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Correcting the Bias Correction for
the Bootstrap Confidence Interval in
Mediation Analysis
Tristan D. Tibbe and Amanda K. Montoya*

Department of Psychology, University of California, Los Angeles, Los Angeles, CA, United States

The bias-corrected bootstrap confidence interval (BCBCI) was once the method of

choice for conducting inference on the indirect effect in mediation analysis due to its high

power in small samples, but now it is criticized by methodologists for its inflated type I

error rates. In its place, the percentile bootstrap confidence interval (PBCI), which does

not adjust for bias, is currently the recommended inferential method for indirect effects.

This study proposes two alternative bias-corrected bootstrap methods for creating

confidence intervals around the indirect effect: one originally used by Stine (1989) with

the correlation coefficient, and a novel method that implements a reduced version of the

BCBCI’s bias correction. Using a Monte Carlo simulation, these methods were compared

to the BCBCI, PBCI, and Chen and Fritz (2021)’s 30% Winsorized BCBCI. The results

showed that the methods perform on a continuum, where the BCBCI has the best

balance (i.e., having closest to an equal proportion of CIs falling above and below the

true effect), highest power, and highest type I error rate; the PBCI has the worst balance,

lowest power, and lowest type I error rate; and the alternative bias-corrected methods fall

between these twomethods on all three performance criteria. An extension of the original

simulation that compared the bias-corrected methods to the PBCI after controlling for

type I error rate inflation suggests that the increased power of these methods might

only be due to their higher type I error rates. Thus, if control over the type I error rate

is desired, the PBCI is still the recommended method for use with the indirect effect.

Future research should examine the performance of these methods in the presence of

missing data, confounding variables, and other real-world complications to enhance the

generalizability of these results.

Keywords: bias-corrected bootstrap confidence interval, indirect effect, bias correction, type I error rate, power,

mediation, bootstrapping

1. INTRODUCTION

Mediation analysis is a statistical method that researchers use to examine how one variable is
able to influence another variable. It is a valuable tool in psychology research because it allows
scientists to expose the mechanism(s) underlying psychological phenomena. As an example,
Osberg and Eggert (2012) used mediation analysis to show that daily hassles increased bulimic
symptoms in students by first increasing their irrational food beliefs. Thus, they were able to
reveal not only that daily hassles affected students’ bulimic symptoms, but also how they did so.
It is important to note before continuing that mediation is concerned with causal processes, but
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a mediation analysis itself cannot be used as evidence that
relationships are causal. As is the case with any statistical
procedure, causation must be justified separately using research
design, previous literature, and/or theory as supporting evidence.

Unlike a simple linear regression equation that estimates only
the effect of a predictor variable X on an outcome variable Y ,
a simple mediation model (like the one used by Osberg and
Eggert, 2012) involves a system of regression equations that
estimates the indirect effect of a predictor X on an outcome Y
through a single mediator variable M. In the example provided
above, X would be daily hassles, Y would be bulimic symptoms,
and M would be irrational food beliefs. The system of linear
regression equations that constitutes a simple mediation model
is as follows,

Yi = d1 + cXi + e1i

Mi = d2 + aXi + e2i (1)

Yi = d3 + c′Xi + bMi + e3i (2)

where the ds represent the intercepts of the equations, the es
represent the error terms (assumed to be independent, normally
distributed random variables with means of zero and a constant
variance), and the subscript i indicates that the variable values
belong to the ith individual. The equations above contain the
parameters we estimate when we run a simple mediation analysis
on a sample of data.

To help visualize the relationship between X, Y , and M, see
the path diagram in Figure 1. In the diagram, the effect of X
on M is found by tracing the a-path from X to M, and the
effect of M on Y controlling for X is found by tracing the
b-path from M to Y . The indirect effect of X on Y through
M is found by tracing from the a-path starting at X through
the b-path ending at Y . Mathematically, the indirect effect is
calculated by multiplying the a and b coefficients from Equations
1 and 2. Thus, in the context of the Osberg and Eggert (2012)
study, ab would give the effect of daily hassles on students’
bulimic symptoms through irrational food beliefs. In a sample,

the true indirect effect ab is estimated by âb̂, the product

of the ordinary least squares estimates of a and b: â and b̂,
respectively.

To determine whether an indirect effect exists, either (a) a
significance test can be performed to see if the null hypothesis
ab = 0 can be rejected or (b) a confidence interval can be
formed and examined to see if zero falls outside its confidence
limits. However, even though both â and b̂ are normally
distributed under the assumptions of linear regression, their
product is not normally distributed (Craig, 1936; Aroian, 1947;
Aroian et al., 1978). As a result, the use of normal theory
tests of statistical significance (and by extension normal theory
confidence intervals) with the indirect effect have been shown
to have lower power to detect a true effect than methods that
do not assume normality (MacKinnon et al., 2002). Making
matters more complicated is the fact that a closed-form solution
for the indirect effect’s sampling distribution has yet to be
derived. Thus, no analytical approach exists for computing

FIGURE 1 | Simple mediation model used in (Osberg and Eggert, 2012).

critical values for the distribution of the product (though some
numerical approaches have been developed; e.g., see Tofighi
and MacKinnon, 2011). An alternative approach is to use the
observed data itself to empirically approximate the indirect
effect’s sampling distribution. The popular nonparametric
bootstrap confidence interval, which one recent study found
was applied to the indirect effect in over half of all mediation
articles published in Psychological Science from 2011 to 2012
(Hayes and Scharkow, 2013), allows researchers to do exactly
this.

Leveraging the power of modern computers, bootstrap
procedures resample with replacement from the original sample
of data many times (e.g., 5,000 times). Each of these 5,000
bootstrap samples is the same size as the original sample,

and from each one a bootstrap indirect effect estimate, âb̂∗,
is computed. These 5,000 bootstrap indirect effect estimates
form an observed bootstrap sampling distribution of the
indirect effect. This observed bootstrap distribution containing
5,000 bootstrap estimates is a subset of the true bootstrap
sampling distribution, which contains all possible bootstrap
estimates calculated from bootstrap samples of the same
size that can be drawn from the the original sample of
data.

Based on the observed bootstrap sampling distribution, a
bootstrap confidence interval for the indirect effect can be formed
by first ordering the bootstrap estimates from smallest to largest
(Efron and Tibshirani, 1993). Multiple methods can then be
used to determine the endpoints of the bootstrap confidence
interval. Of those available, two have been used the most in the
mediation literature: the percentile bootstrap confidence interval
(PBCI) and the bias-corrected bootstrap confidence interval
(BCBCI).
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FIGURE 2 | Steps to implement the bootstrap confidence interval methods.
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2. BOOTSTRAP CONFIDENCE INTERVAL
TECHNIQUES

The following two subsections detail the motivation and
implementation of these two bootstrap confidence interval
techniques, as well as describe type I error rate issues
with the BCBCI in mediation analysis that motivate the
current simulation study. The manuscript then transitions
to discussing the primary goal of this research: developing
alternative bias-corrected bootstrap techniques that address
these issues with the traditional BCBCI when applied to
the indirect effect. One alternative method was originally
discussed in Stine (1989) and involves testing the significance
of the bias the BCBCI is designed to correct, and the
other was developed by the authors of this paper to
implement a reduced bias correction that protects against
overcorrecting. Explicit steps for implementing each
bootstrap procedure discussed in this paper are written out
in Figure 2.

2.1. Percentile Bootstrap Confidence
Interval
After ordering the bootstrap indirect effect estimates from
smallest to largest and determining the acceptable type I error
rate for the analysis, α, the (α/2× 100)th and (1− α/2)× 100th
percentiles of the observed bootstrap sampling distribution are
used to form the lower and upper limits of a (1 − α) × 100%
PBCI (Efron and Tibshirani, 1993).

Both the PBCI and the BCBCI rely on the assumption that
some monotonic increasing function, g(·), exists to transform
the sampling distributions of the sample indirect effect and its
bootstrap estimator to a known symmetric distribution with

variance σ 2

g(âb̂)
, the variance of g(âb̂) (Efron, 1982a; Stine, 1989).

The normal distribution is usually chosen to be the known
symmetric distribution—and it is used throughout the rest of this
paper—because it is the asymptotic distribution of most statistics
(Stine, 1989). The PBCI’s and BCBCI’s assumptions differ,
however, in regards to the expected values of the sample and
bootstrap indirect effects’ transformed sampling distributions.

