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ABSTRACT

The purpose of this repcrt is to study the application of refinzd diszs-
placement finite elements for the direct stiffness analysisz of linear and
nenlinear problems of structursl mechanics.

A systemastic procedure to construct polynomial displacement fields bas:

s

on the use of interpolstion formulas in naturel coordinates is zpplied to
plane trisngles of linear elestic materiazl using the first three complete
polynomial expensions

1

Geometriczlly and physiceliy nonlinesr preblems are formulated 1n i
general form of 2 step-by-step matrix displecement z2rnalvsis by mezns cof 3
incremental variztional principle. Trhe derivation of geometric stiffness
matrices for finite displacemznt and stability anslvsis and of incremsntal
conventional stiffnesses for elastoplestic materisl is cazrried ocut for
srvitrary three—dimensicnasl elements and then speciaslized for plane strese
triangles,

Digitzl computzr programe for the linear strain trisngl

i
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and examples of application preseated.
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INTRODUCTION

Historical Background

The development of general discrete methods of structural mechanics
begsn in the early 19530's, parallel to the advent and extending usage oI
high-speed digital computers. A formel but important step wass the develocpment
of the matrix formulation of the transformation theory of structurses. after
the fundesmental work of Argvris {1]. The clear and elegant matrix represent-
ation not only shed light on the siructurs and dusl formulatiorn of the two
fundsmental solution methods, but provided a powerful way of crgenizing the
autometic computation as well.

These techniques were originelly spplied to the anzlysis of highly
redundant sircraft structures, whose ideslizeticn is immediate. Load-
displscement relations were usuzlly constructed by direct applicaticon oI the
unit-lead or the unit-displacement methods. In the light of present knowiedge.
some 0f the esrly difficulties encountiered in representing a coyrect Kinematic
behavior 2r=s not imporiznt, but nevertheless instructive

The first two-dimensional compstible displzcement field, tne constant
strain trisngle (2 provided a mezans of analyzing arbitrary plane nroclens
Although the originsl derivstion msde uge ci a chne-dimensicnal model
representation. it was coon recognized that the fundamental charscteristic
0of & displacement-consistent finite element is the zssumed kinemstic field.

Extension to rectangular plates [3,4 . shells of revcolution [5]. axisymmetric

il
S
o
ot
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bodies [{6,7], snd general three-dimensicnal continua (6,8, was =1t
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The stiffness formulation and the displscemsnt method of solution were
found to be ideally suited for this type of displaczment mods analysis, and
the direct stiffness method [9] whicn combined thessz characteristics with an
efficient automstic assenmbly procedure, soon oversnzdowed other solution
technigues.

Meanwhile, & thecory establishing recessary and sufficient zconditions to
gusrantee convergence tc the true solution was lscking. Such reguirszments were
considered much later, especislly after the wors of Melosh [10,11]. The
derivation of the load-displacement eguations wazs shown to be eguivalent
to 2 piecevwise Rsyvleigh-Ritz procedure apnlied to the wvaristicnzl principle
of minimum potentisl energy. The basic conditions for s successful generation
of displscement fields; continuity {(interclement compatibility) end completeness
{inclusion of kinemstic rigid body modes and uniform strain states) were
surmarized by Irons {12

The failure of early sttempts |13 +o zonstruct satisfactory triangular
piete elements may be attributed not only to the lack of compatibility, but
to the derivation in zsrtezian cosrdinates (2 non~-nstursl system) leading to
lack of invariesnce in gene:éi Simiisr cartezian expansions were zuccessiul
for non-compatible rectangular plais elements.

With a firmly esteblished bgsis for the generaticn of higher order dis-
placement fields, 3 systematic development of refined elements iz now possible,
This tendency has been observed recently [14.15.29]. The application of such
elements to geometricslly and physicelly nonlinear problems. originaslly re-
stricted to framed structures [18! or constent strain triangles [17,18]. is

very promising
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A recent development concsrne the possibility of systematiz usage of

Veubsks [13,19; has sdveccated the use of

33

other types of fiaite slements. D
egquilibrium elements fcermulated by means of stress asgumptions on the minimum

complementary energy principle to obtain uppsr bounds on the influence

coefficients; the dual aspscts of the derivaticn have been stressad. Simple
equilibrium elements fspsr, shear panels. etc., nave been used for z long
time; however, mors refined Itwo or tharse dimensionagl elemenis do nst sesm 1o

have been emploved in sigrnificant sczie.

Mixed models, generatso by psrtisl assumptions on displacements and
stresses, might also be extremzly useful for many probiems. Governing
variational principles wvielding the field egustions s¢ Euler eguation:s o the
primary variables, must ke construsted for esoh problem and 8 generasl theory

rus incomrrezesibtle

1y

is still lszcking Tne woest imporrant z2pplicaticn sc fasr conc
golids [20_ where strezsss are determined by the distorsions only up to an
hydrostatic pressure depencing on stress boundary conditions. n aggumed
transverse displacement-moment thick plate element has slsc been developed [21°
Finzlly 1t g10ul? be stressed thet tre finite element technigus is by no
means restricted to the solution of sfructural problems; it mey bBe aspplised
tc the solution of general field problemy which cen be zagt into 2z veriastional
form. Zienkiewicz znd Cheung [22 hzve recently epplied this procedure to
solve sacond order problems sucsh gs stationary heat flow snd torsion,
Past experience hae shown thst the succss: of the anslysis depends on the
gdegquacy of the Tinite element hehavior. Tne establighment c¢f the set of
equations and their sclution is a prscticaelly important, but formal apnlication

of matrix slgebras and numerical analysis.




Purposes and Scope

This repori deals wiith the systematic generstion of compastible finite
elements and their specific gprlication to the anslysis of linesy and nonlinear
plane problems. The general chsracter of the Zferivations is stressed;
computations snd examples for particular cases are intended to illustrate
the method.

A concise and elegent derivation of the losd-displacemsnt relations can
only be achieved through the use of natursl coordinstes, which are intrin-
siczlly relsted tc the elemsnt geometry. Competible displacemeni fields may
be systematically comstruzted by intzrpolation funciiorns in natursl ccordinztes.
The tedious process of iuverting transformartion matrices asnc the endless
eveluation of integrals in cartesisn coordinates is completely avoided.

The formulation of the genersl step-by-ster matrix aisplscement arglysis
for nonlinear problens is vsrried out for arbitrsry elements. This generzality
is necessary since past bDresentztions have been either limited to specific
problems or obscured by unnecessary intuitive srguments. An incrementsal
variationgl princigle trovides macroscopic eguilabrium eqguatiorne in the de-
formed gecmeiry and unzouples physical snd geometris nenlinesrities

Specific exsmplies and the included computer programs iilusirate the
application of the linesr strazirn triangle (LS7, for lizesr ang nchnlinear

two-dimensional problems. A significent improvement of both displacement and

stress patterns withk respect to the constant strain slement is observed,




The techniques described in this report have also been applied to the
development of successful trianguler plate elements; compatible displacement
fields may be obtsined by assembling several triangles [23.. Applicstizn to
linesr and nonlinear plste problems will be the matter of 2 feorthecomin

publication,
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NOTATLON AND LIST OF 3YMBOLS

Notation Rules

The fol.iowing rules concerning notation are cobhserved:

1) Vectors and matrices asre represented by bold-typs characters.

2} A tilde om top of 2 vector or matrix symbol is used whan
necessary to distinguish a function of sretizl cocrdinazies from its nodal
point values arranged aE 3 vector or matrix,

3} Summation convention holds for component expressions unless

specificaelly suppressec. it does not apply to indexed matirix cr vector symbols.

List of General Symrols

A list of the most commonly used symbols snd their general meaning

follows, Specific usage snd indexing is explsined in the context of the

m

report,

a} Scalars

a,b Genereslized zoordinates., Global dimensione of 8 triengle.

C Elements of matrix of materizl ccnstants.

d Differesntial symrel. Projection of z corner of a trisngle
over oprcsits s£ide

i Generzl Function. Body fcreces. Yield surfacs egustion.

g Function used in plasticity tneory (LV-30).

h Thickness. Triaangles heights. Tunction uged in plasticity

theory (IV-30),
kK Elements of stiffness meirix in terms of nodal dasplacements.

i,3,...8 Used as subscyipis or integer constants.
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1 Triangle side lengths.

m Mass (dm = masis s.ementl.

n Normzl to boundary. Elements of stiffness metrix in tsrms
of nodal strzins.

P Distriouted in-plazne loading on triangless. Derivatives of
nardenirng parameier K with respect to plastic strains.

g Elementes of weight matrix . Derivatives of yield zurfacs
with respect tc stress components,

r Component: of nodsel dispiacement vestor,

8 Trizngle gide cirections. Deviatoric stress components,
Arz len g+ {dz = line e_ement),

t Strezs-tzmpersture material constants

u X-displacement comoconent Displscements in genersl derivations.

v Y-displacerent component,

W Z-disglacemsnt ~omponent. Weights ir numsriczcsl integrstion
formolas

X,¥,Z lLocal coordicste system and coordinstes.

A Ares of two-dimensional finite elements (dA = ares element’.
Cross sectional arez of one~dimensional elements.

;S Eoundary of Finite eliement {45 = surfece elamen cr threz-
B,S Eoundary of £ t e t {48 surf 1 t 1 th

dimensional regions).

C Componert: of fourth-order stress-strsin TensoYy (InEIanNTanucus
meduii in general derivastions).

irite e.emen® {4V = volums selensr: .

[
-
-
oY
Joit
o
3
m
8]
3
i

E Direct eor Young's moduli {technical constants’. Componerts
of Cauchy s finite strain tensor.

F Body forces in general derivations. Work-hardening function
witl dimensicn of stress.




xiv

Shear moduli (technicel constants).

Invariznts of siress devistor.

Work-nardening function with dimension of (stress)2 (=F2). Height.
Integral. Momert of inertis.

Length

Moment.

Nodal poirt svstem.

Potentisl of prescribed loads. Foree.

Second differential of the stresin energy U.

Componsnts of nodsl force vecotor.

Compeonents »f fourth-order strzin-stress tensor {conplisnces in
generzl deraivationsy.

Surfaze tractions in genersl derivations.

Work (W_ = external work, Wi = internal work, Wp = plastic work,
etzy.

Global ceordinate sysism and coordinates.

Coefficient of thermai: expsznsion.

Totzl sheay strein. Angles of trisngle sides and the x-axis,
Comporents of infinitesimel or linear strair tenscr.
Veriation syxpol. Specific displacement. Kroneckar s deltas.
Natural ccordinstes.

Components of guadrestic strain tensor.
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Temperature varistion. Rotation angles.
Work-hardening parameter.

Load parameter. dA = coefficient of proportionality in
flow rule of plasticity.

Coefficient of influence between shear strezins esnd direct
stresses.

Poisson's ratio.

Reduced or dimensionless thickness.

componente: T is used in general derivations for
actual stress, 'f for stress referrecd to initial area.

Interpolation functions,

Coordinaste functions.

Pilastic/elsstiz modulus rstio in tension test.
Components o the infinitesimal rotation tensor.
Pogsition psarameier.

Function space hasis.

Genersl functiom space.

Polynomiel space

Q‘@*ﬁb"ﬁEXﬂsﬂ

.* ﬂ
Structure f @f = actual; @ = discretized).

) Vectors and matrices

.> Row vector.

Column vector.

Metrix.
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Vector of generalized coordinates
Nodsl vectcr for a general function. Body force vector.
Nodzl thickness vector.

Nodal vector for in-plsne distributed force on plene triangle.
Vector of p's used in plasticity analysis.

Vector of g's used in plasticity enplysis.,

Nodel displacement vector.

Subvectors of r including specific (x,¥,z) components.
Transformation matrix.

Strzin-nodsl displacement matrix.

General stress-strain matrix.

Nodal stregs~-neodzsl strain matrix.

Flexibility matrix.

Identity matrix.

Geometric stiffness in terms of nodal strains.

Stiffness metrix in terms of nodasl displacements {(for an element
or the entire structure).

Conventionsl aznd geometric stiffness metrices, where distinction
is necessary.

Numericzl matrices resulting from ares integrals ¢f triangulsr
interpolaticn functions. Lower triangulsr matrix.

Mass matrix.
Stiffress matrix in terms of nodsl strsins.
Null vector or matrix.

Weighting metrix resulting from strain energy integration over an
element (@ = numericsal blocks of @).




xvii

Nodal forces.

Applied nodal forces when necessary to differentiste from R
(internal nodal forces). Compliance matrix.

Transformstion matrix.

Submetrices of the strasin-nodsl displacement matrix B.
Thermal coefficient vector.

Infinitesimal strain vector.

Nodal tempersture vector.

Natural coordinste vector.

Reduced thickness vector,

Interpolation function wvector.

Stress vector.

Interpoclation function matrix.

Numericasl matrvix relating strains at the nodal stress sysiem and
nodal strains.

Incremental plastic strzin-incremental totzl strain metrix.
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I. CONSTRUCTION OF DISPLACEMENT FIELDS OF

COMPATIBLE FINITE ELEMENTS BY INTERPOLATION FORMULAS




I.1 FINITE ELEMENT ANALYSIS BY DISPLACEMENT MODELS

I.1.1. Summary of the Direct Stiffness Method

The direct stiffness method, described by Turner [9] in his 1959
AGARD paper, is at the present the most powerful and developed subclass of
the general finite element methods of structural mechanics. Since this
procedure hass been extensively covered elsewhere [24,25], only a summary of

the relevant steps will be presented:

{a) Structure Discretizastion. The behsvior of the actusl

structuregf* is assumed to be approximated by that of & ''discretized structure’

gpformed by an assemblage

o = U D { U= union of}
K K

of bounded, simply connected domains Dk cailed "finite elements’”. Since for
practical resscns the geometry of the elements must be simple, the geometry

of of¥ is, in general, only approximated by Qﬁ

(b) Displscement Field Discretization. Every element displa-

cement field is constrained to belong to & finite class or space of functions
continuous in Dk and satisfying deformation continuity across element inter-
L] Q
faces. The coordinate functions R(Pjg , component of a basis for the
element displacement function space, will be callied "displacement modes” or
"displacement shspes;” their smplitudes are the 'generalized coordinstes’ or
” . . in . ? :
generalized displacements with respect to { and may be considered as

kinematic degrees of freedom.




The whole displacement field of the connected discretized structure e/
is then continuous, pigcevwicse differentiable and cen be made to satisfy
kinematic boundary conditions.

This type of displacement field assumption defines =z compatible element’
cr "displacement model.” Two other types of structurzl finite elements may be
constructed; equilibrium or stress-—sssumed models, and mixed or displscement-

stress assumed models (see Table 1).

{¢) Derivation of Element Stiffnesses. The element stiffiness

matrix expresses, in a compact form, the relations between genceralizel
coordinates snd associsted gensralized forces; it ig a function of ths geo-
meiric .nd censtitutive properties of the element. Stififness matrices
asscciated witk different coordinaste bases zsre relsted by simple congruent
transfcormations,

The derivation of these relations must be bessed on the governing
variationel principle. For the compatible element defined in (b), the
general varigtionsl principle of Hu-Washizu [26,27] reduces to the ordinsry
principle of variations of displacements expressing the minimum of the
total potential energy {15 . This Zs actually a form of the Rayleign-Ritz

technigque azpplied to the network of finite elements {(see I1X.1.1).

{d) Assembly of the Stiffness of the Complete Structure. To maks

the combinsticon of the individual stiffnesses possible, the sssumed displace-
ment modes are defined by their values at special points - csiled "nodal points’

or simple "nodes™ - loceted usually on the element interfaces. The genereslized




coordinates become 'modal displacements' and the components of the associated
orthonormal basis are referred to as 'interpolating functions’ or “shape
functions™ (I1.2.1). Interelement compatibility reguires that the displace~

" i1

ments of any surfece Bkl common to two elements 'k and 1" be completely

specified in terms of nodal displacements on Bkl'

The element stiffness matrices, expressed in terms of nodsl displace-
uents and associated nodal forces, must be trasnsformed to a common coordinate
system 2t each nodal point; ususlly this system is the same for the entire
structure ('globsl" reference frame,. The formation of the complete stiffness
of %pproceeds now by direct addition at all interface nodes. Finally kinematic
constraints are introduced.

The resulting system of egqustions (linzar or nonlinesr), may be inter-
preted as 'global" equilibrium equations for tne discretized structures
connected only at the nodal points; nowever, this physical picturs may fail

when high order gradients are selected as generslized nodal displacements.

(e) Displacement Sclution. Any problem analyzed by the stiffness

procedure may be solved either by the force or by the displacement methed (see
Table 1). The terms 'stiffness method of snalysis' and "displacement method

of solution” should not be tzken as synonyms; for instsnce, the force method

may be the best one for the solution of problems involving egquilibrium elements.
However, the topologyv of the element connections is such that the displacements
are by far the best choices in a displacement model enalysis; the matrix of

the equilibrium equation set is then the complete stiffness matrix, which is



usually well-conditioned, spsrsely populated and (with adequate arrangement
of the eqguations) nsrrowly banded. These properties permit z very efficient
sutomatic assembly and soluticn of large systems, and explain the power c¢i

the direct stiffness technnigue.

(f) Stress Computation., The best stresses resulting from a

displacemsnt-mode analysis are those associated with the stresin field derived
from the displacement solution, as pointed out by De Veubeke [15]. QOther
procedures such as lesst-square fitting, etc., to which certain amcunt of
litersture has been devoted, are unnecessarily complicated nonsense. 0Of
course, ejement stresses should be interpreted with care when using very
restricted displacement expansions such as linesr ones; certsin aversging
procedures have to bz developed for the interfaces.

In summary, the direct stiffness method is the anslysis oI displacement
finite element idealizations, solved by the displacement method. The term
“"direct” refers to the particular way of assembling the complete stiffness
matrix of the uncenstresined elements in common nodal sysiems, before impoesing
kinemastic constraints, and aveiding inefficient transformszticns with location

or "Booleen’ matrices [181.

I.1.2 Types of Competibility Reguirements

For generasl three-dimensional elements, only the displacement field
need to be continuous across element interfzsces; this will be referred to
as type C-0" of compatibility. Freguently we can reduce a problem to two

dimensions if 2 displacement lsw of order ¢ is assumed to hold in the thirj




Table 1.

Classification of Finite Element Methods

Subdivision !
based on 1d. Neme Descripticn ;
I Displacement Assumed compsatible
or Compatible displacement fielg
Finite 11 Equilibrium Assumed eguilibrium
Element stress field
Model
I11 Mixed Partisl assamptions
on displacemert and
stresses
A Stiffnecss Generalized forces i
Element from generalized
Relations displacements
Between P e
Generaslized
Férces end B Flexibility Generalized displace-
Displacements
ments from generalized
forces
a Displacement Diepiacement as
unknowns
Method of
Solution 8] Force Forces as unknowns
c Mixed Displacements and
Forces as unknowns

Notes: 1. There are 18 possible combinations.
2. A-B refer to the criginasl derivation of relations for the element;
they may be inverted if necessary to match with the method of solution

3. Only the choice of model determines the results;
formal matrix algebrs.

other steps constituts

4. The trensfer matrix method is a specisl mixed method of solution.




direction; then the satisfection of three~dimensional compatibility requires
thet normal gradients of the trasversal components, up toc the "g-th" order,
should be continuous at the interelement boundaries: this is " type C-g  of
compatibility. The ssme definition msy be extended to cne-dimensionsl
elements., In summary:

e
3

{a) C-0C compstibility: all displacement components ui
i1, 2, 3) are continuous on all Bkl;
(b) C-gq compatibility: includes C-0, plus for i = 3 {(two-dimen-

i

. . . . r -
sional elements) or i = 2, 3 (one-dimensional elements) & uif Tn

(r =1, 2, ....g) continuous on ail B . where n is the normal ¢ B

For brevity we shall often refer to disulacement models satisfiyving
Ye-k" compatibility as C-k elements’ . Three—dimensional, plane "membrane”
and truss members are of (-0 type. Bending elements, when shear distcrtion
is neglected, shoulid be C-1. Specific examples may be found in Table Z.

The construction of two-dimensional C-g (g = 1) elements is much more
difficuilt than simple three-dimensional C-0 eiements. For that reason,

plate and shell elements which satisfy only C-0 compsiibility hsve been of ten

used, sometimes with success.

I.1.3 Selection of Nodal Point Systems

Let

(¥}

il

element nodal point system for the displacement field;

r = corresponding vector of 'm' nodsl displacements,




where the components ri (i =1, 2,...m) may be sctusl displacements or dis-
plecement gradients of any order, provided their selection satisfies the
conditions indicated in I.2.1.

We may partition (N} into

(N} = (N)c + (N)a

~~
-
1
o]
-t

"

where (N)C iz the fundamental nodazl system containing the mc" kinematic
degrees of freedom r_ necessary and sufficient to accomplish interface
compatibility reguirements; these will be referred to as external or

fundamental degrees of freedom;

(N) _ is the nodel system containing additional "ma" degrees of freedom
L not necessary for compatikbility purposes. This set (N‘)a mev he empoy,
i.e., m = Q.

&

A second subdivision of (N} is

(N} = (N}B + (N)I

b d “2\
and el = 4 R > e
B B I
where (N)B: nodszl point system on the boundary B, these will be called
external nodsl points;
{N)_: mnodal point system in the interior of D (internal nodzl points.;

I

each one including nodal displacement subvectors rp and K with "mB" and "m_ "

components, Again m, may bg zero.



Fundamental requirements for (N)c are
{a) All fundamental degrees of freedom must be specified on the

boundsry, i.e.,

(N} € (N {I-3
c B

X

(b) The displacements of any portion of the boundsry B , common

to elements "k and "1 must be completely defined by rodal points on Bkl'

This condition includes (a).
Additional properties are
(c) Some additicnal degrees of freedom may be specified on the

boundary, i.e.,

(N) = (M) + (N)za

a aB I

with associated displacement subvectors with "maE" and "ma_" COMPONENTS .
A

respectively.

(d) A1l additional degrees of freedom specified at internzl nodes
may be eliminated in the formation of the external stiffness mstrix by the
condensation procedure described in I1I1.1.3; provided the generslized nodal
forces RI assoclated with rI are known gz priori (this mey not occur in dyn=zmic

linesar problems if the frequencies are unknown}.

{(e) Additionsl degrees of freedom specified on the boundary

raB may be condensed or retained,; therefore the order of the finsl stiffness

matrix may vary between "mc" and my =m_ + W In general the best policy

aB’

is to eliminete all sdditional boundary modes since their inclusion introduces
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unnecessary compatibility relations and stiffens the strugcture., For example:
2 beam element may be given two fifth order additionsl modes specified by

the end curvatures,; if they are included in the externsl stiffness, we impcse
2 continuous transmission of moments even at the meeting of seversl of such

members.

I.1.4 Polynomial Displacement Functions

Polynomial expansions have been used nearly exclusively in the gen=-
ration of all types of finite element models. This preference is based on
their simplicity and convenience for zutomatic compu;ation; moreover,; ths
investigation of compatibility satisfaction is simplified.

The space §3D of &ll polynomials of degree £ n in the Euclidean

-

space Cv s contains

n o+ s i
m o= ( = imes) . (1-4)
\ s Iz, 5.

independent functions, i.e., has dimension m. We call 2?;,2 complete polynomisl

3% " p ) . -
space of order n eand a3 genersl Pn{xi}é'gbg a complete n=th order polynomiasl.

Evidently jﬁ; contains all 332, (r = n) as linesr subspacer. IF "3i" con-

straints are imposed on the clegss of polynomials spanning :g>n’ we get an
m-j . , . . -
incomplete polynomisl space ‘29 J of order "n" and dimension (m-33.
n
The importznce of the concept of the complete polynomial iies in the

fact that 32; is = complete function space for the class of continuous

functions [28] (Weierstrzss theorem).
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Some of the most important and successful compatible finite elements
constructed with polynomisl displscement expansions are listed in Table 2.
It should be noted that when s k-~th dimensional element is used in the space
é < (s = k), complete compatibility may be lost, especially for C-gq (g = 1)
elements. For instance, flat thin plate elements used to approximate shell

structures.

I-2 GENERAL INTERPOLATION FORMULAE FOR FINITE ELEMENTS

I.2.1 The General Concept of Interpolation

Throughout this parsgrsph the vector symbol x = (Xl,. .,xs) denctes

& point in a bounded, simply connected domain D of the Euclidean space és'

Let V be & m-dimensionsl vector space of functions f(x) defined and

differentiable in D, and spanned by a hasis (,PT = < (Pl(x} g 'Pm(x) P4
By definition, any f(x) EV can be expressed zs follows:
f(x) = a + a + + = {x) = T {x) (1-5)
X) = l(‘pl 2L{32 b amtpm~ai (’Pi =a (x
where T_ < a a a
a = 1 PAREERRRE n >
are the generalized coordinates of f(x) in the basis QF . Consider now a

" "

configuration (N) of m distinct points of D

(N) (x1 x2, ....... xm)

at which f(x) tskes on the values fi = f(xi) represented by a vector

T .
1= {f. f. ... fm> (1-6)
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LD - (o s r *é
Let f s \fr(xs) and A be the (m X m) metrix | (prs‘ If
det & £ 0 (I-7)
we can scolve for
-1 ' .
a=A 1 (1-8)

In such a case the configuration or set (N) will be called s 'nodal
point system' in D for the space jﬁ , and {I-6) the "nodal point vector'.

