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ABSTRACT OF THE DISSERTATION

Improving precision of material extrusion 3D printing by in-situ monitoring and predicting

3D geometric deviation using Conditional Adversarial Networks

by

Ling Li

Doctor of Philosophy in Mechanical Engineering

University of California, Los Angeles, 2020

Professor Robert Candler, Co-Chair

Professor Pirouz Kavehpour, Co-Chair

The field of additive manufacturing, especially 3D printing, has gained growing attention

in the research and commercial sectors in recent years. Notwithstanding that the capabilities

of 3D printing have moved on to enhanced resolution, higher deposition rate, and a wide

variety of materials, the crucial challenge of verifying that the component manufactured is

within the dimensional tolerance as designed continues to exist. Material extrusion 3D print-

ing has long been established for rapid prototyping and functional testing in many research

and industry fields. However, its inconsistency and intrinsic defects (surface roughness and

geometric inaccuracies) hinder its application in several areas, most notably “certify-as-you-

build” small-batch prototyping and large-batch production.

In this study, we present an approach to reduce both inconsistency and the 3D geometric

inaccuracies of products fabricated by material extrusion.

1. This work developed and demonstrated an approach for layer-by-layer mapping of 3D

printed parts, which can be used for validation of printed models and in situ adjustment

of print parameters. This in situ metrology system scans each layer at the time of

printing, providing a 3D model of the as-printed part. A high-speed optical scanning
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system was integrated with a Material Extrusion type 3D printer to achieve in situ

monitoring of dimensional inaccuracies during printing, which leaves the door open

to implement a closed-loop feedback system to compensate geometric errors during

printing in the future and fabricate “certify-as-you-build” products.

2. This work trained machine learning algorithms with data from this scanning system

and predicted 3D geometric inaccuracies in new designs. Eight Conditional Adver-

sarial Networks (CAN) machine learning models were trained on a limited number of

scanned profile images of different layers, consisting of less than 50 actual images and

50 generated images, to predict the 3D geometric deviations of freeform shapes. The

generated images were produced by randomly combining and cropping the actual im-

ages without any distortion. These CAN models produced predictions where at least

44.4%, 87.6%, 99.2% of data were within ±0.05 mm, ±0.10 mm, ±0.15 mm of the

actual measured value, respectively.

3. This work developed an Iterative Forward approach to redesign the Computer-Aided-

Design model by reverse engineering using the trained machine learning models, allow-

ing for compensation of print imperfection at the design stage, in advance of the first

printing. The compensation algorithms with eight different sets of different parame-

ters were evaluated. It has been proven that the Iterative Forward approach improved

the geometric deviation of the predicted profiles by making compensation to the CAD

model.
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CHAPTER 1

Introduction

1.1 Motivation

Additive manufacturing (AM) has been broadly utilized to fabricate parts in free-form shapes

with internal cavities, which are normally not practicable or are highly priced using conven-

tional machining procedures. One of the challenges that hinders the extensive use of AM

in manufacturing is that 3D printed parts suffer from poor consistency of geometric dimen-

sioning and tolerating (GD&T). In traditional manufacturing industries, products are put

through the requirements of the geometry specification (ISO 10303 [30]), tolerances (ISO

1101 [31] and ASME Y14.5 [32]), and surface finish to ensure the functionality. In AM, how-

ever, the differences in the manufacturing process compared to traditional methods (e.g.,

build direction, layer thickness, etc.) and current limitations of AM processes make it dif-

ficult to achieve and maintain the specification and tolerance of complex freeform surfaces

and internal functional features.

1.2 Research Objectives

Motivated by the need to simultaneously reduce both job-to-job inconsistency and intrinsic

3D geometric inaccuracies, which are caused by inexact geometry conversion and the layer-

by-layer printing mechanism of material extrusion, we propose an approach for predicting 3D

geometric inaccuracies based on CAD models and in situ monitoring of the printing process.

This method involves training conditional adversarial networks (CANs) on a limited set of

primitive shapes to foresee the 3D geometric deviations of freeform complex shapes, which
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could then be employed to reverse engineer and redesign the CAD model to compensate the

geometric defects. This approach also integrated a laser sensor with a material extrusion

3D printer to accomplish in situ monitoring of dimensional inaccuracies during printing

[33], which leaves the door open to implement a closed-loop feedback system to counteract

geometric errors during printing in the future and fabricate ”certify-as-you-build” products

on the very first attempt.

1.3 Orgnaization of This Document

The remainder of this document is organized as follows:

Chapter 2 provides a detailed literature review of the state-of-the-art additive manu-

facturing techniques, the Material Extrusion type 3D printer that is used in this study, the

in-situ monitoring technique, and closed-loop feedback system implemented in AM, and the

statistical and machine learning models that can describe and predict geometric deviation

from CAD models.

Chapter 3 introduces the metrology system that was built by integrating an optical

scanning system with a Material Extrusion 3D printer and validated by using another high

precision scanning system, including the hardware, optimized smart scan strategies, pro-

grams that can automatically generate customized scanning tool path and perform data

acquisition on demands.

Chapter 4 presents the training and testing of the Conditional Adversarial Networks

machine learning models on the cross-sections of the CAD models and the scanned profiles

from our in-situ metrology system to make predictions of the scanned profiles on CAD

models at the stage of design even before the first time of printing.

Chapter 5 develops two approaches, the Direct Reverse method and the Iterative For-

ward method, to redesign for Additive Manufacturing by implementing the predictions of

the CAN machine learning models and trying to reduce the areas that are lack of material

or should not have been printed.

2



Chapter 6 concludes this document by providing a roadmap for potential future research

directions.
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CHAPTER 2

Background

2.1 Seven Categories of Additive Manufacturing

Seven process classifications for additive manufacturing have been defined by ASTM F2792-

12a: Binder Jetting, Directed Energy Deposition, Material Extrusion, Material Jetting,

Powder Bed Fusion, Sheet Lamination, and Vat Photopolymerization. Table 2.1 summaries

common names used for each category.

Binder Jetting is a 3D printing process that deposits a liquid bending agent to connect

powder particles (Fig. 2.1(a)). After one layer is formed, the powder bed lowers and new pow-

der is spread uniformly onto the top waiting for drops of a liquid binding agent (Fig. 2.1(b).

This process repeats and Layers of material are bent to form a 3D object. Binder Jetting can

print various materials including metals, sands, and ceramics. It is also capable of printing

very large objects, like room-sized structures. Binder Jetting is distinctive that it doesn’t

involve heat source, which usually makes the process time sensitive and leaves residual stress,

during the printing process. Without using a heat source, binder jetting is often more cost-

efficient and faster compared to other additive manufacturing processes. However, some of

the materials do need post-processing treatment, such as curing, sintering, or infiltration, to

improve strength, depending on each application. For example, parts are often infiltrated

with infiltrant that has a lower melting point to improve mechanical properties. Limited by

the Binder Jetting process, parts with enclosed cavities should be avoided since the powder

will be trapped inside of the hollow enclosure.

Directed Energy Deposition (DED) is a 3D printing approach that uses a laser or electron

beam to melt a metal wire or powder onto a build stage or an existing part (Fig. 2.2). This
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Classification Defined
By ASTM F2792

Processes

Binding Jetting (BJ) Powder bed and inkjet, drop-on- powder
Directed Energy Deposition
(DED)

Laser engineered net shaping, directed light fabrication,
direct metal deposition, 3D laser cladding

Material Extrusion (ME) Fused Filament Fabrication (FFF), Fused Deposition
Modeling (FDM)

Material Jetting (MJ) Drop on demand
Powder Bed Fusion (PBD) Laser Sintering, Selective Laser Melting, Electron Beam

Melting
Sheet Lamination (SL) ltrasonic additive manufacturing, laminated object

manufacturing
Vat Photopolymerization
(VP)

Selective Lithography, DLP

Table 2.1: Common names of seven additive manufacturing processes.

Figure 2.1: Working mechanism of Binder Jetting [1]: (a) rinting, and (b) drying and spread-
ing.
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technique resembles metal welding. By using multi-axis robotic arms, the metal wire or

powder can be fed and melted from nearly any angle, which makes it very convenient for

repairing. Depending on the material size and power of the heat source, DED can print

rapidly, which makes it suitable for printing very large parts with loose tolerances.

Material extrusion 3D printing, also known as Fused Filament Fabrication (FFF), is

an additive manufacturing (AM) technique achieved by extruding melted thermoplastic or

pliable material on a layer-by-layer basis (Fig. 2.3). Material is first fed into a heated nozzle

and then extruded to a stage that is relatively moving regard the nozzle. Once a layer is

being printed out, the print head and stage will move away from each other and start printing

the new layer. Since the new layer is printed on the last layer, the overhang structure with

a large negative slope needs proper support. Compared to processes that ultilize powder,

material extrusion is often used to generate hollow structures with different levels of infills.

Material Jetting is a 3D printing technique that is very similar to 2D inkjet printing.

Unlike 2D inkjet printer jets ink, material jetting 3D printer deposits drops of photosensitive

viscous liquid resin. The liquid resin is first warmed up to achieve optical viscosity. Then,

tiny droplets of material are deposited and solidified by UV light. Like the 2D color inkjet

printer, the material jetting printer also has a line of print heads for different kinds of

materials (like structural and support materials) (Fig. 2.4) or materials with different colors.

Although the polymerization process solidifies the liquid material, no post-curing is necessary

for the material to achieve its optimal properties since the layer height (droplet size) is very

small.

Powder Bed Fusion (PBD) is a type of additive manufacturing process that uses a heat

source (either laser or electron beam) to fuse the top layer of the preheated powder together

(Fig. 2.5). Similar to Binder Jetting, the powder bed is recoated and a 3D part is printed

on a layer-by-layer basis. PBD has the ability to print plastics, metal, ceramics, and glass.

Sheet Lamination is an additive manufacturing process that bonds sheets or ribbons of

metal (or paper) together using ultrasonic welding (or adhesive) before or after the required

shape is cut from the layer by CNC, laser, or knife (Fig. 2.6). This process is also a layer-by-
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(a)

(b)

Figure 2.2: Working mechanism of Directed Energy Deposition: (a) powder feedstock [2],
and (b) wire feedstock [3].
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(a) (b) (c)

Figure 2.3: Working mechanism of Material Extrusion [4]: (a) syringe-type, (b)s crew-type,
and (c) gear-type print head.

