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Spatially-resolved transcriptomics reveal
macrophage heterogeneity and prognostic
significance in diffuse large B-cell lymphoma

Min Liu1,2,3, Giorgio Bertolazzi4,5, Shruti Sridhar1, Rui Xue Lee1, Patrick Jaynes1,
Kevin Mulder 6,7,8, Nicholas Syn 9,10, Michal Marek Hoppe 1, Shuangyi Fan9,
Yanfen Peng 1, Jocelyn Thng1, Reiya Chua11, Jayalakshmi11,
Yogeshini Batumalai11, Sanjay De Mel 11,12, Limei Poon11,12,
Esther Hian Li Chan11,12, Joanne Lee11,12, Susan Swee-Shan Hue9,12,
Sheng-Tsung Chang13, Shih-Sung Chuang13, K. George Chandy14, Xiaofei Ye 15,
Qiang Pan-Hammarström 16, Florent Ginhoux 6,7,8, Yen Lin Chee11,12,
Siok-BianNg 1,9,12, Claudio Tripodo 5,17 &AnandD. Jeyasekharan 1,11,12,18

Macrophages are abundant immune cells in the microenvironment of diffuse
large B-cell lymphoma (DLBCL). Macrophage estimation by immunohis-
tochemistry shows varying prognostic significance across studies in DLBCL,
and does not provide a comprehensive analysis of macrophage subtypes.
Here, using digital spatial profiling with whole transcriptome analysis of
CD68+ cells, we characterizemacrophages in distinct spatial niches of reactive
lymphoid tissues (RLTs) and DLBCL. We reveal transcriptomic differences
between macrophages within RLTs (light zone /dark zone, germinal center/
interfollicular), and between disease states (RLTs/ DLBCL), which we then use
to generate six spatially-derived macrophage signatures (MacroSigs). We
proceed to interrogate these MacroSigs in macrophage and DLBCL single-cell
RNA-sequencing datasets, and in gene-expression data from multiple DLBCL
cohorts. We show that specific MacroSigs are associated with cell-of-origin
subtypes and overall survival in DLBCL. This study provides a spatially-
resolved whole-transcriptome atlas of macrophages in reactive andmalignant
lymphoid tissues, showing biological and clinical significance.

Diffuse large B-cell lymphoma (DLBCL) is the most common subtype of
non-Hodgkin lymphoma in adults1,2. Combination therapy of rituximab
with cyclophosphamide, doxorubicin, vincristine, and prednisolone
(R-CHOP) is potentially curative, but 30%–40% of cases relapse after
initial therapy3. Elucidating mechanisms underlying relapse following
R-CHOP is critical for the development of therapeutic strategies to
improve DLBCL outcomes. An important and emerging area is the role
of the tumormicroenvironment (TME) inmediating disease progression
and clearance of tumor cells after chemotherapy4–8. Understanding
factors in the TME that mediate DLBCL relapse following R-CHOP is also

important in terms of incorporating current immunotherapeutics such
as bispecific CD20-CD3 T-cell engagers, CD19 CAR-T cells and anti-CD47
antibodies into front-line treatment regimens for DLBCL.

Tumor-associated macrophages (TAMs) are abundant immune
cells in the DLBCL TME9,10. TAMs are recognized as potential therapeutic
targets in oncology due to their role in tumor progression, metastasis,
and recurrence11. In DLBCL, TAM infiltration is associated with poor
prognosis after R-CHOP therapy9,12,13. However, there are discrepancies
observed between studies, with a lack of sufficient reproducibility to
identify consistent clinical prognostic markers14. These discrepancies
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may partly result from the simplified functional classification of mac-
rophages into M1/M2 phenotypes15. Conventionally, M1 macrophages
refer to a pro-inflammatory phenotype with pathogen-killing abilities
while M2 refers to an anti-inflammatory phenotype promoting pro-
liferation, tissue repair and tumorigenesis16. However, macrophages in
several physiological or pathological settings, including embryonic
macrophages, resolution-phasemacrophages and even certain TAMsdo
not clearly fall into either the M1 or M2 phenotype17. Furthermore,
macrophages show high phenotypic plasticity17, suggesting that theM1/
M2 dichotomy does not fully encompass the functional diversity of
macrophages17–19. Indeed, with single-cell transcriptomic approaches,
the functional complexity of macrophages is now widely
appreciated20,21. The nature of TAMs defined by comprehensive tran-
scriptomic approaches in DLBCL and their relationship with treatment
outcomes remain poorly understood22.

In this work, we comprehensively characterize TAMs in DLBCL and
reactive lymphoid tissues (RLTs) using digital spatial profiling (DSP), an
advanced technique for spatially resolved transcriptomics. The DSP
whole transcriptome atlas (WTA) provides an unbiased map of
18,000+RNA targets throughout specific cell types of interest (chosen
based on a fluorescent protein marker- here CD68 for macrophages) in
formalin-fixed paraffin-embedded tissue sections. Here, using DSP, we
generate spatially-derived macrophage transcriptomic signatures and
explore their associations with previously described macrophage sub-
populations and clinical/ biological features of DLBCL.

Results
Digital spatial profiling (DSP) illuminates consistent profiles
from distinct masks in lymphoid tissue microregions
We profiled the whole transcriptome of macrophages, T cells, and B
cells using the GeoMx®DSPWTA assay (Fig. 1A), by selective collection
of UV-cleavable probes from distinct masks generated by immuno-
fluorescent staining of the morphology markers CD68, CD3 and CD20
(pertaining to macrophages, T-cells and B-cells, respectively), in RLTs
(n = 24) and DLBCL patients (n = 64) for a total of 702 areas of interest
(AOIs) (Supplementary Fig. 1A, representative images in Fig. 1B, C and
Supplementary Fig. 1B–D).

Given the heterogeneity and high cellularity of the DLBCL
microenvironment, we aimed at confirming that DSP-based cell
selection generated reliable cell-type specific profiles. We therefore
cross-validated our DSP output with publicly available scRNA-seq data
of RLTs and DLBCL specimens. To do this, we defined gene signatures
characteristic of macrophages, T cells and B cells using 4–5 hallmark
genes of these cell types (Supplementary Table 1). As expected, these
signatures projected to matching cell-types in scRNA-seq datasets of
RLTs (Supplementary Fig. 2) and DLBCL (Supplementary Fig. 3). We
then tested these signatures on our DSP based CD68+ (macrophage),
CD20+ (B-cell) and CD3+ (T-cell) AOIs using cumulative density func-
tions. We show that the macrophage signature was enriched in CD68+
AOIs, while the signatures of T and B cells were enriched in CD3+ and
CD20+ AOIs, respectively (adjusted P < 0.05, Fig. 1D, E). This suggests
thatmorphologymarker-based AOIs accurately capture the respective
cell types of interest, enabling the collection of distinct whole tran-
scriptome profiles of macrophages, T cells and B cells in their native
tissue environment.

