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RESEARCH ARTICLE
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José N. Onuchic1*, Paul C. Whitford3*

1Center for Theoretical Biological Physics, Rice University, Houston, Texas, United States of America,
2 Kristallografie, Max Delbrück Center for Molecular Medicine, Berlin, Germany, 3 Department of Physics,
Northeastern University, Boston, Massachusetts, United States of America

* jeffrey.noel@mdc-berlin.de (JKN); jonuchic@rice.edu (JNO); p.whitford@neu.edu (PCW)

Abstract
Molecular dynamics simulations with coarse-grained or simplified Hamiltonians have

proven to be an effective means of capturing the functionally important long-time and large-

length scale motions of proteins and RNAs. Originally developed in the context of protein

folding, structure-based models (SBMs) have since been extended to probe a diverse

range of biomolecular processes, spanning from protein and RNA folding to functional tran-

sitions in molecular machines. The hallmark feature of a structure-based model is that part,

or all, of the potential energy function is defined by a known structure. Within this general

class of models, there exist many possible variations in resolution and energetic composi-

tion. SMOG 2 is a downloadable software package that reads user-designated structural

information and user-defined energy definitions, in order to produce the files necessary to

use SBMs with high performance molecular dynamics packages: GROMACS and NAMD.

SMOG 2 is bundled with XML-formatted template files that define commonly used SBMs,

and it can process template files that are altered according to the needs of each user. This

computational infrastructure also allows for experimental or bioinformatics-derived

restraints or novel structural features to be included, e.g. novel ligands, prosthetic groups

and post-translational/transcriptional modifications. The code and user guide can be down-

loaded at http://smog-server.org/smog2.

This is a PLOS Computational Biology Software Article.

Introduction
The study of biomolecular folding has produced theoretical concepts that are generalizable to
many processes, such as conformational rearrangements in proteins and the functional dynam-
ics of molecular assemblies. In particular, the principle of minimal frustration [1] and the
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folding funnel concept [2, 3] describe an energy landscape where the native interactions (i.e.
the molecular interactions present in low free-energy configurations of folded proteins and
RNAs) are on average more stabilizing than non-native interactions. Thus, the effective ener-
getics of a biomolecule can be well described by a set of stabilizing native interactions, along
with excluded volume to prevent chain crossing. Potential energy functions of this type are
known as “structure-based models,” (SBMs) and they are powerful tools for probing the rela-
tionship between structure, folding and function in biomolecular systems. The simplified char-
acter of the potential energy function allows for reduced computational requirements, and the
explicitly-encoded native interactions provide a baseline model for molecular modeling, or for
studying physical perturbations. For a detailed discussion of the theoretical foundation and
applications of SBMs, the reader is referred to the following reviews [4, 5] and the references
therein.

SBMs were first extensively used to explore the predictions of energy landscape theory in
the context of protein folding [6–15]. These studies showed that minimally-frustrated protein
models reproduce many thermodynamic features of real proteins, and the predicted transition
state ensembles are frequently consistent with experimental findings [8, 9, 16–18]. In addition
to folding, studies used SBMs to show that protein binding could be understood within a com-
mon theoretical framework [19, 20]. Since protein function is governed by the same energy
landscape that determines folding dynamics [21], these models have also been used to study
the conformational dynamics involved in macromolecular function, e.g. adenylate kinase [22],
kinesin [23, 24], and the ribosome [25]. These models have structural resolutions that vary
from a single bead per residue [10], to all heavy atoms being explicitly represented [26], and
their energetic complexity varies from “perfectly-funneled” landscapes, to Hamiltonians that
include various flavors of non-native interactions [27–29]. Recently, SBMs have found utility
in molecular modeling applications. For example, MDfit combines SBMs and cryogenic elec-
tron microscopy data to create atomically-grained structural models that are consistent with
experimental electron densities [30]. Another example is SBM+DCA, where SBMs include co-
evolutionary residue-residue interactions to predict difficult-to-crystallize oligomers [31, 32].
Together, SBMs (sometimes called “Go-models” [33]) have a thirty year history that spans
countless applications, where the common feature is that biomolecular contacts present in
high-resolution structures are given stabilizing energetics.

