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Somatic mutations in cancers affecting protein coding genes can give rise to potentially
therapeutic neoepitopes. These neoepitopes can guide Adoptive Cell Therapies and
Peptide- and RNA-based Neoepitope Vaccines to selectively target tumor cells using
autologous patient cytotoxic T-cells. Currently, researchers have to independently align
their data, call somatic mutations and haplotype the patient’s HLA to use existing
neoepitope prediction tools. We present ProTECT, a fully automated, reproducible,
scalable, and efficient end-to-end analysis pipeline to identify and rank therapeutically
relevant tumor neoepitopes in terms of potential immunogenicity starting directly from raw
patient sequencing data, or from pre-processed data. The ProTECT pipeline
encompasses alignment, HLA haplotyping, mutation calling (single nucleotide variants,
short insertions and deletions, and gene fusions), peptide:MHC binding prediction, and
ranking of final candidates. We demonstrate the scalability, efficiency, and utility of
ProTECT on 326 samples from the TCGA Prostate Adenocarcinoma cohort, identifying
recurrent potential neoepitopes from TMPRSS2-ERG fusions, and from SNVs in SPOP.
We also compare ProTECT with results from published tools. ProTECT can be run on a
standalone computer, a local cluster, or on a compute cloud using a Mesos backend.
ProTECT is highly scalable and can process TCGA data in under 30 min per sample (on
average) when run in large batches. ProTECT is freely available at https://www.github.
com/BD2KGenomics/protect.

Keywords: cancer, neoepitope, neoantigen, automated prediction, vaccine, cancer immunotherapy, adoptive
cell therapy
INTRODUCTION

Tumor recognition by the adaptive immune system has been described in the literature as early as
the 1980s. In 1987, Muul et al. described tumor infiltrating lymphocytes in a cohort of six melanoma
samples that showed high cytotoxicity towards fresh, autologous melanoma tumor cells (1).
However, at the time, T-cell responses were observed to be short lived, often lasting only a few
days. Later studies showed that tumors were capable of suppressing immune responses via different
mechanisms (2–5).
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Checkpoint blockade therapy has seen a great increase in
interest in the past few years with numerous drugs being
approved by the FDA for clinical treatment (6–8). Prevention
of PD-1:PD-L1 (9) and CTLA-4:B7.1/2 (10) binding via
monoclonal antibodies re-enables the immune attack against
the tumor; however, it can leave the patient open to development
of autoimmunity or other toxicities associated with unchecked
immune action (11, 12). The mutational load of a tumor (or
Tumor Mutational Burden) is a good predictor of response to
checkpoint therapy (13, 14). The observation that aberrations in
DNA Mismatch repair genes impair tumor growth (15) suggests
this effect is due to tumor “neoantigens” that act as markers for
immune targeting.

Tumor infiltrating lymphocytes (TILs) from patient tumors
can be activated and expanded in-vitro using minced autologous
tumor (16). TILs can also be activated using autologous dendritic
cells that are experimentally primed in-vitro with synthetically
generated, neoepitope-bearing peptides or with RNA vaccines
that contain coding transcripts for neoepitope-bearing peptides
(17, 18). These cells selectively target cell-surface MHC-
presented antigen produced by the tumor. Peptide vaccines
attempt to produce the same result by stimulating dendritic
cells in-vivo via synthetically produced peptides delivered
subcutaneously to the patient. Experimentally primed dendritic
cells and peptide vaccine therapies require prior knowledge of
the mutations in the tumor in order to identify the potentially
targetable sequence.

Bioinformatic analysis of tumor sequencing data can aid in the
selection of neoepitopes to target in vaccine and adaptive immune
system-based cancer therapies. pVAC-Seq (19) is an automated
pipeline that identifies neoepitopes generated from a pre-
computed, VEP-annotated (20) VCF file run with specialized
plug-ins that incorporate wildtype and mutant protein sequence.
Vaxrank (21) provides a ranked list of epitopes given an input
mutation VCF, RNA-Seq BAMs and the patient MHC haplotype.
Epidisco (22), the predecessor of Vaxrank, was capable of starting
from input FASTQs. INTEGRATE-Neo (23) identifies
neoepitopes from fusion genes provided in a pre-computed
BEDPE file. NeoepitopePred (24) provided a workflow for
epitope prediction from fusion genes and can be run through
the applets on the DNAnexus cloud platform. These tools all
require a user to previously align the sequencing data to a
reference of choice and call variants before following the same
logical paradigm of identifying mutant peptides and predicting
peptide:MHC (pMHC) affinity binding [often via netMHC (25)].
The pipelines differ in their degree of automation, input mutation
type and annotation, and presence or absence of a ranking schema.
There is a clear need for a fully automated pipeline from end-to-
end, beginning at the raw FASTQ files emitted by the sequencer
from DNA and RNA sequencing. Recently, NeoFuse (26) was
published, which automates fusion-gene-based neoepitope
prediction from paired RNA-seq, but this tool does not include
neoepitopes derived from single nucleotide variants (SNVs) or
short insertions and deletions (INDELs).