We also verified the robustness of our DSP experiment by cross-
comparing its output for differentially expressed genes (DEGs)
between the light zone (LZ) and dark zone (DZ) regions (all cells,
majority CD20 + ) in the germinal center (GC) of RLTs with previously
published information on transcriptional differences between the LZ
andDZ23 (Supplementary Fig. 4A, B and Supplementary Data 1). Almost
all DEGs of DZ and LZ regions from our DSP experiment overlapped
with previously reported LZ/DZ DEGs from ref. 23 (Supplementary
Fig. 4C), further confirming the reliability and adequate transcriptomic
coverage of ourDSP approach for subsequent analyses and inferences.

Unique gene expression patterns differentiate macrophages in
distinct spatial locations within reactive lymphoid tissues
Having quality checked the DSP data, we next aimed to investigate
transcriptomic differences of CD68+ macrophages within different
spatial regions of RLTs. ThroughDEG analysis, we observed that 997 and
755 geneswere differentially upregulated in theGC and IFmacrophages,
respectively (adjusted P<0.05 and |log2FC| >0.58, Fig. 2A), suggesting
highly distinct gene expression patterns. The heatmap in Fig. 2Bdisplays
the top 10 DEGs highly expressed in the GC and IF regions. Cell pro-
liferation andmetabolism-associated pathways such as E2F targets,MYC
targets, and oxidative phosphorylation were enriched pathways in GC
macrophages (adjusted P<0.0001, Fig. 2C). These proliferative path-
ways such as E2F transcription factors are critical for a wide variety of
cell-types including myeloid progenitors and differentiated
macrophages24. In contrast, enriched pathways in IF were mostly asso-
ciated with immune responses such as the interferon γ response and
TNF-α/NF-κB pathways (adjusted P<0.0001, Fig. 2C). Of interest, mac-
rophages in the IF showed upregulation of S100A family members
(calciumbinding proteins), such as S100A4, S100A8, and S100A9, which
are known Damage-Associated Molecular Pattern (DAMP) molecules
regulating macrophage biology25 (Supplementary Data 2).

The GC consists of two functionally distinct compartments:
dark zone (DZ) and light zone (LZ)26,27. This compartmentalization is
critical for dynamic differentiation of B cells within the GC28,29. We
also compared theDEGs ofmacrophages in the LZ andDZ.We also note
significant differences (adjusted P<0.05 and |log2FC| > 0.58, Fig. 2D) in
gene expression between macrophages populating these anatomically
distinct compartments of the germinal center. The complement pattern
recognition components C1QA, C1QB, and C1QC were significantly
upregulated in DZ macrophages (adjusted P <0.0001, Fig. 2D), as were
other components of the Hallmark gene set of the complement path-
way (Fig. 2E). This suggests a possible role for non-canonical comple-
ment system functions in macrophage polarization in the DZ of RLTs.

Based on the above comparisons between macrophages in distinct
spatial locations, we derived macrophage signatures (termed hence-
forth as MacroSigs) from the respective DEGs meeting the following
criteria: a. Benjamini-Hochberg adjusted P<0.05; b. |log2FC| >0.5830–32.
MacroSigs (generated from upregulated DEGs) corresponding to spatial
compartments in RLTswere:MacroSig1 (GC),MacroSig2 (IF),MacroSig3
(LZ), and MacroSig4 (DZ). We then evaluated if these spatially-derived
MacroSigs could be mapped to known macrophage subclusters gener-
ated through single-cell RNA sequencing. We utilized an integrative
dataset named MoMac-VERSE33 (Fig. 2F), the current largest meta-
analysis of human monocytes and macrophages, with 17 annotated
monocyte/macrophage subclusters from 41 scRNA-seq datasets com-
prising 13 healthy and pathological tissues. We projected the top 50
genes of our MacroSigs (Supplementary Data 2) onto MoMac-VERSE
and noted that MacroSig1 (GC) overlapped with TREM2+ macrophages
(Fig. 2G). Interestingly, despite having clear transcriptional distinctions
from GC macrophages, the MacroSig2 (IF) was dispersed and did not
overlay with one or more specific subclusters of macrophages as
defined by the MoMac-VERSE (Fig. 2H). This raised the possibility that
MacroSigs fromdistinct regions of lymphoid tissuemay denote hitherto
unknown macrophage subtypes (not represented in the MoMac-VERSE
metanalysis, which is not a spatially resolved approach). Additionally,
MacroSig3 (LZ) localized to the MNP/T cell doublets (Fig. 2I), while
MacroSig4 (DZ) overlapped with the HES1/FOLR2 macrophage popula-
tion (Fig. 2J). These results indicated that these macrophage sub-
populations may play specific roles in distinct regions of lymphoid
tissues, deserving functional investigation.

Distinct transcriptomic profiles of macrophages between reac-
tive and malignant lymphoid tissue
We next compared the gene expression of macrophages from
RLT germinal center (GC) regions with that of macrophages from
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DLBCL samples. The DEGs of these two macrophage subsets highlight
that 895 and 468 unique genes were differentially upregulated in RLTs
GC and DLBCL macrophages, respectively (Fig. 3A). The heatmap
in Fig. 3B displays the top DEGs highly expressed in both RLT
andDLBCL. TheseDEGs are referred to henceforth asMacroSig5 (RLT)
and MacroSig6 (DLBCL) using the above-mentioned criteria (adjusted

P <0.05 and |log2FC| > 0.58). As the features of macrophages in
distinct spatial locations of RLTs have been detailed in the
previous section, here we focus on features of macrophages in
DLBCL. We noted that CD163, a marker of pro-tumorigenic macro-
phages, as well as complement pattern recognition components
(C1QA, C1QB, and C1QC) were markedly upregulated in DLBCL
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macrophages (adjusted P <0.0001, Supplementary Data 2). Enriched
pathways in the DLBCLMacroSig weremostly associatedwith immune
responses such as interferon response and complement pathways
(adjusted P <0.005, Fig. 3C). Using the MoMac-VERSE, we see that
MacroSig6 (DLBCL) projected to the IL4I1+ macrophage population
(Fig. 3D), a macrophage subset that embodies immunosuppressive
functions in diverse cancer types34–36. These findings hint at a potential
role of IL4I1+ macrophages in DLBCL pathogenesis and offer the pro-
spect of exploring the targeting of these cells, although additional
mechanistic work will be required to confirm the feasibility of such
putative therapeutic interventions.

