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ABSTRACT
Using the generalized Langevin equation (GLE) is a promising approach to build coarse-grained (CG) models of molecular systems since
the GLE model often leads to more accurate thermodynamic and kinetic predictions than Brownian dynamics or Langevin models by
including a more sophisticated friction with memory. The GLE approach has been used for CG coordinates such as the center of mass
of a group of atoms with pairwise decomposition and for a single CG coordinate. We present a GLE approach when CG coordinates
are multiple generalized coordinates, defined, in general, as nonlinear functions of microscopic atomic coordinates. The CG model for
multiple generalized coordinates is described by the multidimensional GLE from the Mori-Zwanzig formalism, which includes an exact
memory matrix. We first present a method to compute the memory matrix in a multidimensional GLE using trajectories of a full sys-
tem. Then, in order to reduce the computational cost of computing the multidimensional friction with memory, we introduce a method
that maps the GLE to an extended Markovian system. In addition, we study the effect of using a nonconstant mass matrix in the CG
model. In particular, we include mass-dependent terms in the mean force. We used the proposed CG model to describe the conforma-
tional motion of a solvated alanine dipeptide system, with two dihedral angles as the CG coordinates. We showed that the CG model
can accurately reproduce two important kinetic quantities: the velocity autocorrelation function and the distribution of first passage
times.
Published under license by AIP Publishing. https://doi.org/10.1063/1.5055573

I. INTRODUCTION

Many scientific problems deal with time-evolution equations
that are computationally too costly to solve in full resolution of a
system because of the system size and the time scale involved in
the problems. For example, atomistic descriptions of biomolecu-
lar systems of practical interest often become infeasible to simulate
for the time period needed to investigate the phenomena of inter-
est with current computational power. A strategy to simulate those
systems is to describe the system in reduced dimensions, which
can be divided into two tasks: (1) identification of the coordinates
that effectively describe the characteristics that we are interested
in and (2) finding a governing equation for those selected coor-
dinates, which should account for the effect of ignored degrees of
freedom. Additionally, we need an efficient method to solve this
governing equation numerically. Following the common naming

convention in the context of biomolecular systems, the description
in reduced dimensions will be referred to as a coarse-grained (CG)
model; and the selected coordinates will be referred to as CG coor-
dinates and the governing equation for CG coordinates as a CG
equation.

For a chosen set of CG coordinates, a CG equation can be
obtained using the Mori-Zwanzig (MZ) formalism.1–3 This CG
equation consists of three terms: the mean term, the memory term,
and the fluctuation term. The exact memory term given by the MZ
formalism is infeasible to compute for practical applications. To use
this CG equation for applications, often approximations are made
on the memory term and the fluctuation term is modeled. With a
certain type of approximation on the memory term, the CG equa-
tion given by the MZ formalism reduces to the generalized Langevin
equation (GLE). Since the memory term in the GLE can be calcu-
lated from trajectories of the full dynamics, the GLE has been used
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as a CG equation for many applications.4–8 In those previous stud-
ies, the CG coordinates were center of mass (COM) of a group of
atoms5–8 or a single coordinate.4,9,10 Multiple CG coordinates were
only used with the Markovian Langevin equation (LE) in which the
memory kernel is approximated by a delta function.

When COMs are chosen as CG coordinates, we can approx-
imate the CG forces as pairwise forces, which lead to dissipative
particle dynamics (DPD) models.5–8 In this case, the memory ker-
nel for each pairwise interaction in each direction is a scalar func-
tion. In Ref. 4, a single curved coordinate was used for the GLE to
describe the conformational motion of the hexapeptide neurotensin.
This coordinate was found by first using principal component anal-
ysis (PCA), and the first three principal components were reduced
to a single curved coordinate by inspection. In Ref. 11, multiple CG
coordinates were used for the Markovian LE to describe the con-
formational dynamics of heptaalanine. These CG coordinates were
carefully chosen so that they represent slow and large-amplitude
motions. This choice of CG coordinates is required to use the
Markovian LE since the equation is only valid when the time scale
of the motion of the CG coordinates is separable from that of the
unresolved variables. To find those CG coordinates, the authors used
dihedral angle based PCA12 and did careful inspection of values of
those principal components.

However, for some applications, those previously used CG
coordinates are hard to identify. For example, choosing COM as
a CG coordinate is only intuitive when the group of atoms are
connected by bonds; finding a single coordinate that effectively
describes a system is a complicated task. To use the Markovian
LE, determining CG coordinates that are time scale separable from
other coordinates is not always possible. So, it is important to
be able to use the GLE model with multiple generalized coarse
variables.

In this paper, we present the GLE when the CG coordinates
are multiple generalized coordinates, which we will call the “multi-
dimensional GLE.” Since the forces on CG coordinates have nonzero
correlation, the full memory matrix with nonzero off-diagonal
entries should be considered. Also the mass matrix in the CG equa-
tion is a full matrix which is a function of CG coordinates. We also
include the more accurate mean force term that has additional terms
besides the gradient of the free energy; these additional terms are
nonzero for CG coordinates that are nonlinear functions of atom-
istic Cartesian coordinates. Then to efficiently solve the multidimen-
sional GLE, we map the multidimensional GLE to a Markovian sys-
tem in higher dimensions. Although the mapping of the GLE to an
extended Markovian system has been discussed and used in previous
studies,8–10,13 those studies did not discuss the case of the multidi-
mensional GLE for which inclusion of the full memory matrix makes
the mapping procedure more involved. We present a novel proce-
dure for the mapping of the multidimensional GLE to an extended
Markovian system.

We applied our approach to describe the conformational
motion of the solvated alanine dipeptide system starting from an
atomistic description. The two dihedral angles of the molecule
were used as CG coordinates. We show that our CG model
accurately describes the conformational dynamics of the peptide
in terms of two key kinetic properties: the velocity autocorrela-
tion (VAC) function and the distribution of first passage times
(FPTs).