The (1 − α) × 100% PBCI created from the true bootstrap
sampling distribution—the bootstrap sampling distribution
containing all possible bootstrap estimates calculated from
bootstrap samples of the same size—has correct coverage
(i.e., has α × 100% of the true sampling distribution
of the indirect effect outside its limits) if the following
holds true:

E
(

g(âb̂)
)

= g(ab) (3)

E
(

g(âb̂∗)
)

= g(âb̂). (4)

That is, the expected value of the transformed sample indirect

effect g(âb̂) has to be equal to the transformed true indirect
effect g(ab), and the expected value of the transformed bootstrap

indirect effect g(âb̂∗) has to be equal to the transformed

sample indirect effect g(âb̂) (Stine, 1989). If either Equation

3 or Equation 4 does not hold true, there is mean bias
present in either the transformed sample indirect effect’s or the
transformed bootstrap indirect effect’s sampling distribution, and
the PBCI is no longer guaranteed to have correct coverage.
The BCBCI is a modification of the PBCI that weakens
this requirement in an attempt to form confidence intervals
guaranteed to have correct coverage even in the presence
of bias.

2.2. Bias-Corrected Bootstrap Confidence
Interval
In place of Equations 3 and 4, the BCBCI created using the true
bootstrap sampling distribution has correct coverage if

E
(

g(âb̂)
)

= g(ab)− zadj × σ
g(âb̂)

(5)

E
(

g(âb̂∗)
)

= g(âb̂)− zadj × σ
g(âb̂)

(6)

where zadj is a constant and σ
g(âb̂)

is the standard error of g(âb̂)

(Stine, 1989). As before with the PBCI, these transformed terms
take âb̂ and âb̂∗ and reshape their sampling distributions so that
they both have a known, symmetric sampling distribution (i.e.,
the normal distribution). The BCBCI then goes a step further
than the PBCI by allowing the transformed sample and bootstrap
estimators to have mean bias of the form −zadj × σ

g(âb̂)
. This

means that as the variability of the estimate decreases (i.e., as
σ
g(âb̂)

gets closer and closer to zero, which occurs as the sample

size gets larger and larger), so too does the mean bias of these
transformed estimators.

Even if the transformed estimators are mean biased, however,
this does not imply that there is mean bias of the untransformed
sample indirect effect (sample mean bias) or mean bias of the
untransformed bootstrap indirect effect (bootstrap mean bias).
This is due to the fact that g(·) does not have to be a linear
transformation, only monotonically increasing, and bias of the
mean is not preserved under nonlinear transformations (e.g.,
Needham, 1993). Thus, the expected value of a statistic can be
equal to the parameter it estimates, but this does not imply the
expected value of a nonlinear transformation of that statistic will
be equal to the nonlinear transformed value of its parameter.
A good example of this is the sample variance, s2: Although
s2 is a mean unbiased estimator of the population variance σ 2

(i.e., E(s2) = σ 2), the square root of s2 = g(s2) = s—which
is a nonlinear, monotonic increasing transformation of s2—is a
mean biased estimator of the population standard deviation (i.e.,

E(s) 6= σ ). Similarly, g(âb̂) and g(âb̂∗) could be mean biased

even if âb̂ and âb̂∗ are not, and vice versa. This is important,
because it means that the assumptions underlying the BCBCI do
not depend on sample mean bias or bootstrap mean bias, and so
the BCBCI’s bias correction does not target them.

Unlike bias of the mean, bias of the median is preserved under
nonlinear transformations (e.g., Brown, 1947), and because
g(·) transforms to a symmetric distribution, the mean of the

transformed distribution is equal to its median (i.e., E
(

g(âb̂)
)

=
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FIGURE 3 | Sample mean bias and bootstrap mean bias across the range of a-path sizes, b-path sizes, and sample sizes. The x-axis is on the natural log scale.

Med
(

g(âb̂)
)

and E
(

g(âb̂∗)
)

= Med
(

g(âb̂∗)
)

). Thus, Equations

5 and 6 imply that

Med
(

g(âb̂)
)

= g(ab)− zadj × σ
g(âb̂)

(7)

Med
(

g(âb̂∗)
)

= g(âb̂)− zadj × σ
g(âb̂)

(8)

whereMed(·) signifies the median of the variable in parentheses.
Using the fact that bias of the median is preserved under
nonlinear transformations, then, we find that Equations 7 and 8
imply that

Med
(

âb̂
)

= g−1
(

g(ab)− zadj × σ
g(âb̂)

)

(9)

Med
(

âb̂∗
)

= g−1
(

g(âb̂)− zadj × σ
g(âb̂)

)

(10)

(see Efron, 1979). If zadj = 0 in Equations 9 and 10, the zadj ×

σ
g(âb̂)

terms drop out and so g−1(·) and g(·) cancel, leaving ab as

the median of âb̂’s sampling distribution and âb̂ as the median

of âb̂∗’s bootstrap sampling distribution. The farther from zero
zadj is, the farther the medians of the untransformed sampling
distributions are from the corresponding true parameter values.
Thus, although zadj is on the scale of the transformed estimators,
it is an indicator of the median bias present in the untransformed
sampling distributions of the sample and bootstrap indirect
effects.

The bias constant zadj is found using the equation

zadj = 8−1
(

G∗(âb̂)
)

where 8−1 is the inverse of the normal cumulative distribution
function and G∗(âb̂) is the cumulative distribution function
of the true bootstrap sampling distribution evaluated at the
sample indirect effect (Stine, 1989). In other words, zadj is
the z-score corresponding to the probability that a bootstrap
estimate randomly selected from the true bootstrap sampling
distribution of the indirect effect will be less than or equal to the
original sample estimate. If this probability is 0.50, and thus the
original estimate is the median of the true bootstrap sampling
distribution, the corresponding z-score will be zero and so the
bias terms in Equations (5–10) will be equal to zero as well.

In practice, G∗ is unknown, and so zadj is estimated using

ẑadj = 8−1

(

#{âb̂∗ < âb̂}

B

)

(11)

where #{âb̂∗ < âb̂} is the number of bootstrap indirect effect
estimates in the observed bootstrap sampling distribution that
are less than the original sample estimate and B is the total
number of bootstrap indirect effect estimates collected (e.g.,
5,000; Efron and Tibshirani, 1993). Thus, ẑadj is the z-score
corresponding to the proportion of bootstrap estimates less
than the original sample estimate in the observed bootstrap
sampling distribution.

A (1 − α) × 100% BCBCI is formed by first calculating the
z-scores corresponding to the percentiles at which to place the
confidence interval’s lower and upper limits using the following
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FIGURE 4 | Type I error rate of all methods when a-path is zero across the range of b-path sizes and sample sizes. BC, bias-corrected bootstrap confidence interval;

stBC, significance-tested bias-corrected bootstrap confidence interval; rBC, reduced bias-corrected bootstrap confidence interval; WBC, 30% Winsorized

bias-corrected bootstrap confidence interval; P, percentile bootstrap confidence interval. The black horizontal line at .05 on the graphs represents the target type I error

rate determined by the α-level of .05, and the grey shaded region indicates Bradley’s liberal robustness criterion (.025 to .075). The x-axis is on the natural log scale.

equations:

Lower: 2× ẑadj + zα/2 (12)

Upper: 2× ẑadj + z(1−α/2) (13)

where zα/2 is the z-score corresponding to the (α/2 × 100)th
percentile of the standard normal distribution and z(1−α/2) is the
z-score corresponding to the (1 − α/2) × 100th percentile of
the standard normal distribution (Efron and Tibshirani, 1993).
The ẑadj term is added to both z-scores twice: once to account
for the estimated median bias of the sample indirect effect and
once to account for the estimated median bias of the bootstrap
indirect effect.

The final step in forming the BCBCI is converting the z-scores
from Equations 12 and 13 to the percentiles of the observed
bootstrap sampling distribution at which to place the lower and
upper confidence limits using the following equations:

Lower: 8
(

2× ẑadj + zα/2

)

(14)

Upper: 8
(

2× ẑadj + z(1−α/2)

)

(15)

where 8 is the normal cumulative distribution function. Note
that if ẑadj = 0, Equations 14 and 15 will give the (α/2 × 100)th
and (1 − α/2) × 100th percentiles of the observed bootstrap
sampling distribution, resulting in a (1−α)×100% BCBCI that is
equal to the corresponding (1−α)×100% PBCI. This is because,
based on the form of the bias assumed through Equations 9
and 10, the BCBCI attempts to recenter the PBCI around the

true indirect effect ab. When ẑadj = 0, we estimate that there
is no median bias between either the bootstrap indirect effect

and âb̂ or between the sample indirect effect and ab, and so the
PBCI is assumed to be already well-centered around the true
effect. By allowing ẑadj to be different from zero, the BCBCI is
designed to have less strict assumptions than the PBCI, and thus
be appropriate in more situations.

