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Data Analysis Activities and Problems for the Computer Science Major in a

Post-calculus Introductory Statistics Course∗
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1 Introduction

The material presented here is a very small subset of
problems currently being prepared for a larger instruc-
tional improvement project funded by the Office of In-
structional Development (OID) at UCLA. The objec-
tive of the project is to create a manual with data
sets and contextual problems for Computer Science ma-
jors that will complement the textbooks used in the
calculus-based upper-division Applied Statistics course.
More than one third of the students in this course are
from Computer Science, while the remaining students
come from Engineering and Applied Math, with a very
few majoring in fields like Economics, Biology or Ge-
netics. The course is a prerequisite for another one
taught by the Computer Science Department on ad-
vanced Probability Models for Computer Science, which
many majors taking Applied Statistics never take.

The need for developing material tailored to the needs
of Computer Science majors in a calculus-based Applied
Statistics course is a natural consequence of the recent
trend toward making Statistics more data oriented and
contextual-based than it has been in the past. The
data sets and problems fill a gap that exists today in
most textbooks for this kind of courses, which, although
adhering to the trend, concentrate almost exclusively
on Engineering and other Science, neglecting to a large
extent the Computer Science student.

There exist a few books on Probability and Statis-
tics that were written with Computer Science majors
in mind exclusively. The book of Allen(1990) has the
standard statistics topic areas: Probability and Statis-
tical Inference. In addition to these, the book covers
stochastic processes and queing theory, two areas of ut-
most importance in Computer Science. Throughout the
book, the author uses contextual problems that have
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some part of a computer system as a theme. But there
are no data sets coming with the book. And many con-
temporary problems such as Internet data analysis is
not covered. Ross(2000) is exclusively focused on Prob-
ability for Computer Science, lacking any discussion of
data analysis or statistical inference. Plenty of exam-
ples are presented of a different nature than those in
Allen’s book. The level of Ross’s book is a little bit too
high for the probability part of the course that occupies
this paper. But the two books mentioned above, and a
few others, as well as numerous recent journal articles
and data sets publicly available are very good resources
for inspiration and starting points. New problems and
data set sets can be adapted from them to create con-
textual problems and data analysis projects accessible
to the students in the course at hand.

In this paper, I present three basic exercises that
I have adapted from different resources to illustrate
the nature of the hands-on activities that comprise the
whole project. Before moving on to the examples, I give
an overview of the nature of randomness in Computer
Science. I conclude with some information on the re-
maining steps in this project, and the web site where
the problems and data sets can be found as the project
advances.

2 Randomness and Data in Com-
puter Science contexts

In most areas of Computer Science we deal not with
deterministic phenomena, but rather with probabilistic
phenomena. The time it takes to write and check a
computer program, the time it takes to run a program
(measured from the time it is submitted to a batch sys-
tem or invoked via an online-system), the time it takes
to retrieve information from a storage device, the num-
ber of jobs awaiting execution on a computer system,
the number of terminals in use, how long a user stays in
a web page, how many web pages a user browses, among
others, are all very basic examples of probabilistic or
random phenomena. Data on those or many other vari-
ables may come from log files that all computer systems
keep, or, in some cases like some web usage data, from



survey data. The log data allow us to estimate the pa-
rameters of probabilistic models assumed for those vari-
ables and conduct inference. Alternatively, we can use
simulation of probabilistic models with given parame-
ters to generate data, particularly for those variables for
which we have the analytic solutions of their behavior
obtained through probability theory. The simulation
data can be used to determine whether the information
coming from log files really conforms to those models, or
to predict the performance of the system under certain
conditions. Either way, the point is that it is feasible
to have data (real or created) to prepare exercises in
descriptive Statistics and Statistical Inference.

