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We are at a pivotal point in healthcare informatics where our technical abilities and computational 

methods are often beyond our abilities to translate and implement them in practical and applied settings. 

For example, researchers are working on unraveling the intricacies of the human genome to help individuals 

with their healthcare needs, but often lack the ability to easily share genetic data and medical records 

between clinics or healthcare providers due to logistical, legal, and interoperability issues. Using more 

sophisticated healthcare data on individuals derived from other data-intensive assays, such imaging or 

digital devices, to guide their care is likely to create even more practical issues. This will especially be the 

case as the community pushes towards personalized medicine and an ability to track an individual’s health 

over time through the use of these data-intensive assays. In my thesis research, I consider the application 

of statistical methods to large-scale longitudinal health data. I focus on not only the detection of novel 

relationships between longitudinal data points, but also on developing strategies for making more 

personalized health predictions and recommendations. I focus on three broad settings: one involving an 

analysis of genetic factors associated with  progressive visual field loss in patients with primary open angle 

glaucoma using a large clinical data set, and two that consider individual mental health and mood data 

obtained from the prolonged use of a digital therapeutic (i.e., smartphone app) designed to provide 

meditations to individual users to reduce stress, anxiety, and depression. I also discuss and explore the 

implementation of systems designed to learn or adapt from past data in order to improve predictive models 

going forward using the glaucoma and healthcare app data. 



1 

 

 

 

INTRODUCTION 
 

Background 

 

Many disease risk assessments only leverage data collected on individuals at single snapshots of 

time.1,2,3,4 This can be problematic for identifying factors that are truly predictive of a disease since the 

temporal component associated with the underlying disease process is ignored. For example, genetic studies 

often associate specific variants with a disease to facilitate the development of a diagnostic or enable general 

long-term predictions about disease risk. Without longitudinal data or very strict assumptions about disease 

incidence and prevalence, reliable, empirically based, long term predictions about a person’s risk for 

developing a disease based on an individual’s genetic profile are not possible.  Although inherited (i.e., 

germline) DNA sequence -- and the genetic information within it -- doesn’t change over time, it can’t be 

used as a concrete indicator of predisposition to a disease if there is no data relating that genetic information 

to long term individual health outcomes. Without longitudinal and developing phenotypes data it will be 

difficult if not impossible know just how well genetic information may inform an individual’s long-term 

health. Thus, while genetic association studies and methods have provided important advances in the fields 

of medicine and biology, they often only involve case/control or single slice in time data and thus only 

address part of the greater picture of how diseases manifest themselves but are limited in how they can be 

used to inform the prediction of individual differences in their genetically-mediated individual progression.5  

The ease with which health data can be collected via, e.g., wireless devices, continuous glucose 

monitors, micro-sampling biofluids through routine dried blood spot collections, and smart phone apps, has 

changed the way biomedical researchers can design studies. The ubiquitous use of smart phones, mobile 

applications, internet-based surveys, wearables, and other remote data collection devices has enabled the 

gathering of aspects of this data, particularly in longitudinal contexts. In addition to the availability of 

continuous data collection, there has been great interest in leveraging medical records to enable the 

aggregated, real-time analyses for identifying trends in those records that could guide healthcare. For 
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example, the 2009 ‘HITECH’ initiative was organized to motivate the ‘digitalization’ of all medical records 

and ultimately help create an environment where multi-factor, individualized healthcare could become a 

reality. With massive amounts of longitudinal data, researchers can look for patterns in those data that may 

be indicative of disease onset, mitigation of symptoms, or correlations with various factors, such as diet, 

that might shed light on disease pathogenesis. In addition, longitudinal data can be used to refine prediction 

models that may have clinical and public health utility. For example, with longitudinal data on biomarker 

or potential predictor of a particular disease one could ask how much earlier than the disease onset could 

one have anticipated the disease: 10 years prior, 5 years prior, 1 year prior? In addition, with longitudinal 

data one could ask if the use of the lifetime risk of disease determined by genetic profile (a ‘trait’ measure), 

coupled with a biomarker collected over time (a ‘state’ measure), could result in more reliable and precise 

risk mitigation strategies. Finally, longitudinal data could reveal specific trends associated with the use of 

a disease risk mitigation strategies that identify the settings in which those strategies might be most 

effective.  

 

As a result of this ability to capture information relevant to an individual’s health, there is 

considerable interest in personalizing medicine. Personalized medicine involves providing medical 

interventions – including those designed to prevent disease – based on an individual’s genetic, biochemical, 

physiologic, exposure, and behavioral profile. One vision of personalized healthcare involves consideration 

of all a target patient’s health data and measures and compares those data to data obtained on similar patients 

who may have been prescribed drugs or developed an outcome that could inform the prognosis of the target 

patient. The use of data in this way could then feedback into the development of predictive models that 

could then be used to guide patient care. These models can then be updated as experience with them is built 

up. This ‘Rapid Learning System (RLS)’ ‘analyze-predict-evaluate-refine’ concept can not only to be used 

to predict outcomes based on interventions, but also elucidate the key triggers that elicit or confound an 

intervention response. 
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There are many challenges to the analysis and use of longitudinal data, however, and I comment 

on these challenges in isolation in the sections that follow. First, there are a wide variety examples in the 

biomedical research literature that expose issues in the analysis of longitudinal data. Second, there are a 

number of analysis methods for longitudinal data, each of which make different assumptions, but all must 

deal with phenomena common to all longitudinal data, such as serial correlation, vulnerability to a wide 

variety of factors (such as diet, weather, etc.); 3. Third, analysis of longitudinal can lead to more powerful 

analyses than single-slice in time data, but only under certain conditions; 4. The general availability and 

use of health data collection devices, like fitbits or smart phone apps, has created vast data repositories that 

can be mined for patterns of relevance to clinical care and public health. However, such ‘real world’ data 

often present data analysis challenges given that there might be biases in who can take advantage of relevant 

data collection devices, missing data, non-uniform data collections, and other challenges; and 5. The 

continued analysis of accumulating longitudinal data could be exploited in efforts to improve prediction 

models in real time, possibly leading to the construction of ‘learning systems,’ which are designed to 

specifically evolve a system towards optimality, but themselves can be tricky to implement. Ultimately, the 

material in these sections provide context for the studies I pursued. 

 

Example Longitudinal Data Analysis  

The use of longitudinal data to make better clinical predictions is not a new concept, but practical 

applications are only now beginning to emerge. There are a few specific settings which have shown promise 

in the use of longitudinal data to enable more sophisticated analyses and prediction models. We provide a 

few examples that bring in elements of data analysis similar to those I dealt with in my research. For 

example, models for cardiovascular events prediction have been pursued, where researchers used EMR data 

and genetic information to enhance the predictive ability of those events 6. The researchers showed further 

that their approach with longitudinal data performed better than those currently used in clinical practice. 

The researchers incorporated several different types of machine learning methods, and built predictive 
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models including longitudinal data and longitudinal data plus genetics. Even without the inclusion of 

genetic information, the models which incorporated longitudinal components outperformed the clinical 

standards. Genetic features marginally improved the predictive ability. Another study used EMR data and 

natural language processing from clinician notes to predict suicidal behavior and tendencies.7 In this study 

they used a naive Bayesian classifier to model the probability of a suicidal event. Given the large sample 

size (> 1.7 Million individuals) and longitudinal data they were able to include a large number of covariates 

(>30) as well as ICD9 codes to look for predictors of suicidal events. While there was no comparison group, 

the researchers demonstrated an ability to predict nearly half of all suicides and suicidal behaviors an 

average of 3-4 years in advance with 90% specificity. Another group used temporal EMR data to model 

progression of kidney function loss. In their analysis the researchers derived 3 models, one which did not 

include longitudinal data, and the other two which did.8 Their results showed that both temporal models 

vastly outperformed the model which did not include longitudinal data, at predicting kidney function loss. 

In this example they used generalized linear mixed-effects models to capture the non-independence between 

samples and account for non-linear features. 

 

Longitudinal Data Analysis Methods 

The analysis of longitudinal datasets requires special techniques, and there are several statistical 

frameworks that can be implemented for particular analyses.9,10 A classic analysis method is repeated 

measures (rm) analysis of variance (ANOVA). This method accounts for the repeated measures on 

individual subjects over time, and because the analysis is fundamentally similar to standard ANOVA the 

results are easily understood. However, this method is not always well suited, especially for RWD, since 

rmANOVA operates under the assumption that variances across groups are relatively equal, and if this 

assumption is not met, resulting confidence intervals and p-values are biased and will lead to false positive 

and negative inferences. Additionally, rmANOVA assumes that the time intervals are uniform between 

measurements, which is rarely the case for real world data (RWD), and it does not work with unmatched 
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time-series data or and in situations where there is lot of missing data. There are simple alternatives to 

rmANOVA, but they also make assumptions. For example, if the hypothesis of interest is not concerned 

with the magnitude of the differences of a measurement between two or more groups, the Friedman test can 

be used as a non-parametric substitute to rmANOVA, but it still lacks the ability to handle asynchronous 

measures. Linear and non-linear mixed effects models have been a staple in handling longitudinal data, as 

they do not depend on many underlying assumptions and are generally more flexible than other approaches. 

They can also handle serial correlation (correlations between measurements collected over time on the same 

unit of observation) which is very likely to occur with longitudinal data. When applying mixed effects 

models, the only basic assumptions are that residual values follow an identifiable and specifiable 

distribution, like multivariate normality, and this assumption can be tested by exploring the distribution of 

residual values. Non-linear relationships among independent and dependent variables, as well as non-linear 

relationships between time and the independent and dependent variables can be handled by either 

transforming data prior to analysis or using a model that specifies the relationship between variables and 

time. This includes analysis of binary outcomes (e.g., diagnosis of disease yes or no) which can be 

accommodated by specifying an appropriate link function shaping the models. There are alternative 

statistical models that can account for longitudinal data, many of which are only now being used more and 

more often, but many are computationally burdensome, such as longitudinal support vector machines, and 

long short-term (LST) memory convolutional neural networks. These methods work well with high 

dimensional data but can be difficult to interpret. Given their flexibility, mixed models can be a first choice 

in many analyses of longitudinal data sets.  

 

Longitudinal Data and Statistical Power 

There is little doubt that leveraging longitudinal data can lead to increases in the statistical power 

to detect effects, but one needs to accommodate potential noise in such data, and, in hypothesis testing 

contexts, the assumed magnitude of an effect and number of units of observation in addition to the number 

of time points at which data are collection on those units of observation in the dataset. It is well known that 
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the inclusion of multiple measurements on each sample or unit of observation can lead to variance shrinkage 

of any estimated parameters, leading to greater power to test hypotheses based on those parameters.11-13 In 

addition, estimates for individual subject or unit of observation variances can be made and used to account 

for subject level differences in those variances, which could be crucial if a parameter of interest is known 

to be affected by subject-specific covariates. In many translational settings the endpoints of interest are 

often linked to or directly correlated with an overall rate of change (such as the rate of visual loss in 

glaucoma, the rate of recovery from a surgery, the rate of aging, etc.). Such endpoints can only be assessed 

with longitudinal data.  

 

Real World Data 

Real World Data (RWD) is just as it sounds: data collected from routine use of a product and not 

in the context of a highly contrived or controlled setting, like a clinical trial. RWD can also be gleaned and 

analyzed from consumer health products that either do not need FDA approval (like dietary supplements 

and many smart phone health apps) or have been approved previously and are out on the market. A major 

component of my research involved not only using RWD longitudinal data but also considering the 

application of the results to guide real world use (i.e., in overt translational settings). The use RWD has 

presents a number of opportunities, and is actually contributing to new sources of evidence for clinical use 

and consumer utility.14,15 One of the most common uses of RWD is in post-approval safety of a product, as 

highlighted by the FDA Sentinel Initiative to monitor long-term effects of pharmaceutical drug use.16 This 

practice has been adopted by pharmaceutical and biotech companies as well to monitor safety and efficacy 

after Phase III drug approval and distribution in the health care market. Another successful use of RWD 

has been with initial regulatory approval. This has been especially true in the context of studies of rare or 

deadly diseases where it is difficult to obtain controls needed for randomized clinical trials (RCTs) or where 

it would be unethical to treat with placebo.17,18 Thus, single arm experimental trials considering only the 

responses of a few patients compared to historical RWD-based controls, potentially mined from EMRs to 

mimic the population which is receiving the drug/treatment. In a similar vein, RWD can be used for 
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comparative effectiveness evaluations when there are many competing therapies and a full RTC across all 

compounds would be impractical. Another advantage of using RWD is that it can be used to continuously 

test for efficacy of treatments in the population at large. This can provide opportunities to look for 

subpopulations in which a particular treatment is more effective.19 This also means that effectiveness can 

be evaluated on broader populations that are not confined to the strict enrollment criteria associated with 

an RTC.20,21 Additionally, RWD can be used to test post-hoc alternative end points for their association 

with an intervention. A good example of this involves a study in which immunotherapy-treated cancer 

patients saw little tumor reduction during treatment and therefore were moved to different treatments. A 

post-hoc meta-analysis months to years after initial immunotherapy treatment showed that those pre-treated 

with immunotherapies had overall better survival than those that did not.22 From a practical standpoint 

RWD also has the advantage that it can inform clinical decision support, quality of practice, and continually 

establish efficacy. This means there are likely massive cost and time savings to be reaped from leveraging 

RWD as long as relevant data can be cleaned and harmonized, which could help alleviate the US’s inflated 

cost of healthcare. RWD is not without challenges - unlike the controlled setting of RTC data collection is 

irregular, non-standardized, contains missingness and confounding factors. Fortunately, there are solutions 

which can often be remedied with collection and careful incorporation of additional meta-data in relevant 

analyses.  

 

Rapid Learning Systems  

The development of Rapid Learning Systems (RLS), as noted, relies on a few key concepts, the 

most important of which involves building a longitudinal record of, e.g., patients and their outcomes, or 

consumers tracked for their responses or utilization of a particular product. Unfortunately, leveraging health 

care data is a difficult task in the US as there is no universal patient identifier and strict laws exist on 

handling and releasing of Patient Health Info (PHI). This issue is even more pronounced when 

considerations involve the use of consumer product use data, where there are even fewer standards that can 

be used harmonize or combine data. In terms of clinical data, it is not uncommon for a patient to receive 
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care from disparate sources, and without a common unique identifier, consolidating their electronic medical 

records (EMRs) relies on PHI and other personal records (social security number, name, address, etc.). 

Without this step, longitudinal records would contain duplicate entries for individuals and confound any 

statistical results from the data source. The CancerLinQ initiative is an example of an attempt to aggregate 

clinical data, and publications associated with it describe merging EMR data in detail, and show how they 

can use PHI to validate identities and assign quality metrics to data collected.23,24 Another concept or 

component of developing an effective RLS is tangential data collection, in which new data types are 

brought into a system in order to go beyond limitations of an initial RLS. As an example, in systems 

designed for, e.g., precision oncology in which drugs are matched to tumor profiles, initial designs 

attempted to provide treatment based only on the primary tissue of the tumor. After several revisions of this 

approach, evidence supported a broader view in which genomics, proteomics, and metabolomics data about 

an individual’s tumor provided better predictions for patient-drug response.25 Of course, the use of the 

newer or tangential data also allows for further associations between disease and the mechanism of action 

and various perturbations in the underlying data which can aid in drug design, or provide evidence for 

additional drug indications.26 A final concept or consideration in the development of RLS involves the 

addition of outcome measures that are collected in real time whereby individuals can be re-assessed, e.g., 

for new treatment responses if there is no evidence that a specific treatment they have been on in the past 

seems to have worked for them. This creates a need to continually refine the model with data that is not 

collected at uniform time intervals or even with the same instrument, likely adding noise to the data. 

 

Thesis Aims 

In this light, it is clear that research designed to personalize disease predictions will need to leverage 

data and methods that accommodate and build off longitudinal data. Longitudinal data can be exploited in 

a wide variety of healthcare settings, including: 1. developing insights into disease prognosis and 

progression; 2. increasing the power to detect important relationships between variables that capture disease 

relevant processes that manifest within individuals but not necessarily between individuals;  and 3. 
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identifying and accounting for individual differences in basal or initial states that impact longitudinal 

outcomes (as in aggregated n-of-1 studies). Machine learning (ML) techniques are now being implemented 

in many settings (academic and in industry) and have amazing power to create accurate predictions as long 

as they have enough training data to work from. They are even being used more often to make predictions 

in healthcare settings27; however, ML techniques often suffer from becoming ‘a black box.’ It can be 

difficult to understand why they make the predictions they do, or what is driving a particular prediction, 

which limits their usage and adoption in real world clinical settings.28 

  

Note that there is not always motivation to understand the driving features behind a predictive 

model if the predictions it generates are reliable. In many healthcare settings, such as developing drugs, 

developing infrastructure to allowing preemptive disease risk mitigation measures, and creating long-term 

plans for an individual’s care, an understanding of the mechanisms responsible or behind the predictions is 

crucial since they may bear on genetic network, biochemical pathways and pathophysiological processes 

that could help refine future interventions and risk mitigation plans. Thus, understanding the underlying 

biology and causal mechanisms behind healthcare predictions can be crucial, unlike many other situations 

(e.g., credit card use patterns or buying habits of consumers to develop more efficient marketing strategies). 

Furthermore, it is unlikely that patient care will be completely automated or that this would be the ultimate 

goal, and to get buy-in from healthcare professionals they will probably need to understand why a certain 

prediction or recommendation is being made. Given these sensitivities, the majority of the analyses and 

model building I have pursued in this thesis to create predictions in a number of settings will complement 

contemporary ML techniques with various standard and advanced regression techniques. Many of these 

techniques have the benefit of being easy to understand with intuitive ways of interpreting the manner 

which predictive factors impact outputs. For example, Linear Mixed Effect (LME) models and Generalized 

Linear Models (GLM) are well-suited for longitudinal analysis as they can create hierarchical dependencies 

to account for non-independent repeated measures within a group (i.e. subject). They also can account for 
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interaction terms, random effects, and serial correlation, but the manner in which they are designed and 

their results interpreted is much more intuitive than ML-based techniques. 

