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Xuanxuan Bi, ..., Khalil Amine,

Jun Lu, Ying Shirley Meng

junlu@anl.gov (J.L.)

shirleymeng@ucsd.edu (Y.S.M.)

HIGHLIGHTS

Oxyhalogen-sulfur

electrochemistry helps to build a

hybrid Li-ion/Li-O2 battery

Both Li ions and O anions can be

reversibly stored in the MoS2
structure

The Li2MoO2S2 is isostructural to

the Li2MoO4 rather than other

thiomolybdates
A hybrid Li-ion/Li-O2 battery was constructed based on oxyhalogen-sulfur

electrochemistry. Both Li ions and O anions can be reversibly stored in the MoS2
structure, forming a Li2MoO2S2 compound. This hybrid Li-ion/Li-O2 cell combines

the advantages of Li-ion and Li-O2 batteries, which paves a way to push the limit of

current Li-ion batteries and transition to the next generation of high-energy

batteries.
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Article
Hybrid Li-Ion and Li-O2 Battery Enabled
by Oxyhalogen-Sulfur Electrochemistry
Xuefeng Wang,1 Yejing Li,1 Xuanxuan Bi,2 Lu Ma,3 Tianpin Wu,3 Mahsa Sina,1 Shen Wang,1

Minghao Zhang,1,4 Judith Alvarado,1,4 Bingyu Lu,1 Abhik Banerjee,1 Khalil Amine,2 Jun Lu,2,*

and Ying Shirley Meng1,4,5,*
Context & Scale

The lithium-oxygen (Li-O2) battery

is known for its high capacity but

encounters large voltage

hysteresis and poor cycling

stability. In contrast, conventional

Li-ion batteries have low

polarization and long cycling life

but show low capacity based on

the intercalation chemistry. A

combination of the Li-O2 batteries

and Li-ion batteries in one

electrochemical system is

expected to combine their

advantages and avoid their
SUMMARY

The large voltage hysteresis between charge and discharge results in significant

energy loss, which hinders practical application of the high-energy Li-O2 bat-

tery. Oxyhalogen-sulfur electrochemistry offers a new hybrid Li-ion/Li-O2

battery, where both Li ions and O anions are reversibly stored in the MoS2 struc-

ture. A Li2MoO2S2 compound is formed as the main discharge product that has

never been previously observed in the literature. The reaction mechanism and

the structure of the Li2MoO2S2 are probed by Raman spectroscopy, X-ray

photoelectron spectroscopy, X-ray absorption spectroscopy, differential elec-

trochemical mass spectrometry, and UV-visible spectroscopy. The results

show that theMoS2 is oxidized during discharge and is recovered during charge.

The iodine intermediates play an important role in triggering the sequence of

electrochemical and chemical reactions in the cell. The Li2MoO2S2 is isostruc-

tural to the Li2MoO4 rather than adopting structures of other known molybde-

num oxysulfides.
disadvantages, which will show

promise in meeting the future

energy requirement. In this work,

a hybrid Li-ion/Li-O2 battery was

constructed based on the

oxyhalogen-sulfur

electrochemistry. Both Li ions and

O anions can be reversibly stored

in the MoS2 structure, forming a

Li2MoO2S2 compound. The iodine

intermediates play an important

role in triggering the sequence of

electrochemical and chemical

reactions in the cell. This hybrid Li-

ion/Li-O2 cell paves a way to push

the limit of current Li-ion batteries

and transition to the next

generation of high-energy

batteries.
INTRODUCTION

The discovery of a new material such as graphene1 brought innovation to various

research areas. For the energy-storage field, a potential high-energy system can

be constructed based on a novel electrochemical reaction. Much effort has been

made in both experimental and computational methods to find new compounds.

One of the promising approaches is through the electrochemical process in chemi-

cal batteries where some thermodynamically metastable materials exist as interme-

diate products. The advantage of the electrochemical process is the ability to control

the stoichiometric ratio precisely and continuously at room temperature. Electro-

chemical experiments have been useful in determining the phase diagram of well-

known materials that include LixC6 and NaxCoO2, which are known as intercalation

battery materials.2–4 More work needs to be done to discover new materials for

high-energy-density batteries.

The aprotic Li-O2 battery is a promising energy-storage technology because of its

extremely high theoretical energy density (3,500 Wh kg�1 based on the reaction

2Li + O2/Li2O2).
5,6 However, for it to be a practical technology several challenges

need to be addressed, for example, unclear reaction mechanism, large voltage hys-

teresis, unstable electrolyte, and Li-metal dendritic growth. Recent progress showed

that the reaction pathway and discharge products vary depending on the electrolyte

and catalyst species.7 Electrolyte solvents with a high donor number promote the

dissolution of LiO2 intermediate to form Li2O2.
8,9 Disproportionating from unstable

LiO2 to Li2O2 can be partly inhibited by the iridium catalyst, forming LiO2 as the main
Joule 2, 1–12, November 21, 2018 ª 2018 Elsevier Inc. 1
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discharge product.10 Combining the reduced graphene oxide (rGO) and lithium

iodide (LiI) results in LiOH formation; however, the electrochemical reversibility of

the LiOH is still under debate.11–14 Researchers aim to facilitate the sluggish reaction

on the interface between the oxygen gas (O2(g)), the Li ions in the liquid electrolyte,

and the solid catalyst support. With the assistance of distinctive catalysts and/or

redox mediators, the large voltage hysteresis of the Li-O2 battery can be reduced

to a certain extent, although it is still not comparable with that of Li-ion batteries

based on the intercalation reaction.