Due to the probabilistic nature of many Computer
Science phenomena and to the large probabilistic com-
ponent of the Applied Statistics course assumed in this
paper, the project described in this paper has also a
large probability theory component. Thus the manual
of exercises and activities for the computer science ma-
jor in that course would not be complete without proba-
bility problems that reflect the current modeling trends
in computer science while keeping the material at the
level of the beginning student. Ideally, the same topics
discussed during the descriptive and probability parts
of the course, will be brought up during the inference
part.

3 Activities for the Classroom

In the first activity presented in Section 3.1 below, the
data are simulated log data resulting from application
of a sorting algorithm. I generated this log data by run-
ning the bubble sort algorithm many times and keeping
track of the number of comparisons needed. With this
data set, students can do descriptive data analysis, esti-
mation and hypothesis testing. At the same time, they
will be doing comparisons of algorithmic behavior, a
very common task in Computer Science. The example
would fit in the Statistical inference part of the course
as well as in the descriptive data analysis part.

In the second example, Section 3.2, I use a very basic
Queueing Theory model of a computer system in which
all the parameters are known, and use it as the scenario
for a problem where students will have to make proba-
bilistic predictions of the number of jobs in a queue of e-
mail messages. This example would be very suitable for
several stages of the Probability part of the course. Not
only does it make the exponential and Poisson models
more interesting by using them in the context of a well
known model for a computer system but it allows the
student to relate their performance through the model.

In the third example, Section 3.3, students analyze
some of the MSNBC Anonymous Web Data from the
UCI KDD Archive.This server log data describes the

page visits of users who visited msnbc.com on Septem-
ber 28, 1999. The variable of interest in this activity is
the number of page categories that the user visited or
“depth” of the browsing. With this data set, students
can also do descriptive data analysis and estimation and
testing. They can also determine the suitability of the
sample for generalizing the results to all days, and as-
sumptions needed for that.

All these activities are written below as they would
be given to the students. I also describe briefly what is
assumed known or previously introduced in class when
those activities are handed out to the students. For the
first two activities, I give in an Appendix some addi-
tional background, work that went into their prepara-
tion, and a small answer key. Complete solutions and
suggestions for discussion will be provided in the Solu-
tions Manual that will be made available to instructors
when the project is completed.

The activities can be done either in a lecture context,
as examples, or in a discussion/review session where
students can spend more time learning the background,
or simply be given as homework. I prefer the discus-
sion/review session because there is more time to focus
on the context of the problem.

3.1 Sorting Algorithm Behavior

In computer science, the algorithm is a very important
concept and can be seen as a model of the operations
done by a computer to solve some problem, for exam-
ple, sorting. A very important variable of interest in
analyzing a sorting algorithm’s behavior is the number
of comparisons that need to be made before a list is
sorted. This is a random variable that could be intro-
duced in class when talking about random variables.
Mathematical expressions for the expected number of
comparisons can be obtained and could be used as ex-
amples when explaining the Expected Value in class,
too.

For those unfamiliar with sorting algorithms, Ap-
pendix A reviews the workings of two very popular ones
considered in this activity: the quicksort and the bub-
ble sort. The data in this activity come from the bubble
sort. The Appendix also provides the program to ob-
tain the data set and suggests some basic analysis of
the data.

3.1.1 The problem given to students

One thousand random permutations of the list 2, 70,
11, 47, 75, 100, 84, 32, 42, 43, 34, 22 were sorted
by 1000 users using the same computer, and X =
the number of pairwise comparisons needed to sort
the list were recorded. We don’t know what kind
of sorting algorithm was used by the computer to



do the sorting, but we know that it was either the
bubble sort or the quicksort algorithms discussed ear-
lier in class when talking about the Expected Value.
Use the records provided in the data set “sort” to
determine which of the sorting algorithms was used
by the computer. Support your answer with a thor-
ough descriptive and inferential data analysis. Note:
The data set with the records is called sort and can
be found at: http://www.stat.ucla.edu/ jsanchez/
oid03/index.html

3.2 Queuing Theory in Computer Science

This very important modeling technique represents a
computer system as a network of service centers, each
of which is treated as a queueing system. That is,
each service center has an associated queue or waiting
line where customers who cannot be served immedi-
ately queue (wait) for service. The customers are, of
course, part of the queueing network. Customer is a
generic word used to describe workload requests such
as CPU service, I/O service requests, requests for main
memory, etc. All these arrive at random to the service
facility. Queueing theory models are often used to de-
termine the effects of changes in the configuration of a
computer system.