With the versatility of SBMs, investigators often apply customizations that are tailored to
address specific physical questions. This contrasts with the more linear development of empiri-
cal explicit-solvent potentials, which is driven by the reproduction of experimental observables
for model systems. As a result, SBM development has been decentralized, which has limited
the portability and transferability of the models. Web servers [34, 35] that produce output for
running SBMs on modern molecular dynamics (MD) packages have been very popular, and
have provided some degree of standardization. However, since these web servers only provide
the specific variations of the models that the developers decide to support, modifications made
by the general community are typically unavailable to other researchers.

SMOG 2 is intended to facilitate SBM development by allowing modifications and exten-
sions to be easily shared by the research community. In SMOG 2, an SBM potential is trans-
lated into a template format, allowing forcefields to be easily disseminated and modified.
SMOG 2 processes user-designated structural information provided in standard Protein Data
Bank (PDB) format and a SMOG 2 template, in order to generate the forcefield files required
to perform simulations with MD platforms. Two of the most widely used MD platforms, GRO-
MACS [36] and NAMD [37], support SMOG 2 output files. SMOG 2 is licensed under the
GNU GPL and the source code is publicly available. See http://smog-server.org/smog2 for
details and the user guide.

Structure-Based Models with SMOG 2
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Design and Implementation

Template-based design
Many functional biological macromolecules are polymers of amino acids or nucleic acids, the
building blocks of proteins, RNA and DNA. Each residue has a unique set of atoms, called the
side chain in proteins (or base in nucleic acids), and a common set of atoms that constitutes
the polymer backbone. Thus, an intuitive approach for defining the covalent connectivity
within a biomolecule is to predefine the covalent structure of each possible residue and then
map these interactions on a per-residue basis. Conditions must also be provided that ensure
adjacent residues are covalently linked. In addition, generic non-bonded (non-covalent) inter-
actions between atoms can be defined by assigning each atom a chemical “type” and then speci-
fying the functional forms of the interactions between all possible combinations of types. This
approach is sufficient to describe any polymer sequence composed of the predefined building
blocks. SMOG 2 adopts this strategy for defining SBMs, which is consistent with the organiza-
tion used for semi-empirical models, such as AMBER [38], CHARMM [39], and GROMOS
[40]. This consistency in the construction of the models also allows the interactions defined in
semi-empirical models to be mapped to SMOG 2 syntax in order to construct hybrid-variants
of these models.

SMOG 2 templates are written in XML (eXtensible Markup Language) for readability and
standardization. A SMOG 2 template, which defines a specific forcefield, is comprised of four
files with the following suffixes:

• .bif: Defines the atoms and bonds in each residue and their connectivity. Any atom names
may be used, though the naming between the .bif and input PDB file must be consistent.

• .sif: Defines the available functional forms for interaction potentials and system-wide ener-
getic settings.

• .b: Sets the specific functional forms to be applied for bonded interactions between atom
types.

• .nb: Sets the specific functional forms to be applied for non-bonded interactions between
atom types.

The included templates (see section Included templates) follow standard PDB nomencla-
ture for simplicity. Internally, the code makes no assumptions about the molecular structure
corresponding to specific residue names or the interactions associated with specific atom
names. Thus, adding new ligands and residue types involves defining the consituent atom
names and their covalent bonds in the .bif. Each atom has three associated “types” that can be
used to control the interactions between atoms: bonded-type, non-bonded-type, and pair-type.
These parameters define how to map the bonded interactions, non-native non-bonded interac-
tions, and native contact interactions, respectively. It should be pointed out that irregular
molecular chains (i.e. without a common backbone) such as polysaccharides cannot be auto-
matically handled. To accommodate for these types of irregular chains, the inter-residue bonds
must be explicitly defined in the PDB file, as described in the SMOG 2 manual.

SBMHamiltonians are defined by the input structure. The main purpose of SMOG 2 is
to facilitate the creation of input files for simulations that contain structure-based interactions.
For our purposes, a “structure-based interaction” is an interaction that is parameterized by the
atomic coordinates of a known, low-free-energy configuration (e.g., an X-ray crystallographic
structure). In a “pure” SBM, the global minimum of the Hamiltonian is encoded as the configu-
ration of the input (native) structure by explicitly defining the native value of each interaction

Structure-Based Models with SMOG 2
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to be the potential energy minimum. For illustration, consider the Hamiltonian of a commonly
used coarse-grained SBM [7], where each protein residue is represented by a bead at the posi-
tion of the Cα atom:

HCað~x;~x0Þ ¼
X

ij2bonds

�b
2
ðrij � r0ijÞ2 þ

X
ijk2angles

�y
2
ðyijk � y0ijkÞ2 þ

X
ijkl2dihedrals

�DFDðφijkl � φ0
ijklÞ

þ
X

ij2contacts
�C 5

r0ij
rij

 !12

� 6
r0ij
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 !10" #
þ
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:

ð1Þ

The dihedral potential FD is

FDðdφÞ ¼ ½1� cos ðdφÞ� þ 1

2
½1� cos ð3dφÞ�:

The backbone structure is maintained by harmonic bonds and angles, the secondary and ter-
tiary structure is stabilized by dihedral and short-range contact potentials, and all beads inter-
act through an excluded volume interaction. Contacts are defined as being between residue
pairs that are in spatial proximity in the native structure [41]. The superscript 0 denotes that a
parameter is calculated from the input structure, which is used to explicitly set the global mini-
mum of the potential to the input configuration.

Including native structural information and coarse-graining. SMOG 2 was written spe-
cifically for Hamiltonians of the general form shown in Eq 1. In the SMOG 2 templates a ques-
tion mark is used to indicate that a parameter should be calculated from the native structural
information. For example, in the .b file for the Hamiltonian in Eq 1, the bond function would
be declared as:

<bond func=“bond_harmonic(?,20000)”>
<bType>�</bType>
<bType>�</bType>

</bond>

This specifies that a harmonic bond potential with �b = 20000 be given between an atom
pair ij of the indicated bonded types (bType). In this case, the asterisks stipulate that this func-
tion be applied to all bType combinations that are not explicitly defined elsewhere in the .b file.
Note that the units should be consistent with how GROMACS implements reduced units; for a
more detailed discussion, see the user manual. As noted above, a unique feature of SMOG 2 is
the question mark special character. In this example, the question mark specifies that the native
distance r0ij should be used to define the minimum of the harmonic potential. This question

mark syntax can be similarly used for any interaction term in Eq 1. To provide a parameter
that is independent of structure, such as σNC, which defines the excluded volume between the
beads, a numerical value should be provided in place of a question mark.

SMOG 2 implements automatic coarse-graining by using two templates internally, one
atomistic template that is consistent with the input PDB structure, and one coarse-grained
template. The coarse-grained template specifies one atom within each residue to map interac-
tions and include in the simulation model. This feature is useful for creating single-bead mod-
els of proteins, such as the commonly-used Cα-model of Clementi, Nymeyer and Onuchic [7].
Coarse-grained geometries differing from a single-bead-per-residue representation can be
implemented by creating a template consistent with a preprocessed PDB structure containing
only the coarse-grained atoms. Note that the Shadow.jar contact map generation tool is only
intended for use with a structure containing all the heavy atoms. Thus, for general coarse-
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graining, the native contacts will have to be mapped onto the coarse-grained atoms by the user
and be provided to SMOG 2 as input.

Included templates. SMOG 2 is packaged with templates for some commonly used struc-
ture-based Hamiltonians [7, 26, 42–46] (Table 1). These templates can be used as-is or modi-
fied to create new SBM variants. Users that generate new templates are encouraged to make
them publicly available through the SMOG webpage. This can help provide transparency and
encourage collaboration.

Code implementation
SMOG 2 is written in the Perl programming language, and it uses the Perl Data Language
(PDL) for its primary data structures. PDL extends the native Perl data structures by allowing
for large multidimensional arrays that can be manipulated through vector-based operations.
PDL arrays are more compact, and can be manipulated faster than native Perl arrays. This is
important for the most computationally intensive task performed by SMOG 2, which is to
dynamically calculate all angles and dihedrals that can exist in a molecule based on the bonded
geometry. The Perl implementation has a few dependencies: String::Util, XML::Simple,
Exporter, and XML::Validator::Schema. Additionally, the Java Runtime Environment (JRE 1.7
or greater) is necessary for SMOG 2 to call the included Shadow.jar contact map tool [41].

In order to ensure that SMOG 2 is properly configured, test modules are available to the
user as a separate download (smog-check) from the SMOG website. The smog-check bundle
contains two test programs. One is a basic check that ensures that the local installation repro-
duces benchmark output files (.top, .gro). The second testing suite is a rigorous test-driven-
development package that inspects the output of SMOG 2 for accuracy after code modifica-
tions. SMOG 2 has been extensively beta tested and exception-driven-development (i.e. check-
ing for previously encountered errors and providing feedback to the user on how to correct the
errors) has been implemented throughout the code.