The rest of the paper is organized as follows. In Sec. II, we
briefly review the MZ formalism and describe our new approach to
calculate the memory kernel in the multidimensional GLE. Then,
we present a procedure to map the multidimensional GLE to an
extended Markovian system. In Sec. III, the CG model of the ala-
nine dipeptide system is constructed with two dihedral angles as
CG coordinates. We first compute the terms in the GLE from tra-
jectories of the atomistic MD except the fluctuation term. Then,
from the computed terms in the GLE, we find the coefficients in
the mapped Markovian system in higher dimensions. In Sec. IV,
we evaluate the CG model using the two kinetic properties and
show agreement of the quantities obtained from the CG model
and those from the reference model of atomistic MD. We also
discuss the effect of using a nonconstant mass matrix in the CG
model.

II. THE MULTIDIMENSIONAL GENERALIZED
LANGEVIN EQUATION
A. The generalized Langevin equation
from the Mori-Zwanzig formalism

We consider a dynamical system that is described by the fol-
lowing nonlinear ordinary differential equation (ODE):

dφ
dt

= R(φ(t)), φ(0) = x, (1)

where φ, x ∈ Γ = Rn. Instead of following the entire variables
�(t), we want to coarse-grain the problem, that is, to follow only
CG variables A(φ(t)) ∈ Rm

(m < n). CG variables A(�) is an
m–dimensional vector valued function defined on Γ such as a sub-
set of the entire variables � or phase variables of �. We want to
build an approximate dynamics that only involves CG variables A(t)
so that by solving this approximate dynamics we can approximate
trajectories of CG variables, A(�(t)), from the original dynamics,
Eq. (1).

The Mori-Zwanzig (MZ) formalism provides a good starting
point to build such an approximate dynamics using a projection
operator P. A projection operator P maps a function of fine-grained
variables� to a function of CG variablesA. Using the MZ formalism,
we can write the time evolution of A(�(t)) as follows:1–3

∂

∂t
A(φ(x, t)) = etLPLA(x) + ∫

t

0
e(t−s)LPLesQLQLA(x)ds

+ etQLQLA(x). (2)

Here, L is a differential operator L = ∑
n
i=1 Ri(x) ∂

∂xi
, called the

Liouville operator. And etL is an evolution operator associated
with the operator L, and Q = I − P. The notation �(x, t) is to
emphasize an initial condition x of an arbitrary point in Γ. For
detailed discussion of the MZ formalism, we refer to the existing
literature.3,14,15

The projection operator P in Eq. (2) can be defined in a few
different ways.3,16 We define P using the conditional expectation

(Pf )(A) ≡
∫x∗ δ(A(x∗) −A)f (x∗)ρ(x∗)dx∗

∫x∗ δ(A(x∗) −A)ρ(x∗)dx∗
= ⟨ f⟩condA , (3)
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whereA indicatesA(x) and ρ(x) is an equilibrium probability density
function (pdf). Note that x∗ indicates integration axes, whereas x
indicates a state of the system on the axes.

If the original dynamics (1) is volume conserving,∇ ⋅ R = 0, the
second term in Eq. (2) can be written in a more explicit form using
the projection operator in Eq. (3),5,16,17

∂

∂t
A(φ(x, t)) = etLPLA(x) + ∫

t

0
e(t−s)L

× [(∇A −∇AH) ⋅ PA [F(0)FT(s)]]T ds + F(t). (4)

Here, H is defined as

H(A) ≡ − ln∫
x∗
δ(A(x∗) −A) ρ(x∗)dx∗, (5)

and F(x, t) ≡ etQLQLA(x); in Eq. (4), we omit the argument x to sim-
plify the notation. The derivation of the second term in Eq. (4) is
given in the Appendix.

When the CG variables A are a set of generalized coordinates
ξ and the corresponding momentums pξ , that is A ≡ (ξ, pξ), Eq. (4)
becomes

dpξ
dt

= −β−1 ∂H
∂ξ

+ ∫
t

0
e(t−s)L

× [(
∂

∂pξ
− βMξ

−1pξ) ⋅ PA[F(0)FT(s)]]
T

ds + F(t), (6)

dξ
dt

=Mξ(q)
−1 pξ . (7)

The second equation (7), the equation for the position, includes the
generalized mass Mξ(q) and is not decomposed with the MZ terms
as in Eq. (2). The generalized mass Mξ(q) is defined by18

Mξ(q)
−1

=∑
k

1
mk

(
∂ξ
∂qk

)(
∂ξ
∂qk

)
T

, (8)

where mk is the mass of a microscopic particle with a coordinate
qk. In general, the generalized mass Mξ(q) is a function of micro-
scopic coordinates q; the generalized mass should be approximated
to a function of CG variables to use Eq. (7) as a CG equation. This
approximation will be detailed in Sec. III A 1

Although theoretically appealing, the MZ formalism in the
form presented above, Eq. (6), is computationally very expensive
since the evaluation of the memory term requires to compute
PA[F(0) FT(s)]. Instead, we will follow below a different approach.
The final form for the equation we are going to use instead of Eq. (6)
is as follows:

dpξ
dt

= −β−1 ∂H
∂ξ

− ∫

t

0
KL(s)Mξ

−1pξ(t − s)ds + F′(t). (9)

The kernel KL(t) is uniquely defined if we impose a certain condition
on F′(t), e.g., ⟨F′(t)pTξ (0)⟩ = 0.

Once we have KL(s), the fluctuation term F′(t) is simply defined
as the “remainder” in the equation

F′(t) =
dpξ
dt

+ β−1 ∂H
∂ξ

+ ∫
t

0
KL(s)Mξ

−1pξ(t − s)ds. (10)

This approach is exact in the sense that it does not require any
assumption aside from the existence of the kernel KL(s).

A key aspect of this decomposition is that the effect of the
unresolved variables is captured entirely by F′(t) and this term
will have to be modeled in some fashion. For the CG equation
to be accurate, the term F′(t) should contain as “little” infor-
mation as possible. Later on, we will approximate it using a
multivariate Gaussian noise. A poor choice for the form of the
decomposition in Eq. (9) leads ultimately to an inaccurate model
for F′(t).

To motivate Eq. (9), we now consider what approximations
are required in the MZ formalism to reach an equation of the
form Eq. (9). However, it is important to realize that these steps
merely serve as a motivation for Eq. (9). With our approach,
we do not actually follow the MZ formalism but rather propose
a procedure to calculate the memory kernel KL(s) and the fluc-
tuating force F′(t) such that Eq. (9) is satisfied exactly. These
two approaches are therefore complementary, but ultimately they
are different. The memory kernel KL(t) that we will compute
in Eq. (9) is distinct from the one obtained through the MZ
derivation.