We now construct z sequence of 'm' functions (,?ﬁr(x)

cpr("}x "'1"" {Sf(fgf'*ai%‘ozf* . ’f'am?m}:* a3, (101("\5
r

1)

(I-9:
- P aTe ) = ?’m FTOA) @i Fet,2,. .. m °

r r

which satisfy | =k, ie., qi (x ) = 6 {Eronecker delta)
" rs s rs

_ . ) . S

Then <Cpl(x), ...... Qb (x}> is an orthonormzl basis for j in the
nodal! point system (N),; such & basis is unique if condition (I-7} is satisfied.
Functions ¢i(x) will be cazlled "interpolating functions' or "shape functions
Expression {I-3) becomes

fx)= £+« tfmPm= £, (x)= £ d(x

{1-10;

sand will be czlled the interpolation formula for f{x) with respect tc (N ;
¢ is the "interpolating vector.”

Ve can extend the class of nodsl point systems if we select only r

sample values of £(x) at a nodal system (N)l plus (m-r) psrtisl derivatives
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of £(x) at (N)z; this presupposes sufficient differentiability of the

functions f¢€ }/3.

Since f{x) must be uniquely determined with 211 constants

of integretion, not all combinations sre possible; not only condition (I-72

LA

must hold, but if g 1is the highest order of the derivatives congidered,
each coefficient of the multidimensional Taylor expansion of f(x) up to the

g-th order must be determined by the choice of the nodal point vector (I-€),.

Frequently, both the vzlue of the function and of certain derivstives

ere specified at the same points,

case the number of different nodzl points may be much less than "m",

dimension of the function space j/a .

()

i.e., .

increases the efficiency of the sutomatic solution.

I.2.2

Interpolation for Vector esnd Matrix Functions

and (N)2 overlzp.

In such =

AL 1

the

This reduces the connectivity and

The interpolation formulaz (I-10) may be extended immediately to vegtor

gnd matrix functions of x in D. Let
E(xj - < f'(x f¥(x) )
( T . - ffq{x;\
~ A '
F(x) _ =
!L £700 e T

where all fl(x) or flj(x)é 7/ﬁ.

component functions;

i i
fn = f (xn)

The nodel point system (N}

their nodal point vsliues are denoted by

fiJ fls(x p]
n n

i common to alil



i6

Then (I-10) in component notation is

i

ij ij
. 900 = ¢ o1 (1-12)

£ = 0 ¢ :

The expression of Equations {(I-12) in wmatrix form depends on the
structure selected for the nodal point vzlues., As an example let us consider

2 vector function of 2 components having a 3 nodal point system:

t 1 -1 17
o f ,’ ¢:1ff + @2?2 + ¢3{5 i
fix) = = r é
2 2 r 2 |
'L{ L AR AN _}E
If we chose @ nodal point matrix ¥ = ff;] (2 x 3):
- f1 ff f; T
fix) = J > : bl = : F
ol <¢! @r. ¢3> f2 {é f; CP (1-13a)
1 H
If instead we hzve a2 nodasl point vector 1 (6 x 1):
¢
R
2
\ ¢ - P - ¢; - E {}
f(x) = s
¢ ¢ - & f 2
Iz
12

[ f, \
= [@; @2 @5] = @ f (1-13b}

where HI
2 f

?. i




17

In genersl we shall use the symbol ¢) for a vector of interpolating
or shape functions and Q§ for a matrix of such terms; they will be referred
to as "interpolation vector and "interpolation matrix” for brevity.

The tilde on top of a vector or matrix function is used to distinguish

it from the vector or matrix of their nodal values.

1.3 COORDINATE SYSTEMS FOR PLANE TRIANGLES

1.3.1 Cartesian and Triangular Coordinates

A plsne trisngle 1-2-3 lies on the x-y plane of & global cartesian
frame (x,y,z). the coordinates of the corners being (xi,yi),i = 1,2,3 (Fig.
1.1). Giobal dirvensicns, paralliel to x and y, are denoted by s, and b,
(Fig. 1.2).

-Three local certesiesn systems (Si’ni)’i = 1,2,3, are defined with the
si axes zlong the sides, in counterclockwise c¢yclic sense and with origin
at the corners {Fig. 1.1),; ni axes are directed as inward normel of the
corresponding sides, Intrinsic dimensions: side lengths 1i’ heights hi
end opposite corner projections di, may be regerded s& coordinates of the
corners in the local systems; their subscript is slways related to the
opposite corner number (Fig. 1.3}.

The position of any internal point P may be specified either by its
global coordinates or by any pair of loczl coordinates. A third and very
useful system is defined =s follows: let Al’ A2 and A3 be the areas of the

three subtrisngles subtended by P and the corners, the index designating as

usuzl the opposite corner number (Fig. 1.4). The three triasngular coordinates
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Fig., 1.1 - local end Globsl Fig. 1.2 = Global Dimensions

Cartesian Systems. and S8ide Angles.

Fig. 1.3 -« Intrinsic Dimensions. Fg. 1.4 « Trienguler or Netural
Ceordinates.



ig

of P sre

€, = A /A t, = AZ;'/A £.= Az/A

-

CyrCe+ly =1 (1-14)

where A = A1 + A2 + AS is the total aresz of ths triasngle. The symboil %i
will designate the set ( Zl, Z2, 4§3); the vector symbol i refers to

the set 4 , 8s 2 {3 x 1) vector, i,=2.,
T S
Cq = < {;l Cé? ﬁj 7

Finally, the symbol {45 will denote the triangular coordinatez of &
point on the sides. Thus s function f{x,y) expressed in triangulsr
coordinates, may be written as f((él, /..’:2, qS)’ f( ‘4{) or £1¥ 3 f( % 0’
is & function defined on the boundsry.

The trisngular coordinstes of all imsges of a point F under zil linesv
trznsicrmations mepping one triangle onto another, remein invsriant. Thus
we see that the set ai is dimensionless, homogenevus and intrinsic {i.e.,
independent of the position of the external reference system and cf the
shape of the element).

Eguations Ki = constant represent lines parallel to the corresponding
sides. The eguations of the side 3" is Zj = 0. The three corners have
coordinates (1,0,0), (0,1,0} and (G,0,1); the three midpcints of the sides
{1/2,1/2,0), (0,1/2,1/2) and (1/2,0,1/2);: the centroid (1/3,1/3,1/3) end sc on.

The derivation of element properties is greatly simplified when all

ares functions are expressed by interpolation formulas in triesngular ccordinates,



i.e., f(x,y)

ere given in 1.3.2.

= I

7

o

Also,

20

i)’ Relations between the different coordinate systems

for brevity, pertial derivatives of & functicn

£( %%i } in the directions of the zbove defined cartesisn systems will be

referred to &s follows:

1.3.2

In this parsgraph,

with respect fo Si
with respect tc ny

with respect to x,y gxes:

" . N . T
normel derivatives

"side derivetives”

"giobsl derivatives',

Relations Between Coordineste Systems

cyclic permutations of

for

{z) Between

cos 51

~£&in 6&

"m.n

3

i=1,2,3,

indices

, i

(%] -
Co
DB
hence
ox _ 9y _ &,
?s; T °n. 1
¢s, _ 9n, _ &
S oy Ly

11 tt

kK will dencte the

2,3,1, k = 3,1,2

global and Iocsl coordinate systems:

lst arnd 2n<

S (1-15a)
?. b‘l a} )""'}Itj
) {,((
% ) {I-15b)
nij iyi(j
3 X 3y b,
anz as; [
(1-16;

o9s; _ 3n,

3)1_3% 1
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(k) Between global and trisngular coordinates:
) { I
X X

[ ¢,
i X = | - 2 Ka C':?T (I-17a>
YL ow Yo v (e,

jZJZ f XaYa=Fs¥a o Y2 Vs ’*5“*2_-1 ‘{1

)
}‘42 Sx L Rehm s Jam¥r *imXa jxf{
L %3} J %yyz— Xz Yo=Yz X%y )4
(I-17b3
“2/5\21 b, a1jji“.
zwiml&‘\“ b, 32: Xg
A 2A; b asl l‘j }
where 24 = ajbi - aibj and Aij is the ares subtented by corners 1i,j and the

origin of coordinates. Note that 24 ﬁi = 2Ajk+bix+aiy = 0 is the eguatiocn

of side i.

Hence

?;'LZ;{_ — b-,_ ?7&1__ B{

Ix 2A ay  zA

LI 3y _ . (1-18
o, og,  *

{¢) Between local and trisnguler coordinates
(R R
S/ = L d; %L (1I-198)
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{J [ ZA ""h,: d'i—l'i 1
:K = é%: . hi ‘di s, {I-19b)
Zi . . 1. iy

where 24 = lihi {nc sum)}.

Hence
2, e 3L, ] o L
TS, 95 953 i s ~hy | S |
;@g_? _.?_gﬁ .:.B_\é.g o N .,h} 0 h3 — —..‘.'..._ 0 ._i,_ I
%? EE? ;2? ZA }s . 13[
=53 3 3 R
. 331 852 353_” h1 _h? O 13 12 O J
(3¢, %%, 3, ] S ]
2ns B Bma t 1, —-d; d-13
oY, B it} _ _ N
9ny vn:  ons = ZA d-1, 1l; —ds =20
4 34 o
L an} anz aﬂj N dt C§2 12 13

The derivatives of a function £( tl’ Zz, ﬁs) with respect to local or
global cartesian axes can he obtsined immediately by the chain rule and

formulee (I-18) and {I-20):

of _a,._i,_,if_)
asi - L a:k BZ; ¢ )
I-21
°f 1 [f ., 3f of
— R e — ‘ U C!!_‘)_ ———-md um
_ami ZA ag" 1 + ag}'( 1 1) a&K < ) (nO s )
of _ bmdfm _ 1 (3f p  3fy . 3 g
ax  2ZA 3L,  2A \az, ‘”’“a:z ‘_f“az,s )
; (1-22)
9fF _  8m 9fm 1 of a, + af a °f a )
_— = =z — O 4 —
3y 2A 9, 2A (9% oy, ot
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Similerly higher cderivatives may be constructec, for instencs

9 _ 8mbn f
Ix Ay 442 oF 9L,

1.4 POLYNOMIAL INTERPOLATICN FCR PLANE TRIANGLES

I.4.1 Peolvnomial Exrressicns in Triscgaiar Cocrdinsties

Trhe domain D of 1.2.1 iz here the flat triangle 1-2-3 of 1.3.1 (Fig.
. o3 . . ‘ X
1.1). A complete polynomial space J’n in two dimensione ig spanned by the

coordinate functions

g’tpi]:«,- < 1 X ; _— xy.,.,..yn D (1-23:

L

L 3]

and hss dimension m = (n+2) (n+l; /2. Any pcivromisl Pn(x,y) of order n

may alsc be expresssd gf 3 polvacmisl POL Z >, 85 &> @0, in triangalss

13}

coordinates using Equation (3—1?8;; suzh representation 1z nor unigue, since
. i Bi . ~% ‘ V9 _ ok
each term may contasin arbitrary fasztors ( l+ a5 = L When 211 suzox
"

- 17 W g e T e
factors have been removed, PS(Zi)E Pn( 21) has degree n  and w111 be callec

irredu<cibizs. There ars

r o= n+ed) (n+2) {n+l) /€
different monomizl terms in a genersl Pn(%jﬁ; bat only "m” are independent
and the rest, i.z2., fr-m: = (rn+2){n+l)n/6 terms, arz linesr ccmbinaticns thesrecd.
For rectangulsr regicns, csrtesian systems, after divisicn by the
side lengths if necessary, provide netural coordinates fa natursl system

is one in which the element boungdaries are zerc coordinate lines’; tne
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interpolation formulas for corner nodal point systiems are the well-known
Legrange and Hermite polynomiazls. They hasve been used, for instance, by

Melosh [10 ] for three-dimensionel elements; by Bogner, Fox and Schmidt [27]

for membrene and plate elements znd by Pestel [30] for the dynsmic enslysis

of beams. Similarly, for triasngular elements, the interpolation functions
{I-10) asssume particularly simple form when expressed in triangulsr coordinates,
they usually can be consiructed by inspection resther than by the generszl

method (I1-9) which yields the orthonormzl system from 2z known basis like

(I-23). The tedious process of inverting the transformation matrix A is

then avoided.

1.4.2 Determination of Complete Polynomials from Boundary Conditions

The most important properties concerning determination of complete

polynomials in triangular coordinstes are:

(a}) For n = 3, a2 complete irreducible pclynomial Pn( &i) cannot
be uniguely specified by its boundary velues. In effect, we may add

arbitrary terms
{g 1 £ 2 ¢ 3 with m, 2 1, i=1,2,8 (1-24)

beionging to the subspace ( 33-0)n of ail polynomials of order £ n
vanishing on the sides. There are (n-2)(n-1)n/6 of such terms, but not gll

independent; for instence if n=4 we have four terms

(P-0), + Gty €I6,¢,, €uids. 6.6.43
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2 2
but only three are independent since ﬁ,tpzt,_-;*’cﬁﬁ ‘r;% f\3+ﬁ;iﬁzi’13 = (q,?fz 53.

(b) Forn = 6, a complete irreducible polynomial Pn( Zi) cannot
be un.quely determined from the values of Pn and the normal gradient

BPn/ dn on the bhoundsry. For we may add erbitrery terms

ﬁ ‘(, t’ with m 2 2, i=1,2,3 (1-25)

belonging to the subspace (@wl)n of 211 polynomials of order = n whose
values and all derivetives are zero on the sides. There are (n-5)(n-4){n-3),/6
of such terms, but not gll independent. Evidently (,@—1)n € {@w{))n.

Similerly we may define subspaces (?"Q)n contained in all previous
ones. Their importaunce lies in the fact that their members do not affect
compatibility regquirements for C-g triangulsr eiements, i.e., they sre naturszl
additional modes.

Thus terms £ (?—-O) may be used for plane stress elementes; they can
be specified at internsl nodsl points, or, if they do not belong tc (?wl)
(some m,o= 1}, by normal derivatives on the boundary.

Terms € (§D ~1) might be employed for thin plate elements; they can

be specified 2t internal nodes, or by 'r~th" order normal grsdients on the

boundary (r 2 2), provided they do not belong to the class (?—r).
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1.4.3 List of Interpolation Formulae for Complete Polynomials
of the First Three Orders

..4.3.1 Linear Interpolation (n=1, m=3).

The logicsl choice is to take the corners 1,2,3 for the nodal point

system (Nl) of Fig. 1.5. Then

f (fl;zz.is) = f(z-i)*: 1,9, + 12 Yo +{3%s

tz T T
= {f fafsrfy, b= #4= € f (1-26
Z,
i.e., CPi = Z:i’ i=1,2,3; these interpolating functions sre sometimes called

"pyramid functions”, e.g., by Synge (317, bec.use of their shape.

I.4.3.2 Quadratic Interpolstion (n=2, m=6)

The bhest choice ie to take corners 1,2,3 and midpoints 4,5,€ to form

the nodsl system (Nz) depicted in Fig. 1.6. Then

b.(28,-1)
E.(et,-1)
/ B3 (2gs-1)
() = (Fy fofs fu fs fe 44;2 [ = fT{p(z) (1-27)
44203
4.7,

¢1+3:m' 4%;{Zj
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fi’ i: 1,2’3} fi, i — 1,2,5'4'5’6
Fig. 1.5 - Linesr Interpclation. Fig., 1.6 - Quadratic Interpolation.
Nodel Point System (Nl). Medal Foint System (!2).

Fige. 1.7 - Cubic Interpolation. Plg. 1.€ - Cubic Interpolation.
Nodal Point System (N;). Nodal Point Systea (ﬁ5).
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Fig. 1.9 -« Cublec Interpolation. PFig. 1.10 -~ Cubic Interpolstion.
Nodael Point System (N5). Nedal Point System (H§>p'
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It would glsc be possible to select the corner values asnd three
corner side derivatives, one at each, in c¢cyclic order. However, this system
iacks the complete symmetry of (Nz).

1.4.3.3 Cubic Interpolation (n=3, m=10)

Here we find the first member of the (?-“G) class:

the term C{, 52 5;3

which vanishes identically on the sides. Several choices of nodsl systems

ere possible; the most important ones are described below.

E 4
(a) First Choice: system (NS) of Fig. 1.7.

This system consists of 10 nodal points; corners 1,2,3, third points

of the sides 4,5,...9 and centroid ¢ (Fig. 1.7} The nodsl point vector is

T
£ = (f1f2f3f4f5f6f7f8f9fc>

then

T, #
f2)=f~ ¢@

with
(€, (35,-1)(5¢,-2) )
ﬁz(j}ﬁ?—?) (3?;2"'?)
E3(3t51) (383-2)

£t (2 -1)
¢, = ..H 9,6, (36, 1)
9963 (24, 1)
S s (38~ 1)
95,'34(3%’3"‘)
9%541(341"‘)
N 5466, %5




30

(b) Second Choice: Nodal System (ES} of Fig. 1.8.
This second system has only four distinct nodal points; the 3 corners,
et which we specify the velue of f eand both side derivatives, plus the

centroid (Fig. 1.8). The nodal point vector is arrsnged as follows:

T
1 = <f1 f21 jE31 Ty f30 12 73 f13 f23. fc >
where we put A 'fﬁ( = (_gf_)

The interpolation formula is

£(6) = ey, (1-29)

wl.ere

ff(ﬁ,+3z’,z+3ﬁ3)~7¢ﬁz L‘ﬁs
—¢; (feaﬁf_;;ﬁzgﬁ)
(€08, —4.6.43)

fz(ﬁz-y-é‘zf,_}ﬁ-f:iﬂ,)w 74‘42‘43

bo = ¢ G4 -E%E) ,
191 (ﬁ’% - ?f,,ﬁz {53)

z: (::‘f“ 3%;‘*'3(42) - 7&:‘&2%3
- f—t(ﬁzfj - Qf“ %zﬁs )
{2(4?41'“(4: ‘52 ‘43)

278,%.%;

~




Note the corrections introduced by terms

functions

This formuls and

7(; z0 .
2
7(‘3 ? — _?.._.. ) !
f 27 .
{5 7 "‘212
§ 7[6 ] \EO ""4{:7
{¢} Third Choice:

415
213

Nodzl System (NS) of Fig. 1.9.

@1 to ¢>9 vanish st c.

~213
- .ll-j

.
.

.. -

41, 7
21, 2o
.20
.7

40293

21,
-4l
< 4l
Co2i,
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so that all

{I1-28) are related through the transformation matrix

This system 1s similar to the previous one, but the derivatives at

the three corners are tazken

nodal peint vector is

T -
£ = <,f1 fxl fyl I

where ka = (fx)

Then

T
£( ﬁi) = f ‘p(a)

with respect to the global directions (x,v).

The

(1-31)
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with

™
€+ +385) - 76,%,9;

H(o3%—a,%) +(3:-73)4,4, ¢
f(zZa t%ﬁz)+(ba 2)ZJ£2%3
2 {8, +3Y.+3¢ )~ 74,4275
t‘;}(3) = 4 & (&,ﬁﬁ—83_”}-#(55—8{)71%’2%3
63 (57, “bfﬁs)*(b!“bﬂg: £a83 r
CE(0,+30,+37%,)— 74,5,4;

43 (2%, - a,%;)+(a~3,)% 4,4,
i (b,ﬁz—bzz,,)+(b2—bi)‘§,’,%2ﬁ3
\ 27 8.4, ¢ )

¢
g
&
¢

This interpolsticn formule can be immediately obtained from Equstion

(I-29) using (I-18). It is used in the derivation of the stiffness of the

guedratically varying strein triangle (III.3).

(d} Fourth Choice: Nodsl System (NS)p of Fig. 1.10.

Again we have four nodal points the 3 corners st which the value

of £ and the globsl derivatives are specified ( 8f/ Dy has been changed

of sign) plus the normal derivative st midpoint 4 (Fig. 1.10). The nodsl

velues are ordered as follows:

= - i - k4 f_ -f
t <.fl fyl fxl 2 fy2 x2 3 y3 fxB fn4 >

_ T
HED =ty (1-32)
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with Zf(%g+3ﬂz+3ﬁ3)+5m%‘4253
€I (b3t —b, 4 )+ (baps—b,) £,%,,
G (2:6, -3, 1) + (a3 p3-21 5,4, 4,
G2 (Ca+325+32.) +€2:Y.6:,
Popp={ 5 (B=BE)+ (Bmbsd) 64,45
423, %3-a:% )+ (32-2273) 4,424
L85 (43+ 38,4 3%2)
€3 (b4, —b,%2)
45 (3,4, ~3,4,)
”7.5‘4'4243

- s

where )_3 == dj/lg ; /U: = f"—)\j.

~

This formuls is fundamental for the construction of compatible thin
plate triesnguler elements, If we make f( Zi} = w( Qﬁ) = transverszl deflection

(positive downwards), the above selected global derivatives

are the rotations about the in-plane axes,.

1.5 AREA INTEGRATION OF FUNCTIONS IN TRIANGULAR COORDINATES

I.5.1 Formulas for Polynomiszl Expressions

In the derivation of stiffness matrices for flat triasngular elements,
arez integrals of polynomisl terms in triangular coordinates are freguently
required. Their values are independent of the shape of the triangle and may

be expressed as s fraction of the ares
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R A
I(m;,m; ;)= [‘qﬂ ;b dA 04
A
where indices 1i,J,k represent any permutation of 1,2,3. The value of the
coefficient o may be found in Table 3 for orders n = mi+mj+mk =1 to 6.

Some numericsl vectors and matrices which sppesar freguently as aresa
integrals of interpclstion vectors and their products, are listed below for

the lowest polynomizl orders:

1 T 1
b o= [ft. aa = : 11 1)
A
1 T 1
L= = da = 2 < 0 G 0 1 1 1 >
2 A fq)(z) 3
A
% 1 -!:T- 1 .
_ 1 1 N
LS_A{q)@ dAd =—==<{<4 4 4 8 9 5 9 9 9 51
A ‘¢
1 [ 4T 1
=i | Q)@ @ = = < 11 2(eg-0,)  2(by=b) 11 2(s -a.)
A

2(p b)) 11 2(s,-2 ) 2(b -b) 27 )

11

-

1 1
lez;{fﬂ(p@df\ = e -1 2 -1 8 B8 4
“A -1 -1 2 24 8 8




L22

X
33 7

20160

1 T 1
P f‘?’@‘ﬁ’@?‘\ = T8
A

228
33
33
54

81
81

54
108

108

33
33
228
81
81

54
54

108

54

81
1626
-567
-405
-162
-405

810
486

1 *d dA =
,[%%d

0

54
81
-5667
1620
810
-405
-162
-405
488

81
54

~405

810
1620
~-567
=405
-162

486

81

54
~162
-405
~-567
1620

810

-405

486

0

Bl
54
-405
-162
-405
810
1620
-567
486

108
108
108
486
486
486
486
486
486
5832

35
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m, m, m
Table 3. Aresz Integrals & A= j LC) i L(,l J ((f‘ K dA
A i J k
of Polynomisl Terms in Trianguler Coordinates,

Order §
n:mi+mj+mk mi mj mk Mo ; Factor M
1 1 0O O 1 3
2 ¢ Q 2
2 1 1 O 1 12
3 o 0 6
3 2 1 it 2 60
1 1 1 1
4 0 0 12
4 3 ! 0 3 180
2 2 0 2
2 1 1 1
5 0] 0 60
4 1 0 12
5 3 2 G 6 1260
3 1 1 3
2 2 1 2
6 ¢ 0 180
5 1 0 30
4 2 0 12
6 8 3 0 o 5040
4 1 1 G
3 2 1 3
2 2 2 p
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I.5,2 Numerical Integration

For some elements, such as axisymmetric triengular rings [6], the
integretion of functions other than pelynomiels over the ares of the triangle
is required. If & closed form erpression cannot be obteined or if such
explicit form is complicated or prone to celcellstion error, numerical inte-

gration is the best procedure, We consider here Gauss-type expressions:

N

_Lf Fl Lotnad = 0 wt(L) + R (1-34)
A A Ko ]

where Zk: are the triangular coordinstes of the integration points

Pk (k=1,2,...N). Formulss for the first five orders, taken from Hammer and
Stroud [32], are given in Table 4. They are of the symmetric type, i.e., all
images of ?k under all affine transformations of the triasngle onto itself are
also integreation points with the same weight W If R = G{hr) is the

remainder, h being a characteristic dimension of the trisngle, the formula is

exact for 211 polynomials of order up to (r-1).
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Table 4. Numerical Integration Formules for Triangles
. Triangular . . i
No. Order Fig. Rem. Pnts, Coordinates Weights Yk
|
. 2
1 | Linesar R=0(h™) E] 1/3, 1/3, 1/3 1
8 1/2, 1/2, 0 1/3 ;
3 |
2 Quadratic R=0(h™) b 0, 1/2, 1/2 1/3
c 1/2, 0, 1/2 1/3
e {1/3, 1/3, 1/3 -27/48
4 b 11/15, 2/15, 11/15
C i 2
3 Cubic R=0(BD 1 o 1215, 11715, 2/15 25/48
d 12/15, 2/15, 11/15
a 173, 1/3, 1/3 27,/60
b /2, 1/2, 0 3
4 ¢ 10, 1/2, 1/2 B/60 i
4 [ Cubic R=0(h") d 172, 0, 1/2 i
e |1, 0,0 _
£ 10, 1, 1 3/60 ;
g 10,0, 1 |

H H




Table 4 (Con't)
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l
No. Order Fig. Rem. Pnts gz;i2§22i;s Weights ®
e !1/3, 1/3, 1/3 0.225
bty By By
¢ B o, By 0.13239415
G
5 | Quintic R=0(1°) . il’ 22’ Zz
2 Pzt Py
T 1By 24 By 0.12593918
g By By oy
with
@, = 0.05961587
B, = 0.47014206
Gy = 0.79742699
B, = 0.10128651

Notes:

1) Use of the cubic¢ formuls (3) is not recommended since the negative weight

may cause severe cancellation error.