Workflow
SMOG 2 is invoked from the command line. The two necessary inputs are 1) a biomolecular
structure in PDB format and 2) a directory name containing the set of SMOG 2 templates.
Users are encouraged to use the included tool smog_adjustPDB, which resolves common
formatting/naming inconsistencies between standard PDB format and the default templates.

Table 1. Description of the SMOG 2 templates included in the distribution. Except where noted, the
native contact map is generated by the Shadow algorithm [41] using an input all-atom PDB structure. The
elastic network model is in the same spirit as Tirion’s [46], but the contact map is different and the spring stiff-
ness is system independent.

Template Ref. Description

SBM_AA [26] All heavy atoms explicitly represented, Lennard-Jones potentials for native
atomic contacts, handles RNA/DNA/protein/ligands

SBM_AA+gaussian [42,
43]

SBM_AA with Gaussian potentials for native atomic contacts

SBM_AA_charged [44] SBM_AA with charged ARG, LYS, GLU, ASP, N/C-terminal

SBM_CA [7] Single Cα bead per residue, Lennard-Jones potentials for native residue
contacts, developed for proteins

SBM_CA+gaussian [45] SBM_CA with Gaussian potentials for native residue contacts

ENM All-atom elastic network model, harmonic potentials for native atomic
contacts, 6 Å cutoff determines native contact map

doi:10.1371/journal.pcbi.1004794.t001
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The templates define the general form and parameters of the Hamiltonian. SMOG 2 can pro-
cess default templates that are included within the package (Table 1), as well as user-generated
templates. The native contact map can be either automatically generated or provided as input.
Running SMOG 2 generates output files that are formatted for input to MD software packages
(in GROMACS format, which can also be read by NAMD). At a minimum, two of the gener-
ated files are required in order to run a simulation:

• .gro: The coordinates of the input PDB structure in GRO format. This is often used as the
initial configuration for MD simulations.

• .top: The topology file specifies the Hamiltonian by listing all atomic interactions.

The user’s manual and the SMOG web server [34] both provide tutorials for using the gen-
erated files to perform MD simulations. While SMOG 2 can be used to generate a wide range
of possible models, for some extended SBM variants, it will be necessary to further process the
topology files. For example, combining multiple SBMs into a multi-basin landscape is a com-
monly used technique that is not automatically handled by SMOG 2. This task and other useful
post-processing of topology files can be performed with the Python-based eSBMTools [47].

Results and Discussion

Protein folding with the default models
As an illustration of the types of SBM variants that can be explored with SMOG 2, folding sim-
ulations of the well studied protein chymotrypsin inhibitor 2 (CI2) [48] are considered. The
results for two different models are shown, a single-bead-per-residue graining [7] and an all-
heavy-atom graining [26] (SBM_CA and SBM_AA in Table 1, respectively), using the input
run parameters suggested in the user’s manual (Fig 1). A standard reaction coordinate for the
analysis of biomolecular folding is the fraction of native structure formed, often called Q [7, 49,
50]. The SMOG-enhanced version of GROMACS v4.5 available on the SMOG website contains
the tool “g_kuh,” which analyzes trajectories using native structural measures, including Q.
Consistent with the experimentally-observed two-state folding dynamics of CI2 [51], plotting
the free energy as a function of Q shows two basins at the folding temperature (TF). There is a
folded basin at high Q and an unfolded basin at low Q, which are separated by a free-energy
barrier (Fig 1C). Here, Q is defined as the fraction of natively-contacting residue pairs that are
within 1.5 times their native distance.

Using SMOG 2 to explore multiple levels of structural detail
In addition to models with Cα or all-atom resolution, SMOG 2 templates can be modified to
describe any level of structural detail. For example, included in the distribution is a template
that accommodates the explicit representation of hydrogens (Fig 2). This template, called
“SBM_AA+hydrogen”, uses heterogeneous atomic radii modeled from the vdW parameters in
the Amber99sb forcefield [38]. In contrast to the other included templates, there are multiple
non-bonded types and associated changes, which can serve as an example of how to manipu-
late the SMOG 2 template syntax.

Here, we use the SBM_AA+hydrogen template to study protein folding with models that
have identical native contact potentials, but differing levels of geometric detail. This provides a
baseline test of the effects of atom size and molecular geometry on the folding landscape. The
free-energy profiles along Q are shown for three SBMs of CI2, two with uniformly-sized heavy
atoms of diameters 1.7 Å and 2.5 Å (parameter σNC in Eq 1), and one using the SBM_AA+-
hydrogen template (Fig 2A). These three models are denoted M1.7, M2.5, and M+H, respectively.