 

While there are obvious advantages to leveraging longitudinal RWD data, there are many 

complications that occur when obtaining, processing, and analyzing such data. For example, acquiring 

quality datasets that can be used to explore the benefits and issues associated with longitudinal data to 

develop predictive models can be complicated. Fortunately, I have been able to collaborate with, and gain 

access to, data from several fruitful partnerships. These include a collaboration with the Shiley Eye Center 

on studies of glaucoma risk and progression using longitudinal clinical information on individuals with 

genotype information obtained from whole genome sequencing (WGS) protocols; and a collaboration with 

Stop Breathe Think (SBT), Inc., a company that has collected data on 11,000,000 uses of a stress-relief 

mindfulness app which has been used routinely and repeatedly by over 80,000 individuals. Both the Shiley 

and SBT datasets are unlike many curated research datasets in that they are ongoing, observational real-

world datasets. Real-world settings are different from clinical trials and laboratory tests in many ways which 

make processing and analyzing more challenging. For example, for the Shiley data sets, there were no 

placebo or contrived control groups to be used for comparison purposes in our analyses, since all patients 

were undergoing routine clinic care. Thus, the care they received was delivered without bias and without 

use of non-conventional methods, unlike in a clinical trial where the use of controls and highly contrived 

or specialized protocols are pursued to maximize the power to evaluate a very particular hypothesis.  Real 

world data sets, like the Shiley dataset, include patients that have not been held on the same treatment, 

especially if there were no signs of the efficacy of that treatment, or there were signs of severe side effects. 

In addition, there were no regular scheduled intervals for testing or treatment changes since it was often up 

to the patients as to when they chose to receive care. Lastly, recorded outcome measures in the Shiley data 

set was limited by patient engagement and adherence. All of these issues can confound or conceal true 

effects of intervention and make finding meaningful results difficult. This was also true for the SBT data 
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set, as it was collected during the routine use of the SBT app and not as part of a specific study focusing on 

one or another element of the SBT platform.  

 

The first chapter will address the work I pursued with the glaucoma ADAGES III29 dataset from 

Shiley Eye Center. The primary outcome of glaucoma is partial vision loss or complete blindness. 

Glaucoma is a complex disorder and may have several underlying determinants but is primarily 

characterized as a neurogenerative disease which causes loss of retinal ganglion cells. Changes to the retinal 

nerve fiber layer, as well as the optic nerve, are also common, and can usually only be diagnosed by 

inspection of eye and the optic nerve. The degradation of the visual field in glaucoma is often gradual and 

begins at a patient’s periphery, making it hard for even the patient to notice the loss immediately, even 

though the effects are irreversible. For this reason, early detection of the disease is important as treatment 

can help preserve a patient’s vision. Early detection by itself is not enough though, as patients experience 

a wide range in rates of visual field loss and degradation, which suggests that there may be additional 

factors, including genetic, that mediate the disease progression. Fully understanding these factors can help 

improve a patient’s quality of life through risk assessment, risk mitigation, early detection and treatment 

and potentially illuminate causal determinants which reveal novel drug targets. Ultimately, in order to 

understand how genetic factors impact visual loss progression, and not just glaucoma diagnosis, 

longitudinal data on patients with genetic data is required. 

  

 Glaucoma has been the focus of many genome wide association studies (GWAS). These studies 

have revealed associations between many common genetic variants and, for example, at least one form of 

Gluacoma, Primary Open Angel Glaucoma (POAG).30,31,32,33 Many studies have also linked the loci 

harboring these variants and others to secondary phenotypes associated with the disease, such as intraocular 

pressure, retinal nerve fiber layer thickness, and cup to disk ratio.34,35,36 However, there are few studies 

which have examined the relationship between genetic variants and glaucoma prognosis, probably because 

of a lack of longitudinal data. At the time of my research only one other GWAS study managed to address 
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the question of whether or not genetic variants impact glaucoma progress, and the authors of this study 

binned patients into binary classification of progressors vs. non-progressors, but did not consider 

progression as providing a range of values as a quantitative measure.37 Using GWAS to find genetically-

mediated progression-related associations is not uncommon, however, as GWAS on longitudinal data has 

been pursued with several other diseases.38,39,40 In the analysis I have pursued, I treat visual field loss 

associated with glaucoma as a quantitative measure, which may reveal novel associations of relevance for 

predicting and treating aspects of glaucoma. 

 

The second and third chapters will consider two different analyses involving longitudinal data 

arising out of the SBT data collections.  These data collections include SBT app users’ emotions, general 

mental and physical health, demographics, and the mindfulness and mediation activities they completed. 

These analyses explore long term changes and the effects of specific mediations provided to a user of the 

app for improving or maintaining their mental health. It is well-known that poor mental health, like 

behavioral conditions and neuropsychiatric diseases, is a stressor linked to many co-morbidities as well as 

low productivity.41,42,43 Several studies suggest these conditions are on the rise, especially in the United 

States, yet mental health is often viewed as a stigma instead of part of something to consider in evaluating 

an individual’s overall health.44  

 

Unfortunately, even if a patient were ready to seek help for their mental health problems, and were 

willing to be compliant in treatment regimes, the scarcity of mental health professionals, socio-economic 

factors, and lack of insurance coverage for many mental health issues, restrict those who can receive care. 

Delivering care at the scale that is required given the seriousness and prevalence of mental health 

conditions, is itself a serious problem. Fortunately, there are initiatives at the FDA and other regulatory 

bodies to consider digital therapeutics – therapeutics delivered through a digital device such as a smartphone 

– bona fide, insurance-reimbursable, officially sanctioned and registered, healthcare devices.  Digital 

therapies have the advantage of being able to scale to meet the needs of the population without increasing 
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the number of actual healthcare professionals. They also have the ability to reach remote locations, and act 

as a less expensive treatment option for those with little financial means. While digital therapeutic treatment 

may not be an effective tool for everyone, even if they are able to treat a fraction of people who need mental 

healthcare, they will have a huge impact. 

 

Stop Breathe Think, Inc. (SBT) has created a platform that uses guided meditations to provide self-

awareness and mindfulness coaching to interested users. Mindfulness training has been shown to be an 

effective way to treat many conditions, often inducing positive thought patterns and improving mood.45,46 

The SBT application is unique in that it asks users to define their emotional state before and after completing 

an meditation-based mindfulness activity. The data from the SBT device allowed me to analyze the actual 

effect that completing a meditation/mindfulness activity had on a user.  

 

In chapter 2, I discuss measuring SBT app users’ baseline (i.e., pre-meditation) emotional state to 

see if the prolonged use of the app has effects on the baseline emotional state in the long term. In chapter 

3, I explore the effect of specific meditation/mindfulness activities given a user’s initial emotional state 

given information on their background (e.g., demography). Additionally, I explore the possibility of 

predicting what emotional state a user might end up in if they choose certain meditations given their 

background, with the ultimate goal of trying to provide more personalized meditation/mindfulness activity 

recommendations for positively adjusting their emotional state. 

 

Ultimately, my thesis research focuses on the application of longitudinal analysis methods using 

real-world data sets in order to make predictions about health outcomes that are tailored or personalized to 

an individual patient or health app user. I use data from one clinical care unit in a hospital and one digital 

device platform to showcase how one can find associations and build personalized predictive models in 

different settings. In addition, I show in each setting that resulting predictive models can be progressively 

enhanced by adding a learning component to their construction that accommodates the collection of new 
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data that is fed back into the predictive models. I also show that analyzing real-world longitudinal data to 

develop such models requires dealing with irregular measurement intervals, addressing serial correlation 

between observations, handling missing data, integrating disparate data types, and accommodating several 

additional confounding factors. 
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CHAPTER 1 : GENOME WIDE ASSOCIATION STUDY AND 

META-ANALYSIS OF LONGITUDINAL GLAUCOMA-

RELATED VISUAL FIELD LOSS PHENOTYPES 

Abstract 

Objective: Although a great deal is known about genetic susceptibility to, and general risk factors 

for, glaucoma, few studies have considered the influence of genetic factors on the time course or trajectory 

of vision loss and related phenotypes associated with glaucoma. We therefore pursued a series of GWAS 

studies and meta-analyses to uncover genetic variants associated with disease progression as measured by 

visual loss over time. The results of our study may facilitate the selection of preventive interventions and 

therapies for clinical subtypes of glaucoma. 

 

Design: Genome-wide association study (GWAS) of longitudinal visual field data followed by gene 

based meta-analysis of two populations with different ancestral backgrounds. 

 

Subjects: Glaucoma patients (n = 754) with follow-up clinical data collected over several years. 

 

Methods: We leveraged whole-genome sequence (WGS) data on 754 patients who had also been 

tracked for vision loss and progression over an average of 9.1 years. Focusing on the common variants from 

the WGS data, we pursued genome-wide association studies (GWAS) on vision loss trajectories in two sets 

of individuals, one of European and one of African American ancestry, using standard single locus analyses, 

gene-based variant analyses based on summary statistics, and a meta-analysis of the results of each study. 

 

Outcome Measures: Glaucoma-related visual field loss trajectories collected over time 
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Results: We found evidence for association between variants in the TGFBR3 (p=9.44E-05), 

CDKN2B-AS1 (EUR: p =6.33e-06), TLR4 (EUR: p=6.43E-07, AAM: p=3.67E-05), ARHGEF12 (EUR: 

p=4.42E-05), TMTC2 (EUR: p=1.87E-04, AAM: p=6.86E-06), and TJP1 (AAM: 7.26E-06) genes with 

longitudinal visual loss phenotypes. These genes have been previously shown to harbor variants that are 

associated with glaucoma onset, intraocular pressure (IOP), and central corneal thickness (CCT). We also 

found evidence for association between variants in the region between the CNTNAP2 gene and the C7orf33 

genes (p=8.984e-07, p=1.67E-06, respectively), with multiple glaucoma phenotypes. 

 

Conclusion: The analysis of a unique and deeply-phenotyped cohort confirmed previous genetic 

associations with glaucoma and revealed novel associations between genetic variants and glaucoma-related 

progressive visual loss. Further validation of our findings is needed before our results can be used to identify 

glaucoma subtypes that might benefit from different intervention strategies. 

 

Background 

Glaucoma is a complex neurodegenerative disease that affects vision via detrimental changes to 

the optic nerve, the retinal nerve fiber layer, and retinal ganglion cell (RGC) loss. The degradation of RGC 

results in a narrowing of the visual field (VF) and poorer vision-related quality of life. This degradation is 

irreversible and can ultimately result in total blindness. Early diagnosis can help preserve a patient’s vision. 

However, individuals with glaucoma exhibit wide variation in their rates of VF loss. Understanding the 

underlying mechanisms that contribute to this variation in VF loss, especially genetically-mediated 

mechanisms, could lead to more appropriate ‘personalized’ care plans for individuals suffering from, or 

susceptible to, glaucoma.  

 

Previous genome wide association studies (GWAS) focused on glaucoma have established that one 

form of glaucoma, Primary Open Angle Glaucoma (POAG), is influenced by number of genetic variants. 

5,31,32,33,47,48  Additional studies have linked genetic variants to other features of glaucoma pathology, such 
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as intraocular pressure, cup disk ratio, and RNFL thickness. 34,35,36  Although these studies have revealed a 

great deal about glaucoma’s underlying genetically-mediated pathology, they do not necessarily consider 

factors that might be more directly relevant to the management of a glaucoma patient. For example, little 

research has been conducted addressing genetic determinants of glaucoma progression, or the trajectory of 

VF loss. Knowing the factors that may contribute to variation in VF loss over time could lead to a better 

understanding why standard of care is ineffective for particular patients. A study by Trikha et al, which was 

rooted in a GWAS with VF Progression as an end point, did consider longitudinal VF loss, but their analyses 

focused on a binary classification of individual progression and did not accommodate the length of follow-

up, nor all the data collected over time on each patient.37  The lack of studies on longitudinal phenotypes of 

relevance to glaucoma  is unfortunate since GWAS have been pursued to in an effort to identify loci 

associated with the longitudinal trajectories and progression of many other diseases. 39,40,38  In order to 

overcome this, we pursued a meta-GWAS meant to identify genetic variants contributing to the progression 

for glaucoma-related VF loss using extensive longitudinal data on 754 patients collected, on average, over 

9.1 years. 

 

Methods 

Regulatory Oversight 

UCSD Internal Review Board (IRB) approval, as well as written and informed consent from 

patients, was obtained for this study (IRB Protocol #140107). All protocols adhered to the guidelines of the 

Declaration of Helsinki. 

 

Study Population 

The population we used in our analyses is a subset of the ADAGES III (clinical trial #: 

NCT00221923) for which we pursued WGS.29  Patients with POAG and control participants were recruited 

who self-reported as African ancestry or European ancestry (note: we ultimately determined ancestry using 

genetic variants, see below). Eligibility for inclusion as a POAG patient required that no other ocular or 
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non-ocular disease was responsible for the glaucomatous VF damage. We conducted WGS on 1,589 

individual patients at an average read depth of 30x using the Illumina X10 technology. European and 

African ancestry proportions were computed from genotype profiles using a panel of 100,000 ancestry 

informative markers (AIMs). After filtering for sequence quality (e.g., TS/TV ratio, SNP & INDEL counts, 

etc.), 1,219 Primary Open Angle Glaucoma (POAG) patients remained in the analysis. These 1,219 patients 

included 580 individuals who were of European descent and 639 individuals who were of African descent. 

We focused our analyses on a subset of glaucoma patients (n=754) who had sufficient longitudinal VF 

measures available. A summary of the study population is provided in Table 1.1 and the workflow is shown 

in Figure 1.1. 

 

 

Figure 1.1 Workflow of Data Preparation 

The above workflow shows various filters and divisions within the WGS dataset. Of the original 1,589 samples 17 are removed for 

sequence quality or identity issues, 1,219 remain after admixture filtering, and a total of 754 patients had sufficient longitudinal 

data. 
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Table 1.1 Study Population Breakdown by Ancestry 

A total of 754 participants were included based on all layers of filtering. Patients were treated and studied over an average of 9.1 

years. There were more Europeans, and more females included in the study. 

 

 

 

Variant Calling 

Variant calling was conducted by Human Longevity, Inc, using an extended version of Illumina’s 

‘Issac’ pipeline.49   Variants were filtered using both Bcftools and PLINK v1.90.50 Principal components 

analysis (PCA) was conducted to identify evidence for population stratification, and the identified PCs were 

later used to account for ancestry and batch effects in the association analyses. The first three PCs accounted 

for minimal variation but were likely reflecting minor sequencing batch effects. Roughly six million SNPs 

were selected for analysis based on filters for study population minor allele frequency (MAF > 5%), Hardy-

Weinberg equilibrium (HWE < 1E-10), and total called genotypes across all loci interrogated (>90%) in 

both populations combined. Additional individuals were removed from analyses for having abnormal 

transversion-transition ratios, SNP/indel counts, or low confidence that their samples were from an 

identified patient (mis-matched sex, ancestry discordance, duplicates). 

 

Phenotype Data 

Patients underwent VF testing using the SITA-standard 24-2 strategy within 30 days from image 

acquisition and diagnostic tests. The UCSD Visual Field Assessment Center (VisFACT) completed a 

quality review of the VFs. VFs were excluded if fixation losses, false positive errors or false-negative errors 



 

 

 

20 

 

were greater than 33%. The exception was the inclusion of VFs with false-negative errors of more than 

33% in eyes with advanced disease (Mean Deviation (MD) lower than 12 dB). VFs were further reviewed 

and excluded for the following artifacts: learning effects (i.e., initial tests showing consistent improvement 

on VF indexes); inappropriate fixation; inattention; lid and rim artifacts; fatigue effects; or evidence that 

the VF results were due to a disease other than glaucoma (such as homonymous hemianopia).  

 

We ultimately focused on fourteen quantitative VF measures collected on the patients with the 

WGS data. These measures represent a patient’s ability to detect light at specific thresholds and include: 1. 

VF global measures, Mean Deviation (MD) and Pattern Standard Deviation (PSD); 2. VF sectoral measures 

of mean sensitivity and pattern deviation each calculated for the 6 Garway-Heath visual field (GHVF) 

sectors; and 3. number of test locations for each GHVF outside normal limits (<0.05) for pattern deviation. 

Each of these fourteen longitudinal end points were each collapsed into progression metrics for each patient 

using least squares regression with visual measures as dependent variables and time since first visit as an 

independent variable along with covariate information (age, sex, average IOP). The slopes obtained from 

these regression analyses were taken as a rate of glaucoma progression. 51,52 We will use each of these 

phenotypes in their own GWAS analysis for a few reasons: 1) loss of VF is not uniform across the eye, and 

we want to be-able to detect any change as it is important for patient quality of life and 2) and SNPs can 

effect structural changes which may influence regional decay.53 Because the regression model used to 

conduct association analyses (see below) is particularly susceptible to influence from extreme values, small 

sample sizes and the influence of non-normality or errors, individuals with progression scores 2.5 standard 

deviations from mean in 50% or more of the measures were removed from analysis. Additionally, all scores 

were adjusted using Box-Cox power transform to conform to regressions assumption of normally 

distributed residuals.54  
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Association and Meta-Analysis 

Patients were split into two groups according to European or African American ancestry based on 

the genetic ancestry information, and analyses were pursued within each group. Using the additive allele 

effect-based regression analysis model implemented in PLINK, we tested single SNP associations against 

disease progression of GHVF sectors (i.e., slopes computed from the regression of visual loss on time) and 

summary global outcome measures.55  SNPs were represented numerically as the number of minor alleles 

possessed by a patient at each locus: 0=homozygous wild-type or major allele, 1=heterozygous genotype; 

and 2=homozygous minor alleles. Covariates were also considered in the analyses and included age, time 

in the study, sex, and the first three principal components obtained from a Genetic Correlation Matrix 

(GRM) using PLINK for stratification and ancestry analysis. Results of the association analyses for each 

SNP by each GHVF phenotype were aggregated within genes (EUR N = 635, AAM N = 821) and intergenic 

regions defined by ANNOVAR variant notation.  