Spatially-derived MacroSigs associate with COO DLBCL
subclassifications
DLBCL patients are subtyped based on B cell-of-origin (COO) gene
expression profiling (GEP). As such, we sought to understand if our
spatially-derived MacroSigs were related to these subclassifications.
Toperform this analysis, we explored the enrichmentofourMacroSigs
in bulk RNA gene expression profiles of DLBCL patients across eight
publicly available transcriptomic datasets (n = 4594, 8 datasets).
Across all datasets, MacroSig1 (GC) was enriched in germinal center
B-cell like (GCB) DLBCL (adjusted P < 0.05, Fig. 4A, 8/8 datasets),
MacroSig2 (IF) in unclassified (UNC) DLBCL (adjusted P <0.05,
Figs. 4A, 6/8 datasets), and MacroSig6 (DLBCL) in activated B-cell
(ABC) subtype DLBCL (adjusted P <0.05, Fig. 4B, 8/8 datasets). Mac-
roSig3 (LZ) and MacroSig4 (DZ) were not distinctly enriched in any
COO category (Fig. 4C).

Given these interesting but unexpected correlations, we eval-
uated if the genes composing ourMacroSigs identified subpopulations
of macrophages in scRNA-seq data from DLBCL cases (n = 17, com-
prising transcriptomes of 94,324 cells)37. We see that our MacroSigs
were enriched within distinct clusters of the monocyte-macrophage
populations in the DLBCL scRNA-seq dataset (Fig. 4D and Supple-
mentary Fig. 5). Most MacroSigs showed negligible module scores
in the DLBCL B-cell population (except for GC/RLT [Fig. 4D and Sup-
plementary Fig. 6], which share several cell-cycle/ proliferation genes
with the GC/RLT B-cell signature from our DSP experiment). This
analysis suggests that MacroSigs are indeed likely to represent mac-
rophages inGEP analysis, evenwhen evaluated in themalignant setting
with aberrant gene expression profiles as compared with normal B
cells. We further investigated if these MacroSigs could relate to
recently established DLBCL genetic and molecular subtypes. Com-
parisonswere conducted across 3 independent referencedatasets38–40.
Overall, we did not observe consistent enrichment of MacroSigs with
specific genetic subtypes (Supplementary Fig. 7A). Similarly, there was
no clear enrichment of our MacroSigs with specific DLBCL TME cate-
gories proposed by ref. 5 (Supplementary Fig. 7B). These results point
to convergent mechanisms for tumor associated macrophage infil-
tration across broad genetic and TME subgroups.

Spatially-derived MacroSigs stratify patients for survival in
gene-expression profiling datasets of DLBCL
Finally, we aimed to evaluate if spatially-derivedMacroSigs could have
prognostic significance when evaluated in bulk gene expression data
from clinical samples of DLBCL, using the above-mentioned eight

clinically annotated DLBCL datasets (n = 4594, 8 datasets). Cases
enriched for MacroSig6 (DLBCL) had shorter OS than those with
MacroSig5 (RLT) (Fig. 5A, adjusted P <0.05, 6/8 datasets; hazard ratios
(HR) and 95% confidence intervals (CI) for each dataset in Supple-
mentary Table 2). This was corroborated in the Kaplan-Meier plots
across six datasets (Fig. 5B–I, adjusted P < 0.05). It is possible that
patients enriched in MacroSig5 (RLT) may represent those with less
immunosuppressive TMEs and fewer TAMs than cases enriched for
MacroSig6 (DLBCL). This result also highlights that the application of a
macrophage derived gene signature may remain clinically relevant in
bulk gene-expression data from these tumors. Of particular interest
however, we observed that DLBCL patients with MacroSig4 (DZ) had
significantly worse OS compared to those with MacroSig3 (LZ) across
multiple DLBCL datasets (Fig. 6A-I, adjusted P <0.05, 7/8 datasets; HR
and 95% CI refer to Supplementary Table 2). This association was also
validated in a multivariate analysis adjusted for the IPI score and
double hit lymphoma cases (Supplementary Table 3, adjusted P <0.05,
5/6 datasets; IPI scores not available in 2 datasets; DHLonly available in
2 datasets), confirming that MacroSig4 (DZ) is prognostic factor
independent of clinical high- risk features for survival of DLBCL
patients.

Additional evaluation of the Dark Zone MacroSig in DLBCL
Gene expression signatures of B-cell dark-zone biology are now well
appreciated to be prognostic in DLBCL, overlapping with molecular
high-grade and double-hit like signatures41. We therefore evaluated the
prognostic impact of the dark zone signature of B-cells obtained from
our own DSP experiments (Supplementary Data 3), to compare it with
our results from theDZ-MacroSig4. The B-cell-basedDZ signatures were
indeed prognostic (Fig. 7A, adjusted P<0.05, 4/8 datasets), but inter-
estingly with less consistency than the DZ-MacroSigs (Fig. 6A, adjusted
P<0.05, 7/8 datasets). Of note, only few genes were shared between the
B-cell derived and macrophage-derived LZ- and DZ- signatures (Mac-
roSig3-4) (Fig. 7B), highlighting that DLBCLs carrying features of these
distinct aspects of dark zone biology (B-cell and Macrophage) have
adverse outcomes, but likely through distinct biological mechanisms.

To further validate the DZ signature, we aimed to perform a
protein based multiplex staining approach. As complement pattern
recognition component genes (C1QA, C1QB, and C1QC) appeared as
top ranking genes in the DZ signature (MacroSig4, Supplementary
Data 2), and since C1Q expressing macrophages are a defined entity42,
we evaluated the immunofluorescence stainingofC1Q inRLTs and also
in an additional independent set of DLBCL tissues in tissue microarray
format from the Chi-Mei Medical Center (CMMC), Taiwan. Using a co-
stain with the dark zone marker AID, we note that C1Q expressing
macrophages were indeed enriched in the dark zone (DZ) when
compared to the light zone (LZ) in germinal centers from RLTs
(Fig. 7C). In the CMMC cohort of DLBCL cases, we observed that
patients with high C1Q expressing macrophages had poorer survival
compared to those with low C1Q in their macrophages (Log-rank
P <0.05, Fig. 7D, E). As C1Qwas also a differentially expressed hit in the
DLBCL MacroSig (which was also prognostic in DLBCL), additional
comparative staining of proteins coded within the MacroSigs will be
required to tease apart different subtypes of C1Q expressing macro-
phages and their relationship to the poor prognostic dark-zone B-cell

Fig. 1 | Digital spatial profiling (DSP) illuminates consistent profiles from dis-
tinct masks in lymphoid tissue microregions. A Schematic of GeoMx® DSPWTA
workflow (created with BioRender.com). B, C Immunofluorescence staining of
DLBCL tissues (n = 87) and RLTs (n = 24). In Group 1, CD68 stained macrophages
(yellow), CD3 stained T cells (cyan), CD20 stained B cells (magenta), and SYTO
13 stained nuclei (blue). In Group 2, CD68 stained macrophages (yellow), NGFR
illuminated LZ (green) and SYTO 13 stains nuclei (blue). After ROI selection, each
cell type was segmented based on the staining signal and their corresponding
masks were generated. Representative images are shown. Scale bar: 100μm.

