisy memory traces y and 

prior expectation for the feature p(θ). Standard Bayesian 

techniques (Gelman et al., 2003) can be used to compute the 

mean of the posterior distribution:   

                  Eq (2) 

where w= (1/σ0
2
)/ [(1/σ0

2
) + (n/σm

2
)] and n is the number of 

samples taken from episodic memory. This rational analysis 

of recall suggests that the optimal behavior is a trade-off 

between the strength of the evidence in memory and the 

likelihood of the event in the natural environment. When 

our memory representation is strong, recall will closely 

resemble the studied feature value, but when our prior 

expectation is strong, and memory content is noisier, recall 

will more closely reflect the prior expectation.  

In this vein, the rational model assumes that the 

combination of prior expectations and noisy content in 

memory optimally combine to produce recall of episodic 

experiences. Furthermore, the model predicts a systematic 

regression to the mean effect, such that lighter shades (lower 

hue values) will be recalled to be darker, and darker shades 

(higher hue values) will be recalled to be lighter.  

To implement the model, we specified a prior with mean 

μ for each color category to be equal to the mean of the von 

Mises (circular Gaussian) distribution fitted to the frequency 

distributions in Experiment 2. In other words, we assume 

these distributions to be representative of peoples prior 

expectation over hue values for a given color category.  In 

the same way, we set σ
2 

for each color category equal to the 

variances from those same distributions in Experiment 2 

(see Table 1).
 
We simulated a memory noise (ψ) that varies 

for each color category based on the prior standard 

deviations derived from Experiment 2 (see table 1). We 

used the model to simulate exactly the same trials that we 

used in the experiment – including the same sizes for study 

stimuli. 

Figure 4 bottom panel shows the simulated responses 

from the model. The results show effects of the prior 

expectation for each preferred color. Lower hue values are 

estimated to be larger and larger hue values are estimated to 

be lower, relative to each color category. Overall, the model 

produces results that are qualitatively similar to the 

observed data and captures the overall trend in the data. The 

strength of the current approach is that we make the very 

simple assumption that peoples prior expectations are drawn 

directly from the environment. This provides strong support 

 
 

Figure 4. Top panel: Recall bias by color category. Positive bias 

indicates over estimation and negative bias indicates 

underestimation. The black line indicates no bias. The data points 

are color coded with the hue for that color range and the 

corresponding labels are given on the x-axis. The lines give the 

regression fits for each preferred color label. Bottom panel: Model 

predictions with regression fits from the memory data.  
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to the idea that reconstruction from memory is a 

combination of episodic memory and prior expectations 

learned from the environment. 

Discussion 
In this paper we sought to investigate the influence of 

expectations for color on episodic memory. We measured 

prior expectation via two tasks: a color naming task which 

elicited color naming preferences, and a unique task in 

which participants used a color wheel to generate colors 

most closely associated with the given color label. The 

results showed naming preferences that are consistent with 

the existing literature (Berlin & Kay, 1969), namely red, 

orange, yellow, green, blue, purple and pink. Subjects also 

showed a high level of agreement in both Experiments 1 and 

2. We then measured the influence of expectation on free 

recall for color. Results revealed a regression to the mean 

effect in free recall, such that studied hue values below the 

mean of that color category were overestimated at recall and 

studied hue values above that color category were 

underestimated. This suggests that recall is influenced by 

expectations for color. 

This behavior was modeled with a simple rational model 

of memory, which assumes that prior knowledge for 

different color categories exert an influence on episodic 

recall. In this way, recall is a combination of prior 

expectations and noisy memory content. The model 

provides qualitative predictions that are a good fit to the 

observed data. The model captures the regression to the 

mean effect for each of the 7 preferred labels. Importantly, 

the only assumption made in the model was that prior 

expectations for color were well described by the 

performance in the color generation task. 

Here, we do not provide an analysis of sub-labels (all 21 

labels). However, results for hue values within the blue 

range are interesting in that the pattern of over and 

underestimation appears to be dispersed. This may be the 

result of participants separating the hue values in the blue 

range to account for not just the universal label ‘blue’, but 

also high frequency sub-labels (i.e. light blue and sky blue). 

This suggests that colors might be hierarchically organized, 

such that blue is the general color label, and sub-labels are 

based on subjective naming preferences. We believe that 

this investigation has provided important support for 

existing understanding of the structures of color categories, 

as well as a new understanding of relationship between prior 

expectations and free recall for color.   
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