We can get an equation of the form Eq. (9) from the MZ
equation (6) if we assume that the autocorrelation PA [F(s)FT(0)]
= ⟨F(s)FT(0)⟩condA does not depend on the CG variables A, which
results in ⟨F(s)FT(0)⟩condA equal to ⟨F(s) FT(0)⟩. With that, the MZ
equation reduces to an equation of the form Eq. (9). The validity of
this assumption depends on the system to be coarse grained and the
choice of the CG variables A.

As a result of the MZ decomposition in Eq. (2), F(t) in Eq. (6)
satisfies PF(t) = 0; consequently, ⟨F(t)g(A)⟩ = 0 for any function of
A, g(A). This result now motivates the following approach. Let us
require that ⟨F′(t)pTξ (0)⟩ = 0. We show that this equation allows us
to uniquely define and compute KL(s). Let us right-multiply Eq. (9)
with pTξ (0) and take the expectation. Then, using the property
⟨F′(t)pTξ (0)⟩ = 0, we get

⟨(
dpξ
dt

+ β−1 ∂H
∂ξ

)pTξ (0)⟩ = −∫
t

0
KL(s) ⟨Mξ

−1pξ(t − s)pTξ (0)⟩ds.

(11)

This is a Volterra equation of the first kind for the memory ker-
nel KL(t). This equation has a unique solution assuming the “diag-
onal” term ⟨Mξ

−1pξ(0)pTξ (0)⟩ is nonsingular. Equation (11) can
be solved for KL(t) using the recurrence formula, which will be
detailed in Sec. III A 3. Note that computing the memory ker-
nel KL(t) from Eq. (11) only requires trajectories of the fine-scale
dynamics (1).

In Ref. 19, the authors proposed an iterative approach to cal-
culate the memory kernel. The memory kernel was constructed
so that the resulting GLE reproduces the force autocorrelation
function or velocity autocorrelation function of the reference
dynamics.

The memory kernel and the generalized mass Mξ(q) in Eq. (7)
are both full matrices for generalized coordinates ξ. In our model, we
will take into account the off-diagonal entries of the memory kernel
and the generalized mass. To emphasize this aspect, we call Eqs. (9)
and (7) the multidimensional GLE.
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The first term in Eq. (9), the mean term, can be calculated
by sampling H from trajectories of the fine-scale dynamics (1).
To enhance the sampling of H, the trajectories can be obtained
from simulations using biased force18,20–23 or from other enhanced
sampling methods.24

The third term in Eq. (9), the fluctuating force F′(t), depends
on fine-grained variables x. So, to use Eq. (9) as a CG equation, F′(t)
should be modeled. In this paper, we want to model F′(t) as a func-
tion of only t. A model of F′(t) should satisfy the following relation
with the memory kernel when the CG equation describes an equi-
librium state KL(t) = β ⟨F′(t)F′T(0)⟩, which is an instance of the
fluctuation dissipation theorem (FDT).

To satisfy the FDT, KL(t) = β ⟨F′(t)F′T(0)⟩, a model of F′(t)
should have entries that are correlated with each other since KL(t) is
a full matrix. To find this model of F′(t) is nontrivial. So, instead
of modeling F′(t) in Eq. (9) in its non-Markovian form, we first
want to map the multidimensional GLE to an approximate Marko-
vian form in Sec. II B. The Markovian form leads to simpler models
for F′(t).

B. Mapping of the GLE to an extended Markovian
system

We map Eq. (9) into the following Markovian equation in
extended dimensions:10,15

(
ṗξ
ṡ ) = (

−β−1 ∂H
∂ξ

0
) − (

0 Aps
Asp Ass

)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≡A

(
M−1

ξ pξ
s ) + (

0 0
0 Bss

)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≡B

(
0
η). (12)

In this Markovian equation, coupling of pξ to auxiliary variables
s produces non-Markovian dynamics for pξ . Using this mapped
Markovian system, we avoid calculations of the integration in Eq. (9)
and accordingly avoid storage of history of pξ . So, using the mapped
Markovian equation greatly improves the computational efficiency
of the GLE.

It also ease the generation of the fluctuating force F′(t) in
Eq. (9). The third term of the right-hand side of Eq. (12) represents a
simple model of F′(t) in extended dimensions: a linear combination
of the white noise gaussian process η with ⟨η(t)⟩ = 0 and ⟨ηi(t) ηj(0)⟩
= δijδ(t). The coefficient matrix Bss can be calculated from a simple
relation with A given by the FDT.

The Markovian equation (12) effectively represents the non-
Markovian equation (9), and the relations between the terms in
Eqs. (9) and (12) are as follows:10

KL(t) = −Apse−tAssAsp (t ≥ 0), (13a)

F′(t) = − ∫
t

0
Apse−(t−t

′
)AssBssη(t′)dt′. (13b)

We get (13b) by setting s(0) = 0. Equation (13a) indicates that the
Markovian equation (12) can only represent the non-Markovian
equation (9) having a memory kernel KL(t) that is a combination
of exponentially decaying oscillatory functions and exponentially
decaying functions. So, for the non-Markovian equation (9) hav-
ing other forms of the memory kernel KL(t), the mapping to the
Markovian equation (12) is approximate.

To map Eq. (9) to the Markovian equation (12), we first
approximate the computed memory kernel KL(t) with a combina-
tion of exponentially decaying oscillatory functions and/or expo-
nentially decaying functions. Then, we find matrix A in Eq. (12)
according to Eq. (13a). Previously, this mapping was tried only
for a single or uncoupled pξ ;8,10 each auxiliary variable s was cou-
pled to one entry of pξ . But, for the multidimensional GLE where
the memory matrix KL(t) is a full matrix, some auxiliary vari-
ables should be coupled to multiple entries of pξ . It makes the
mapping procedure more complicated. Below, we propose a map-
ping procedure of the multidimensional GLE to the Markovian
system (12).

The FDT, KL(t) = β ⟨F′(t)F′T(0)⟩, should be satisfied by the
mapped Markovian equation (12). It can be shown that the follow-
ing relation is a sufficient condition for the FDT:10 Asp = −AT

ps and
BssBT

ss = β−1
(Ass +AT

ss). So, we need to find Aps and Ass then Bss and
Asp are determined from the FDT.