Figure 2.4: Working mechanism of a multi-material jetting 3D printer [5].
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Figure 2.5: Working mechanism of Powder Bed Fusion [6].

layer process and each layer experience a cutting and bonding process. The Sheet Lamination

process is low temperature and consumes little energy.

Vat Photopolymerization is another additive manufacturing process that uses liquid pho-

topolymer. Unlike Material Jetting, the photopolymer is cured in a vat of liquid photo resin

instead of a tiny photopolymer in air. There are many heat sources are used to cause the

solidifying of a polymer due to cross-linking or degrading, including point light source (like

focused UV light, laser) and plane light source (like digital projector, Liquid Crystal Dis-

play). There are two approaches in the Vat Photopolymerization (Fig. 2.7). The top-down

approach puts the light below the resin tank, and the part is printed upside down on the

bottom surface of the build platen. The bottom-up approach puts the light source above the

vat and the part is printed on the top surface of the build plate. Vat Photopolymerization is

capable of printing parts with high resolution and smooth surfaces. Thus, it is widely used

in medical modeling to make anatomical replicas based on computer scans. However, parts

that are fabricated by Vat Photopolymerization need post-printing cleaning processes to get

rid of the extra liquid resin. Similar to PBF, Vat Photopolymerization cannot print void

enclosure since liquid resin will be trapped inside.
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Figure 2.6: Working mechanism of Sheet Lamination [7].

Figure 2.7: Working mechanism of Vat Photopolymerization: (Left) Bottom-up approach,
(Right) Top-down apprach. [8, 9].
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2.2 Material Extrusion 3D Printing

Material extrusion, especially the Fused Deposition Modeling (FDM) process, was first in-

vented by Scott and Lisa Crump in 1988 to build their daughter a toy frog. Later, they

patented the FDM technology and became the founders of Stratasys in 1989. Due to the

constraint of trademark ”Fused Deposition Modeling”, ”Fused Filament Fabrication” was

used by the members of the ”RepRap” project, which is in the form of a free desktop 3D

printer that can replicate itself by printing its plastic parts. After the commercial patent on

FDM [34] expired in 2009, many consumer-friendly low-cost FDM-based 3D printer commu-

nities and manufacturers emerged.

A diverse set of materials can be extruded by Material Extrusion 3D printing. Among

them, the most widely used has being thermoplastics, such as Acrylonitrile Butadiene

Styrene (ABS), PolyLactic Acid (PLA), High Impact Polystyrene (HIPS), Thermoplastic

PolyUrethane (TPU), Polyethylene Terephthalate (PET), PolyEther Ether Ketone (PEEK),

and Polypropylene (PP). As opposed to ”thermoset”, thermoplastic materials liquefy when

heated, and this process is completely reversible. The more heat is directed, the less viscous

they are. By contrast, thermoset plastics can only be heated once and will not be softened

before being burned when heated again. Table 2.2 compares the common thermoplastic

materials used in Material Extrusion 3D printing.

Material extrusion 3D printing is well-established for rapid prototyping and functional

testing in the last twenty-five years. It has been widely used in automotive, aerospace,

biomedical engineering, dentistry, consumer products, food industry, and the form tooling

and casting areas.

Material extrusion 3D printing has been widely used to make complex anatomical replicas

for medical education and surgical planning [10, 35, 11, 36, 37]. The 3D printed complex

anatomical replicas, which were derived from computed tomography (Figure 2.8(a)), made a

viable role in reconstructive surgery. El et al. [10] fabricated skulls for different human sizes

(infant, female, or male) and evaluate the accuracy of those models. Smith et al. [11] used
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Thermoplastic
Materials

Pros Cons Applications

ABS

impact resistance,
resistance to corrosive
chemicals, very easy to

machine, great electrical
insulation, low cost, lost

cost (∼$1.5/pound)

weatherability,
solvent resistance,
hazardous when

burned

LEGO bricks,
keyboard caps, tool

housing

PLA
biodegradable, does not
release toxic fumes when

burned

slow rate of
biodegradability when
not controlled, unable

to mix with other
plastics in recycling

food packaging,
medical applications

HIPS

low cost, impact and water
resistant, lightweigth,

dissolvable, dimensianlly
stable

high printing
temperature,

ventilation required

support material used
with ABS, coutertop

point of purchase
displays, indoor signs

TPU

rubber-like elasticity,
thermal stability, resistant
to chemicals and solvents,
low warpage and shrinkage

hygroscopic, prone to
clogging extruders,

difficult to
post-process

vibration-damping
and shock absorption

components

PET
recyclable, low cost,

durable
low heat tolerance

FDA-approved
packaging for food,

beverages, medicines

PEEK

exceptional chemical
resistance to organics, acids
and bases, high mechanical
strenth at high temperture

(>250 ◦C), very good
resistance to wear,

abrasion, and fatigue,
excellent dimensional

stability

expensive
(∼$60/pouond in raw

form)

aircraft components,
wear and load bearing

applications

PP

low density, high flextural
strength, loow coefficient of

friction, reistant to
moisture, chemicals, and

fatigue, good impact
strenth, good electrical
insulator, easy to repair

high coefficient of
thermal expansion,
poor resistance to
solvents, UV and

scratches, difficult to
paint, high

flammability

food packging,
consumer goods,

automotive, medical
applications

Table 2.2: Comparison of common thermoplastics used in Material Extrusion 3D printing.

12



FilaFlex flexible filament and PLA filament to print the vocal cords with movable arytenoids

on the cricoid cartilage (Figure 2.8(b)), which can illustrate the action of intrinsic laryngeal

muscles and offer rich possibilities for anatomy. This approach unchained the anatomist

from restrictions of inflexible hard models.

(a)

(b)

Figure 2.8: (3D printing of anatomical models for education. a) fabrication process of
the skull replica using CT and material extrusion 3D printing [10]; b) muscles, bones and
cartilage of upper airway and neck [11].

Material extrusion 3D printing has also been used for devices/scaffolds for clinical re-

construction and implants [38, 39, 40]. Kirby et al. [40] used micro-extrusion technology to
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print a biodegradable scaffold and load it with various kinds of growth factors. The scaffold

was implanted in a sheep to reconstruct a critical size bone defect as shown in Figure 2.9.

Figure 2.9: Use 3D printed scaffold in the regeneration of critically-sized bone defects. a)
A 3D printed polycaprolactone scaffold with honeycomb pores larger than 500 microns. b)
specific mixture was injected into the scaffold. Selected images of X-rays and CT show the
reconstructions of the implant at 6 months: c) and d) the defects failed to bridge without
growth factor inclusion; e)-h) different levels of bridging were observed with groups of specific
growth factor inclusion.

Besides, material extrusion 3D printing is well-established for pharmaceuticals for preci-

sion medicine applications [41] and concrete for construction [42].

Notwithstanding the popularity of material extrusion 3D printing, the inconsistency of

printing quality and intrinsic defects (surface roughness and geometric inaccuracies) hinders

its potential applications to not only the ”certify-as-you-build” small-batch prototyping but

also large-batch production.

Compared to the popular plastic-based material extrusion process, metal extrusion is

a fairly new process. Filament for metal extrusion is made of thermoplastic material and

metallic particles. The printing process is the same but post-printing sintering is required to

burn out the plastics and melt the metal particles together. Although metal extrusion has

some limitations: the high percentage of the polymer as binder makes sintering difficult; part

shrinks a lot due to binder content burnt out in the furnace; metal parts has a lower density
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compared to solid material caused by small void from deposition and sintering processes.

Metal extrusion still carries forward the advantages of plastic-based material extrusion, such

as very low cost and fast build times compared to PBF or DED, which make it extremely

suitable for rapid prototyping.

2.3 In-situ Monitoring

In situ monitoring of the printing process is an effective way to eliminate inconsistency

of print quality. The prevalent methods used for in situ monitoring are machine vision

[12, 15, 14, 43, 13, 16, 44, 45, 46, 47, 48, 49, 24], heterogeneous sensors [17, 50, 19, 51, 14,

52, 53, 20, 21, 18, 54, 55, 56], and acoustic emission [22, 57, 58, 59, 60, 61, 23].

Those methods are employed to observe nozzle clog [59, 17, 46, 55], stage and nozzle

motion (position, velocity, acceleration, and vibration) [20, 14, 19, 18, 51, 53, 56], as well as

stage and nozzle temperature [53, 51, 19, 21, 56].

Statistical methods [16, 22, 61, 43, 12, 59, 62] and Machine Learning (ML) [48, 52, 14, 60,

23] classification methods have been applied to decide whether a printer is working normally

or not.

2.3.1 Machine Vision

Machine vision is the technology providing image-based automatic inspection and analysis

[63]. This goal can be achieved by using a single camera. Baumann et al. [12] used a

single consumer-grade-video-camera to recognize and monitor the relative motion between

the extruder and the printed part. Error alert will be triggered if 1) the extruder is too far

away from the printed part when it should not be, 2) the extruder is moving too fast, 3)

filament is not recognized when it is missing (Figure 2.10(a)), or 4) the printed part is not

recognized due to deviation from the model. Nuchitprasitchai et al. Lyngby et al. [13] also

implemented a single camera to take images of the printed workpiece in real-time. Since the

camera was calibrated, its location and orientation were used with the CAD model of the
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object to generate a rendered image of the workpiece. Then, the real images were compared

with the rendered images (Figure 2.10(b)) in real-time to determine if the printing process

is abnormal. Roberson [14] applied an online image-based approach to analyze and quantify

the surface roughness of specimens (Figure 2.10(c)) produced by cylindrical turning with an

average prediction error of less than 8%.

Nuchitprasitchai et al. [15] used two cameras to build an open-source low-cost reliable

platform. This approach reconstruct a 3D model of the printed part using two 2D images

(Figure 2.11(a)). This system is capable of monitoring the printing process and determine if

the printing is normal or failed in real-time. Liu et al. [16] mounted two high-speed digital

microscopes close to the extruder to achieve effectively monitoring of the as-printed surface

quality during the entire printing process (Figure. 2.11(b)).

However, there are several limitations of machine vision methods. First, it requires a lot

of computational power to analyze the tens of high-resolution images per second. Second,

object detection is very sensitive to the change in lighting. The reflections due to movement of

the stage or extruders can destabilize the object detection algorithms. Third, machine vision

can only be used on materials that have a different color and texture than the background.