Source data are provided as a Source Data file. D, E Cumulative density functions
showed that the signatures of macrophages (CD68, CD163, FCGR1A, and CSF1R),
T cells (CD3D,CD3E,UBASH3A,CD2, and TRBC2), and B cells (MS4A1,CD79A,CD79B,
CD19, and PAX5) were highly enriched in CD68+ regions, CD3+ regions, and CD20+
regions, respectively in RLTs and DLBCL tissues (Kolmogorov-Smirnov P <0.05).
Digital spatial profiling, DSP; whole transcriptome analysis, WTA; diffuse large
B-cell lymphoma,DLBCL; reactive lymphoid tissues, RLTs; regions of interest, ROIs;
areas of interest, AOIs; formalin-fixedparaffin-embedded, FFPE; light zone, LZ; dark
zone, DZ; nerve growth factor receptor, NGFR.
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signature. Nonetheless, these results suggest that C1Q expressing
macrophages populating the germinal center dark zone will be an
important area of research of biology/ therapeutic relevance inDLBCL.
Overall, our findings provide insights to the landscape of the DLBCL
TME, and highlight the importance of dark zone biology in the prog-
nosis of DLBCL.

Discussion
Using DSP, through the application of a mask for CD68 (a broad
marker for cells of macrophage-monocyte lineage)43,44, we defined
macrophage transcriptomic signatures in reactive and malignant
lymphoid tissue (termed MacroSig1-6; corresponding to biological/
clinical categories listed in Table 1) and described their associations
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with known features of macrophage/DLBCL biology and clinical out-
come (Fig. 7F). Macrophages are highly plastic, acquiring diverse
phenotypes and functions that enable their role in a variety of phy-
siological or pathological settings45. We demonstrate the spatial tran-
scriptional diversity of macrophages within different regions of RLTs
and between macrophages populating RLTs and DLBCL. While certain
MacroSigs (GC, LZ, DZ, DLBCL) overlap with distinct and previously
defined macrophage groups based on scRNA-seq33, indicating that
macrophage subpopulations in different spatial niches do have spe-
cific roles or functions within their respective regions, it is of interest
that certain others do not (interfollicular [IF], RLT). As the reference
scRNAseq datasets are not spatially resolved, it will be of interest to
evaluate these MacroSigs in the future in spatially resolved reference
datasets of macrophages. Distinguishing these relationships and

further orthogonal validation of these findings at single cell resolution
would aid in the understanding of macrophage biology and the
development of macrophage targeted therapies.

A key finding from our study is the association of certain Macro-
Sigs with established clinically-relevant DLBCL subclassifications5,46–48.
GEP identifies two prognostically distinct clusters of DLBCL based on
COO, but there remains a consistent cluster of unclassified cases. We
report a strong correlation of the signature of IF-macrophages (Mac-
roSig2) with this unclassified cluster, along with clear correlations of
MacroSig1 (GC) to the germinal center B-cell like (GCB) DLBCL cluster
and MacroSig6 (DLBCL) to the ABC cluster. While the association of
the germinal center (GC) MacroSig to the GCB B-cell COO signature
may be explained by a high degree of similarity in cell-cycle/pro-
liferative genes between these, the associations of the IF and DLBCL

Fig. 2 | Unique gene expression patterns differentiate macrophages in distinct
spatial locations within reactive lymphoid tissues. A Volcano plot showing the
DEGs of macrophages between the GC and IF based on adjusted P <0.05 and |
log2FC| ≥ 0.58. P values were determined by two tailed moderated t test (BH cor-
rected). B Top 20 macrophage DEGs (10 DEGs upregulated in GC and 10 DEGs
upregulated in IF) are displayed based on adjusted P value in the heatmap.
C Pathway enrichment analysis was performed on all DEGs between GC and IF. P
value calculated by two tailed Fisher exact test (BH corrected). The top 10 path-
ways, based on BH adjusted P value, are shown. D The volcano plot showed the

macrophage DEGs between LZ and DZ based on adjusted P <0.05 and |log2FC|
≥0.58. P values were determined by two tailed moderated t test (BH corrected).
E Pathway enrichment analysis wasperformed on allmacrophageDEGs between LZ
and DZ. P values were calculated by two tailed Fisher exact test (BH corrected).
FMoMac-VERSEannotated 17TAMsubclusters using a compilationof 41 scRNA-seq
datasets from 13healthy and cancer tissues (Figure created via [https://macroverse.
gustaveroussy.fr/2021_MoMac_VERSE/]). G–J Top50 genes of each MacroSig1-4
were projected respectively onto MoMac-VERSE. Germinal center, GC; inter-
follicular, IF; fold change, FC; macrophage signatures, MacroSigs.

Fig. 3 | Distinct transcriptomic profiles of macrophages between reactive and
malignant lymphoid tissue. A Volcano plot showing the macrophage DEGs
between RLTs and DLBCL based on adjusted P <0.05 and |log2FC| ≥0.58. P values
were determined by two tailed moderated t test (BH corrected). B Top DEGs
between RLTs and DLBCL are displayed in the heatmap. C Pathway enrichment

analysis was performed on all macrophage DEGs between GC and DLBCL. P values
were calculated by two tailed Fisher exact test (BH corrected). The top 10pathways,
based on adjusted P are shown. D Top50 genes of MacroSig6 (DLBCL) were pro-
jected onto MoMac-VERSE.
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MacroSigs to COO subtypes are particularly striking and supported by
a negligible expression of genes from these MacroSigs in malignant
B-cells. These results suggest that DLBCL gene expression signatures
maybe entwinedwith the nature of underlyingmacrophage infiltrates,
and may indeed co-evolve during tumorigenesis. The role of IF-like
macrophages in potentially determining the overall gene-expression
status of the unclassified COO subcluster, and its links to TNFR sig-
naling and inhibitory immune checkpoint overexpression49 will be an
interesting avenue of research.

We also identify MacroSigs that are prognostic for poor clinical
outcomes in multiple independent DLBCL datasets. Though it was not
the main objective of this study to define new predictors of DLBCL
outcome to be used in routine practice, our results lend credence to
the clinical significance of our signatures. For example, both Macro-
Sig4 (DZ) and MacroSig6 (DLBCL) were negatively prognostic, and
were associated with higher expression of M2-related markers such as
CD209, CSF1R, IL10, and TGFβ-associated genes (TGFBI, TGFB1).
Additionally, it is now recognized that macrophage phagocytosis
checkpoint molecules are associated with resistance to rituximab in
DLBCL11. We also found that macrophage checkpoints such as SIRPα,
LRLRB1, SIGLEC10, and PDCD1 are enriched in patients categorized to
have MacroSig 6 (DLBCL) in comparison to MacroSig 5 (RLT) in eight
DLBCL publicly available datasets (Supplementary Fig. 8). Future
mechanistic work elucidating their underlying relationship could

contribute to the development of potential therapeutic strategies to
overcome rituximab resistance.