We introduce another notation KM
L (t) as an “effective” mem-

ory kernel that is represented by the Markovian equation (12). With
the above restriction on Asp, Asp = −AT

ps, and KM
L (t) becomes

KM
L (t) = Apse−tAssAT

ps (t ≥ 0). (14)

For the mapping, our goal is to find Aps and Ass such that
KM

L (t) closely approximates a given KL(t) in Eq. (9) computed
in Sec. II A.

We first want to determine Ass. Without loss of general-
ity, we can always assume that Ass is a block diagonal matrix
that consists of 2 × 2 blocks and/or 1 × 1 blocks of scalar
entries. A 2 × 2 block results in an exponentially decay-
ing cosine and/or sine component of KM

L (t) and a 1 × 1
block of scalar entry results in a pure exponential component
of KM

L (t).
Note that KL(t) is an autocorrelation of a real vector F′(t)

KL(t) = β ⟨F′(t + t0)F′T(t0)⟩. Let us define KL(t) for t < 0 using
this autocorrelation, which results in (KL)i,j(−t) = (KL)j,i(t). This
means that when KL(t) is expanded with Fourier series, it has
symmetric cosine components and skew-symmetric sine compo-
nents. This property of KL(t) motivates the following choice for the
diagonal blocks of Ass:

(
a b
−b a). (15)

With the above choice of Ass, KM
L (t) in (14) can be written as

follows:

KM
L (t) =∑

i
(e−ait cos(bit)(Aps)i(Aps)

T
i

+ e−ait sin(bit)(Aps)i S (Aps)
T
i )

+∑
i
e−cit(A′ps)i(A

′

ps)
T
i . (16)

Here, (Aps)i denote ith m × 2 block of the Aps matrix, where m is the
size of pξ . (A′ps)i denote a m × 1 vector block of Aps, which shares a
column with a 1 × 1 diagonal block of scalar ci in the Ass matrix, and

S = (
0 −1
1 0). (17)
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Note that the coefficient of e−ait cos(bit), (Aps)i(Aps)
T
i , is symmet-

ric, and the coefficient of e−ait sin(bit), (Aps)i S (Aps)
T
i , is skew-

symmetric.
For a given matrix KL(t), we expand entries of the matrix using

terms as in (16), which are exponential cosines, exponential sines
and exponentials. For a certain accuracy, we can aim to find an
approximation that minimizes the number of additional degrees
of freedom, but it is more complicated to find that approxima-
tion. So, we propose a procedure to find an approximation KM

L (t)
that is less complicated to find but does not minimize the addi-
tional degrees of freedom. See the supplementary material for the
restrictions on the coefficients of the expansion terms of KM

L (t)
in (16).

To find an approximation of each entry of KL(t), we first do
the discrete Fourier transform of KL(t); and using the results of it
as an initial guess, we use an optimization routine to find expansion
coefficients. Then, for the approximation, we find (Aps)i for each
expansion term as in (16). The specific procedure to find an approx-
imation and accordingly the matrix Aps and Ass is presented in the
supplementary material.

When finding expansion coefficients of symmetric part of
KM

L (t) using an optimization routine, we propose to use the inte-
gration value of KL(t) as an additional constraint. By matching the
integration value of KM

L (t) with that of KL(t), we can improve the
mapping to the Markovian system. For most applications, the inte-
gration value of KL(t), ∫T0 KL(t)dt, T ≫ 0, is difficult to obtain
since it is challenging to accurately compute KL(t) for large t. In
those cases, we can impose this additional constraint on the integra-
tion value of KM

L (t) with a free parameter instead of the computed
integration value of KL(t) from fine-scale simulations. This free
parameter for the additional constraint can be set so that the result-
ing Markovian CG model reproduce a certain quantity of fine-scale
simulations.

Using the above procedure, we find Aps and Ass. As we
explained earlier, the FDT gives Asp and Bss. This completes finding
the coefficients of the Markovian system (12).

III. THE MULTIDIMENSIONAL GLE DESCRIPTION
OF CONFORMATIONAL MOTION OF THE ALANINE
DIPEPTIDE

In this section, we used the proposed CG model to describe the
conformational motion of the solvated alanine dipeptide system. In
Sec. III A, we present the multidimensional GLE with two dihedral
angles of the molecule as CG coordinates. We compute the terms
in the multidimensional GLE from trajectories of the atomistic MD
simulation of the system. Then, in Sec. III B, we find the approxi-
mate Markovian system of the multidimensional GLE following the
procedure presented in Sec. II B.

The alanine dipeptide system consists of one alanine dipep-
tide molecule and 252 water molecules in a 20 Å cubic box.
Alanine dipeptide is a small protein with 22 atoms, which was
described by the OPLS-AA (Optimized Potential for Liquid Sim-
ulations - All Atom) force field, and the water molecules were
described by the SPC (Simple Point-Charge) flexible water model.
The atomistic MD simulation was carried out using LAMMPS
(Large-scale Atomic/Molecular Massively Parallel Simulator);25 the

periodic boundary condition was used with the time step size of
0.5 fs. We carried out NVT simulation at T = 300 K with the
Langevin thermostat of friction coefficient 1 ps−1. We followed the
simulation details from Ref. 26 except we used the single time step of
0.5 fs instead of the multiple time step scheme that they used. Each
trajectory was computed for 100 ns long, and the trajectory’s initial
condition was (Φ, Ψ) = (−87.8531○, 161.927○), which belongs to one
of the two metastable states of the system.

A. The multidimensional GLE with dihedral angles
We chose two dihedral angles of the alanine dipeptide molecule

as CG coordinates ξ, ξ = (Φ, Ψ). Then, from Eqs. (9) and (7), the
multidimensional GLE model of the alanine dipeptide system is
given as follows:

(
ṗΦ
ṗΨ

) = β−1
(
−∂H

∂Φ
−∂H

∂Ψ
) − ∫

t

0
KL(t − s)M−1

ξ (
pΦ(s)
pΨ(s)

)ds + F′(t), (18)

(
Φ̇
Ψ̇
) =M−1

ξ (
pΦ
pΨ

). (19)

Here, pΦ and pΨ are momentums corresponding to Φ and Ψ coordi-
nates, respectively. And H is defined according to Eq. (5).