Structure-Based Models with SMOG 2
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Notably, increasing the excluded volume raises the folding barrier and lowers the folding tem-
perature (TF) [41]. M

2.5 has a folding barrier of the same height as M+H, though M+H has a sin-
gle flat barrier shape and M2.5 has a significant shoulder. The overall character of CI2 folding is
consistent between the three models: two-state kinetics with a barrier centered around Q = 0.4.
Differences in folding mechanism can be discerned by comparing the average contact forma-
tion in the barrier region. Visual inspection of average contact maps in the upper triangles of
Fig 2 (panels B-D) shows that the transition state ensemble (TSE) is highly similar between the
models. The detailed differences between M+H and the models with uniform atom sizes are

Fig 1. Protein folding simulations with the default Cα and all-atommodels of the 64 residue
chymotrypsin inhibitor 2 (PDB code: 1YPA). Top: Folding trajectories near folding temperature (TF) of the
Cα (black) and all-atom (red) models. Bottom: Free energy as a function ofQCa, the number of native Cα pairs
within 1.5 times their native distance. The same coordinate is used to describe both models. Inset: Specific
heat for the two models (normalized to have equal area). TF in reduced units for the all-atommodel is 0.97
and for the Cαmodel is 1.17 (117 and 140 in the GROMACS .mdp file, respectively).

doi:10.1371/journal.pcbi.1004794.g001

Structure-Based Models with SMOG 2
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Fig 2. Composition of the folding TSE is robust to variations in the structural resolution of CI2. A) Free energy profiles as a function of the number of
native atom-atom contactsQ, for three atomic geometries: uniform heavy atom diameter of 1.7 Å (M1.7 , black), uniform heavy atom diameter of 2.5 Å (M2.5,
red), and heterogeneous heavy atom sizes with hydrogen excluded volume, +H (M+H, blue). The similar barrier height between M2.5 and M+H suggests that
the excluded volume in Amber99sb is roughly equivalent to an average of 2.5 Å diameter for heavy atom beads. Increasing the excluded volume raises the
folding barrier and lowers TF [41]. Note that the profile in Fig 1 is different because it was generated using the SBM_AA default of 2.1 Å diameter and a cutoff
of 1.5 times the native distance to define a formed native contact, whereas a cutoff of 1.2 is used here. B) CI2 native contact map (lower triangle) and average
contact formation at the unfolding side of the free-energy barrier atQ = 0.30 for M+H (upper triangle). C) Comparison atQ = 0.30 of M+H and M2.5. Average
contact formation of M2.5 (upper triangle) and difference for each contact with positive values indicating higher formation in M+H (lower triangle). D)
Comparison atQ = 0.30 of M+H and M1.7. Average contact formation of M1.7 (upper triangle) and difference for each contact with positive values indicating
higher formation in M+H (lower triangle).

doi:10.1371/journal.pcbi.1004794.g002
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highlighted in the lower triangles of Fig 2 (panels C and D). M+H versus M2.5 shows early for-
mation of some secondary structure and delayed formation around ARG48 and ARG62. M+H

versus M1.7 mainly shows early formation of the parallel β-strand. Overall, while this analysis
indicates that two-state folding and the character of the TSE are insensitive to the details of the
atomic geometry in CI2, there are subtle effects on secondary structure formation and the
shape of the free-energy barrier.

Applications of SMOG 2 to large systems
To demonstrate of capacity of SMOG 2 to study systems of increased size, we used it to prepare
simulations of the HIV-1 capsid shell. The HIV-1 capsid shell is composed of 1356 p24 pro-
teins, which form hexameric and pentameric subunits. As noted in the original manuscript
[52], the inherent plasticity of the p24 motif enables the formation of this heterogeneous
assembly. Together, there are 216 hexameric units and 12 pentameric units that coincide with
vertices of the assembly, which together form a “fullerene cone” shape. In total, there are 2.4
million non-hydrogen atoms in this system, making it the largest asymmetric structure avail-
able in the PDB. Previously, using explicit-solvent simulation of the full complex, it was found
that the structural model maintained its structural integrity on the timescale of 100 ns [52].
This observation lends support to the details of the structural model, thereby implicating the
formation of specific stabilizing interprotein interactions.