We developed ProTECT, a fully automated tool for the
Prediction of T-cell Epitopes for Cancer Therapy. We
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previously demonstrated the utility of ProTECT using an early
version to analyze externally called SNVs in a neuroblastoma
cohort (27). There we identified a potentially therapeutic
neoepitope from the ALK:R1275Q hotspot mutation and
proved that CD8+ cytotoxic T-cells could recognize it using in-
vitro MHC tetramer staining of peripheral blood mononuclear
cells from two HLA-matched donors. The full ProTECT
codebase, reported here, is completely self-contained. It accepts
an input trio of sequencing data from a patient consisting of the
paired tumor and normal DNA, and the tumor RNA reads in the
FASTQ format and processes the data from end-to-end
including alignment, in-silico HLA haplotyping, expression
profiling, mutation calling, and neoepitope prediction.

Here we evaluate the scalability, utility, and performance of
ProTECT using publicly available data. We use the 326 samples
from The Cancer Genome Atlas (TCGA) Prostate
Adenocarcinoma (PRAD) cohort (28) with trios of genomic
data (tumor DNA, normal DNA, and tumor RNA),
augmenting these data with eight previously published clinical
melanoma samples (29). The TCGA PRAD cohort has an
average of 21.5 exonic mutations per sample (30) and 31% of
all samples are predicted to contain a fusion transcript (31),
making it a good choice for detecting both SNV and fusion
neoepitopes. Further, it was previously evaluated for fusion-
gene-derived epitopes using INTEGRATE-Neo (23). The
melanoma dataset was reported to have between 219 and 598
missense exonic mutations per sample and was previously
analyzed by pVAC-Seq (19) as part of a clinical trial. We
compared ProTECT’s performance to the performance of these
other tools.
MATERIALS AND METHODS

Procurement of Input Data
Genomic Trio (tumor DNA, normal DNA, and tumor RNA)
BAM files containing sequences from 326 samples in the TCGA
Prostate Adenocarcinoma (PRAD) cohort were downloaded from
the Genomics Data Commons (GDC) at the National Cancer
Institute using the GDC data transfer tool. The downloaded BAM
files were converted back to FASTQ format as would be produced
by direct sequencing using the SamToFastq module from Picard
version 1.1251. MHCI haplotype calls using POLYSOLVER (32)
for all samples were obtained externally and used for MHC
haplotype prediction comparisons.

Genomic trios from three additional samples (Mel-21, Mel-
38, Mel-218) were downloaded from the NCBI short read archive
(SRA) (33) via Bioproject PRJNA278450/dbGaP accession
phs001005. These patients were diagnosed with stage III
resected cutaneous melanoma and had all previously received
ipilimumab. Data from seven A*02:01 restricted vaccines tested
for each patient were obtained from the supplementary
information of the original manuscript (29).
November 2020 | Volume 11 | Article 483296
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The input data for the INTEGRATE-Neo comparison
included haplotype and fusion calls from 240 samples in the
supplementary data of the INTEGRATE-Neo paper. The fusions
from supplementary Excel sheet 1 were parsed into individual
BEDPE format files and the epitopes from sheet 3 were
extracted into individual haplotype list files with one MHC
allele per line.

Indexes for the various tools were generated using the hg38
(GRCh38) reference sequence obtained from the UCSC genome
browser (34). GENCODE (35) v25 was chosen as the reference
annotation and was used in all relevant parts of the pipeline. Every
generic hg38 index used in the analysis is available in our AWS S3
bucket ‘protect-data’ under the folders ‘hg38_references’. These
indexes can be pulled by any user to run ProTECT locally. A
detailed list of commands used to create the various indexes is
available in the same bucket in the ‘README’.

Compute Resources Utilized
All TCGA-related analyses were conducted on a Mesos (36)
cluster with one leader (12 cpus, 62 GB RAM, 500 GB Local disk)
and eight identical agents (56 cpus, 250 GB RAM, 1.8 TB
local disk).

The Melanoma data was analyzed on the Amazon Web
Services EC2, and the data was stored securely using SSE-C
encryption on S3.

326-Sample PRAD Compute
The 326 samples were run in batches of 1, 2, 5, 10, 20, or 50
samples in order to gauge the efficiency and scalability of the
pipeline engine, Toil (37). Each batch size was run five times with
unique samples to normalize the runtime information. The
configuration file for each run was generated from a template
containing all the required tool options and paths to the input
reference files on the Network File System (NFS) storage server.
Each batch was run once on the Mesos cluster using all nodes
and an NFS-based Toil file job store to save the state of the
pipeline. The five single-sample batches were also run separately
without Mesos on individual nodes of the cluster using an NFS-
based Toil file job store to document the time taken per sample
on a single machine.