1. The coarse-grained mass: A full mass matrix
with coordinate dependent mass values

The mass matrix Mξ in Eq. (19) is given by Eq. (8). This
Mξ depends on coordinates of all atoms, q, since the CG coordi-
nates ξ are two dihedral angles, each of which is a nonlinear func-
tion of the Cartesian coordinates of the four atoms. We want to
approximate the mass matrix Mξ as a function of CG coordinates
ξ so that Eq. (19) can be evolved only with the information of CG
coordinates.

We propose to approximate Mξ by the following CG mass:

MCG(ξ)−1
≡ ⟨Mξ(q)

−1
⟩
cond
ξ = ⟨∑

k

1
mk

(
∂ξ
∂qk

)(
∂ξ
∂qk

)
T
⟩

cond

ξ
. (20)

With the CG mass, we neglect the fluctuations in the generalized
mass (8). The value ∂ξ/∂qk in the above expression (20) is difficult
to compute from a standard MD simulation. We use the following
equalities to make the CG mass easily calculable from the simulation

MCG(ξ)−1
= ⟨

∂ξ
∂q

M−1 ∂ξ
∂q

T
⟩

cond

ξ
(21)

= ⟨
∂ξ
∂q

(kBT)−1
⟨q̇q̇T⟩

∂ξ
∂q

T
⟩

cond

ξ
(22)

= (kBT)−1
⟨
∂ξ
∂q

q̇q̇T
∂ξ
∂q

T
⟩

cond

ξ
(23)

= (kBT)−1
⟨ξ̇ ξ̇

T
⟩
cond
ξ . (24)

With Eq. (24), the CG mass is calculated from the conditional vari-
ance of the time derivative of CG coordinates. See the supplementary
material for the derivation. Here, M is the diagonal matrix with mk
on the diagonal. We call this CG mass MCG(ξ) the varying mass
model.
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We evaluated the CG mass from expression (24) using trajec-
tories of the atomistic MD simulation. More specifically, we dis-
cretized the domain with 24 × 24 uniform bins; size of each bin was
[12○ × 12○]. We used 500 ns of trajectories, which is about 109 sam-
ples with a 0.5 fs time step. To get smooth mass values over the
domain, the mass values were calculated from expression (24) for
the bins with more than 800 samples, and the mass values in other
regions were interpolated using the radial basis function (RBF) inter-
polation. In particular, inverse multiquadric functions were used as
basis functions of the interpolation. Note that the mass matrix is
symmetric, and we, therefore, have three unique components of the
mass matrix. The contour plots of these three components of the
mass matrix are shown in Fig. 1. The variation of the mass over the
configuration seems to be non-negligible. For calculation of the mass
and other terms in the GLE, we used the following units: ps for time,
K for temperature, 10−24 g for mass, and pm (10−12 m) for length.

We also used the approximate constant mass to compare the
CG model with the varying mass with that of the constant mass. The
constant CG mass is defined by averaging the mass (24) over all CG
coordinates ξ,

M−1
CG, const ≈ (kBT)−1

⟨ξ̇ ξ̇
T
⟩. (25)

The constant CG mass was computed using the same trajectories of
the atomistic MD that were used for the varying mass calculation.
The entries of the constant CG mass matrix were MΦ ,Φ = 15.6717,
MΦ ,Ψ = MΨ ,Φ = 4.5543, and MΨ ,Ψ = 18.8405. In Ref. 4, the authors
described a peptide with the GLE using one curved CG coordinate.
In that work, they employed constant mass, which was calculated by
averaging the generalized mass (8) over all configurations. Using a
varying mass model with the GLE is a novel approach to the authors’
knowledge.

2. The mean force term
The mean force term −β−1 ∂H/∂ξ in Eq. (18) can be expanded

to18

−β−1 ∂H
∂ξ

= ⟨ −
∂H
∂ξ

⟩
cond

ξ,pξ

= −
dV
dξ

−
1
2
pTξ

∂MCG(ξ)−1

∂ξ
pξ +

kBT
2

⟨
∂ log ∣M−1

ξ ∣

∂ξ
⟩
cond
ξ .

(26)

Here, H denote the Hamiltonian for the reference atomistic system,
and | ⋅ | denote the determinant of a matrix. And V is free energy for
CG coordinates ξ,

V(ξ) = −β−1 ln∫
q∗ ,p∗

δ(ξ(q∗) − ξ)Z−1e−βH(q
∗ ,p∗) dq∗dp∗. (27)

See the supplementary material for the derivation. The mean force
term (26) consists of the usual free energy term, −dV/dξ, and the
contributions from the generalized mass varying over CG coordi-
nates. When Mξ is not constant, from CG coordinates being non-
linear combinations of atomic coordinates, the second and the third
terms are nonzero.

We calculated the mean term (26) using the same trajecto-
ries of the atomistic MD that we used for calculating the mass. To
calculate the first term, −dV/dξ, we discretized the domain with
72 × 72 uniform bins; size of each bin was [5○ × 5○]. V(ξ) for each
bin was calculated from the histogram V(ξi) = −β−1 ln Ni/Ntot,
where N i is the number of passes of trajectories for each bin and
Ntot =∑total number of binsN i. Then, V(ξi) for each bin was interpolated
with the RBF interpolation to get a smooth free energy V(ξ) over
the whole domain. For the gradient of V(ξ), analytical derivatives of
the interpolating basis function were used to obtain smooth −dV/dξ
over the domain.

Figure 2 shows the calculated V(ξ), Ramachandran plot, of the
system. Color close to red represent lower free energy region; the two
metastable states are labeled with PII and αR. One metastable state PII
is defined as a rectangular region [−110○ ≤ Φ ≤ −60○] × [110○ ≤ Ψ
≤ 180○], and the other metastable state αR is defined as a rectangular
region [−110○ ≤ Φ ≤ −60○] × [−40○ ≤ Ψ ≤ 10○].

For the calculation, the third term in Eq. (26) was approximated
to kBT

2
∂ log ∣MCG(ξ)−1

∣

∂ξ . The second and the third terms were calculated
with MCG(ξ) that was computed in Sec. III A 1. The second and
the third terms are nonzero only for the varying mass model; for
the varying mass model, the first term was the dominant term, and
the second and the third terms were about 10−2 or smaller of the
magnitude of the first term.