2.3.2 Heterogeneous Sensors

Vibration sensors (or accelerometer) have been widely in 3D printing monitoring. Tlegenov

et al. [17] used a single vibration sensor to detect the feed force on a bar mount of the

extruder as shown in Figure. 3.17. By extracting the natural frequency and acceleration

from the data, he successfully detected the nozzle clogging. Li et al. [18] instrumented two

vibration sensor (7251 A-500, single channel with 500 mV/g output on the build platform and

65-10, three channels with 10 mV/g output on the extruder) to in-situ monitor the printing

process (Figure. 2.13). By using the least squares support vector machine algorithm, the

nozzle clogging state was identified in real-time with an accuracy greater than 90

In addition to the use of a specific sensor, a heterogeneous sensor array was also imple-

mented in a material extrusion 3D printer to collect data from a diverse set to sensors. Rao
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(a)

(b)

(c)

Figure 2.10: Use a single camera for in-situ monitoring. a) The filament is missing between
the extruder reference line (yellow) and printed object bounding box (red) [12]. b) Images
show the similarities (green) and differences(red) between the real images and the rendered
images on layer 71 and layer 73 [13]. c) Correlation of images and surface roughness [14] .
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(a)

(b)

Figure 2.11: Some applications of machine vision for in-situ monitoring using two cameras.
a) Reconstruction of a 3D model from two 2D images [15]. b) Real-time online monitoring
of surface quality [16].
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Figure 2.12: Schematic of the two types of the extruder and the analogical beam model for
feed force detection using a vibration sensor [17].
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Figure 2.13: Flow chart of in-situ monitoring of printing process using two vibration sensors
[18].
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et al. [19] instrumented commercially available thermocouples, accelerometers, an infrared

temperature sensor, and a video borescope to identify printing failures online in real-time. A

nonparametric Bayesian Dirichlet process mixture model and evidence theory (Figure. 2.14)

were used to analyze the data and detect the printing anomalies and failures with an aver-

age accuracy of 85%. Long et al. [20] instrumented a low-cost attitude sensor to a Delta

3D printer. The attitude sensor is capable of providing three-axial angular velocity, vibra-

tory acceleration, and magnetic field intensity signals of a moving object. They employed a

SEAEN approach, which combines an echo state network (ESN) with a sparse autoencoder

(SAE), to extract features from the high dimensional data and diagnose fault state of the

3D printer (Figure. 2.15).

(a)

(b)

Figure 2.14: An application of the heterogeneous sensor array. a) Schematic of the printer
setup with multiple sensors; b) Flow chart of the algorithm used in [19].
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(a)

(b)

Figure 2.15: a) Experiment setup of the attitude sensor and Delta 3D printer. b) The
framework of the SEAEN approach in [20].

Various kinds of sensors have been employed in in-situ fault diagnostics of the 3D printer.

However, as a result, the cost of the overall monitoring system is rising, let alone the difficulty

and feasibility to implement the sensor array to your own 3D printer. In addition to the

cost, the real-time monitoring requires strong computational power, which becomes another

obstacle for using a heterogeneous sensor array. Instead of processing high dimensional data,

Lu et al. [21] reported a Physics-Based Compressive Sensing (PBCS) approach to reduce

the amount of data collection by reconstructing the full data from sparse data points in both

spatial and temporal domains. They reconstructed the thermal field of a printed part with
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a data compression ratio of up to 163.96 and an average error of up to 2.54% (Figure. 2.16).

(a)

(b) (c)

Figure 2.16: Use of the Physics-Based Compressive Sensing approach to reconstruct the
trasient temperature field from sparse samplings [21]. a) The schematic and mesh model
of the workpiece. b) The temperature at four points was measured. c) An example of the
reconstructed temperature field.

2.3.3 Acoustic Emission

Acoustic emission is the emission of acoustic/elastic waves in solid material when the irre-

versible changes (like cracking or plastic deformation) occur due to temperature changes or

external mechanical forces. Li et al. [22] used the acoustic emission approach to identify the
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warping defects by sensing the elastic waves in real-time. The prediction results show strong

correlation with the printing states (Figure. 2.17).

Although acoustic emission is widely used in the metal processing industry, it still requires

complicated signal processing to remove noise and extract features (Figure. 2.18). And

results are usually indirect and qualitative (not quantitative), which hinders its application

in additive manufacturing.

2.4 Closed-loop Feedback System

Most methods caught printing defects in real-time to abort the fruitless printing and save

both time and material. A limited number of material extrusion 3D printing systems with

closed-loop feedback control [16, 54, 55] have been reported to sustain the quality of the

printing process.

Liu et al. [16] developed a machine-vision based closed-loop feedback system to analyze

real-time images from two microscopes and improve the printed layer surface quality. By

using a PID controller, this approach fixed an underfill defect by adjusting the feed rate to

the optimal value after 6 additional layers of printing (Figure. 2.19). However, this approach

only improved the top surface quality of the as printed part, but in reality, the largest factor

that contributes to the surface quality of the overall part is the stair-step effect on the side

surface.

Sitthi-Amorn et al. [24] built a 3D printing platform with an integrated machine vision

system, which allows for implementing a closed-loop feedback loop to realize print correction

at the time of printing. The high-resolution imaging module was based on a full-filed optical

coherence tomography, including a Michelson interferometer, with a scanning diameter of 15

mm and a resolution of 12.7 um/pixel (Figure. 2.20). By scanning the top surface of the

printed part once every 15 layers, an additional correction layer was computed by comparing

the measured depth map and the ideal surface. This correction layer was then sent to the

printer to be printed out on top of the scanned layer.
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(a) (b)

(c)

Figure 2.17: Use of the acoustic emission approach to monitor the distortion area of the
printed part in real-time [22]. a) The schematic of the system setup. b) An example of a
detected elastic wave (AE hit) and the related features. c) The relationship between detected
elastic waves and different distortion degrees of the printed part.

25



Figure 2.18: A flow chart shows the typical complicated data processing of signals obtained
by acoustic emission [23].

Figure 2.19: An online closed-loop feedback system to improve the surface quality of the
printed layer. a) Controller performance; b) surface before adjustment; c) surface after the
adjustment. [16]

(a) (b)

Figure 2.20: An example of a machine vision based closed-loop feedback system [24]. a)
Schematic of the imaging module based on the optical coherence tomography. b) Depth
maps of the printed surface before and after correction.
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2.5 Predict Geometric Deviation From CAD

The methods in Section 2.3 can be used to in-situ monitor the printing process to eliminate

inconsistency of print quality. However, even if printing conditions are assumed to be con-

sistent between different printing sessions, material extrusion 3D printing still has trouble

with inaccurate geometry and surface roughness caused by inexact geometry conversion and

the layer-by-layer printing mechanism (Fig. 2.21).

(a) (b) (c) (d)

Figure 2.21: a) A ”teardrop” shape [25] Computer-Aided Design (CAD) model was first
translated to b) an approximate triangular meshed stereolithography (.stl) file, and then
further converted to c) an estimated machine tool path (G-code). d) shows the round corner
and stair steps caused by layer-by-layer material extrusion.

Both statistical models [64, 65, 66, 27, 28, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78,

79, 80, 81, 26, 29, 82, 83, 84] and machine learning models [85, 86, 87, 88] were established

to characterize and foresee the shape deviation.

Huang’s group [26, 28, 27] demonstrated a methodology to predict and compensate the in-

plane (x-y plane) geometric deviation of arbitrary freeform shapes from CAD model based on

data of a limited number of cylinders and polyhedrons. The key points of this prescriptive

modeling strategy are (Figure. 2.22): 1) transforming in-plane geometric errors from the

Cartesian coordinate system into the polar coordinate system (PCS) [27]; 2) connecting the

model of cylindrical shapes to those of polygons by butting them from their circumcircle

[28]; 3) extending the strategy from cylinder and polyhedron to freeform shapes by making

an approximation of the freeform shapes using either polygons with local compensation or a
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series of sectors with different radii [26]. The average shape deviations of the compensated

freeform shapes were improved by 50%. Furthermore, Sabbaghi et al. [79] collaborated with

Huang’s group and presented a three-step adaptive Bayesian methodology to predict in-plane

shape deformation of polygons and straight edges in freeform shapes by analyzing data from

a small sample of previously fabricated cylinders and a single regular pentagon. The observed

deviation fell in the 95% central posterior predictive intervals. Zhu et al. [87] worked with

Huang’s group and proposed a method that incorporated an affine transformation perspective

and Gaussian process multi-task machine learning to represent the in-plane shape deviation

of cylinders, regular pentagons and regular hexagons of three sizes.

Huang’s group [29] also developed a prescriptive model for out-of-plane deformations

caused by complex inter-layer interactions. Similar to the prescriptive modeling of the in-

plane deformation, the out-of-plane was depicted in the spherical coordinate system. This

model managed to describe the out-of-plane deformation of half-cylinder part and half-

hexagon parts with limited accuracy (Figure. 2.23).

Ferreira et al. [88] further collaborated with Huang’s group and presented Bayesian

neural networks (NNs) that anticipated in-plane (freeform) and out-of-plane (vertical semi-

cylinders) deviation separately with higher accuracy.

Nevertheless, these models are incapable of forecasting real 3D (both in-plane and out-

of-plane) geometric deviation of freeform shapes. All of the 3D printed objects were scanned

by a desktop scanner after the printing is done.

Huang’s group [25] recently proposed a random forest machine learning model using a

set of predictors generated by the triangular mesh .stl file to envision real 3D dimensional

inaccuracies of the outer surface of freeform shapes. Eight predictors were extracted from

the triangular mesh of the design. The first three predictors of a vertex are the x, y, and z

coordinates of each vertex in the triangular mesh to represent the physical position of the

printed part in a print bed. The next four predictors of a vertex are the median and the span

of the elevation angle and azimuth angle from the normal vectors, which are expressed in

spherical notation with radius 1, of the triangular faces adjacent to each vertex. These four
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(a)

(b)

(c)

(d)
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(e) (f)

(g)

(h)

Figure 2.22: A prediscriptive modeling methodology of in-plane (x-y plane) geometric errors
of 3D printed freeform products. a) Schematic shows the idea to extend the modeling from
cylinders to polyhedrons and further to freefrom shapes [26]. b) Represent the geometric
error (shrinkage) of a cylinder under the polar coordinate system. c) Visualization of the
geometric deformation in Cartesian coordinate system and the polar coordinate system [27].
d) Examples of polygons and their circumcircles [28]. e) Make approximation of a freeform
shape using a polygon with local compensation. f) Make approximation of a freeform shape
using a series of sectors with different radii. g) The printed convex and concave freeform
shapes with circumcircle a radius of 2 inches. The cross marks the center of the related
circumcircle. h) The shape deviation of the convex (Left) and concave (Right) freeform
shapes before and after compensation [26].
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(a)

(b)

(c)

Figure 2.23: A prescriptive modeling methodology of out-if-plane geometric errors of 3D
printed freeform products. a) Represent the geometric error (shrinkage) of a cylinder under
the spherical coordinate system. b) (Left) Half cylinder parts with diameters of 0.5 in, 0.8
in, 1.5 in, and 2 in. (Right) Half hexagon parts with circumcircle radius of 0.5 in, 2 in, and
2.5 in. c) The measured and predicted out-of-plane deformation of the parts shown in b)
[29].
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predictors show the significance of the orientation and curvature of the surface surrounding

a given vertex. The last one predictor of a vertex is the distance to the z-axis which is

placed at the center of each part. And this predictor represents the linear thermal expansion

effects of the part when it is undergoing the phase change of the material during printing.