Comparison With pVAC-Seq
To compare our results with pVAC-Seq, we ran ProTECT on the
input samples on AWS EC2 using an S3-based cloud job store.
The input configuration for the run included paths to hg38-
mapped reference files from our S3 bucket ‘protect-data’ and
paths to the input FASTQ files in another secure bucket. The
results were stored on S3 in the same bucket as the input. This
analysis was conducted consistent with the mandatory cloud
data use limitations on the input dataset.

Comparison With INTEGRATE-Neo
To compare our results with INTEGRATE-Neo, we parsed the
data from the manuscript supplement into files acceptable by
ProTECT via a python script. The initial input configuration file
consisted of links to the fusion BEDPE format file for each of 240
samples, along with the haplotype and expression data called
Frontiers in Immunology | www.frontiersin.org 3
from the ProTECT 326 sample run. The final analysis included
fusion and inferred haplotype calls for 83 samples from
INTEGRATE-Neo along with ProTECT expression estimates.
All ProTECT runs were conducted on the Mesos cluster.
PIPELINE SPECIFICS

ProTECT consists of eight major sections: sequence alignment,
haplotyping, expression profiling, mutation calling, mutation
translation, MHC:peptide binding prediction, neoepitope
ranking, and reporting. Figure 1 shows the schema for the
run. Every tool used in the pipeline was hand-picked from
industry-standard choices and literature reviews. Some aspects
of the pipeline, notably TransGene and Rankboost, were
developed in-house due to a lack of publicly available
alternatives. Both tools are available as open-source
repositories on github.

The entire analysis from end-to-end is built to process data
against the same reference sequence and annotation. The user
provides links to the properly generated indexes for each tool in
the pipeline. We provide Gencode (35) version 19 annotated
references for hg19 and Gencode version 25 annotated references
for hg38 on our public AWS S3 bucket “protect-data”2. The
input for a ProTECT run is a single configuration file that lists
input files for each patient that will be processed and all the
options and links to indexes that will be used during the run.

While ProTECT is built for end-to-end processing of
sequencing trios per patient using our choice of software at
each step, we understand that researchers have personal
preferences for some software over others for mutation calling,
gene expression estimation, etc. We have engineered ProTECT
such that a user may run it with pre-computed SNVs, fusion
calls, gene expression, and HLA haplotypes, provided they are
formatted appropriately.

Sequence Alignment
DNA sequence alignment is carried out using the Burrows–
Wheeler aligner (BWA) (38). The reads are aligned with BWA-
mem to the provided BWA reference using default parameters.
The SAM file produced upon alignment is processed to properly
format the SAM header and is then converted to a coordinate-
sorted BAM file with a corresponding index.

RNA sequence alignment is carried out using the ultra-fast
aligner, STAR (39). The parameters for the run are optimized for
fusion detection via STAR-fusion (40).

Alternatively, ProTECT accepts pre-aligned BAM files as an
input if the MHC haplotype is provided as well. ProTECT
assumes that the user has aligned the DNA and RNA using the
same reference genome with the same genomic annotation.

Haplotyping
The HLA Haplotype of the patient is predicted using PHLAT
(41). The haplotype is predicted using each input source of
November 2020 | Volume 11 | Article 483296
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information (normal and tumor DNA, tumor RNA), and the
consensus haplotype is generated based on agreement between
any two of the three haplotype predictions. Due to limitations in
the tool, we only proceed with HLA-A, HLA-B, and HLA-C for
MHCI, and HLA-DPA/B and HLA-DRB for MHCII.

Expression Profiling
The gene-level and isoform-level expression is estimated using
RSEM (42) with default parameters.

Mutation Calling
SNVs are predicted on a per-chromosome basis using five
separate mutation prediction algorithms: MuTECT (43), MuSE
(44), RADIA (45), Somatic Sniper (46), and Strelka (47). The
choice of mutation callers was guided by the results from the
ICGC DREAM mutation calling challenge (48). All called
mutations are merged into a common file, and only events
supported by two or more predictors advance to the
translation step. Strelka additionally produces a callout for
short insertions and deletions (INDELs). These are also used to
identify neoepitopes.