 

For each of the fourteen phenotypes, aggregated association statistics were tested for enrichment 

of statistically significant (p<5.0E-5) associated variants using the COMBAT package , which provides a 

single p-value for a gene or region based on the strength of the association of each variant considered after 

correcting for linkage disequilibrium (LD) between the variants.56 Ancestry matched genotype frequencies 

for the variants considered in our analyses, as well as insights into the LD structure among these variants, 

were obtained from the 1000 Genomes project data.57 

 

Results 

GWAS was performed with fourteen quantitative phenotypes, and we looked at enrichment within 

genes and intergenic regions across all phenotypes. Given the sample size, this study focused on gene level 

summary statistics via the use of the methods implemented in the COMBAT software suite rather than 

individual SNPs. We also examined loci already associated with POAG to see if they also exhibited signs 

of association with rate of disease progression. 
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We used SNPs and genes found to be associated with glaucoma in a recent publication (A 

multiethnic genome-wide association study of primary open-angle glaucoma identifies novel risk loci) for 

replication purposes as the authors of this publication used similar ancestry cohorts.58 Replication tests in 

known SNPs for glaucoma onset were not ultimately conclusive (See supplementary material for greater 

details about these analyses). 

 

For our analysis of patients with European ancestry, four genes previously associated with 

glaucoma diagnosis (TLR4, CDKN2B-AS1, ARHGEF12, TMTC2) were found to be associated with 

glaucoma progression, based on the gene-based test implemented in the COMBAT package, with 

progression defined as the slope of VF loss over time. In addition, a gene associated with a related eye 

disease (pseudoexfoliation syndrome), but not previously tied to glaucoma diagnosis, was also strongly 

associated with glaucoma progression (CNTNAP2 P=3.85E-07).59  

 

In the African ancestry population several genes previously associated with glaucoma diagnosis 

were also associated with glaucoma progression (TMTC2, TGFBR3, CDKN2B-AS1). CNTNAP2 

(P=1.67E-06) was strongly associated with progression in the African population as well. Table 1.2 

provides a summary of the gene-based analysis results and Figures 1.2A and 1.2B provide a heatmap 

characterization of the genes associated with the different phenotypes for individuals of European and 

African American ancestry, respectively. 
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Figure 1.2 Gene by Phenotype Significance Enrichment 

Shows significance by gene and phenotype arranged by average lowest p-value. Genes further on the left are more enriched for 

significance across all phenotypes. Both European ancestry and African American ancestry show CNTNAP2 as the most 

consistently significant. 
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Table 1.2 Associate Genes by Ancestry 

Known genes to be associated with glaucoma onset which were also associated with progression in our study. Additionally, 

significant SNP’s in Promoter / Enhancer regions that were identified with encodes RAMPAGE pipeline. 

 

 

 
 

 

Discussion 

Glaucoma is a complex, multifactorial eye disease that has the largest prevalence of all 

neurological diseases. Identifying each and every factor contributing to glaucoma susceptibility 

will be difficult, given that each contributing factor may have a small effect. This is also true since 

glaucoma-related phenotypes, such as disease progression as characterized by VF loss, exhibit 

wide variation among patients, suggesting the existence of a pronounced cumulative or temporal 

component to the disease. We pursued a GWAS focused on glaucoma progression with a 

phenotype derived from measures obtained over an average of 9.1 years on 754 patients. We found 

that many genes that had been previously implicated in glaucoma susceptibility were also 
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associated with glaucoma progression, most notably, the gene CNTNAP2 and variants surrounding 

the CNTNAP2 gene. Interestingly, CNTNAP2 is expressed in all ocular tissues including glial and 

neuronal cells. Additional laboratory assays, constructs, and functional testing are required to 

validate our findings and put them into a more rigorous pathogenic context. We did cross-reference 

all SNPs that were significant at genome-wide levels with the Encode Screen tool60,61 but found 

that there was no overlap between suggestive SNPs and promotor or enhancer positions shown to 

be functional. For CNTNAP2 we found six SNPs that were in five different enhancer or promotor 

regions (EH37E0933479, EH37E0933483, EH37E0933484, EH37E0933487, EH37E0933492). 

The RAMPAGE (RNA Annotation and Mapping of Promoters for the Analysis of Gene 

Expression) pipeline has identified all five of these regions as transcription start sites for 

CNTNAP2. 

 

Our analysis was constructed to test several phenotypes efficiently. There are other ways 

we could have tested the effect of genetic variants within our population. As mentioned earlier, a 

report by Trikha et al.37 described the results of an analysis of a binary 5-year ‘progression or not’ 

phenotype rather than a quantitative measure of progression. This has the advantage of not being 

heavily influenced by extreme cases but is probably ignores important variation in actual 

progression rates. Our association analysis considered the slope of an individual’s worst eye as the 

dependent variable for the regression at each SNP. A more rigorous and computationally expensive 

analysis would use the raw VF measures as a dependent variable and implore more complicated 

regression techniques to handle serial correlation within each individual.  
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Our study is not without limitations, the first of which is the sample population and size. 

Our study was observational and thus limited by patient follow up and recruitment. While the study 

contained 1,219 individuals, 465 (38%) had to be removed for insufficient, incomplete, or 

questionable data. We have confidence in our findings, however, since our study involved a 

relatively small cohort, our main findings were observed in analyses involving two separate 

cohorts with different ancestral backgrounds, and therefore provides some assurance that they are 

true positives. In addition, our study leveraged WGS data, but only considered common variation 

in our GWAS. We did this in part because of power issues, but also because we did not have access 

to a sizable replication data sets to verify associations with rare variants. However, we do intend 

to assess the contribution of rare variants to glaucoma progression in the future. 

 

 

Chapter 1, in full, has been submitted for publication of the material as it may appear in 

Ophthalmology Glaucoma, 2020,  Argus J Athanas, Radha Ayyagari, Linda Zangwill, Mark Christopher, 

Jeffrey M. Liebmann, Christopher A. Girkin, Robert M. Feldman, Harvey Dubiner, Yii-Der Chen, Kent D. 

Taylor, Xiuqing Guo, Jerome I. Rotter, Nicholas Schork, Robert N. Weinreb  for the ADAGES III 

Genomics Study Group. The dissertation author was the primary investigator and author of this paper. 
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CHAPTER 2 : LONG-TERM USE OF A MINDFULNESS AND 

MEDITATION SMARTPHONE APP IS ASSOCIATED WITH 

IMPROVEMENT IN BASELINE MOOD 

 

 
Abstract 

Background: The use of smartphone apps to monitor and deliver healthcare guidance and 

interventions has received considerable attention recently, particularly with regard to behavioral disorders, 

stress relief, negative emotional state, and poor mood in general. Unfortunately, there is little research 

investigating the long-term and repeated effects of apps meant to impact mood and emotional state. 

 

Objective: We aimed to investigate the effects of both immediate point-of-intervention and long-

term use (ie, at least 10 engagements) of a guided meditation and mindfulness smartphone app on users’ 

emotional states. Data were collected from users of a mobile phone app developed by the company Stop, 

Breathe & Think (SBT) for achieving emotional wellness. To explore the long-term effects, we assessed 

changes in the users’ basal emotional state before they completed an activity (eg, a guided meditation). We 

also assessed the immediate effects of the app on users’ emotional states from preactivity to postactivity.  

 

Methods: The SBT app collects information on the emotional state of the user before and after 

engagement in one or several mediation and mindfulness activities. These activities are recommended and 

provided by the app based on user input. We considered data on over 120,000 users of the app who 

collectively engaged in over 5.5 million sessions with the app during an approximate 2-year period. We 

focused our analysis on users who had at least 10 engagements with the app over an average of 6 months. 

We explored the changes in the emotional well-being of individuals with different emotional states at the 

time of their initial engagement with the app using mixed-effects models. In the process, we compared 2 
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different methods of classifying emotional states: (1) an expert-defined a priori mood classification and (2) 

an empirically driven cluster-based classification. 

 

Results: We found that among long-term users of the app, there was an association between the 

length of use and a positive change in basal emotional state (4% positive mood increase on a 2-point scale 

every 10 sessions). We also found that individuals who were anxious or depressed tended to have a 

favorable long-term emotional transition (eg, from a sad emotional state to a happier emotional state) after 

using the app for an extended period (the odds ratio for achieving a positive emotional state was 3.2 and 

6.2 for anxious and depressed individuals, respectively, compared with users with fewer sessions).  

 

Conclusions: Our analyses provide evidence for an association between both immediate and long-

term use of an app providing guided meditations and improvements in the emotional state.  

 

Keywords 

mental health; smartphone; emotional well-being; mindfulness 

 

Introduction 

Background 

Behavioral conditions, neuropsychiatric diseases, and poor general mental health are seen as major 

contributors to morbidity, mortality, and lost productivity on a global scale. However, these factors are 

often overlooked in discussions about the current state of healthcare, which tend to focus on physical well-

being.44 Many studies suggest that mental health can play a large role in physical health, recovery from 

disease, and ultimately productivity and, therefore, should receive greater attention.41,42,43 Unfortunately, 

there are serious questions about how mental health can be promoted and, in instances when it is called for, 

how relevant interventions can be prescribed and deployed efficiently in a cost-effective manner.62,63,64 This 

is especially true given the number of people who may actually benefit from such interventions.65 In light 
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of this, there is enthusiasm for the development of smartphone apps that can not only monitor an 

individual’s health—both physical and mental—but also deliver content designed to help coach them 

through difficult times or provide a needed intervention. In fact, many smartphone apps have been 

developed, or are under development, to aid in healthcare via, for example, image-based diagnostics, 

glucose monitoring for diabetes, and physical fitness promotion.66,67 For mental health management and 

intervention, there is growing enthusiasm for the development of smartphone platforms that provide 

guidance on mindfulness and meditation as a way of relieving stress and promoting mental health and well-

being. Many of the resulting platforms have been or are undergoing testing in clinical studies.68,69,70,71,72 

 

The use of mobile phone apps in combating or mediating behavioral conditions, stress, negative 

emotional states, and elevating mood is also consistent with directions that public health and regulatory 

officials are considering. In fact, evidence is mounting from clinical trials showing that smartphone apps 

can be effective in a variety of settings. Agencies such as the US Food and Drug Administration (FDA) 

have created, and in instances passed, legislation allowing the filing and approval of mobile health apps as 

approved health technologies on the same level as in vitro diagnostics and drugs. Pear Therapeutics was 

one of the first companies to have a smartphone app for addiction approved for use by the FDA in 2016.73 

Many other commercial and academic groups are developing smartphone apps for a wide variety of 

conditions that go beyond the simple direct-to-consumer market by seeking regulatory approval for their 

use in clinical contexts.74,75,76 Unfortunately, not enough time has elapsed since the introduction of 

smartphone-based intervention apps to provide insight into their long-term repeated effects as well as their 

effects in real-world settings (ie, outside of clinical trials).77,78,79 

 

Objectives 

Stop, Breathe & Think (SBT) has developed a smartphone app that provides guided meditations 

and mindfulness activities to promote self-awareness coaching to interested users. As noted, mindfulness 

and meditation have been shown to improve affect and mood and promote healthy thought patterns.45,46 The 
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SBT app prompts users before and after they are guided through meditation and mindfulness activities to 

provide an emotional, mental, and physical check-in, thereby allowing an assessment of an individual user’s 

emotional state and mood pre- versus postactivity in real time. As repeated uses of the app by SBT users 

are archived, longitudinal information on its users with regard to their long-term engagement with the app 

is retained. This allows further analysis of the influence of repeated engagements with the app on an 

individual user’s basal mood over time in real-world settings. We pursued such an analysis using data from 

SBT users who had at least 10 engagements with the app. The SBT app allows users to choose from more 

than 100 unique emotions to reflect their emotional state at the time they use the app. These emotions cover 

a range of human emotions including anger, remorse, anxiety, calmness, and enthusiasm. Users are guided 

through meditations that they can choose from based on an algorithm developed by SBT. We focused our 

analyses on the baseline (or basal) emotional state of a user, before he or she engaged in a guided meditation 

or mindfulness activity and were primarily interested in the long-term and repeated use effects of the SBT 

app on this baseline emotional state. Essentially, we wanted to ask the question if the continued use of the 

app lifted the spirits of the user over time. We were particularly interested in users who tended to pick 

emotions associated with depression and anxiety when engaging with the app before meditating.  

 

Methods 

The Basic Stop, Breathe & Think App 

The SBT app is a multiplatform (ie, iOS, Android, and Alexa) app designed to guide users through 

meditations and mindfulness activities to alleviate stress, anxiety, and depression and improve the sense of 

well-being. Upon opening the app, a user can participate in an optional 10-second reflection period. After 

this optional reflection period, users describe their current mood, emotional state, and physical health by 

choosing from a number of emotions; the SBT app then provides suggestions for specific meditation and 

mindfulness activities. The user can choose from among the suggested activities after being asked to 

endorse up to 5 different characterizations of their mood and emotional state. A user can choose not to 

provide any input regarding their mood, emotional state, and physical health and simply engage in an 
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activity. The figure below (Figure 2.1) provides a schematic of an individual session and the corresponding 

points where user information is collected.  

 

Figure 2.1 Stop Breathe Think User Interaction Flow Chart 

Stop, Breathe & Think user interface and stages of interaction with the app. Users are provided several ways in which they can 

record their current emotional state both pre- and postactivity. These emotional check-ins are optional, but the intuitive and simple 

selection process makes it easy for most users to enter at least some emotional status information. 

 

It should be understood that all information collected with the SBT app is volunteered by users as 

stated and defined in the SBT user licensing agreement and privacy policy. In addition, for purposes of our 

data analyses, all the data we obtained from SBT were anonymized and put into a Health Insurance 

Portability and Accountability Act (HIPAA)-compliant format such that users could not be reidentified. 

Functionality and delivery of the SBT app and service varies from device and platform implementation (eg, 

Alexa, Android, and Web browser). Therefore, to avoid batch effects, we focused on users who were 

exclusively on an iOS platform and started using the app after SBT provided its last major version of the 

app (05/01/2016). Users had to have completed at least 10 sessions or engagements with the app, with a 

minimum of 6 of those sessions including pre- and postactivity emotion selections. The SBT app content is 

in English and to avoid translation errors and alternative interpretations of the language used in the SBT 

app, we restricted our analyses to individuals from native English-speaking countries: The United States, 

United Kingdom, Canada, and Australia. An additional filter was used, restricting users’ ages to between 

12 and 100 years.  
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Emotional Check-ins Pre- and Postactivity Score 

The SBT app allows the user to endorse between 1 and 5 emotional states out of a possible 115, 

before and after engagement in a guided meditation or mindfulness activity (or series of activities if they 

choose to engage in more than 1 activity during a session). This emotional check-in involves selecting an 

initial emoticon and then choosing from a list of emotions within subgroups of terms that closest 

characterize the user’s current emotional state. These 115 emotions were chosen for the app based on 

internal SBT research and user requests. All emotions were classified as positive, neutral, or negative and 

given corresponding scores of 1, 0, and −1, respectively. All emotions and their corresponding scores are 

provided in Multimedia Appendix 1. As users can select up to 5 emotions, an average emotional score was 

calculated for both pre- and postactivity and standardized to a range from −1 (all negative emotions) to 1 

(all positive emotions). Our analysis explored (1) trends in the preactivity emotional score over repeated 

uses of the app while accounting for the covariates as well as serial correlation between sessions and (2) 

trends in changes of the emotional scores before and after an activity over repeated uses of the app. 

 

Clustering of Emotions 

In addition to treating the preactivity emotion scores and changes in emotion scores pre- and 

postactivity as dependent variables and time, sex, and age covariates as independent variables, we also 

explored the patterns among the emotion endorsements to see if there was evidence for obvious clusters of 

emotions that could reflect the same general emotional state. We leveraged principal coordinates analysis 

(PCoA) and the nonsupervised clustering technique, Partitioning Around Medoids (PAM), for these 

analyses.80 We pursued these analyses as it is arguable that some users may see a subset of the emotions as 

synonymous and hence only choose one among many possible choices to describe their emotional state at 

the time to avoid redundancy, whereas other users might see those same subsets of emotions as 

complementary and reflecting different aspects of their mood. In addition, other users may preferentially 
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select emotions based on their location in the selection list or choose a set of rare emotions that are 

infrequently selected by other users to differentiate their emotions.  

 

The distance between the emotions was calculated using the Bray-Curtis distance measure.81 To 

determine the optimal number of non-supervised emotion clusters in 2-dimensional PCoA component 

space, we selected the number of clusters with the largest silhouette score. Once we identified the optimal 

number of clusters, emotions were then assigned to one of the identified clusters.  

 

An individual’s emotional status was also summarized in terms of the relative distances (using the 

Euclidean distance measure) between pre- and postactivity states. The distances between an individual’s 

emotional status and the medoid of the closest associated emotion cluster were calculated as well. Emotions 

were labeled with clinical categories, associating each of them with either anxiety, depression, anger, or 

happiness (Multimedia Appendix 1). Ultimately, using distances between emotional states and emotional 

clusters allowed us to build models relating the number of times users engaged with the app to gross changes 

in emotional states defined by the emotion clusters. 