Random forest method was used to make predictions of the 3D geometric deviation based

on the predictors. The model produced fairly accurate predictions (38.3% of deviation pre-

dictions were within ±0.05 mm of actual measured value) for a new shape from a training

set consisting of just three shapes (Figure. 2.24).
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(a)

(b) (c)

Figure 2.24: Make predictions of real 3D geometric deviation using predictors from triangular
mesh of the computer-aided designs and random forest machine learning algorithm [25]. a)
A picture shows the four 3D printed objects that are scanned by a desktop scanner. b)
The deviation values of the right three shapes were used to train the random forest machine
learning model. And the ”teardrop” shape on the left was used to validate the model. c)
A comparison between the predicted values (Left) and the measured values (Right). The
table shows the percentage of the predicted geometric deviations within given intervals of
the measured values.
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CHAPTER 3

Metrology System

3.1 System Setup

A material extrusion type 3D printer (Fig. 3.1) (System 30M, Hyrel International Inc., GA,

USA) with an X, Y, and Z position accuracy of 50 um, 50 um, and 10 um, respectively, was

operated with an MK1-250 hot flow print head with a nozzle diameter of 0.5 mm to print

Acrylonitrile Butadiene Styrene (ABS) filament feedstock with a diameter of 1.75 mm. The

printed trace was preset to be 0.55 mm wide and 0.2 mm thick.

A surface scanning laser confocal displacement meter (LT-9030M, Keyence Corporation,

IL, USA), which is capable of measuring the displacement within ±1.0 mm of the refer-

ence height with a resolution of 0.1 um, was integrated with the printer to achieve in situ

monitoring during printing. The 3D printer was programmed to move the laser sensor as a

non-extruding print head using the printer’s built-in actuators. The Z and X/Y coordinates

of the scanned surface profile were collected from the laser sensor and the 3D printer, respec-

tively, using a data acquisition board (USB 6008, National Instruments, TX, USA) under

the control of a LabVIEW program. Two microfabricated alignment marks (Fig. 3.2(a)),

which have a circle (�3.138 mm, depth 150 um) in the center, were placed in the top left

and bottom left corners of the stage. By scanning and locating the center of the circle

(Fig. 3.2(b)) on the alignment marks, the scanned profiles of different layers were aligned to

reconstruct the 3D profile of the printed part even if the stage was shifted unexpectedly.
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Figure 3.1: (Left) System setup of the in situ monitoring system (Right) A zoomed-in picture
shows the laser sensor moves in parallel with the print head during printing/scanning.

(a) (b)

Figure 3.2: (a) Microfabricated alignment mark and its (b) scanned profile. The black circle
in (b) shows the calculated minimum circumference of the circle on the alignment mark in
(a).

3.2 Working Mechanism

Figure. 3.3 shows the working mechanism of our system. The blue blocks show the normal

working flow of a typical material extrusion 3D printer.

The Computer-Aided-Design (CAD) model is first exported as a stereolithography (STL)
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file, which is a format supported by most 3D printers. A STL file tiles the surfaces of any

shapes using triangles which have no overlaps or gaps between each other and this process

is also called ”tessellation” (Figure. 2.21(b)). For each tiny triangle, the coordinates of the

vertices and the unit normal vector which points outwards of the 3D model are stored in the

STL file. Since the curved surfaces are approximated with numerous tiny triangles in the

STL files, geometric errors caused by the approximation is already introduced to the final

printed object. These geometric deviations can be reduced by using a finer size of triangles

when exporting or using another more advanced file formats like AMF and 3MF.

Figure 3.3: Flow chart shows the working mechanism of our system.

The 3D printer will then use a Slicing Software to convert the 3D design to 2D slices and

further to the tool paths of the extruder. In this study, a free slicing software “Slic3r” was

used to convert the STL files to the G-code. G-code is the most widely used programming

language in computer-aided manufacturing to describe the tool paths. Then, the G-code is

sent to the hardware of the 3D printer to print out the physical object.

The orange blocks indicate how the laser sensor was integrated with the 3D printer.

First, the scan method is chosen based on the CAD model including scanning area, res-
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olution, speed, and which layers you want to scan. Then, a piece of customized G-code

for scanning is automatically generated by a Matlab Program. These codes were further

combined with the original G-code and fed to the 3D printer together. During the printing

process, the 3D printer will send periodic signals which will be further paired with the laser

sensor signal to extract the coordinates of the points on the printed parts. And the scanning

profiles are stored in the format of the point clouds, which are just groups of points with

known coordinates. Furthermore, the scanned profiles were used to train a machine learning

model to make predictions of the final printed part based on its CAD model. Finally, a

compensation algorithm is developed by iteratively comparing the predicted geometry gen-

erated by the trained machine learning model with the ideal CAD model and then redesign

the CAD model to minimize the difference.

3.3 Scan Strategy

For this study, the laser sensor was affixed in a location normally occupied by one of the

print heads. The code was generated to cause the 3D printer to “print” a desired path with

the laser sensor. Using this method, it is possible to design a custom scan path for the

sensor simply by inputting a print path into the printer via G-code. The scanner location

was then read from the printer, allowing for reconstruction of the scanned image. Thus, all

built-in functions for print head control can be leveraged for commanding the laser sensor

by modifying its path in the G-code. The printing and scanning speeds were set at 1800 and

300 mm/min, respectively. The scanning of printed layers runs after the printing of every

layer, or periodically after a specified number of layers.

A MATLAB program was developed to generate the G-code for scanning and combine

it with the original G-code automatically. The sampling frequency of the data acquisition

system is checked in the MATLAB program. As shown in Figure. 3.4, the laser sensor

settings are required to calculate the maximum sampling frequency of the laser sensor by

carefully taking all sampling cycle time into consideration. The sampling frequency of the

data acquisition system should not exceed the maximum sampling frequency of the laser
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sensor to avoid duplicated data points in the output. Given the scan rate and the scan

path separation, which is the distance between the adjacent scanning points, a minimum

sampling frequency was calculated to ensure that at least one data point was collected at

each scanning point. The sampling strategy of scanning can be burdensome for surfaces

that are not smooth and possess bumpy or noisy texture. Depending on the sample size,

the inspection time could be unnecessarily prolonged, or the measurement accuracy could

be degraded. The gridpoint distribution sampling strategy was implemented in this work

due to its low scan time relative to other methods [89]. The spacing of the grid pattern was

set at 0.1 mm.

Figure 3.4: A screenshot of the MATLAB program shows the laser sensor settings and some
basic parameters for scanning.

Two types of design strategies were developed in this study, the Static Scan and the

Dynamic Design. The Static Scan, as shown in Figure. 3.4, is to scan a simple rectangular

area with given boundaries. The static scan strategy is acceptable for a small part but will

be very inefficient for a large scanning area. Thus, the Dynamic Scan, which can customize

the scan path based on the geometry of each CAD model was developed. As shown in

Figure. 3.5, the dynamic scan method can be chosen from “Basic Square”, “Smart Solid”,

“Smart Sparse”, and “Smart Boundary”. The “Basic Square” scan method is similar to the

Static Scan strategy but with self-adjusted boundaries based on the size of the part. The
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“Smart Solid” scan method automatically covers the whole crossssection area of a part at

a given height with a distance from edges set by users. If the center area of part’s cross-

section is less important than the areas near the edges, the “Smart Sparse” method can be

used to save you some data storage space by sampling fewer points in the center area. If

you only care about the areas near the edges, the “Smart Boundary” scan method can be

implemented to save both the data storage space and the scanning time by only scanning

the boundary areas. Fig. 3.6 is an example showing that 56% percent of the scanning time

can be saved by using the Smart Boundary method instead of the Basic Square method.

As shown in Figure. 3.5, you can choose to scan every several layers to further reduce the

scanning time. Figure. 3.7 shows the options for generating G-code for printing and scanning

with or without using the alignment marks. The “Estimated Total Print + Scan Time” was

calculated automatically when generating the G-code.

Figure 3.5: A screenshot of the MATLAB program shows the Dynamic Scan strategy.

One thing to note is that the laser sensor (Keyence LT-9030M) used in this study is a

1D sensor, which means it needs to work with the motion stage (built-in motors of the 3D
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Figure 3.6: Examples of four customized smart scan methods using the grid point distribution
strategy, each with a different number of sampling points. Black points, dark blue lines, and
red circles represent sampling points, scan path, and the cross-sectional boundary of a printed
sample, respectively.

Figure 3.7: A screenshot of the MATLAB program shows the settings for generating G-code
for printing and scanning.

printer) to perform 3D scanning. During scanning, the laser sensor is mechanically moving.

Thus, the scanning speed can not be too high to avoid mechanical vibration. In this study,

the scanning time is 6 times of the printing time because the scanning speed was set at 300

mm/min compared to 1800 mm/min for the printing. However, if you use a 3D laser sensor
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that has a buit-in optical motion stage inside, the scanning time can be ignorable compared

to the printing time. For example, the 3D laser sensor Keyence WI-010 can scan a 10 mm

by 10 mm area in 266 ms with 80,000 sampling points. However, using the 1D laser sensor

LT-9030 with printer’s built-in motor at 300 mm/min, it will take 202 s to scan the same

area. Thus, by upgrading the 1D laser sensor to a 3D laser sensor, the scanning time can be

reduced to 1/750.