The significant volume change of the cathode is another severe problem that hinders

the practicality of Li-O2 batteries. The accumulation of sporadic discharge products

can clog the pores of the electrode. As a result, the battery shuts down. The host

structure that leads the growth of solid discharge product and accommodates

O2(g) will keep the electrode active for long-term cycling.

Herein, a hybrid Li-ion/Li-O2 battery based on two-dimensional molybdenum sulfide

(MoS2) is constructed to solve the aforementioned issues. MoS2 is a well-known elec-

trocatalysis in diverse fields of hydrodesulfurization (HDS),15,16 photocatalysis,17,18

hydrogen evolution reaction (HER),19–21 and oxygen reduction reaction (ORR). Its

large interlayer spacing with weak bond interaction allows foreign ions and mole-

cules to intercalate.22,23 With the assistance of LiI, both Li ions and O anions can

be stored into the MoS2 to form a compound, Li2MoO2S2. The charge/discharge

potential curves of this hybrid Li-ion/Li-O2 battery almost overlap. The reaction

mechanism is probed by Raman spectroscopy, X-ray photoelectron spectroscopy

(XPS), X-ray absorption spectroscopy (XAS), differential electrochemical mass spec-

trometry (DEMS), and UV-visible spectroscopy. The enhanced kinetic reaction is due

to the synergetic effect of the MoS2, O2, and LiI. Our findings provide a new insight

and deeper understanding for the design of novel architecture for hybrid Li-ion/

Li-O2 batteries.
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RESULTS

Edge-oriented MoS2 nanosheets mounted on the rGO planes were designed as the

cathode catalyst and to support the Li-O2 batteries. Exposing the active MoS2 edges

enhances its catalytic performance.24,25 Adding rGO forms a 3D electronic conduc-

tive network and guarantees fast charge transfer. Through the hydrothermal reaction

(for the detailed method, see Supplemental Information), the rGO-MoS2 composite

grows on the stainless-steel mesh and its morphology is shown in Figure 1. As ex-

pected, MoS2 nanosheets are vertically aligned on the rGO nanofilms. Electron-

dispersive spectroscopy (EDS) mapping confirms the above architecture. The

elemental carbon (Figure 1E) is evenly distributed while both elemental sulfur (S)

(Figure 1F) and molybdenum (Mo) (Figure 1G) are confined in the local perpendic-

ular sheets. Both the MoS2 and rGO nanosheets are ultrathin (Figure 1B) and consist

of a few atomic layers (Figure 1C). Such a few layered MoS2 with open edges will

greatly facilitate the reactions in Li-O2 batteries, and its open structure may allow

insertion of the oxygen anions.

The electrochemical performance of the rGO-MoS2 is evaluated in a specially de-

signed coin cell with pores on the cathode cap. The electrolyte contained

0.25 mol L�1 lithium bis(trifluoromethyl) sulfonylimide/dimethoxyethane (LiTFSI/

DME) with 0.05 mol L�1 LiI additive. Adding LiI as a redox mediator facilitates the re-

actions in Li-O2 batteries (Figures 2 and S1). Figure 2A shows the potential curves

of rGO-MoS2 when both the discharge and charge capacities are limited to
JOUL 261
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Figure 1. Morphology of the rGO-MoS2 Composite

(A and B)Q13 Scanning electron microscopy images at different magnifications.

(C) Transmission electron microscopy imageQ14 .

(D–G) Scanning transmission electron microscopy images and the corresponding EDS mappings.

Blue, red, and green in (E), (F), and (G) stand for the elemental carbon (C), sulfur (S), and

molybdenum (Mo), respectively.
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500 mAh g�1 (calculated by the weight of the rGO-MoS2). At the first discharge, the

potential curve looks normal with a plateau around 2.65 V, and the charge process

finishes before 3.0 V. However, at the second discharge it begins with a novel upper

plateau around 2.93 V with 315 mAh g�1 capacity followed by a typical low plateau

around 2.68 V with 150 mAh g�1 capacity. With continuing cycles, the low plateau

gradually vanishes while the upper plateau becomes dominant. It is worth noting

that the potential curves of the rGO-MoS2 almost overlap at the 20th cycle (Fig-

ure 2A), similar to that of the conventional Li-ion batteries based on the intercalation

chemistry. The voltage gap (the potential difference between the charge and

discharge at 250 mAh g�1) is as low as 20 mV and increases slightly after 50 cycles

with an energy efficiency approaching 99%. This unique feature is very promising

for making Li-O2 batteries of practical use.