Although the BCBCI is supposed to be more flexible than
the PBCI, there is a growing body of research indicating that
confidence intervals for the indirect effect created by the BCBCI
have inflated type I error rates (i.e., exclude a true indirect effect
of zero more often then they should) compared to the PBCI
and other confidence interval methods, particularly with smaller
sample sizes (n<500) (MacKinnon et al., 2004; Biesanz et al., 2010;
Fritz et al., 2012; Chen and Fritz, 2021). Fritz et al. (2012) found
that increasing the number of bootstrap samples used to create
the BCBCI had no effect on these elevated type I error rates.
The issue is perpetuated by the BCBCI’s continued popularity
in published mediation articles: Götz et al. (2021) collected
all mediation articles that applied resampling techniques to
the indirect effect published from 2018 to 2019 in five of the
American Psychological Association’s most prominent journals
and found that about 25% still used the BCBCI in at least one
mediation analysis.

Researchers prefer the BCBCI to competing inferential
methods because of its higher power to detect a true indirect
effect (MacKinnon et al., 2004; Preacher and Hayes, 2008;
Williams and MacKinnon, 2008). It may offer advantages in
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FIGURE 5 | Type I error rate of all methods when b-path is zero across the range of a-path sizes and sample sizes. BC, bias-corrected bootstrap confidence interval;

stBC, significance-tested bias-corrected bootstrap confidence interval; rBC, reduced bias-corrected bootstrap confidence interval; WBC = 30% Winsorized

bias-corrected bootstrap confidence interval; P, percentile bootstrap confidence interval. The black horizontal line at .05 on the graphs represents the target type I error

rate determined by the α-level of .05, and the grey shaded region indicates Bradley’s liberal robustness criterion (.025 to .075). The x-axis is on the natural log scale.

terms of balance too. Balance refers to how evenly confidence
intervals fall below and above the true effect. For example, we
would expect a 95% confidence interval to capture the true effect
95% of the time and exclude the true effect 5% of the time
(meaning it has correct coverage). If the confidence interval
were perfectly balanced as well, it would fall below the true
effect 2.5% of the time and it would fall above the true effect
2.5% of the time. Previous research has found evidence that the
BCBCI may offer better balance than the PBCI with nonzero
indirect effects (Williams and MacKinnon, 2008). Although it
was also found that the PBCI may be more balanced when
the indirect effect is equal to zero, an examination of the
tabled data from Williams and MacKinnon (2008) revealed
that the performance of these two methods were quite similar
overall. Additionally, a later study by Fritz et al. (2012) failed
to find a significant difference in the balance of the PBCI
and BCBCI. Still more recent, Supplementary Material from
Chen and Fritz (2021) suggests that the BCBCI may offer
better overall balance across both zero and nonzero indirect
effects. Clearly, further comparison of the balance of these two
methods is warranted, and it would be beneficial to find an
alternative to the BCBCI with good balance that maintains its
high power while also controlling type I error rates for the
indirect effect.

Chen and Fritz (2021) attempted to identify such an
alternative in a recent simulation study. They proposed several

bias-corrected bootstrap methods that replaced âb̂ in Equation
11 with different measures of central tendency, including

the Winsorized mean of the observed bootstrap sampling
distribution set at different percentages of Winsorization.
For example, their 30% Winsorized bias-corrected bootstrap
confidence interval (WBCBCI) involved first finding the
30% Winsorized mean of the observed bootstrap sampling
distribution of the indirect effect, and then calculating the bias

correction by replacing âb̂with theWinsorizedmean in Equation
11. Equations 12 through 15 were then used to calculate the bias-
corrected confidence interval just as they were for the BCBCI.
Ultimately, Chen and Fritz (2021) found that there was always
a tradeoff between type I error rate and power, with power and
type I error rate both decreasing as percentage of Winsorization
increased. No method exceeded the BCBCI in terms of power,
no method had better control over the type I error rate than the
PBCI (which is equivalent to a 50% Winsorized bias-corrected
bootstrap confidence interval), and all methods had balance
levels that fell between those of the BCBCI and the PBCI (the
BCBCI with the best balance overall and PBCI with the worst).

Instead of changing the measure of central tendency used
in the BCBCI’s bias estimation as Chen and Fritz (2021) did,
the present study proposes two bootstrap confidence interval
alternatives to the BCBCI based on the assumptions made
to appropriately apply the BCBCI to the indirect effect: one
introduced by Stine (1989) adapted here for use with the indirect
effect, and another original method developed by the authors of
this paper. The performance of these methods are then compared
to the BCBCI, the PBCI, and theWBCBCI proposed by Chen and
Fritz (2021) in a simulation study.
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TABLE 1 | Type I error rate of all methods across all conditions where ab = 0.

Bootstrap Method

a b Sample Size P BC rBC WBC stBC

0 0 25 0.000 0.007 0.003 0.000 0.007

50 0.004 0.009 0.005 0.004 0.009

75 0.002 0.010 0.004 0.003 0.010

100 0.001 0.006 0.001 0.001 0.006

500 0.003 0.010 0.004 0.004 0.010

0 0.14 25 0.005 0.016 0.009 0.007 0.016

50 0.009 0.026 0.019 0.010 0.026

75 0.009 0.021 0.014 0.012 0.021

100 0.017 0.039 0.029 0.019 0.039

500 0.054 0.086 0.067 0.059 0.086

0 0.39 25 0.025 0.047 0.034 0.029 0.046

50 0.030 0.056 0.046 0.036 0.056

75 0.047 0.084 0.061 0.052 0.084

100 0.062 0.088 0.071 0.065 0.088

500 0.038 0.042 0.039 0.038 0.040

0 0.59 25 0.043 0.069 0.058 0.046 0.069

50 0.055 0.084 0.063 0.057 0.083

75 0.057 0.078 0.068 0.063 0.078

100 0.072 0.082 0.077 0.073 0.082

500 0.048 0.052 0.051 0.048 0.048

0.14 0 25 0.003 0.011 0.004 0.004 0.011

50 0.006 0.015 0.008 0.008 0.015

75 0.012 0.024 0.019 0.015 0.024

100 0.008 0.032 0.018 0.013 0.032

500 0.044 0.069 0.056 0.048 0.069

0.39 0 25 0.026 0.049 0.033 0.029 0.048

50 0.043 0.074 0.058 0.050 0.074

75 0.050 0.075 0.061 0.057 0.075

100 0.042 0.073 0.057 0.048 0.073

500 0.051 0.055 0.051 0.051 0.054

0.59 0 25 0.055 0.088 0.067 0.063 0.087

50 0.045 0.069 0.058 0.052 0.069

75 0.063 0.078 0.069 0.066 0.078

100 0.047 0.062 0.052 0.052 0.059

500 0.044 0.046 0.044 0.044 0.044

BC, bias-corrected bootstrap confidence interval; stBC, significance-tested bias-

corrected bootstrap confidence interval; rBC, reduced bias-corrected bootstrap

confidence interval; WBC, 30% Winsorized bias-corrected bootstrap confidence interval;

P, percentile bootstrap confidence interval.

3. ALTERNATIVES TO THE BCBCI FOR THE
INDIRECT EFFECT

The alternative bias-corrected bootstrap methods discussed
in this section target assumptions underlying the BCBCI’s
correction that may prove fallible when it is applied to the
indirect effect. The first method, the significance-tested bias-
corrected bootstrap confidence interval (stBCBCI), implements
a significance test to determine whether differences observed
between the sample indirect effect and the median of the
observed bootstrap sampling distribution are large enough to

warrant the use of a bias correction. The second method, the
reduced bias-corrected bootstrap confidence interval (rBCBCI),
applies a smaller bias correction than the BCBCI to decrease the
chance of overcorrecting the confidence limits of the indirect
effect’s confidence interval.

3.1. Significance-Tested Bias-Corrected
Bootstrap Confidence Interval
Recall from Section 2.2 that ẑadj determines how large of a bias
correction the BCBCI applies to the confidence limits of the
PBCI. This is because ẑadj represents the bias present between
the median bootstrap indirect effect and the sample indirect
effect, and through Equations (9 and 10) it is assumed that
the bias present between the median sample indirect effect and
the true indirect effect takes the same form. Thus, the larger
ẑadj is, the farther ab is assumed to be from the center of the
PBCI and the more its confidence limits need to be shifted to
recenter the interval around the true effect as a result. Still, ẑadj
is only an estimate of zadj, which can only be obtained using the
true bootstrap sampling distribution that contains all possible
bootstrap estimates calculated from bootstrap samples of the
same size. Thus, it is always possible when zadj = 0 (meaning
that no bias correction is needed) to still observe a nonzero
value of ẑadj in a sample due to random variability. If zadj = 0
and ẑadj is nonzero due solely to random error, the BCBCI will
inappropriately correct for bias that does not actually exist. The
result is a BCBCI that inaccurately moves a PBCI that was already
well-centered around the true indirect effect, moving one of the
two confidence limits closer to excluding the true effect. This
scenario can occur when the true indirect effect is zero because
the underlying sampling distribution of the sample indirect effect
is symmetric around ab = 0 (Craig, 1936). Thus, ab is the median
of the sampling distribution and zadj = 0 because there is no
median bias. If we still obtain a nonzero ẑadj value from a sample,
then the PBCI’s limits will be incorrectly shifted and the true zero
indirect effect will be closer to one of the two limits, resulting in a
greater chance of the BCBCI excluding the true parameter value
of zero and committing a type I error than the unadjusted PBCI.