In some instances, molted plastic was observed dripping out of the nozzle when the hot

extruder was moving between printing processes. Several actions were taken to minimize the

excess material being printed to the next layer. First, in the slicing software, the extruder

can be programmed to extract the filament back by 2 mm when the extruder is about to

move without printing. This is the normal method for the common material extrusion 3D

printer to avoid material dripping in between printing. However, this method only works

great if the moving time is very short (e.g., several seconds). And this method results in a

lack of material at the beginning of the next printing. So there are two other methods that

will work with the first one. The second method is to turn off the heater of the extruder if

the moving without printing (e.g., the scanning process) will take a longer time (more than

several minutes). This method helps resolve the material burning issue in the extruder which

will cause the material to appear black at the beginning of printing next time. However,

even with the help of a USB fan integrated very close to the extruder, it still takes time

for the extruder to cool down, and it will take another couple minutes to heat the extruder

which can start simultaneously before the scanning process ends. So anyways, some excess

material will be present. To address this issue, a sacrificial pattern (like a skirt) was printed

around the formal part to consume and block the redundant material that was observed to

drip while the print head waited during the scanning process. The skirt sacrificial pattern

can be automatically generated by the slicing software and can have a height as tall as your

printed part. Depending on the specific printer being used, this sacrificial pattern may not

always be required. You can even manually put a sacrificial structure next to the printed

part and program the 3D printer to swipe the nozzle before the formal printing of the next
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layer.

3.4 Data Acquisition

In this study, the data acquisition focuses on acquiring X, Y, and Z coordinates of the

sampling points on the as printed part. The Z coordinates can be directly extracted from

the laser sensor signals. However, since the software (Repetrel version 3.83) of the Hyrel

System 30M 3D printer did not provide/output the location of the extruder/laser sensor in

real-time. Thus, extra effort was made to retrieve the X and Y coordinates of each point

from the G-code. The G-code of printing usually consists of 3 sections: header to prepare

the printing, commands to execute moving/printing, and the epilogue to end the printing.

Figure. 3.8(a) shows the typical commands for moving and printing. It can be seen that

when the (i+1) the line is about to be executed, the laser sensor had already moved to the

point indicated by the ith line. Thus, the idea is to send a signal by using the (i+1)th line

to manifest that the laser sensor had arrived the points with coordinates as shown in the ith

line. The Hyrel System 30M 3D printer has AUX ports (Figure. 3.8(b)) which can be turned

on and off by using “M7” or “M9” correspondingly (as shown in Figure. 3.8(c)). The output

of the AuX ports is 12.5 V voltage signals which can be collected using the data acquisition

board. These voltage signals were further used to pair the X, Y coordinates from the G-code

with the Z coordinates from the laser sensor signals (Figure. 3.8(d)).

In this study, both the AUX signals and the laser sensor signals were from floating signal

sources which were not connected to the ground of the building but was connected with an

isolated referenced ground point. To reduce the noise and provide greater accuracy, Differen-

tial (DIFF) signal connection was used for the laser sensor signals (Figure. 3.9(a)). Instead,

the AUX voltage signals were working as digital signals which did not require high accuracy

of the data. Thus, Referenced Single-Ended (RSE) signal connection (Figure. 3.9(b)) was

used for the AUX signals.

A LabVIEW program was written to collect the data. Besides the AUX signals to extract
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(a)

(b)

(c)

(d)

Figure 3.8: Get the coordinates of the scanned profile from G-code and laser sensor signals.
(a) G-code for printing ONLY. G1 - working move. X/Y/Z - coordinates of the next points
to move to. F - moving speed. E - absolute length of the filament to feed into the nozzle.
(b) A picture shows the AUX port on the 3D printer. (c) Modified G-code for both printing
and scanning. M7/M9 - turn on/off Aux ports. (d) Schematic shows how to pair X, Y
coordinates with the Z coordinates using the AUX signals.

the X and Y coordinates from the G-code, another AUX signals which was controlled by

“M8/M9” in the G-code was also implemented to trigger a USB camera to take some images

of the as-printed part before and after the scanning of each layer. The first generation

of the data acquisition program (Figure. 3.10(a)) used a single “For Loop” for both data

collection of three signals (including laser sensor, AUX, and camera) and data-consuming.

Here, the LabVIEW program accomplished two types of data consuming tasks: 1) saving

the laser sensor signals and AUX signals to a TXT file which will be further analyzed with
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(a) (b)

Figure 3.9: Analog input modes for floating signal sources. (a) Differential signal connection
for the laser sensor signals. (b) Referenced Single-Ended signal connection for the AUX
signals. Both images are from the User Guide for NI USB-6008/6009.

G-code using MATLAB; 2) processing the camera signals and trigger the LabVIEW Image

Module to take images on demands. However, the Image Module takes so much longer to

achieve image capture than simply saving data, which delayed the single “For Loop” and

further caused data missing in saved AUX signals. Since the AUX signals are paired with

the G-code in order, one data point missing will cause all following data points to be shifted

and mismatched with the G-code, which is not acceptable. Thus, a new design pattern - the

Producer/Consumer design pattern - was implemented in the second version of the LabVIEW

data acquisition program (Figure. 3.10(b). The Producer/Consumer design pattern aims at

enhancing data communication between multiple loops running at different speeds, which is

exactly what we were looking for. By using this design pattern, all 3 signals were collected

using a Producer and temporarily saved to a queue, which is a data structure following a

First In First Out rule. Then two consumers were used to save the laser and AUX signals

and trigger a camera to capture images. Even though the data were retrieved from the queue

at different rates, there was no data missing that occured in the process. Figure. 3.11 shows

a series of images taken in-situ after the layer was done printing and before the scanning

started.

A partial Kaplan turbine with a logo that rotated through the structure thickness was
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(a)

(b)

Figure 3.10: LabVIEW block diagrams of the data acquisition program: (a) 1st generation
- single “For Loop” and (b) 2nd generation - Producer/Consumer.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.11: Images were automatically taken on demands by using AUX signals to trigger
the Image Module to capture images in LabVIEW. (a)-(e) were images of the as printed
layer presented in chronological order.

printed and scanned every 5 layers in order to investigate a structure with complex features.

The scan path separations in both the X and Y axis were 0.5 mm. The scanned point clouds

in comparison with CAD models are shown in Figure. 3.12. To get a better view of the

inside structures, the scanned point cloud was sliced into four horizontal planes at different

heights (from top to bottom) as shown in Figure. 3.13.
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(a) (b)

Figure 3.12: Pictures and scanned point clouds in comparison with the corresponding CAD
models of the complicated hollow part.

3.5 3D Geometric Deviation

The scanned profile of the printed sample, which is also called a point cloud (PC), consists

of the coordinates of all sampling points. The scanned PC is usually noisy [90, 91]. Thus,

denoising (Fig. 3.14) was applied to the PC to remove the unphysical outliers whose average

distance to its k-nearest neighbors exceeds a threshold, where k is a constant number.

To evaluate the geometric inaccuracies of a printed object, its scanned PC must first be

aligned with the corresponding ground truth CAD model. The actual alignment operation

consists of two steps. First, convert the CAD model to a grid PC that is 4 times denser than

the sampling grid of the scanned PC. Second, use an iterative closest point (ICP) algorithm

[92] to align the scanned PC (“Moving”) (Fig. 3.15) to the CAD PC (“Reference”). ICP is

a method to find the optimal rigid transformation that registers two shapes. ICP iteratively

identifies the nearest neighbor of each point in the scanned PC from the CAD PC to minimize

the sum of squared distances between the paired points. The 3D geometric deviation was

defined as the distance between each point of the scanned PC and its corresponding nearest

neighbor from the CAD PC (Fig. 3.16).
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(a) (b)

(c) (d)

Figure 3.13: Slices in the X-Y plane of the scanned point clouds of the complicated hollow
part at (a) 6 ≤ z ≤ 8, (b) 3 ≤ z ≤ 5, (c) -1 ≤ z ≤ 1, and (d) -5 ≤ z ≤ -3. Here the Z
coordinates of the scanned point cloud are the same as those in the CAD design.

Figure 3.14: Outlier removal of the scanned PC of a printed UCLA logo.
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Figure 3.15: ICP was used to register the scanned PC to the corresponding CAD PC.

Figure 3.16: Illustration of 3D geometric deviation between CAD design and printed struc-
ture.

3.6 Metrology System Validation

To validate our in situ monitoring system, four UCLA logo samples (as shown in Fig. 3.6

and Fig. 3.17(a)) were scanned by both our system (Fig. 3.17(b)), as well as a high precision

optical 3D profiling system Wyko® NT3300 (Veeco Instrument Inc., NY, USA). The Wyko
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surface profiler has two modes: phase-shifting interferometry (PSI) mode for measurement

of smooth surfaces and vertical scanning interferometry (VSI) for rough surfaces. In this

study, VSI mode with a measurement range of 2 mm and a vertical resolution of 3 nm was

used to scan the surface of the printed UCLA logo sample (Fig. 3.17(c)(d)). Outlier removal

was then applied to the scanned profiles. The scanned point clouds obtained by Wyko and

our system were aligned to each other (Fig. 3.17(e)(f). The mean and standard deviation of

the 3D geometric deviation between two profiles were calculated as 0.00 mm and 0.02 mm,

respectively.
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(a) (b) Our system

(c) Wyko (d) Wyko

(e) Aligned (c) with (b) (f) Aligned (d) with (b)

Figure 3.17: (a) A UCLA logo was scanned by a Wyko surface profiler and our system.
(b) A scanned profile of the UCLA logo obtained by our system with Smart Boundary scan
method. The green boxes indicate the areas shown in (c)-(f). (c) A scanned profile of the
top of letter A by Wyko. (d) A scanned profile of the bottom of the letter L by Wyko. (e)
Aligned profiles of the top of letter A. (f) Aligned profiles of the top of letter L.
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CHAPTER 4

Predict 3D Geometric Deviation From CAD Using

CAN Models

4.1 Conditional Adversarial Networks (CAN)

Many machine learning methods, such as support vector machine (SVM) [60, 93, 58, 53, 94,

95, 96, 16, 97], random forests [93, 98, 25, 99], Näıve Bayesian [97], neural network (NN)

[97, 99, 100], and k-nearest neighbor [97, 101], have been applied in AM for tool condition

monitoring as well as defect detection and classification. Nonetheless, limited methods [25]

have been reported to predict the 3D geometric deviation of freeform shapes.

In this work, conditional adversarial networks (CAN) [102], a general-purpose solution

to image-to-image translation problems, were implemented to translate an input image of a

slice of a CAD model into an output image of the corresponding slice from the 3D scanned

profile, with color indicating the surface height of each point. CAN consists of an image

generator and an image discriminator. The generator is trained to map an input image and

a random noise vector to the ground truth image. The discriminator is trained adversarially

to detect the fake images (produced by the generator) from the ground truth images.