To find out the main contributors giving such distinctive potential curves of rGO-

MoS2, we conducted a series of controlled experiments at the same current density

(50mA g�1) and capacity (500mAh g�1), the results of which are shown in Figures 2B,

S1, and S2. It is obvious that a combination of MoS2, LiI and O2(g) is essential to

achieve the above lowest polarization (Figures 2B and S1). Absence of any of

them will lead to different potential curves and larger voltage hysteresis. Further ad-

justing the rGO-MoS2 loading and LiI amount results in the similar potential curves

(Figure S2), demonstrating that this kind of potential curve is more related to the na-

ture of the MoS2 rather than the LiI in the Li-O2 battery. The distinctive potential

curve of rGO-MoS2 with LiI (Figures 2 and S1), especially the unique upper discharge

plateau around 2.93 V, indicates alternative reaction mechanisms associated with

MoS2, Li ions and O2(g).

To investigate the reaction mechanism of the rGO-MoS2 with LiI, we utilized a series

of characterization techniques. Figure 3 demonstrates the results obtained by scan-

ning electron microscopy, Raman spectroscopy, XPS, and XAS. When the cell was

first discharged to 300 mAh g�1, no obvious morphology changes (Figure 3B)
JOUL 261
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Figure 2. Potential Curves of Different Electrodes at 0.1 C

(A) Selected potential curves of the rGO-MoS2 with LiI at different cycles.

(B) Compared potential curves of rGO, MoS2, and rGO-MoS2 with and without LiI at the second

cycle.
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were observed (see Figure 3A for the original morphology). Further discharging the

cell to 500 mAh g�1 produces some porous flocculent sheets covering the rGO-

MoS2 (Figure 3C). These sheets are completely removed when the cell is charged

to 500 mAh g�1 (Figure 3D). The morphology recovery after the first cycle indicates

that reversible reactions occurred in the cell.

Raman spectroscopy results show that a set of new peaks appeared prominently at

503, 900, and 1,441 cm�1 at the discharge state (Figure 3E). These peaks are

different from any characteristic Raman peaks pertaining to the rGO (D band

centered at 1,347 cm�1 and G band centered at 1,585 cm�1), MoS2 (E1
2g band

centered at 375 cm�1 and A1g band centered at 402 cm�1)26 and other potential

discharge products, such as Li2O2 (795 cm�1), LiO2 (1,123 and 1,505 cm�1), LiOH

(331 and 600 cm�1), Li2O (521 cm�1), and Li2CO3 (1,093 cm�1).10,27,28 In fact, these

new peaks can be ascribed to the vibration among Mo-O (900 cm�1)29 and S-O

(503 and 1,441 cm�1)30 bonds, suggesting that the O anions are chemically

adsorbed on the MoS2 after discharge. The intense Mo-S and S-O Raman peaks

suggest compound Li-Mo-O-S forms. These new bonds fade after charge (Fig-

ure 3E), which demonstrates the electrochemical reaction reversibility between

O2(g) and MoS2.

XPS results demonstrate the oxidation and reduction of the MoS2 during cycling

(Figures 3F and 3G). After discharge, part of S and Mo are oxidized to a high valence

to form sulfone (Figure 3F)31 and Mo6+ (Figure 3G), respectively. After charge, they

return to their original state. Since the signal detected by the XPS is from the surface,

XAS was used to detect the chemical state change of the bulk of MoS2. The results

show that Mo is oxidized after discharge and can be further oxidized with multiple

cycles, which is consistent with the XPS results. This is evidenced by the shift of

the edge adsorption to the higher energy (Figure 3H), and the 2.93-V plateau dom-

inates the potential curves after 20 cycles (Figure 2A). It is worth mentioning that the

oxidation of MoS2 mainly occurs within the first 300 mAh g�1 discharge capacity, as

indicated by the negligible energy shift of the Mo adsorption edge (Figure 3H) and

slight changes of the S 2p (Figure 3F) and Mo 3d (Figure 3G) spectra when the cell

was further discharged from 300 mAh g�1 to 500 mAh g�1. These results suggest

that two different mechanisms take place consecutively. First, O2(g) reacts with

MoS2 and Li ions to form a Li-Mo-S-O compound. Second, O2(g) reacts with Li

ions to form Li2O2, which is the dominant reaction product when the cell was further

discharged to 2,000 mAh g�1 (Figure S3).
JOUL 261

4 Joule 2, 1–12, November 21, 2018



Figure 3. Characterization of the rGO-MoS2 Electrode with LiI at Different Discharge/Charge States

(A–D) The corresponding scanning electron microscopy images of the rGO-MoS2 electrode when the cell was firstly discharged to 0 mAh g�1

(denoted as pristine, A), 300 mAh g�1 (denoted as 1st-D300, B), 500 mAh g�1 (denoted as 1st-D500, C), and then charged to 500 mAh g�1 (denoted

as 1st-D500-C500, D).

(E–G) Raman spectra (E), S 2p (F), and Mo 3d (G) XPS spectra of the pristine, 1st-D300, 1st-D500, and 1st-D500-C500 rGO-MoS2 electrode.

(H) XAS spectra (H) from the pristine, 1st-D500, 2nd-D300, and 2nd-D500 rGO-MoS2 electrode.
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https://doi.org/10.1016/j.joule.2018.07.019
Based on the charge and ion transfer number associated with the first 300 mAh g�1

capacity (Figure 2A), the initial discharge product is believed to be Li2MoO2S2.