To elucidate the global motions of the mature HIV-1 capsid, we prepared a structure-based
model with SMOG 2. Due to large number of chains and atoms, the web-based smog-server is
not capable of processing this system. Since this system lacks global symmetry, it is important
to simulate the full assembly in order to probe the dynamics. This is in contrast to more sym-
metric viral systems, where it may be possible to reduce the computational requirement by uti-
lizing knowledge of the symmetry. From our simulation of the full complex, we performed
principle component analysis (PCA) to identify the global modes of motion. Specifically, we
calculated the center of mass of each domain of p24 (in total 2712 pseudoparticles) as a func-
tion of time and then evaluated the PCAs of the motions of the centers of mass. We find that
the first two PCAs provide dominant contributions to the overall fluctuations of the complex,
where the five largest eigenvalues were 7.7, 3.5, 2.9, 2.4, 1.7 nm2. Visualization of the first PCA
(Fig 3) shows that the capsid exhibits an overall breathing-like motion. That is, there is corre-
lated expansion and contraction of opposing sides of the capsid. With regards to the second
mode, there was not a visible pattern in the direction of motion of the atoms. Nonetheless,
when comparing the relative mobility of each domain we find that the largest fluctuations asso-
ciated with this mode are centered around a specific hexamer (chain 1218 in the PDB file).
Since subsequent conformational changes and disassembly are involved in HIV infection, this
elevated degree of mobility suggests that this region may facilitate functional processes (e.g.
recognition, or rupture propagation).

Computational performance
For modestly sized systems (<20,000 atoms) the SMOG 2 program is lightweight and runs in
under a minute on a desktop computer. The numbers quoted here use the template SBM_AA
and are performed on a single core of a 2.30 GHz Intel Xeon E5-2630 CPU. For example, creat-
ing a topology file for adenylate kinase (1 chain, containing 1656 heavy atoms) takes 7 seconds
and 124 MB of memory. While the largest systems considered in this manuscript take signifi-
cantly more resources, topologies can easily be generated on modern desktop computers. SMOG
2 for the 70S ribosome (150 thousand atoms) takes 12 minutes and 3.1 GB of memory, and the
HIV-I capsid (2.4 million atoms in 1356 chains, [52]) takes 89 minutes and 13.9 GB of memory.

Structure-Based Models with SMOG 2
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Regarding the performance of MD simulations, SBMs exhibit strong scaling with paralleli-
zation on modern computing architectures. With GROMACS (v4 or v5), smaller simulations
(<2000 atoms) can typically scale up to the number of processors available on a single mother-
board, and larger simulations can significantly benefit from the combination of multiple com-
pute nodes. The ribosome has previously been studied using SBMs [25], and it scales to*1000
cores on modern supercomputers (Fig 4). SBMs also exhibit weak scaling, which can be seen
with the 2.5M atom EF-G lattice scaling to*2000 cores.

Future Directions
There are many exciting applications for exploring the dynamics of biomolecules and molecu-
lar modeling that can be incorporated into the SMOG 2 infrastructure. Investigators are cur-
rently studying the entropic effects of post-translational modifications such as glycosylation

Fig 3. Correlated fluctuations are observed in all-atom simulations of the HIV-1 capsid. A) Side view of
HIV-1 capsid with the center of mass of each domain shown as a grey (N-terminal) and ice blue (C-terminal)
sphere. The first principal component is shown with green arrows (length of the arrows is not to scale). B)
Same as panel (A), rotated 90°. The bottom panel shows the same complex with part of the system hidden.
This reveals that, while a large number of domains move outwards (A), others move inward, resulting in a
concerted breathing-like motion. C) Capsid shown with centers of mass colored by the scale of the motion in
the second mode (blue: small, red: large). The largest fluctuations are centered around hexamer 1218. D)
Rotated view of (C).

doi:10.1371/journal.pcbi.1004794.g003
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[53] and the energetic effects of electrostatic interactions between nucleic acids and proteins
[44, 54]. Another interesting development has been the integration of residue-level co-evolu-
tionary information into structure-based potentials [55, 56]. Co-evolutionary information has
a similar theoretical basis to SBMs in the “principle of minimal frustration” [1, 57], and they
can help extend SBMs beyond the single-minimum paradigm [58]. With these new directions
in mind, it is our intention that SMOG 2 will support the development of diverse applications
of SBMs, by establishing a common framework that facilitates portability and collaboration.
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