To protect against such scenarios as the one described above,
Stine (1989) recommended performing a test before applying
the BCBCI’s bias correction to the confidence limits to ensure
the median bias in the observed bootstrap sampling distribution
was statistically significant, rather than just due to random
variability. In his method, the outcome of a binomial test with
null hypothesis

H0 :G
∗(âb̂) = 0.5

and two-tailed alternative hypothesis

Ha :G
∗(âb̂) 6= 0.5

determines what bootstrap confidence interval method to
employ. For this procedure, the proportion of bootstrap indirect
effect estimates less than the original sample estimate in the
observed bootstrap sampling distribution (from Equation 11)

is used to estimate G∗(âb̂). If the proportion is significantly
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FIGURE 6 | Power of all methods when n = 25 across the range of b-path sizes and a-path sizes. BC, bias-corrected bootstrap confidence interval; stBC,

significance-tested bias-corrected bootstrap confidence interval; rBC, reduced bias-corrected bootstrap confidence interval; WBC, 30% Winsorized bias-corrected

bootstrap confidence interval; P, percentile bootstrap confidence interval.

different from .50 at an α-level of .05 (which, with 5,000
bootstrap replications, equates to a proportion less than .4862
or a proportion greater than .5138), the BCBCI is implemented.
On the other hand, if the test is not significant, no bias
correction is applied to the confidence limits because it cannot

be concluded that âb̂ differs from the median of the true
bootstrap sampling distribution. Thus, with a nonsignificant
test, the PBCI is used instead of the BCBCI. The α-level used
to determine the significance of the median bias here can be
different from the α-level used to determine the confidence level
of the bootstrap confidence intervals. Stine (1989) applied this
stBCBCI procedure to the correlation coefficient. The current
study is the first to apply it to the indirect effect.

3.2. Reduced Bias-Corrected Bootstrap
Confidence Interval
While the stBCBCI is meant to prevent the use of the BCBCI
in cases where no actual median bias is present to decrease
its type I error rate—i.e., the rate at which it indicates ab is
significantly different from zero when it is in fact equal to zero—,
perhaps reducing the BCBCI’s bias correction can have the same
effect. Recall from Section 2.2 that the BCBCI adds ẑadj to the z-
scores corresponding to the percentiles of the lower and upper
confidence limits of the PBCI twice: once to correct for the bias
given in Equation 9 and once for the bias given in Equation 10.
This form of bias is only an assumption, however, and if it does
not hold true with the indirect effect then the BCBCI improperly
adjusts for bias. Examining the properties of the indirect effect’s

sampling distribution may thus inform a bias correction that is
better suited for this statistic.

As stated in the previous section, when the true indirect effect
is zero, the sampling distribution of the indirect effect is known to
be symmetric about the origin, and so its median which is equal
to its mean is equal to the true indirect effect (Craig, 1936). As
a result, there is no median bias when ab = 0 and so no bias
correction is needed. A bias correction is thus only necessary
when the indirect effect’s distribution is skewed at nonzero values
of ab. In practice, we can never know when the true indirect
effect is zero and no bias correction should be implemented,
and so perhaps reducing the bias correction implemented by
the BCBCI will offer a method that can still correct for bias
when ab is nonzero while simultaneously decreasing the chances
of committing a type I error when ab is zero. To this end, we
propose the following modifications to Equations (14 and 15):

Lower: 8
(

ẑadj + zα/2

)

Upper: 8
(

ẑadj + z(1−α/2)

)

.

Thus, ẑadj is added to the z-scores corresponding to the
percentiles of the lower and upper confidence limits of the PBCI
once instead of twice. This translates to applying the BCBCI’s bias
correction at only the bootstrap indirect effect level (and not the
sample indirect effect level), reducing howmuch the PBCI’s limits

are shifted and theoretically recentering the PBCI around âb̂ as a
result. Thesemodified limits form the new (1−α)×100% rBCBCI
for the indirect effect.
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FIGURE 7 | Power of all methods when n = 75 across the range of b-path sizes and a-path sizes. BC, bias-corrected bootstrap confidence interval; stBC,

significance-tested bias-corrected bootstrap confidence interval; rBC, reduced bias-corrected bootstrap confidence interval; WBC, 30% Winsorized bias-corrected

bootstrap confidence interval; P, percentile bootstrap confidence interval.

The following section describes a simulation study that
compared the stBCBCI and the rBCBCI to the PBCI, the BCBCI,
and the 30% Winsorized bias-corrected bootstrap confidence
interval (WBCBCI) proposed by Chen and Fritz (2021).

4. SIMULATION

4.1. Manipulated Factors
To compare the performance of the five bootstrap confidence
interval methods listed above, a Monte Carlo simulation was
conducted. In addition to the bootstrap method used, three
other factors were varied in the simulation: effect size of the
a-path, effect size of the b-path, and sample size. First, to see
how the bootstrap methods performed in the presence of a
variety of different effect sizes, the sizes of the a- and b-paths
were varied across conditions to be 0.00 (null effect), 0.16 (small
effect), 0.39 (medium effect), and 0.59 (large effect) in accordance
with effect size conventions established by Cohen (1988). These
four different a-path sizes and four different b-path sizes then
multiplied to form a total of 16 different path-size combinations.

Second, since previous studies have shown that the BCBCI
has inflated type I error rates with samples of n < 500, the
bootstrap methods were tested with five different sample sizes:
25, 50, 75, 100, and 500. This resulted in a total of 80 conditions.
Each condition was run 1,000 times, resulting in a total of 80,000
iterations run in the simulation.

In addition to the manipulated factors described above, the
confidence levels of the bootstrap methods were varied to be

95, 90, and 80%. However, as was found in MacKinnon et al.
(2004), results were similar regardless of the confidence level,
so the 95% setting is focused on throughout the rest of this
paper. Results from the other two settings are available in the
Supplementary Material.

4.2. Data Generation
The Monte Carlo simulation was coded and run in R Version
4.0.2 (R Core Team, 2020). For each iteration, values of X were
randomly generated from a standard normal distribution, with
the number of X values drawn determined by the sample size
factor. These X values were then plugged into Equation 1 and
summed with error terms randomly drawn from the standard
normal distribution to generate corresponding values of M. The
intercept of the equation was set to zero, and the a-path was set
to one of the four effect size levels listed above. After generating
values of M using Equation 1, Equation 2 was used with the
M and X values to generate the corresponding Y values. Once
again, the equation’s error term was added by randomly selecting
a value from the standard normal distribution, and the intercept
was again set to zero. The size of the b-path was set to one of the
four effect size levels as determined by the current condition, and
the c′-path was set to zero since this path has not been found to
have any effect on bootstrap confidence interval approaches for
the indirect effect (MacKinnon et al., 2004; Fritz andMacKinnon,
2007).

Once values for X, M, and Y were obtained, ordinary least
squares regression was applied to estimate a and b in Equations
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FIGURE 8 | Power of all methods when n = 500 across the range of b-path sizes and a-path sizes. BC, bias-corrected bootstrap confidence interval; stBC,

significance-tested bias-corrected bootstrap confidence interval; rBC, reduced bias-corrected bootstrap confidence interval; WBC, 30% Winsorized bias-corrected

bootstrap confidence interval; P, percentile bootstrap confidence interval.

(2 and 3), respectively. These estimates were then multiplied

together to get âb̂, the original sample estimate of the indirect
effect. The simulation then drew samples of the same size as
the original sample with replacement from the generated X, M,
and Y values 5,000 times, calculating the indirect effect in each
resample to form 5,000 bootstrap estimates of the indirect effect.
These estimates were then ordered from smallest to largest, and
the PBCI, BCBCI, stBCBCI, rBCBCI, and WBCBCI procedures
were used to calculate 95% confidence intervals for the indirect
effect to compare themethods in terms of type I error rate, power,
balance, coverage, and width.