 

Statistical Analyses to Identify Long-Term Changes in Emotional State 

To assess the effects of the continued use of the app on the preactivity emotional state, we used 

Linear Mixed-Effects (LME) models and Generalized Linear Models (GLMs) as implemented in the lme4 

package in R.82 These analysis techniques can accommodate serial correlations among emotions over time 

and also account for both fixed (eg, sex) and random effects (eg, variation in preactivity emotional state or 

the degree to which use of the app changed the preactivity emotional state over time). We pursued different 

analyses to evaluate changes in the preactivity emotional state over time, including a model that considered 

the effect of the emotional states possessed by individuals at their first engagement with the app. These 

analyses considered both the emotion scores as the dependent variables as well as the use of the emotions 

as defined by the cluster analysis clinical labels as dependent variables. We also tested the effect of repeated 
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uses of the app on the change in the emotional state pre- to postactivity by treating the ratio of pre- to 

postemotion score as a dependent variable. 

 

We included several covariates in our analyses and tested them for their effects on the emotional 

state: session index (ie, 1 as the first use and 2 as the second use—which captures the repeated use of the 

app), gender, age, country of origin, subscription status, and whether the user remained anonymous (ie, did 

not fill out information in his or her account—which may indicate a fake or disengaged user). As there is 

large variability in the number of completed sessions and the distribution of the number of uses of the app 

per individual has an extreme right skew, we applied a log10 transformation to the session index variable. 

This transformation markedly improved the normality of the session index as a variable (data not shown). 

LME models were fit, and the features associated with the preactivity emotional state as the dependent 

variable were selected using a forward stepwise selection procedure based on the Akaike Information 

Criteria. Similar models were fit with the pre- to postactivity emotional state ratio as the dependent variable. 

GLMs were fit to the data when changes in emotion categories (ie, based on clinical or cluster analysis 

labels) were taken as the dependent variable. 

 

Results 

Defining the Dataset 

After all the duration, quality, platform, and country filters were applied, 13,393 users remained 

(10,082 females, 2187 males, and 1124 undeclared sex). The average age of the users was 32.3 (SD 13.5) 

years, with 31.7 (SD 13.3) years for females, 34.6 (SD 13.4) years for males, and 33.3 (SD 15.0) years for 

undeclared participants. Collectively, the users completed 569,961 sessions with the app, with 302,514 of 

these sessions having emotional check-in data, with an average of 42.6 sessions and 22.6 emotional check-

ins per user. Multimedia Appendix 2 provides a histogram depicting the distribution of the length of time 

users engaged with the app. Multimedia Appendix 3 shows average period between app uses given the total 

length of engagement for users. 
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Cluster Analysis of the Emotions 

The use of the silhouette scores based on the PCoA and PAM analyses suggested that there were 

likely 8 clusters of emotions.83 As noted, the relative distances between pre- and postactivity emotional 

states and the distances between each user’s emotional state and the closest associated emotion cluster were 

calculated. In addition, each of the 115 emotions that could be endorsed was assigned to one of the emotion 

clusters (see Multimedia Appendix 1). Using these cluster labels, we calculated the mean orientation of 

each cluster and the relative distance of each individual’s emotional scores both pre- and postactivity from 

these means. These distances were compared with the other emotion scores we calculated and were highly 

correlated with them (Figure 2.2). Figure 2.3 provides a graphical depiction of the results of the clustering 

using the first 2 principal coordinates obtained from our analyses.  
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Figure 2.2 Variate Correlation 

Average emotional score versus cluster centroid distances correlation matrix represented as a heat map. As an example for 

interpreting the numbers in the matrix, a −0.90 correlation between the preactivity emotion score (x-axis Average Pre Emo Score 

label) and positivity cluster (y-axis Dist positivity label) shows that users who score higher on the preactivity emotional score had 

a shorter distance of their selected emotions to the centroid of the positive emotion cluster. Note that labels with Dist reflect distance 

measures derived from the cluster analyses (eg, Dist Anxiety reflects the distance of a user’s emotional score from the anxiety 

cluster mean) and Emo reflects a specified emotional cluster. 
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Figure 2.3 2-Dimensional PCoA Clustering Based on Co-selection 

Emotion clustering using both pre- and postactivity emotion endorsements. The points in the plot reflect positions in the first 2 

principal components defined by the Bray-Curtis distance between each pre- and postactivity emotional selection. The 8 circular 

clusters encompassing the emotions were defined by a permutation around medoids analysis technique, in which 8 clusters 

maximized the average cluster silhouette scores. Cluster boundaries are drawn on the smallest region including all underlying 

emotions. Emotions are labeled by clinical association such that terms clinically associated with anger are in red and pink, 

depression in blue, anxiety in purple, and happiness in green. 
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Table 2.1 Assignment and scores for Stop, Breathe & Think selectable emotions. 

All endorsable emotions within the SBT application with clustering, clinical assignment, and emotional 

score. Not all emotions were given clinical assignments.  
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Mixed-Effects Modeling: Long-Term Use Effect on Preactivity Mood and Emotional State 

Using the average preactivity emotional scores, as well as the cluster-based distance measures, as 

dependent variables, we fit linear-mixed models with session, as well as the important covariates, as 

independent variables, while accommodating serial correlation emotions. The results using the average 

preactivity emotional state scores suggest that a statistically significant relationship exists between the 

number of uses of the app (ie, session index) and the preactivity emotional state, with an elevation in mood 

(i.e, increase in positive emotions) occurring with repeated use of the app. Adjusting for scale, users 

experience a 2% improvement in mood after their first session, a 4% increase after their 10th session, and 

a 6% increase after their 100th session. The clinical relevance of this improvement in mood needs to be 

investigated further. We found that males have an average 2.5% higher (improved) preactivity mood than 

females and that older users have a more positive mood than younger users. Additional analyses suggested 

that repeated use of the app resulted in specific improvements in levels of anxiety and depression. After the 

first 10 sessions with the app—which on average corresponded to a 63.4-day period—users were 82% more 

likely to report no anxious emotions and 28% more likely to report no depressive emotions. This effect was 

even more pronounced when we only examined users whose first emotion endorsement reflected anxiety 

(440%) or depression (1050%). Figure 2.4 depicts the effect size and statistical significance of the estimated 

regression coefficients for the analysis models with the average emotional score in the left panels and 

cluster-based emotion similarity scores in the right panels. The statistical significance (ie, P values) were 

calculated using a Wald-Z statistic approximation. Models fit using a subset of users who reported anxious 

or depressed emotions in their first session with the app are labeled as primary models. The session index 

is consistently associated with improvements in mood, suggesting, again, that repeated use of the app 

positively impacts mood. 
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Figure 2.4 Basal Emotional Model Estimates 

Linear mixed-effects regression coefficient estimates, their SEs, and P values (<.001***, <.01**, and <.05*) for models with the 

preactivity emotional state as the dependent variable. Analyses with the emotion scoring method as the dependent variable are on 

the left panels and analyses using distances from clustering as the dependent variable are on the right panels. Generalized Linear 

Model logit regression models were used with a binary dependent variable indicating if the emotion terms endorsed at a session 

reflected anxiety (middle panels) or reflected depression (bottom panels) 
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Mixed-Effects Modeling: Pre- Versus Postactivity Mood or Emotional State 

We also fit models that considered the ratio of preactivity to postactivity emotional scores as the 

dependent variable. Figure 2.5 plots the regression coefficients resulting from the fits of these models with 

the ratio of average emotional score pre- to postactivity as the dependent variable (top panel) and the ratio 

of the distances between the emotions based on the clustering (bottom panel). The results suggest that 

repeated use of the app leads to increases in improvement of the mood/emotional state achieved through a 

meditation or mindfulness activity—or rather that the activities seem to lead to larger improvements in 

mood as the user has more engagements with the app. 
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Figure 2.5 Immediate Emotional Change Model Estimates 

Linear mixed-effects regression coefficient estimates, their SEs and P values (<.001***, <.01**, and <.05*) for models with pre- 

to postactivity change in the emotional state as the dependent variable. An analysis with the standardized change in emotion score 

pre- to postactivity as the dependent variable is reflected in the top panel, and proximity to the positive emotional clusters as the 

dependent variable is reflected in the bottom panel. 
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Discussion 

Principal Findings 

Our analyses show that repeated engagements with the SBT app are associated with an 

improvement in users’ emotional states over time. In the absence of a randomized control trial, it is difficult 

to say with certainty that there is a direct causal relationship between the use of the SBT app and emotional 

state; however, given the large diverse sample size, we believe that the impact of unmeasured covariates 

on our results (such as external events in the users’ lives) is likely to be small, although potential biases in 

the users of the app may exist. The effect we observed is more pronounced for users who often endorse 

anxiety or depression when capturing their emotional state at their initial uses. We also found that age and 

sex covariates are associated with the basal mood or emotional state. Ultimately, our analyses suggest the 

possibility that guided meditations and mindfulness activities have the potential to be effective ways of 

reducing anxiety, depression, and stress and ultimately elevating mood, although the ultimate clinical 

significance of the improvements in the emotional state that we observed needs to be explored. Our analyses 

did reveal other interesting phenomena. For example, although a minority in our study, males tended to 

have higher baseline emotional scores and responded better to the SBT app than females. The age of a user 

was also found to be a significant correlate of the basal emotional state, with older users generally endorsing 

more positive emotions. 

 

Limitations of the Study 

Our analyses are not without limitations, the first and foremost being that there is no control group 

and comparator app. This makes it difficult to definitively state that guided meditation and mindfulness 

activities are causally related or responsible for the increase in baseline mood or emotional state over time. 

However, given the sample size and magnitude of the effect, the significant change in emotional state after 

immediate and prolonged use of the app suggests that it has potential as an intervention. Another limitation 

is that all the information we analyzed was self-reported without any oversight by a third party. There could 

be users who did not follow instructions and entered erroneous emotions to expedite engagement with the 
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meditations. Many of the individuals we did include in our analyses did not record emotions for each and 

every one of their sessions, resulting in many incomplete observations. Finally, a potential limitation with 

our analyses is that there could have been a heavy selection bias among the individuals using the app in the 

sense that they were motivated enough to download it and use it. Thus, this may be an indication that they 

could be predisposed to responding positively to the app.  

 

Broad Emotional State Transitions 

Our use of the emotion clusters and similarity scoring of emotions based on our cluster analyses of 

those emotions allowed us to explore how often individual users transitioned from one broad set of 

analogous and almost synonymous emotions to another. On the basis of these analyses, we found evidence 

that, in general, individual users’ emotional states move from negative to positive over repeated uses of the 

app. We find that anxiety-prone and more depressed individuals benefit from the app more than others. 

These findings, as with the analyses, need to be verified in more controlled settings, such as randomized 

control trials, but again suggest that there is promise for the app and related apps in clinical and public 

health settings. 

 

Future Directions 

There are a number of questions that deserve attention beyond those that we addressed with our 

data. For example, the number of uses of the app may not reflect the total length of time the app was used 

(eg, a user could engage with the app intensely over a short period of time or stretch their use out over a 

longer period of time). Assessing the impact of the number of uses versus length of time on outcomes could 

provide a more detailed insight into the benefits of the app. In addition, it would be good to see if a 

companion study designed especially for adolescent populations also has a positive effect on their 

emotions.84 In addition, special clinical populations may benefit from the app (eg, clinically depressed 

individuals and individuals with addictions). It would be of value to explore analyses that focus on the 

impact of large-scale social stressors (eg, school shootings, national election results, and natural disasters) 
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on the use of the app as well as its effects on mood in the wake of stress-inducing events. Geolocation data 

on users could better define such exposures to social stressors should they be location specific (eg, a natural 

disaster in a particular state). Finally, as emphasized, it would be ideal to test the utility of the app in bona 

fide clinical trials to determine which aspects of the app are causally related to improvements in mood and 

emotional state as well as identifying subgroups of individuals that appear to respond best to particular 

activities.  

 

As more and more attention is given to the delivery of healthcare and health maintenance strategies 

through devices such as smartphones, robots, and telemedicine communications, greater sensitivity to the 

nuanced effects of these devices should motivate studies of them that are pursued in a comprehensive 

manner. Such sensitivity and more elaborate studies could also lead to more efficient and sophisticated 

deployment of these devices and help combat the need for expensive and logistically challenging visits to 

healthcare providers. 
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CHAPTER 3 : CHARACTERIZING EMOTIONAL STATE 

TRANSITIONS DURING PROLONGED USE OF A 

MINDFULNESS AND MEDITATION APP: AN 

OBSERVATIONAL STUDY 

Abstract 

 

Background: With the rising need for mental healthcare, shortages in mental healthcare providers, 

and unequal access to care, digital device apps that can be used to adjust mood show promise for helping 

meet mental healthcare demands. The therapeutic content delivered through a digital therapeutic to combat 

aspects of mental health disorder can also be ‘personalized,’ and hence potentially provide greater benefit. 

 

Objective: We sought to characterize the transitions from one emotional state to another during the 

prolonged use of a digital app designed to provide a user with guided meditations based on their initial 

emotional state. Understanding the factors that mediate such transitions can lead to improvements in 

predictions and recommendations for which specific Mindfulness and Meditation Activities (MMAs) might 

be appropriate.  

 

Methods: We analyzed data collected during the use of the Stop, Breathe and Think (SBT) 

mindfulness app. The SBT app prompts users to input their emotional state prior to and immediately after 

engaging with MMAs recommended by the app. Data were collected on more than 650 thousand SBT users 

involving over nearly 5 million MMAs. We limited the scope of our analysis to users with 10 or more MMA 

sessions and data on at least 6 basal emotional state evaluations. Using clustering techniques, we empirically 

grouped emotions into more coherent groups and then applied longitudinal mixed effect models to 

determine the effects that individual recommended MMAs had on emotional state transitions. 
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Results: We found that basal emotional states have a strong effect on transitions to a different 

emotional state after MMA engagements and that different MMA impact these transitions. We found that 

MMAs were effective in eliciting a healthy transition but only under certain conditions, and also observed 

gender and age effects on these transitions. 

 

Conclusions: We find that SBT MMA app users' initial emotional state has an impact on which 

MMAs will have a favorable effect on their transition to another emotional state. Our results have 

implications for the design and use of guided recommendations for digital therapeutics. 

Keywords: Mental Health, Mobile, Smartphone, Emotional, Mindfulness 
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Background 

 

The call to treat mental health disorders on a footing equal to physical health disorders is  

growing.85-87 Mental health disorders are known to affect productivity, comorbid conditions and physical 

wellbeing generally.41,44,88 In fact, when asked, nearly ninety percent of Americans value mental health on 

par with that of physical health.89 This is not without reason, as the prevalence of anxiety disorders alone is 

estimated to be between 3.8-25.0%.65 Given the high collective prevalence of mental health disorders, their 

impact on quality of life, and the costs associated with the care of individuals with mental health disorders, 

there is a huge need to develop more efficient and reliable ways of not only treating them but also preventing 

them. Unfortunately, developing the appropriate infrastructure to combat mental health disorders within the 

current health systems will be daunting and expensive as many people find available mental healthcare 

overly complicated and often inaccessible.90,91 Fortunately, newer and more accessible approaches to the 

care of individuals with mental health issues are being developed and include the use of telehealth, an 

emphasis on risk mitigation as opposed to treatments, and the use of digital therapeutics.92 Of these, digital 

therapeutics are receiving a great deal of attention. Basically, digital therapeutics are digital devices (e.g., 

smartphone apps) that provide content meant to provide guidance on dealing with symptoms or content 

meant to alleviate symptoms in some other way (e.g., via imagery).  

 

The emergence of digital therapeutics is recognized by public health and government regulatory 

agencies as well. The Food and Drug Administration (FDA) has allowed mobile mental health apps to 

receive approvals and accreditation as bona fide medical health apps just like drugs.73,93-95 Care that includes 

the use of digital therapeutics can be scaled to help meet the demand without requiring many additional 

trained professionals. More importantly, digital therapeutics have great potential to help provide care in 

underserved populations where financial, professional scarcity, and societal burdens make other forms of 

care inaccessible.96 Digital therapeutics have obvious limitations in that they aren’t appropriate for use in 

all settings. One example of where they make good sense is in behavioral and mental health settings 
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involving stress management where techniques, such as encouraging relaxation via, e.g., meditations and 

mindfulness, can be used. In fact, mindfulness and meditation activities have been linked with healthy 

thought patterns and improved mood and could reduce stress and anxiety that is often of a type that is a 

precursor or symptom of many mental health disorders.45,97 

 

Unfortunately, while the promise of digital therapeutics for reducing the risk and treating some 

mental health issues and disorders are great, there is a need to vet different digital therapeutics and 

understanding the settings in which they might be most effective. This is due in part to difficulties in 

defining mental health disorders and tracking individuals’ symptoms over time in a way that can shed light 

on when to intervene and in what manner. This is as true for very serious mental health disorders, such as 

treatment resistant depression, as it is for managing stress and anxiety. For example, determining which 

personal settings and emotional states are appropriate for different interventions, such as Mindfulness and 

Meditation Activities (MMAs), have yet to be explored in full.98 In fact, it is quite likely that there is a great 

deal of intra and inter individual variability in mood and feelings of stress and anxiety that might be 

necessary to understand  and characterize so that guidelines and interventions, such as MMAs, can be 

tailored or personalized to individual users.  

 

Objective 

We have pursued a series of analyses to explore how the moods of the users of the SBT MMA app 

change or transition to other moods as they engage the app. As discussed in our prior paper on data collected 

via the SBT MMS app,99 the SBT app recommends sets of MMAs to users based on their mood at the time 

they engage the app. In our initial work, we identified a trend for improvements in basal mood with 

prolonged use of the app. We also showed that, on average, a user’s mood was improved after a single 

session with an MMA recommended by the app. In this paper, we aim to assess the specific effects that the 

recommended MMAs have on the transitions between moods of users at baseline and after they participate 

in a recommended MMA. A better understanding of which MMAs drive changes in emotional state could 
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lead to insights into which MMAs might be appropriate for individuals with specific emotional state 

profiles. Such an understanding could lead to better predictions and recommendations for individual users. 