Molecular high-grade (MHG)50/double-hit gene expression sig-
nature (DHITsig)51 is another salient molecular subgroup of interest in
DLBCL. This subgroup carries a uniformly poor prognosis and is
thought to be reflective of GC-dark zone (DZ) biology52,53, and was
renamed the DZ signature52. It is intriguing that the strongest prog-
nostic signature in our study was also of DZ-cells, but that of macro-
phages and not B-cells. Importantly, we found that genes comprising
MacroSig4 (DZ), collected from CD68 +DZ macrophages, are distinct
from published B-cell DZ signatures and from those collected in our
own experiments from CD20+DZ B-cells. Notably, both MacroSig4
(DZ) and B-cell DZ signatures were highly prognostic in multiple
DLBCLdatasets, with higher effect sizes andmore consistent statistical
significance for the MacroSig4 (DZ). None of genes constituting Mac-
roSig4 (DZ) were noted to be highly expressed within CD20+ cells in
DLBCL in our dataset, indicating that the signature is likely to confer its
prognostic significance because of macrophage infiltration and not
aberrant expression of these genes in tumor cells. Pathway enrichment
analysis indicated that the cell proliferation/cycle-associated pathways
were activated in DZmacrophages. A recent transcriptomic analysis of
the circulating monocyte-derived macrophages (MDMs) identified a
proliferative macrophage subcluster which influence MDMs-mediated
inflammation and regeneration54. It is tempting to speculate a similar

Fig. 4 | Spatially-derived MacroSigs associate with COO DLBCL subclassifica-
tions. The associations of MacroSigs with clinical categories (i.e., COO, genetic
subtypes) were evaluated through the Fisher exact test. The overlap ratio refers to
the number of patients classified as both a certain MacroSig and COO category,
divided by the total number of patients classified in that particular COO category.
AMacroSig1 (GC) andMacroSig2 (IF)were enriched inDLBCLCOOclassifications in
bulk RNAgene expression profiles of DLBCL patients across eight publicly available
transcriptomic datasets (n = 4594, 8 datasets). B MacroSig5 (RLT) and MacroSig6
(DLBCL) were enriched in DLBCL COO classifications in the above-mentioned eight
datasets. CMacroSig3 (LZ) and MacroSig4 (DZ) were not distinctly enriched in any

COOcategory in the above-mentionedeight datasets.DAll genes of eachMacroSig,
through their respective module scores, were projected onto the Monocyte/Mac-
rophage and B cell subsets ofDLBCL scRNA-seq datasets (Ye et al;n = 17). The violin
plot depicts, for each patient, the percentage of B cells and macrophages expres-
sing a given MacroSig (module score > 0.1) The median and quartile bands are
depicted. P values were calculated by a paired t test (see also Supplementary Figs. 5
and 6). Source data are provided as a Source Data file. Germinal center B-cell like,
GCB; activated B-cell like, ABC; unclassified, UNC; monocyte/macrophage,
Mono/Mac.
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biology exists in these proliferative DZ macrophages, the molecular
(proteomic/secreted) characteristics of which require further
investigation.

A potential limitation of DSP is its reliance on average values
across a group of cells defined by a cellular “mask”, and its resolution
which likely extends beyond the size of a single cell. There could exist
heterogeneity within each mask, even within spatially defined regions,
and this can hopefully be clarified through future advances in single-
cell resolved spatial transcriptomic methods. Furthermore, the active
scavenging function of macrophages may contribute to non-
macrophage transcript contamination55, which will be a general lim-
itation of any spatial transcriptomic study of macrophages. None-
theless, we have demonstrated that there is minimal overlap of gene
sets between the CD68+ and CD20+ masks profiled regions, suggest-
ing that neither phagocytosis nor the technical spill-over of transcripts
between the CD68 and CD20 photocleaved DSP regions are likely to
significantly contribute to the observed phenotypes associated with

different macrophage spatial profiles. Moreover, we also generated
signatures by filtering transcripts potentially linked to close interac-
tions between macrophages and T cells, to evaluate and exclude the
contribution of transcripts related to the interaction with T lympho-
cytes, obtaining analogous results in terms of prognostic ability
(Supplementary Fig. 9 and Supplementary Table. 4). Nevertheless,
further refinements to spatial transcriptomics at single-cell resolution
will provide more detailed dissection of intrinsic vs scavenged tran-
scripts, and also allow direct evaluation of spatial interactions between
different cell types, contributing to a deeper understanding of the
actual relationships between macrophage subtypes and other TME
components.

In summary, through the use of DSP, we present a spatially
resolved transcriptomic characterization of macrophages in RLTs and
DLBCL, showing diverse characteristics of macrophage landscapes in
different spatial localizations. Spatially-derivedMacroSigs of lymphoid
tissue can complement existing genetic and molecular DLBCL

Fig. 5 | Spatially-derivedMacroSig5/6 (RLT/DLBCL) stratify for patient survival
in DLBCL datasets. A Forest plot depicting the univariate Cox proportional
hazards model analysis, comparing MacroSig5 (RLT) and MacroSig6 (DLBCL)
(represented as tertile groups, as described inMethods: Survival analysis). Analysis
applied to bulk RNA gene expression profiles of DLBCL patients across eight
publicly available transcriptomicdatasets (n = 4594, 8 datasets). Data arepresented

as the 95% confidence interval of the hazard ratio (plotted in log-scale). Source data
are provided as a Source Data file. B–I Kaplan–Meier analyses showed that patients
with high expressionofMacroSig6 (DLBCL) and low expression ofMacroSig5 (RLT)
were associated with poor OS across six distinct DLBCL datasets. P values gener-
ated by log-rank test. Overall survival, OS (see Methods: Survival analysis).
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subclassifications, contributing to our understanding of the DLBCL
TME and the ever-evolving classification of this heterogenous disease,
and are also prognostic across numerous distinct DLBCL datasets.
These data provide a framework to further evaluate the biological and
clinical relevance of macrophage subtypes in lymphoid biology and
disease.