3. The memory matrix
The memory kernel KL(t) in Eq. (18) is given by Eq. (11). After

discretizing Eq. (11), KL(t) at discrete time points can be calculated

FIG. 1. The coarse-grained mass in the multidimensional GLE. Marked points indicate centers of bins where the mass values were calculated using expression (24); the
values in other regions were from the interpolation. (a) MΦ ,Φ, (b) MΦ ,Ψ = MΨ ,Φ, and (c) MΨ ,Ψ.
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FIG. 2. Free energy V in Eq. (27) of the alanine dipeptide system. The two labeled
regions αR and PII indicate the two metastable states of the system.

from the following recurrence formula:

K(k−1)
L = −[ ⟨f(k) (p(0)ξ )

T
⟩ +

k−2
∑
l=0

K(l)L G(k−l) ∆t ] (G(1) ∆t )
−1

. (28)

Here, superscripts denote that a function is evaluated at discrete
time points; a superscript (k) denotes that a function is evaluated at
t = k∆t. f(t) ≡ dpξ/dt + β−1 dH/dξ and G(k) ≡ ⟨Mξ

−1p(k)ξ (p(0)ξ )
T
⟩.

Calculating the memory kernelK(k)L from Eq. (28) only requires
two ensemble averages ⟨f(k) (p(0)ξ )

T
⟩ and ⟨Mξ

−1p(k)ξ (p(0)ξ )
T
⟩. These

two ensemble averages were calculated for 0 ≤ k∆t ≤ 0.25 ps with
∆t = 1.0 fs. Since we found that those two ensembles obtained
using 10 ns trajectories were sufficiently converged, two ensem-
bles were calculated using a 10 ns long trajectory of the atomistic
MD. More specifically, we cut a 10 ns trajectory into 40 000 of
0.25 ps segment to calculate those ensembles. We computed the two
ensembles from 8 different 10 ns long trajectories. For each cal-
culation of those ensembles, respectively, we calculated K(k)L . The
mean and the standard deviation of K(k)L from 8 independent cal-
culations are shown in Fig. 3 for both the constant mass model

FIG. 3. The multidimensional memory kernel KL(t) for two dihedral angles Φ and Ψ
of the alanine dipeptide system. [Only KΦ ,Φ(t) entry is shown.] The memory kernel
was calculated both for the varying mass model and the constant mass model.

and the varying mass model. Only one entry of K(k)L , K(k)Φ,Φ, is
shown in Fig. 3 [see the supplementary material for other entries
of K(k)L ]. We observed long-lasting oscillations of a certain fre-
quency (about 12 fs) in the memory kernels KL(t). These seem to
be due to the stiff bond potentials of the reference atomistic MD
system.

As can be seen in Fig. 3, the memory kernel for the varying
mass model and the constant mass model show little difference. This
seems to be due to characteristics of the system and the way we set
up the GLE. Regarding the former, even though the mass varies over
the configuration, the last two terms in (26), which are the con-
tribution from the gradient of the mass, were small compared to
the first term. Regarding the latter, our memory kernel is already
approximated to be independent of ξ in Eq. (9), and so we only used
the two ensemble averages, ⟨f(k) (p(0)ξ )

T
⟩ and ⟨Mξ

−1p(k)ξ (p(0)ξ )
T
⟩,

to compute the memory. These two quantities differ little for the
varying mass and the constant mass models since Mξ

−1 is only
inside ⟨⋅⟩.

In Ref. 27, the authors show that the friction experi-
enced by a solute molecule from solvent depends on the exter-
nal potentials; as the external potential increases the friction

TABLE I. Coefficients of the approximated memory kernel KM
L (t).

k = 0 k = 1 k = 2 k = 3 k = 4 Integration values

The constant mass model

KΦ ,Φ

pk or qk 1.059 ⋅ 104 1.307 ⋅ 105 4.069 ⋅ 104 1.947 ⋅ 104 6.518 ⋅ 104

13, 200ak or ck 9.408 ⋅ 10−1 1.877 ⋅ 101 3.294 7.684 ⋅ 101 3.991 ⋅ 101

bk 3.621 ⋅ 101 3.093 ⋅ 102 7.122 ⋅ 102 1.423 ⋅ 102

The varying mass model

KΦ ,Φ

pk or qk 1.1822 ⋅ 104 1.285 ⋅ 105 3.849 ⋅ 104 2.511 ⋅ 104 6.074 ⋅ 104

13, 200ak or ck 1.069 1.863 ⋅ 101 4.986 9.681 ⋅ 101 4.015 ⋅ 101

bk 3.632 ⋅ 101 3.091 ⋅ 102 6.652 ⋅ 102 1.436 ⋅ 102

J. Chem. Phys. 150, 174113 (2019); doi: 10.1063/1.5055573 150, 174113-7

Published under license by AIP Publishing

https://scitation.org/journal/jcp
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-150-033917


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

FIG. 4. The approximated memory ker-
nel KM

L (t), which is the “effective” mem-
ory kernel of the mapped Markovian
equation, (denoted as “fitting” in legends)
compared to the memory kernel KL(t) in
the original GLE.

experienced by a solute molecule increases. From this result, the
authors speculate that for proteins, a local free-energy minimum
would produce a local increase in the friction and conversely, a free-
energy barrier would tend to reduce the local friction. This claim
implies that the CG model with coordinate dependent friction would
be useful. Although, in the scope of this paper, we employ coordinate
independent friction model with the memory kernel, employing the
coordinate dependent friction model could improve the CG model.

B. Mapping onto an extended Markovian system
We mapped Eq. (18) into an extended Markovian system fol-

lowing the procedure presented in Sec. II B. We ignored the skew-
symmetric part of KL(t) since the skew-symmetric part was much
smaller than the symmetric part. Accordingly, the sine components
were not used for the approximation of KL(t). Specifically, the off-
diagonal term was approximated with a combination of one expo-
nential and 3 exponentially decaying cosines. Then, each modified
diagonal term was approximated with a combination of one expo-
nential and 4 exponentially decaying cosines. Using these approxi-
mated memory kernel KM

L (t), the mapped Markovian equation uses
25 additional degrees of freedom to represent the original non-
Markovian equation. When finding those approximated memory
kernel KM

L (t), we imposed an additional constraint on the integra-
tion values of it. Since it is difficult to compute an accurate inte-
gration value of the memory kernel KL(t) from the atomistic MD
simulations, we instead set the integration value of KM

L (t) so that the
resulting Markovian CG model matches the mean first passage time

(MFPT) of the MD system.28 We computed 50 ns long trajectories
of the CG models to estimate the MFPTs of it.