2) When the function f(@;) is unbounded on a certain portion of the boundary
(for instance, on the symmetry axis for sxisymmetric ring elements) an
expression like (5) with only internal integration points should be used.

3) To improve the accurscy, we may subdivide the triangle and integrate over

each subregion,
midpeints and using the guintic formula (5)

For exsmple,

Joining the

for each portion (see Fig.) we may reduce
the error zpproximately 2% - 64 times.

Programming is simplified by the fact that

each subtrisngle has the same ares,
fore all weights are merely divided by 4.

there
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11, DERIVATION OF CONVENTIONAL STIFFNESS MATRICES

FOR PLANE ELEMENTS
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Il1.1 BASES FOR THE CONSTRUCTION OF STIFFNESS MATRICES

I1.1.1 The Conventional Ritz Technigue aznd the Finite Element Method

(1) In the conventionzl Ritz method, successive eppreoximations are

obtasined by expanding the class

T

Sept LY g Heo o Py (11-1)

of trial displacement functions over the entire structure.

The set J:lm:is ssid to be relstively complete with respect to the
cless of continuous functions sztisfying the kinematic boundary conditions,
if both the displacement field znd 2ll displacement gradients entering into
the governing vaeristional problem can be uniformly approximated by members of
the cliss (II-1} as n —» OO,

It can easily be shown that the strain energy Un converges meonotonicelly

k3

to its true vaslue U = U, 85 n—+co if the setlfyccis relatively complete [34],
However, the uniform convergence of the sequence of displacement soluticns has
been proved only for certzin types of functionsls, morecver. their gradients may
not converge even if the displacement sequence does [33].

(2) The previous technigue is obviously restricted to simple shapes
and not adeguste for automatic programming. In the finite element method we
apply the Ritz procedure to each element of the discretized structure. We
mgy try to improve the solution by the following procedures:

{a) Decreasing the mesh size by repeated subdivision;

(b) Expsnding the c¢lass ﬁﬂl of displacement functicns for




42

each element; this may be done
(b.1) introducing fundamental modes;
(.2} introducing additionsl modes;

(¢} Improving the geometry of the element,

Sufficient conditions for convergence of the strain energy and influence
coefficients using method (a) of repested subdivisicn are simpler to meet
(see 11.1.Z) and we are not faced with the difficulties of the conventionazl
Ritz procedure,.

The second method (b) leads to the development of refined elements
the best results are obtzined by injecting fundesmenta! degrees of freedom
which improve both interface and internsl displacement patterns. The use
of additional modes is discussed in II.1.3.

Consistently refined elements gusrantee = faster convergence snd better
results for coarse networks. This technigque shares some of the charscteristi-s
of the conventional Ritz procedure; however,for large ''n” the derivation
becomes incressingly complex snd in general the actusl geometry of the
structure c¢an be spproximated only by (a) or %c}, Therefore in practice we
select & certain 'n" and further improvements are done by subdivision. For
each type of problem there seems to be a practical balance between the work
necessary to derive and assemble the stiffness matrix and the work involvesd
in the solution of the equilibrium egustions in order to attzin & zertain
accuracy level,

Procedure {(c) has not been systemstically explored vet. It is evident

that, to fully exploit the possibilities of a higher order displacement field,
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the element should be allowed to be bounded by arbitrasry surfaces or lines

of degree egqual to the order of the displacement expension; for example 8 six

nodsl peint plane or curved triangle bounded by plane or spece parsbolas,

This procedure would permit s very accurste representstion of the zctual

geometry (a shortcoming of cosrse networks of highly refined elements) and be

a powerful tool for snelyzing problems inveolving finite displescements gnd

strains.

IT.1.2 Selection of Displscement Functions

The key to the derivstion of a deformstion-consistent stiffness matrix

is the selection of a displacement field sstisfying the following reguirements:

(1)
(2)
(3)
(4

(5)

Internal and interface compstibility ss defined in 1.31.3,
Displscement functions must depend linezrly on nodal displscements:
Rigid body displacement states must be included;

Uniform strain ststes musi be included;

Displacement field must be spstialily isotropic, i.e., in-
trinsically related to the element snd independent of the

external frame of reference.

Reguirement (1) bounds the strain energy of the discretized struciure

of considered continuous; if no geometric approximations sre inveclved, we also

get bounds for the influence coefficients of the sctusl structuregf . A

monotonic behavior results if the mesh is subdivided into elements of the

same type so that all previous displacement stsates are contained in the new

ones (Melosh

(107).
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Requirement (2} is automatically satisfied by using interpolation
formulas of the type (1-10).

Requirement (3) is necessary to include the conditions of global
stetic eguilibrium: otherwise self-strsining would result from rigid body
motions [12].

Requirement (4) is s necessary condition for the convergence tc the
acfual strazin field; otherwise the missing strain states cannot be sttained
(and actuslly dissgpear) as the mesh size is reduced. The work "strein” is
to be interpreted here as ''displacement gradients entering into the
formulation of the internsl energy' ; for instance, curvatures in pure bending
elements.

Requirement (5} insures that the resulting generslized force-dis-
placement relstions (and therefore the solution of the problem) are cbjective,
i.e., independent of the position of the externgl reference syvstem. This
condition is even more important in the step~by-step solution of geometrically

nonlinear problems. The invariance condition may be expressed szs

THK)T = £(TTKT) (11-2)
where the transformstion matrix T represents z Gaslilean motion of the
external frame and f is any invariant function of K. Stiffness matrices
setisfying (II-2) will be called ohjective or invariant.
A natural coordinste system is one heving the element interfaces as
coordinate surfsces; therefore it is intrinsically relsted to the element.
An example of this is provided by the triangular coordinstes defined in I1.3.]

for 2 plane triangle. The invariance condition is sutomaticelly fulfilled if
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the displacements are represented by isotropic functions in a natursal
coordinate system.

In the case of polynomial displacement functions, it is desirable to
use complete polynomisls (I-23) which possess the following properties:

(i} Invariance is esutomstically satisfied since any complete
polynomizl is isotropic;
{ii) Rigid body displacement s1d uniform strain states are included
if the degree is at lesst (g+1) for a C-q element;
(iii) The solution does not depend on the choice of the
fundamental nodal system, since no constrsints have been
imposed on the polynmmial class (I-4).

The simplest C-0 elements satisfying reguirements (1) through (5)
are the so-called "topologically simplexes™ [387, or, in short, "simplex"
elements of constant strain and complete linear disnlacement field: bar,
triangle, tetrshedron (Fig. 2.1). A n-th dimensional simplex has (n+1)
fundamental nodal points (corners).

When using incomplete polynomial expsnsions in natursal coordinates,
it is not immedistely evident whether we are including sll necessary rigid
body displacement and uniform strsin states. A simple and general way to
conirol such requirements consists of restrasining the nodal displscements in
suchk a way that the displacement fieid becomes a simpler one satisfying all
conditions, like 2 complete polynomial or the corresponding simplex in the

case of a triangle or tetrahedron. For instance, for the 4 nodal point plane




p
one-dim. two-dim. three-dim.
Fig. 2.1 - Bimplex Elements.
3
4
= 0
2
1
Fig. 2.2 - Plane Trisnzle Fig., 2.3 ~ Plene Quadrilateral

with 4 Nodal Points. formed with 4 Simplex Eiemente.




triangle shown in Fig. 2.2, we try for the u-component the interpoletion

formula
w(G )= <G, €,@%=1) gi(2¢,—1) 4L,y < “2

which sztisfies compstibility. Setting u4 = (u2+u3}/2 ve get

W)= (% Y%, 43> i;

1)

the linear field of the constant strain triangle (see III.1.1).

assumed displacement field satisfies all conditions.

I11.1.3 Egﬁnaduction of Additional Modes

47

Therefore the

It has bern proposed [35,3€6] to improve existing stiffness matrices

in & systematic way by including sdditionzsl znd independent deformation modes

not sffecting compatibiiity (see 1.1.3). We thereby have expanded the class

of coordinate functions
and generated complete load-displacement relations of the form

| Kﬂ K1‘2 S o R,

T ey
LK K] |2l Rz
where
K¢4 : stiffness gssociated with fundamental modes §?i

kl22 : stiffness associsted with additionsl modes gzZ

K

12 :  coupling stiffness.

(I1i-4s;
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r, and r} are’ the nodal vectors (I-1) and F{1 and Fiz the associsted
generalized forces. Since the rigid body displacement stestes must be included
in 521 by requirement {(3) of 11.1.2 and the zdditional shapes asre in-

dependent,f<22 is nonsingular and we may eliminste r& to get
—1 T
K = KH “K12K2T2 K“Z (I1-4b)
-1 :
R = R~ K, K; Ry
as condensed stiffness matrix and condensed generslized force vector,
respectively.

For plane trisngular (C~g) elements we may use, for instsnce, members
of the polynomial clzss (gl-q) defined in I1.4.2.

This technigue may be considered z2zs a conventional Ritz procedure
applied to the element considered as a structure subjected toc the constrgints
imposed by the fundamentazl deformstion modes a5 kKinematic boundsry conditions.
If the class (fla)oo is releatively complete with respect to this problem, we
get in the limit the exact solution of the element subjected to fundamental
boundary constrsints and lozded with generalized nodal forces associated with
the fundementasl degrees of freedom. The effect of the {22 modes is to
improve the sestisfaction of the internsl microscopic equilibrium eguations.

The inclusion of 2 few additional modes has proved useful in the
following cases:

(i) to complete a polynomial displacement field of & certsin
order; for example in the QST element developed in II11.3;
(ii) to include desirable physical deformestion characteristics;

for instance, the spar stiffness developed by De Veubeke [151;
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(iii) to minimize the effect of incomplete compatibility for
certain elements (generslized stiffness method of Jones [37];
although these are not exactly additionsl modes in the senss

’ of 1.1.4,

Otherwise the inclusion of a large number of these functicns has little
_advantages in practice for the following ressons:

{2} The formation of matrices and load vectors of Equation (II-4z)
plus the condensation process (I1I-4b) is complicated snd time-
consuming; moreover, for many structursl types, numerical
sensitivity and round-off errors may offset the advantage of having
a slightly more flexible element;

(b) When the sctual geometry is only approximasted by the assembly
of elements, the inclusion of these higher order deformation

modes msy be detrimental to the solution. This occurs when the
"true"” solution of the discretized structure under nodal loads

is quite different from the true solution for the asctusl structure:
in general the “exact" solution under concentrated nodal forces
displays undesirable stress singulsrities. The example of the
conical shell element developed with Bessel functions is suggest-
ive [39].

{¢) Xo improvement is possible for simplex elements of constant
strain (Fig. 2.1), since the internal equilibrium eguations are
satisfied by the fundamental linesr displscement modes:; in this

case ’<12w 0 . Nevertheless it is possible to try toc "improve"
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elements formed by & combination of simplexes; for instance the
plane guadrilsteral sssembled with four constant strain

triangles (Fig. 2.3) msy be given additional modes of the type

. m, m m ™ -
ZE: c’wnmzmjﬂu(fh ﬁaz 3.32244 (&nkﬁ ﬁ}
Mg

where f}_:—@ are the equations of the four sides in a

natural coordinate system, here the equilibrium eguations are
viglasted on the internael interfaces. The practical value of

this technique is open to question,; it seems much more conveniunt
to directly combine refined elements, constreining the dis-
placement variation aiong the external sides, For example, we
may assemble 4 nodal point triangles (Fig. 2.2} or four 5

noedal point trisngles to form 4 nodsl point quadrilaterals;

this technique is well suited for autometic computstion. A
gquantitetive evaluation of the efficiency of different

combinations is presented in Appendix I1.

1z.2 GENERAL DERIVATION OF CONVENTIONAL STIFFNESS MATRICES

11.2.1  Vslidity

The procedure described hereafter is wvalid for smell strasins and
rotations (linesrirzed form of the strazin-displacement eguations) and yields
the conventional stiffness matrix. The cese of finite displacements is

treated in IV.3 and IV.4.
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Although the derivation is carried out specificslly for plazne stress
and plane strain triangular elements, it can be obviously applied to any
(C-0) element for which interpolation formulae, preferably in terms of
nstural coordinates, cen be constructed. Bending (C-1) elements present
some particular problems, not discussed in this report.

Notetion: =& tilde on top of a vector or metrix Ffunction (I-11) is
used when necessary to indicate that it is a function of the coordinates,
in contrast to the plain symbol which represents the erray of their nodsl
values. No distinction is necessary for:

shape functions ¢i {nodel values zre indicasted with other symbols)

scelar functions (nodzl vectors sre written as bold fsct characters).

11.2.2 Pisplacement Functions

For PS5 problems, the complete displacement field is specified by
the two components ui},y) and V(x,y) in the global directions. Therefore
we select two n~th order polynomiasls specified by
sem= (n+2)(n+1) /2
nodal values at a nodsl system (N.u)—_z (NV.)-:“-_—. (Nr) ; the equal sign being
valid for z complete polynomial. The displacement components are then

specified in trisngular coordinates by the interpolation formulszas

w(t)= G ui= PLu
V%)=, vy = ¢I v

(11-5)
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where u gnd v are the nodal displacement vectors for uf zi) and v(éﬁi}
respectively. For symmetry ¢u. = ¢v = ¢ , i1.e.,
r
-~ u(ﬁi) ¢)T * u
r(ﬂ,—t) = = - = ‘y r (11-6)
v(g:) y ¢ v
o

v is the totsl displacement vector of 2¢ components.

These functions must sstisfy reguirements listed in II1.1.2.

I1.2.3 Strazin-Displacement Relations

The linearized stresin-displacement relations are:

ety = 28— gl

€y(8;) = %V—S-Q)—": CP; v (11-7)
GO PRCAZEAY 2w 4 T
Bylf) = 2+ 3 = $,ut P,V

where the vectors and are composed by the derivatives of the shape
x y P

functions with respect to the globsl axes. From (I-22)

,-ai¢.)..3'= 1 ?E{ b, 8¢1‘a__: NG =P (11-8)
X 2A Y £ 2A BY

We write (II-7) in matrix form as
u ™
o, = Br (11-9)

~
where E(ﬁq) is the (35 Z2s) strein-nodsl displscement matrix.
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1I1.2.4 Constitutive Law

I1.2,4.1 Linesr Elsstic Material

The two-dimensiocnal constituve law may be written in matrix form as

follows (see Appendix Iy 6 and 7):

Oy | ( i G2 Gzt [ Ey
Oy [ = | C2r Sz a3 €y (11-10)
'txy C3i Cs2 Ca ny

or

T = E(“@a) €(¢.) (11-11)

~

where the matrix C‘ is symmetric, i.e.,, we consider only materials with =
strain enurgy function (Green-elastic or hyperelastic).

Isotropic materials are chsracterized by two constants (E and } )

C -t

VoOH . } (11-12)

where
3 <
for plane stress H =1 L A= (("“'V)/E Er"'"—' E/(f~—>’ )

for plene strain H=4t—V A= 0.5=V E.= E/(H—V)(f-'.Zv‘) (I1-13.

!

The case of znisotropic and in particulsr orthotropic materisls, is

treated in detail in Appendix I.



I7.2.4.2 Nonlinear Elastic Materisl

The constitutive law may be written either in ''secant’ form

P

g{“ﬁiﬂf— *(‘4'\6} ’g(zf,) (11-14)

T

or in incrementszl (" tangent”) form
~ N/ i s .
do(t.)= C(%,,€)de(F.) (17-15)

The fiist expression is used in the sclution by iteration, the second
one in the step~by-step procedure (cf. IV.1). In any case, the only difference
~7
from the linesr case lies in the fact that C: ig alsc a function cof tne
strain stazte and the pr-blem is formally triviasl. However, in the case of

large strains {(rubberlike materials) the conventicnal stiffness must be

corrected as explained in IV.1.2.

1I1.2.4.3 Genergl Nonlinear Materigl
v
In genersl, in the incrementsl law {(II-15}, C(ZJ becomes 2
differentizl or integral (functional) operstor, s function of the past
history and the present configuration. The case of elaste-plastic material

is treasted in IV.Z2.

I1.2.5 Generzlized Force-Displscement Relations

The externesl loads acting on the element zre dencted by

p‘!’(ﬂ;‘) = <FK(‘¢,1) FY({M) > : surface tractions per unit length

specified on the region Bp of the boundsry;

'?T(ﬁ%}" < ]C)((ﬁ‘?) 'fy(%;) > . body forces per unit volume.
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The total potentiszl energy is

V= U—-F = %wé-we (1I-16)
where U: strain energy calculated from the strain field asscciated with
the dispiscement field,;
P: potentisl energy of prescribed losads,
W ., W : externesl and internal work,

Using (II-8), (1I-9) and (II-10) we may write:

Vo= ijé“'&&v-. ﬁ*(?)sas._jf’?:dv
&
fD

¢ B D
:iﬂfﬁ"ééc\/r_,..J’P'rg"\y}dgrmf??'\}fd\/ r
2 0 . B
T TBP 2 7
= rTKr“RPrHR F = Q_RTI’-MSTS' (13i-17)
2 f 2

where K is the (2S % 28) stiffness matrix:
R = K r are the generslized nodal forces {(internsl reactions)
associated with the nodsl displacements r;
Rp’ Rf are generalized force vectors kinematically equivelent
to the prescribed surfece and body forces respectively
{i.e., they produce the same We). 5 = Rp+ﬂf are the
total applied generzslized forces.

Setting the first variation of V to zerc (minimum potential energy

principle)

8V =0
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we obtain the generalized force-displacement relaetions {macroscopic equilibrium

equations):

Kr = RP«.— R{m S (11-18)
or R [~ S

Then at the eguilibrium position, Wi = We'
Writing the element of volume zs dV = h dA, we have the following

expression for the element stiffness matrix of @ slice:
[ ~ ~
K = B CE:)BE)h(E)dA (11-19
A

In practice, the generation of K by direct integration of Eguation
(11-19) is unnecessarily cumbersome, especizlly for refined elements (N22 ).
A more elegent procedure, which reduces to integration of & cyelically
symmetric metrix of polynomial terms in triangular cocrdinates, is described

in I1.3.

II1.3 PRACTICAL CONSTRUCTION OF STIFFNESS MATRICES

1I1.3.1 Selection of Kodal System for Element Functions

I1.3.1.1 Strains
The strain components very as (n-1)-th order pelynomiasls. Ve
select a nodsl point system (Ne )} which specifies completely their vasriation
through the corresponding interpolétion formula. We need

me = (n+tyn/2
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values for each strain component. Let

T T T "
LA <{'-x E} Hay) (I1-20)

be the (3Fﬂe x4 ) vector of nodel strains, composed by three (Wk_X‘t}

subvectors
€, = {€& &, - - e&me> , etc
Then
(e.] (U T
I ‘/i ; | v | = (11-21)
‘fg"?ﬂ! LY UJ

where U gnd V are (VQ X~S} submstrices obtained by eveluating qu and

¢P}, of (I1-9) at (Ne) . Hence B , the { ﬁ“ x 723 ) nodal strain-
™~

displacement matrix, is B.5.) evaluated at (N.) .
We note en passant that U and V are used after solving for rnodal

displacements to obtain nodszl strszins snd stresses.

II.3.1.2 Constitutive Law
We suppose now that the variation of the matrix {:Qﬁa) inside the

element may be spproximated by a n_~th order polynomial lew. A new nodal

C

system (NC) heaving

Me = (ng+2)(ne+1) /2

points is selected.
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We denote by
T ¥
Co G (mc)
~
the siress-strain matrices obteined by evalusting CQﬁ%) at (NC) and by

T

¢= [ q J (11-22

{mC)
the nodal stress-strein matrix; their components msy slso be ordered az 2

nodszl vecter.

I1.3.1.3 Stresses
Stress components will vary as (”—‘“%ﬂc}“Th order polynomials;
these cannot pe complete {uniess nczo) since they sre constrained by (II-10),

however for simplicity we trest them as such and select s nodal cystem (NG-)

with
e AN N oo
My = (nfncigmh+m6;,4
points and define
T T g7 At . \
o =<0, 0, Ty 7 (11-23)
with
T N .
Ux*— <(T'\i G’AZ . JG""T”‘.G/ (—TC
&5 the <3rﬂo,x4) vector of nodel stresses at (N ),

I1.3.1.4 Thickness
For e plene strain slice element (h=1) or a plsne stress element of
constant thickness, h mey be taken outside the integrsl (II-19). Otherwise

-~

we proceed as for L and define = nh~zh order polynomial variastion
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specified by mh values at & nodal system (Nh): the nodsl thickness vector being

T
h'= {h hy oo h%> (11-24)

All these nodsl systems are summarized in Table 5,

I1.3.2 Stiffness Matrix

The interpolation formulss for strsins, constitutive law, stresses and

thickness with respect to the nodzl systems defined in I1.3.1 may be written

€y - Bire
Cigy) = e):iC
5’(%4-1) = @g\'ﬁi) o (i1-25}
higs) = ¢:(~Hh

Evaluating E/ and E at (NG‘) we have
& =he (A=Q] at (N.))
Cr=C(4) at (Vo) (11-26)

and the nodsl stress vector is relsted to the nodal strain vector through

g = Coec"‘ CUAE (1I-27)

The strain energy integrel msy be expressed zs follows:

U:%e-rjéeti'-;h@;;d,&. g eTf@etP:b ®, <A €, Ae
A A

)

or U= 1€0De =L e Ne (11-28}
o

N XY MR
A

D-C, A

ro| -~

where



Table 5.

Nodsl Systems for Element Functions

60

No. of
nodal Total No.
Polynomial Nodal velues of nodal
Varieble Law Order System per comp. values
Displacements r n (Nr) s & m 2s
~ !
Strains € n, = n-1 (he )] mg Bmé :
Materi ; N O
aterial Law € nC { C) m mC
Stresses @ n_=n+n_-1 (NG) Mo BmC
Thickness h N n
ickness nh { h) mh mh
Density N, Y
ity Q ng { ? ) m? WT
Surface Load O n (N 3} m 2m
P P P P P
~Jt
'F g 2
Body Force i D (hf) ™ me
8 : .
Temperature ng (Ng ? e i Tig
Thermal coeff. & n, (Ne ) m, 3m |

Notes:

Each
{a) sch m
{one variable)

symbol ¢

subscripts.

is related to nk by m

k

in two variables} except for surfszce load p, for which m

() Corresponding interpolstion formulss are designated by the vector
for scalar functions or single components, by the matrix
symbol @p for vector and metrix functions, with the corresponding

= (nk;2)(nk+1)/2 {complete polynomial

FE o + 1
P
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and N =QD is the stiffness matrix in terms of the nodal strasins considersed
as generalized coordinates.
To get the stiffness in terms of nodal displacements, we mske use of
the trensformation (II~21)
T T
K= BQDB = B NB (11-29
which is the best way to asssemble K in sutomatic computaztion. This reletiocn

may be interpreted as the following chein of mstrix operations:
(a) ©Nodal strains at (Ng ) from nodal displacements at (Nr):

€= Br (11-30a)
(b) Nodal stresses at {Ng) from nodal strains at (N ):

d=0De¢ (311-300>
{¢) Nodal forces st (Nr) from nodsl stresses at (NU):

R = BTQ o (11-302"

Thus the work is reduced to the computation of B, D znd{):

(i) B is integrated by the submetrices U and V of Equation (11-21)
which are computed by replzcing the trisngulsr coordinetes of the

nodel strain sysiem (NO) into <¢x and ¢y of Equation (II-9).

(ii) D is generated by the multiplication of CG and A , two

constant matrices obtsined by evezlusting the constitutive law C{ﬁri)

and the interpolation matrix @6 for streins at the nodsl stress

System (NG_). Since the vector €, has the form (II-20) the matrix
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CU' has the following structure

C, Cp Gy
(s = €,y Cos (11-31)
ST €y

where each (mgx mo.) block Cl) is & disgonasl matrix

() @ Ty
Cij = dia% <C'lj) C;j c e e e . CS%)> (13-32)

"

composed by the materisl coefficients Cij evaluasted at the mo"points

of the nodal system (NO»).

La ¥
In elastic problems, the stress-strazin law (: is usuzlly assumed

to be constant inside the element; in such a2 case we may select

(NO_ Y me (Ne 7, D =C , and each block of Frustion (II-31) be:zomes=
C;} = C;jI (11-33)

] veing the identity metrix of order M= My
{iii) The formastion of Q may be simplified if we observe that {I)e

and q)o. have the structure

(ﬁg,‘ ‘7 r{tpg e
=z ¢ - ' Q)o_,__: . q)g.
SORER S

where (pe and (")O, are the interpclation vecters for a single strsin

{I1-34)

o

————

|
)

and stress component. Furthermore, to make the integrsl dimensionless,

we introduce 2 relative dimensionless thickness

§(Z.) = h(L.) /h, |
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hr being a8 reference thickness. The nodsl vector of relative

thicknesses and the corresponding interpolztion vector zre

(=i'h =9, 1590

Therefore we may express {} as a diegonal supermstrix

=
!

(1 . .