The simplest queueing theory model is the M/M/1
model, which assumes: (a) that customers arrive in ac-
cordance with a Poisson process with average rate λ
and thus the interarrival times are exponentially dis-
tributed with mean 1

λ . (b) Service time by the server is
assumed exponential with parameter µ. Expected ser-
vice time is then 1

µ . (c) The customers are served one
at a time by a single server. If the server is busy upon
the customer’s arrival, then the customer waits in the
queue. The activity presented below assumes that the
random variables that comprise this model were used
as examples when talking about random variables in
class, and when talking about the exponential and the
Poisson random variables. The set of random variables
involved is summarized in the diagram displayed below,
which is an adaptation of a diagram in Allen(1990), p.
251.

For these models we are usually interested in deter-
mining, among other things, the average number of cus-
tomers in the system (or in the queue) and the average
amount of time a customer spends in the system.

From the assumptions above, it can be proved (Allen
1990) that the number of customers in the system has
a geometric distribution with parameter p = 1− λ

µ and

q = λ
µ . So the expected number of customers is

λ
µ

1−λ
µ

.

And the probability

P (N < n) = P (N = 0) + · · ·+ P (N = n− 1)

= 1− (
λ

µ
)n

Consequently,

P (N ≥ n) = 1− P (N < n) = (
λ

µ
)n.

The following problem, inspired by Allen(1990) p. 267,
makes use of this result. See Appendix B for a brief
discussion of its solution. More detailed solutions will
appear in the final Solutions Manual.

3.2.1 The Problem given to students

Traffic to an e-mail server arrives in a random pattern
(i,e, exponential interarrival time) at a rate of 240 e-
mails per minute. The server has a transmission rate of
800 characters per second. The message length distri-
bution (including control characters) is approximately
exponential with an average length of 176 characters.
Assume a M/M/1 queueing system like that often used
in class when talking about random variables (i.e., ex-
ponential arrival times, exponential service time, and 1
server). What is the probability that 10 or more mes-
sages are waiting to be transmitted? Support your an-
swer showing work and explaining the implications of
the assumptions.

3.3 Uses of the Internet

Computer Scientists are being called more and more
frequently to provide computer log data that can be
used to find out how users interact with the Internet
(see, for example, Sen and Hansen (2003), Cadez et al.
(forthcoming), Huberman et al (1998)). In addition to
that, the number of Internet user surveys is growing
at an amazing speed (see, for example, Wellman and
Haythornthwaite (2002)). The following problem uses
a data set published in the UCI KDD Archive (Keder-
man, 2003) to obtain data on the number of different
pages visited by users who entered the msnbc.com page
on September 28, 1999. The transformed data set can
be found at: http://www.stat.ucla.edu/ jsanchez/
oid03/index.html.

It is assumed that during the Data Description and
Estimation part of the course, students will have heard
some examples that were based on internet data, prob-
ably an example based on the same data set that is used
for the problem below. Also assumed is that during the
Probability part of the course students heard about the
random variable “depth of browsing.”



3.3.1 The Problem given to students

There is a data set that describes the page visits of users
who visited msnbc.com on September 28, 1999. Visits
were originally recorded at the level of URL category
and were recorded in time order. But the data set that
you will use summarizes the number of different cate-
gories visited per user. Thus there is only one random
variable X = the number of page visits and one record
for each user who visited msnbc.com on September 28,
1999. Assuming that this is a typical day, (a) describe
what the data are saying about the number of page vis-
its and (b) find the maximum likelihood estimate of the
average number of page visits per user. Support your
answers with graphs, summary statistics and inference
results.