Fusion calling occurs using STAR-Fusion (40) with default
parameters. Candidate fusions are annotated using Fusion-
Inspector3 along with an optional assembly step using
Trinity (49).
3Obtained from https://github.com/FusionInspector
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Mutation Translation
SNVs and INDELs are annotated using SNPEff (50). Mutations
identified in coding regions of the genome are processed using an
in-house translation tool, TransGene4. TransGene filters the
input SNPEff-produced VCF file to exclude non-expressed calls
based on the gene expression data obtained in the previous step.
SNVs and in-frame INDELs are directly injected into the amino
acid chain to produce the mutant sequence. Frameshift INDELs
are translated downstream of the mutation event till a stop codon
is found (or a user-defined threshold is reached). Events lying
within 27, 30, and 45 bp of each other (for 9-mer-, 10-mer-, and
15-mer-containing peptides respectively) are chained together
into an “immunoactive region” (IAR), or a region that will
potentially produce an immunogenic peptide. Separate
mutation events that are combined into a single immunoactive
region are phased using the RNA-Seq data to ensure that they
truly are co-expressed on the same haplotype.

Fusion IARs are generated using the breakpoints provided in
an input BEDPE file. TransGene uses provided junction
sequences or infers them from the input annotation file. The
predicted IAR contains (n − 1)*3 bp on either side of the fusion
junction from each donor for each n in 9-, 10-, and 15-mer.
Fusion calls are optionally filtered at this stage to remove events
arising from two mitochondrial genes or two immunoglobulin
genes since these are usually false positive events arising from
sequence similarity. Fusions can also be filtered for being
FIGURE 1 | A schematic description of the ProTECT workflow. ProTECT can process FASTQs all the way through the prediction of ImmunoActive Regions,
including alignment, HLA haplotyping, variant calling, expression estimation, mutation translation, and pMHC binding affinity prediction. ProTECT also allows users to
provide pre-computed inputs for various steps instead.
4Hosted at https://github.com/arkal/transgene
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potential transcriptional readthroughs (by default, two genes on
the same chromosome within 500 kb of each other are rejected)
or for having a 5′ lincRNA (under the assumption that these
events are unlikely to be translated).

MHC:Peptide Binding Prediction
The predicted neoepitopes are assayed against each of the MHCI
(9- and 10-mers) and MHCII (15-mers) predicted to be in the
patient’s HLA haplotype using the IEDB MHCI and MHCII
binding predictions tools.

The IEDB tools run a panel of methods (51–57) on each input
query (input peptide FASTQ + MHC allele) and provide a
consensus “percentile rank” that describes on average, how
well each peptide is predicted to bind against a background set
of 100,000 UniPROT derived peptides. Calls predicted to bind
within the top 5% of all binders are selected for further study.
The normal, unmutated (“wildtype”) counterpart peptide for
each selected neoepitope is then also assayed against the MHC(s)
identified to determine how well it binds, so that this can be
compared to the binding affinity of the mutant version.

Neo-Epitope Ranking
Neoepitope: MHC calls are consolidated by the candidate IAR of
origin. An in-house method, Rankboost5, first arranges the IARs
in descending order based on the best binding score of a
contained neoepitope and then uses the boosting strategy
described in Algorithm 1 to produce a final list of ranked
IARs. Candidates satisfying certain biologically relevant criteria
are boosted in rank based on user-specified weights. The features
considered are the total number of calls originating from the IAR
(npa) and ones with high predicted binding score (nph,
percentile rank <=1.0), the promiscuity of the region (nmhc,
i.e. the number of MHCs stimulated by peptides from the
region), the combined expression of the isoforms displaying a
neoepitope-generating mutation (TPM), the number of
neoepitopes in the region predicted to bind to an MHC better
than their wildtype counterpart, and the number of events where
a 10-mer and 9-mer subsequence of it both bind well to an MHC
(ovlp, this is only done for MHCI). Each candidate is assigned a
score from 0-1 for each feature that is multiplied by a user-
specified weight. The sum of the weighted score provides the
boost received by the candidate. Feature score functions were
generated based on empirical distributions of the features seen in
IARS predicted in other TCGA and internal datasets. The
algorithm iterates over the table of candidates three times and
performs per-candidate boosting, resulting in a ranked list of
epitopes in the sample. We ran our samples prioritizing overlap
and promiscuity (0.68 and 0.32 respectively) for MHCI calls and
set each covariate to 0.2 (equally important) for MHCII calls.

Algorithm 1. Pseudocode for the rank boosting strategy. W_x
describes the weight for covariate x, boost_x describes the score
for the candidate x from 0 to 1, npa = number of peptides
constituting an IAR, nph = number of strongly binding peptides
osted at https://github.com/arkal/rankboost
5H
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constituting the IAR, nMHC = number of MHCs predicted to
recognize a neoepitope from this IAR, TPM = expression of the
transcript harboring the IAR, and ovlp = number of events where
a 9-mer and 10-mer overlap and are predicted to bind to the
same MHC (only valid for MHCI).