4.3. Measured Outcomes
For each condition, sample mean bias was calculated as

∑1000
j=1 âb̂j

1000
− ab,

where âb̂j is the sample indirect effect estimate in iteration j and
1,000 is the total number of iterations. Also, bootstrapmean bias

was calculated for each condition as

∑1000
j=1

(
∑5000

k=1 âb̂∗
kj

5000 − âb̂j

)

1000
,

where âb̂∗
kj
is the bootstrap indirect effect estimate from bootstrap

sample k in iteration j, and 5,000 is the total number of bootstrap
indirect effect samples drawn in iteration j. These measures

were collected to monitor mean bias and illustrate empirically
whether the BCBCI’s bias correction is based on the mean bias
present in either the bootstrap indirect effect’s or sample indirect
effect’s sampling distribution. The results should show that the
bias correction does not depend on these mean biases. Instead,
the correction targets median bias in the estimators’ sampling
distributions.

The performance of the methods included in this simulation
study are discussed using the type I error rates, power, and
balance of the bootstrap confidence intervals. In the seven
conditions where either the a-path, the b-path, or both were equal
to zero (meaning the true indirect effect was zero), the number
of times a confidence interval excluded zero was tallied up and
divided by the total number of iterations to get the proportion
of times zero was excluded by each method (i.e., the method’s
type I error rate). The sizes of the type I error rates were assessed
using Bradley’s liberal robustness criterion which, with α = 0.05,
resulted in an interval from 0.025 to 0.075 (Bradley, 1978). If
the type I error rate of a confidence interval fell outside of this
interval, it was deemed to have either an inflated (if it fell above
the interval) or a conservative (if it fell below the interval) type I
error rate.

The power of each method was calculated exactly the same
way as the type I error rate except in the conditions where
both the a-path and the b-path were nonzero. To find which
manipulated factors had a significant impact on rejection rate

(i.e., type I error rate and power), logistic regression analyses were
run with the binary 0/1 indicator variable from the simulation (0
indicates zero is included in the confidence interval, 1 indicates
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TABLE 2 | Power of all methods across all conditions where ab 6= 0.

Bootstrap Method

a b Sample Size P BC rBC WBC stBC

0.14 0.14 25 0.009 0.022 0.013 0.012 0.022

50 0.020 0.049 0.031 0.024 0.049

75 0.039 0.085 0.058 0.042 0.085

100 0.069 0.125 0.094 0.079 0.125

500 0.749 0.823 0.795 0.772 0.823

0.14 0.39 25 0.045 0.098 0.067 0.053 0.098

50 0.123 0.198 0.161 0.133 0.198

75 0.206 0.290 0.248 0.217 0.290

100 0.267 0.344 0.307 0.285 0.343

500 0.883 0.896 0.886 0.885 0.890

0.14 0.59 25 0.082 0.136 0.103 0.091 0.135

50 0.158 0.209 0.182 0.169 0.208

75 0.237 0.282 0.260 0.250 0.281

100 0.296 0.329 0.311 0.304 0.327

500 0.880 0.885 0.881 0.881 0.883

0.39 0.14 25 0.032 0.060 0.042 0.036 0.060

50 0.128 0.187 0.158 0.139 0.187

75 0.189 0.253 0.221 0.205 0.253

100 0.292 0.353 0.319 0.303 0.352

500 0.864 0.870 0.864 0.863 0.867

0.39 0.39 25 0.169 0.244 0.206 0.186 0.244

50 0.501 0.607 0.551 0.523 0.606

75 0.804 0.863 0.830 0.812 0.861

100 0.920 0.953 0.938 0.928 0.953

500 1.000 1.000 1.000 1.000 1.000

0.39 0.59 25 0.336 0.430 0.380 0.349 0.429

50 0.732 0.791 0.765 0.744 0.790

75 0.899 0.921 0.908 0.903 0.919

100 0.964 0.971 0.968 0.966 0.971

500 1.000 1.000 1.000 1.000 1.000

0.59 0.14 25 0.096 0.146 0.120 0.108 0.147

50 0.169 0.220 0.195 0.179 0.219

75 0.229 0.281 0.255 0.237 0.281

100 0.305 0.352 0.332 0.317 0.350

500 0.881 0.884 0.881 0.878 0.880

0.59 0.39 25 0.302 0.400 0.356 0.322 0.400

50 0.734 0.795 0.766 0.746 0.792

75 0.902 0.922 0.911 0.906 0.922

100 0.970 0.978 0.976 0.971 0.975

500 1.000 1.000 1.000 1.000 1.000

0.59 0.59 25 0.566 0.681 0.624 0.581 0.682

50 0.939 0.960 0.952 0.942 0.960

75 0.993 0.996 0.995 0.995 0.995

100 0.999 1.000 0.999 0.999 1.000

500 1.000 1.000 1.000 1.000 1.000

BC, bias-corrected bootstrap confidence interval; stBC, significance-tested bias-

corrected bootstrap confidence interval; rBC, reduced bias-corrected bootstrap

confidence interval; WBC, 30% Winsorized bias-corrected bootstrap confidence interval;

P, percentile bootstrap confidence interval.

zero is excluded) entered as an outcome and sample size, a-path

size, b-path size, and method entered as factors. Type II sums of
squares were used to test the significance of themain effects of the
factors and all possible two-way through four-way interactions.
To protect against type I error rate inflation, only effects with
p-values less than .001 were deemed significant.

For each bootstrap method within each condition, balance
was calculated by recording the number of times the confidence
interval was either above or below the true indirect effect (i.e.,
did not capture the true indirect effect). These tallies were then
counted across iterations to give the total number of confidence
intervals that fell above the true effect and the total number that
fell below the true effect in each condition. Finally, the total
number of confidence intervals that fell above the true effect was
divided by the total number of confidence intervals that excluded
the true effect (i.e., the number above the true effect plus the
number below it). If this value was equal to 0.50, the method was
perfectly balanced, and balance decreased as the value’s distance
from 0.50 increased. Values greater than 0.50 indicated that the
confidence interval fell above the true effect more often than it
fell below, and values smaller than 0.50 indicated the confidence
interval fell below the true effect more often than it fell above. A
binomial significance test was also applied to the balance values
to see which were significantly different from 0.50 at an α-level of
0.05.

In addition to the aforementioned outcome measures,
confidence interval coverage (the percentage of the time a
confidence interval captures the true effect) and width (the
upper confidence limit minus the lower confidence limit) were
also collected for each method. To save space, these results are
included in the Supplementary Material.

5. RESULTS

The following subsections summarize the results of the
simulation study in terms of the measured outcome variables
using a series of tables and figures. The mean bias, type I error
rate, and balance figures each contain multiple graphs, with each
graph pertaining to an a-path-b-path combination. Within each
graph, the outcome variable is plotted on the y-axis and the
natural logarithm of the sample size is plotted on the x-axis. The
power figures, on the other hand, contain multiple graphs that
each pertain to a b-path size, and the a-path sizes are plotted
along the x-axis. There are separate figures for the sample sizes
of 25, 75, and 500 included in the paper, and additional figures
are available in the Supplementary Material. The power graphs
were structured in this way to make it easier to detect differences
in the power of themethods. The outcome variables are discussed
in the following order: mean bias, type I error rate, power, and
balance.

5.1. Mean Bias
Figure 3 displays the sample mean bias and bootstrap mean
bias in each condition. The largest sample mean biases were
observed with a sample size of 25 and a nonzero true indirect
effect, with the largest positive mean bias of 0.013 obtained when
a = b = 0.59, and the largest negative mean bias of −0.009
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obtained when a = b = 0.39. With nonzero true indirect effects,
sample mean bias appeared to be the worst at the smallest two
or three sample sizes when the size of one or both the paths
was larger (0.39 or 0.59). A notable exception to this pattern
occurred when a = 0.59 and b = 0.14, where the sample mean
bias remained close to zero across all sample sizes. When a = 0,
the sample mean bias remained near zero regardless of the size of
b or the sample size, and when b = 0 and the sample size was 25,
the sample mean bias grew as the size of a increased. Overall, the
sample mean bias shrank toward zero in all effect size conditions
as sample size increased. Bootstrap mean bias, on the other hand,
remained near zero across all conditions.

5.2. Type I Error Rate
Figures 4 and 5 display the type I error rates of themethods when
a = 0 and b = 0, respectively, and the type I error rates found
in all conditions are included in Table 1. The black horizontal
line at 0.05 on the graphs represents the target type I error rate
determined by the α-level of 0.05, and the gray shaded region
indicates Bradley’s liberal robustness criterion. The first notable
feature of these graphs is that, regardless of condition, the order
of the methods in terms of type I error rate almost always
remained the same, with the BCBCI having the highest type I
error rate followed by the stBCBCI, the rBCBCI, the WBCBCI,
and finally the PBCI with the lowest type I error rate. The only
deviation from this order occurred when b = 0.59 and the sample
size was set at 500. In this condition, the rBCBCI’s type I error rate
of 0.051 exceeded the stBCBCI’s type I error rate of 0.048.