- Cl ~ (II-37;

Lo Q)
Q= %ng}ég});f(pgd%\ (11-38}

is & purely numerical (na;xnﬂg } matrix which can be readily computed using

Q= Ah,

where

Table 3. Moreover, it generally displays a high cyclic symmetry snd cnly 2

few integrals need to be evaluasted.
o T . . - v s
Notice thsat (p% § enters in the integrsl (I1I-38) as & scalar multiplyving

all entries of tpe (ﬁ; . 1If the thickness is constant, we have simply
Q= — f¢’e¢ch (11-39)
A

For the lowest polynomial orders such matrices (designated by L.. )]

1}
have been tabulsted in I1.5.1.

s~

Finelly, if the stress-strazin law C is constant, we may combine

(11-33) with (I11-37) immediately to express N  in the form

(11-40)

i CHQ C12m€1 Cl3§ _g
N=QD=QC =4Ah c2Q

e
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11.4 PRACTICAL COMPUTATION OF CONSISTENT FORCE VECTORS AND MASS MATRICES

11.4.1 Surfsce Loads

nd

An in-plsne surfesce loading P(ég) acts on the portion Bp of the
element boundary. The ssme process described in I1.3 <an be used teo evaluate
the equivesleni generalized force vector R

Y]

We suppose that P(ga) is already integrated through the thickness

h(ﬁm) at B . Its variation lsw is sssumed to be 2 n -th order polynomial
P %

in one varisble, specified by

sample velues of p at a nodsl system (Np) so that

- T
v
~ P" (ﬁﬁ) : ¢F | p"‘ T
W 5 — = | == @ {11-41;
Pioe €] o oL le | o °h o
B ! n
Py | PILTY )
T T
where PT"-: <P" 'PY > is the nodal vector of sample loads
The displacement of the boundary Bp depends only on nodsl points
iccated on the common element interface B:; which contains Bp, Hence
T T, -
W(¢y) R T R
~ B/ 2} g (_ "
r=(4. )= = [ - l< LT ¥ele (11-42)
V(ﬁl?.’) L @5 J L F)
where
T
f‘g = <u; VB> include only those components of the nodal

displacement £ which determine the displacement I‘B(ﬁa) of BP ;

¢)B is ohteined from ¢ of Equation (II-6) by extracting inter-

polating functions corresponding to U znd ¥ and evaluating them
B 8

EY
at Bp where they become functions of 2 single {riangular coordinate.
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From the expressicn (II-17) of the external work We, we immediately

obtsin

T T T,
RBP" P j¢§¢5 =S (11-43)
Pe

or, if we define

+
Py = j . Py cs (11-44>
then

s T
Rapx = Px PS RBP;’ = Py f?’s’ (I11-45)

P
where RB is the force vector sssociated to rB. Only nodes on Bp receive
loading.

As an example, suppose that P acts on the side 3 of a plane trisngle

(Fig. 2.4), the eguation of the side is ZS';’O or C4¥+”<2 = 1 . If we

express all functions of (II-44) in terms of %1 , we obtain (since ds= LyodZ, ),

1
r . T
PB = zsj ¢p<ﬁi)¢5(‘<s)d4f
0 (11-46)
and similsrly for sides Z and 3 by cyclic permutation of subindices.
Actusl production programs are usually constructed to accept normsl
pressure and surface sheer, which are most commonly specified in practice,

and to transfiorm them automaticelly to nodal forces in the globsl directions.
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Py and p_ are given per

unit of fangth of the boundary
and elresdy integrated through
the thiclmess k.

Pig. 2.4 - In-plane Distributed losding on Flane Triangie.

AR, S, 0

const

Pig. 2.5 = Solution of Thermoelastiic Problems
by the Initial Stress Method.
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i1.4.2 Body Forces

This case is simpler. We define a nodal systenm (Nf), a rodal body

force vector
T T
f=<Hg 1))

~
of sample values of f'CQL} , and the interpolation formulsas

{12-47}
Equation (II-17) gives immediately
T T
R{xﬂ_ﬁ Ahf'{)&F
T - FTT a8
R = Ah f]F (11-48

fy

where
{ s T T
= d dA T~ ‘1
F y jA ,?,d)g% ¢ (11-49

may be resdily evaluated with help of Table 3. ¥For constant thickness the

integral

F.,;__‘__j (f){q)Tc{A (11-50}
A A

is of the same type of (i1-39) and has been tabulated in I.5.1 for thke lowest

pelynomial orders,

The most important body force (in static problems) is the gravity load.
If the element is on & vertical plane and %’ is the angle forced by the

global x-axis and the vertical direction, we have

fy = P cosp {7=fsmgro



s
hence the varistion law and interpolation formulas for f are those for

the density f

11.4.3 Consistent Masss Matrix

A similar technigue is followed to set up the consistent mass matrix

M used in dynemic problems. Let ;r be the in-plane velccity; then the

kinetic energy of the element is

- (5% — bt (e wTav : .
2T = J rrdm = rJ‘\.[f\f\y Y F = FTMF (1i-51)
v 4

hence
M = J Vg eE) \.yT(tgi;}dv (11-52)
%

where : is the density. Agsin since = g ‘ S
e(4.,) wv- ®

i
the velocity components " and v are uncouplied. Let
- {
M, .
M = (I1-53)
M

Then for a constent density %D and substituting for dV = {—’r“¢g§ oA A
we get
M =ch | @@ @ dA = Ah M (11-5)
. ?rj £ - r SR

A
with

— { T T - .
Mo~ L £cp¢:§‘§ ¢ dA (31-55;
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¥or constent thickness the integrasls

M = .%— Ltpq)TdA _ (11-56)

may be found in I.58.1 for the lowest orders.
I11.5 THERMOELASTIC PROBLEMS

I1.5.1 Solution by the Initial Stress Method

For uncoupled thermoelastic problems, in which the tempersture field
€t<£w> is known a priori, the most effective automatic solution procedure
is the method of restraint or initisl stress, described in what follows:
{a) Every element of the ideslized structure is considered to
be completely restrained, i.e., both the displacement field and the
elastic strain field vanish everywhere. From the constitutive
law (Aﬂ"?b) we have then a field of "initisl stresses’ or "restraint

stresses’

G*(£) = -CL)E(E) 00 = ~2(&) %) (1-5m

* 1
the associazted nodzl forces & being "initiel loasds"™ or "restraint

forces''. We are then at the point (A4) of Fig. 2.5.
K
(b} We release the stress fieid { by applying 2 nodal force
%
system — 8 ; the element moves to the egquilibrium position of

point (C} determined by

S-8=R=Kr (11-58)
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where S denotes as usual the applied (external) forces. 1If $=0 s K l’-‘"—"—S*,
i.e., the initizl thermsl losds are eguilibrated by the internzl forces
{pcint(B) of Fig. 2.5).

After assembling the stiffness relations (II-58) for the entire
structure, we sclve for nodasl displacements znd compute stiresses from the

consitutive law (Al-2h).

i1.5.2 Computation of Initial Thermel Loads

For simplicity, elastic and thermasl coefficients are assumed tc be
constant inside the element., No essential difficulty is encountered if the

materisl law is variasble.

let (N‘S Y be 2 nodal system for the element temperature field znd 6
the corresponding nodal vector. The variation of temperature is given

T
by 6/45,’}“—:- @68 and the initial stresses, from Eguation (I1-57:

o

g*= -1t tf.}eﬁ (T1-593

Since 1 is constant, we may take (NG) = (N O’*)’ a nodal system for

each prestress component; the varistion of O’x*,O'; and ‘C;; is then

specified by

(cr ! (@ Tigh!

A T LR N T

a =/(cy =1 . ¢l€ E\G?"_"@ea (11-60"
Iq—“[ J. ng ¥ |
0 PR
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The internsl work stored at (B) is (see (Al1-3))
W-;,“"“J' ""ETtQ #J?T&u*dv=
T BT f T _ .Tc*
Hence the associated nodsel forces sre

T
$* = BTI@&M@ dA 0%= BTQ*g* (11-62}
A

*
Proceeding a2s in (I1.3.2) we may express the integral Q 88

* - -
+* Q =

Q@ =Ah | - Q (11-63)

L] A-Fx‘

where Q j

— T T
0* = ‘,{E""J( qf)e q)%,g(pe dA (I17-€4)

A

Finally, using the block decomposition (I1-21) for B, we obtain for

the x and y components of 5*

S'= Ak (UTQ%F+ VIQ*TE)

0o (11-65)
$)= ah (VIQ'ay+ UG 7% )
If the material is thermoisotropic (Al-12) or {A1-15)
O = g*= =% Ex 0 ¢~ 0 (11-66)
therefore
. e T ¥
st- EARayTg*e
}) AN
(I1-67]
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where
I = [—) for plane stress
}i*‘*“2y for plane strain.
If the tempersture varistion law is the same of the elastic stresses
then we may take (N «) = (N g) = (Bg) , hence (pe = ¢0‘ and

0*=0 (I1-68)

as given by Equation (II-38); no new evalustion of integrals is then necessary.



I1I.

TRIANGULAR ELEMENT STIFFNESS MATRICES FOR LINEAR

PROBLEMS. POLYNOMIAL ORDERS n = 1, 2 and 3

73
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III.1 THE CONSTANT STRAIN TRIANGULAR ELEMENT (CST)

ITi.1.1 Displacement and Strain Fields

This is the earliest example of a compstible two~dimensionsl dis-
placement model, introduced by Turner, Clough, Martin and Topp [2].

The displacements u, v sre linear functions of the cocordinstes. We
select the 3 corners ss nodsl points, i.e., (Nr) = (Nl) of Fig. 1.5; using

the linear interpoletion formule (I1-26) we write

. T
wid )= (g, L 5o 0= €U
. . T (111-1)
e ¢ m_ s
VBl =L Gty = Ty
where
T Coby g Uz VTW < Yo Yz Y3 >

This element has six degrees of freedom. The strains are given by

Equation (II-7)}:

T T { ,

€x - Lﬂx w == 24 <1L~\I bz DS> w
T T _ i -

€y = (qy Vo= =z (a8 ay Vv

<Q: Ch aé>u+’2f-./;;u_;53>v

T T T
Iay= Gyurliv = iA 24

Since the strains are constant, we can select as (N_. ) system eny

point of the triangle and Equation (II-2]1) reduces to

-
E)&\z bg b; b\? y ‘ ‘ H u'f

€ — /e So - A\ = Br (111-3)
= 5 (_ x . . 4, d, d3 'i% v {
5*Yf i 5, &L w3 b, by By 0T
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111.1.2 Stiffness Matrix

The stress-strain law (I1-10) is assumed constant inside the element:

0=0g=0C€¢= Cc¢
(I1I-4>

The nodal point system (N,)= (N_. ), i.e., any point of the triangle.
3 £

Therefore
(I11-5)
The shape function matrices reduce to éc_ = @E = [ gng O
is given by
— [1¢ . h da
A (111-6)

If the thickness h is constant, ¢% = 7, C1f= Ahl 2nd the stiffness

metrix is

K = EQDB = AhBCB =

(Exe)

] 17 1T f T
b, 4 81 | Cf'i C,z {:{1 ! b: bz b3 . » » i
b, < 3, | Caz C23 .- . a3, &
: 1 e SR IS § & 3 5!

b by dx L.Symm. Cag 8, 95 gz b, b2 b"ﬂ
N 44 = b;

« & b,

L+ 3 & i
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Since ZA = g, bJ - ajbi is 2 homogeneous quadratic function of the
dimensions a and b, the stiffness matrix is independent of the size of the
element. This is valid for zny PS stiffness matrix expressed solely in terms
of in-plane nodal displacements (not gradients).

For sny variation of thickness h(:f;]) ., the stiffness matrix has

the same form (I11-7) if we replace h by its area average
1 |
hm = A jh(i1)cA (111-8)
A

1IT1.1.3 Consistent Nodal Forces and Mass Matrix

It 1s easy to verify that the nodal losds R = K » are the static
resultant of the internsl stresses. Similsrly, the kinemstically equivslent
nodal forces are simply the static resultant of the body or surface forces
acting on the element. This property is a conseguence of the linearity of the
assumed displacement field and holds for any simplex element (Fig. 2.1).

For instance, a constent density g’ and thickness Hh gives three
nodsl loads equal to gz‘\h/3

The consistent mass matrix for constant ? and h folliows from Equations

(IT-53), (I1-54) and (I11-56):

)
21T

Mo-gb [48Tan = canl, = Lean oz o
A ERRRF:



i.e.,
-
bz o1 - .
1 ; Tt 2 o0
M = — cAh -
e o+ . 1 2 1
s e .1 1 2

I11.2 THE LINEARLY VARYING STRAIN TRIANGULAR ELEMENT (LST)

TII.2.1 Motivation

The constant streain triangle of III.1 provides in general a reasonable
displacement pattern. but the interpretation of element stresses is often
difficult, especially in regions of high gradients. Different averaging
procedures to obtezin nodzl point stresses have been proposed [17, 247, but
the results sre usually poor near boundaries, where extrspolation {not averaging)
is reguired,.

The linesr strain triangle, proposed by De Veubeke [15], haes been
extensively tried and found to represent a significant improvement over CST
meshes having similar or larger number of degfees of freedom: in particular,

interfece strain ' jumps’ ere greestly reduced; nodal stresses obtazined by

simple averaging sre extremely consistent and may be used with confidence.

111.2.2 Displacement Functions

In-plane displacements are assumed to be complete gusdratic functions
of the coordinates x,y. We select the nodal point system (Nz) of Fig. 1.6

for u(x,y) =nd v(x,y),; i.e., three corners 1,2,3 plus the midpoints of the
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sides 4,5,6. This element has then 12 kinemrntic degrees of freedom (Fig. 3.1).

Using the guadratic interpcleticon formula (I-27), we can write the

components u( ‘('/51)’ v(fﬁ!i} in trianguler coordinsztes as follows:

T
u((é"l\i = q)@(ﬁm) u

T, (I11-10)
V(€)= Pt
where
W= (U, u, us o, s T

e fe S IR NN Y ; i — ) [ . F e
(p(g) = £ ?’H\"‘{w[m” % {‘,2‘”. - T:; 24“ t L Y‘ L/J 42{.’5%;)

I11.2.3 Strein-Displacement Relations

By differentiating the shape functions of (III-10) with respect to the

global axes, we get the strain components:

T
éx(i»{\: = X u

p T
DAY ¢y v (III~112

€y )
Exy@;): ¢}; U+ (P:V

where
( (4¢ -1 6, (4¢ —1) g,
(‘f(’gz 1) bs (#4z-1) 2z
¢ _2P 1) (gt ¢ _oPy 1 (4fa-1)as
X X ZA 4(%2‘5[*5‘@} J ’ay 2A ] 4 (.2, +¢,5,)
4(¢ 6,12 by 4 (€33,+%; 33)
406 03t ¥3 by ) \4@153"‘“1‘51
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Since the strein components are linear functions of the coordinates,

we select (Nl) 8s nodal strain system (Fig. 3.2). The nodal strzin vector

will be

T T T T

€=<¢€, €y 6%;/ ? (9x1) (I11-12)
with

e:‘ Cy, €xg Exy Y

E;" <€y; 672 Eyi > {3x1 each)

63;“‘“ < K*y: Exn_.;; Z{m}{t >

Then the component variation is specified by linear interpolstion

X etc. (I11-13;

After evaluation of (III-11) st (Ne) we obtain

‘r. (X f U . {
! | O
€ mﬁi y = ' v i v = Br (I11-14)
where U snd V result from evaluztion of q)g and ¢)f gt the 3 corners:
1 -
U Li 2t 75 "“"bj *-/i-b; 4b5 s
(II1-13)
jr-'», 1 - Pl _\!
P23, —d, iR ‘1‘::32 » I
V =—.-wl..._, L : o L P4 P
ey e =g Fat ¢
2’,_“‘ Z A 1 :
L-—-a.l *“a'i = . 432 -}"é; !



R Thys a3
612 sz
32 e
€x1 %x1 y2 Txye
oy Ty

Fig., 3.1 - LST ; Nodel System (Nr) Fig. 3.2 - 18T : Nodal Systems (KN.)

for displacements. and (NUJ for streins and stresses.

Uss ¥,
€x2’€y2
E w
u vy Xyer e
€x1'¢y1 €x1 gxl ote
E -
€ ' yl. Yyl °?
xy1"1 €xyl Txyl

Fig. 3.3 - Q37 : Nodal System (N,) Fig. 3.4 - Q3T : Kodal Systems (K.)

for displscements. and (NU) for streine and stresses.
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The cyclic symmetry mekes the automatic generation of ) ana \Y very simple.

¥Ii.2.4 Stress-Strasin Law

As in 11I1.2.2, the materisl is assumed to be homogeneous inside the

element, i.e., the matrix C of Equation (II-10)

T (o] [ e C‘;’jeﬂ ~
U\m;mi% - o Co3 |{ €y (: C el (111-1€
T;Lj Symm. C.}B—} (hé)gjf
does not depend on {M . The stress components will slsc vary linearly and

we select the same nodel system (N g) = (N€ Y of the streins (Fig. 3.2)

The nodsasl stress vector has the same structure of {(I1I1-12)

T

o = (G, O';- 'f,“; > (ZI1-17)

with +
GK = <Gxi o‘;“z b—xj> 5 Q'!LC.

The variaticn of the siress components is also given by linear inter-

polation formulas

O (4.} = "ﬁTO'x , ete (111-18)

Since (N_G.):—:“(Ne) we have A= 1 and the matrix D is given by

(I1-33); it is 2 (8 x 9) metrix integrated by nine (3 x 3) blocks

- i

C€1I CQI C|3l
D - 1o
6221 C25I | (I11-19)

Symn'u C351_,§

with
~
4 '
1 = . 4
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I¥1.2.5 Strsin Energy Integrastion

The interpcolation metrices for stresses and strains, according to

Eguations (I11-18) and (IiI-13) are
(£ ' .
®€,*®U: AN (ox3 (I11-20)
. e (ﬂ

As in (I1-35) we define a reference thickness hr and the relative

dimensionless thickness

&)= h()/he (111-21)

£=n'h

the corresponding nodal vector asnd interpolation formula being

and qb§ = th respectively. Then we use (II-37) and write (l as

with

ﬁ = _;- L‘( ¢§T £ ‘(TdA (I11-23)

{a) For constant thickness h = hr we have qb§ = 1 and

(I1I-24)

G- e
A

—_ PNy
.-.Af\)-«-\
Ny~ =




2 11
b1z
or o1 2
Ak 2 1 1
Qm*rz 12 1
U
2
1
]

(b) For plsne stress element with linearly varying thickness, we

take (N) = (Ng) = (5, ¢§= v
= i Te o7
0 - & [«eedlan
A
Using Table 3 we get immediately:

r e -
£8 +28,+3¢, 3§, +38,+ &,

Q 5 ; 3

i
L Sy rmm.

1o
2 1
12 |

83

(I11~-25)

(¢} For plene stress element with parabolically varying thickness,

-~

J L@, 8¢ dA
A /

we take (N = (Ng) = (¥, qlg = @,
A
A

9 =

and again using Table 3 we get

5

_ !“?H. 92 95
Q =$[ Gz a3 |

symm. ¢33

(I111-26)
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with

9, = 68, =28, -28, 4128, + 48, + 125,

Gy, = —25, 265, -283+ 128, +12€5 + 4§

q33 = b2§1*2§2+6§3+4§4 +12§S“’<2€6

oy = —Ey 4 BE.+ 4854 45,

G, = — 8§, + 584 + 88 +45¢

Gy, = - + 4%, + 485 + 8&

It should be noticed that only 8 different integralis zre needed to

form qll and q12 end the rest follows from cyclic permutations of the

indeces 1-2-3 and 4-5-6.

111,2.86 EBtiffness Matrix

The (12x12) stiffness matrix is given, according to (II-29) by

K = BTQD B = BTN B (111-27)
with
lwfl ' ) C C,; Ctsw\
N - Q D = A hf’ i ) Q Cl?, Cz-_;,

H

Ay N2 Nja
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where - —= -
N,-j = Q¢;=0 1= ¢ Q

Using (I11-14) we write K  in the partitioned form:

r — = =7 )
K= Ah UT * VT . Q C{-J_Q_ CIBQ. u M
r - —
. vy’ szQ N1 ' Vo
— !
&-jmm CsaQ l \Y) U JE (I1I-28)
— Kuu_ KU.V
Ko Ky

For the case of constant thickness h, this expression is given in
detailed form on next page (upcn using Equations (II1I-15) and {(III-24) ).

If we define the (86x6) matrices

-
1

My = UTQU My, = UT.QVﬂ Mvu, Mvv'r—" v Q.V

then the (6x6) blocks of (III-28) can be expressed as

-
Kqu = Ahg L S Muu + Cza(Muy”f‘Myu)“'CBi Mw
7 T
Kuv = A hr {CQ Muv + ClsMuu'f‘Czs Mw‘*‘ Caa Mqu = Kvu, (I11-301
Kw = A hr {CZZMVV “+ Cza(Muv-%- Mvu)'f-cﬁmuu}
For isotropic material (II1.2.,4.1}):
Cn:“"‘-—' Cz’z“—:"—-"» H Er ng = V EF C33 = AE-,«

Cigm Cpy = U
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Closed form expressions for each kij may be easily obtazined; however
the best way of assembiingl( ir the computer progrsm is in the form (JII-28)
taking account of the zero blocks. Tosimplify the azssembly of the complete
stiffness matrix and the solution coding, the vector of nodsil displacements

is rearrenged so as to have the twc compenents (u.v) at each node together:
E P ; g

T T T T T 7 T
r=(rn LSS VA PR P

= (W v Wz V2 Uz Vi g Va s Vs Yg Ve )

Thig is achieved simply by zddressing the prcducts whick originally
corresponded to rows and columns number 1,2.3,...12 to rows and cclumns
1,3,5,7,9,11,2,4,6,8,10,12 respectively. Then the stiffness matrix can be
partitioned into thirty-six (2x2) blocks which are cslled "point stiffness

submatrices.” More details sre given in the descrirtion of the computer

program.

IIT.2.7 ZKinematically Eguivalent Force Vectors

I11.2.7.1 Surfzce Loading
Tc fix the ideas, we assume that a genersl distributed in-plane

Nf
load F!QQ&) . already integrated through the bhoundary thickness, actes

on the side 3 of the elemsnt.

We derive the formules for the component px(QgE} which is given by

the interpolstion expression (II-41)

- T
p.(€s) = ‘sz Px (I11-31)
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The vector up of Equation (II-42) is </u1 u, u2‘> which
specifies the displacement of the side 3 by the interpolation formulas

(LA’\ T
LL(‘CH) == <7f:1(2£;c"1) 4&!(‘*"44) (""4;)({"2%{1)7 i'[""’-f = ¢’5 g .
b, (II1-323
chtained extrescting ¢1 ¢4 and ¢2 from ¢)<2) and setting %;3——: Q
and ‘42 ==1'%$r

Applying Equastions (I1-46) and (I1-45) we get for the generslized
nodal forces

1
T, { g P
ka = Px €5 jo ¢)P({£;4)f)|n(2gf—“1> A
1 7
R*é = pz fj f¢P(¢‘){‘P’(4#zi) d%‘}.’ (I11-33)
R =

g
c= PG Jf’e;t»,,@.)(r—ﬁe);ﬁ—zénc%
(o

We obtain similasr expression

for the Ry forces by replacing = by ¥
in Eguations (III-33). Expressions for the other two sides follow by

cyelically permuting the indices 1~2-3 and 4-5-6.

Examples:

(a)

Linear varistion of P defined by Py and Po!

X

Pl = (g, 1-4)> {;J = ¢; Px

Replacing intco (II1-33) we get

Tm—
Pajs) )
x
o
P

Y

—t
O

)"‘lf = = ) {’OK'} (I11-34)
| Ry 0 11 P
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If px = p = constant, we find
'
R"l = RKZ‘: PES/O RX;;: 4RX1
i.e., the midpoint force is 4 times the corner forces the coefficients are

the same 25 in Simpson's rule of integration.

(k) Parsbolic variation of px, defined by

P = < Px Prg Py

. Then (pPz @z of (111-32) and we get

{Rm’ 0, ‘“4 2 =17 [ P,
iﬁﬂ. !/ Y~ 2 16 2 ; { Pra (111-32)
. " ' .
R ) l T 2 4, L PRz
111.2.7.2 Gravity Forces
We assume that they act along the -v axis and that the density “ is

consteant over the element; the body force components are

fx=0 {y = _?
then (11-48), with ¢.y+’ = 1 fx=o and fy:—-ﬁ (scalar), gives
T
-R{x = 0
T (111-36}
Rey = Ah, F
with
T
A -
(8) TFor o psrsbolic variation of thickness, we select (Nh) = (N§, ) =
{(N_}, i.e.,

2

¢"'=¢’*) gT’T <§’f € % S €, §.:>
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therefore + . -
F=7% j ¢, 9,dA = 'L,
A
!J”e -1 -1 0 -4 0|
-1 € -1 ¢ o -4
T T R _
Ry S ¢ Ahrsf 1 -1 6 -4 0 0 (111-37)
180 0 0 -4 32 16 16
-4 0 0 16 32 1%
c -4 0 1% 16 52“
(b) For linearly varying thickness (Nh) = (Nf ) = (Nl), i.e.,
T
¢‘§'=(£ §=<§; 52 §_3>
T ! T
F=5% | $d,dA= 11,
AT ‘
‘ 2 -1 -1 8 4 8
T o
R’m;% L 2 -1 4 8 81 (111-38)
-1 -1 2 88 4
(c) Finslly, if h = constant

T AR
Fy = -¢ARL, = §A5~5<ooofd1> (111305

i.e., three equal lozds on the midpoints.
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I11,2.8 Consistent Mass Matrix

For constent density ¢ and thickness, we get from (I1-58)

|
4

[ T
M, = ¢b JA(%;(I’@C’A = 74N Le

. —
6 —1 = 0 —4 C
-1 6 -1 G 0 -4
S el oot -4 00 (111-40)
120 b0 0 -4 22 16 1€
-4 0 Q e 32 1
0 -4 0 16 16 32 |
and
F 4
M = ! 1
e Mué

We see that most of the mass is taken by the midpoints and that the

coupling between them is similsr tco the corner msess coupling of the CST (III-9).