Methods
DSP study population
Our research complies with all relevant ethical regulations. All biopsy
samples were pre-treatment samples and obtained from the Depart-
ment of Pathology, National University Hospital, with IRB approved
waiver of consent in accordance with the ethical guidelines of the
National Healthcare Group domain specific review board (NHG DSRB)
approved protocol 2015/00176. This waiver of consent applies to all
samples obtainedbetween 1st January 1990 and 30thApril 2020on the
basis that there is no longer patient contact (patient is deceased or lost

to follow-up) and that this study poses minimal risk to the patient. The
overall DSP study population was made up of two patient groups.
Group 1 comprised of two tissue microarrays (TMAs) of de novo
DLBCL samples derived from pre-treatment biopsies of 64 patients
between 2010 and 2017 subsequently treated with 6x R-CHOP with a
follow-up timemore than three years (for relapsedpatients, the follow-
up time is at least 1 year), at the National University Hospital in Sin-
gapore (Supplementary Fig. 10). 23 patients had duplicate cores
between both TMAs, meaning a total of 87 biopsies were profiled.
Patient details and characteristics from the aforementioned cohorts
are summarized in Supplementary Table 5. Group 2 (non-malignant
RLT samples) comprised of a TMA containing 12 tonsil samples and 11
tonsil whole-slide samples, obtained from patients with tonsillec-
tomies at the National University Hospital for non-cancer indications.
Also included into Group 2 was a whole-slide tonsil section retrieved
from the archives of the Tumor Immunology Laboratory of the
University of Palermo and approved by the University of Palermo

Fig. 6 | Spatially-derived MacroSig3/4 (LZ/DZ) stratify for patient survival in
DLBCL datasets. A Forest plot depicting the univariate Cox proportional hazards
model analysis, comparing MacroSig3 (LZ) and MacroSig4 (DZ) (represented as
tertile groups, as described in Methods: Survival analysis). Analysis was applied to
bulk RNAgene expression profiles of DLBCL patients across eight publicly available
transcriptomic datasets (n = 4594, 8 datasets). Data are presented as the 95%

confidence interval of the hazard ratio (plotted in log-scale). Source data are pro-
vided as a Source Data file. B–I Kaplan–Meier analyses showed that patients with
high expression of MacroSig4 (DZ) and low expression of MacroSig3 (LZ) were
associated with poor OS in DLBCL patients across seven distinct DLBCL datasets. P
value generated by log-rank test.
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Institutional Review Board 09/2018. All tissues were formalin-fixed
and paraffin-embedded at the time of resection and stored as paraffin
blocks. An additional DLBCL TMA from the Chi-Mei Medical
Center, Taiwan (CMMC cohort; n = 86) with OS more than 6 months,
was used as a validation cohort for quantitative immunofluorescence
analyses. Usage of tissues from all providing institutions is

incorporated into the framework of anNUS IRB approved translational
study (H-19-055E).

GeoMx® DSP WTA assay
Spatial transcriptomics of RLTs and DLBCL tissues was conducted
using the GeoMx® WTA kit (GMX-RNA-NGSHuWTA-4, NanoString,
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Seattle, Washington, USA), according to manufacturer’s instruc-
tions (Fig. 1A).

GeoMx® DSP sample preparation on Bond Max. The formalin-fixed
paraffin-embedded sections were freshly cut (5 µm thick) and placed
onBondplus slides (S21.2113.A, LeicaBiosystems, Germany). The slides
were baked at 60 °C for 1 h and loaded, with covertiles, into the slide
tray on Bond Max Fully Automated IHC and ISH Staining System for
deparaffinization, rehydration, antigen retrieval (ER2 solution
[AR9640, Leica Biosystems] at 100 °C for 20min), RNA digestion
(Proteinase K 1μg/ml for 15min) and post-fixation (10% neutral buf-
fered formalin [NBF, HT501128, Sigma-Aldrich, St. Louis, Missouri,
USA] for 5min, NBF stop buffer for 5min twice). The NBF stop buffer
was prepared using Tris base (H5133, Promega, Madison, Wisconsin,
USA) and Glycine (15527013, Thermo Fisher Scientific, Waltham, Mas-
sachusetts, USA) in DEPC-treated water. Upon run completion, the
covertiles were removed and the slides were soaked in PBS for sub-
sequent hybridization.

In-situ hybridization. An overnight in-situ hybridization was per-
formed with GeoMx® Human NGS WTA (GMX-RNA-NGSHuWTA-4,
NanoString) that contained probes for 18,000+ protein-coding genes.
After which, the slides were washed twice with equal parts of 4X SSC
(15557044, Thermo Fisher Scientific) and 100% formamide (AM9342,
Sigma-Aldrich) at 37 °C for 25min to remove off-target probes.

GeoMx® DSP sample collection. The slides were incubated with
blocking Buffer W (200μL/slide, GMX-PREP-RNAFFPE-12, NanoString)
for 30min in the humidity chamber at room temperature after hybri-
dization. For Group 1, slides of DLBCL TMA were stained with macro-
phage marker CD68 (sc-20060 AF594, Santa Cruz biotechnology,
Texas, USA), T-cell marker CD3 (A0452, Dako, California, USA), B-cell
marker CD20 (NBP2-47840 AF647, Novus Biologicals, Colorado, USA)
and the nuclear stain SYTO 13. For Group 2 (Fig. 1B), the slide of RLT
TMA was visualized with CD68, the follicular dendritic cell marker
nerve growth factor receptor (Ab52987, NGFR, Abcam, Cambridge,
UK) and SYTO 13. Individual RLT sections of Group 2 (Supplementary
Fig. 1C) were stained with similar markers as Group 1. Additionally,
corresponding serial sections were stained with NGFR to identify light
zone (LZ) and dark zone (DZ) regions. After immunofluorescent
staining, the slides were visualized using the GeoMx® DSP instrument

(software: 2.4.0.421) to select regions of interest (ROIs). To acquire
representative regions, ROI selection was performed by an expert
pathologist. Based on the intensity of respectivemorphologymarker’s
fluorescent staining (CD68, CD3, and CD20), we adjusted the thresh-
olds of each channel until the desired masks are generated to fit the
corresponding cell types precisely. Then each ROI was segmented into
corresponding areas of interest (AOIs) - CD68+ regions, CD3+ regions,
andCD20+ regions based on the respectivemasks. Subsequently, each
AOI- defined by the cellular masks within an ROI (e.g., CD68)- was
exposed to UV light and photocleaved oligos were aspirated from the
solution into the wells of a collection plate (Fig. 1A) for downstream
sequencing and data processing.We therefore obtain cell-type specific
transcriptome data for all cells marked by the mask, across a range of
AOI sizes. The gene counts obtained from each AOI are the aggregate
from all cells of a given cell type within an ROI (normalized as descri-
bed inMethods: DSPdata processing andharmonization). The size and
cell numbers of each AOI are supplied in Supplementary Data 4.

Library preparation and sequencing. Collected photocleaved oligos
were PCR amplified with the corresponding GeoMx® Seq Code Primer
Plate andMasterMix (GMX-NGS-SEQ, NanoString). PCR products were
pooled and cleaned with AMPure XP beads (A63880, Beckman Coul-
ter, Brea, California, USA) twice to obtain the libraries. The quality and
concentration of libraries were assessed using a high sensitivity DNA
Kit (5067-4626, Agilent, Santa Clara, California, USA) and Bioanalyzer.
Subsequently, libraries were sequenced on an illumina sequencing
platform (HiSeq 3000 or NovaSeq 6000) with standard workflow
specifications (dual-indexing and paired-end reads [2 × 27 bp]).