This is a new material that is not recorded in any of references and databases

(e.g., Inorganic Crystal Structure Database). To determine the phase structure

we carried out synchrotron X-ray diffraction (XRD), the results of which are shown

in Figures 4A and S4. After discharge, a set of new peaks appears and the intensity

is enhanced with multiple cycles. These peaks do not match any characteristic

patterns of MoS2, Li2O2, or LiOH; however, they are quite similar to that of

Li2MoO4 (Figures 4A and S5). By substituting half of the O atoms in Li2MoO4

with S atoms, the XRD pattern can be well refined and the structure of the

Li2MoO2S2 is determined (Figure 4B and Table S1). As shown in Figure 4B, both

Mo and Li atoms coordinate with the O and S atoms to form MoO2S2 and

LiO2S2 tetrahedrons. These corner-linked tetrahedrons form a large hexagonal

channel and a small distorted hexagonal channel along the crystallographic ‘‘c’’

axis. Compared with the pristine MoS2 structure, incorporating the Li-O zigzag

chain into the MoS2 structure changes the previous MoS6 triangular prisms to

MoO2S2 tetrahedrons. The O chains bridge the interlayers connecting the struc-

ture together (Figure 4B).

The Li2MoO2S2 is obtained in the Li-O2 cell with MoS2 and LiI through electrochem-

ical reactions. The absence of MoS2 and LiI leads to form LiOH and Li2O2 in the main

reaction products (Figure S3). Considering the cofunction of MoS2, LiI, and O2(g) to

form Li2MoO2S2, it is likely to occur through oxyhalogen-sulfur electrochemical

reactions. In the typical oxyhalogen-sulfur chemical reaction, the organic sulfur

compounds react with iodates (e.g., HIO, HIO2, and HIO3) and are oxidized to

form sulfoxides (Reaction 1).32,33

HIO+ : SR1R2/R1R2S=O +H+ + I�: (Reaction 1)

In this case, under an electric field, the inorganicMoS2 is oxidized by IO� (Reaction 1)

and inserted by Li ions to form Li2MoO2S2 by a sequence of electrochemical and

chemical reactions (Reaction 2). The total reaction is
JOUL 261
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Figure 4. Structure of Li2MoO2S2
(A and B) Refined synchrotron XRD pattern of the Li2MoO2S2 at seventh discharge (A) and comparison of structural schematic between MoS2 and

Li2MoO2S2 (B).
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O2 +MoS2 + 2Li + + 2e�4
LiI
Li2MoO2S2: (Reaction 2)

Based on Reaction 2, the theoretical capacity is calculated to be 335 mAh g�1
(MoS2),

which is consistent with the capacity at the upper plateau around 2.93 V (Figure 2A).

According to Reaction 1, IO� is the key to trigger the oxyhalogen-sulfur electro-

chemical reaction. In the Li-O2 battery, IO
� is formed by the reaction between super-

oxide, LiI, and trace water in electrolyte,34 which was captured in the electrolyte by

UV-visible spectroscopy (Figures 5A and S6A) and Raman spectroscopy (Figures 5B

and S6B). The adsorption peak at 284 nm (Figure 5A) and vibration peaks at 486 and

554 cm�1 (Figure 5B) belong to IO� radical,35–38 which appears at the discharge

state and vanishes at the charge state.

To track the reversibly O2(g) consumption and evolution involved in the cycling, we

performed DEMS with tetraethylene glycol DME. DME was replaced due to its high

volatility. These two solvents showed identical electrochemical behavior (Figure S7).

As shown in Figure 5C, during discharge the O2(g) is continually consumed at a rate

of 1e�/O2 at the beginning, indicating the formation of superoxide and its stabiliza-

tion by iodide. At the end of the discharge, the rate is close to 2e�/O2, which is

consistent with the formation of Li2MoO2S2 and Li2O2. The total molar ratio of

e�/O2 is about 1.7, less than 2, indicating that some O anion is trapped in the elec-

trolyte in the forms ofO�
2 =IO

�. O2(g) is released in the following charge and no other

gas (CO2 and H2) is detected (Figure 5D), demonstrating the high reversibility of the

ORR/oxygen evolution reaction (OER) processes and negligible side reactions.

Similar ORR/OER behavior was found in the second cycle (Figure S8) although their

discharge potential curves were different. The low potential at the first discharge is

due to the formation of the O�
2 =IO

� radicals while some of these radicals remain in

the electrolyte after first discharge (3.6 mmol O2 evolution versus 3.9 mmol O2 con-

sumption at the first cycle; Figures 5C and 5D). Therefore, the first cycling can be re-

garded as an activation process. Thereafter, the characteristic potential curve of

MoS2 shows up from the second cycle via Reaction 2, which corresponds to the

upper discharge plateau around 2.93 V (Figure 2A).