For i in 1, 2, 3

∀ candidate in candidates

boost = W_npa * boost_npa + \

W_nph * boost_nph + \

W_nMHC * boost_nMHC + \

W_TPM * boost_TPM + \

W_ovlp * boost_ovlp

new_rank = old_rank * (1-boost)
RESULTS AND DISCUSSION

We ran three experiments to demonstrate our pipeline. The first
experiment was run on 326 samples from the TCGA PRAD
cohort and highlights the scalability, efficiency, and utility of
ProTECT. We also identify recurrent IARs in the cohort
(containing mutations that occurred in more than one case)
suggesting possible public neoepitopes for PRAD. The second
experiment compares ProTECT to the published SNV- and
INDEL-based neoepitope prediction pipeline, pVAC-Seq. The
third experiment compares ProTECT to the published fusion-
based neoepitope predictor, INTEGRATE-Neo. In all
experiments, ProTECT was run using a consensus of two out
of five mutation callers (as described above) and using all
TransGene fusion filters to remove inter-mitochondrial, inter-
immunoglobulin, 5′ lincRNA, and transcriptomic readthrough
events. Results were tabulated using a mix of python scripts and
manual curation on a local machine.

326 Sample Run
To describe the scalability, utility, and efficiency of ProTECT, we
ran ProTECT on a total of 326 genomic trios from the TCGA
PRAD cohort. We called a median of 79.5 SNVs and INDELs,
and seven fusion genes per sample, and accepted 20 and three
respectively for the production of IARs. We identified a median
of 11 IARs per sample. Of the 326 samples, only three samples
were predicted to have no IARs. These samples were observed to
have no expressed non-synonymous mutations or filter-passing
fusions. The entire metrics table is presented in Supplementary
Table 1, and the results are submitted as Supplementary File 1.

Figure 2 shows the results from running ProTECT with
different batch sizes on our local cluster (see section Compute
Resources Utilized). As the number of samples increases, we see an
expected increase in overall time, but the average time per sample
decreases drastically because our pipeline engine maximizes
resource utilization. We processed samples from end-to-end at a
rate of 24.6 min per sample (calculated as total time divided by
total number of samples) when run in a batch of 50 samples.
November 2020 | Volume 11 | Article 483296
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Recurrent Fusion-Gene-Derived IARs in PRAD
We detected the well-documented TMPRSS2-ERG fusion gene
(58–60) in 131 samples. We predicted at least one IAR each
arising from five of the 10 unique breakpoints called (Table 1).
Of the five breakpoints that do not result in an IAR, four of these
breakpoints are located in the 5′ UTR of TMPRSS2 and will not
result in a neoepitope. The 5th breakpoint has a 5′ intronic
breakpoint and a 3′ exonic one, and the resulting neoepitope
should contain the translated product from the last few bases of
TMPRRS2 Exon 1 and the first bases after the de novo splice
acceptor is reached in ERG. This case is not handled by
TransGene at this time, and so no neoepitope call was made.
One IAR of particular interest is DNSKMALNSEALSVVSED
from the junction chr21:41498119–chr21:38445621, which is
found in 37 of the 48 unique samples harboring that junction
(11% of the entire cohort). Peptides from this IAR are predicted
to bind well to HLA-A*02:01 (Allele Freq: 0.26) and HLA-
Frontiers in Immunology | www.frontiersin.org 6
C*07:01 (allele Freq: 0.17), alleles frequently seen in Caucasian
populations, which are highly represented in the TCGA cohort.
Similarly, we predict SGCEERGAAGSLISCE from 22/35 samples
with chr21:41507950–chr21:38445621, binding to C*07:01,
C*04:01, B*44:02 (allele frequencies 0.14, 0.12, 0.08
respectively). The distributions of MHC alleles detected in
patients harboring these events are shown in Supplementary
Figures 1 and 2, respectively. These events are potentially viable
candidates for public epitopes for patients with TMPRSS2-ERG
and could be pursued as vaccines for these cancers.

Recurrent SNV-Derived IARs in PRAD
We detected a number of recurrent mutations in the SPOP gene
concordant with previous reports (28, 61, 62). We detected seven
unique recurrent variants across 19 samples that map to three
different amino acid positions in the SPOP protein, p.F133C/V/I/
L, p.F102C/V, and p.W131G (Table 2). The mutation at position
133 might be of immunological interest since Leucine,
Isoleucine, and Valine have small hydrophobic side-chains and
may stimulate the same TCR depending on pMHC binding. This
hypothesis however, would require biological validation. Samples
with SPOP mutations lack ETV family fusions, suggesting that
vaccine therapies against SPOP and the TMPRSS2-ERG fusion
would target different populations of PRAD patients.