4.2 Image Dataset Preparation

It is widely known that machine learning relies on tens of thousands of training data samples,

which limits the application of machine learning in AM because only a limited number of

physical samples can be printed out for data acquisition. Fortunately, CAN has been shown
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to have an adequate performance on smaller datasets. For example, a CAN was trained

on a small dataset of only 400 images to translate day images to night images successfully

[102]. To train the CAN models to make the best predictions of freeform shapes on a limited

input dataset, samples in the input image dataset were carefully selected. By using the

Minimum Near-Convex Shape Decomposition [103], arbitrary shapes can be decomposed into

a minimum number of ”near-convex” shapes, which can be categorized as transformations of

circles, triangles, and quadrilaterals. In addition to shape, the orientation of part also has a

big impact on the final product and was carefully considered when the input image dataset

was established.

In this study, we printed and scanned 53 transformational samples in total from 3 primi-

tive shapes (circle, isosceles right triangle, and square) with different orientations and various

levels of transformation (Fig.4.1). The 3 standard primitive shapes were rotated from with

an increment of 15 degrees until they completely overlapped with themselves (Fig.4.1(a)(b)).

Both the isosceles right triangle and the square were transformed to quasi-circular shapes

with round or sharp corners (Fig.4.1(c)) to represent arbitrary ”near-convex” shapes. This

selection of shapes is chosen to account for the wide variety of geometry commonly found in

freeform additive manufacturing.

Each printed shape has 10 layers and every layer was scanned in situ during printing

(Fig.4.2(a)). The observed scanned profile (ground truth) image was paired with the image

of the corresponding cross-section of the CAD model. The input and output images of the

CAN models are 256 pixels by 256 pixels, which represent physical areas of 14 mm by 14

mm. For parts with cross-section larger than 14 mm by 14 mm, the cross-section shape will

be decomposed into multiple 14 mm by 14 mm areas to use the CAN models.

4.3 Image Dataset Expansion

After performing the image dataset preparation as mentioned in Section 4.2, there were

around 50 images in the image dataset for each layer. Although the CAN algorithm is already
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(a)

(b) (c)

Figure 4.1: Selected transformational shapes from 3 primitive shapes (circle, triangle, and
square) (a)(b) with different orientations and (c) various levels of transformation. Those
shapes were picked to maximize the diversity of features in the training dataset of the
CAN models since only a limited number of physical samples can be printed out for data
acquisition. The characteristic length for these shapes is 9 mm.

(a) (b)

(c) (d)
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(e) (f)

(g) (h)

(i) (j)

(k) (l)
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(m) (n)

(o) (p)

(q) (r)

Figure 4.2: 18 Pairs of images from the image dataset, each consisting of the input image
(left) and its corresponding ground truth (right), were used to train the CAN machine
learning model. (a)-(r)The input image (left) is a cross-section of the CAD model. The
ground truth image (right) is the scanned profile of the corresponding layer, in which the
color indicates 3D geometric deviation. The images are 256 pixels by 256 pixels, which
corresponds to a real area of 14 mm by 14 mm.

proved to work well for a small image dataset with 400 images, the total number of images

in our image dataset is still not enough. Several approaches were explored to expand the

current image dataset. Common methods to expand image datasets are taking more scans,
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flipping/rotating images, cropping images,combining images by overlapping empty space,

and image augmentations. Image Augmentation techniques includes resizing + cropping

images, shearing images, adding noise to images, and dilation + erosion of images. However,

one thing to note that the quality of printing is influenced by both the geometry (dimensions

and aspect ratio) and the orientation of the object being printed. Thus, any approaches that

will cause the deformation of the image are not acceptable. Finally, the only two methods

left are cropping and combining the images. The image dataset for each layer was expanded

by first randomly combining and then cropping the input images to 50 different images (256

pixels by 256 pixels). Figure. 4.3 shows examples of the generated images.

4.4 Tune Parameters

In this study, CAN was used to generate images of predicted profiles of a printed part based

on images of its CAD model. For best prediction results, parameters of the CAN model (λ

and patch size) were tuned to find a good balance between spatial sharpness and colorfulness.

λ controls how much L1 loss, the sum of absolute differences between the predictions and the

truth, is added to the CAN model. Small λ might introduce visual artifacts. On the other

hand, large λ leads to reasonable but blurry images. Patch size determines the scale of image

patches at which incorrect structures will be penalized by the discriminator. A smaller patch

size of discriminator receptive fields encourages greater color diversity. A larger patch size

tends to generate images with sharp structural features and colorfulness. After being trained

for 30 epochs on a training dataset containing 95 images, the CAN models with different

parameter settings were inspected on a test dataset consisting of 40 images. The predicted

profiles of one shape are shown in Fig. 4.4. All of the 2D predicted images were converted

to the 3D predicted profiles by inferring the geometric deviation of each pixel based on its

color. Then the predicted scanned profiles were compared with the real scanned profiles

(ground truth) and the error was calculated and statistically analyzed as shown in Table 4.1.

The error was defined as the difference between the predicted deviation of a point and its

corresponding real deviation. The CAN model with λ = 125 and patch size = 142 showed
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.3: 8 Pairs of images were generated by randomly combining and cropping images
to effectively expand the image dataset.
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the best performance, and those parameters were used in the following sections.

(a) Input Image (b) Ground Truth (c) λ = 125; PS = 142 (d) λ = 0; PS = 70

(e) λ = 50; PS = 70 (f) λ = 100; PS = 70 (g) λ = 125; PS = 70 (h) λ = 150; PS = 70

(i) λ = 200; PS = 70 (j) λ = 125; PS = 16 (k) λ = 125; PS = 34 (l) λ = 125; PS = 286

Figure 4.4: (a) Input image - a cross-section of CAD model, (b) ground truth - scanned
profile of the corresponding surface, and (c)-(i) predicted images using CAN model with
different λ and patch size (PS) after 30 epochs of training. The CAN model with λ = 125
and PS = 142 generated the most similar image to the ground truth.

4.5 Training and Testing

53 shapes with a characteristic length of 9 mm and a thickness of 2 mm (10 layers) were

scanned in situ during printing. The quality of the first printed layer relies on 1) the preset
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CAN Parameters Error = CAN Predicted Deviation - Experimentally Measured Value

λ Patch Size (PS)
Percentage within Given Range of Error

Mean (mm) Standard Deviation (mm)±0.05 (mm) ±0.10 (mm) ±0.15 (mm)
0 70 88.15% 100.00% 100.00% -0.0006 0.0179
50 70 88.77% 99.99% 100.00% -0.0009 0.0176
100 70 90.11% 100.00% 100.00% 0.0018 0.0162
125 70 88.08% 99.99% 100.00% -0.0023 0.0182
150 70 87.06% 100.00% 100.00% -0.0012 0.0189
200 70 88.02% 99.92% 100.00% -0.0014 0.0184
125 16 88.64% 100.00% 100.00% -0.0014 0.0178
125 34 89.49% 100.00% 100.00% 0.0009 0.0170
125 142 90.24% 99.99% 100.00% 0.0007 0.0162
125 286 88.06% 100.00% 100.00% -0.0010 0.0180

Table 4.1: The deviation between predicted and printed structure for different CAN param-
eters. The CAN model with λ = 125 and PS = 142 provided the highest percentage of
predictions with error less than ±0.05 mm error, as well as the lowest mean and standard
deviation of error.

print head’s relative height to the stage, which is manually adjusted before each printing

in this study, and 2) the adhesion between the printing material and the stage, which is

enhanced by applying adhesion agent. Larger distance and smaller adhesion contribute to

a narrower deposited trace on the first layer. Thus, the quality of the first printed layer

can vary from one printing job to another and the scanned profiles of the first printed layer

were not used in this study. The scanned profiles of the sixth printed layer were very noisy

because the stage height was right at the edge of the working range of the laser sensor. Thus,

the scanned profiles of the sixth printed layer were not used in this study. Except for the

1st and the 6th layer, the scanned profiles of the other 8 layers were used to train 8 CAN

models independently. For each CAN model, the image dataset consists of 18-42 images of

the scanned profiles and 50 images generated by randomly combining and cropping of the

scanned profiles of the same layer. Each CAN model was trained on 70% of the images from

the dataset for 100 epochs and tested on the remaining 30% of images that the model had

never seen before.

Some of the predictions made by CAN models of different layers are shown in Fig. 4.5.

Table 4.2 shows the percentage of pixels whose deviation predictions were within specific

ranges from the actual deviation values. As we can see from the Tab. 4.2, at least 48.6%,

86.4%, 98.6% of data were within ±0.05 mm, ±0.10 mm,w ±0.15 mm of the actual measured
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value, respectively.

Range (mm)
Percentage

Layer 2 Layer 3 Layer 4 Layer 5 Layer 7 Layer 8 Layer 9 Layer 10
±0.05 48.6% 50.9% 52.7% 53.2% 53.2% 56.0% 58.1% 59.6%
±0.10 91.3% 89.7% 89.6% 88.1% 86.4% 88.6% 87.5% 88.5%
±0.15 99.9% 99.7% 99.4% 99.0% 98.7% 99.3% 99.0% 98.6%

Table 4.2: Deviation of prediction from CAN versus measured values. Values reported as
the percentage of measurements within each given range of deviation.

4.6 Case Study On Larger Prints

To further investigate the performance of CAN models, three freeform shapes (Fig. 4.6) were

printed and scanned. These three freeform shapes are miniatures of the “teardrop” shape

in [25] and the “convex freeform” and “concave freeform” shapes in [26]. The CAD models

and scanned deviation data of these shapes were used to test the CAN models. One thing

to note is that the input and predicted images of the CAN models are 256 pixels by 256

pixels, which correspond to physical areas of 14 mm by 14 mm. The “teardrop” shape in

this study has a characteristic length of 9 mm, which can fit entirely into one image. The

“convex freeform” and “concave freeform” shapes, however, have a characteristic length of

18 mm, which needs two input/output images to cover the whole shape. Fortunately, the

CAN models were trained using the extended image dataset including the images generated

by randomly combining and cropping of the original images. Thus, the CAN models are

capable of predicting deviation of shapes with a characteristic length larger than 9 mm.