I11.2.9 Restrsint Thermal Forces

The temperature field 6(&ﬂ4) is assumed to be linesr and defined by
T
the 3 corner temperatures B = <791 @2 337 so that
T
e(4.)= ¢ 8
The material is assumed to be elastically snd thermally isotropic,
and homogenecus inside the element. The initial stress field (II1-57) is

then linesr and given by (I1I1-66)

¥ Ex *
G:z: Gy = '75”‘ 6 : ijz 6 (1131-41)



where

1 stress

H = for plane
1-2v |

strein

The restraint nodesl forces (initial loads) are given by (II-87): since

6T==£l and

the variation of temperasture is the same as thzt of the elastic stresses,

5 = EAxh- VT("i 6 (111~42)
y X

Replacing U and V by their expressions (III-15) ar‘ifl by {(I11-24) we

get for a constant thickness h:

b, €,
b, &,
by D2
(I11-43)
(2,756, + (b,+20) 8, + (6, +b,) 85
( byt bY@, + @by +5,)8, + (Bsr2by) 93

-

(bi+2by), + ( By bﬂez"’ (\Qb%*b:?) 83 )

x
and similarly for Sy replacing bi's for a, s
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II1.3 THE QUADRATICALLY VARYING STRAIN TRIANGULAR TLEMENT {(Q8T)

111.3.1 Displacement Functions

The in-plane displacement components are selected to be complete cubic
polynomial functions of x,y,; we have then 20 degrees of freedom, 10 per
compcenent. We have seen in I1,4.2 that it is impossible %o specify uniguely a
complete cubic polynomial from its boundary values becsuse of the presence
of the mode Zl gz (£‘3 which vsnishes on the sides. Hence there must be
two sdditionel modes, one per component.

We select the nodal system (N3) of Fig, 1.9 for the displacements; it
consists of the three corners 1,2,3 plus the centroid o (Fig. 3.3). The
corresponding nodsl displacements sre naturally clascified into two
categories:

(a) 18 fundamental degrees of freedom; displacements and their
globzal]l derivatives at the corners; these values specify boundary displacements
uniquely:

(b) 2 sdditional degrees of freedom: centroid displacements, to be
eliminated lazter by condensation.

The nodal displacement vector F is arranged as follows:

- —T =T
F=u v (I11-45)

w = < U’i L:"K{ u’}g L{E U'X: uyz U’j "[ij LL73 U.O>
(I1I-45a)
ViE (v Yy Y2 vy Vyz Yz Yy Vyy Vo )
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The bar on top is used to differentiate ¥ from the final displacement
vector ¥ which has only 18 componenis and combinstions of the cross derivatives.
Using the cubic interpolation formula q)G\ given by {(i-31) we express

=~/

u and v in trisngulsr coordinates as

uig,) = ¢(:—,r) tw
. T
V(ﬁa} - ¢’(3) v

(I1I-46)

This displacement field satisfies all requirements listed in II1.1.2.
Morecver, since the polynomial is complete, it is the best single cubic dis-
plsacement field for a slice trisngular element,

Recently, Tocher and Hartz [40° have developed a third order plane stress
elewent by using the cubic expansion of the 9-~degree-cf-freedom compatible
trizngulsr plate element [23! for both in-plane components. This element has
the same 18 degrees of freedom of the QST and complete ceontinuity of dis-
plscement gradients along the sides (the varistion of atﬂ/Bn and B\Qﬁaﬂ is
constrained to be lirear). This additional compatibility is not necessary
for plane stress elements; besides of complicating the derivation, it stiffens

the element by restrzining its polynomizl expansion.

IT1.3.2 Strein-Displacement Relations

To obtain the interpolstion vectors q)x and ‘pf of Egquation

(1I1-7) we differentiate qq?) with respect to the globsl axes.
He = 24 2—(—%—?-@ = G906+ §%: b+ 4,4 b,

Hb = ZA_%): ﬁﬁﬁzagf“ﬁg‘%a,—k(ﬁs‘&”ag

Let i
‘L



Then

€4, (i—8.)b, - THs
26, b,(3:8,-3,63) + 262 A+ (33-3) He
24,6, (tp83-b3%,) + (b3~by) He
66, (i—%:Yb, -7 Hb
2€2b,(31%5- 836 )+ 26 A+(332) Hs
26, by (036, - 5,630+ (B-B5) Hy
6¢:(1-23) b3~ THp
2¥363(a;4,-3,%45) +2€5 A+ (3,-3)Hp
2% 4 by {blﬁz*bzﬁf) + (b8 He

27 Hyg

€L (1-40N8, - THy

24,9,(8:%,~a,%3) v (3:-33) Hg

2434 (’52*-/23-65?512)1"3@:2'4 +(bs—b2) Ha
€% (i~%:)8, - TH,

2823, (3143-8:%) + (33-3¢) Ha

26,8, (58,5 4y) + 255 A+ (Bbs) Ha
e¥r(1-4;) 85 -7Ha

29333 (5,4,~ 3,4, )+ (8,-3;) Ha

26203 (bY%, =54 )1 285 A +(ba-b)H3

27 Ha

95

(I11-47)
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Since the variation of the strain components is gquadratic, we naturaslly

select the nodel strain system (N¢) = (N; ), i.e., corners 1,2,3 and mid-
peints 4,5,86 (Fig. 3.4). The nodsl strsin vector is arranged as usual

T - T .1 .

€ -~ (€. €, b (111-48)
where -

EK = (\/*EK’ €><2 "n‘,(:r (O rs SR o

Evaluating Q)x and dDY at (Ng) we obtain the (6x10) submatrices

) and V of (11-21) relating

i‘ QP\ . §L| : N a : 8 -
€ = e, = V| =B} (171-49)
N LV U
U and ¥V esre given on next page. We see that the corner strains are directly

given by the selected generalized nodzl displacements and will be identical
for ail adjscent elements. Becsuse of their guadretic variation, they will

not, in general, match zlong the sides (except a2t the corners),

IIT1.3.3 Strain Ernergy Integration

The constitutive law € 1is assumed constent ineside the element, The

stress components varistion is also guadrstic and we select (N- ) = (N ) = (N_).

o 2

the stress vector (F has the same structure of the nodal strazin vector

(1II11-48),

The interpolation vectors for strzins snd stresses are q%iz q1_“ d}\;
’ by

assuming also a constant thickness we get from Egustion (I1I-38)
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& -1 =1
- 6 -1
n _ | _ . 1 6
Q A ¢’(2; ¢'{2) dA = Lza - —,?'“8“:'
A -
Sy' rmm.

.

and N = Q@D =Q C is given by Equation (II-4G):

11I1.3.4 8Stiffness Matrix

The {20x20) stiffness matrix P<

Eguation (II-29)

K = Ah | ut. VT ¢.Q C'ﬁa C,3a
L ' VTLﬁ C&Q’Cna
L symm. C.Q

(20 x18) (18 x 18)

associated with F

0 -4 @

a 0 —4

-4 Q0 0

32 16 16

32 16
32

u .

v
vV U
(18 x20)
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(III-51}

(I11-52)

follows from

(I11-53)
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These four (10x10) blocks may be expanded as in Egustions (III-30Q).

Now we modify the structure of the nodsl displacement vector as follows:

(a) Cross derivatives of u and v are combined to form
(Vxﬁ'ux)/a shear strain component € ::.1.5

a2 x

(an-ux)/Z *  average in-plsne rotation a)xy:: w

These two quantities have now a direct physical mesning in the smzll

displacement theory.

(b)

Move the centroid displacements uO and Vo to the bottom of the

vector to facilitate their elimination.

The complezte new arrangement is denoted by r*.

. T T ST T T T
Fi=<dr ir, )= (5 ry > (111-54)
e T
where § r, = u, Vi &y, €}1 Ele “q >
| T
Vo= (e Yoo

I
[ ( similarly for ¥; and Fy )

£

x *
The (20x20} stiffness mstrix K associated to r wmay be partitioned

as folliows

101 18 rows

(111-55)
Koo 2 rows
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gnd the elimination of ro by the condensation procedure (II.1.3) provides

the finasl (18x1B) condensed matrix K

K = K. -K_K_ K‘r (111-56)

11 10 00 10

essociated with the 18 fundamental degrees of freedom specified in r.

Since the transformastion for the cross derivatives is

3 )
= ~ €
vyl _ v J *y | (111-57)
NPy
%

N —
in automatic computation the matrix K can be formed directly from K, by

addressing and combining its rows and columns in the following manner:

Rows and Columns of
K K K K K K ]
1 1 7 4 13 7
2 11 8 14 14 17
3 2 9 5 15 8
4 13 ' 10 16 16 19
5 12+3 11 15+6 17 18+9
€ 12-3 12 15-6 I 18 18-9
19 10
20 20
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The fingl condensation (111-56) may be performed by symmetric Gauss
eliminstion, starting at the bottom of Ff and reducing columns 20 and 19; the
finsl K is then the (18x18) top principel minor. The same reduction can be
periormed on the load vector. The sutomatic procedure to condense and recover
internal displacements is described in detzil in Appendix II1 for the LST

guadrilatersl.

I11.3.5 EKinematicelly Equivalent Force Vectors

ITI1.3.5.1 Surfsce Losding

We agein assume that @ general distributed load p( %jB) acts on the side
3 of the trisngle (Fig. 3.6) end focus our attention on the component px( %ffﬁ

given by the interpocletion formula

;
Pxl8) — @.(4,) Px (111-58)

To simplify the derivetion, we write the displazcement u(fé 1) of side

3 in terms of

~ T |

Hg == (o, by Uyy Uyx Uxg yz )
extrezcted from the subvector Ei of Equation {(II1I-45s). On using the
expression (I1-31) for '43(3) and evalusting the corresponding shspe functions

on side 3 ( %3#0* ‘422 7—‘47 ), we get
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ﬁf (3"2%11)

v {1?; <1"\{—u) 83

“(G) = g (-6 (-4, ks
('.“%g)z("i-zﬂ 1)

-(E-—‘{H)EL&:; 3
(€Y<, bs

Using Equations (II1-46) snd (II-45), we get for the generalized forces

RuB associated to i'l: :

B
R T 4 ( “r3-2 Y od
FLLﬁ = PK 25 Jn ¢P\K’1) gt\ g‘ dbﬁ.
— - (u‘f . 1
RID:LM& Pi 8383-J‘ ¢F (L’!J Z;f({‘-%q) O’{H =_% RF“}“
— 1
RPU‘)‘E: “PI L bSJ' @P(L‘H\j Lﬁf(“—ﬁr) Jde, (111-60)
g

ﬁfmz = PI £5 J/O ‘bjop(ﬁi) (f—ﬁl)z(?+2\€7f\j ¢t

o) o N2 : 5y
R??ux2m_Px £583jﬁ (pP\Zf'H} f\#*ﬁfl) (‘f1 d“/fu =—g~:~HPuy2

Obvious.y Rux and %uy arg linearly dependent since the cubic side
displacement deperds only on four psrameters (corner displacements and side
derivatives).

We proceed similarly for the components Py(‘éJ . Formulas for the

other two sides follow from cyclic permutation.
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The fingl nodal forces sssociated to r, are for corner 1

’ \ { — 3
Rf:u.; Rewi
FQPV\ F%PV!
¢ Rrex, \ ﬁpux ) (111-61)
Rpey Revs
Rpecy Rt Rpuy
Rpwq J ‘RP\'K"’ RP“)‘ )

where for the forces sssociated with the cross derivatives we have used the

traznspose of {(III-537). No condensation is necessary since the centroid loads

are Zero.

Exzmple: linear variastion of px, defined by

PX{{\{)“—"—" :ﬁ, Pxf“,““ (i _Z;> sz

Beplacing inte (III1-58) we get immediately

. “R*Pm N ST
-F_E'Pw 3aa Z22a
Reey po= L | 73es 26 ( P (111-62)
ﬁ?wz 60 % 21 L P |
Reurs -28; - 3a; |
Rrera | b 3 _

LS
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£ _ -
For an uniform load pxl pxz p

|

pu, = ﬂé—?vlm Pl3/2

Py

pux; =~ Rpuxz = Pa323/12

e _— (111-63>
RPu_\jgm-— Ripu,\jz-:: Pb513 /72

A concentrated in-plane corner moment M,y may be input directly sas the

generzlized force R,y sssocizted with W,

I11.3.5.2 Gravity Forces

We assume that they zct azlong the -Y direction and thet both the density

and the thickness h are constant. ‘Therefore

lcx*::O, ‘;}«zmg q)g"—“-"i

and Equation (II-48 gives for the generalized forces R‘ﬁ, a2ssociated with ¥
T
R 0
.‘?.K (111-64)
=% ), Padt = ke

= 6_16 1 2(amay) 2(bby) 11 2(3733) 2(bymb) 11 2(5;79) 2(b-5,) 27 )

i
/
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To obtain the final nodal force vector Rf associated with r, we must

(1) form R:E.Kijﬁ_— ﬁfy-‘"’" -ny
e = Ry R

* -
8t each corner, sand rearrange F{ according to the structure of F ;

"
(2) eliminate the centroid loads R:oxm 0. R{oyz —27§Ah /60
‘.—_—0,45@;\3‘1 by the condensation process (II-4b)
* w—T1a T *
R‘Fﬂ R{ — Koo K“J R{O

using submatrices (III-56).

I11.3.6 Possibilities of the QST

The cubic element introduced here has not been applied yet to the
sanalysis of two-dimensional problems, but in the suthor’'s opinion it will
represent probably the last stage in the development of refined PS elsments
since higher order expansions become unnecessarily complex., 1Its fundamental

advantages seems to be:

fa) It can take relatively high strein gradients with a coarse
subdivision snd solve exactly or nearly exactly many practical problems like
bending under linearly varying moments;

(b) It may be combined naturally with bending elements like
beams, thin plates, etc., which use cubic expansions, for instance to

construct a flat element for shell analysis. The inclusion of the rotational
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degfee of freedom is especizlly important for the analysis of shell surfaces
intersecting at s finite angle;

(¢} The displacement gradients are continuous at the corners and
obtsined directly from the sclution of the equilibrium egustions; the strain
discontinuity along the edges is not likely to be very large,

{d} In-plane concentrated moments can be incorporated directly as
generalized forces,

(e} The choice of the corners solely as nodal poinis simplifies
the coding and reduces the total number of eguations and the connectivity
(band width} for the assembled structure. The feollowing figures zre
significant:

Consider s single connected plane network of E elements. For E — 0
the totzl number of corner points tends ssymptoticslly to 0.5 E and the number
of midpoints te 1.5 E. Therefore the total number of equationé is gpproxi-

mately (in 2 large mesh)

1.0 E for CST mesh
4,0 E for LST mesh

3.0 E for Q5T mesh

sc that the number of unknowns is actusglly less for the Q8T thsn for the LST
with the same subdivision, despite the fact th;t in the first case we have
8 cubic displscement expansion instead of @& guadratic cone. However, this
advantage 1is reduced if four triesngles arye combined to form arbitrary

gquadrilsterals by condensation of the internal nodal points {(see Appendix II).
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For s large mesh of E quadrilsterals, we have approximetely E corner points

and 2 E midpoints and the figures sre now

2.0 E for C8T
6.0 E for LST

6.0 E for QST

The connectivity of the LST mesh has been reduced, but the QST has still the
advantage of z more refined expsnsion for the same number of equations to solve.
Certain disadvantages of the cubic element are

(a) The derivation for a straight side triangle does not permit
such & vlose approximstion to the actusl geometry of the body (in case of
curved boundaries) as that cobtsined with the CST for a similar number of
degrees of freedom. In this respect, the QST is not worse than the LST;

(b) Specificstion of boundary conditions sssociazted with
displscement gradients requires a more careful eXxaminastion of the problem;

{c) Strsin-type generszlized displacements ( €, , G:j and exj )]
transform as second-order tensors; therefore coordinste trensformations in

plane {for skew B.C's,; or in space {for shell elements) are complicated.
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IV. ANALYSIS OF NONLINEAR PROBLEMS
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Iv.1 GENERAL FORMULATION

Iv.1l.1 Clessificetion of Nonlinear Effects

Nonlinear relations between kinemstic and mechanical varisbles srise
naturally from two sources:

1. Nonlinesr constitutive relations; this will be referred to as
material or physical nonlinearity. The constitutive or materizl law (tensorisl
egquation connecting kinematic and static field varisbles) may have the following
structure:

(2) Differential lew: instant values of the constitutive
veriables and possibly their objective time rates of any order
ere related through s differential operator. If st most first
order rates are involved, we have 2 direct incremental relation.
Exsmples sre provided by the theories of nonlinear elasticity,
hypoelasticity, elastoplesticity, viscoplasticity snd viscoelastic
models,

{(b) Integrasl or functional law: +the constitutive eguation
inciudes the effect of the past history as well as the present
configuration {actuslly {a) is contained ss & limiting case}.

Genersl viscoelastic materisls belong to this c¢less: in particulsr

linear snd nonlinesr Beltzmann-Volterrs solids,. simple meterials, etc.

The mathematical structure of the materizl law is obviously reflected
in the discretized representation of the structure. In case (2}, incremental

load-displacement equations can be estsblisned in terms of the field variables
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and their retes at the present configuration, physical path-dependence in
plasticity is accounted for by keeping_t;ack_of a set of perameters zffecting
the incremental eguztion. On the other hend, for msterizls of type (b},
"stiffness relations' become functional operstors of the present and all
previous configurations; however, if we accept the principle of fading

memory [41), only a certain number of past sclutions need to be retsined in

order to attsin a certzin sccurscy level ia the numerical solution [427.

2. Finite change in geometry: this effect will be called geomstric
nonlinearity and appears at twe levels:
(a} The use of actusl messures of deformation to sccount
for finite strains and rotations introduce nenlinesr terms in
the sirazin-displscement eguaticns.
(b} Eguilibrium equstiong and boundary conditions mast be

formulated in the deformed geometry.

Iv,1.2 Solution Procedures

The general structurzl problem may b2 statzd as ic:ilows:

The values of the fisld variablez 2t the initial or referenze state

o

¢ are known. We seek the soluticn at a "final” stste r} for wrhich

certain parsmeters {loads, displacements) are spzcified. The probklem is
assumed to be well-posed in the sense of g continuous and bounded dependence
of the spsce of genuine solutions on the initial state.

A fundamentzl guestion iz whether thsz finsl solution depends on the

peth (ﬁ -t (ﬁ . I1f so (nonconservetive systems)}, the history of the
0 f




111

applied parameters must alsc be supplied. Path-dependence is related to

geometric and material characteristics, possible cases are:

(a) Elastic meterial: linear or nonlinear elasticity for
small or finite deformations is chsracterized by 2 unique dependence
of the static variables on the total displsascement field (the converse
is not frue in generai). Hence, finite strsin tenscore, defined from
the difference of the initisl and finsl displacement configurations,
are meazningful messures of defcrmation.

(b) Nonconservative material, infinitesimal deformstions:
the final stress stzte is path~dependent, bDut since no distinstion
needs to be made between material and spestial coordinates, the
total infinitesimsl strain tensor is uniguely defined by the
totel displacement field.

{¢) Nonconservative materizls, finite deformationz: here
ever the final strazin field obtained by psth-integratior of the
incremental strains is generslly psth-dependent [43] since the
resulting differential system is non-holionomic except in specisl
cases (ex: one-~dimensional problems!. This point nhas seldom been
stressed. The definition of & "totsl" finite strain from the total
displacement field hass no meaning; the only netursl measure is

provided by peth-integration.

Two methods of analysis have been currentiy employed for the analysis

of nonlinear problems:
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(1) Direct iteration procedure: the final state is determined by
iterative sclution of 2 system of nonlinear equations. Any of tne well-
known techrigues for solving this type of egquations may be used, for
instance, Newton's method.

(2) Step-by-step or incrementzl prosedure, the final configuration
is reached zfiter a certain number of linearized stens more or less everly
distributed between (: and [; . In the displacement formulation. this
method is equivalent to the numerical integratior of & system of nonlinear
differential (or integro-differentisl) eguations.

Combingtions of (1) and (2), i.e., step-iteration, may be considered
as well.

The direct iterative technigue has obvious limitations. 12 tne first
place, convergence is usually expected only on physical grounds, the progess
may diverge or converge to z different solution. Secondly it should not be
applied to path-dependent {nonconservative) systems, snd definitely nct in
the case (c) mentioned above. However, sometimes we may uss an equivalent”
conservetive stress-strain lsw and aralyze the‘problem as a nonliines~
elastic case. Exsmple: the deformation theory of plasticity (Henzay), for
increasing proportionsl loading and =mall defcrmsticans. Or important
parameters may be path-independent, such ag the limit load of & perfectly
plastic structure,

The incremental procedure is completely general and provides a de-

scription of intermedizte states, but it is usually more time-consuming.
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The iterstion process, whenever applicable, should be preferred when one or =
few states are of interest. Nothing more will be said about iterastion, since
a special formulation is reguired for each problem. For some zpplications

we refer to References [17] and [44].

Iv,1.3 Variational Formulztion of the Incrementzl Method

We consider here the general formulation of the step-by-step displacement
solution of structursl problems including boeth physical and geometric non-
linesrity.

The finite region or "element D is considered at an srbitrary stste r‘
in the solution path (Fig. 4.1), where (ﬂ is a position paresmeter. Such
configuration msy be regarded as zn initial or "undeformed' stressed state,
with complete independence of the past history (which might only enter through
the constitutive law).

The element D is referred to a locsl spatial curvilinesr system
xi (i=1,2,3); in asddition, common or global systems Xi should be used to
assemble for the complete discretized structure.

An incremental position is denocted by r; mm (q—+ Q,r“ . The con~

. L 1]
travariaznt initizl stress tensor ‘tJ at [ﬂ becomes

=i ] — ij
= v+ 27 at |, (1v-1)
— i
where T J are components referred to the rotsted {(convected) locsl

—i . v '
frames X at esch point of D, and measured per unit of “undeformed’ areas

at rﬁ . The body force field Fl and surfzce tractions T1 become
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o
FMnel
global reference Confipuretion
eysten G
£
Initlal
Configurstion r;

Incrementel ~
Position f'; d

Present
Position [

locel reference
system for [

Pir. 4.1 = Incrementel or Step-by-step Procedure.

Total
Increment &U
av = fr "Ae dV

Poeition Perameter.
Lo

Pig. 4.2 = Meaning of Strain Emergy Increments..




F1+ Af‘i and T1+A%1 at

a

per unit of srea and volume at rﬂ

The incremental displacement field is AU,

g Lagrangian frame for FA )

tensor A Eij

~

i
respect to x }:

the incremental Cauchy
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A also referred to rotated axes and measured

. i
Since the x  system isc

covariesnt strain

is given by (a comma denotes covariant differentiation with

~

E — . \ .. Y k o { . PR
A Eip = (Au‘i}-Jrci;uM)Jruu;i Au_” = \‘\AE'J ﬁ_g.f\fﬂ (1v-2)
, . /o A o
where &(’U = = \A Wiy DALy
ANy = & AuS By
g FEE R T 0

are the nfinitesimal or linear incremental strain trensor, and the guadratic

incrementsl strain tensor, respectively.
We seek a varistional formulstion
8% primary varizbles which ensblies us to

relations at fﬁ Te this end, we make

—

displacements at i&:: I+ A Since

of the strain field (IV-2), we may write
Tea T

)
AN

L D

where 2ll integrals are referred to the '

virtual varistion of the incrementsl

F
Skiggﬁﬂcyy e J (Fl+£LF”f

gtrazin

splacemen=s

jus

in terms of incremental d
construct discretized load-dizgliacemnent
virtasl

use of the principlie of

the strezs Ffield (IV-1)}

- y / T, = e . o
Bu, 3V + [(THaT s uadsS  v-3
_,j R ;4'.;;?
£ B
'undeformed” position ©  and the
field (IV-2) is
Fop \ -
\tﬁrg’ } (I‘V""‘i}_‘

J
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with

28 (Le) = 8 (auyj)+ 8 (duyy) (IV-52)

k K A
2§ (A%‘) = Auy S(Aum) + 5 ug (o) (1V-5b)

The virtual displacement expression at r1 is (here & (Qq]j)

vanishes because cf (IV-3b)):

JT” §{acy) 4V = JFtS(ALLKWV +J(TL5(M{} d5 (1v-6)
‘B )
D o By T
Equation {(IV-6) is merely the stastement of the equilibrium of the

initial stress field tlj with the applied boedy and surface forces. The
virtual displacement field in Eguastions (IV-3) and {(IV-6) may be the same,

since they are referred to the same state. Therefore substracting we get

D . ,
= f AFTS(Au)dV + AT S(uy) dV (IV-7)
J 1 1 BT
D Br
Now we introduce the incremental material law in the symbolic form
- f] 1K1

iik
where C 9 1 are in general functionzl operators including the effect of the

past history. The second term of the left side of Eguation (IV—iT} becomes

(since ¢ 19Xl _ cklidy

-l 1y KL
ATV §(beij) = ae CVT8(ae) = £



and the last term is of the third order in the incremental displacements ﬁ‘ui.