 

Methods 

The App 

The app developed by SBT is designed to guide users through MMAs which are created to reduce 

stress, anxiety, depression, and improve internal focus, mood, mental state, and sleep. This app is 

multiplatform and can deliver MMAs through many different platforms (i.e. iOS, Android, Alexa). When 

the app is engaged, a user is prompted to perform an optional 10-second reflection, which is followed by 

optional prompts to state how he or she is feeling mentally, physically, and emotionally. The mental and 

physical questions ask users to respond on a five-point scale with the following categories: great, good, 

meh, poor, rough. Following this, users are asked to pursue an ‘emotional check-in’ involving a selection 

of 1 to 5 terms from a pool of 115 emotions which describe their current state. After this initial check-in, 

users are shown some suggested MMAs (e.g., Gratitude, Silence, Breathing), but are free to select an MMA 

of their preference within a defined set. After the completion of an MMA users can continue to select 

additional MMAs or end the session. At the end of the session users are again prompted to do another 

optional check-in for mental, physical, and emotional state. A flow diagram of the user experience with the 

SBT app can be seen in Figure 3.1.   



 

 

 

53 

 

 

 

Figure 3.1 SBT App User Flow Diagram 

A diagram depicting the users’ experience when engaging the SBT app. A natural flow allows the user to reflect, check-in, perform 

an activity, and then check-in again. Reflections and check-ins are optional but were required data points for our analysis. 
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All data collected through the SBT app is volunteered by users as stated in the SBT user licensing 

agreement and privacy policy. All reported data were anonymized and put into a Health Insurance 

Portability and Accountability Act (HIPAA) compliant format so that users could not be reidentified. 

 

  Our data preparation methods were nearly identical to those described in our previous publication 

on the SBT data; however, in the current analysis data from several users were removed from all analyses 

by direction from the legal and compliance team at SBT. Because of our de-identification process, we 

cannot distinguish which users were removed from the previous analysis, or which users are now included 

because they have since met active user filtering criteria. We can say based on information about when 

users started to use the SBT app that there were 856 new active users who passed our filtering criteria since 

our last publication, and at least 3,219 users were removed in this analysis from our last publication. The 

SBT app has variation in functionality and delivery across platforms, and to avoid confounding effects we 

focused our analysis only on iOS users. We excluded users who joined before the last major update 

(05/01/2016). Further filtering was pursued to only include active users (10+ sessions completed) who had 

at least six sessions with both pre and post emotional check-ins filled out. To avoid cultural differences and 

language barriers, only users from English-speaking countries (United States, United Kingdom, Canada, 

and Australia) were included. Lastly, for both compliance and questions about the accuracy of the 

information we excluded users under the age of 13 or over the age of 100 from analysis. 

 

Clustering Emotions 

 As described in our previous paper, emotions endorsed by users of the app were grouped into 

clusters based on the user's co-selection of emotional terms. Emotions were compared using Bray-Curtis 

dissimilarity.81 We used Principal Coordinate Analysis (PCoA) to translate emotional dissimilarity into 

two-dimensional space using the first two PCoAs, and then used Partitioning Around Medoids (PAM) along 

with silhouette scores to determine the optimal number of clusters.83 Each of the 115 emotions was then 

assigned to a cluster and the corresponding cluster medoid recorded. Individual emotional states, both pre 
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and post MMA engagement, were defined by the nearest (in terms of Euclidean Distance) cluster. These 

clusters define distinct emotional state categories, and the change (or ‘transition’) in emotional state 

categories between pre-MMA and post-MMA is the focus of our analysis. 

 

To better understand and synthesize the results of our emotion clustering, we projected the clusters onto 

the Yale Mood Meter (YMM; Figure 3.2).100 This YYM groups emotions into four quadrants which are 

defined by the ‘energy’ of the emotion (y -axis) and the ‘pleasantness’ of the emotion (x-axis). We color 

code these quadrants using the accepted criteria: Red = high energy, low pleasantness; Yellow = high 

energy, high pleasantness; Blue = low energy, low pleasantness; and Green = low energy, high pleasantness. 

We assigned each of the clusters to each of the four quadrants based on the majority of emotions within 

each cluster that mapped to a quadrant. This mapping allows us to think about transitions from quadrant to 

quadrant instead of simply cluster membership, which has several advantages: 1) it reduces our search space 

from 64 transitions to 16; 2) it increases the sample size for each transition thus providing better power to 

detect changes; and 3) it provides an interpretable scale for transitions (i.e., a high energy, low pleasantness 

state [red] to high energy, high pleasantness state [yellow]). While users may have different objectives in 

engaging the app and an MMA, the intuition is that red and blue states are undesirable, whereas yellow and 

green are desirable. 
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Figure 3.2 Yale Mood Meter 

This framework was designed by Marc Brackett, PhD. classifies emotions into a 2-dimensional space with pleasantness as the x-

axis and energy as the y-axis. The negative emotion quadrants red and blue represent low pleasantness, Red is higher energy such 

as anger, and blue is low energy such as sadness. The more favorable quadrants, green and yellow, are high pleasantness with 

energetic emotions like ‘excited’ fitting in yellow and lower energy emotions like calm fitting in green. 

 

Description of MMAs 

The SBT app provides over 100 different MMAs for users to choose from, with varying levels of 

popularity. Given the number of MMAs and the risk for overfitting  our analysis models by considering 

each MMA individually, we focused on the top 20 chosen MMAs (86.8% of all completed MMAs) and 

combined the rest into a single category, ‘Other’, for a total of 21 MMAs assessed in analyses. The 

distribution of these MMAs and their descriptions can be found in Table 3.1.  
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Table 3.1 Meditation and Mindfulness Activity Frequency 

Descriptions and frequencies of the top 20 MMAs completed. The remaining MMAs are aggregated as ‘other’. 
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Statistical Analysis 

To determine the effect that a particular MMA has on the transition from one emotional state to 

another we used Generalized Linear Models (GLMs) as implemented in the R package lme4.82 GLMs have 

many benefits which makes them suitable for our analysis. For example, GLMs can accommodate and 

quantify serial correlations among variables in longitudinal analyses. Additionally, both fixed and random 

effects can be considered for important covariates. Random effects are important to account for variance 

explained by unmeasured covariates such as individual-specific random effects of unknown origin (e.g., 

personal habits, unmeasured stressors or exposures, etc.). GLMs have also been widely used in statistical 

analysis of many psychiatric and psychological phenomena.101-103 For each YMM quadrant we subset the 

data to users whose mood was associated with that quadrant when they initially engaged the app and then 

built four logit-link GLM models designed to predict which quadrant the user transitioned to after engaging 

in the MMA. To enable this, we created dummy variables to indicate if a user transitioned to a specific 

quadrant based. We used count data for the number of MMAs a user completed in a session as an 

independent variable, and also included age, sex, session index (i.e. 1 as the first use of the application, 2 

as the second use, etc.)  to capture repeated uses of the app, as additional predictors. Finally, we included 

other covariates, such as subscription status, user account completion, time between sessions, and country 

code in initial analyses, but were left out of subsequent analyses due to their insignificance and inability to 

contribute to predictions of transitions. Because of the differences in the number of user engagements (the 

range was from 10 uses to 1044 uses), we used a log10 transform on session index, which is consistent with 

what we did in our previous analysis of the SBT data. All non-MMA independent variables were 

standardized so that the resulting model beta values could be directly compared. 

 

Modeling a Learning System 

To evaluate the effectiveness of our analytical models in predicting transitions, we implemented 

the same methodology of fitting GLMs, but restricted our analyses to a ‘training dataset’ to three sequential 

observations per user starting with their first completed recorded session. After obtaining models for each 
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of the possible transitions based on data from these three initial sessions, we used the models to predict the 

probability of each transition in subsequent sessions and then selected the transition with the highest 

probability and matched it with the observed transitions. This allowed us to compare the actual emotional 

state transition with a predicted transition state and to see if the app could be improved by anticipating 

MMAs likely to result in positive mood transition in real time. We repeated this analysis using different 

numbers of and time-intervals in our training sets a number of times to further evaluate its performance. 

 

Results 

Dataset Summary 

Prior to any filtering we had observations for nearly 5 million engagements with MMAs provided 

by the SBT app across 677,000 different users. There were 84,000 active users who completed 10 or more 

sessions who collectively completed 3.16 million engagements with MMAs provided by the app. After 

filtering for operating system, which users were active, language used in the app, and quality, 11,030 unique 

users were included in subsequent analyses. These users collectively completed 289,360 MMAs across 

253,363 sessions (Average 1.14 MMAs per session). As shown in Table 3.2, most users were female 

(75.0%) and between the ages of 13 to 40. Compared to our previous publication we had fewer users and 

sessions, due to removal from legal and compliance, but the users for which we had data they completed 

more sessions and emotional check-ins on average. Additional population information can be found in 

Supplemental Figures 3.3-3.6. 
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Table 3.2 Study Population Statistics 

Detailed study population statistics broken out by gender. 

  

 

Clustering Analysis of Emotions 

The results of our clustering of emotions analysis were similar to those described in our previously 

published paper. The optimal number of clusters as defined by silhouette scores on PCoA and PAM 

analyses was eight. Of the 115 emotions, all but 3 emotions (Envious, Fiery, Self Critical) were assigned 

to the same clusters as in our previously published analyses. The eight clusters grouped emotions into 

categories with very common themes and were validated with prior SBT product internal and clinical 

groupings (see Figure 3.3 and Table 3.3). Based on these clusters a user’s emotional state pre- and post-

MMA, we could determine which category a user’s emotions were most closely associated with using 

distances of selected emotional terms to cluster medoids.  
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Figure 3.3 Emotional Clustering on Co-selected Terms 

Emotional clusters created from co-selected terms within the same check-in, then defined using PAM and silhouette score. A) The 

optimal eight clusters are shown across the first two PCoAs. Clusters are given labels based on a single emotion that is thematic to 

most emotions within the cluster. B) In-house defined emotional labels show consistent grouping within the first two PCoAs C) 

Clinically defined emotional labels show consistent grouping within the first two PCoAs. 
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Table 3.3 Emotion Cluster and Quadrant Assignments 

All 115 endorsable emotions grouped by cluster and associated YMM quadrant. 
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Alignment of clusters to YMM quadrants provided further support for the clustering, as most 

clusters were clearly aligned to a quadrant. As shown in Figure 3.4A, “Calm” and “Compassion” clusters 

had perfect alignment with the green quadrant, and “Grateful” and “Excited” clusters had perfect alignment 

with the yellow quadrant. The “Tired” cluster had emotions that crossed between both the blue (i.e. tired, 

lazy, fatigue) and red (i.e. afraid, panicked, suspicious) quadrants. The “Anger” cluster also had some 

crossover between red (i.e. angry, impatient, resentful) and blue (i.e. defensive, disgusted, pessimistic) 

quadrants. Conveniently, each quadrant was mapped to two clusters.  

 

Figure 3.4B & 3.4C show relative frequency of pre-MMA emotional states and post-MMA 

emotional states. The most frequent ending cluster was calm, followed by grateful. User’s predominately 

started and ended in positive states (i.e., green/yellow clusters), with green (low energy, high pleasantness) 

being the predominant emotional state that users transitioned to. The most common negative states were 

tired and anxiety. 
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A) Cluster to Yale Mood Meter Assignment

 

B) Transitions by Cluster                                            C) Transitions YMM  

  
 

 

Figure 3.4 Cluster Alignment and Pre-to-post MMA Transitions 

Clusters are assigned to YMM quadrants based on the majority of emotions within that cluster which correspond to the YMM 

quadrant (i.e. Tired cluster is Blue in YMM). A) Counts of all 115 endorsable emotions in the SBT app by each cluster and YMM 

quadrant they are associated with. B) Session counts for transitions from pre MMA emotional cluster to post MMA emotional state. 

Calm and grateful clusters are the most frequent ending states. C) Session counts for transitions from pre MMA emotional YMM 

quadrant to post MMA emotional quadrant. 
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Model Features 

We did not find any specific MMA to be the most effective in transitioning users’ emotions to 

different categories.  Each of the sixteen GLMs we fit to the data centering on the effects of the different 

MMAs showed various degrees of association strength between pre and post MMA emotions.  The MMAs 

Great Compassion, Lion Mind, and Gratitude provided by the app were all are associated with transitions 

from the red emotional state quadrant to a pleasant emotional state quadrant (green/yellow), whereas 

Falling Asleep, Kindness, and Commonality of Suffering were associated with staying in a negative 

emotional state. For users starting in the blue quadrant, the MMAs Kindness, Great Compassion, and 

Counting Breaths were associated with transitioning from green or yellow quadrants. Session index (a 

proxy for the number of engagements with the app over time) also was associated with users remaining or 

transitioning to low pleasantness quadrants. Both age and gender were associated with transitions of 

different sorts as well. For example, males were more likely than females to transition from negative states 

to positive states, and older users were more likely to transition to yellow states. There was not enough data 

to assess the degree to which MMAs could influence users who started in a yellow quadrant and ended in 

a red quadrant. 
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Figure 3.5 Transition Model Odds Ratios 

Sixteen model fixed effect odd ratios and P values (<.001***, <.01**, and <.05*) for MMAs, gender, session index, and 
intercept split by starting YMM quadrant. Blue bars show increased propensity to make a transition, where-as red bars 
show decreased probability of making the transition. A) Transitions starting in Red YMM quadrant. B) Transitions 
starting in Blue YMM quadrant. C) Transitions starting in Green YMM quadrant. D) Transitions starting in Blue YMM 
quadrant. For example, looking at A) Transitions from starting in Red YMM quadrant, users who completed the MMA 
Lion Mind were 52% less likely to stay in Red, 30% more likely to enter Green, and 28% more likely to enter Yellow 
than those who did not complete Lion Mind. 
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Rapid Learning System 

The most common quadrant for which users transitioned to was green, as expected for an 

application built to guide users to a calm and meditative state. The green emotional state quadrant accounted 

for ~45% of all emotional states that users transitioned to. Using data associated with the first 3 

engagements with an SBT MMA, we built predictive models to determine which states users are most likely 

to transition to in subsequent engagements. We then compared the predicted transitions to the actual 

transitions. We found that the predictions were 61% accurate. Subsequent analyses involving the use of 

more data from users suggested that this accuracy level was maintained. We did find that the accuracy of 

the predictions differs as a function of the quadrant the emotions were assigned prior to pursuing the MMA, 

with blue being the least accurate, and yellow being the most accurate. We ultimately found that the more 

observations used in training the models, the more accurate the predictions become, as expected. 

 

Table 3.4 Study Population Statistics 
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Figure 3.6 Ending YMM Quadrant Prediction Accuracy from Distance to Training Data  

Accuracy of predictive models for ending YMM quadrant with varying number of observations used for training. Accuracy is also 

shown depending on the starting YMM quadrant which shows differing levels of accuracy and change in accuracy given the starting 

quadrant. A) 3 training observations. B) 4 training observations. C) 5 training observations. D) 5 training observations. E) 15 

training observations 
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A) Training observations: 3 

B) 

Training Observations: 4 

 
C) Training Observations: 5 

 

D) 

Training Observations: 10 

 

E) 

Training Observations: 15 
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Discussion  

Dataset 

Due to the de-identification process of users, it is difficult to directly compare aspects of our current 

analyses with the results of our previously published studies. Despite this, we note that, in aggregate, the 

proportions of users in different emotional state categories was more or less the same (age, gender, emotion 

endorsement) between the studies. Our clustering performed analyses produced very similar results, which 

we interpret as consistency in the underlying data as well as in the final results. The key finding of the 

previous analysis, that users baseline emotional state improved with the number of engagements with the 

app helps put into perspective our findings from our most recent analyses. 

 

Principal findings 

Our analyses suggest that individual MMAs provided by the SBT app have varying degrees of 

influence on transitions between emotional states, based on a user’s baseline emotional state. Furthermore, 

we find that there is no ‘one-size fits all’ solution to a user’s poor mood in that not all MMAs affected 

individuals in the same way. Thus, we find evidence suggesting that depending on what a user’s initial 

mood or mental state was at the time of an engagement with the SBT app prior to pursuing an MMA can 

influence whether or not a specific MMA will improve their mental state. Thus, with this in mind, for the 

app to be more effective, it would be important to ‘nudge’ users away from certain MMAs which might 

increase the probability that they will remain in a negative mental state. Gender differences also seem to 

play a role in how a user’s mood will transition after engaging in an MMA, as males appear to have an 

easier transition away from unpleasant emotional states. A user's age also seemed to affect how they 

transition from poor mental states as well, as older users seem to heavily favor a more pleasant, energetic 

state. 

 

Overall some clear themes emerged from analyses implicating each of our eight mental state 

clusters. The first PCoA resulting from our cluster analysis most strongly resembles the pleasantness axis 
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of the YMM, with the left-hand side being more pleasant clusters (Grateful, Calm, Compassion, Excited). 

The second PCoA somewhat resembles the energy axis of the YMM, with the clusters on the top having 

higher energy (Excited, Grateful, Angry); however, we found that the anxiety cluster (mapped to Red) was 

more ambiguous. This could suggest that an additional underlying emotional factor to anxiety exists that 

makes it different from other high energy, low pleasantness emotions. Additional projections (supplemental 

figure 3.7) with the 3rd and 4th PCoAs suggest that the angry and anxiety clusters share only weak 

similarity. 

 

When we examined which MMAs drive emotional transitions, we see some common themes as 

well as a few surprising results. For example, the Engaging Your Senses MMA asks a user to tune into each 

of his or her senses in sequence, observing what they notice without evaluating or judging their experience. 