The data set with the processed records
is called visits and can be found at:
http://www.stat.ucla.edu/ jsanchez/
oid03/index.html.

4 Conclusions

As mentioned in the Introduction to this paper, the ex-
ample activities presented above are just a small sam-
ple of all the activities that are part of an Instruc-
tional Improvement project. This project involves sev-
eral research steps: (a) adaptation of problems in Com-
puter Science literature to the undergraduate level. (b)
Preparation of lab projects with guided questionnaires
using publicly available log or survey data. (c) Devel-
opment of problems based on simulated data sets. (d)
Compilation of a set of articles that can be read by un-
dergraduate students. (e) Design of methods to assess
the effect of using these problems in the classroom.

My main hypothesis is that the Computer Sci-
ence major in the post-calculus Introductory Statistics
course will benefir immensely from these activities tai-
lored to them. But I also assume that all majors in
the course will benefit, as web access, usage and socio-
demographic survey data and log data will soon be the
standard data to use for research. Finally, I anticipate
that instructors will find this complement to textbooks
valuable.

The complete set of activities and the data
sets that accompany them will be appearing in
a web site as they are being developed. This
web site is http://www.stat.ucla.edu/ jsanchez/
oid03/index.html.

Appendix A. Sorting Algorithms

A.1. The Bubble Sort Algorithm

Ross (2000) p. 8, describes the Bubble Sort Algorithm
as follows: Suppose we are given a set of r distinct
values y1, y2, ....., yr that we desire to put in increasing
order or, as is commonly called, to sort them. The bub-
ble sort is an algorithm that can be used. Starting with
any initial ordering, it sequentially passes through the
elements of this ordering, interchanging any pair that it
finds out of order. That is, the first and second values
are compared, and interchanged if the second is smaller;
then the new value in second position is compared with
the value in the third position, and these values are in-
terchanged if the latter is smaller than the former; then
the new value in the third position is compared with
the value in the fourth position, and so on until a com-
parison is made with the final value in the sequence,
and an interchange, if necessary, is made. At this point
the first pass through the list is said to have occurred.
This process is then repeated for the new ordering, and
this continues until the values are sorted. For instance,
if the initial ordering of values is

2,70,11,47,75,100,84,32,42,43,34,22
then the successive orderings in the first pass through

are as follows:
2,70,11,47,75,100,84,32,42,43,34,22
2,11,70,47,75,100,84,32,42,43,34,22
2,11,47,70,75,100,84,32,42,43,34,22
2,11,47,70,75,100,84,32,42,43,34,22
2,11,47,70,75,100,84,32,42,43,34,22
2,11,47,70,75,84,100,32,42,43,34,22
2,11,47,70,75,84,32,100,42,43,34,22
2,11,47,70,75,84,32,42,100,43,34,22
2,11,47,70,75,84,32,42,43,100,34,22
2,11,47,70,75,84,32,42,43,34,100,22
2,11,47,70,75,84,32,42,43,34,22,100
There are r-1 (or 11) comparisons in the first pass.
Let X denote the number of comparisons needed by

bubble sort and consider E(X) the expected value of
X. Then

r(r − 1)
4

≤ E(X) ≤ r(r − 1)
2

.

See Ross(2000) for a proof. If r = 12, then 33 ≤
E(X) ≤ 66.