Comparison of HLA Haplotypes Between PHLAT
and POLYSOLVER
An important topic to highlight is HLA haplotypes called by
PHLAT (41). We compared our results to the POLYSOLVER
(32) calls, and consistent with prior work (63), we see that
PHLAT miscalled HLA-A*02:01 as HLA-A*01:81 in 33
samples. However, 29 of these samples are predicted to be
homozygous HLA-A*02:01 by POLYSOLVER so the effect of
this miscall will be to add information to the final ranked IARS
from one additional allele. Since most IARs contain peptides
predicted to bind to more than one allele, the noise produced by
this artifact should not adversely affect the scores generated via
the signal from calls against the correct partners. The remaining
four samples were predicted to be heterozygous HLA-A*02:01/
HLA-A*01:01 via POLYSOLVER, and ProTECT identified these
samples as HLA-*02:01/HLA-A*01:81. This is slightly worse
FIGURE 2 | Average runtimes on our cluster when ProTECT is run in a batch
of ‘n’ samples. Each batch of size ‘n’ is run with five unique sample sets, and
the range of runtimes is described by the whiskers at each datapoint. The
gray bar describes the result of running ProTECT on a single sample on one
machine. ProTECT takes considerably less time on average when run in a
large group.
TABLE 1 | Recurrent TMPRSS2-ERG breakpoints in the cohort.

Breakpoint Count 5’ breakpoint 3’ breakpoint Neoepitope Expected? IAR Count

21:41508081–21:38445621 122 5′ UTR Exon 2 No NA
21:41498119–21:38445621 48 Exon 2 Exon 2 Yes DNSKMALNS EALSVVSED 37
21:41507950–21:38445621 35 Exon 1 Exon 2 Yes*** SGCEERGAA GSLISCE 22
21:41508081–21:38474121 18 5′ UTR Intron 1 No NA
21:41506445–21:38445621 18 Intron 1 Exon 2 Yes* NA
21:41508081–21:38584945 11 5′ UTR 5’UTR No NA
21:41498119–21:38474121 7 Exon 2 Intron 1 Yes** DNSKMALNS LNSIDDAQL 7
21:41508081–21:38423561 7 5′ UTR Exon 3 No NA
21:41498119–21:38423561 4 Exon 2 Exon 3 Yes*** DNSKMALNS ELS 1
21:41494356–21:38445621 3 Exon 3 Exon 2 Yes*** SPSGTVCTS RSLISCE 3
Nove
mber 2020 | Volume 11 | Article 4
IARs from 21:41498119 to 21:38445621 and 21:41507950 to 21:38445621 are recurrent suggesting the viability of universal peptide vaccine candidates. We do not expect to see an IAR
from fusions with 5′UTR breakpoints. *TransGene cannot handle de novo splice acceptors. **An epitope will exist where the TMPRSS2 reads into the intron of ERG. ***A frameshift is seen
on the ERG side of the fusion.
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than the first case since we’re completely lacking HLA-A*01:01
peptide binding affinity predictions for all these samples. Overall,
67.5% of all samples had perfectly concordant haplotypes with
POLYSOLVER, 28.8% differed by one allele and 3.7% differed by
two (Figure 3). A large chunk of the second group consists of the
miscalls mentioned above. ProTECT allows users to provide pre-
computed MHC haplotype calls if they trust another external
caller more than PHLAT, or if they have haplotype information
from another source.

Comparison With Published Callers
Comparison With an SNV-Based Neoepitope
Predictor
We ran ProTECT on the eight melanoma samples from three
patients (one primary lymph node tumor each and multiple
metachronous tumors in two samples) (29) that were used to
benchmark pVAC-Seq (19). Carreno et al. predicted 11–28
expressed, HLA-A*02:01 binding candidate peptides per
Frontiers in Immunology | www.frontiersin.org 7
sample and synthesized seven unique peptide vaccines per
patient based on presence of the mutants in the metachronous
tumors and assessed binding of the predicted peptide to HLA-
A*02:01 in T2 assays. Three peptides per patient were found to
induce an immune reaction. ProTECT correctly identified the
expected immunogenic mutations in every reported mutation:
sample pair. In some cases, ProTECT even predicted the
expected variant in a metachronous tumor where the original
paper missed it (E.g. CDKN2A:E153K in the Lymph Node of
Mel-21) (Table 3). Overall, ProTECT ranked IARs containing
the validated variants relatively highly (in the top 15–20%,
median absolute rank of 11) except in Mel218. We cannot
definitively comment on the ranking in Mel218 since
ProTECT considers every mutant and MHC allele in the MHC
haplotype, while Carreno et al. only considered a curated list of
peptides against HLA-A*02:01. In addition to the validated
variants, we also provided a larger ranked set of possible
candidates that broaden the spectrum of testable epitopes. The
TABLE 2 | Recurrent mutants in the SPOP gene target three codons.