The coefficients of the resulting approximated memory ker-
nel KΦ ,Φ(t) of KM

L (t) are listed in Table I. See the supplementary
material for the coefficients of other entries of KM

L (t). Figure 4 shows
the approximated memory kernel KM

L (t) along with KL(t) computed
in Sec. III A 3. The figure shows that the KM

L (t), which is the “effec-
tive” memory kernel represented by the mapped Markovian equa-
tion (12), is in a good agreement with the memory kernel KL(t) in
the GLE. The coefficients matrix A and B in the mapped Markovian
equation (12) can be found from the coefficients of the approximated
memory kernel KM

L (t).

IV. EVALUATION OF THE CG MODEL AND DISCUSSION
In this section, we evaluate the CG model of the alanine dipep-

tide system using two important kinetic properties of the system: the
velocity autocorrelation (VAC) and the first passage time (FPT) dis-
tributions. The VAC and the FPT are key characterizations of the
kinetics of any process.29 We evaluate the CG model with those
kinetic properties since it is known that the kinetic properties can
only be accurately predicted by including a proper model of “fluctu-
ations” from the unresolved degrees of freedom, whereas the ther-
modynamic properties can be accurately predicted using the correct
mean force term. In our CG model, by including a more sophisti-
cated representation of the “fluctuations” using the memory than
Langevin models, we aim to reproduce the kinetic properties of the
system as well as thermodynamic properties.
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To get the VAC and the FPTs of the CG model, we com-
puted the trajectories of the CG model, Eqs. (12) and (19), using
the velocity-Verlet integrator with the time step size ∆t = 1 fs.
Specifically, we computed 9 of 100 ns trajectories both for the
varying mass model and the constant mass model using the same
initial condition of (Φ, Ψ) used in the reference atomistic MD sim-
ulations and s(0) = 0. The VAC and FPTs of the atomistic MD
were obtained using the equivalent length of trajectories of the
atomistic MD.

A. The velocity autocorrelation
Entries of the VAC matrix from the CG model of constant mass

and varying mass were compared to those from the atomistic MD
in Fig. 5. The VAC from the CG models matches well with that of
the atomistic MD for a short time (up to about 0.1 ps). Off-diagonal
entries of the VAC matrix were well reproduced with the CG models
as well as the diagonal entries. The reproduction of the VAC by the
CG models is directly related to the inclusion of the memory ker-
nel in the CG model.30 Our CG model includes the approximated
memory kernel KM

L (t), so the approximation of the memory kernel
KL(t) is directly related to the reproduction of the VAC. The VAC
becomes less accurately reproduced for t > 0.1 ps since we consid-
ered a finite time period of the memory KL(t) (up to 0.2 ps) to get the
approximated memory kernel KM

L (t). The off-diagonal entries of the
VAC matrix were reproduced by the CG model since we included
off-diagonal entries of the memory kernel. As can be seen in Fig. 5,
a (nonoverdamped) Langevin model that does not include the
memory kernel was not able to reproduce the VAC of the

atomistic MD. The friction coefficients in the Langevin model were
the half of the integration values of the memory kernel in Table I;
the time step size to integrate the Langevin model was 1 fs. The VAC
from the varying mass model and the constant mass model were
comparable.

B. The first passage time distributions
We collected the FPTs of the two metastable states PII and

αR from total of 900 ns long trajectories for the CG models and
the atomistic MD. The FPT distributions were obtained for each
300 ns long trajectories; the mean and the standard deviation of
the FPT distributions from 3 calculations are shown in Fig. 6.
Note that we matched the MFPTs of the CG models with those
of the atomistic MD by adjusting the integration values of KM

L (t)
in Sec. III B where we used preliminary 50 ns long trajecto-
ries of the CG models to find the integration values of KM

L (t).
The MFPTs and their ratio using the total of 900 ns long tra-
jectories from the CG models and the atomistic MD are listed
in Table II.

Overall, the FPT distributions from the CG models well repro-
duce those from the atomistic MD. There are relatively large dis-
crepancies for the fast transitions [the first bin in Fig. 6(a) and the
first two bins in Fig. 6(b)]. Fast transitions likely highly depend
on the fluctuating force. But in our CG models, the fluctuating
force is simply modeled as a Gaussian noise and merely matches
the autocorrelation of it from the atomistic MD. This seems lead
to fewer fast transitions in our CG models than those in the
atomistic MD.

FIG. 5. The velocity autocorrelation
(VAC) of two dihedral angles Φ and Ψ
calculated from the atomistic MD simula-
tion and from the CG models. Subplots
on the diagonal show the autocorrelation
for each dihedral angle, and subplots on
the off-diagonal show the cross correla-
tion for the two dihedral angles. For the
CG models, an approximate Markovian
system of the multidimensional GLE with
the varying mass model and the constant
mass model were shown compared to
the Makrovian Langevin model.
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FIG. 6. The first passage time (FPT) distributions of αR ⇌ PII from the atomistic MD and the CG models with the varying mass model and the constant mass model. (a) αR
→ PII—Transition times greater than 300 ps are binned altogether. (b) PII → αR—Transition times greater than 500 ps are binned altogether.

In Ref. 31, the authors study the mean first passage times for
the barrier crossing of a single massive particle by numerical sim-
ulations of the GLE in one dimension. They use single exponential
memory kernel in the GLE. The authors show that barrier crossing
is accelerated for intermediate memory time, and the barrier cross-
ing is slowed down for the long memory time. We computed the
MFPTs from the Makorivan LE with the friction coefficient being
the integration values of the memory kernel in the GLE. The GLE
model shows about 30%–40% shorter MFPTs compared to the LE
model.

Overall, the results from the CG model of the constant mass
and the varying mass model differ little for the present alanine
dipeptide system. This may be because the chosen two proper-
ties for evaluation of the CG model depend on over all config-
urations. The varying mass model could be more advantageous
for reproducing locally dependent kinetic properties. Or the vary-
ing mass model might be advantageous when the reference system
for coarse-graining is a more complex system and the correction
of the mean force term (26) given by the varying mass model is
bigger.