When a= b= 0, all methods were too conservative regardless
of sample size, and the WBCBCI and PBCI attained the lowest
observed type I error rate of 0 when n = 25. All other instances
of the methods’ type I error rates falling below the lower limit
of Bradley’s liberal robustness criterion occurred when either the
a-path or the b-path was equal to 0.14 and the sample size was
less than or equal to 100. The WBCBCI and the PBCI had type
I error rates that were too conservative in the highest number of
conditions, with their type I error rates falling below the lower
limit of Bradley’s liberal robustness criterion in 13 of the 35
conditions where ab = 0. On the other hand, the BCBCI and the
stBCBCI had type I error rates that were too liberal in the highest
number of conditions, with their type I error rates falling above
the upper limit of Bradley’s liberal robustness criterion in 8 of the
35 conditions. The only other method with a type I error rate that
exceeded the upper limit of the criterion was the rBCBCI, which
had a type I error rate of 0.077 when b = 0.59 and n = 100. The
maximum observed type I error rate of 0.088 was exhibited by
both the BCBCI and the stBCBCI when b = 0.39 and the sample
size was 100 and again by the BCBCI when a = 0.59 and n = 25.

In summary, the type I error rates of all methods were too
conservative when a = b = 0 in every sample size condition.
When the size of the a-path or b-path was 0.14, type I error
rates increased as sample size increased overall. The relationship
between type I error rate and sample size was noticeably
nonmonotonic when the nonzero path was 0.39 or 0.59, with
type I error rates increasing until about n = 75 or n = 100
before they decreased to near the target type I error rate of 0.05
by n = 500. Regardless of the condition, however, the order of

the methods almost always remained the same, with the order
from highest type I error rate to lowest being: BCBCI, stBCBCI,
rBCBCI, WBCBCI, and PBCI.

5.3. Power
Figures 6–8 display the power of all the methods when the
sample size was 25, 75, and 500, respectively. Additional power
figures are available in the Supplementary Material, and the
power values for all conditions are also available in Table 2. As
expected, empirical power increased as both sample size and
the sizes of the a- and b-paths increased, reaching one when a
and/or b was 0.39 or 0.59 and the sample size was 100 or 500.
With rare exceptions (where the difference in power was at most
0.03), the order of the methods remained the same across all
conditions, with the BCBCI having the highest power followed
by the stBCBCI, rBCBCI, WBCBCI, and finally the PBCI with
the lowest power. All main effects of the method, sample size,
a-path size, and b-path size factors and all two way interactions
were significant (likelihood ratio test p < 0.001). Also, the three-
way interaction between a-path size, b-path size, and sample size
was significant as well (likelihood ratio test p < 0.001). See the
Supplementary Material for more information.

5.4. Balance
Figure 9 displays the balance of the 95% bootstrap confidence
interval methods used. Recall that a value of 0.50 indicates
that exactly half of the true indirect effects not captured by
the confidence interval were below the lower limit, and so
the confidence interval was perfectly balanced. Thus, the black
horizontal line at 0.50 on the graphs indicates perfect balance. A
point above the line indicates a condition in which the confidence
interval fell above the true effect more often than it fell below,
and a point below the line indicates a condition in which the
confidence interval fell below the true effect more often than it
fell above. Note that there is no data point for either the PBCI
or the WBCBCI in the a = b = 0 graph at the sample size of 25
because these methods captured every true indirect effect in this
condition.

With the exception of the conditions in which a= b= 0 and a
= b = 0.14, the balance of all methods seemed to converge to
the same value as sample size grew to 500. The worst balance
occurred when a = b = 0, particularly when the sample size was
50 or 100 for the rBCBCI and the WBCBCI or when the sample
size was 50, 75, or 100 for the PBCI. At these sample sizes, every
time these confidence intervals failed to capture the true indirect
effect, they fell above the true effect, but this was largely due to the
low number of true indirect effects excluded at these sample sizes.
For example, the rBCBCI, WBCBCI, and PBCI only excluded
zero a single time when the sample size was set to 100. In fact, the
WBCBCI and PBCI never excluded zero more than four times
for a given sample size when a = b = 0. Thus, large disparities
in balance were the result of very small differences in the number
of true indirect effects excluded when both the a-path and b-path
were set to zero.

The BCBCI and stBCBCI were more balanced than the other
three methods when a= b= 0 and the sample size was 50 or 100,
and when the sample size was 100 the BCBCI and the stBCBCI
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FIGURE 9 | Balance of all methods across the range of a-path sizes, b-path sizes, and sample sizes. BC, bias-corrected bootstrap confidence interval; stBC,

significance-tested bias-corrected bootstrap confidence interval; rBC, reduced bias-corrected bootstrap confidence interval; WBC, 30% Winsorized bias-corrected

bootstrap confidence interval; P, percentile bootstrap confidence interval. The black horizontal line at .50 on the graphs represents perfect balance. The x-axis is on

the natural log scale.

were perfectly balanced (falling above zero three times each and
falling below zero three times each). In fact, the BCBCI and
the stBCBCI were the best balanced methods overall, achieving
the proportions closest to 0.50 in a combined total of 49 of
the 80 conditions (one time both tying with the PBCI). The
rBCBCI andWBCBCI, which tied in two conditions, had the best
balance in 14 and 8 conditions, respectively. Finally, the PBCI
had the best balance in 12 conditions, tying once with both the
BCBCI and stBCBCI and one other time with the WBCBCI.
Besides the conditions in which a = b = 0, the patterns
of balance were similar across methods, with the BCBCI and
stBCBCI most often closest to perfectly balanced followed by the
rBCBCI, PBCI, and WBCBCI. Examining only the proportions
that were significantly different from .50 in Figure 10 reveals the
same pattern of balance, with the BCBCI significantly different
in only 16 conditions, the stBCBCI in 17, the rBCBCI in 18, the
PBCI in 25, and the WBCBCI in 26. Please note that only the
nonzero ab conditions are displayed in the figure because only
one condition resulted in a significant proportion when ab = 0:
Both the BCBCI and stBCBCI had a significant balance value of
0.899 when a = b = 0 and n = 50 (the balance values of the
other three methods were actually larger, but not significant due
to a fewer number of true indirect effects being excluded by their
confidence intervals).

In summary, the balance of all methods converged toward the
same value as sample size increased in almost all conditions. The
worst balance was witnessed in the a = b = 0 conditions, but this
was largely due to only a very few true effects being excluded by

themethods in these conditions. The overall order of themethods
from best balanced to worst balanced was: BCBCI, stBCBCI,
rBCBCI, PBCI, and WBCBCI. One feature of the 90% and 80%
conditions worth mentioning here is that, while the number
of times the balance for the PBCI, WBCBCI, and rBCBCI was
significantly different from 0.50 increased as the confidence level
decreased, this number for the BCBCI and stBCBCI actually
decreased slightly as the confidence level decreased (see the
Supplementary Material).

6. SIMULATION SUMMARY

The simulation reveals that the bootstrap methods fall on a
continuum. From lowest type I error rate and power to highest
type I error rate and power, the order went PBCI, WBCBCI,
rBCBCI, stBCBCI, and BCBCI. The order from worst balance to
best balance was the same with the exception that the positions of
the WBCBCI and PBCI were switched.

In terms of bias, the simulation study empirically
demonstrated that the BCBCI’s bias correction is not
implemented based on sample mean bias or bootstrap mean
bias (i.e., the difference between the mean sample indirect
effect and the true indirect effect or the difference between the
mean bootstrap indirect effect and the sample indirect effect).
While bootstrap mean bias was near zero in all conditions
and sample mean bias near-monotonically decreased to zero
as sample size increased, the simulation’s type I error rate
results clearly show that the bias correction does not have
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FIGURE 10 | Balance of all methods that are significant at α = 0.05 across the range of all nonzero a-path sizes, nonzero b-path sizes, and sample sizes. BC,

bias-corrected bootstrap confidence interval; stBC, significance-tested bias-corrected bootstrap confidence interval; rBC, reduced bias-corrected bootstrap

confidence interval; WBC, 30% Winsorized bias-corrected bootstrap confidence interval; P, percentile bootstrap confidence interval. The black horizontal line at .50 on

the graphs represents the null hypothesis of perfect balance. The x-axis is on the natural log scale.

the same relationship with sample size. In Figures 4 and 5,
differences between the type I error rates of the PBCI and
the BCBCI illustrate how large the BCBCI’s bias correction
was: The bigger the difference in their type I error rates, the
more the PBCI’s limits were shifted by the bias correction to
produce the BCBCI. The difference between these rates never
decreases to zero monotonically with sample size, indicating
that the bias correction is not shrinking just because sample
size is increasing. In fact, some of the largest differences in type
I error rates occurred at the largest sample size of 500 when a
or b was 0.14, and thus the bias correction was near its largest
at this sample size as well. Clearly, it is not mean bias that is
influencing the BCBCI’s bias correction. Instead, it is median
bias.