Consequently, Egustion (IV-7) hecomes an exact differentiasl in the

se~ond order terms. Let

i KL J
_fE_ A%y :J[T}Anij+ ._;__QE;QCJ L‘Qg,-j} dY + O(A LLAAHJ‘AEZK‘} (2¥-8a)
D
- ==
_éazf-'ﬂ = [AF‘&u;‘dV + J AT (b)) 49 (IV-8b)
D B, Pr
1 = %A?(UMP) = _i? A%y (1V-8c)

Then the incremental variationzl principle may be stated as

i
o
Y
r+

I

{IV-9)

for 811 kinematically gdmissible incremental displacement fields., A similar

principle was obtained by Biot {45 in 1934 for a linesar medium under initial

stress,
It is importsnt to reslize that the total strain energy increment AT

from rﬂ to [H-+ Fal rﬂ is sectuslly (Fig. 4.2

2U—{—~

[>
[eX

(&

o=

2 |
AU = U, ~U, = dU~+-L2a%u=dlU+ 1L
where dU = fT!j Cf’E!}‘dV
L
represents the work of the existing stress state on the linear (infinitesimsl:
incrementsl strain tensor, which is of first order inm the incremental displace-
This term eguilibrates

ments and only zero for an initisl unstressed stzte.

the work of the existing applied forces Pl, T' and does not affect the
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incremental relations,
For & iinear elastic materizl and infinitesimal gtrains, U becomes &
guadrstic function in the ui, When referred to the initisl unstreszsed

state (':‘J:.-O ) Auizu‘ A€, = € 3

1 i ]

U= aU= -;:AZU :—:—é—j‘gm CUKIE:’jd’V
0
and we recover the usual minimum potential energy principle as used in II1.2.5.
Since the incremented stress tensor T defined by (IV-1) is referred
to unit of initial area and rotated axes, in order to perform the next step
it is necessary to recover the actual stress tensor tij at r; . Whose

i
components are referred tc the local Lagrangesn system x and measured per

unit of "deformed” arez. To the first order

il | =ik _ 1 =K _
where
ZAw{j = Aly,j— By
are componentis of the incremental infinitesimsl rotaticn tensor. In Equation

(IV-10) 211 products of Aéi‘j and Awij have been neglected.
i3 o
For instsnce, in the case of plane stress (T =0,(1=1,2,3),

A€iz= NE,= 0, Aw=AwW,, Aw;z=Aw,=0)

’

4

. =41
{ ot 1- A€, ~ Acy, 0 Ag, 24w (T -
2 1 A€ +4 =iz
T £ (A€ ~28w) S (A€p—2bw) 1_ 2 n;. €z neys T
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Similar tresnsformations hold for body forces and surface tractions;

for instance

i, = =2 3
T 2 T'i-se,-0e,)+ T 0w+ Taw, (1v-12)

If the load increment is specified with respect to & fixed system of
axes, an iterative process is necesszry to restore eguilibrium within esach

incremental step.

iv.l.4 Instentaneocus Stiffness Matrix

The incrementzl displacement field is now constrained to be expressed

in terms of s finite number of incremental covariant nodal displacements ﬁkri by

PO K K
[.\LLK—v—— ¢-{K [.\{',i A :(]t‘t._ﬁf_;{ (I1V-13)
where ¢)ik and ¢)k are interpolating functions. The strsin components are
i
¢ .
A= 7 (Fic e+ Puw) 21
1 n . .
L = 5 o1 o ¢nj,1 ar
and replacing into Eguation (IV-8az) we obtain for AFU
1 a2¢y _ A V k1l _ 1 Klmn ‘ 1.
5 LU = ?Aqu,{T ¢1,K¢nji‘[+“~2‘“(¢ﬂ£71+ iZ,K,) C (¢;’jm’n"f“¢.}n’m>j d\/
3D y o3
ATy + C(AFT) = — A7 KJ; ary + 0 (ar ) (IV-14)

where K;j sre the elements of the incremental or "instentaneous’ stiffness

motrix K st r , &ince
K. 'a(g?'u) } _ 2 (d*U)
. CICIARCICNY : 2(dry) Bldry)
A= (0
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Equetion (IV-14} shows that the stiffness matrix splits naturally into

= -+ F—
K K, KC (IV-15)
where
n Kl
= . T . dV -
k@&‘) J thk ¢n]’1 (IV-163)
D
2Key = [(@o+ o )T (b D) A - 16b;
cy = 4,1 mI.K) 4m, N 30 ,m (IV-16b)
B
The first part is the so-called "gecmetric stiffness” or "initisl stress
stiffness ma*trix' . The second part is the conventional stiffness, which takes

account of the incremental stress-strain law at fﬁ .
Only the lipesar terms in the strain-displacement relations (IV-1)} are

~: the work on the quadratic terms being of third order.

—

naeced to generste K
Conversely, only the quadratic terms 'Arlﬂ are required to assemble the
geomatric stiffness Kﬁ’ since the work of the initial stress field on the
iinear strain tensor is of first order. 1If thé strain-displacement relations
arc linear Kb ='C, regavdless of materizl nonlinearity.
ke componsnts of tﬁe incremental nodsl force vector AR asscciated
with the eri‘s follow from the expressicn (IV-10b) for the second increment

of the external work:

K .
AR, = J( Ap:kq;“d\/ + JAT (thza a5 (IV-17)
T

D EﬂT
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Finally, these relations must be transformed to s common or global
system Xi (usuaslly cartesien), before assembling for the complete structure
in the ususl way.

Therefore, the general formulation of the step-by-step displacement
method leads naturally (in the limit A -~ d) to the matrix system of

differential equastions

dR = (K +Kg) dr (1V-18)

of the first order in the generalized forces snd displacements. If the
constitutive law is of functional type, Eguation (IV-18) becomes an integro-
differential system, material kernels being contained in KC'
We can see clearly how the different nonlineasr effects enter into
(IV-17):
{2) Physical nonlinearity zffects only Ke;

{b} Nonlinegr strain-displacement terms affect only KG;
(c) Chsnge in geometry and boundary conditions affects dR,
KC and KG’ which must be evaluated taking sccount of the actusal

geometry at each step.

The uncoupiing of effects (a) and (b) is s grest adventage of the
incremental method, since digital computer programs originally restricied
to small displacements msy be corrected to include the effect of geometric

nonlinearity without changing the basic sequence of operstions,
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In most engineering problems dealing with finite change in geometry,
extensional strzins sre small (although dispiacements and rotstions may be
lerge), and the locel distorsion of the element may be ignored. This
assumption grestly simplifies the computstion procedure, since octherwise the
element type and zssumed Reyleigh-Ritz displacement shspes have to be changed
in general after the first step; only the nodsl point coordinetes in the
global system need to be szctuaslized, For problems involving large elasstic
gtrains (rubber elasticity) or lerge plastic distorsions (metsl forming),
simplex elements (Fig. 2.1) with linesr displacement fields are convenient,
since the element type does not change.

Thermal nonlinesar effects may be included by the procedure followed
in 11.5 for linear elastic materials, setting up a vector of incremental

initisl loads. This technique has been used extensively by Argyris [8,14].

IV.1.5 Numerical Integration Schemes

The step-by-step integration of the system (IV-18) can be performed
orly using high-speed digitsl computers; even so, time and storsge
limitations usually confine .the treatment to moderztely fine discretizastions.

We shall consider here differential material laws for which (IV-17)
are differential equations., The simplest method of integration is Euler's

rule, & direct trznslation of the incrementszl procedure. The "'n-th” step is

P<&0 Ar ﬂxFaQﬂ

m =
(IV-19)
C ity = M+t A8
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The propesgated error is of the first order in &L v, provided the
proper values of K_} are bounded. The midpoint rule
!<(H}‘ﬁiiﬂ}:= ﬁ’F{Qﬂ
oy = Fim+ QF@/Z — K("H“/z)
K(ﬁ—r‘/z) ATy = AR (1V-20)
r(n+1) = i+ Arm}
requires two evaluations per step, but is of second order. Higher order
one~step methods are provided by Runge-EKutta formulss, but they are in
general very cumbersome 1o code.

For problems with smooth load-displacement curves, integration and
predictor-corrector methods may be emploved; they regquire storesge of several
past solutions and special starting procedures. These technigues are not
sdequate for plasticity analysis in which sharp "breaks” may be expected,
but are well suited for differential visco-elasticity, and of course,

essential for integro-differentisl systems.

Iv.2 ANALYSTS OF ELASTOPLASTIC PROBLEMS

Iv.z2.1 Scope

Plastic behevior is en importent type of material or physical non-
linearity. 'The constitutive lew is of incrementel type and relates siresses,
straing and first strzin rates.

The step~-by-step method is naturslly suited to follow an elastoplastic
process. The tha;ry_necessary to generste the conventionsl incremental

stiffness matrix is summarily presenied end then a special but important vield
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criterion (Von Mises) is considered in detail and applied to two-dimensional

problemsi

For simplicity the presentation is restricted to isotropic msterial
and isothermal prccesses. The trestment of anisotropic elaestoplaesticity and
thermal effects do not present in principle other difficulty then the ensuing
algebraic complexity of the formulation;_the real problem is to obtain enough
experimental data to adequately charscterize the masterigl behavior in the

numericsl analysis,

iv.2.2 Summary of Fundamentzl Constitutive Relatimns of Eiastoplasticit{

This summary, with some notstion changes, follows the classical work

of Hill [46]. The present configuration of the element is considered as an

initial stressed state; if the effect of finite deformations is included, the

ingtanteneous conventional stiffness must be corrected as explsined in IV,1.4.
Stress and strain increments are used instead of stress and strain

rates. The use of rates ( é,‘f ,f‘;é ) simplifies the notation, but

obscures the measning of the classical plasticity theory, which is essentially

time-independent. The derivation is carried out in rectangular cartesian

ceordinates; only lower indeces sre then used for the different tensors.

IV.2.2.1 Stresses, Stress Deviator and Inveriants
Total stress components will be dencted by T'” , 8tress increments
by d'tg . The components of the deviatoric stress tensor are defined by

;
Si= Tij—3 8T = Ty — 8T (1V-21)
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where T *'Tkk/3 is the mean stress. Principal stresses sre T, ,T2

and Ty y principal deviatoric stresses Sl’ 52 and 53.
The three invsriants of the deviastoric stress tensor are
Jy= S = $,+5,+8; =0
_ s 2 2 2 i .
Jy = —(8,5,+5,5:+838, )= €°+5]+453 = = 545y
o ! ‘ .
iv.2.2.2

Incrementsl Strains

We consider here only the infinitesimal stress tensor which suffices

to generate the conventional stiffness. The total strain increment is

déej = %(dum-i—d n,i) = de?j+d€fj (1v-22)
whers <ﬂ€§ = eiastic strain increment .
dé};;: plastic strain increment,
The incompressibility of the plastic distorsion is expressed by
depe= 0 (1v-23)
EFlestic and plastic work increment per unit of volume are
(‘{\/Je _— ‘chdéj,i de:—.- T"J dég (IV-24)

IVv,2.2.3 Elastic Comnstitutive Equations

For 2 genersl anisotropic material, Equation (Al-1) of Appendix I may

be written in incrementsl form:




126

For isotropic meterial

é d
dG,J e 2 -+— (1 2)-’) S!J _._._._E_..._ (IV*25)
IvV.2.2.4 Yield Condition

The general equation of the yield surface is

f(ru,efj?}a) = 0 (IV-26)
where K is a hardening parameter. We shsll consider herein only the ¢azse
of isotropic hardening (no Bauschinger effect) of 2n isotropic material. For
this, Egusztion (IV~-26) specializes to
f(Jd,,Jd3) = K (IV-27)
where f does not depend upon the stress-sirain history, which only enters
through the parameter K. (strain-hardening or work—hardéning effect). Both
sides have dimension of stress.
A neutral stress change (stress point moving on a plene tangent to

f—K =0 ) is defined as

2f oF
df = dJ;+ dJ; IV-28)
332 9J3 ( _
since M does nct depend upon J, or J,. The condition that def}zz 0

for a meutrsl chsnge may be satisfied if

J 6 (IV-29)
where G, is a symmetric tensor, function of the state of stress and possibly

of the previous strzin history, but not of the stress increments (rates).

The incompressibility condition (IV-24) regquires that Gkk = trace(G) = 0.
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Moreover, the principal axes of déjj should coincide with the principal
stress ax=s; these conditions are met if
G.,= h 98
tj = {1v-30
| a'ﬁj )
where h and g are scalsr functions of the invasriasnts J2 and J3 and possibly
of the strgin history. Thence
’a .
def = h 29 df — h (m?_.- s+ 29 t;) df (1v-31)

1v.2.2.5 Hardening Law
in order to express mathematically the hardening properties of the
materiai, we shall adopt ine "work-hardening hypothesis', which is extremely
suitable for generating the constitutive equations in matrix form. It states
that the psrameter K in Equstion (1V-27) depends only on the total plastic

work k% dissipated along the struciure psth from the annealed state, i.e.,

F(J i) =K = F(WP) (IV-32)

where (neglecting elastic compressibility)

.. P
Wp = Jf dwWp = jTUdég (1V-33)
fafh Pa?h
upon which (IV-31) becomes
dé"z.‘ = h F g—g—- Tk'(_ dEEI (IV-34)

'
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F!' = dF/d Wpo is the tangent to the K= F(Wp) curve, a characteristic
of the material which can be obtzined from s simple iension test (Fig. 4.3).
Upon multiplying (IV-34) by T}j and adding, we get
z..def = hF' 9 def ) =inF'g T, def
ST Ly (Txr gkt) =, 9 k1 “Ck1
37}3
from Euler's theorem for homogeneous funcitions, n being the degree of g. Thus

n F' ghe=1 and (IV-34) reduces to

de? _ _1 19 df

= { (1V-35)
J ng 9T F

which gives the incremental plastic strasin components, provided df 2 0.
If1 df < O, dfig = 0 end we use only the elasticity equations {IV-26).

By total differentiation of the vield condition (IV-27) we also obtain

?2f oK p P
2Ty oef Y Paj % (1V-36)
and if the hardening ilaw is of the form (IV-32):
of "o i » -
ﬁs’jd%j: Frogdey |, 4o pip=F 1Ty (IV-37)
Iv.2.2.86 Flow Rule
1 9_=_u-F in Equation (IV-35):
df B
def = 22 21 . 4p 2@f ,
where
e o Bf e P
d = "D(dF o x d7T;) = [ de’;
rm e = A SrET Putty v

{ j

is gn sc¢elar of proportionality.
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IVv.2.2.7 Von Mises Yield Criterion
This yield condition has the simplest ansalytic form, however it has

been shown to be an excellent spproximetion for many metals. The yield

surface is sssumed to be s cylinder of radius c , uniformly expanding:
5% = 3J, = % SSg = 37 (IV-40)
where is called the eguivalent stress. The yield surface eguation is
,.;__Ezm K= F2<WP) or % = F(wp) (1V-41)

if UY.sz-z F{CJ is the initiasl yield stress in simple tension or com-

pression, then }nyE is the initisl yield stress in simple shesr.

IVv.2,.2.8 Prazndtl-Reuss Eguations
Assuming ¢ =.J2 , ag/ﬁajﬁjm;SUf N 2 . Eguation (IV-35)
Becomes

def _ Sy _df
2d, F

1f ==

(IV-42)
If we combinz this equation with Von Mises yield criterion (Iv-41),
we obtain for the incremental plsstic strain

(Iv-43;

™)
Y
L)

but this form of the constitutive equsticon is not very convenient, since it

becomes 0/0 for z perfectly plastic msterial (F'=0)
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Iv.2.3 Matrix Expressions of Incrementsl Relations for Three-
Dimensional Continua

IV,2,3.1 Arbitresry Yield Criterion

We derive here generzl three-dimensiopnal constitutive relations for
an isotropic materisl. As ususl, we arrange stress and strain components as

(6x1) vectors:
T = Ty T Taz Tp Ty Tsi

€ = { €y €2p €33 2¢ €53 263, )

The incremental elastic egustion (IV-26), when inverted, reads

. e
dtv = €, de (1v-44)
where, for isotropic and compressible Q;v;ﬁ-ﬁ/z) material
Ty v V . .

v 4 Y . .
C E ! N E
e = /= . |
(T=2y){1 ) . - . .5y j
H
c . 0.8y : |

) g.5-—v
~ -

Instead of the hardening equation (IV-32) it is more convenient (to

avoid irrgtionzl expressions) to work with the sguare of both sides:

2 Z
(L)) =K =F (Wpy = H (Wp) (IV-45)
and (IV-37) beccmes
9 {2 AKZ P . P
—LdT, = dégj- = pH ngdé‘;) (1vV-48)

ERT ek
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with H = 2FF = dK*/dWp.

Introduce now the (6xl) vectors

-
q = < 945 Q22 935 2?42 2923 2?34>
(Iv-47)
=<
p = Pas Pez Pss Pz Poz P >
with et L 9K?
4'( 1}
The flow rule {(IV-38) in matrix form is
def — q dA (1V-48)
and (IV-46) becomes - T ’
qdr = p de (1V-49)
On combining (IV-44), (I1V-45) and (IV-46), we get for d A
;s T T
dA(PTQ“‘"CI (. q)= g C.de (1V-50)
Define 1/'\)() = PTCI -+ qTCeq , @ scalar. Then
T
dr= vq¢ de (IV-51)

end the incremental plastic strsin vector, agsin using the flow rule (IV-48)
def 'C, d Nnd
€= Vvaq €, de = - d€ (1v-52)

The incrementzl relation between stress increment and total strain

increment follows from the elssticity eguation (IV-44)

dT = (, (de~deP)= C de (1v-53)
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where
€C=C(I-vqq'C,)=C(I-0)

{(IV-54)

is the instantaneous stress-strain matrix sought.

IVv.2.3.2 Von Mises Yield Criterion
The direct computation of € is carried out in detail for this important

case. Since

2 2 ’8{2
{ = J2 = K = H(WP> \ e 51'J'
a'fi'
J
we have T >
q = (s, Spz S33 £33 28,3 €53, 7
T ( (IV-53)
p= HT
Carrying out operations we obtain for an isotropic material
T 2 g i=2 T 2 E&?
= = H O = L. _=Y
P9 3 9 Ceq 3 {+ ¥ (1V-5R)
where 52:::332 . Therefore
- _3 1
Y= 2e mo
and 1+ v
' ey

SiSy SuS; SuSsy S5z S$,4S.; 6y Sa
Sz2522 57533 %2252 $,5:3 SaSa

T . .
1 =vyqq(, = ﬂ 23513 933512 $338,3 3353 (1V-57)
25,52 253%: 25553,

255353 255353,

L 25353
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where ﬁ = WE = 2 3 provided C{\/\/F > 0

otherwise F;: 0 if dWP <0 (elastic loading or unloading).

IV.2.4 Incremental Relaticons for Plane Stress and Plane Strain
{Von Mises Criterion)

h f T i = . imi = =
The plane of symmetry is (xl,xz) (x,v} We eliminate 7:13 "623
€ =€ =0, and consider only (4x1) vectors
=T
T =Ty Top Tz Taz )

(e €5 262 €57

For plane stress ("Taaﬂ a, €35 =+ O)

-

1 ¥ .
E
Ce= v 1
-y2 | ., 1=V .
; (IV-58)

s

F 1 trai e =
Or plane streain \633_-0,”1:33#0)

-V v Y
o E ¥ 1=V ' -
¢ G+0)(-29)1 . . 05-y (Iv-59)
¥ + & 1 — v
Also
T= S., 28 S
q = { 5, Sz 12 S33 >
T f ‘ _
p=H Ty Toz Yo Tiz (I1V-60)
—2
T 2. H'F"

Pq= 5
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gs for the three-dimensionsl body. However, the expression for cheq

is more complicasted in the case of plsane stress

(it T )+ S (59-4) Ty Top+-2() ‘C,Z?J

E | 5-4
qTCeqm zj.s Y/

i—y S
then feor plane strain, where we have again
cheq e 2.‘55"2/ 3(1+v)
For plene stress, the plastic strzin-total strsin matrix is
- -

Sy (5;;1‘ "522} 5p (522"’# 75”) G'—-}') S Sia .

o - wqugﬁm p S22 (S147532) S22(S224¥S40) (1Y) $2,5iz
25<2(5HTY5,1§) 25;2(5"221* )"Sn) 2(7—7)5:25|2

E )

(1v-61)

-

. r - .

~ 7
{(not symmetric)
with £ o iz 5 2
[B= X, 0+ 0y \Ttl'frtz.a) + oy T Ty + Gy Ty
J !
2 a2 H . 9—4y _ Z2(5v—4)
and 061_-—3—(1 )J)—E o, = —5— ota____.__@___
{ o° RIS &
oy = 2 \1“"V> = Ty+Tot+ 2T —TuTe
Therefore we can delete the last row and column and work only with (3x1)
rnch’T—<UC“> d € = €, 8 The strain in th =
vectors = x Oy Tyy and € =d¢, €, ’“‘j> . e strain in the x.=z
direction is provided by
_ o e P v e 1.8 P P
deyy = de; = deg+de; = - — (deS+def) — (def+dey)
For plsne strzin, we have sn expression very similar to (IV-57):
SHSH 5“5'22 SHS(2 SHSBS
T . (Iv-62)
0 = v qq C. :[3 S22 S22 522 Si2 S52 533
28353 Si2533
L S33533 4
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1t yield
s
Pln Work W = 'T_" . deF‘
F i3 1] Linesr Varietion of €
peth
= Constant thickness h.
Pig., 4.7 - Work-Herdening Lew. Fig. 4.4 -« Element LST-Pl

Linear vearietiorn of € Veristion of € se for LST-F2
inside eacnh subiriengle.

Constent thickneses h.

Parebzlicelly varying thiciness.

Fig. 4.5 « Element LST-PZ2. Fig. 4.6 « Elenent LST-P3.
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with ﬁ — > _ ! _
. 252 4 H i+ )
E

The stress T33= 0; must be retained, but the last column of C can be

deleted since €= €;= C.

IvVv.2.5 L5T Plane Stress Elements for Elastoplastic Analysis

I1V.2.5.1 Genersl Remarks

Up to the przsent time, most displacement analysis of two or three-
dimensional physically nonlinesr structures have been carried out with help
of simplex elements of constant strain. Since the material remsins homogeneous
inside such models, the integration necrssary to construct the stiffness matrix
ig trivial,

When dealing with varisble strain elements. meterisl properties will
vary as soon as the elastic range is exceeded, regardless of the sssumpiions
made for the snnesled state. Thus = new approximation is introduced when the
variation of the materisl law (IV-53) is constrsined by some fype of inter-
polation function.

If 5 neat elastic-plastic boundsary may be defined and the materisl is
perfectly plastic, a more exact procedure may be attempied: the integration
is carried out over twe Separated subregions in the case of pertial plasticity.
However, for two or three-dimensionzl elements, this technigue complicates the
programming aznd resiricts the generslity of the hardening law,

In gpite of 2 more complicated derivation, the improvement obtained by

using the linear strain triangle is even greater than for the elastic case.
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The assumption of constant strsin is more criticsl in the plasticity problem:
a CST "yields" 2t once, introducing unwanted perturbations in the solution
process [47],

The use of the work-hasrdening hyphotesis (IV-32) permits a very simple
formulation and programming of any type of plastic behsvior, including elastic-
perfectly plastic or even work-softening. The strain-hardening formulation
employed by Argyris [14], - eguivalent to the former one if Von Mises
criterion (IV-41) is employed - needs some recasting in order to handle the
limiting case of perfect plasticity.

Three types of LST elements are presented in the next paragraphs; the
incremental material law (IV-8) is assumed given at a certasin nodal system.
Therefore, they may be employed for any type of materiel nonlinearity (they

are not restricted to plasticity problems).

Iv.2.5.2 LET-P1 Element
¥= are concerned here with the linear strain trigngle described in
detzil in IIX.2 for the linear elastic case. [The totzl incremental strain
je constrained to vary linearly. For the nodsl strain vector we select as

usual

T _ T T T
de = < dey dey db’,y> (Tv-63)

i

where dé: <’d€&( d€x2 d€%3> , ¢etc

We assume that the current stress-strain law (IV-8) varies linearly over
the element (in the sense that each omponent of the masterial tensor is a linesar

function of the coordinates x,y); and therefore determined by iis corner veslues,
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where esch Cij iz 8 {6x3) submatrix of the form

¢ ) =
4-CLJ . *
[ 44-62 -
*J
iy = 4 : - y - (IV-88)

CitCy Cijt <y ‘

2 3 3

CéJ‘fCL} C;TCU

3 1 31

\C"J‘-’.Cg N CU+C4J

-

k . 3 o . .
Cij designates the incrementasl coefficient Cij at corner k. The integration
for the strein energy is trivial when the thickness h is assumed constant.

Since

= 4
Q= T[cﬂq)@dA = L, (IV-67)
A

where LIZ has been tabulsted in 1.5.1:
2 -1 =1 8 4 g 1
= 1 11 2 Z1 &8 g 4
12 60 i
L-1 =1 2 4 g g

The stiffness matrix in terms of nodal strains is, according to
Fgustion (II-28}:
NH NiZ Nf?: N[
= e A (IV-68)
N=QD A N2> Nij

(97‘9) L Symm . N 3;
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i.e., (NC) = (Nl) (Fig. 4.4).
The incrementsl stress components vary as second order functions; we
select (No.) o= (Nz}, i.e., corners 1-2-3 plus midpoints 4-5-6. The incrementsal

nodal stress vector is

T T T T
where T
do, = <doy, doy, do,, du,, do,, do,, )  efc

Now we must evaziuate € and de€ at (NG)’ From their assumed linear

veriation we have for Egquation (YII-26)

A = L

R C
: /e 1/2
\?/z .12

and (:c has the siructure indicated in Equation (II-31). Therefore, the

incremental stress-strain law at (Ng.} is

do = (. Ade = Dde
with

(IV-65)
K

0 = sz C.;

Synwn. CSS
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with
‘ 2 3 i 2 z ' 2 H
bcy+2c{ +2¢] 2¢iy +2C5+ ¢ eCyy + Ciy+ 2 1
1 d z 3 4 2 3
Nij mwﬁg 2Cg+ 60y +42¢ CQ—FZCQ*2CQ (IV-69)
1
X symm . Ec;}+2ci+6cﬁ

We see that Niﬁ has the szme structure as in the elastic element with

.

linearly varying thickness (III-26)

Finally, the incrementsl stiffness in terms of nodsl displscements is

(Ut e v [N NN, (U 0

i: = A‘h T T LY
0 vV U sz Ny 0 {IV-7C)

symm N35 v U

where U and V are given by (II1-13). For the finite displecement analysis,

they must be computed taking sccount of the sctuzl dimensions ai, bi.