Examples of predicted geometric deviations of these three shapes are shown in Fig. 4.7. The

percentage of predictions within specific ranges from the actual deviation values are shown

in Table 4.3. CAN models produced more accurate predictions than that of the model in

[25] and at least 44.4%, 87.6%, 99.2% of data were within ±0.05 mm, ±0.10 mm, ±0.15 mm

of the actual measured value, respectively.
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(a) Layer 2 (b) Layer 2

(c) Layer 3 (d) Layer 3

(e) Layer 4 (f) Layer 4

(g) Layer 5 (h) Layer 5

(i) Layer 7 (j) Layer 7
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(k) Layer 8 (l) Layer 8

(m) Layer 9 (n) Layer 9

(o) Layer 10 (p) Layer 10

Figure 4.5: Examples of predicted images of different layers on the test dataset.

Figure 4.6: Top and front views of CAD models of the (a) teardrop [25], (b) convex freeform,
and (c) concave freeform [26] shapes.
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Figure 4.7: Examples of predicted images of freeform shapes.

Range (mm)
Percentage (%)

Proposed Model on Different Layers of 3 Shapes
Decker et al. [25]

L2 L3 L4 L5 L7 L8 L9 L10
±0.05 45.9 46.3 44.4 44.9 47.1 48.5 55.2 50.5 38.3
±0.10 90.6 90.6 90.0 89.3 87.6 90.9 91.0 91.6 66.7
±0.15 99.9 99.9 99.8 99.6 99.2 99.8 99.7 99.6 83.7

Table 4.3: Comparison between the predictions made by our proposed CAN model and the
Random Forest model in [25]. Our proposed model made predictions on different layers of the
“Teardrop”, “Convex Freeform”, and “Concave Freeform” shapes. The model reported in
[25] made predictions on the “Teardrop” shape. A higher percentage of predicted deviation
within given intervals of the experimentally measured value implies that the model is more
accurate.
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CHAPTER 5

Redesign For AM By Compensating CAD Based On

Predicted Geometric Deviation

We now have the capability of predicting 3D geometric inaccuracies based on CAD models.

Looking forward, CAN models can conceivably be used to reverse engineer and redesign the

CAD model, allowing for compensation of print imperfection at the design stage, in advance

of the first printing.

There are two ways to use the CAN machine learning model to redesign the CAD model:

Direct Reverse method and Iterative Forward method.

5.1 Redesign Using Direct Reverse Method

The Direct Reverse (DR) method works by reverse training another CAN model to predict

the CAD model from the scanned profiles. This model is first trained on scanned profiles as

input images and cross-sections of CAD models as ground truth images. Then, an imaginary

desired scanned profile, which is created by filling the cross-section of the CAD model with

the color indicating the ideal height, is fed into the DR model to anticipate the CAD model

(Figure. 5.1).

This CAN machine learning model was trained the same way as those models in Chapter

4. To see if this CAN model can redesign the geometry of the object to achieve a better

geometric accuracy, an ideal scanned profile of an object with an equilateral triangle cross-

section was created. This desired scanned profile image is in light green color which indicates

all of the points on the scanned surface have 0 mm geometric deviation. Figure. 5.2 shows
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Figure 5.1: A flow chart shows the working mechanism of the Direct Reverse method.

the prediction made by the CAN model based on the input image. However, the geometry

of the predicted CAD is identical to the shape of the input image. And we already know

that this predicted CAD will have rounded corners when it is being printed out. So this

trained CAN will not correctly anticipate the desired CAD images based on the imaginary

ideal scanned profile images.

Two reasons contribute to the incorrect prediction. First, the image dataset for training

the CAN model is not suitable for the reverse training purpose. If you take a closer look

at the Input images and Ground Truth images in Figure. 4.2 and Figure. 4.5, almost every

scanned profile image has a dark blue edge which means the printed part is smaller than the

designed shape. Thus, the CAN model can easily learn that the CAD model cross-section

image can be generated successfully by simply turning every colorful pixel in the scanned

profile image into black. And it only took the CAN model two training epochs to find out

that trick. Another reason is that the ideal scanned profile image was manually created

and it is nothing similar to the true scanned profile images although they share the same
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Figure 5.2: The CAN model made a prediction of design based on its ideal scanned profile
image. The input image (left) is the scanned profile of the corresponding layer, in which the
color indicates 3D geometric deviation. The ground truth image (right) is a cross-section of
the CAD model.

colormap. And the ideal scanned profile image is not realistic and not what the CAN model

can anticipate by reverse training on the same image dataset used in Chapter 4. Thus,

the Iterative Forward method is developed to redesign the CAD to achieve better printing

quality at the first time of printing.

5.2 Redesign Using Iterative Forward Method

The Iterative Forward (IF) method does not need to train another CAN model. It repeatedly

used the trained CAD models in Chapter 4 to make predictions of the scanned profiles based

on the cross-sections of the CAD model. Then the predicted scanned profiles are compared

with the ideal geometry of the object (the uncompensated cross-section of the CAD) to find

out which areas in the CAD need to be expanded (“grow”) or reduced (“shrink”). Then

the CAD is compensated and fed into the CAN machine learning model again to repeat the

whole process. The goal is to minimize the number of pixels in the “grow” and “shrink”

areas by iteratively making compensations to CAD based on the comparison between the

predicted scanned profile and the ideal CAD (Figure. 5.3).

In Figure. 5.3, Step 1 is the same as the process introduced in Chapter 4. Step 2 is to

compare the predicted image generated in Step 1 to the ideal geometry of the design, which
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Figure 5.3: A flow chart shows the working mechanism of the Iterative Forward method.
The green and red areas indicate the “grow” and “shrink” areas, respectively.

is also known as the original CAD image. A pixel is marked as “shrink” (red) if this pixel

in the ideal geometry image is white, which means no material should be printed on this

point, but the pixel with the same coordinates in the predicted image is not white or the

geometric deviation indicating by its color is larger than -0.05 mm, which means, in reality,

there was some material been accidentally printed there. Similarly, a pixel is marked as

“grow” (green) if this pixel in the ideal geometry image is black, which means there should

be some material there, but the pixel with the same coordinate in the predicted image is

white or the related geometric deviation is less than -0.05 mm, which means the material

was missing on that point. Those “shrink” and “grow” pixels are shown in the 5th and 6th

columns in Figure. 5.4, respectively.

In Step 3, the closest boundary pixel was found for each of the “grow” and “red” pixels

in Step 2. The closed boundary pixel is defined by two criteria: 1) it must be a pixel that is

marked “grow” or “shrink” in Step 2; 2) it must be on the boundary in the input image in

Step 1 since it is meaningless to expand or shrink areas in the middle of a cross-section. In

addition to the closest boundary pixel, the maximum distance among all distances between
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Case #
Parameters Results

Range N Range (mm)
Length of Patch Square # of Shrink Pixels # of Grow Pixels

Shrink Grow Initial Final Initial Final
1 24 1 2log(Max Distance+1) 2log(Max Distance+1) 19 16 382 358
2 12 0.5 2log(Max Distance+1) 2log(Max Distance+1) 22 16 385 365

3 12 0.5 Max Distance/
√

2 Max Distance/
√

2 7 126 386 247

4 9 0.375 Max Distance/
√

2 Max Distance/
√

2 6 129 389 206

5 6 0.25 Max Distance/
√

2 Max Distance/
√

2 6 58 386 286

6 3 0.125 Max Distance/
√

2 Max Distance/
√

2 4 6 383 377

7 6 0.25 Max Distance/2 Max Distance/
√

2 7 51 380 293

8 6 0.25 Max Distance/3 Max Distance/
√

2 5 53 381 293

Table 5.1: Eight sets of parameters were used in Step 3 of the Iterative Forward method.
The best results were selected from the first 20 iterations. All unstated units are pixels.

the “grow”/“shrink” pixels (within a range N from the boundary) and the coorelated closest

boundary point was found as well. The length of square “grow”/“shrink” areas as shown in

the second image in Step 3 in Figure. 5.3 is defined as a function of the Maximum Distance.

Table. 5.1 shows eight sets of parameters have been used to determine the length of the path

square for “Shrink” or “Grow”. As it was mentioned before in Section 5.1, the printer was

set to print the part which seems always to be a little bit smaller than the design. Thus, the

initial number of “shrink” pixels is much smaller than the initial number of “grow” pixels,

which means the CAD needs to be expanded to cover more pixels. However, Table 5.1 also

shows that there is a tradeoff between the final number of “shrink” and “grow” pixels. If you

want to compensate the areas that are lack material by expanding the CAD model, there is

a large chance that you will over-expand the CAD model and introduced more areas that

need to be removed/shrank as shown in Figure. 5.4. All MATLAB codes have been included

in Appendix A.
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CHAPTER 6

Summary and conclusions

6.1 Chapter 2: literature review

This chapter provided a detailed literature review of the state-of-the-art additive manufac-

turing techniques, the Material Extrusion type 3D printer that is used in this study, the

in-situ monitoring technique, and closed-loop feedback system implemented in AM, and the

statistical and machine learning models that can describe and predict geometric deviation

from CAD models.

6.2 Chapter 3: system setup, working machnism, scan strategy,

and validation of the custom built in-situ metrology system

This chapter developed and demonstrated an approach for layer-by-layer mapping of 3D

printed parts, which can be used for validation of printed models and in situ adjustment

of print parameters. This in situ metrology system scans each layer at the time of print-

ing, providing a 3D model of the as-printed part. A high-speed optical scanning system was

integrated with a Material Extrusion type 3D printer to achieve in situ monitoring of dimen-

sional inaccuracies during printing, which leaves the door open to implement a closed-loop

feedback system to compensate geometric errors during printing in the future and fabricate

”certify-as-you-build” products.
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6.3 Chapter 4: train, test, and tune parameters of the Conditional

Adversarial Networks (CAN) machine learning models

This chapter trained the CAN machine learning algorithms with data from this scanning

system and predicted 3D geometric inaccuracies in new designs. Eight conditional adversarial

networks (CAN) machine learning models were trained on a limited number of scanned profile

images of different layers, consisting of less than 50 actual images and 50 generated images, to

predict the 3D geometric deviations of freeform shapes. The generated images were produced

by randomly combining and cropping the actual images without any distortion. These CAN

models produced predictions where at least 44.4%, 87.6%, 99.2% of data were within ±0.05

mm, ±0.10 mm, ±0.15 mm of the actual measured value, respectively.