DSP data processing and harmonization
Raw reads were trimmed, stitched, aligned, and deduplicated to gen-
erate digital counts data for unique target genes. AOIs with fewer than
10,000 raw reads or sequencing saturation <50% were filtered out of
the analysis. AOIs with less than 5% of all target genes (18,000+ ) and
target genes that did not achieve the limit of quantitation were
removed. The data was then processed with the Q3 normalization
method for all the remaining targets according to NanoString guide-
lines. Q3 normalization divides the counts in one AOI by the 3rd
quartile value for that AOI, then subsequently multiplies that value by
the geometric mean of the 3rd quartile values of all AOIs. Q3 normal-
ization rescales the gene expressiondata such that all AOIs have similar

Fig. 7 | Additional evaluation of the Dark Zone MacroSig hallmark C1Q
in DLBCL. A Forest plot depicting the univariate Cox proportional hazards model
analysis, comparing B cell-based LZ and DZ signatures (represented as tertile
groups, as described in Methods: Survival analysis). Analysis applied to bulk RNA
gene expression profiles of DLBCL patients across eight publicly available tran-
scriptomic datasets (n = 4594, 8 datasets). Data are presented as the 95% con-
fidence interval of the hazard ratio (plotted in log-scale). Source data are provided
as a Source Data file. B Venn diagram displaying the overlapping genes of LZ-, DZ-
like B-cell signatures, andMacroSig3-4 (LZ andDZ).C Immunochemistry staining of
RLTs was shown (n = 3). Activation-induced cytidine deaminase (AID) in magenta

was used for illuminating the LZ and DZ. C1Q in brown stainedmacrophages. Scale
bar: 100μm. Source data are provided as a SourceData file.D Immunofluorescence
stained CD68 +C1Q+ cells in DLBCL tissues (n = 86). Representative images are
shown. Scale bar: 100μm. Source data are provided as a Source Data file.
E Kaplan–Meier analyses showed that patients with highly infiltrating levels of
CD68 +C1Q+ cells were associated with poor OS in DLBCL patients in CMMC
cohort. P value generated by log-rank test. F Graphical abstract summarizing the
derivation of the spatial derived MacroSigs and describing their associations with
known features ofmacrophage/ DLBCL biology and clinical outcome (created with
BioRender.com).

Table 1 | Six distinct MacroSigs based on biological/clinical characteristics

MacroSigs Abbreviations Associated biological/clinical feature

MacroSig1 GC-MacroSig Macrophages from GC of RLTs

MacroSig2 IF-MacroSig Macrophages from IF of RLTs

MacroSig3 LZ-MacroSig Macrophages from LZ of RLTs

MacroSig4 DZ-MacroSig Macrophages from DZ of RLTs

MacroSig5 RLT-MacroSig Macrophages from RLTs

MacroSig6 DLBCL-MacroSig Macrophages from DLBCL patients

MacroSigsmacrophage signatures, GC germinal center, IF interfollicular, LZ light zone, DZ dark zone, RLTs reactive lymphoid tissues, DLBCL diffuse large B-cell lymphoma.
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gene expression ranges. It reduces variance from AOI size, AOI cellu-
larity, and other technical factors. Underlying the Q3 method is an
assumption that, despite biological variation, AOIs should have similar
gene expression count distributions. Thus, Q3 is only appropriate
when aprobepanel is large anddiverse, such as the one used here, that
targets the full transcriptome.

As the spatial profiling was conducted as two individual experi-
ments, the sequencing data was harmonized using the removeBatch-
Effect function of the limma (3.56.2) package based on the respective
masks (CD68, CD20, and CD3)56. Principal component analysis (PCA)
analysis was conducted using the FactoMinR (2.9) package, and outlier
AOI were removed according to the PCA projections. In addition, the
Kolmogorov-Smirnov test was applied to further assess the overall dis-
tribution of the data obtained from each mask: Using a procured set of
genes representing macrophages (CD68, CD163, FCGR1A, and CSF1R),
T cells (CD3D, CD3E, UBASH3A, CD2, and TRBC2), and B cells (MS4A1,
CD79A, CD79B, CD19, and PAX5) the cumulative expression for each
signature was evaluated and compared within each mask (Fig. 1D, E).
Following which, formal analyses were conducted as detailed in sub-
sequent sections. The overall data analysis workflow is provided in
Supplementary Fig. 11. All statistical analyses were performed using R
statistical software (v 4.3.0) (http://www.R-project.org).

Clustering analysis
The Euclidean distance metric across AOIs was considered for the
sample hierarchical clustering analysis, and the ward.D2 aggregation
method was used to build the heatmap dendrogram within the R
package pheatmap (1.0.12).

Differential expression analyses (DEAs) and derivation of
MacroSigs
DEAs were conducted using moderated t test from the limma
package56. The presence of DLBCL samples that belong to the same
patient was considered using the duplicateCorrelation option of the
limma package. Upregulated/downregulated genes were selected by
applying the Benjamini-Hochberg correction on the P values (BH
adjusted P <0.05) and considering the |log2FC| > 0.58. Based on both
criteria, MacroSigs1-6 were derived from the DEAs between GC/IF, LZ/
DZ, and RLT/DLBCL To establish the representative genes of our
MacroSigs and filter out contaminant genes derived from B-cells, we
removed those DEGs whose percentile rank of average expression, as
determined after Q3 normalization, was greater in theCD20mask than
in the CD68 mask. The resulting DEGs constituted the corresponding
MacroSigs. This filtering process was not applied to the MacroSig5
(RLT) due to the absence of data from corresponding CD20 masks
within whole-region germinal center ROIs.

Pathway enrichment analyses
The pathway enrichment analyses were performed considering the
Hallmark gene sets downloaded from Human Molecular Signature
Database (MSigDB)57. The Fisher exact test P values were calculated
using the phyper function of the R software and adjusted for multiple
comparisons applying the BH correction. The dot-plots were gener-
ated using clusterProfiler (3.12), org.Hs.eg.db (3.18.0), and ggplot2 (2
3.4.4) R packages. Count refers to the number genes present in the
overlap between the MacroSigs and the Hallmark gene sets. The gene
ratios were obtained by dividing the count by the total number of
genes in that respective Hallmark gene set.

Single-cell sequencing data analysis
Seurat (2.3.0)58 was used for the analysis of the single-cell RNA
sequencing (scRNA-seq) datasets. All functions were run with default
parameters, unless specified otherwise. Lowquality cells (< 200 genes/
cell and >10% mitochondrial genes) and genes that were present in
fewer than 3 cells were excluded. Clusters were defined based on

annotations provided by original authors (refs. 33,37,59). Refinement
and validation of annotation was conducted by projecting and evalu-
ating a curated B cell, T cell andmacrophagemarker list (seeMethods:
DSP data processing and harmonization).