IV.2.5.3 LST-P2 Element
To account for a more realistic varistion of material properties over
the ziement, espszially for the case of partiasl plasticity, we now consider
and record the constitutive law at corners and midpoints.

The element ig subdivided into 4 subtrigngles whose corners are

numbered in the following cyclic order (Fig. 4.5):

Inside each subregion the entries of the stress-strain matrix € are
egssumed to vary linesrliy. This should lead to & closer repregentation of the

actual behavior in the case of the usual hardening laws than & parsbolic
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variation over the entire element, Therefore this element is mede up of
four LST-P1 constrained by the linear strain verisztion over their assembly.

For each subelement we define 2 nodal vector of incrementsl corner

strains:
T T
. diy,.
de <dex$} deyq, dBy, 7
(k = subelement no. = 1,2,3,4.)
each dfﬂ)() being a {(3x1) vecior such as
a€ N dey, d de tc
"(‘) {BEy, dEyp S€x3 7y » ¢
For the incremental stresses d(j{j of guadrastic variation over

each subelement, we select
d ! T
0“ < dol ddy dt,,?
ag the (18x1) vector of stresses st corners and midpoints of the k-th
subtriangle; for instance, d(j%(a) contains the values of ang at
3,6,5,36,65,53 (see Fig, 4.3),

The interrnzl work increment for each subelement is given by

2 -
%AU@)—:‘*—- de., Q dog, (1V-71)

where Q is the numerical matrix (IV-67) =and AS = A /4 i the ares

of each subtrisngle.
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The incremental strzin vectors for ezch subelement can be

d
€
related to the vector dé€ of corner strains (IV~83) by imposing the

linear constrsint:

dem = M&) de (IV-72)
where -
7 4 . . =1/2 1/2 .
M — 1 ] d M — * 1 2 1 2
® j2 12 @= ) / /r
L2 « 12 {2 vz )
Next, we relate d‘]kk} to d‘i(ﬂ for each subelement through the

material law. As for the LST-Pl, we obtain agsin Equation {IV-65):

4

-
Cu@q Cmgq Cis ) .
da@-—_- szoq C; (x) dﬁ(h) (£V-73)
Sfmm Czs(a)
where each Cij(k) is a (Bx3) submatrix of the type {(for k = 1)
- ~
4Ci‘j . '
. 4c
3
Ci@‘@:% to 4 i' 4 T
Cyt+Cy Gy Gy ‘
C‘?j—bC% C:; t C;?
HCSfC% . C%+C$’
For k = 2,3,4, replace 1-4-6 by 2-5-4, 3-6-5 and 4-5-8.
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Finslly let
TR C oM
Ni}@c}“‘-‘ M(K)Q 56 M (IV-74)

Then the instantaneous stiffness for subelement (k) in terms of the

nodal strains d€ is

Nu ® N42 ® NiS ®

N‘@) = Ah Ny Nog
symme Nss(i:)
The complete N is simply N®+ N@)"i- N(37+ N@) . Upon

substituting {(IV-72) end (IV-73) into (IV-74) and adding, we get the following

expression for each block Né-

!

oo
{ NG Mz Ny
i ; i Ol
Ny = = | Ny, 3 (1V-75)
L Symm. o
i N , .
where nKI = & Ci,i (sum cver p=1,2,3,4,5,6)

Numericsl weights up are given in the following table:
k1
Corners Midpoints
k 1 p=1 p=2 =3 p=4 p=3 p=6
1 1 46 2 2 50 10 50
2 2 2 46 2 30 50 10
3 3 2 2 46 10 50 50
1 2 7 7 1 35 15 15
1 3 7 1 7 15 15 35
2 3 1 7 7 15 35 15
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We see that the properties at the midpoints have grester weight on the
individual element strain energy. If they are the average of the corner

2
properties, i.e., c4 = (cl +c_j)/2, etc., we recover the form (IV-69) for

ij ij
the LST-Pl element.

The stiffness matrix in terms of nodzl displiscements follows now from

(IV-70).

1v.2.5.4 LST-P3 Element
For problems involving moderate or large plastic deformations, it is
desirable to account for the actusl deformed geometry at each step. This cen
be done by keeping trsck of the coordinates and thicknesses st the nodsl
points (the sides are still assumed to remain straight when performing ares
integrastions).
We assume 8 parabolic veristion of thickness h(ﬁéi} determined by its
values st the corners and midpoints (Fig. 4.6). This varistion is finite,
but smslil in the =ense that 3*ﬁ/as‘<< 1 , where 5 is any in-plane direction;
therefore the state cf plane stress is approximately preserved. As usual, we
define z reduced thickness W§ = F1<ﬁ1) /F?r and nodal thickness vectors:
g = (808 8 8 B &Y
g’(;}: <€1 54 €6 §|4 545 56{7’ etc

The variation of the materisl law C( ﬁi) is the same as for the LST-P2

{1V-76)

element. For each subtriangle k

2
1 7 T . -
Q{K) - TA jq; (p@} §(ﬁ<)‘;b(:2) A = E E,’g f’,; (1V-77)
A

1= 1
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where
T L " 306 -4 -4 12 -4 127
. 6 -4 1 -8 -12 -4
{

S) 040 . 6 1 -4 -4 =12 8 |
T 1 © -4 6 1 -8 -4 -127]
= e -4 30 -4 12 12 -4

gz 040
> 1 6 -4 -4 -8 -12 |
?T 1 T -4 1 6 -12 -4 -8
3 = 35040 1 -4 6 ~-12 -8 -d
5040 -4 -4 30 4 12 12
g‘f 1 12 -8 -i2 96 32 48 |
L= = -8 12 -12 96 48 32
040 | -4 -4 -4 32 32 32 |
1 T -a -4 -4 32 32 327
m— ot - - o
%S =570 12 12 & 48 96 32

-12 -8 12 32 96 48

12 -12 -8 48 32 96
32
-8 ~12 1z 32 48 96

)
o
]
o
o
e
o
1
[Fey
I
[ty
1
S
w
X
20
2

Only 12 different integrals need to be computed using Table 3; the
matrices are completed by c¢yclic symmetry.
Tnicknesses at suxiliary points are eliminated by using the guadratic

interpolstion formuls over each subelement to get

§C‘<) = Tx £ (1V-78)
where . -
8 :
.
- L | ©
17 8 3 -1 6 8
-1 -1 4 2 4
3 -1 . 6
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. . , . 8 .
1 . . 8
i ! : ' .
2 B . 3 -1 . 6 .
-1 .o-1 4 4 2
-1 3 . 6 . .
-
[ 8 .
. 8
1 8
T. = — '
3 8 -1 . 3 . &
-1 -1 . 2 4 4
L -1 3 . 6 ]
i 8 . h
8
1 8
T = — )
4 & -1 .o -1 4 4 2
~1 -1 2 4 4
-1 -1 4 4 2
S -

Caerrying out the condensation process as for the LST-PZ element,

we find sgsin for (IV-73):

4 P
KL %1 Ci}
but now
P P4 (1V-79)
A= Pkl
[ s0m1=123
cver
L p,g = 1,2,3,4,5,6
P3
The 324 weights F)Kl were obtained from a smzll computer program

and are listed =8 DATA statement for the array HPLARG in the stiffness

subroutine of the plssticity plsne stress program (Appendix IV).
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IvV.3 FINITE DEFORMATION ANALYSIS FOR ARBITRARY ELEMENTS

iv.3.1 Gecmetricalily Nonlinear Problems

Technical publications concerned with the applicztion of finite element
methods to large deformation and stebility problems are scarce. A survey of
the work up to 1985 may be found in a paper by Martin [48 . A common charazcter-
istic of most derivations has been the lack of clarity motivated by the use
of either psevdo-geometric procedures or unnecessarily sckward snalytic
computations, displaying & poor understanding of continuum mechanics., None
of them, including [{48], even mention that the incremented stress tensor is
referred to the “initial’ geometry and must be corrected to obtain the
actual stresses.

The use of the incremental variationagl principle (IV-9) permits s
concise and elegant formulation of the instantanecus geometry stiffness,

In general, the sclution of the system (IV-17) requires step-bv-step
integration; however there are certein important exceptions:

{a) Large elastic deformations {rubberlike materials): instead
of the "tangent” or instantaneous stiffness, we may construct, by
means of zn appropriste variationszl principle, a "secant” expression,
function of the totsl displacement £tste. Physical and geometric
nonlinearities will usually be coupled. The finsl eguilibrium state
in the deformed geometry is obtained by direct iteration.

(b} Lzrge elastic rotations (slender structures: beams, plates,
sheils). As in (2), a direct iteration procedure may be employed.
The computation is simplified if the distorsicn or change of geometry

of the element in its local coordinate system is neglected.
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(c) Static critical load. Consider a linear elastic structure
subjected to a conservative and constant system of external lozds whose
amplitude is determined by a single parameter A {proportional loading). Here
U, P and V = U~P are potentisls, i.e., functions solely of the tota: dis-
plzcement state I mezsured from the initial reference configurstion.
Consider s virtual displazcement Sr' from an equilibrium position, If no
internzl comstrzints sre imposed, Trefftz's varistional criterion of
stability [497 is

S0 > 0 . with 20 = 8U= ¢ K&

At the critical value A , & becomes positive semidefinite, i.e.,

cr
S0 = Kbor = (K.C-’r KOV 6r = (K + 2K ) br = O (1V-80)
for some nontrivial buckling eigenmode Sf' , and where K | f(C and ’<6

are stifiness matirices for the complete discretized structure.

If displiacements prior to the critical stage sre neglected, Kt and }<6
are constent and (IV-80) becomes s clzssical eigenvelue problem. Since Sr'z 0
is slso 2z solution, we have always s bifurcation of egquilibrium {(Fig. 4.7).

If the externel forces are not constant, Trefftz's criterion still
eapplies with Q@ = V= U - P,

For nonlinesr elastic materisl, '<C=:'<C(A) and (IV-80) must he
solved by iteration or step-by-step methods. If change in geometry is
considered, ;?é = ?Qj(k> , in such 2 case we may find slso "esymptotic”

instebility ( FF—e= 0O as A —“afkcr ) or "snsp-through” (no bifurcation or

equilibrium), Fig. 4.7.
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The simplicity of Equation {(IV-80) is due to the fact thst K is
*
the instantaneous or tangent stiffness. If we use the "secant stiffness” K

(Fig. 4.8), the critical condition occurs for
* 3 *
S(K l’)-‘-"—" K %5 r +rd8K =0 (IV-81)

only egquivalent to (IV~80) for P={ or K*-_» const .,

For elastic meterial but nonconservative loading, the more general
concept of dynamic stability must be employed [50],

Finally, for nonconservative’materiai and general (multipsrameter)
loading, critical stages are path-dependent., An example (for one-parameter

loacing) is provided by Shanley's anelastic column snzlysis [51].

Iv.3.2 Practical Generation of Geometric Stiffness Matrices

In all remsining psragraphs deasling with the finite deformstion problem,
symbols A or d for incrementzl strains or displacements are suppressed for
brevity. The current configurastion should be thought of as en initial or
"undeformed” reference state.

The derivation will be carried out in rectangulsr cartesian coordinates
therefore, only lower indices are needed.

We must express the part of the incrementsl strain energy which generates

*(G , 88 a quadratic form in the nodsl displacements:

2

A U(’: = J’mj-)'z;j dv = L rTKGr (I1V-82)

al
2 2
0
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{where }?ij and I stand for Aqij and AI" as mentioned above). Let

T T T T
r=du, u, ugy (1V-83)

be the nodal component subvectors. For simplicity we assume that the variation
of the component u:,1 is specified only by ui' By evalustion of the shape
functions (IV~11) &t the nodal displacement system we get interpolation

formulas of the type

UG = @ %) U (i=4,2,3) (1v-s0)

where %n is an intrinsec coordinate system (@,, ;%2 R ﬁ;—)
preferably sz natural one, for the element. In Eguation (IV-84) summation
convention does not hold for vector or matrix symbols.

The gquadratic iterms of the finite strain tensor )—(*J are
2

T
Z IZU — 'u-x}{ u—#&,j = Z uK q)i():L ¢t}j LL"( (IV-85)
k=1

The variation of the initial stress state is specified by

T
Ty = d),r‘“ T
S (1v-86)
where the ¢TU may be different for esch component 'g:,-j,
If we substitute into the integrsl (IV-82) we get for KG
[ )
Ky ’ T
a
K@ = { - Ko, . 1 (1V-87)
where : * k33 J
3 3
V ; T
K= ) 0 e BT B, e v
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This direct integration of the shape functions for displacement
gradients is practical for simple cases; for instance the one-dimensioneal
elements presented in IV.3.3. For refined two or three-dimensionsl elements
it is more convenient to follow the procedure outlined in II1.3 for the
conventional stifiness. We select nodsl point systems <N“{,z) for the

displscement gradients, and to simplify

(N )= (N, )= (N ) = (NG

Therefore
D ity T
— u, (IV-89)
QXK ¢€"“l tiK
and
e = Ugp uy
Uﬂ( being the matrix of vectors ¢'i,i< calculated &t <N€{) . Now each
block of {IV-87) is
3 3

L

T T T
= ; é . .. dV . (IVv-90)
Knn Um. f ¢€1. QT{;’ T‘J (pej UnJ
1:-::1 J:"‘—"? D
Usually the shspe functions zre the same for all directions snd we
only need to eveluzte one integral for all i,j. Here, as in Equstion (IV-88},
T{} 4 is an scalar multipliying all entries of the matrix C‘béa €J_.
For elements of constant strain and stress, the integrals of (IV-90)
are simply ’L'U V (scalsrs}.
For the frequent case of infinitesimel extensionesl strsins but finite

rotations, we might start from expressions for }7“} explicitely containing

rotetions end infinitesimel strains, i.e.,
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Ny = -—;.—— (it @i0) (€5k+ 51) (Iv-21)
and neglecting systematically certzin terms like €£K 6}K ) 6{k:a{jg ,
etc. However, it is more convenient and not more complicated (when working
in nstursl coordinates), to cerry out the exact derivation, neglecting terms

only after examining the complete expression.

Iv.3.3 Examples

The direct integration of Equation (IV-8B8) is applied to the derivation
of the geometric stiffness of the two simplest (but important) one-dimensional

elements.

Iv.3.3.1 Stringer or Truss Member
Consider the prismatic truss element 1-2 of srez A& and length L. in
the present configurastion [ﬁ , which may move on the x-yv plane of 2 locsal
caertesian system moving with the element (Fig. 4.8).

Let

Q;zrz X//L. Hﬁ‘ﬁ= f‘~ﬁ£2

be dimensionless natural coordinates of the stringer: then if
= < ul v S
u = Jug 4z
vi= (v, v v
£T= (4, %2)
U = ﬁTu Vo= ﬁTv
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Only the stress U& — (F%—-F?)///A is present, hence (IV-82)
becomes
2 P —F
%A U@ _ j xxdxdv: ﬁ__.l’?xx
but
_ L PunNE v Taalu +Lviaaly
T = (50 v2(50) = = # 2
where
y ¢
& = i -1 B et
— < = 5
SO .
f? -1 -
K - -t :
G L J R (1v-91)

1f we neglect the effect of the shortening and consider only the

effect of the transversal displscement ¥

L] . - .

P
Kg m«:-_ S 4 s (1v-92)

IV.3.3.2 Beam-Column

A prismatic besm-column element of symmetric cross-section is loaded
on its (x-y) plane of symmetry. The element is assumed to be straight st the
state rﬁ S0 that axial force znd bending effect are still uncoupled,
however actusl length L and cross section properties A and I should be used
(Fig. 4.10).

We use the same natural coordinates ‘42““" x/L , ﬁ,m {“%2 of the
stringer. Let

ri= {uy uy vy vy 6, 9, 7
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Fig. 4,10 - Beam - Column.
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The incrementsl displacement field referred to the local (x-y) system is

{ 0 h
' a
Cé;z 5“2‘4; T
v o= 7 P, ‘ﬁ;_§3“2€;’)> y = F Q‘.)V
L7
_ Leg:
oG )
? €
T | eyq, (1-4)/L
~Cyt(1-%a/ L
ng:(Z"Sfu)
)fi’;z(?*ﬂ?z,)

We neglect the work of the shear stresses and consider only the normal

-
T “;Zx*“z%zw)gg—“—‘ r = r ¢,

stress T, = C x on the guadratic strain I? X%

2 (
%Aueﬂ jo—x rz.xxdv

o
(5250

Tix = Z\3x/ T Z\%x

where, as for the stringer

2 \Tx

and U'X is sssumed to be given by the engineer's theory of bending

Cy = --§—— + (Hﬂés%—ngz)*‘%

where P = PZ _1::1 is the axial force. We split the geometric stiffness

matrix as

K@ = KC?LL+ KGV

with T+
K@um’ J’ Cpux O ¢'ux dV

—
K@y = J’ ¢)vx O x (DVX dVv



Kﬁv is associsted with the large rotation about z, and Kéu with the
axial displacements (shortening plus bending distorsion)

With . .
G
0
o - 2P _ | -ei-4y/L
e Rk 66,0~/ L
téf@\'ﬁz‘“z)
N Z2<3Z2”2) /

we obtein immediately the well-known result [48]

-

Ke, = P sefl 36 30 03 (v-53)
30 . 36/l 3€/L -3 -3
3 -3 4L L
-. : 3 -3 L 4L

-~

The bending stress (Mt‘tf’;i—i- Mzﬂﬁz) y / I
integral since j tjdA = 0.
A

do not contribute to the

Tc compute KG

we need
—-f/L..
+1/L
& - 2%u _ | LD/
ux 5’;" -

6y (@6,-1)/L*
2y(34,-1) /L
\—2 y (5%2“’7)/ L
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Then G ™o (H2)
KG& = 6u+"KGu'FK6u

where we heve separated the contributions of the axiszl force P and of the end

™
moments Ml and Mz. For K@u_ we get
AL AL - . . -
AL . . ‘
) P 121/1% ~121/13 —e1/® ¢1/L?
K(w == e / / /2 / R (1v-94)
A 12I/1* -6I/1% 61/t
e . 41/, 2I/L
41/,
- / I
() Cﬂﬂ
Tc simplify the expressions for K@u. and KO we suppose that
3
| yiea = o
A
i.e., 8 doubly symmetric section. Then
. -1 1 L -]
. T~ . L
K I
Gu L . : ‘ (1V-95)
symm. ..
. M) S4A "
and similarly for I . It y + O |, the (4x4) elements of the
Gu A

right bottom corner do not vanish.

The contribution of KGLt is usually ignored in buckling problems.
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Iv.4 GEOMETRIC STIFFNESS OF PLANE STRESS TRIANGULAR ELEMENTS

Iv.4.1 Genersl Derivation

The initial stress or geometric stiffness KG of plane stress elements
finds spplication in the problems of large deflection and stability of two-
dimensional structures {(slices, plstes, shells) under predominantly in-plane
action.

We consider the trisngle 1-2-3 of Fig. 1.1 in the instantsneous or
present configuration r* referred to 2z right hsnded cartesian frame x-y-z,
the x-y plene determined by the 3 corners. This locazl cartesiasn system moves
with the element and measures its sctual geometry during & step-by-step solution.

To simplify the general derivation we make use of the following
assumptions:

(2) the element type does not change; this implies that for

refined displacement expansions (polvnomial order = 2):

element midsurface is approximately plane so that the
coupling of bending and in-plane forces is neglected;
sides are assumed to remein straight so that all

previously derived interpclsiion formulsas hold,; the error

introduced is very smazll if the locsl distortion is negligible

compared with the global displacements (see remarks st the end

of 1I1.1.1).

{(b) incrementel transverse displacements are function of x,y

alone, i.e., w =w(x,y).
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The vector of nodsl displacements is
T T, T T
ro—= Ju v w' > (I1V-98)

and the displecement functions in trisngulsr coordinstes

T

u(g;) = ¢TU v ) = (PTV Wt =@, w (IV-97)

The displacement gradients are

. T
wx

ILY(EM)‘I }' ¢;' ‘ (I1V-98)
. T
<vy<f«m‘(m -0, - T
_ T
xw}r{g") ; ) q)wy E
uz = -U’Z e WZ = 0

Proceeding as indicated in IV.3.2, we define nodal vectors for all

displacement gradients

s0 that

ux(ﬁ‘;) = ¢'€ u, , ete
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d
Evaluating (I)x , @, , @, end (bwy at the nodal systems of the

displacement gradients, we get

U, i
4 Wy &: . U . r
Wy ) Uw J
. / e
N _ - (IVv-99}
Uy v
4 Vy Y = \4 r
WY / ~ ' v\n{

The components of the guadratic strain tensor working on the in-plane

stresses are
T T T T
erz;x: u':q)eq)e Ux+vx¢5®evx+ w:d)g(be W,
T T T T T T
Elyy = Yy b P Uy + vy ¢, . Vy + Wy e e w, (IV-100)

T T T T T T

T T T T
+Vy Qe D Vi + Wi B P Wy + Wy @ P Wi
Initiel stress components are represented by

GA(ZI.@) = q)c- Ux ) etc (1v-101)
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end the thickness variation by

E(ﬁ-&)"‘"’ hr (pg £

Introducing Equations (IV-100), (IV-101) and (IV-102) into the genersal

(I1v-102)

expression (IV-90) for KG, we may express agein the final result in the

following block form:

g 7
Kﬁuu * ‘ J
KG = ) Kew - (IV-103)
iy “ KCJWW

which reflects the decoupliag (IV-97) of the displacement components and where

- T - .
T oyT . |
KG&LL: KC}vv‘ = Ah!_ L u v J Jxx ny U g (IV-104)
T
L J"Y JY‘J’ v J
with T T T
1 -
Joy = i j qaquccrx ¢g§¢€ dA (1V-105)
A
for Jyy and J’W replace O, by (57 and TA)’ , respectively; no new

integrals need to be evaluated.

For the bilock KGWW we have 2 similsr expression, but with Uw 3 Vw
ang @, in (IV-104) and (1V-105).

If the transversal displacement law is the same of the in-plane

components ((pw=¢ }, the three blocks K@uun KGW: Kwa are identical.
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Finally, if we consider only the geometric nonlinearitiy introduced by

the transverse displacements (iarge rotations), we can delete the first two

diagonel blocks and use

(I1V-106)
‘ * Kﬁww

Iv.4.2 Constant Strain Trisngle

The initia] stress field and all displacement gradients are constant

over the element. For constant thickoness we get

Y Say = Ty

Using Eguation [I1I-3)

I weg find for each block of t<ﬁ
O RN T
K, uw=K w Kawy = | b, &, : 1
LD @3

For arbitrary thickness varistion we can replece h by its area average

{I1I-8) without error.
This simple derivation should be contrasted with the long anzlytic
computation performed in [48 ), or the unnecessary appeal to geometiric arguments,

“natural’ strains and losds, etc., in [18] and [14].

The confusion of materizsl

snd spatiazl coordinates is deplorasble.
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iv.4.3 Linearly Varying Stresin Triangle

The injtisl stress field is assumed to be linear and determined by the

. T .
corner values, i.e., D& = Qﬁ Cfx ; etc. Then for s constant thickness,

integrals (IV-105) for the in-plane blocks become

o= g [ €40 gTan -
A

2 2 1 2 1 2

JO*H“ 12 6 2 O+ 11 2 2 icxs (IV-108)
L1 o2 2 2 2 6

with samilar expressions for J” and ny . Blocks K(::uu gnd K(’JW

are easily constructed from (IV-104) by using submatrices U anc V¥ given by

Equations (III-15), where actusl triangle dimensions should be employed.

If the variation of W(ﬁé) is only linear, Jxxw . Jyyw and nyw
become scalars
T {
J = J% 0, dA =
A

o = R T (O Opr ), €iC

If the wvzriation of W is parabolic, Kﬁuum KGW = Kﬁww

Any other variaztion for stress components and thickness may bs assumed.

For instance, if the stresszs field is parszbolic and determined by their corner

and midpoint values, and the thickness is constant,

y 1 f 600 | -2 0-1] ~2 -1 07
T 1 0-2-1 Ok 4+ 0 6 0|8, + —1-2 0 O,
L . -1-2 -1 0 -2 La o 6
(IV-109)
(12 8 4 KRN 12 4 8] ]
+Is124 Oxi + | 412 8 g, g s (4 4 4|0,
La 4 4 L4 8 12 kgqﬂJ
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V. APPLICATION OF TEE LINEAR STRAIN TRIANGLE
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V.l LINEAR ELASTIC PROBLEMS

vV.1l.1 Procedure

The following examples have been selected to illustrate the application
of the linear strein triangle (LST) to some problems of linear elasticity. To
simplify the comparison with snalytic scolutions, only isotropic material was
considered.