One notable feature of the simulation was that the type I
error rates of all methods often surpassed the α = 0.05 level
that corresponds to a 95% confidence interval. Since power is
a function of α, increasing as the α-level increases, power may
be artificially inflated by these liberal type I error rates, and thus
comparing the power of these methods without consideration for
their type I error rates may be misleading. To address this issue,
a supplementary simulation was run that compared the power
of each bias-corrected method to a corresponding PBCI set to
the maximum type I error rate achieved by the bias-corrected
method.

7. SUPPLEMENTARY POWER SIMULATION

After the primary simulation was complete, the maximum type
I error rate found for each of the four 95% bias-corrected
confidence intervals was recorded. In this supplementary
simulation, the maximum type I error rate achieved by each bias-
corrected method was used to determine the α-level at which to
set a (1 − α) × 100% PBCI for comparison. For example, the
maximum type I error rate found for the rBCBCI in the primary
simulation was 0.077, and so a (1− 0.077)× 100 = 92.3% PBCI
was calculated to compare statistical power with the rBCBCI in
this simulation. Setting the PBCI (the method with the lowest
observed power in the primary simulation) to a confidence level
corresponding to the maximum type I error rate achieved by
each bias-corrected method should offer a worst-case-scenario
comparison, ensuring that any power differences due to type I
error rate inflation are removed even if each method is at its most
liberal. Using the maximum type I error rate of each method
should be a more informative option than using the average
type I error rate of each method; the overly conservative type
I error rates the methods achieved in the primary simulation’s
a = b = 0 conditions brought their mean error rates
down to almost nominal levels, resulting in comparison PBCIs
that would be set near a 95% confidence level like the PBCI
in Figures 6–8.
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FIGURE 11 | Power of all methods compared to PBCI controlling for type I error rate when n = 25 across the range of b-path sizes and a-path sizes. BC,

bias-corrected bootstrap confidence interval; stBC, significance-tested bias-corrected bootstrap confidence interval; rBC, reduced bias-corrected bootstrap

confidence interval; WBC, 30% Winsorized bias-corrected bootstrap confidence interval; P.BC/stBC, comparison percentile bootstrap confidence interval for BC and

stBC; P.rBC, comparison percentile bootstrap confidence interval for rBC; P.WBC, comparison percentile bootstrap confidence interval for WBC.

7.1. Manipulated Factors
The manipulated factors in this simulation were exactly the same
as those in the primary simulation, but the conditions in which
ab = 0 are not focused on since the outcome of interest in this
simulation was power.

7.2. Data Generation
The exact same procedure was followed to generate data in
this simulation as was used in the primary simulation, except
four different PBCIs were formed to be compared with the four
95% bias-corrected bootstrap confidence interval methods. The
confidence level of each PBCI was determined by the maximum
type I error rate its corresponding bias-corrected method(s)
reached during the first simulation. These type I error rates
were 0.088 for the BCBCI and stBCBCI (resulting in a 91.2%
comparison PBCI), 0.077 for the rBCBCI (resulting in a 92.3%
comparison PBCI), and 0.073 for the WBCBCI (resulting in a
92.7% comparison PBCI).

7.3. Measured Outcome
The power of the bootstrap methods was calculated the same way
it was in the primary simulation.

8. SUPPLEMENTARY RESULTS

Figures 11–13 present the BCBCI, stBCBCI, rBCBCI, and
WBCBCI plotted with their comparison PBCIs that control for
the inflated type I error rates of each method at the sample

sizes of 25, 75, and 500, respectively (additional figures are
available in the Supplementary Material). As can be seen in the
figures, the advantages in terms of power of the bias-corrected
methods over the PBCI that were evident in Figures 6–8 are no
longer present, with the adjusted PBCIs achieving higher power
than their corresponding bias-corrected methods in all but six
conditions (in which both the BCBCI and stBCBCI obtained
higher power, but the difference in power was never more than
0.005). Thus, controlling for type I error rate, the bias-corrected
methods did not seem to perform any better in terms of power
than the PBCI. There still appears to be an advantage in terms
of balance, however: The BCBCI’s and stBCBCI’s balance values
were significantly different from 0.50 in 16 and 17 conditions,
respectively, while the balance of their corresponding control
PBCI was significantly different in 34. The balance values of the
rBCBCI and WBCBCI were significantly different from 0.50 in
18 and 26 conditions, respectively, while the balance values of
their corresponding control PBCIs were significantly different
in 31 conditions each (see the corresponding figure in the
Supplementary Material).

9. GENERAL DISCUSSION

The present study compared the PBCI, BCBCI, and WBCBCI
to two new alternative bias-corrected bootstrap techniques for
the indirect effect: the stBCBCI and the rBCBCI. Performance
measures included type I error rate, power, and balance. In terms
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FIGURE 12 | Power of all methods compared to PBCI controlling for type I error rate when n = 75 across the range of b-path sizes, a-path sizes. BC, bias-corrected

bootstrap confidence interval; stBC, significance-tested bias-corrected bootstrap confidence interval; rBC, reduced bias-corrected bootstrap confidence interval;

WBC, 30% Winsorized bias-corrected bootstrap confidence interval; P.BC/stBC, comparison percentile bootstrap confidence interval for BC and stBC; P.rBC,

comparison percentile bootstrap confidence interval for rBC; P.WBC, comparison percentile bootstrap confidence interval for WBC.

of balance, the results of this study agree with those of Chen
and Fritz (2021), who found that the BCBCI offered overall
better balance than other bootstrap methods. The tendency of
the methods’ balance values to grow more and more similar as
sample size increased in our simulation replicates their findings
as well. Also in line with previous research, the BCBCI exhibited
the most elevated type I error rates and the highest power, and
the PBCI had the most control over type I error rates and the
lowest overall power. Similarly, the finding that all methods were
too conservative when a = b = 0 reflects the results of previous
simulation studies comparing inferential methods for the indirect
effect (Biesanz et al., 2010; Fritz et al., 2012; Chen and Fritz,
2021). As explained by Fritz et al. (2012), this is because the
sizes of both the a-path and the b-path matter in determining
the significance of a sample estimate of a true indirect effect.

When both a and b are zero, âb̂ will be close to zero as well,
while if a is zero and b is 0.59, for example, the product of their
sample estimates will likely be farther from zero. This means that
a sample estimate of a true indirect effect with a = b = 0 is the
most likely to be close to zero and the least likely to significantly
differ from zero, resulting in the smallest number of type I errors.
One method for inference in mediation which does not suffer
from this conservative type I error rate issue is the model-based
constrained optimization procedure, as proposed by Tofighi and
Kelley (2020). Through this procedure, two models are fit: one
where the indirect effect is constrained to zero (i.e., ab = 0)
and one where it is freely estimated. The resulting models are
then compared using a likelihood ratio test. This method seems

to have more accurate type I error rates due to fitting the
constrained model, thus finding the most likely model which fits
the null hypothesis among many candidates.

Across all conditions, the stBCBCI performed very similarly
to the BCBCI on all performance criteria, and the WBCBCI
performed quite similarly to the PBCI. Increasing the percentage
of trimming shouldmake theWBCBCImore andmore similar to
the PBCI, with the 50% Winsorized BCBCI producing the exact
same confidence intervals as the PBCI (Chen and Fritz, 2021).
The rBCBCI, on the other hand, offered a balance of the benefits
and shortcomings of the BCBCI and the PBCI, falling somewhere
in the middle on all performance criteria.