The ability to observe one’s thoughts, rather than being fully caught up or entangled in them, has been 

referred to as ‘metacognitive awareness,’ and has been shown to be beneficial in dealing with anxiety and 

stress. This type of MMA may be ideally suited for producing specific transitions as our analyses suggest. 

Another MMA, Great Compassion, involves a 3 step process: 1) recognizing that others are just like you 

in that they want to experience happiness and avoid pain and suffering; 2) broadening one’s attention to 

include people or pets that they love, people you don't know, and even people you have difficulty with, and 

then imagining you are breathing in pain and suffering, and breathing out positive energy; and 3) calling to 

mind people who are of service to others in the world who can inspire you to do the same. Great 

Compassion may have the effect of moving people out of an angry state because of the process of putting 

yourself in another's shoes, and then cultivating "big picture" thinking - i.e., looking at the world a little 

differently, from a broader perspective. The Gratitude MMA has a similar perspective and has the impact 

of reframing, and also helping to cultivate big picture thinking, helping to put things into a larger 

perspective. These three activities all have a focus on separating one’s thoughts from the current emotions 

one is experiencing and thus are quite likely to lead to similar transitions.  
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The Lion Mind MMA, on the other hand, is a quieting activity, using the metaphor of lion mind vs. 

dog mind to help take one out of ‘thought loops’ (or ruminating thoughts) that feed anger. What is surprising 

is that the MMA Kindness seems ineffective, as it is thought of as the antidote to anger in the traditional 

Tibetan Buddhist perspective for which the MMA is founded on. It may be that this type of activity works 

better as a long-term remedy, but does not work as an immediate solution for, e.g., anger management. 

Commonality of Suffering and Change both are similar in that they help to put things into perspective by 

tapping into your empathy. With a broader perspective, it’s supposed to be easier to feel more relaxed about 

your own situation or feelings, but users may not be able to reach this perspective given their emotional 

state. One additional complication may be that Kindness and Change use a somewhat different and more 

traditional way of communicating than other MMAs.  

 

For transitions which start from the blue quadrant, we see less surprising results, but still notice 

some common themes. For MMAs which lead to a favorable transition, e.g., Kindness, Great Compassion, 

Counting Breaths, and Equanimity, there is a strong focus on interconnectedness and developing a bond to 

others. Using this information to anticipate needs for effecting changes in mental state, the app can better 

recommend and understand why some MMAs might be more effective given a user’s emotional state. 

 

Our previous analysis suggested that a user's baseline emotional state improves with continued use 

of the application. However, in this present study we noticed that the longer a user has engaged the app, the 

less likely they are to transition from a negative state, as defined by associations with literature-defined 

mood quadrants. While counterintuitive, these results do not contradict each other. We do see more users 

both starting and ending in green or yellow states (as shown in the learning system modeling studies). This 

observation might suggest there are some users who use the app but may not find it effective despite long 

term use,  or there is a gradual “inoculation” of sorts whereby users don’t find as much benefit from the app 

since they have benefitted maximally at some point in time. Additionally, there is a unique MMA, Falling 

Asleep, which is meant to help users relax and fall asleep. The ‘tired’ cluster can be both a negative, or 
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positive cluster depending on the circumstance, and users who select the Falling Asleep meditation could 

be moving to this more ambiguous cluster, driving some the results that we observed. 

 

We find great potential in using the types of models we built to predict what outcome a user will 

have based on their MMA selections and initial mood or mental states. Even with a nominal number of 

observations we are able to accurately predict 60.7% of all transitions (15.6% increase over informed 

guessing, 35.7% increase over random guessing). These models get more accurate with more data, which 

suggests that a real-time learning system could be implemented to help guide users to MMAs which would 

have better chances of a successful transition. As more data is collected, further refinements to the predictive 

models could be made, as different covariates could be included in the analysis without the worry of 

overfitting. Other covariates could include, but are not limited to, environmental factors such as time since 

the last session, last MMA completed, current weather, political events, or other external events in a user’s 

life.  

 

Limitations of the Study 

While our study was conducted with data from many users, each with several engagements with 

the app over varying periods of time, our study is entirely observational and does not include the sorts of 

controls in place in, e.g., randomized controlled clinical trials. Our analyses were also limited to data 

reflecting what the users of the app ultimately chose and disclosed within the app. Given that some MMAs 

have widely differing effects, this would suggest that there are certain MMAs which are likely better suited 

for inducing different transitions but should be studied in more tightly controlled settings. Note also that 

the emotional classifications themselves are experimental and there are many alternative concepts that may 

differ from our observations in terms of the YMM quadrants.104 

 

Our filtering criteria could have also created biases in our results. Since we examined individuals 

with 10 or more uses of the app, our attention was naturally confided to individuals that are engaged users 
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and have found some personal benefit for its continued use. In contrast, a user who stops after a few uses 

may not see the same benefits from MMAs, and hence not necessarily follow the observed transitions that 

long term users exhibit. Additionally, as noted in our previous Baseline Paper, long term use of the app 

influences basal emotional state. Finally, most users reported being in a YMM Green state (low energy – 

high pleasantness) when engaging the app initially and did not change their state post MMA, reducing the 

number of transitions we could study.  

 

Future Directions 

Since we confined our attention to specific users (e.g., iOS users) and MMAs (i.e., only those most 

widely used) we could expand our analyses to all users and MMAs, possibly by clustering the MMAs in 

some way.  We focused our analysis on the transition from initial emotional state based on the chosen MMA 

but ignored other data that was collected (e.g., physical state of the person, sex, geolocation, etc.). We 

therefore could assess the degree to which these other factors impact our results. For example, we observed 

that males generally transition easier to improved mood more so than females (i.e., starting in a red state, 

males are 29% less likely to transition to blue and 20% more likely to transition to green), but we didn’t 

test which MMAs work better for males (or females) individually. Knowing the effect of these factors, and 

how similar users react to MMAs, would help push our efforts towards the goal of truly personalizing the 

engagement and inducing a desired state of mind. 
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Supplemental Figures 

 

 

 
Supplemental Figure 3.1: Emotional Endorsement Frequency 

 
Supplemental Figure 3.2: Counts of MMAs completed 
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Supplemental Figure 3.3: Distribution of User Age 

 
 

 
Supplemental Figure 4: Distribution of User Sessions 
 

 
Supplemental Figure 5: Distribution of Length of Engagement 
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Supplemental Figure 6: User Origin 

 

 
 
Supplemental Figure 7: Additional PCoA Projections 
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Chapter 3, in full, has been submitted for publication has been submitted for publication of the 

material as it may appear in Journal of Medical Internet Research, 2020, Argus J Athanas, Jamison 

McCorrison, Julie Campiston, Nick Bender, Jamie Price, Susan Smalley, Nicholas J Schork.  The 

dissertation author was the primary investigator and author of this paper. 
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CHAPTER 4 DISCUSSION 

 

Summary of Work 

In each study we were able to use the extra dimensionality of longitudinal data to increase the 

power of detection, gain unique insights, or address otherwise impossible to answer questions. The works 

shown above highlight the importance of capturing and leveraging longitudinal data, and how it can be used 

to personalize medicine. This might come as risk factors in disease progression, assessing basal emotional 

state, or determining which therapies work best given your current disposition. Regardless of the domain, 

without capturing the trajectories of predictor variables we are missing a crucial component for developing 

personalized medicine. 

 

Each dataset had its own unique and shared challenges to overcome. The Shiley patient data has 

several asynchronous measures on individuals for a multitude of tests. This was further confounded by non-

independence of measures on each eye. The SBT data was complicated by multiple measures within the 

same time point, and both datasets involved missing, erroneous, and complex datatypes. These are just a 

few of the challenges that need to be addressed when using real world data, and if we are unable to do so it 

will be difficult to translate laboratory results to practice.  

 

When considering the translation of these methods from trial to practice we must be cognizant of 

who is receiving and utilizing these results. A clinician or patient is likely not as technically savvy or willing 

to trust complete ‘black box’ algorithms. The implementation of standard and complex regression 

techniques provides an easier transition from theory to practice. An end user doesn’t need to know what a 

beta or p value is to understand that concepts they stand for. For example, telling a patient that ‘they are 

20% more likely to experience an increased rate of visual field loss because of a genetic mutation,’ is far 

more digestible than ‘the machine learning algorithm says so.’ With better patient education comes better 

adherence to the care plan and improved outcomes.  
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Future Directions 

Much like a rapid learning system, these projects and methods could benefit from iterative 

improvement and there are several avenues for future investigation. While the papers themselves discuss 

some aspects of future directions they are not entirely inclusive. For the glaucoma data one of the biggest 

missed opportunities leveraging the longitudinal data is that for simplicity we collapsed the time series data 

into a single quantitative feature. Instead of fitting a simplistic linear model at each SNP we could again 

implore the use of LME models to use every timepoint. Because LMEs support hierarchical dependence 

structure, we could also use measurements from both eyes instead of just the worst one. This would allow 

us to create a regression model for each SNP which incorporates age, gene level admixture, intraocular 

pressure, medications, operation status, demographics, and comorbidities all while accounting for the 

inherited correlation from serial measures, right and left eye, and individual effects. The more features we 

can include within our models will allow us to explain more variance and have better power to detect true 

positives in our dataset. This approach is not without obstacles, first being with the data itself. Aligning the 

data is not trivial, and even once completed there are several ways of implementing the alignment. 

Determining which one is best is a mixture of domain knowledge and trial and error. While the dataset is 

deep, it is lacking in number of subjects, and importantly controls. With the number of confounding 

covariates (age, admixture, treatment, etc.) it is easy to overfit modeling for so few subjects, increasing the 

chance of false positives we end up seeing. Lastly a more complex model means more computation time. I 

found that running a single model with the data we had available for one SNP ran between 1 and 3 minutes. 

Extrapolating that to 6 million common SNPs across our subjects is 12 million minutes of compute time, 

or 22 years! Fortunately, this is not a linear problem, so distributive computing could reduce this to a couple 

of months in real time; however, this is still expensive (both in time and financially) and as noted before, 

there is likely some trial and error to create an optimal solution. This could also be addressed by writing 

some specialized software as the LME packages I was using in R are built to be flexible and may have some 

inefficiencies which a software engineer could overcome.  



 

 

 

85 

 

 

 

Throughout this project we have tried to incorporate more samples to increase our power or add 

viable controls. We tried to focus our inclusion criteria to WGS samples that had been sequenced and called 

using the same vendor and pipeline. Our first attempt was to include around 800 samples from the O’Connor 

study; however, much of the meta data for these samples was lost, and they were called using a different 

version of the reference genome. Ultimately the batch effects were too strong to include these samples. The 

second attempt occurred after giving a talk on our analysis and preliminary findings at ARVO 2018. We 

were approached by researchers from the UK who had access to roughly 3,000 additional samples that had 

variant calling done the same way as the ADAGES III dataset. We were never able to see if these samples 

could be used as we ran into bureaucratic issues with sharing personal data between countries. In the end, 

inclusion of more samples might help with providing a baseline and validation of previous known SNPs 

but is unlikely to have the same deep phenotyping on visual fields. Inclusion of more samples is not the 

only way to expand this dataset, as mentioned extensively, the power of the ADAGES III data is how 

subjects are deeply phenotyped over time. On top of visual field measures there is an abundance of imaging 

data which can be mined to access nerve fiber depth, vasculature, and abnormalities in the optic disk. Image 

data comes with its own problems, and handling and incorporating this data with genetics would be a very 

interesting problem that may provide some otherwise inaccessible insights. 

 

Since the ADAGES III cohort is an ongoing trial, it lends itself as a perfect candidate for 

implementation and testing of a rapid learning system. The core principal is that predictions on an outcome 

are made and used to direct a care plan. Subsequent visits provide feedback if the treatment predictions are 

effective, and this new information is included in the model to redefine predictions. In a clinical setting 

treatment is entirely at the discretion of the clinician, but the model can still be used to still make predictions 

and evaluate effectiveness. Examining which features are driving prediction will provide information as to 

why some patients are progressing faster than others. In addition, various hierarchical clustering algorithms 

can be applied to subset patients into meaningful groups which can be individually studied for mechanisms 



 

 

 

86 

 

 

of action. Once a clear mechanism of action exists drug development becomes an easier and more 

straightforward task. While it is my belief that this should be standard practice with ongoing data collection, 

this same idea can be applied retroactively. To simulate continuous data collection, we can separate our 

data into test and training sets, not by random subject selection but by a fixed interval. For example, we 

would use the first three visits of every patient to train our rapid learning system and have it predict visual 

field decline. Then we would increment to the next time point and rebuild our models and predictions. This 

type of analysis would allow us to address several important questions: which features are most indicative 

of visual field decline, what is the relative effect of genetics vs. other clinical / demographic measures, the 

number of observations needed to make accurate predictions, and which models and assumptions provide 

the best predictive power. 

 

The SBT analysis was performed on a dataset of users actively seeking treatment. To insure we had 

enough information on each user we subset our data such that only active users were included, which 

introduces some inherent biases. It is unlikely that people who the app didn’t resonate with continued to 

use it. Like most real-world data, when you are doing active treatment it is difficult if not unethical to have 

true control patients where they are not receiving the standard of care. This means that we cannot directly 

attribute any results we see to the app or mindfulness and meditation activity. It could be useful to recruit 

healthy individuals and run a controlled experiment to determine the effects on baseline mood. This way 

we could attribute the application to changes more confidently. Additionally, we could expand this to try 

testing application use in targeted at risk groups such as, youths, socio-economic disadvantaged, or those 

with chronic medical conditions. This would have the benefits of allowing us to compare against the general 

population and determine if there are other useful meta-data that could be collected in order to make better 

MMA recommendations.  

 

 The SBT application and other digital therapeutics are perfect candidates for implementing an RLS. 

Because the care is delivered virtually and autonomously, the recommendation system is not on the 
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shoulders of clinician and instead dictated by an algorithm and acted upon by the individual receiving care. 

It is easy enough to version software and roll it out to subsets of your userbase. You can then in real time 

see which version of recommendation / prediction software is performing better for your users or patients. 

When you have enough confidence that the new system is working you can transition all users over to the 

same version of the app and then continue your iterative improvement. While there is still no true control 

the standard of care is being applied while new methods are being tested, and results can more directly be 

attributed changes in administration of the digital therapeutic. 

 

These analyses are not limited to the datasets analyzed. There are many fields in which these 

longitudinal techniques, and rapid learning systems could be applied to real world data. The discordance 

between the two fields which I conducted my research is proof that they can be applied in many situations. 

Diseases like cancer, chronic kidney disease, and Alzheimer’s where progressive decline is considered the 

most important endpoint are specific targets. Alzheimer’s Disease (AD) is a progressive neurodegenerative 

disease which ultimately can result in death. AD comprises 60-70% of all dementia cases, and it is one of 

the largest public health concerns facing aging Americans.3,105 While some medications show signs of 

slowing progression, AD, unfortunately, has no known cure. The ADNI is a longitudinal collaboration study 

which follows patients suspected of, or diagnosed with, AD.  One of the specific aims of ADNI is to track 

progression with biomarkers. This makes it a great target to use similar methods as I conducted to explore 

the utility of genetics and clinical measures on predicting cognitive decline.  

 

 

Current State of the Field 

 

 Risk calculators have been a common tool to help clinicians and patients both make informed 

decisions about what type of care they should get. While there are several studies which attempt to 

incorporate longitudinal factors into risk, longitudinal data is not often used in practice.106-109 This is in part 

because quality longitudinal data is difficult to obtain due to interoperability issues, differing metrics, and 
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lack of recorded data. We have seen some specialties which have been able to successfully incorporate this 

type of data in real time for the benefit of the patient. For instance, with diabetes, where patients are using 

wearable insulin pumps this information can be relayed wirelessly and instantaneously and results in better 

patient outcomes.110 Some diabetics have taken this one step further and made their own N-of-1 RLS by 

hacking their insulin monitoring and administration device.111 Overall this is still a growing field and needs 

to be a focus of upcoming research to bring the use of longitudinal data into real world settings for 

calculating risk factors and predictions. For glaucoma specifically there has been some increased interest 

in doing more of these types of analyses. Since the time of my initial analysis (early 2018) there have been 

several publications which have also attempted to answer the same question as my analysis, although none 

of which have had the same deeply phenotyped data or the same approach.112-114 A common approach has 

been to reduce SNPs into a polygenic risk score instead of testing individual SNPs or looking at gene 

burden. There is no way of knowing which approach will be the best until we have enough data, but my 

intuition says that is will be a mixture of domain specific knowledge and using robust statistical tests that 

can leverage time series data. 

  

 The concepts of rapid learning systems have been around since at least the 1970s when the field of 

biomedical informatics was just forming.115 Today we still see many challenges which impede the 

implementation of such systems, even though they are still often thought of as the holy grail of personalized 

medicine.116 We have seen many research hospitals make moves towards developing RLS especially in 

oncology.117,118 City of Hope is one of the institutions which is trying to pave the way by integrating 

genomics with clinical outcome data, but they admit the process of doing this is still on the frontier of 

medicine. Some major hurdles yet to overcome include those of interoperability between providers, 

versioning of both software and references, accurate collection of outcomes, and increasingly policy 

concerns. It is my belief that interoperability between healthcare systems will always exist until strict data 

standardizations are in place. ICD 10 codes and the initial HITECH mandate are good starting points, but 

a stricter backbone for healthcare data normalization needs to exist before institutions can freely share data. 



 

 

 

89 

 

 

As we gain more information or have the ability to collect new information, the features we may want to 

include in a rapid learning system might change. While this is a tenant of any RLS it is also a challenge 

because it introduces the possibility of missingness within your data. In addition, some standards we treat 

as constants are bound to change as well. Within my research, the new standard for the human reference 

genome slowly switch from GRCh37 to GRCh38. At the start of my work with the Shiley data this caused 

innumerous problems as most tools were still set for using the older GRCh37 while the data was aligned 

and called using the newest version of the reference genome. Technology companies have been successful 

at making sure their applications are backwards compatible for at least a few versions, otherwise every time 

someone got a new phone, or upgraded their operating system none of their applications would work. 