The reaction mechanism of rGO-MoS2 cell with LiI is summarized in Figure 6. At the

discharge, the O2(g) is firstly reduced to O�
2 . The O�

2 reacts with the LiI and trace

amount of H2O in the electrolyte to form IO�, then the IO� oxidizes the MoS2. Sub-

sequently, Li ions instantly insert into the structure to form Li2MoO2S2. The resultant
JOUL 261
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Figure 5. - - -Q15

(A–D) UV spectra (A) and Raman spectra (B) of the pristine, post first discharge, and charge

electrolytes; DEMS spectra during first discharge (C) and charge (D) states.
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base electrolyte is favorable in generating Li2O2 rather than LiOH.39 Therefore,

Li2MoO2S2 is the synergetic result of O2(g), MoS2, LiI, and trace amount of H2O

via the oxyhalogen-sulfur electrochemical reactions. Both LiI and H2O are essential

mediators, and increasing each concentration is beneficial to facilitating the reaction

(Figure S9). In contrast, the nanostructure of rGO-MoS2 is not necessary since the

commercial microsize MoS2 also has similar behavior (Figure S10). Obviously,

the nanoarchitecture design of MoS2 with rGO contributes to enhancement of the

kinetic reaction (Figure S11A) and cycling stability (Figure S11B) by providing high

surface-active sites and a good conductive network. After more than 100 cycles,

the main discharge product is Li2xMoO2xS2 (x > 1) (Figure S12) and the charge

compensation is provided by MoS2 (Figure S13).

At the following charge, the I� is first oxidized to I�3 by electrochemical process,

whose presence is evidenced by the UV spectra (Figure 5A). Besides I�3 , IO
�
3 also ex-

ists in the electrolyte, which shows a characteristic peak at�207 nm in the UV spectra

of electrolyte (Figure 5A).40 A mixture of I�, I�3 , IO
�, and trace H2O in the electrolyte

could disproportionate into different species of the iodine intermediates, such as

IO�
3 .

41,42 Their disproportionation pathway and rate will be affected by the electro-

chemical reactions inside the cell. These I-intermediates are believed to promote the

decomposition of Li2O2 and Li2MoO2S2 to release the O2(g) by chemical reactions

(Figure 6).34,43 The chemical reaction between Li2MoO2S2, I�3 , and trace H2O is

confirmed since the Mo-O bond gradually vanishes when the Li2MoO2S2 is

immersed in the I�3 =DME solution with 500 ppm H2O (Figure S14). In addition,

part of the Li2O2 and Li2MoO2S2 are supposed to decompose by electrochemical re-

actions. For clarification of the charge mechanism, more experimental and compu-

tational work is needed to understand the physical/(electro)chemical properties of

the Li2MoO2S2. For example, the chemical stability of the Li2MoO2S2 at the

charge/discharge state needs to be evaluated since some thiomolybdates are found
JOUL 261
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Figure 6. Schematic of Reaction Mechanism of rGO-MoS2 with LiI during Discharge and Charge
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to be sensitive to the solution properties, such as pH, and will convert to other inter-

mediate thiomolybdates (MoO3S
2�, MoO2S2

2�, and MoOS3
2�).44–46

DISCUSSION

As demonstrated herein, the rGO-MoS2 cell requires Li, MoS2, O2(g), and LiI for the

electrochemical reactions, which combine the characteristic cell configuration (host

and O2) and electrochemical performance (low polarization and high capacity) of the

conventional Li-ion battery and Li-O2 battery. In other words, this is a hybrid Li-ion/

Li-O2 cell. The concept of the hybrid Li-ion/Li-O2 cell was first proposed by Thack-

eray et al., who used the high Li2O-containing metal oxides, such as Li5FeO4, to

release the Li and O2(g) during charge and produced Li2O-metal oxide compounds

during discharge.47–49 In this case, a Li2O2-MoS2 compound, Li2MoO2S2, is formed

during discharge. It releases the Li and O2(g) during charge. When the discharge

capacity is beyond the storage capability of MoS2, Li2O2 will form as discharge prod-

ucts (Figure S3) and the cell will behave like a conventional Li-O2 battery.

Considering the low polarization and high capacity, the rGO-MoS2-O2 cell demon-

strates a very promising prototype for constructing a useful hybrid Li-ion/Li-O2 bat-

tery. The key is to find a suitable host, for example MoS2, which should meet the

following criteria. (1) MoS2 provides enough room to store the Li ions and O anions,

forming the Li2MoO2S2 compound. After activation, the maximum capacity of the

hybrid rGO-MoS2-O2 cell is about 1,000 mAh g�1
(MoS2) (Figure S15). (2) The oxidized

MoS2 has compatible working voltage window with Li2O2.
50 In contrast, the voltage

hysteresis of Li5FeO4 is as large as 2.0 V.47 The large voltage mismatch will lead to

much energy loss of the cell. (3) The structure of MoS2 is robust for long-term use.

It recovers after charge and remains stable for hundreds of cycles (Figure S11).

To facilitate the kinetic reactions, catalysts or redox mediators also work well in

the hybrid Li-ion/Li-O2 battery, such as LiI. LiI plays a vital role in the hybrid rGO-

MoS2-O2 cell. (1) LiI combines with O�
2 to form IO�, promotes the dissolution of

theO�
2 into the electrolyte, and alters the reaction through solution. (2) IO� triggers

oxidization of the MoS2 and forms the Li2MoO2S2 by oxyhalogen-sulfur electro-

chemistry. (3) Other iodine intermediates promote decomposition of Li2MoO2S2,

which lowers the cell overpotential. (4) LiI also catalyzes the formation and decom-

position of Li2O2.
43
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Compared with the conventional Li-O2 battery, the hybrid Li-ion/Li-O2 cell outper-

forms in several aspects: (1) low polarization; (2) the O anions are accommodated

in the structure of the MoS2, which restricts the volume changes and eliminates

the common clogging problem caused by unevenly accumulated Li2O2;
51 (3) the

low charge voltage reduces the harmful coverage by side-products. In short, the

hybrid Li-ion/Li-O2 cell combines the advantages of Li-ion and Li-O2 batteries, and

shows promise in meeting future energy requirements.