Although the goal of this research was to develop a method
that maintained the high power and balance of the BCBCI
while still controlling the type I error rate, the primary
simulation revealed that there was always a tradeoff between
the three performance measures. Across conditions, the methods
examined fell on a continuum, which in order of increasing type
I error rate, power, and balance went: PBCI, WBCBCI, rBCBCI,
stBCBCI, and BCBCI (with the exception that the WBCBCI had
slightly worse balance than the PBCI). Thus, a method with
overall better balance and higher power also had higher type I
error rates than its competitors. Decreasing the confidence level
of the PBCI in the supplementary simulation seemed to provide
the same power benefit using any of the bias-corrected methods
did, however, and thus the only clear advantage of the bias-
corrected methods is the better balance they provide. As such, if
controlling for false positives is more important than finding an
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FIGURE 13 | Power of all methods compared to PBCI controlling for type I error rate when n = 500 across the range of b-path sizes and a-path sizes. BC,

bias-corrected bootstrap confidence interval; stBC, significance-tested bias-corrected bootstrap confidence interval; rBC, reduced bias-corrected bootstrap

confidence interval; WBC, 30% Winsorized bias-corrected bootstrap confidence interval; P.BC/stBC, comparison percentile bootstrap confidence interval for BC and

stBC; P.rBC, comparison percentile bootstrap confidence interval for rBC; P.WBC, comparison percentile bootstrap confidence interval for WBC.

effect if it exists, the PBCI is still recommended. This might be the
case, for example, in an experiment testing the efficacy of a drug
that can have severe side effects and is designed to treat a non-
life threatening condition: It is important that the drug only be
found effective if we are quite confident it can help significantly;
otherwise, we risk recommending an ineffective drug that has
a high potential to harm its users. If detecting a true effect is
most important but control over the type I error rate is still a
concern, the rBCBCI is a good compromise between the PBCI
and the BCBCI that has the benefit of being better balanced
than the former method. A situation where the rBCBCI might
thus be useful would be an experiment to see if an expensive
drug designed to treat a debilitating condition is effective: It is
important to find an effect of the drug if it exists so that people
suffering from the condition can get help. At the same time,
however, protection against finding an effect when one does not
exist is warranted so we decrease the risk of selling a useless
drug that will cost patients a great deal of money. Balance is also
beneficial here so there is no worry our confidence interval tends
to miss the true effect in one directionmore than the other. These
decisions about whichmethod to use are only impactful when the
sample size is small, however; in almost all effect size conditions
in the primary simulation, differences between methods on all
three performance measures decreased with sample size to the
point that, with n = 500, the performance of each method had
converged to nearly the same value.

Regardless of condition, the performance of the stBCBCI
closely resembled the performance of the BCBCI in terms of
type I error rate, power, and balance. This was due to how
often the stBCBCI’s significance test indicated a significant
difference between the median of the observed bootstrap
sampling distribution and the corresponding sample indirect
effect estimate. On average, this significance test rejected the null
hypothesis in over 72% of the iterations in each condition: about
71% of the time when the true indirect effect was zero and about
74% of the time when the true indirect effect was nonzero. Thus,
the stBCBCI used the bias-corrected bootstrap for its confidence
interval most of the time. Since the BCBCI was used almost three
times more often than the PBCI, it makes sense that the stBCBCI
performed very similarly to the former test. In fact, with 5,000
bootstrap replications representing the sample size of each trial,
the binomial test of the stBCBCI would reach significance at
an α-level of 0.05 if the observed proportion was greater than
0.0138 away from 0.50, and so even minor deviations away from
the median of the observed bootstrap distribution resulted in
the BCBCI being employed. Using a more conservative α-level
(e.g., α = 0.01) may be worthwhile to increase the significance
threshold. Furthermore, because the stBCBCI employs two tests
of significance in order to conduct inference on the indirect
effect (i.e., the binomial test of median bias to determine which
bootstrap confidence interval to use and then the bootstrap
confidence interval itself to determine the significance of the
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indirect effect), a more conservative α-level would help alleviate
any multiple testing issues that could arguably arise.

Still, the frequent significance of the stBCBCI’s test of median
bias highlights the fact that median and mean bias are distinct
quantities. While the discrepancy between the sample indirect
effect and the median of the observed bootstrap sampling
distribution was often large enough to warrant the use of the
stBCBCI, bootstrap mean bias (i.e., mean bias of the bootstrap
indirect effect) recorded during the simulation remained near
zero across all conditions. In 76 of the 80 conditions observed
in this study, bootstrap mean bias was smaller than sample
mean bias (i.e., mean bias of the sample indirect effect). Further
exploration of the differences between the mean and median bias
properties of the indirect effect, and how well they agree with the
bias properties assumed under the bias correction of the BCBCI,
could advance our understanding of the BCBCI’s appropriateness
when applied to the indirect effect. Diagnostic functions like
those discussed in Efron (1982b) could also help assess whether
the existence of the function g(·) is a reasonable assumption for
the indirect effect.

9.1. Limitations and Future Directions
The following section discusses several limitations of the current
study, including the conclusionsmade regarding balance, the lack
of missing data, the lack of confounding variables, and the use
of a simple mediation model within the ordinary least squares

(OLS) regression framework. Potential future directions are also
described to address these issues and other questions that remain

regarding the BCBCI.
The worst balance among the methods examined in this study

was observed in conditions in which a = b = 0. However, these
were also the conditions in which the fewest number of true

indirect effects were excluded by the confidence intervals. For
example, in the a = b = 0 and n = 100 condition, the rBCBCI,
PBCI, and WBCBCI never had any confidence intervals fall

below the true indirect effect because only one true effect was ever
excluded by these bootstrap methods across all 1,000 iterations
of the condition. Thus, the confidence intervals never fell below

the true effect, but they also only fell above it once. Due to very
small numbers of indirect effects being excluded by confidence
intervals in this condition and others in which a = b = 0, more
simulations should be run to verify the accuracy of the balance
values found in this study.

Future simulation studies should also examine the impact of
missing data on these methods. In real-world scenarios, it is
quite common for some data values to be missing, and thus
methods of handlingmissing datamust be applied in conjunction
with bootstrapping to draw accurate inferences about the data.
Future research should combine the bias-corrected bootstrap
methods discussed here with popular missing data methods
in the presence of different missing data mechanisms to see
how their performances change and whether they offer any
performance advantages over the PBCI in such situations. For
existing work on missing data handling procedures combined
with bootstrapping for the indirect effect, see Wu and Jia (2013)
and Zhang and Wang (2013).

Another real-world complication ignored in this study is the
presence of confounding variables. Every mediation model used
in the simulations was correctly specified, meaning that the form
of the model fit to the data matched the underlying relationships
between the variables in the population. These are conditions
in which any bias present should be at a minimum. With an
unknown third variable present, the indirect effect produced by
the mediation model may be more biased (see Valente et al.,
2017 for an overview of confounding and how to address it in
mediation analyses), and thus the bias-corrected methods may
perform differently. It would be informative to see how the
BCBCI and the other bias-correction variants perform in relation
to the PBCI when the indirect effect estimate is (median) biased
by a confounding variable in future work. Other conditions that
lead to violations of model assumptions, such as nonconstant
error variance and the presence of outliers, should also be
explored in future research to increase the generalizability of
these results to real, less ideal datasets.

In addition to being correctly specified and being applied
to data meeting all necessary model assumptions, the models
included in these simulation studies were all simple mediation
models estimated using OLS regression rather than the also-
popular structural equation modeling (SEM) framework. Still,
OLS regression mediation models are mathematically equivalent
to identified SEM mediation models when the mediator and
outcome variables are continuous and observed, so these
results are expected to generalize to corresponding SEM simple
mediation models (e.g., see Rijnhart et al., 2017). For a general
introduction to SEM in mediation analysis, see Gunzler et al.
(2013).

The inflated type I error rates of the BCBCI applied to
the indirect effect call into question its ability to perform
in areas of statistics outside of mediation analysis as well.
For example, Karlsson (2009) found evidence that the BCBCI
applied to a weighted nonlinear quantile regression estimator
for longitudinal data resulted in significant undercoverage—i.e.,
the true value being captured by the interval less often than it
should according to the set confidence level—and recommended
using the PBCI instead. Identifying and examining other BCBCI
problem areas such as this in future studies can help further
understanding of the BCBCI’s issues and lead to the development
of improved bias-corrections for the sample indirect effect
and other statistics. Applying the new bias-corrected methods
discussed in this study to other statistics would be worthwhile
as well to see how they perform in these other areas. On the
other hand, adapting novel bootstrapping procedures applied in
other areas of research (e.g., the iterated bootstrap confidence
interval approach discussed in Lee and Young (1995) or
Davidson and MacKinnon (2010)’s wild bootstrap procedure)
for use with the indirect effect in future studies could also
prove fruitful.

Although—in correctly specified, complete data mediation
analyses at least—the benefits of the bias correction are still
accompanied by inflated type I error rates after the completion
of this study, it is possible that there is still an alteration to
the BCBCI’s bias correction that can wed its increased power
with the PBCI’s control over the type I error rate. Thus, future
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research should continue examining ways in which the BCBCI
can be tailored to the indirect effect in small samples to make
it the robust alternative to the PBCI it was once believed
to be.
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