Serious thought must be considered on how best to implement similar ‘backwards’ compatibility within 

genomics and medicine. Lastly, we must also consider the ramifications sharing information may have on 

an individual’s privacy. For personalized medicine to be effective it must encompass everything that is 

important to the individual, including their right to anonymity.  

 

 

  



 

 

 

90 

 

 

REFERENCES 
 

1 Ray, K. K., Kastelein, J. J., Boekholdt, S. M., Nicholls, S. J., Khaw, K. T., Ballantyne, C. M., 

Catapano, A. L., Reiner, Z. & Luscher, T. F. The ACC/AHA 2013 guideline on the treatment of 

blood cholesterol to reduce atherosclerotic cardiovascular disease risk in adults: the good the bad 

and the uncertain: a comparison with ESC/EAS guidelines for the management of dyslipidaemias 

2011. Eur Heart J 35, 960-968, doi:10.1093/eurheartj/ehu107 (2014). 

 

2 Page, R. C., Martin, J., Krall, E. A., Mancl, L. & Garcia, R. Longitudinal validation of a risk 

calculator for periodontal disease. J Clin Periodontol 30, 819-827, doi:10.1034/j.1600-

051x.2003.00370.x (2003). 

 

3 Barnes, D. E. & Yaffe, K. The projected effect of risk factor reduction on Alzheimer's disease 

prevalence. Lancet Neurol 10, 819-828, doi:10.1016/S1474-4422(11)70072-2 (2011). 

 

4 Mansberger, S. L. A risk calculator to determine the probability of glaucoma. J Glaucoma 13, 

345-347, doi:10.1097/00061198-200408000-00014 (2004). 

 

5 Bailey, J. N., Loomis, S. J., Kang, J. H., Allingham, R. R., Gharahkhani, P., Khor, C. C., Burdon, 

K. P., Aschard, H., Chasman, D. I., Igo, R. P., Jr., Hysi, P. G., Glastonbury, C. A., Ashley-Koch, 

A., Brilliant, M., Brown, A. A., Budenz, D. L., Buil, A., Cheng, C. Y., Choi, H., Christen, W. G., 

Curhan, G., De Vivo, I., Fingert, J. H., Foster, P. J., Fuchs, C., Gaasterland, D., Gaasterland, T., 

Hewitt, A. W., Hu, F., Hunter, D. J., Khawaja, A. P., Lee, R. K., Li, Z., Lichter, P. R., Mackey, 

D. A., McGuffin, P., Mitchell, P., Moroi, S. E., Perera, S. A., Pepper, K. W., Qi, Q., Realini, T., 

Richards, J. E., Ridker, P. M., Rimm, E., Ritch, R., Ritchie, M., Schuman, J. S., Scott, W. K., 

Singh, K., Sit, A. J., Song, Y. E., Tamimi, R. M., Topouzis, F., Viswanathan, A. C., Verma, S. S., 

Vollrath, D., Wang, J. J., Weisschuh, N., Wissinger, B., Wollstein, G., Wong, T. Y., Yaspan, B. 

L., Zack, D. J., Zhang, K., Study, E. N., Consortium, A., Weinreb, R. N., Pericak-Vance, M. A., 

Small, K., Hammond, C. J., Aung, T., Liu, Y., Vithana, E. N., MacGregor, S., Craig, J. E., Kraft, 

P., Howell, G., Hauser, M. A., Pasquale, L. R., Haines, J. L. & Wiggs, J. L. Genome-wide 

association analysis identifies TXNRD2, ATXN2 and FOXC1 as susceptibility loci for primary 

open-angle glaucoma. Nat Genet 48, 189-194, doi:10.1038/ng.3482 (2016). 

 

6 Zhao, J., Feng, Q., Wu, P., Lupu, R. A., Wilke, R. A., Wells, Q. S., Denny, J. C. & Wei, W. Q. 

Learning from Longitudinal Data in Electronic Health Record and Genetic Data to Improve 

Cardiovascular Event Prediction. Sci Rep 9, 717, doi:10.1038/s41598-018-36745-x (2019). 

 

7 Barak-Corren, Y., Castro, V. M., Javitt, S., Hoffnagle, A. G., Dai, Y., Perlis, R. H., Nock, M. K., 

Smoller, J. W. & Reis, B. Y. Predicting Suicidal Behavior From Longitudinal Electronic Health 

Records. Am J Psychiatry 174, 154-162, doi:10.1176/appi.ajp.2016.16010077 (2017). 

 

8 Singh, A., Nadkarni, G., Gottesman, O., Ellis, S. B., Bottinger, E. P. & Guttag, J. V. 

Incorporating temporal EHR data in predictive models for risk stratification of renal function 

deterioration. J Biomed Inform 53, 220-228, doi:10.1016/j.jbi.2014.11.005 (2015). 

 

9 Garcia, T. P. & Marder, K. Statistical Approaches to Longitudinal Data Analysis in 

Neurodegenerative Diseases: Huntington's Disease as a Model. Curr Neurol Neurosci Rep 17, 14, 

doi:10.1007/s11910-017-0723-4 (2017). 

 



 

 

 

91 

 

 

10 Fitzmaurice, G. M. & Ravichandran, C. A primer in longitudinal data analysis. Circulation 118, 

2005-2010, doi:10.1161/CIRCULATIONAHA.107.714618 (2008). 

 

11 Rast, P. & Hofer, S. M. Longitudinal design considerations to optimize power to detect variances 

and covariances among rates of change: simulation results based on actual longitudinal studies. 

Psychol Methods 19, 133-154, doi:10.1037/a0034524 (2014). 

 

12 Edwards, L. J. Modern statistical techniques for the analysis of longitudinal data in biomedical 

research. Pediatr Pulmonol 30, 330-344, doi:10.1002/1099-0496(200010)30:4<330::aid-

ppul10>3.0.co;2-d (2000). 

 

13 Lu, N., Han, Y., Chen, T., Gunzler, D. D., Xia, Y., Lin, J. Y. & Tu, X. M. Power analysis for 

cross-sectional and longitudinal study designs. Shanghai Arch Psychiatry 25, 259-262, 

doi:10.3969/j.issn.1002-0829.2013.04.009 (2013). 

 

14 Rudrapatna, V. A., & Butte, A. J. . Opportunities and challenges in using real-world data for 

health care. The Journal of Clinical Investigation 130, 565-574 (2020). 

 

15 Franklin, J. M. & Schneeweiss, S. When and How Can Real World Data Analyses Substitute for 

Randomized Controlled Trials? Clin Pharmacol Ther 102, 924-933, doi:10.1002/cpt.857 (2017). 

 

16 FDA. FDA’s Sentinel Initiative, <http://www.fda.gov/safety/fdas-sentinel-initiative.> (October 

18, 2019). 

 

17 Carrigan, G., Whipple, S., Capra, W. B., Taylor, M. D., Brown, J. S., Lu, M., Arnieri, B., 

Copping, R. & Rothman, K. J. Using Electronic Health Records to Derive Control Arms for Early 

Phase Single-Arm Lung Cancer Trials: Proof-of-Concept in Randomized Controlled Trials. Clin 

Pharmacol Ther 107, 369-377, doi:10.1002/cpt.1586 (2020). 

 

18 Yue, L. Q. Leveraging Real-World Evidence Derived from Patient Registries for Premarket 

Medical Device Regulatory Decision-Making. Statistics in Biopharmaceutical Research 10, 98-

103, doi:10.1080/19466315.2017.1422436 (2018). 

 

19 Lademann, M., Lademann, M., Boeck Jensen, A. & Brunak, S. Incorporating symptom data in 

longitudinal disease trajectories for more detailed patient stratification. International Journal of 

Medical Informatics 129, 107-113, doi:https://doi.org/10.1016/j.ijmedinf.2019.06.003 (2019). 

 

20 Zauderer, M. G. Practical Application of Real-World Evidence in Developing Cancer Therapies. 

JCO Clinical Cancer Informatics, 1-2, doi:10.1200/cci.19.00071 (2019). 

 

21 Noah, B., Keller, M. S., Mosadeghi, S., Stein, L., Johl, S., Delshad, S., Tashjian, V. C., Lew, D., 

Kwan, J. T., Jusufagic, A. & Spiegel, B. M. R. Impact of remote patient monitoring on clinical 

outcomes: an updated meta-analysis of randomized controlled trials. NPJ Digit Med 1, 20172, 

doi:10.1038/s41746-017-0002-4 (2018). 

 

22 Stewart, M., Norden, A. D., Dreyer, N., Henk, H. J., Abernethy, A. P., Chrischilles, E., Kushi, L., 

Mansfield, A. S., Khozin, S., Sharon, E., Arunajadai, S., Carnahan, R., Christian, J. B., Miksad, 

R. A., Sakoda, L. C., Torres, A. Z., Valice, E. & Allen, J. An Exploratory Analysis of Real-World 

End Points for Assessing Outcomes Among Immunotherapy-Treated Patients With Advanced 

Non-Small-Cell Lung Cancer. JCO Clin Cancer Inform 3, 1-15, doi:10.1200/CCI.18.00155 

(2019). 

http://www.fda/
https://doi.org/10.1016/j.ijmedinf.2019.06.003


 

 

 

92 

 

 

 

23 Shah, A., Stewart, A. K., Kolacevski, A., Michels, D. & Miller, R. Building a Rapid Learning 

Health Care System for Oncology: Why CancerLinQ Collects Identifiable Health Information to 

Achieve Its Vision. J Clin Oncol 34, 756-763, doi:10.1200/JCO.2015.65.0598 (2016). 

 

24 Schilsky, R. L., Michels, D. L., Kearbey, A. H., Yu, P. P. & Hudis, C. A. Building a rapid 

learning health care system for oncology: the regulatory framework of CancerLinQ. J Clin Oncol 

32, 2373-2379, doi:10.1200/JCO.2014.56.2124 (2014). 

 

25 Shrager, J. & Tenenbaum, J. M. Rapid learning for precision oncology. Nat Rev Clin Oncol 11, 

109-118, doi:10.1038/nrclinonc.2013.244 (2014). 

 

26 Etheredge, L. M. A rapid-learning health system. Health Aff (Millwood) 26, w107-118, 

doi:10.1377/hlthaff.26.2.w107 (2007). 

 

27 Miotto, R., Wang, F., Wang, S., Jiang, X. & Dudley, J. T. Deep learning for healthcare: review, 

opportunities and challenges. Briefings in Bioinformatics 19, 1236-1246, doi:10.1093/bib/bbx044 

(2017). 

 

28 Tran, V. T., Riveros, C. & Ravaud, P. Patients' views of wearable devices and AI in healthcare: 

findings from the ComPaRe e-cohort. NPJ Digit Med 2, 53, doi:10.1038/s41746-019-0132-y 

(2019). 

 

29 Zangwill, L. M., Ayyagari, R., Liebmann, J. M., Girkin, C. A., Feldman, R., Dubiner, H., Dirkes, 

K. A., Holmann, M., Williams-Steppe, E., Hammel, N., Saunders, L. J., Vega, S., Sandow, K., 

Roll, K., Slight, R., Auerbach, D., Samuels, B. C., Panarelli, J. F., Mitchell, J. P., Al-Aswad, L. 

A., Park, S. C., Tello, C., Cotliar, J., Bansal, R., Sidoti, P. A., Cioffi, G. A., Blumberg, D., Ritch, 

R., Bell, N. P., Blieden, L. S., Davis, G., Medeiros, F. A., Ng, M. C. Y., Das, S. K., Palmer, N. 

D., Divers, J., Langefeld, C. D., Freedman, B. I., Bowden, D. W., Christopher, M. A., Chen, Y. I., 

Guo, X., Taylor, K. D., Rotter, J. I., Weinreb, R. N., African, D. & Glaucoma Evaluation Study, I. 

I. I. G. S. G. The African Descent and Glaucoma Evaluation Study (ADAGES) III: Contribution 

of Genotype to Glaucoma Phenotype in African Americans: Study Design and Baseline Data. 

Ophthalmology 126, 156-170, doi:10.1016/j.ophtha.2017.11.031 (2019). 

 

30 Schork, A. J., Schork, M. A. & Schork, N. J. Genetic risks and clinical rewards. Nat Genet 50, 

1210-1211, doi:10.1038/s41588-018-0213-x (2018). 

 

31 Springelkamp, H., Iglesias, A. I., Cuellar-Partida, G., Amin, N., Burdon, K. P., van Leeuwen, E. 

M., Gharahkhani, P., Mishra, A., van der Lee, S. J., Hewitt, A. W., Rivadeneira, F., Viswanathan, 

A. C., Wolfs, R. C., Martin, N. G., Ramdas, W. D., van Koolwijk, L. M., Pennell, C. E., 

Vingerling, J. R., Mountain, J. E., Uitterlinden, A. G., Hofman, A., Mitchell, P., Lemij, H. G., 

Wang, J. J., Klaver, C. C., Mackey, D. A., Craig, J. E., van Duijn, C. M. & MacGregor, S. 

ARHGEF12 influences the risk of glaucoma by increasing intraocular pressure. Hum Mol Genet 

24, 2689-2699, doi:10.1093/hmg/ddv027 (2015). 

 

32 Chen, Y., Lin, Y., Vithana, E. N., Jia, L., Zuo, X., Wong, T. Y., Chen, L. J., Zhu, X., Tam, P. O., 

Gong, B., Qian, S., Li, Z., Liu, X., Mani, B., Luo, Q., Guzman, C., Leung, C. K., Li, X., Cao, W., 

Yang, Q., Tham, C. C., Cheng, Y., Zhang, X., Wang, N., Aung, T., Khor, C. C., Pang, C. P., Sun, 

X. & Yang, Z. Common variants near ABCA1 and in PMM2 are associated with primary open-

angle glaucoma. Nat Genet 46, 1115-1119, doi:10.1038/ng.3078 (2014). 

 



 

 

 

93 

 

 

33 Wiggs, J. L., Yaspan, B. L., Hauser, M. A., Kang, J. H., Allingham, R. R., Olson, L. M., 

Abdrabou, W., Fan, B. J., Wang, D. Y., Brodeur, W., Budenz, D. L., Caprioli, J., Crenshaw, A., 

Crooks, K., Delbono, E., Doheny, K. F., Friedman, D. S., Gaasterland, D., Gaasterland, T., 

Laurie, C., Lee, R. K., Lichter, P. R., Loomis, S., Liu, Y., Medeiros, F. A., McCarty, C., Mirel, 

D., Moroi, S. E., Musch, D. C., Realini, A., Rozsa, F. W., Schuman, J. S., Scott, K., Singh, K., 

Stein, J. D., Trager, E. H., Vanveldhuisen, P., Vollrath, D., Wollstein, G., Yoneyama, S., Zhang, 

K., Weinreb, R. N., Ernst, J., Kellis, M., Masuda, T., Zack, D., Richards, J. E., Pericak-Vance, 

M., Pasquale, L. R. & Haines, J. L. Common variants at 9p21 and 8q22 are associated with 

increased susceptibility to optic nerve degeneration in glaucoma. PLoS Genet 8, e1002654, 

doi:10.1371/journal.pgen.1002654 (2012). 

 

34 Medeiros, F. A., Zangwill, L. M., Bowd, C., Mansouri, K. & Weinreb, R. N. The structure and 

function relationship in glaucoma: implications for detection of progression and measurement of 

rates of change. Invest Ophthalmol Vis Sci 53, 6939-6946, doi:10.1167/iovs.12-10345 (2012). 

 

35 Bussel, II, Wollstein, G. & Schuman, J. S. OCT for glaucoma diagnosis, screening and detection 

of glaucoma progression. Br J Ophthalmol 98 Suppl 2, ii15-19, doi:10.1136/bjophthalmol-2013-

304326 (2014). 

 

36 Leung, C. K. Diagnosing glaucoma progression with optical coherence tomography. Curr Opin 

Ophthalmol 25, 104-111, doi:10.1097/ICU.0000000000000024 (2014). 

 

37 Trikha, S., Saffari, E., Nongpiur, M., Baskaran, M., Ho, H., Li, Z., Tan, P. Y., Allen, J., Khor, C. 

C., Perera, S. A., Cheng, C. Y., Aung, T. & Vithana, E. A Genetic Variant in TGFBR3-CDC7 Is 

Associated with Visual Field Progression in Primary Open-Angle Glaucoma Patients from 

Singapore. Ophthalmology 122, 2416-2422, doi:10.1016/j.ophtha.2015.08.016 (2015). 

 

38 Nima Pouladi , K. B., Haiquan Li , Nancy G. Casanova , Tong Zhou , Wei Zhang , Ting Wang , 

Ikbel Achour , Rick Kittles , Yves Lussier , Joe G.N. Garcia. in American Thoracic Society 

International Conference Abstracts    (2016). 

 

39 Zhang, G., Saito, R. & Sharma, K. A metabolite-GWAS (mGWAS) approach to unveil chronic 

kidney disease progression. Kidney Int 91, 1274-1276, doi:10.1016/j.kint.2017.03.022 (2017). 

 

40 Selinski, S. Impact of urinary bladder cancer risk variants on prognosis and survival. EXCLI J 13, 

1254-1258 (2014). 

 

41 Joseph, A., Kosmas, C. E., Patel, C., Doll, H. & Asherson, P. Health-Related Quality of Life and 

Work Productivity of Adults With ADHD: A U.K. Web-Based Cross-Sectional Survey. J Atten 

Disord 23, 1610-1623, doi:10.1177/1087054718799367 (2019). 

 

42 Aitken, L. M., Burmeister, E., McKinley, S., Alison, J., King, M., Leslie, G. & Elliott, D. 

Physical recovery in intensive care unit survivors: a cohort analysis. Am J Crit Care 24, 33-39; 

quiz 40, doi:10.4037/ajcc2015870 (2015). 