The compound Li2MoO2S2 is found to be isostructural to the Li2MoO4 (Figure S5)

rather than the other molybdenum oxysulfides A2MoO2S2 (A = K, Rb, Cs, and

NH4).
52,53 This is mostly due to the similar ionic size of the Li+ (60 pm) and the

Mo6+ (62 pm) while other cations are very large (K+ [133 pm], Rb+ [148 pm], Cs+

[169 pm], and (NH)4
+ [148 pm]). Therefore, both Mo and Li atoms can coordinate

with the two O and two S atoms to form MoO2S2 and LiO2S2 tetrahedrons while

other large cations require more anion atoms to form complex polyhedrons. This

unique structure is expected to endow Li2MoO2S2 with some interesting physical/

chemical properties. The Li2MoO2S2 can be obtained through both the electro-

chemical (in this case) and chemical reactions (Figure S16).

Since various species such as O2(g), MoS2(solid [s]), rGO(s), LiI(liquid [l]), H2O(l), and

electrolyte(l) are integrated in one electrochemical system, a series of electrochem-

ical and chemical reactions could occur besides the dominant reactions proposed

above.34 It is difficult to segregate each contribution because some of them are syn-

ergetic and require more characterizations and control experiments, which are

beyond the scope of this paper. DME was used because it is more stable than other

solvents, such as DMSO.54 However, electrolyte decomposition was still found (Fig-

ure S12) and accumulation of the by-products such as Li2CO3 will passivate the cata-

lyst, block the reaction, and increase the polarization. Therefore, it is still challenging

to clarify the complex mechanism and have a stable electrolyte for practical Li-O2

battery.

In summary, based on the oxyhalogen-sulfur electrochemistry, a hybrid Li-ion/Li-O2

battery was constructed, which combines the features of the Li-O2 batteries and Li-

ion batteries. Both Li ions and O anions can be reversibly stored in the MoS2 struc-

ture, forming a Li2MoO2S2 compound. The reaction mechanism was explained by

using Raman spectroscopy, DEMS, XPS, XAS, and XRD. It was found that the dis-

solved O�
2 combines with I� to oxidize MoS2, which allows Li+ intercalation into

the MoS2 structure. The integrated MoS2 is oxidized upon the discharge state and

recovered upon the charge state.

We have attempted chemical synthesis to isolate Li2MoO2S2 without any success, as

it is the first time the compound has been observed in an electrochemical system.

More fundamental study is needed to explore its physical/(electro)chemical

properties.
EXPERIMENTAL PROCEDURES

Full experimental procedures are provided in the Supplemental Information.
SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures, 16 fig-

ures, and 1 table and can be found with this article online at https://doi.org/10.1016/

j.joule.2018.07.019.
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Materials and methods: 

Materials: All the chemicals were bought from Sigma Aldrich. The anhydrous 1,2-Dimethoxyethane (DME, 

for HPLC, 99.9%, inhibitor-free), lithium bis(trifluoromethyl) sulfonylimide (LiTFSI), lithium iodide (LiI) 

and dimethyl carbonate (DMC) were stored in the Ar filled glovebox (O2<0.1 ppm, and H2O<0.1 ppm). 

DME was further dried by the molecular sieves.  

Synthesis of reduced graphene oxide (rGO): The rGO was prepared by a modified Hummer’s method. 

The graphite (2 g) was oxidized by the concentrated H2SO4 (80 mL), HNO3 (60 mL) and KMnO4 (12 g). The 

mixture solution was continuously stirred at 0 ℃ for 1 hour and then at room temperature for another 24 h 

after adding 200 mL H2O. 10 mL H2O2 (30%) was introduced into the solution and the color of the 

suspension was changed from brown to yellow. The graphene oxides (GO) were repeatedly washed with 

H2O by centrifuging, then dispersed in H2O by ultrasonicating and finally freeze-dried for 3 days. The rGO 

electrode was made by casting the GO slurry onto a stainless-steel mesh (SSM, Alfa, 325 mesh woven from 

0.036 mm dimeter wire), freeze-drying and reducing at 550 ℃ for 2 hours in the Ar flowing tube furnace.  

Synthesis of rGO-MoS2: The free-standing rGO-MoS2 electrode was obtained by directly growing the rGO-

MoS2 sheets on the SSM via hydrothermal reaction. The mixture solution of GO (5 mg), MoO3 (30 mg), 

triacetamide (35 mg), urea (300 mg), ethanol (50 mL) and H2O (30 mL) and SSM were putted into a 100 mL 

autoclave and hydrothermally treated at 200 ℃ for 24 hours. The yielded rGO-MoS2 on SSM was washed 

and freeze-dried. Pure MoS2 electrode was obtained as the same procedure but without rGO additive. The 

average loading of the active material on an electrode (diameter 13 mm) is about 0.2 mg. 