Variant Count Gene Mutant IAR Frequency

chr17:49619064A>C 5 SPOP p.F133V RFVQGKDWG V KKFIRRDFL 4
chr17:49619063A>C 3 SPOP p.F133C RFVQGKDWG C KKFIRRDFL 2
chr17:49619064A>T 2 SPOP p.F133I RFVQGKDWG I KKFIRRDFL 1
chr17:49619062G>T 2 SPOP p.F133L RFVQGKDWG L KKFIRRDFL 2
chr17:49619281A>C 2 SPOP p.F102C CPKSEVRAK C KFSILNAKG 2
chr17:49619282A>C 3 SPOP p.F102V CPKSEVRAK V KFSILNAKG 3
chr17:49619070A>C 2 SPOP p.W131G AYRFVQGKD G GFKKFIRRD 2
November 2020 | Volume 11 | Ar
The F133V/C/I/L mutant may be of interest as a universal neoepitope due to the similar chemical properties of Leucine, Isoleucine and Valine.
FIGURE 3 | HLA haplotypes called by ProTECT (using PHLAT) are fully concordant with POLYSOLVER haplotypes in only 67.5% of samples. 28.8% differ by one
call and 3.7% by 2 calls. A majority of the miscalled HLA-A alleles are a documented PHLAT artifact.
ticle 483296
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data for all seven tested peptides is provided in Supplementary
Table 2, and all neoepitopes predicted by ProTECT in
Supplementary Table 3 and Supplementary File 2.

Comparison With a Fusion-Gene-Based Neoepitope
Predictor
We compared our fusion prediction accuracy with
INTEGRATE-Neo (23). INTEGRATE-Neo was demonstrated
on 321 samples from the TCGA PRAD cohort, and at least one
neoepitope was predicted from 161 samples. 240 of the 321
samples overlap with our 326 sample dataset, and this subset was
used for this experiment. None of the predicted neoepitopes in
this study have been validated using any biological experiments.
We first attempted to compare our fusions (called using STAR-
Fusion) with the fusion calls generated from INTEGRATE (64)
as fusion callers are known for having varied performance across
different datasets (65). As expected, the overlap between the
ProTECT and INTEGRATE calls was relatively low (595/1519,
with 120 unique calls in ProTECT), but a large chunk of the non-
overlapping calls were from events with one spanning read
support in INTEGRATE (Supplementary Figure 3). We see a
better overlap when we increase the minimum support to two
(an internal metric within ProTECT) and also find that 44 events
rejected for having one read support in INTEGRATE were
detected by STAR-Fusion (40) with >1 read support. Some of
the INTEGRATE-specific calls were picked up by ProTECT but
filtered out as low-read-evidence events. We further noticed that
the concordance between MHC haplotypes called by HLA
Miner (66) (used by INTEGRATE-Neo), PHLAT (41) (Used
by ProTECT), and POLYSOLVER (32) was very low
(Supplementary Figure 4). 61 of the unique HLAMiner
predictions across the cohort did not match any of the other
two callers, and 41 matched both. (Homozygous calls in a patient
were treated as one call.) Two alleles were shared exclusively
between ProTECT and INTEGRATE and only one between
INTEGRATE and POLYSOLVER. In order to conduct a more
Frontiers in Immunology | www.frontiersin.org 8
comparable analysis, we reran ProTECT with the INTEGRATE
fusion calls and the MHC haplotypes from the INTEGRATE-
Neo manuscript (182 neoepitopes from 720 fusions over 83
samples, Supplementary Figure 5). ProTECT rejected 100 of the
720 provided fusion events as transcriptional readthroughs (92
events) or for having a 5′ non-coding RNA partner (eight
events). ProTECT correctly identified 139/182 neoepitopes as
IARs and rejected the remaining for being in a rejected fusion (23
neoepitopes), scoring below the 5% predicted binding score
threshold (16 neoepitopes), having a 5′ breakpoint in the UTR
(three neoepitopes), or for having a 5′ non-coding partner (one
neoepitope) (Supplementary Table 4). On further inspection,
we noticed that the three neoepitopes arising from the 5′ UTR
breakpoints (TCGA-HC-7080, PRH1>>RP11-259O18.4 and
PRH1>>M6PR) could have been detected if the 5′ partner had
been annotated with a different gene (PRR4) at the same locus
(Supplementary Figure 6), an issue arising due to the differing
gene annotation GTFs used between the methods (Gencode v25
for ProTECT and Ensembl v85 for INTEGRATE). Interestingly,
this type of event occurred in one other sample (TCGA-EJ-8474,
C1QTNF3-AMACR>>NDUFAF2); however, INTEGRATE
called the overlapping call as well (AMACR>>NDUFAF2), and
since the epitopes were identical from both, ProTECT picked
them up under the correct call (Supplementary Figure 7). The
full set of results from running ProTECT on 83 INTEGRATE-
Neo inputs is provided in Supplementary File 3. Easing
ProTECT’s 5% filter would increase the number of false
positives called by too large a margin, so we stand by our
decision to reject the 16 neoepitopes missed due to this filter.
This experiment also highlights the modularity of ProTECT and
its flexibility in accepting pre-computed inputs to run only the
necessary steps to produce a ranked list of IARs.