All LST meshes were processed by a digitasl computer piogrsm using single
six nodal point triangles as basic elements; the equilibrium eguations were
solved by a block 5.0.R. iterative technigue accelerasted by group relaxation
based on energy balance [17]. The internal stresses at the nodal poin‘s were
averaged over all contributing elewments hsving the same material properties,

A new and more efficient production program which mekes use of sn eight
nodal point quadrilateral as basic block and a large capacity band solver for
nodal displacements, is described in Appendix III; a fifth exemple snalvzed with

this program is presented there.

V.1.2 Cantilever Beam

A 4:1 cantilever beasm is loaded with 2 parabolicslly varying end shear;
the root is considered to be completely fixed. Four idegzlizations were con-
sidered (Fig. 5.1).

Meshes A-1 (CST) and B~1(LST) have 180 degrees of freedom each (after
B.C.'s have been imposed) and thus directly comparable. Likewise meshes A-2

(CST) and B-2(LST), each with 576 degrees of freedom.
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A comparison of end deflections and some internal stresses is presented
in Fig. 5.2, For this problem, the elasticity solution coincides with the
beam theory, except in the proximity of the built-in end where the fuil
clamping condition constitutes & mixed problem of elgsticity for which there

is no closed form soclution. The velue given as theoretical end deflection

P

3
§, = TL | 4x5Y PL _ 5 25583
o 3E] 2 EH

is exsct if the root section is free to werp but points A, B and A' (Fig. 5.1)
are fixed. Therefore gth is an upper bound for the exact tip deflection Szx
on the other hand, end deflections (direct influence coefficients) obtained
from a compatible finite element analysis are lower bounds. An inspection of
the values given by both LST meshes indicates that SLh is very close to Sax
and that their error is less than 1/2000 in any case. Normsl stresses are
predicted with & similar degree of accuracy when compared with the besm theory
et a certain distance from the root. Both CST meshes are quite stiff; even
the finer ideslization yields an end deflection 5% below the correct value,

The veriation of the shear stress 'ny at & typical section away
from the support is interesting: the element stresses for the fine CST mesh
oscillete sbout the exact curve; the nodal point stresses obtsined by Wilson's
weighted averaging scheme [17] are significzntly better st internzl points,
but a high residual stress is recorded at the boundary. The corresponding LST
mesh produces z perfect fit of the parabola by strezight lines.

Stress computer plots for the fine meshes are presented in Figs. 5.3 to

5.6. They were produced by linear interpolation of averaged corner nodal
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stresses over a2 C8T element; for s LST mesh each triangle is divided into four
by Joining the midpoints and the aversged nodsl stresses at corners znd mid-
points {no longer the exsct average of the adjscing corner values) tsken as
corner values for the subdivided mesh.

The LST mesh gives & better representstion of the stress concentration
at the root {Fig. 5.4) and less residusl stress at boundery points (Fig. 5.5).
It should be noted, however, that the performance of the CS87T is particulsarly

poor for the simuletion of bending deformation of slender structures.

V.1.3 Circular Hole in Tension Plate

This example was intended fo test the performence of the higher order
element for s problem of stress concentration due to gecmetry. The plate and
losd system sre depicted in Fig. 5.7. Only s quadrant was gnalyzed; the four
finite element ideslizstions (genersted by a small computer progrem) are
piczented in Fig., 5.8. Both CST snd LST meshes were employed.

Plots of 67//P gt the symmetry section y = 0 for the four LST meshes
are compared in Fig. 5.9 with Howland's gsnalytic solution for a plate of finite
width [53]. This solution should not be considered as extremely exact since
it waes evaluated numerically from a series of extremely poor convergence,
especially away from the hole.

The compariscn of stress concentration factors obtained with both types
of elements (Fig. 5,10) indicates that the behavior of the CST is not so poor
as in the first example; superior deformation characteristics of the LST are

partially compensated by a better fitting of the curved boundary for the same
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number of degrees of freedom. Consistently smaller CST concentrestion factors
are caused by the fsct that the value tsken as boundary stress is actually
representstive of the stress at an internal point (within the edge elements).
Stress contour graphs for LST meshes No. 2 and No. 4 sre presented in
Figs. 5.11 and 5.12., If the latter is considered as exact, the stress pastterns

of mesh No. Z may be regarded as sufficiently asccurate for many practical purposes

V.1.4 Circular Disk Diametrally Loaded

This is a classical example of stress concentration csused by concentrated
loads. The two LST idezlizations for a guadrant of the disk sre shown in Fig.
5.13. The quadrilaterasl subdivision was generated as a system of equally
spaced bipolar coordinate curves, except nesr the poles (load points), There-
fore the corner points lie on two orthogonsl fsmilies of circles, which are
also the isostatics.for this problem.

Results of the analysis are presented in Figs. 5.14, 5.15 and 5.16 in
the form of computer plots of stress contour lines for both meshes and for the
exact solution applied to the nodzl points of mesh Neo. 2,

The. high degree of accuracy that may be attained for the stress patterns
is evident. The most sensitive varistion is thast of the tensile principsal
stress (jmax which is theoretically constent szlong the diameter x = O
except at the load points, where infinite compressive stresses are necessary
to restore eguilibrium. This singularity is reflected in the instability of

the contour lines for the elements near the load.
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v.1.5 Buried Concrete Pipe

This example illustrates the versastility of application of the finite

ziement method to problems with different materials, and the capability of

the eight nodel point gusdrilaterzl composed by four LST elements to simulate
bending deformations. Fig. 5.17 shows the probliem and the finite element
ideaiization; since we are desling with 2 plane strain problem, modified
psrameters E' and v were input for the plane stress program. Results for
the concrete tube &re presented in Fig. 5.18 and are self-explanatory. Stress
contours of soll stresses were slso printed by the program but not reproduced

here.

v.2 ELASTOPLASTIC PROBLEMS

V.2.1 Procedure

All examples were processed by the computer program for elastoplastic
plane stress problems described in Appendix IV. The step-by~step anzlysis
may be carried out considering either small {(i.e., infinitesimal) or finite
displacements. In the first case, the instantaneous stiffness consists only
of the conventional pert and is eveluated in the initisl geometry. In the
case of finite displscements, the geometric stiffness for a quadratic
variation of initial stress (IV.4.4) is added, in-plsne coordinztes and
thicknesses are actualized, and the incremented rotsted stresses are trans-
formed to actuasl (x-y) stresses after each step. The midpoint rule (IV.1.5)
was used for the numericel scolution; two displacement sclutions are required

2t each step.
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NZAN
RNZANZAN

MESH A-1 - 128 CS5Ts

N
<

i .,
\\ i

MESH B-2 - 128 LSTs

FIG. 5.1-CANTILEVER BEAM AND FINITE
ELEMENT IDEALIZATIONS
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DEFLECTION AND NORMAL STRESS
Tip Deflection Stress Gx
Element iesh §= Vo at X=9" Y= ¢g"
cst A=l 0.30556 51.225
A2 0.34188 57.342
18T B-1 0.35506 59.145
B-2 0.35569 60,024
Beam Theory
{(upper bound for vc) 0.35583 60,000

SHEAR STRESS VARIATION AT X = gv

MESH A-2 (CST)

—— Beam Theory

¢ Klement Stresses
(plotted at the level
of centroid e )

® Nodal Point Stresses
{weighted average)

NESH B-2 (L3T)

—— Beam Theory

¢ NKodal Point Streases

FPig. 5.2 - Cantilever Beam: Comparison between L3ST and
CST Meshes.
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Y
0
p = 8 ksi
RENNNENEERE
é E = 30000 ksi
v = 0.25
h = 1"

NI

- 10" -

Fig. 5.7 - Plate witn a Circular Hole under
Uniaxial Tension.
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MESH NO. 1 MESH NDO. 2 17¢

FIGC. 5.8~ PLATE WITH CIRCULAR HOLE - FINITE
ELEMENT IDEALIZATIONS



MESH HC. 1

E3H NO, 3

i, %

MESH KO, 4

Analytic Solution (Howland).

Finite Hlewent Solution (stresses
averaged over contributing elements):
© Corner Foints;

¢ Ilidpoints.

Pig., 5.9 - Flate with Uirculer Hole: FPlots of c&/p
at the Section Y = 0,
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E% LST
J— {2 < Theory

CsT
o}
2 4 6 & o
No. of Subdivisions of 1/4 Hole
<> Theor
3 & ¢
:
O‘X/F gt B !
Q8T
2
ol
!
E
|
1 | |
!
0 i
2 4 & 8 o

No. of Subdivisions of 1/4 Hole.

Note: for the same number of subdivisione, the LST mesh has
aprroximetely > timee the number of degrees of fresdonm
of the 0ST =xesh.

Fig. 5.10 - Plete with Circular Hole: Comperison of LST

end CST Stress Concentration Factors.
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FIG. 5.11

PLATE WITH CIRCULAR HOLE -

STRESS PATTERNS FOR MESH NO. 2
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MAX. PRINCIPAL STRESS

SHEAR STRESS Ty,

C max

|
|

MIN. PRINCIPAL STRESS O ...

min

MAXIMUM SHEAR Tmax
(ISOCHROMATICS)

FIG. 5.12 - PLATE WITH CIRCULAR HOLE -
STRESS PATTERNS FOR MESH NO. 4
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EXACT SOLUTION

SIGMA XX

FIG. 5.14 -

CIRCULAR DISK

EXALT SOLUTION

SIGMA YY

STRESS PATTERNS

5
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Compacted Soil
E = 70000 psi
V=040

P2 ¥ =120pcf

SOfL
o
LY
X
ROLLERS oot
(u=0) Y R
FIG. 517  BURIED CONCRETE PIPE AND

FINITE ELEMENT IDEALIZATION
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The purpose of this research program watc merely to illustrate the
adequacy of the finite element snalysis based on the general incremental
technique described in Chapter IV. Accordingly. to simplify coding and
input desta, Von Mises yield criterion and isoctropic linear hardening were
assumed. However, any yield or hardening criterion, temperature, strain-rate
or strescs-rate dependence may be easily incorporated for a production program
capable of treating large systems. The besic orgsnization of the solution |

procedure would be the same,

V.2.2 Plestic Hinge Formation (Small Displacements)

A two~dimensional anal ysis of the development of plastic regions in
beams of narrow rectangular cross section (plane stress) wss carried out for

two cases:

{z) End~loaded cantilever beam with completely fixed
root {Fig. 5.193:

(b) Simply supported beam under concentrated central
load (Fig. 5.20);

An elagstic-perfectly plastic materisl wgth 2 yield peint of 10 ksi was
assumed. In the first case, and because of the assumption of small displacements,
the elastic neutral sxis (y = 0) remains as such during plastic deformetion,

i.e., their points do not displace in the x-direction, This conclusion was
numericelly verified by running the complete beam with & cosrse mesh., Conse-
guently, only the upper portion was considered and the points of the neutral

axis constrained to roll on lines x = constant (Fig. 5.20). For the simply
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supported beam nco such simplification is possible since the lsck of symmetry

of the load requires the considerastion of the entire cross section (Fig. 5.20).
Both cases were run by applying specified displacements &t the leoad

point; if the displacement at first yield is denoted by %y’ the increments

were

0.25 § up to 4.0 %
¥ ¥
0.50 %y thereafter

The maximum displacement of the load point wass 8. Sy in both cazses; the
critical sections are by then completely plastified. After complete rem0§31
of the loads, the residual stresses were obtained,

A complete step (2 solutions) reguired 23 sec. in csse (a) and 34 sec.
for csse (b) in an IBM 7094.

Stress contour lines for the critical regions were printed by the
computer at several stages aznd are presented in Figs. 5.21 to 5.26,.

The presence of shear sand transversszl stress produces interesting
effects on the tWOvdime%gional stress patternS. in case (3), the complete
end fixity causes the critical section to develop at approximately ¢.42 H
from the built-in edge. In case (b)), the wedge effect of the concentrated
load can be clearly noticed by the formation of two plastic zenes in the
upper portion of the beam; in the intermedizte (elastic) region we can observe
a reversal of the transverssl stress (jy and a sudden drop of the normal
stress G’X, which becomes positive for large plastification; beoth regions

finally merge near the neutral axis, but two small elastic cores remsin.
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Dimensionless load-displacement curves are shown in Fig. 5.27. The
applied force P is referred to the so-called "ultimate load" Pu which would
produce the 'plastic moment' Mp = dY h H2/4 at the critical section {x =
0.42 H for case (g}, x = O for case (») ). Displacements ? at the load
point zre divided by the elastic displiacement Seu which would take place
for P = Pu. Strictly speaking, in case (b}, yield would start at x = O
as soon as the load P is applied; however, becsuse of the finite element dis-
cretization, the first yield occurs at a finite P.

These loasd-displacement curves indicste that despite the assumption of
zero hardening, the lcad continues to increasse slowly even after the criticsl
section is totally plestified, becsuse cof the continuocus two-dimensional
stress redistribution. This phenomenon is more pronounced in the casse of the
beam loaded at the center, which exceeds the theoretical ultimste load of the

besm theory by st least 35%.

v.2.3 Piastic Buckling (Finite Displacements)

The 10:1 simply supported column shown‘in Fig. 5.28 wes analyzed for
inestability in the plastic range {(buckling in its x-y plane). The elastic
criticsl stregs is 100 ksi and the initisl yield point 10 ksi. The hardening
ig linear, with & plestic modulus Ep = E/100 = 100 ks1 Since the average
critical stress by the double-modulus theory is 3.6 ksi and by the tangent-
modulus theory 1 ksi [52], the column must buckle as socon as the midsection
is totally plastified, with 2 sharp decrease of the load.

The finite element ideslization of the upper hzlf is shown in Fig.

5.28. The displacement of the center point & of the simply supported edge
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was applied by increments of
0.125 SV up to 2.00 %y
0.250 & up to 5.00 %
y y
0.500 %y thereafter

where 8y‘is the displacement of A =t first yield. To avoid locsl yielding
near the load, the thickness of the last four elements was doubled.

In order teo achieve a2 smooth numerical behavior during buckling, the
column was given an initisl sinusoidsl eccentricity of amplitude e = 0.01",
which represents 1/1200 of the totzl span and 1/30 of the radius of giration.
The elazstic normal stresses varied by + 3.3% with respect to the mean value.

Inestability took place as soon as the midsection was plastified.
The convex side unloaded elastically; then the normal stress G% reversed
to tension and finally yielding occurred sgain (Fig. 5.29). The process was
stopped when the lateral deflection exceeded 5 in. (Fig. 5.30),; st such stage
the column behaves like 2 shsllow arch and the two plastic regions are
confined near the midsection: the rest of the column unloaded elastically
under s continuocusly decresgsing load.

A messure of the accuracy of the integration scheme is provided by the
fact that the exsct yield surface was never exceeded by more than 5% =t any

nodal point.
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L=72" -
BEAM AND LOAD SYSTEL!
Shaded ares is the region
represented in Figs. 5.21 to 5.26.
Same materisl properties of
cantilever beam {Fig. 5.1%9).
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¢
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FINITE ELEMERT IDEALIZAJION OF RIGET PORTION

Fig. 5.20 « Plastic Hinge Formetion: Centrally-losded

Simply Bupported Beam.
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FIG. 5.2t PLASTIC HINGE FORMATION

ELASTIC SOLUTION AT FIRST YIELD (4d/d,=1)



NORMAL STRESS O SHEAR STRESS Txy

> N 1D ) e
/ ’ N -0
&B 5 4/ -05 ‘isl

Y
jL N

TRANSVERSAL STRESS G_Y

PLASTIC WORK Wp

END-LOADED CANTILEVER BEAM

NORMAL STRESS O SHEAR STRESS Txy

TRANSVERSAL STRESS U‘; PLASTIC WORK Wp

CENTRALLY-LCADED S.5 BEAM

FIG. 5.22 PLASTIC HINGE FORMATION
SOLUTION AT d/d,° 2.00
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FI1G.5.24 PLASTIC HINGE FORMATION
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FiG. 5.26 PLASTIC HINGE FORMATION

RESIDUAL STRESSES AFTER UNLOADING



P/P
A u
Centrally-loaded :
B. S.V/7
1.2 :3,”_
1.0 »7 /'f'
ﬁdad
Cantilever Beam
0.8 / | /
0.6 b 5
Crse
“1st yield 4 ue
Cantilever 11.80 1.28
0.4 2,5. Been 20.00 1.18
0.2
O.
0 1 2 3 4

P is the load which would produce the theoreticsal
plestic moment Mp at the critical section.

3,s 1is the glastic deflection which would take place st P=P .

® 15 the displacement of the loaded point.

Pig, 5.27 = Plastic Hinge Formstion: Load-Displacement Curves.
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x .
§ =—u‘ preecribved
v‘=0
T ¥
P
‘ ‘— o] L]
¢ ‘]
gll) ]
E = 10000 ksi
E = 100 ksi
e o L=120" ¥ = 10 kei
c Y = 0.25
h = 1*
Hw12"
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&' : _ Eccentricity ¢°
. : .c‘ﬂo.ol‘
COLUME AND PINITE ELENINT IDEALIZATIOXN
LOAD SYSTEM OF UPTER FORTICN

Pig. 5.28 -~ Plestic Buckling of a Simply Supported Column.
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~10 0 10 ksi -10 G 10 ksi

| ]
8/5y=- 1.00 /6, =1.125
(First Yield)

%/Sym 1.625 'e'>/5y = 2.50

— —

N
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Pig. 5.29 - Plastic Buckling : Normal Stress DMstribution

et Midspan Section.
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V.3 ELASTIC STABILITY PROBLEMS

vV.3.1 Procedure

A small program was written in order to test the application of the
geometric stiffness matrix of the LST to probliems of static stability of
linear elastic structures in plane stress or plane strain. The externsl
lozding is assumed to be conservative and proportional to a pesrameter. The
gnslysis consists of the following steps.

(a) Formation of the conventional stiffness KC for the complete

structure. Elastic displacements are determined by solving
KC r= K (v-1)

where i? is the load vector of arbitrary amplitude. Elzstic stresses
are evaluated from these displacements.

{(b) Element geometric stiffnesses are computed by using the
elastic stresses and the initisl geometry, in agreement with the classical
formulation (see IV.3.1}). The complete ﬁ(e is assembled exactly

as l(c ; both are symmetric band matrices.

{(¢) The eigenvalue problen
K.v = 2 KGV (V-2)

is most conveniently solved by inverse iteration, since we seek only the
smallest root >W == :Kcr . The m-th step is
(Ke=21) wim = Ke v(m
WM o max (wfﬂ) _
K (V-3)
vt y(m) / A

L 12l

where the shift "s" is applied only every 5 steps, using the estimate 0.9 Aﬁﬂ};
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@ )
As nw-d-oo)() +5)—*b A1 and v0ﬂ-ﬂb'v1 (buckling eipenmode
normslized with ! as its largest component). When 4 digits of ’)1 are

secured, the process .s interrupted and the Rayleigh gquotient

T
/ IR et S (v-5)
cr T
v K,v
provides 7 or 8 digits for :\Cr
To insure theat \’O} contains components of the first mode, all its

entries not restrained by kinematic boundery conditions are set to 1.
. i s M 3
It is important to impose boundary conditions on both V( ) and KGV(m"

at each step.

vV.3.2 Simply Supported Column

A simply supported column of rectangular cross section and slenderness
retic L/r = 48 was selected to test the progrem. One-hzlf of the column was
idealized by 2 coarse mesh of 12 LST elements (Fig, 5.31). A finer mesh of 48
elements, obtzined by subdivision of easch triangle into four, was also
considered.

The critical vazlue given by the beam theory, including shear correciion,

2
. E ] Y IS
GA 2

where (5 = 6/5=1,2 for rectangular cross section, and G = E/2(1+Y )
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For ¥ = 0.25, the results were
' Time for
Degrees of o\ Complete
Mesh Freedom cr Anslysis
12 elem. €8 99,6897 6 sec.
48 elem. 244 9.6411 23 sec.
Beam theory 8.7033

Since the critical values given by a consistent anziysis with compatible
finite elements ar. upper bounds of the exsct solution, it is evident that
both meshes have provided more accurate valiues than the simple beam theory.
The latfter underestimates the effect of the shesr stresses, while the finite
element snalysis accounts for the two-dimensionsl nsture of the problem.

The eigenvector shape differed from the sing function only in the
fifth decimal pisce in both cases. Four cycles of iteration were necessary

to get Acr within 0.01% before the Ravleigh guotient was spplied.
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Totel Load
AP

i

E—1.00 ¢ L ne
Y = 0.25 © =3
h = 1"
H =§l /
"
COLUMN AND COARSE PINITE ELEMENT

LOAD SYSTEM IDEALIZATIOR OF UPPER PORTION.

Fig. 531 « Elastic Buekling of & Simply Supported Column.
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COREIGENDA

Formulz (I-5): the "x" in ”ai$i(x)" should be a beld-face

(veetor) symbol. Likewise for the third line from bottom,
. "y yn

n X XL .

RS A X’

®
"x," and "yj”. The last of Egquations (I-16) should read R —
=D in, I
i i i
3y 8%

The name of the vector displayed at the bottom should be

£ it
$3".

1

In the Wth line from the top, the word "cancellation” has

been mispelled.
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Pages €5
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Page TO

Page T1

In Tatle L, formuls no. 4, the triangular coordinates of

roint "f" should be 0,1,0.

In Teble & {con't), formuls noc. 5, the triangular coordinates
of peints "%, "e" and "@" (as represented in the Figure)

should be

b 81’ Bl, o
eroys B By
d 51’ oy Bl
The second of {II-kb) should read "R = B, -K ol

Ir the fifth written line from the bottom,("N_)" should be
W

In Egquation {(II-42): Mu_" and "w_" should he reprezented

28 bold-face symbolco,

In Eguetion (II-43): symbols "¢ " ana "$." should be changed

= B
_to ”'@ 1t a’:[G—_ ”QES"!
'p - h
Eguation {(II~51) should read
T < T
27 #IV rorodmo o= orTS 0 Ll

In Equetion (II-59), "¢." shouid be "¢.".
W

In the second of (II-65), an asterisk is missing on the

second "'Q".
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Page
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In Equation (III-L9), "r" should be "7,

Line 5 should read ”(vx+uy)/2” and line 6 should read
T —1 2”.
(vx hy)/

Py
-~ s » + —- = " - * - - *
Equation in line 7 should read Rf Rf KlO Kb@ Rfo .

Fig. 4.2: there should be & factor %'multiplying ”A?U”.
In Equation (IV-3), the right hand side should read

= S (BT 4 0F) slau) av o+ 7. (1h 4 4T (fu.) as
5 i Bm i

-

In Equation (IV-6}, the subindex of "o " in the first berm
of the right hand side should be "i".

. . ;- i i
In the right nand side of (IV-T), "F~" gpg "7°" should be

n=ln i - . B . - " wos 1 +
[ and "T77, and a A is missing before "u." ir the lact
i
term.

In second written line from the bottom, "{IV-17)" sheould

be ”{IV‘—T}”.
Second last written line: "(IV-10b)" should be "(Iv-Bp)T,
Third last written line: "(IV-17)" shoulé be "IV-18)",

5
Fiftk line: in the expression of JZ’ a % factor should

“(52 + 52 + 52)1!"

multiply N 5 3

In Equation in line 4, & factor "h" is missing in the last
right hand side.

In Equations {IV-38) and (IV-39), the coefficient "a
should be deletegd.




In the line following (IV-L0}, "5" was left out.

[

A%

O
1

Page

In right hand side of (IV-43), "3"should be replaced by ”V§

Page 132 - In Equation (IV-57), the matrix should be labeled "symmetric!,

Likewise in Equation {(IV-62) on page 13h.

Page 147 - Fifth written line: "ewkward" hes been mispelled.

1

Seccend line of second paragreph: should read "geometric”

instead of "geometry'.

Page 148 - First line of second parasgraph: a bar over "K." is missing.

G
-
Fage 131 - 1In Equation (IV-85), a transpose sigrn is missing for ¢knﬁ
2
. . . . \ . . T
Likewise in (IV-88}: +the last factor should be ¢p .
- %
Page 15k - (first line}, 3155 {Figs. 4.9 and L.10) and 156 (fifth last
iine): the axial force "P" should be ”«%(Ph—P?)” instead of
= & L
"o P T,
2 71
Page 154 - The fourth Equetion should read
T 1
= o T >= ...
& T 1
Page 217 - Eguation (41-7) should read
— o] o] — -~ 2 - ,:‘1
& 2 B o g5 2uk
z 2 2 2 J
O _ 3% &, -2aB
T, = T, - t
O =] 1 k] [ < :5* o]
o . R 2 .2 ‘
208 208 o a°-87) 68 B o a°-B
e [N -




Page 218 - Fouations (A1-10) should be
¢y, = cfl ah + (2c§2 + hcﬁh) QESE + cgg Bh
Chp = cgl Bh + (2c§2 + hcfh) a%g% + ng uh
€y ¥ -++. &nd €y = ..., correct
) = - [cgz 82 cfl ae + (cf2 + ECEE} (o -Bﬁ)} o
cyy = [ci g% _ el o2 4 (c?2 +2ef) (6-B%)] o
Fage 232 - Third last line should read "either J or L’

Page 240 -~ 1In Fig. A3.5, the caption should read "For single tri-

angles, K-I is b

- ol - o + DL S R ST
Page 243 -~ The FORMAT for (n) should be "2k, ,EFE. 3"

Peges 262 and 263 - (computer list of PSE-LST) have beer transposed.

Page 279 -~ Arrey subscript in lires 30 and 31 should be "I" znd not

"1, i.e., XMIK = XORD(I} apd vMIL = YORD(I),