Preparation of the commercial MoS2 electrode: Commercial MoS2, Super P carbon and polyvinylidene 

fluoride (PVDF) were mixed together at a weight ratio of 8:1:1 with N-Methyl-2-pyrrolidone (NMP) solvent 

and casted on the SSM. The loading of the MoS2 is about 1.6 mg.   

Cell assembly and electrochemical evaluation: Coin cells (R2032 for air batteries, MTI corporation) were 

assembled with a disc of lithium foil (1mm thickness, FMC), 500 µL electrolyte, two pieces of glass fiber 

separator (Whatman, grade GF/D), O2 electrode and Ni foam (act as O2 diffusion layer and electrons-transfer 

layer, MTI corporation). The electrolytes were 0.25 mol/L LiTFSI/DME with/without 50 mmol/L LiI. The 



 

 

assembled coin cells were placed in the O2 filled container and electrochemically tested at galvanostatic 

mode for the same discharge/charge time by LanHe battery cycler (Wuhan, China). All potentials are 

referenced against Li/Li+. The electrochemical performance was reproduced for at least twice, especially for 

rGO-MoS2 with LiI. 

 

Electrode Characterization: 

All the cycled samples were taken out from the batteries, rinsed with DMC, stored in the glovebox and tested 

in the dry atmosphere. 

The TEM samples were loaded on lacy carbon grid and performed at a FEI-Tecnai Osiris microscope (200 

kV) equipped with Super-X EDS detection system. 

Synchrotron X-ray diffractions were taken at the Advanced Photon Source (APS) at Argonne National 

Laboratory (ANL) on beamline 11-BM ( λ= 0.4145 Å). The beamline uses a sagittal focused X-ray beam 

with a high precision diffractometer circle and perfect Si (111) crystal analyzer detection for high sensitivity 

and resolution. XRD patterns were analyzed by the Rietveld refinement method using TOPAS software. 

XPS was performed using a Kratos Ultra DLD XPS. All spectra were calibrated with C 1s (284.8 eV) of the 

adventitious carbon in the chamber. The sum of the areas under the peaks were then used to determine 

relative ratio of different states. 

Raman system (Renishaw inVia/Bruker Innova) was used with 514 nm illumination, which was provided by 

a Modu-Laser 50 mW Ar+ ion laser. The procedure used the 10% power and five accumulation time.   

The XANES and EXAFS measurements at Mo K-edges were performed at the Advanced Photon Source 

(APS) on the bending-magnet beamline 20-BM-B with electron energy of 7 GeV and average current of 100 

mA. The radiation was monochromatized by a Si (111) double-crystal monochromator. Harmomic rejection 

was accomplished with 15% detune. All spectra of samples were collected in fluorescence mode by PIPS 

detector. For energy calibration, the first derivative peak of Mo foil was adjusted to 20000 eV. Data 

reduction and analysis were processed by Athena software.  

Scanning electron microscopic (SEM) images were recorded with Zeiss Sigma 500 Field-emission scanning 

electron microscopy (FESEM) on a JEOL JSM-6700F operating at 10 kV. 

The differential electrochemical mass spectrometry was built based on a purchased mass spectrometer (HPR-

40, Hiden Analytical). The volumes of the cell head space, the transfer line, and the sample cross were all 



 

 

calibrated by known volume tubings. The mass spectrometer was calibrated by standard mixture gas of CO2, 

O2, and H2 (2%, 5%, and 10%) in Ar. The discharge process was performed by flowing oxygen in the cell 

and monitoring the oxygen consumption by pressure transducer (PX419-USBH). After discharge, all the gas 

leftover in the cell was tested by the mass spectrometer and no other gas was detected. Hence, we assume 

that only oxygen participates in the electrochemical reaction and the change of pressure is only related to the 

change of oxygen in the cell. The charge process was tested by injecting the gas generated from the cell 

every 10 min to the mass spectrometer.  

 

 

Figure S1. Potential curves of the rGO-MoS2 (a-c),MoS2 (d-f) and rGO (g-f) with (a, d and g)/without (b, e 

and h) LiI for Li-O2 and Li-ion batteries (c, f and i): a) rGO-MoS2 with LiI for Li-O2 battery; b) rGO-MoS2 

without LiI for Li-O2 battery; c) rGO-MoS2 with LiI for Li-ion battery; d) MoS2 with LiI for Li-O2 battery; e) 

MoS2 without LiI for Li-O2 battery; f) MoS2 with LiI for Li-ion battery; g) rGO with LiI for Li-O2 battery; h) 

rGO without LiI for Li-O2 battery; i) rGO with LiI for Li-ion battery;. 500 µL electrolyte and 50 mA/g 

current density is used in all cells. The distinctive potential curves between the rGO and MoS2 with LiI 

demonstrate different reactions occur in these two cells rather than the Li-I reaction.  



 

 

 

Figure S2. Potential curves of rGO-MoS2 with different active material loading and electrolyte amount at the 

second cycle.  