Reproducibility
Every tool used the pipeline, from established aligners to the in-
house script used to translate mutations, is wrapped in a Docker
TABLE 3 | ProTECT ranks on eight metachronous tumors across three MELANOMA patients.

Sample and Source Mel 21 Mel 38 Mel 218

LN Skin (2012) Skin (2013) Abdominal Wall Axilla LN Breast LN

RNA 1 RNA 2

Collection date 1/30/2011 5/10/2012 6/6/2013 6/6/2013 4/16/2013 4/19/2012 2/14/2013 4/4/2005
Total Variants 1,532 2,140 1,681 1,679 1,213 1,121 1,259 2,176
Actionable Variants 332 400 393 391 219 216 224 449
Total IARs 105 137 114 116 73 80 86 155

Vaccine Candidates with ProTECT ranks NDC1:F169L (Reported as TMEM48 F169L) SEC24A:P469L EXOC8:Q656P

4 5 10 3 8 9 2 152

TKT:R438W AKAP13:Q285K PABPC1:R520Q

6 6 4 4 14 80 17 140

CDKN2A:E153K OR8B3:T190I MRPS5:P59L

21 – 18 17 11 13 14 26
November 2020 | Volume 11
Highlighted ranks describe instances where pVAC-Seq and ProTECT both call a neoepitope. Green: Dominant epitope (existing immunity, neoantigen processed from endogenous
protein), Orange: Subdominant epitope (immunity after vaccination, neoantigen processed from endogenous protein), Red: Cryptic epitope (immunity after vaccination, neoantigen not
processed from endogenous protein).
| Article 483296

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Rao et al. ProTECT—Prediction of tumor neoepitopes
image (67) tagged with the appropriate tool version. Docker
allows a developer to wrap a piece of code and any requirements
into an image that can be instantiated into a container on any
other machine. The tool within the container will run in the same
manner on any machine, under the same environmental
constraints, barring minor differences that may arise from
asynchronous multiprocessing/multithreading. This way,
results from ProTECT run on different machines with the
same inputs will always be near-identical. The default versions
of each tool used by ProTECT are mentioned in the repository,
and users can containerize other versions of the same tools and
specify the new version to ProTECT at runtime.

Automation, Scalability, and Efficiency
ProTECT is built to be run end-to-end without any user
intervention. ProTECT is written in the Toil framework and will
attempt to run the pipeline on the given input samples in a
resource-efficient manner. The pluggable backend Toil APIs allow
ProTECT to run on a single machine, a grid engine cluster, or a
Mesos cluster setup on a local network or on AWS. Toil allows
users to deploy scripts on Azure and Google cloud as well;
however, ProTECT does not yet support these environments.

Users provide ProTECT a config file that details the input files
and the various indexes and versions of tools to use during the run.
ProTECT copies (or downloads) the files to a “file store” and then
queues a graph of jobs for each input sample culminating in a ranked
list of epitopes. The nodes in the graph are tuned to request an
appropriate number ofCPUs (formultithreaded jobs),memory, and
disk space. Toil ensures that these queued jobs are spawned in a way
that all available resources are utilized to the maximum extent. In
practice, this means that smaller, low-compute, low-memory, short-
duration jobs like variant calling, mutation translation, etc. from one
sample can run parallel to higher-compute, high-memory, long-
running jobs like alignment and haplotyping in another. The
processing time of any single sample is strongly influenced by the
long-running jobs but utilization of free compute to run queued
short-jobs reduced the overall per-sample runtime.
CONCLUSION

We have described an efficient, automated, and portable workflow
for the prediction of neoepitope candidates that can guide vaccine-
based or adoptive T-cell therapies. We have shown that ProTECT
scales well on a parallel processing environment and is highly
efficient processing samples in large batches. On average, we
processed a sample from end-to-end in 26.4 min when we ran
50 samples in a single batch on an eight-node cluster. We have
shown that ProTECT is comparable to existing callers and
improves on them by providing a ranked list of neoepitopes
arising from SNVs, INDELs, and fusion genes. None of the
currently published pipelines give results for all three types of
mutations. Positive results from a clinical trial were ranked highly
in our results, and we retrospectively identified additional events
that could have been used in the trial. We identified recurrent
epitopes arising from the well-documented TMPRSS2-ERG fusion,
Frontiers in Immunology | www.frontiersin.org 9
and these results suggest a peptide or RNA vaccine could be
developed for one of the common breakpoints. While designed for
use in the rapidly growing fields of cancer vaccines and Autologous
T-cell therapies, ProTECT can also be used to understand the link
between tumor mutational burden and response to checkpoint
blockade therapies. It is our fervent hope that improvements in
these fields will quickly establish neoepitope-targeted
immunotherapies as standard-of-care for cancer treatment.
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