For characterization and feature expression analysis of the Mac-
roSigs, each MacroSig was further refined. A module score (https://
satijalab.org/seurat/reference/addmodulescore) using the top 50 sta-
tistically significant DEGs, ranked by their log fold change, was created
for each MacroSig. This score was then projected onto the uniform
manifold approximation and projection (UMAP) space namedMoMac-
VERSE. Moreover, to determine that all genes of ourMacroSigs belong
to macrophages, all genes of each MacroSig, through their respective
module scores, were projected onto theMonocyte/Macrophage and B
cell subsets of DLBCL scRNA-seq datasets (n = 17)37 and subsequently
compared (Fig. 4D and Supplementary Figs. 5, 6).

Survival analysis
To evaluate the predictive power of our MacroSigs from a clinical
standpoint, we applied them to eight distinct DLBCL bulk gene
expression cohorts38–40,46,50,60–62. The MacroSigs were tested in pairs:
GC/IF, LZ/DZ, RLT/DLBCL. In line with the percentile strategy com-
monly used in the literature63, we divided the patients into tertiles
based on MacroSig scores calculated by the following formula:

score =
Xn

i= 1

�log10 pi

� �� xi� Ii ð1Þ

Ii =
�1, if log2 FCi <0

+ 1, if log2 FCi >0

�
ð2Þ

Where pi and FCi are the moderated t-test P value and FC of gene-i
obtained from the DEAs, xi is the expression of gene-i from the DLBCL
bulk RNA-seq data, and n is the number of genes within the gene
signature. The log10(pi) quantity was introduced to weigh the genes in
relation to their significance level. Comparing high and low tertile
groups increases the chance of detecting biomarker related differ-
ences between the two groups. Therefore, based on the score derived
from a paired MacroSig, e.g., DZ [MacroSig4]/LZ[MacroSig3]: the
aggregate of genes upregulated in the DZ (MacroSig4) and down-
regulated in the DZ (MacroSig3 [LZ]), each DLBCL cohort was divided
into three groups based on tertile values: (1) patients having high
expressionof downregulatedgenes and lowexpressionof upregulated
genes [e.g., patients classed as MacroSig3]; (2) patients having an
intermediate gene signature expression. (3) patients having high
expressionof upregulatedgenes and lowexpressionof downregulated
genes [e.g., patients classed as MacroSig4]. The extreme groups (i.e.,
group 1 [e.g., MacroSig3] and group 3 [e.g., MacroSig4]) have been
compared in terms of OS, COO, genetic subtypes categories, and DEA
of macrophage checkpoints.

For a comprehensive survival analysis, we applied both the Cox
proportional hazards model and the Kapan-Meier method. Before fit-
ting the Cox model and conducting the log-rank test, the cox.ph test
was used to test the proportional hazard assumption. We applied the
Cox model to MacroSigs as a discrete variable, comparing the top
tertile group with the bottom tertile group, as described above, to
determine the hazard ratio associated with each MacroSig (displayed
as forest plots). The Kaplan-Meier method was used to estimate the
survival functions among tertile groups, and the log-rank testwas used
to test the differences in the OS between groups. The survival (3.5–7)
and survminer (0.4.9) R packages were used for the survival analysis
estimations.

Article https://doi.org/10.1038/s41467-024-46220-z

Nature Communications |         (2024) 15:2113 12

http://www.R-project.org
https://satijalab.org/seurat/reference/addmodulescore
https://satijalab.org/seurat/reference/addmodulescore


Association analysis
The associations between patient groups and clinical categories (i.e.,
COO, genetic subtypes, microenvironment categories) were evaluated
through the Fisher exact test. The P values were calculated using the
phyper function of the R software and adjusted for multiple compar-
isons applying the BH correction. The COO association analyses are
presented as dot plots, where the overlap ratio refers to the number of
patients classified as both a certainMacroSig andCOOcategory, divided
by the total number of patients classified in that particular COO cate-
gory (Fig. 4A–C). The genetic subtypes association analysis is presented
as an integrated bar graph, where the strength of association between
MacroSigs and genetic subtypes is represented by an enrichment score
calculated by: -log10 (adjusted Fisher P value) (Supplementary Fig. 7A).
The microenvironment categories association analysis is displayed in
the dot plot (Supplementary Fig. 7B). Count refers to the number genes
present in the overlap between the MacroSigs and DLBCL micro-
environment categories generated by ref. 5. The overlap ratios were
obtained by dividing the count by the total number of genes in that
respective DLBCL microenvironment category.

Software
Unless otherwise stated, graphs were constructed with GraphPad
Prism (9.5.0; GraphPad Software, Massachusetts, USA).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The DSP RNA-seq raw data and processed data generated in this study
have been deposited in GEO under accession code GSE232853. DLBCL
expression array datasets of ref. 46 (GSE10846, n = 420), ref. 62
(GSE31312, n = 498), ref. 60 (GSE87371, n = 223), ref. 40 (GSE98588,
n = 137), ref. 50 (GSE117556, n = 913), and ref. 39 (GSE181063, n = 1149)
were obtained from Gene Expression Omnibus. DLBCL RNA-seq
dataset, ref. 61 (n = 773), was obtained through The European
Genome-phenome Archive (EGA) at the European Bioinformatics
Institute, Study ID: EGAS00001002606. This is a restricted access
dataset that can be obtained through a data access request application
as instructed on the EGA portal (https://ega-archive.org/). Ref. 38
(n = 481) was obtained from the National Institutes of Health (NIH)
database of Genotypes and Phenotypes (dbGaP), accession number:
phs001444.v2.p1. This is a restricted access dataset that can be
obtained through a data access request application as instructed on
the dbGaP portal (https://www.ncbi.nlm.nih.gov/gap/). Single-cell RNA
sequencing (scRNA-seq) datasets of tonsil were obtained from
HCATonsilData59 [https://bioconductor.org/packages/release/data/
experiment/html/HCATonsilData.html]. The scRNA-seq dataset of
DLBCL from ref. 37 (n = 17) is available at the CNGB Sequence Archive
(CNSA) of the China National GeneBank DataBase (CNGBdb) under
accessionnumberCNP0001940. This is a restricted access dataset that
can be obtained through a data access request application as instruc-
ted on the CNGBdb portal (https://db.cngb.org/). The integrative
scRNAseq dataset for human monocytes and macrophages (MoMac-
VERSE; from 41 scRNA-seq datasets comprising 13 healthy and patho-
logical tissues), was obtained from ref. 33 [https://macroverse.
gustaveroussy.fr/2021_MoMac_VERSE/]. The above-mentioned n in
this section refers to patient numbers. Source data are provided with
this paper.

Code availability
The codes used for our manuscript are available in Zenodo (https://
doi.org/10.5281/zenodo.10511030)64 or github (https://github.com/
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