We only tested our CG model with a small alanine dipep-
tide system and used two dihedral angles as CG coordinates.
Using this small system allowed easier evaluation of the result-
ing CG model since it is easier to collect the data for evalua-
tion of the CG models. Although we only used this small sys-
tem, the application to a bigger peptide chain is a straightforward
extension.

TABLE II. The mean first passage times of αR ⇌ PII and their ratio from the atomistic
MD simulation and the CG models with the varying mass model and the constant
mass model.

αR → PII (ps) PII → αR (ps) Ratio

Atomistic MD 83.43 153.88 1.8445
CG, varying mass 87.43 156.46 1.7896
CG, constant mass 84.51 159.63 1.8888

V. CONCLUSION
In this paper, we modeled the conformational motion of pro-

teins with the multidimensional GLE with the backbone dihedral
angles as CG coordinates. Since the forces on a set of two dihedral
angles are correlated, we employed the full memory matrix and the
full mass matrix in the multidimensional GLE. Since the dihedral
angles are nonlinear functions of atomistic Cartesian coordinates,
we employed a position-dependent CG mass; for the mean force
term, we considered additional terms resulting from the position-
dependent mass. Then, we mapped the multidimensional GLE to
an extended Markovian system for computational efficiency and to
simplify the modeling of the fluctuating force term. Using the sol-
vated alanine dipeptide system of atomistic MD, we showed that the
proposed CG model could reproduce the two key kinetic characteri-
zations of the reference atomistic MD system: the VAC and the FPT
distributions.

Although we tested our CG model of the multidimensional
GLE with the small alanine dipeptide system, our approach can
be used for bigger peptides with multiple internal coordinates as
CG coordinates. Besides the presented application of protein mod-
eling, the proposed multidimensional GLE approach will be use-
ful for many other applications with multiple CG coordinates. The
off-diagonal entries of the memory matrix will be important each
time we want to use several CG coordinates for which fluctuat-
ing forces from the unresolved degrees of freedom are strongly
correlated.

SUPPLEMENTARY MATERIAL

See the supplementary material for all entries of the mem-
ory kernel in Fig. 3, additional details of the mapping procedure
in Sec. II B, and entire coefficients of the fitted memory kernel in
Table I. The supplementary material also contains the derivation of
Eqs. (24) and (26).
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APPENDIX: DERIVATION OF THE MEMORY TERM
IN EQ. (4)

Let us consider the integrand of the memory term in
Eq. (2) e(t−s)LPLF(x, s). Using the definition of the projection
operator (3),

PLF(x, s) = ∫x
∗ LF(x∗, s)δ(A(x∗) −A)ρ(x∗)dx∗

∫x∗ δ(A(x∗) −A)ρ(x∗)dx∗
. (A1)

We will write the time argument of F(x, s) as a subscript to simplify
the notation. Let us focus on the numerator of (A1)

∫
x∗
LFs(x∗)δ(A(x∗) −A)ρ(x∗)dx∗, (A2)

= ∫
x∗
∑
i
Ri(x∗)

∂

∂x∗i
Fs(x∗)δ(A(x∗) −A)ρ(x∗)dx∗, (A3)

=∑
i
∫
x∗

∂

∂x∗i
Fs(x∗)Ri(x∗)δ(A(x∗) −A)ρ(x∗)dx∗, (A4)

= −∑
i
∫
x∗
Fs(x∗)

∂

∂x∗i
(Ri(x∗)δ(A(x∗) −A)ρ(x∗))dx∗,

(A5)

= −∑
i
∫
x∗
Fs(x∗)

∂

∂x∗i
(Ri(x∗)δ(A(x∗) −A))ρ(x∗)dx∗,

(A6)

= −∫
x∗
Fs(x∗)∑

i

∂

∂x∗i
(Ri(x∗)δ(A(x∗) −A))ρ(x∗)dx∗,

(A7)

= −∫
x∗
Fs(x∗)(∑

i
{

∂

∂x∗i
Ri(x∗)}δ(A(x∗) −A)

+ Ri(x∗){
∂

∂x∗i
δ(A(x∗) −A)})ρ(x∗)dx∗. (A8)

In (A5), we use integration by parts. In (A6), we use ∂ρ/∂t = 0;
ρ is an invariant pdf. If { ∂

∂x∗i
Ri(x∗)} = ∇ ⋅ R = 0, which means

the reference dynamics (1) is volume conserving, (A8) reduces
to

= −∫
x∗
Fs(x∗)(∑

i
Ri(x∗){

∂

∂x∗i
δ(A(x∗) −A)})ρ(x∗)dx∗, (A9)

= −∫
x∗
Fs(x∗)(∑

i
Ri(x∗){∇A(x∗)δ(A(x∗) −A)} ⋅

∂A(x∗)
∂x∗i

)

× ρ(x∗)dx∗, (A10)

= ∫
x∗
Fs(x∗)(∑

i
Ri(x∗)∇Aδ(A(x∗) −A) ⋅

∂A(x∗)
∂x∗i

)ρ(x∗)dx∗,

(A11)

= ∫
x∗

[Fs(x∗)⊗ LA(x∗)]∇Aδ(A(x∗) −A)ρ(x∗)dx∗. (A12)

In (A11), we use the equality ∇A(x∗)δ(A(x∗) − A) = −∇Aδ
(A(x∗) − A). In (A12), we use ∑i Ri(x∗) ∂

∂x∗i
A(x∗) = LA(x∗), and

⊗ denotes an outer product of two vectors.
Then, (A12) becomes

PLFs(x) = eH[∇A ⋅ (∫
x∗
[LA(x∗)⊗ Fs(x∗)])δ(A(x∗) −A)

× ρ(x∗)dx∗]
T

, (A13)

= eH[∇A ⋅ (e−HP[LA⊗ Fs])]
T

, (A14)

= [(∇A −∇AH) ⋅ P[(LA − PLA)⊗ Fs]]
T

, (A15)

= [(∇A −∇AH) ⋅ P[F0 ⊗ Fs]]
T

. (A16)

In (A15), we use the equality PFs = 0.
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