 

Figure S3. Raman spectra of the varied discharge samples, obtained from different conditions. After 

discharge to 500 mAh g-1, rGo-MoS2 with LiI forms the Li2MoO2S2 and absence of one of them will result in 

LiOH and Li2O2. Li2O2 will show up and become dominated products when the rGo-MoS2 was further 

discharged to 1000 and 2000 mAh g-1. 

 



 

 

 

Figure S4. Synchrotron XRD results of pristine, discharged to 300 mAh g-1 at the 2nd cycle and discharged 

to 500 mAh g-1 at the 7th cycle rGO-MoS2. A new set of diffraction peaks appears after discharging to 300 

mAh g-1 at the 2nd cycle and becomes obvious after discharging to 500 mAh g-1 at the 7th cycle. 

 

 

Figure S5. Compared the experimental and refined Li2MoO2S2 patterns with the standard XRD pattern of the 

Li2MoO4 and K2MoO2S2. The latter two patterns are from the ICSD database.  

 

 

 

 

 



 

 

Table S1. The structure information of the Li2MoO2S2, which is obtained by XRD refinement.  

Structure 1  

Phase name Li2MoO2S2 

Space group R-3H 

Cell Volume (Å3) 1713.0(14) 

Wt% - Rietveld 100.000 

Crystal Density (g/cm3) 3.5937(29) 

Lattice parameters  

a (Å) 14.3585(47) 

c (Å) 9.5939(43) 

 

Site Np x y z Atom Occ Beq 

Li1 18 0.14110 0.45500 0.25320 Li+1 1 0.0166 

Li2 18 0.30900 0.85620 0.58230 Li+1 1 0.0174 

Mo1 18 0.11834 0.64730 0.41611 Mo+6 1 0.01032 

O1 18 0.00523 0.66467 0.41520 O-2 1.00(11) 0.0157 

O2 18 0.23365 0.77686 0.41607 O-2 1.00(11) 0.0176 

S1 18 0.11925 0.57890 0.26342 S 1.00(18) 0.0162 

S2 18 0.11907 0.57810 0.56859 S 1.00(13) 0.0162 

 

 

 



 

 

 

Figure S6. UV spectra (a) and Raman spectra (b) of the pristine, after 2nd discharge and charge electrolytes. 

 

 

Figure S7. Potential curves (a) of rGO-MoS2 at the first two cycles and Raman spectrum (b) of the 

discharged sample to 300 mAh g-1 at the second cycle the when TEGDME replaces the DME in the 

electrolyte. The results show that rGO-MoS2 shows the similar behavior.  

 



 

 

Figure S8. DEMS spectra during 2nd discharge (a) and charge (b) states. 

 

Figure S9. Potential curve of the rGO-MoS2 at the second cycle with different concentration of LiI and H2O 

in the electrolyte. Increasing the LiI and H2O content is beneficial for reducing the polarization of the cell.  

 

 



 

 

Figure S10. Feasibility of the commercial MoS2. The compared XRD patterns (a) and Raman spectra (b) 

between home-made rGO-MoS2 and commercial MoS2, SEM images (c) and potential profiles of 

commercial MoS2 electrode for Li-O2 batteries with LiI in the electrolyte. Compared with home-made rGO-

MoS2, commercial MoS2 is well crystallized (a) and has larger particle size (c) and narrower interlayer since 

its Raman peaks shift to the high wavelength (b). Nevertheless, the commercial MoS2 exhibits the similar 

electrochemical behavior (d) and gets Li2MoO2S2 as discharge product (a) of the cell.  

 

 

Figure S11. Rate and long cycling performance of the rGO-MoS2 for Li-O2 batteries with LiI. (a) The 

charge and discharge potential curves at the 40th cycle with the different rates. The 40th cycle is selected 

because most capacity is associated with the formation of Li2xMoO2xS2. (b) The evolution of the discharge 

capacity and mid-voltage as a function of the cycling number at 250 mA g-1.   

 



 

 

 

Figure S12. Compared Raman spectra of the discharge samples between 1 cycle and 266 cycles.   

 

 

Figure S13. XPS spectra of the S 2p (a) and Mo 3d (b) at 123rd discharge and 124th charge state. After 123 

cycles, MoS2 is still responsible for the charge compensation during cycling, which is oxidized after 

discharge and recovered after charge.    

 



 

 

 

Figure S14. Raman spectra of Li2MoO2S2 at different reaction time with 50 mM 𝐼"#/DME solution with 500 

ppm H2O. Overnight reaction will further oxidize the MoS2 to MoO3.  



 

 

 

Figure S15. Limitation content of the inserted Li ions in the structure of MoS2. The higher capacity is 

achieved after multiple cycles. Based on the capacity between 2.5-3.1 V, the maximum content of the 

inserted Li is about 6 per formula of MoS2.     

 

 

 



 

 

 

Figure S16. Compared the Li2O2 and MoS2 composite after ball milling and heat-treatment and refined 

Li2MoO2S2 patterns with the standard XRD pattern of the Li2O2 and MoS2. The Li2O2 and MoS2 composite 

was first ball milled at 500 rpm for 10 hours and then was heated in a sealed glass tube at 500 ℃ for 6 hours. 

Li2MoO2S2 was got and more trials are needed to purify the phase.  
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