6.4 Chapter 5: redesign for Additive Manufacturing using the

predictions of the CAN machine learning models

This chapter developed an Iterative Forward approach to redesign the Computer-Aided-

Design model by reverse engineering using the trained machine learning models, allowing for

compensation of print imperfection at the design stage, in advance of the first printing. The

compensation algorithms with eight different sets of different parameters were evaluated. It

has been proven that the Iterative Forward approach improved the geometric deviation of

the predicted profiles by making compensation to the CAD model.
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APPENDIX A

MATLAB codes for Iterative Forward method

clc;

clear all;

close all;

maxNumOfIteration = 20;

% column 1 − green; column 2 − red; column 3 − total pixels

numOfGreenRedPoint = zeros(maxNumOfIteration,3);

for ARG1 = 1:maxNumOfIteration

% %% Section 1.1: test HelloWorld.py

% [result, status] = python('HelloWorld.py')

% %% Section 1.2: run ML code

%

% [result, status] = python('Pix2Pix improve v2 layer2−Copy1.py')

%% Section 1.3: run ML code with arguments

% % pass ARG1 to CAN code

% ARG1 = 1;

[result, status] = python('Pix2Pix improve v2 layer2−Copy1.py',num2str(...

ARG1))

%% Section 2.1: read images from a specific folder
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myFolder = sprintf('/Users/Ling/Documents/Research Related/3...

D Printing Metrology/Feedback System/outputOfCAN/');

color = jet(100);

%load images into array "all images" if we havent already

if ¬exist('all images','var')

if ¬isfolder(myFolder)

errorMessage = sprintf('Error: The following folder does not ...

exist:\n%s', myFolder);

uiwait(warndlg(errorMessage));

return;

end

filePattern = fullfile(myFolder, '*.png');

pngFiles = dir(filePattern);

totImages = length(pngFiles);

images = cell([totImages 3]);

% first column input

% second column ground truth

% third column predicted image

errorValue = [];

for k = ARG1

% baseFileName = pngFiles(k).name;

baseFileName = sprintf(['predicted layer2 epoch100 ' num2str(k)...

'.png']);

fullFileName = fullfile(myFolder, baseFileName);

imageArray = imread(fullFileName);

% imshow(imageArray);

if k == 1

inputImage0 = imageArray(588:928,189:530,:);

groundTruthImage0 = imageArray(588:928,599:940,:);

end

images{k,1} = imageArray(588:928,189:530,:);

images{k,2} = imageArray(588:928,599:940,:);

images{k,3} = imageArray(588:928,1009:1350,:);
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% drawnow; % Force display to update immediately.

[compensatedImage,illustrationImage,numOfGreenRedPoint(k,1),...

numOfGreenRedPoint(k,2),numOfGreenRedPoint(k,3),shrinkImage...

,growImage] = growAndShrink v2(inputImage0,images{k,3},...

color);

newImageArray1 = [compensatedImage groundTruthImage0];

newImageArray11 = imresize(newImageArray1, [256 512]);

fullFileName 1 = sprintf('/Users/Ling/Documents/...

Research Related/3D Printing Metrology/Feedback System/...

inputOfCAN/%d.png',ARG1+1);

imwrite(newImageArray11,fullFileName 1);

newImageArray2 = [images{k,1} groundTruthImage0 images{k,3} ...

inputImage0 shrinkImage growImage illustrationImage ...

compensatedImage];

fullFileName 2 = sprintf('/Users/Ling/Documents/...

Research Related/3D Printing Metrology/Feedback System/...

records/%d.png',ARG1);

imwrite(newImageArray2,fullFileName 2);

end

end

end

load gong.mat;

sound(y);

function [compensatedImage,illustrationImage,tempGreen,tempRed,tempTotal,...

shrinkImage,growImage] = growAndShrink v2(input,predicted,color)

dim = size(input);

growArea = zeros(dim(1:2));

growBoundary = zeros(dim(1:2));

shrinkArea = zeros(dim(1:2));

shrinkBoundary = zeros(dim(1:2));

compensatedImage = input;

illustrationImage = input;
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shrinkImage = input;

growImage = input;

tempGreen = 0;

tempRed = 0;

tempTotal = 0;

figure(1);

imshow(input);

figure(2);

imshow(predicted);

%%

for i = 1:dim(1)

for j = 1:dim(2)

% recognize grow and shrink area and boundary

inputColor = double(input(i,j,:))/255;

predictedColor = double(predicted(i,j,:))/255;

% criteria is white in the predicted image

criteria = predicted(i,j,1) > 220 && predicted(i,j,2) > 220 && ...

predicted(i,j,3) > 220;

% check shrink area

if inputColor(:,:,1) > 0.5 && inputColor(:,:,2) > 0.5 && inputColor...

(:,:,3) > 0.5 % input color is white

if ¬criteria

color diff temp = [color(:,1) − predictedColor(:,:,1),color...

(:,2) − predictedColor(:,:,2),color(:,3) − ...

predictedColor(:,:,3)];

color diff = sum((color diff temp).ˆ2,2);

[useless colorIdx] = min(color diff);

if colorIdx > 25 % predicted deviation is > −0.05 mm

shrinkArea(i,j) = 1;

shrinkImage(i,j,:) = [255 0 0];

if i>1 && i<dim(1) && j>1 && j<dim(2)

upColor = double(input(i−1,j,:))/255;

up = (1−upColor(:,:,1)) * (1−upColor(:,:,2)) * (1−...

upColor(:,:,3));
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downColor = double(input(i+1,j,:))/255;

down = (1−downColor(:,:,1)) * (1−downColor(:,:,2)) ...

* (1−downColor(:,:,3));

leftColor = double(input(i,j−1,:))/255;

left = (1−leftColor(:,:,1)) * (1−leftColor(:,:,2)) ...

* (1−leftColor(:,:,3));

rightColor = double(input(i,j+1,:))/255;

right = (1−rightColor(:,:,1)) * (1−rightColor...

(:,:,2)) * (1−rightColor(:,:,3));

if up == 1 | | down == 1 | | left == 1 | | right == 1

shrinkBoundary (i,j) = 1;

shrinkImage(i,j,:) = [0 0 255];

end

end

end

end

end

% check grow area and grow boundary

if inputColor(:,:,1) ≤ 0.5 && inputColor(:,:,2) ≤ 0.5 && inputColor...

(:,:,3) ≤ 0.5 % input color is black

color diff temp = [color(:,1) − predictedColor(:,:,1),color...

(:,2) − predictedColor(:,:,2),color(:,3) − predictedColor...

(:,:,3)];

color diff = sum((color diff temp).ˆ2,2);

[useless colorIdx] = min(color diff);

if colorIdx ≤ 25 | | criteria % predicted deviation is ≤ −0.05...

mm

growArea(i,j) = 1;

growImage(i,j,:) = [0 255 0];

if i>1 && i<dim(1) && j>1 && j<dim(2)

upColor = double(input(i−1,j,:))/255;

up = upColor(:,:,1) * upColor(:,:,2) * upColor(:,:,3);

downColor = double(input(i+1,j,:))/255;

down = downColor(:,:,1) * downColor(:,:,2) * downColor...
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(:,:,3);

leftColor = double(input(i,j−1,:))/255;

left = leftColor(:,:,1) * leftColor(:,:,2) * leftColor...

(:,:,3);

rightColor = double(input(i,j+1,:))/255;

right = rightColor(:,:,1) * rightColor(:,:,2) * ...

rightColor(:,:,3);

if up == 1 | | down == 1 | | left == 1 | | right == 1

growBoundary(i,j) = 1;

growImage(i,j,:) = [0 0 255];

end

end

end

end

end

end

%% calculate shrinkMap and growMap

% the number on each pixel is the range of area to be grown or shrunk

shrinkMap = zeros(dim);

growMap = zeros(dim);

for i = 1:dim(1)

for j = 1:dim(2)

if shrinkArea(i,j) == 1

% check 0.5 mm / 12 pixel area of this specific point

range = 24;

shrinkMap = calculateMap(range,i,j,dim,shrinkBoundary,shrinkMap...

);

end

if growArea(i,j) == 1

range = 24;

growMap = calculateMap(range,i,j,dim,growBoundary,growMap);

end

end
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end

growMap = floor(log(growMap+1)*2);

shrinkMap = floor(log(shrinkMap+1)*2);

%% color/compensate CAD input image based on shrinkMap and growMap

for i = 1:dim(1)

for j = 1:dim(2)

if shrinkMap(i,j) > 0

% shrink boundary by shrinkMap(i,j) pixels to white

tempRed = tempRed + 1;

tempRange = floor(sqrt(shrinkMap(i,j)));

upTo = max(i−tempRange,1);

downTo = min(i+tempRange,dim(1));

leftTo = max(j−tempRange,1);

rightTo = min(j+tempRange,dim(2));

for m = upTo:downTo

for n = leftTo:rightTo

compensatedImage(m,n,:) = [255,255,255];

illustrationImage(m,n,:) = [255,0,0];

end

end

end

end

end

for i = 1:dim(1)

for j = 1:dim(2)

if growBoundary(i,j) == 1

% grow boundary by growMap(i,j) pixels to black

tempGreen = tempGreen + 1;

tempRange = floor(sqrt(growMap(i,j)));

upTo = max(i−tempRange,1);

downTo = min(i+tempRange,dim(1));

leftTo = max(j−tempRange,1);

rightTo = min(j+tempRange,dim(2));
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for m = upTo:downTo

for n = leftTo:rightTo

compensatedImage(m,n,:) = [0,0,0];

illustrationImage(m,n,:) = [0,255,0];

end

end

end

end

end

tempTotal = dim(1)*dim(2);

function shrinkMap = calculateMap(range,i,j,dim,shrinkBoundary,shrinkMap)

upTo = max(i−range,1);

downTo = min(i+range,dim(1));

leftTo = max(j−range,1);

rightTo = min(j+range,dim(2));

% find the closest boundary point

tempClosestBoundary = zeros(1,2);

lastDistance = 0;

for m = upTo:downTo

for n = leftTo:rightTo

if shrinkBoundary(m,n) == 1

if tempClosestBoundary(1) == 0

tempClosestBoundary = [m n];

lastDistance = (m−i)ˆ2 + (n−j)ˆ2;

else

tempDistance = (m−i)ˆ2 + (n−j)ˆ2;

if tempDistance < lastDistance

tempClosestBoundary = [m n];

lastDistance = tempDistance;

end

end

end
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end

end

if tempClosestBoundary(1) > 0

oldDistance = shrinkMap(tempClosestBoundary(1),tempClosestBoundary(2));

if lastDistance > oldDistance

shrinkMap(tempClosestBoundary(1),tempClosestBoundary(2)) = lastDistance...

;

end

end
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