A.2. The quicksort algorithm

Suppose that we want to sort a given set of r distinct
values y1, y2, ...., yr. A more efficient algorithm than
buble sort for doing so is the quicksort algorithm, which
is recursively defined in Ross(200) p. 55., as follows.
When r = 2, the algorithm compares the two values and



puts them in the appropriate order. When r > 2, one of
the values is chosen, say it is yi, and then all of the other
values are compared with yi. Those smaller than yi are
put in a bracket to the left of yi, and those larger than
yi are put on a bracket to the right of yi. The algorithm
then repeats itself on these brackets, continuing until all
values have been sorted. For instance, suppose that we
desire to sort the following 10 distinct values:

2,70,11,47,75,100,84,32,42,43,34,22
One of these values is now chosen, say it is 75. We

then compare each of the other values to 75, putting
those less than 75 in a bracket to the left of 75 and
putting those greater than 75 in a bracket to the right
of 75. This gives
{2, 7, 11, 47, 32, 42, 43, 34, 22}, 75, {84, 100}
We now focus on a bracketed set that contains more

than a single value –say the one on the left of the pre-
ceding –and choose one of its values –say 11 is chosen.
Comparing each of the values in this bracket with 11
and putting the smaller ones in a bracket to the left of
11 and the larger ones in a bracket to the right of 11
gives
{2}, 11, {70, 47, 32, 42, 43, 34, 22}, 75 {84, 100}.
This continues until there is no bracketed set that

contains more than a single value.
The Expected number of comparisons is

E(X) = 2(r + 1)log(r)− 2(r − 1).

If r= 12, then E(X) = 42.60. See Ross(2000) for a
proof.

A.3. R Program to generate the data

bubble <- function(l)
{
f <- 0.01
change <- matrix(0,11,1)
x <- matrix(0,l,1)
compare1 <- matrix(0,12,2)
compare <- 10
tlist <-matrix(0,11,1)
slist <-matrix(0,11,1)

perm <- c(2,70,11,47,75,100,84,
32,42,43,34,22)
for(j in 1:l)
{
slist <- sample(perm)
tlist <- slist

for(k in 1:12)
{

for(i in 1:11)

{
if(slist[i] > slist[i+1])
{ tlist[i] = slist[i+1]
tlist[i+1]=slist[i]
change[i] <- 1

slist[i] <- tlist[i]
slist[i+1]<- tlist[i+1]

}
else change[i] <- 0

}

compare <- sum(change)

if(compare > 0)
{compare1[k,1] <- 12-k
compare1[k,2] <- compare }

else
{compare1[k,1] <- 0
compare1[k,2] <- compare }

}

x[j] <- sum(compare1[,1])
}

x
}

x <- bubble(1000)

Suggested Data analysis and inference

From the descriptive statistics, the histogram and the
box plot, one can conclude that the bubble algorithm
is the one used to sort the lists. We know from the-
ory that the Expected number of comparisons with
the Bubble algorithm is somewhere between 33 and 66
whereas the expected number of comparisons is 42.60
with the quicksort algorithm. If the quicksort algorithm
had been used, we would like to see more area of the
histogram around 42.60 or a number close to it. The
histogram we obtained has mean and median around
60, which does not contradict the theoretical expected
value if the bubble algorithm is used. Most of the data
have values between 50 and 66, and the histogram is
skewed left suggesting that this algorithm takes a large
number of comparisons most of the time.

The mean is 58.8 (t=78.46, p=0.000; 95% CI 58.48,
59.29 ). We reject the null hypothesis that the mean is
42.60.

Students should be able to provide in an Appendix
both the summary statistics and the graphs.



Appendix B. Queueing theory

The average service time (s) is the average time required
to transmit a message or

E(s) =
average message length

line speed

=
176 char

800 char/sec
= 0.22 sec.

Hence, since the average arrival rate is λ = 240 mes-
sages /minute = 4 messages/second, the server utiliza-
tion or probability that the server is busy is

ρ = λE(s) = 4× 0.22 = 0.88

that is, the server is transmitting outgoing messages
88% of the time.

The number of messages in the system, N, is a geo-
metric random variable with parameter p = 1 − ρ and
q = ρ. So the average number of messages in the system
is

E(N) =
ρ

1− ρ
= 7.33messages.

Since 10 or more messages are queueing if and only if
11 or more messages are in the system, the required
probability is ρ11 = 0.245.
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