 

43 Goetzel, R. Z., Hawkins, K., Ozminkowski, R. J. & Wang, S. The health and productivity cost 

burden of the "top 10" physical and mental health conditions affecting six large U.S. employers in 

1999. J Occup Environ Med 45, 5-14, doi:10.1097/00043764-200301000-00007 (2003). 

 

44 DALYs, G. B. D. & Collaborators, H. Global, regional, and national disability-adjusted life-years 

(DALYs) for 333 diseases and injuries and healthy life expectancy (HALE) for 195 countries and 



 

 

 

94 

 

 

territories, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet 

390, 1260-1344, doi:10.1016/S0140-6736(17)32130-X (2017). 

 

45 Baer, R. A. Mindfulness Training as a Clinical Intervention: A Conceptual and Empirical 

Review. Clinical Psychology-science and Practice 6, doi:DOI :10.1093/clipsy.bpg015 (2006). 

 

46 Klingbeil, D. A., Renshaw, T. L., Willenbrink, J. B., Copek, R. A., Chan, K. T., Haddock, A., 

Yassine, J. & Clifton, J. Mindfulness-based interventions with youth: A comprehensive meta-

analysis of group-design studies. J Sch Psychol 63, 77-103, doi:10.1016/j.jsp.2017.03.006 (2017). 

 

47 MacGregor, S., Ong, J. S., An, J., Han, X., Zhou, T., Siggs, O. M., Law, M. H., Souzeau, E., 

Sharma, S., Lynn, D. J., Beesley, J., Sheldrick, B., Mills, R. A., Landers, J., Ruddle, J. B., 

Graham, S. L., Healey, P. R., White, A. J. R., Casson, R. J., Best, S., Grigg, J. R., Goldberg, I., 

Powell, J. E., Whiteman, D. C., Radford-Smith, G. L., Martin, N. G., Montgomery, G. W., 

Burdon, K. P., Mackey, D. A., Gharahkhani, P., Craig, J. E. & Hewitt, A. W. Genome-wide 

association study of intraocular pressure uncovers new pathways to glaucoma. Nat Genet 50, 

1067-1071, doi:10.1038/s41588-018-0176-y (2018). 

 

48 Khor, Z. L. C. C. Current Development in Genome Wide Association Studies of Glaucoma. 

Current Ophthalmology Reports volume 6, pages79–85 (2018). 

 

49 Telenti, A., Pierce, L. C., Biggs, W. H., di Iulio, J., Wong, E. H., Fabani, M. M., Kirkness, E. F., 

Moustafa, A., Shah, N., Xie, C., Brewerton, S. C., Bulsara, N., Garner, C., Metzker, G., Sandoval, 

E., Perkins, B. A., Och, F. J., Turpaz, Y. & Venter, J. C. Deep sequencing of 10,000 human 

genomes. Proc Natl Acad Sci U S A 113, 11901-11906, doi:10.1073/pnas.1613365113 (2016). 

 

50 Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M. A., Bender, D., Maller, J., Sklar, 

P., de Bakker, P. I., Daly, M. J. & Sham, P. C. PLINK: a tool set for whole-genome association 

and population-based linkage analyses. Am J Hum Genet 81, 559-575, doi:10.1086/519795 

(2007). 

 

51 Kwon, Y. H., Kim, C. S., Zimmerman, M. B., Alward, W. L. & Hayreh, S. S. Rate of visual field 

loss and long-term visual outcome in primary open-angle glaucoma. Am J Ophthalmol 132, 47-

56, doi:10.1016/s0002-9394(01)00912-6 (2001). 

 

52 Liebmann, K., De Moraes, C. G. & Liebmann, J. M. Measuring Rates of Visual Field Progression 

in Linear Versus Nonlinear Scales: Implications for Understanding the Relationship Between 

Baseline Damage and Target Rates of Glaucoma Progression. J Glaucoma 26, 721-725, 

doi:10.1097/IJG.0000000000000710 (2017). 

 

53 Hibar, D. P., Stein, J. L., Jahanshad, N., Kohannim, O., Hua, X., Toga, A. W., McMahon, K. L., 

de Zubicaray, G. I., Martin, N. G., Wright, M. J., Alzheimer's Disease Neuroimaging, I., Weiner, 

M. W. & Thompson, P. M. Genome-wide interaction analysis reveals replicated epistatic effects 

on brain structure. Neurobiol Aging 36 Suppl 1, S151-158, 

doi:10.1016/j.neurobiolaging.2014.02.033 (2015). 

 

54 M.J., C. The R Book.  (John Wiley & Sons, 2012). 

 

55 Chang, C. C., Chow, C. C., Tellier, L. C., Vattikuti, S., Purcell, S. M. & Lee, J. J. Second-

generation PLINK: rising to the challenge of larger and richer datasets. Gigascience 4, 7, 

doi:10.1186/s13742-015-0047-8 (2015). 



 

 

 

95 

 

 

 

56 Wang, M., Huang, J., Liu, Y., Ma, L., Potash, J. B. & Han, S. COMBAT: A Combined 

Association Test for Genes Using Summary Statistics. Genetics 207, 883-891, 

doi:10.1534/genetics.117.300257 (2017). 

 

57 Genomes Project, C., Auton, A., Brooks, L. D., Durbin, R. M., Garrison, E. P., Kang, H. M., 

Korbel, J. O., Marchini, J. L., McCarthy, S., McVean, G. A. & Abecasis, G. R. A global reference 

for human genetic variation. Nature 526, 68-74, doi:10.1038/nature15393 (2015). 

 

58 Choquet, H., Paylakhi, S., Kneeland, S. C., Thai, K. K., Hoffmann, T. J., Yin, J., Kvale, M. N., 

Banda, Y., Tolman, N. G., Williams, P. A., Schaefer, C., Melles, R. B., Risch, N., John, S. W. 

M., Nair, K. S. & Jorgenson, E. A multiethnic genome-wide association study of primary open-

angle glaucoma identifies novel risk loci. Nat Commun 9, 2278, doi:10.1038/s41467-018-04555-

4 (2018). 

 

59 Krumbiegel, M., Pasutto, F., Schlotzer-Schrehardt, U., Uebe, S., Zenkel, M., Mardin, C. Y., 

Weisschuh, N., Paoli, D., Gramer, E., Becker, C., Ekici, A. B., Weber, B. H., Nurnberg, P., 

Kruse, F. E. & Reis, A. Genome-wide association study with DNA pooling identifies variants at 

CNTNAP2 associated with pseudoexfoliation syndrome. Eur J Hum Genet 19, 186-193, 

doi:10.1038/ejhg.2010.144 (2011). 

 

60 Consortium, E. P. An integrated encyclopedia of DNA elements in the human genome. Nature 

489, 57-74, doi:10.1038/nature11247 (2012). 

 

61 Consortium, E. P. A user's guide to the encyclopedia of DNA elements (ENCODE). PLoS Biol 9, 

e1001046, doi:10.1371/journal.pbio.1001046 (2011). 

 

62 Musiat, P. & Tarrier, N. Collateral outcomes in e-mental health: a systematic review of the 

evidence for added benefits of computerized cognitive behavior therapy interventions for mental 

health. Psychol Med 44, 3137-3150, doi:10.1017/S0033291714000245 (2014). 

 

63 Insel, T. R. Assessing the economic costs of serious mental illness. Am J Psychiatry 165, 663-

665, doi:10.1176/appi.ajp.2008.08030366 (2008). 

 

64 Smit, F., Cuijpers, P., Oostenbrink, J., Batelaan, N., de Graaf, R. & Beekman, A. Costs of nine 

common mental disorders: implications for curative and preventive psychiatry. J Ment Health 

Policy Econ 9, 193-200 (2006). 

 

65 Remes, O., Brayne, C., van der Linde, R. & Lafortune, L. A systematic review of reviews on the 

prevalence of anxiety disorders in adult populations. Brain Behav 6, e00497, 

doi:10.1002/brb3.497 (2016). 

 

66 Iacoviello, B. M., Steinerman, J. R., Klein, D. B., Silver, T. L., Berger, A. G., Luo, S. X. & 

Schork, N. J. Clickotine, A Personalized Smartphone App for Smoking Cessation: Initial 

Evaluation. JMIR Mhealth Uhealth 5, e56, doi:10.2196/mhealth.7226 (2017). 

 

67 Iacoviello, B. M., Murrough, J. W., Hoch, M. M., Huryk, K. M., Collins, K. A., Cutter, G. R., 

Iosifescu, D. V. & Charney, D. S. A randomized, controlled pilot trial of the Emotional Faces 

Memory Task: a digital therapeutic for depression. NPJ Digit Med 1, doi:10.1038/s41746-018-

0025-5 (2018). 

 



 

 

 

96 

 

 

68 Champion, L., Economides, M. & Chandler, C. The efficacy of a brief app-based mindfulness 

intervention on psychosocial outcomes in healthy adults: A pilot randomised controlled trial. 

PLoS One 13, e0209482, doi:10.1371/journal.pone.0209482 (2018). 

 

69 Lindsay, E. K., Chin, B., Greco, C. M., Young, S., Brown, K. W., Wright, A. G. C., Smyth, J. M., 

Burkett, D. & Creswell, J. D. How mindfulness training promotes positive emotions: Dismantling 

acceptance skills training in two randomized controlled trials. J Pers Soc Psychol 115, 944-973, 

doi:10.1037/pspa0000134 (2018). 

 

70 Economides, M., Martman, J., Bell, M. J. & Sanderson, B. Improvements in Stress, Affect, and 

Irritability Following Brief Use of a Mindfulness-based Smartphone App: A Randomized 

Controlled Trial. Mindfulness (N Y) 9, 1584-1593, doi:10.1007/s12671-018-0905-4 (2018). 

 

71 Bostock, S., Crosswell, A. D., Prather, A. A. & Steptoe, A. Mindfulness on-the-go: Effects of a 

mindfulness meditation app on work stress and well-being. J Occup Health Psychol 24, 127-138, 

doi:10.1037/ocp0000118 (2019). 

 

72 Coulon, S. M., Monroe, C. M. & West, D. S. A Systematic, Multi-domain Review of Mobile 

Smartphone Apps for Evidence-Based Stress Management. Am J Prev Med 51, 95-105, 

doi:10.1016/j.amepre.2016.01.026 (2016). 

 

73 Waltz, E. Pear approval signals FDA readiness for digital treatments. Nat Biotechnol 36, 481-482, 

doi:10.1038/nbt0618-481 (2018). 

 

74 Kvedar, J. C., Fogel, A. L., Elenko, E. & Zohar, D. Digital medicine's march on chronic disease. 

Nat Biotechnol 34, 239-246, doi:10.1038/nbt.3495 (2016). 

 

75 Harrison, V., Proudfoot, J., Wee, P. P., Parker, G., Pavlovic, D. H. & Manicavasagar, V. Mobile 

mental health: review of the emerging field and proof of concept study. J Ment Health 20, 509-

524, doi:10.3109/09638237.2011.608746 (2011). 

 

76 Olff, M. Mobile mental health: a challenging research agenda. Eur J Psychotraumatol 6, 27882, 

doi:10.3402/ejpt.v6.27882 (2015). 

 

77 Blonde, L., Khunti, K., Harris, S. B., Meizinger, C. & Skolnik, N. S. Interpretation and Impact of 

Real-World Clinical Data for the Practicing Clinician. Adv Ther 35, 1763-1774, 

doi:10.1007/s12325-018-0805-y (2018). 

 

78 Berger, M. L., Sox, H., Willke, R. J., Brixner, D. L., Eichler, H. G., Goettsch, W., Madigan, D., 

Makady, A., Schneeweiss, S., Tarricone, R., Wang, S. V., Watkins, J. & Mullins, C. D. Good 

Practices for Real-World Data Studies of Treatment and/or Comparative Effectiveness: 

Recommendations from the Joint ISPOR-ISPE Special Task Force on Real-World Evidence in 

Health Care Decision Making. Value Health 20, 1003-1008, doi:10.1016/j.jval.2017.08.3019 

(2017). 

 

79 Monti, S., Grosso, V., Todoerti, M. & Caporali, R. Randomized controlled trials and real-world 

data: differences and similarities to untangle literature data. Rheumatology (Oxford) 57, vii54-

vii58, doi:10.1093/rheumatology/key109 (2018). 

 

80 Paradis, E., Claude, J. & Strimmer, K. APE: Analyses of Phylogenetics and Evolution in R 

language. Bioinformatics 20, 289-290, doi:10.1093/bioinformatics/btg412 (2004). 



 

 

 

97 

 

 

 

81 Dixon, P. VEGAN, a package of R functions for community ecology. Journal of Vegetation 

Science 14, 927-930 (2003). 

 

82 Douglas Bates, M. M., Ben Bolker, Steve Walker. Fitting Linear Mixed-Effects Models Using 

lme4. Journal of Statistical Software 67, doi:10.18637/jss.v067.i01 (2015). 

 

83 A. P. Reynolds, G. R., B. de la Iglesia & V. J. Rayward-Smith Clustering Rules: A Comparison 

of Partitioning and Hierarchical Clustering Algorithms. Journal of Mathematical Modelling and 

Algorithms 5, 475–504, doi:https://doi.org/10.1007/s10852-005-9022-1 (2006). 

 

84 Monto, M. A., McRee, N. & Deryck, F. S. Nonsuicidal Self-Injury Among a Representative 

Sample of US Adolescents, 2015. Am J Public Health 108, 1042-1048, 

doi:10.2105/AJPH.2018.304470 (2018). 

 

85 Xiao, H., Carney, D. M., Youn, S. J., Janis, R. A., Castonguay, L. G., Hayes, J. A. & Locke, B. 

D. Are we in crisis? National mental health and treatment trends in college counseling centers. 

Psychol Serv 14, 407-415, doi:10.1037/ser0000130 (2017). 

 

86 Ohrnberger, J., Fichera, E. & Sutton, M. The relationship between physical and mental health: A 

mediation analysis. Soc Sci Med 195, 42-49, doi:10.1016/j.socscimed.2017.11.008 (2017). 

 

87 Mark, T. L., Yee, T., Levit, K. R., Camacho-Cook, J., Cutler, E. & Carroll, C. D. Insurance 

Financing Increased For Mental Health Conditions But Not For Substance Use Disorders, 1986-

2014. Health Aff (Millwood) 35, 958-965, doi:10.1377/hlthaff.2016.0002 (2016). 

 

88 Pohling, R., Buruck, G., Jungbauer, K. L. & Leiter, M. P. Work-related factors of presenteeism: 

The mediating role of mental and physical health. J Occup Health Psychol 21, 220-234, 

doi:10.1037/a0039670 (2016). 

 

89 Anxiety and Depression Association of America. Survey Finds that Americans Value Mental 

Health and Physical Health Equally.  (2015). 

 

90 Thomas, K. C., Ellis, A. R., Konrad, T. R., Holzer, C. E. & Morrissey, J. P. County-level 

estimates of mental health professional shortage in the United States. Psychiatr Serv 60, 1323-

1328, doi:10.1176/ps.2009.60.10.1323 (2009). 

 

91 Butryn, T., Bryant, L., Marchionni, C. & Sholevar, F. The shortage of psychiatrists and other 

mental health providers: Causes, current state, and potential solutions. International Journal of 

Academic Medicine 3, 5-9, doi:10.4103/ijam.ijam_49_17 (2017). 

 

92 Capobianco, E. On Digital Therapeutics. Frontiers in Digital Humanities 2, 

doi:10.3389/fdigh.2015.00006 (2015). 

 

93 Sverdlov, O., van Dam, J., Hannesdottir, K. & Thornton-Wells, T. Digital Therapeutics: An 

Integral Component of Digital Innovation in Drug Development. Clin Pharmacol Ther 104, 72-

80, doi:10.1002/cpt.1036 (2018). 

 

94 Terry, N. P. & Gunter, T. D. Regulating mobile mental health apps. Behav Sci Law 36, 136-144, 

doi:10.1002/bsl.2339 (2018). 

 

https://doi.org/10.1007/s10852-005-9022-1


 

 

 

98 

 

 

95 Torous, J. & Roberts, L. W. Needed Innovation in Digital Health and Smartphone Applications 

for Mental Health: Transparency and Trust. JAMA Psychiatry 74, 437-438, 

doi:10.1001/jamapsychiatry.2017.0262 (2017). 

 

96 Guerrero, A. P. S., Balon, R., Beresin, E. V., Louie, A. K., Coverdale, J. H., Brenner, A. & 

Roberts, L. W. Rural Mental Health Training: an Emerging Imperative to Address Health 

Disparities. Acad Psychiatry 43, 1-5, doi:10.1007/s40596-018-1012-5 (2019). 

 

97 Zoogman, S., Goldberg, S. B., Hoyt, W. T. & Miller, L. Mindfulness Interventions with Youth: A 

Meta-Analysis. Mindfulness 6, 290-302, doi:10.1007/s12671-013-0260-4 (2015). 

 

98 Azam, M. A., Latman, V. V. & Katz, J. Effects of a 12-Minute Smartphone-Based Mindful 

Breathing Task on Heart Rate Variability for Students With Clinically Relevant Chronic Pain, 

Depression, and Anxiety: Protocol for a Randomized Controlled Trial. JMIR Res Protoc 8, 

e14119, doi:10.2196/14119 (2019). 

 

99 Athanas, A. J., McCorrison, J. M., Smalley, S., Price, J., Grady, J., Campistron, J. & Schork, N. J. 

Association Between Improvement in Baseline Mood and Long-Term Use of a Mindfulness and 

Meditation App: Observational Study. JMIR Ment Health 6, e12617, doi:10.2196/12617 (2019). 

 

100 Nathanson, L., Rivers, S., Flynn, L. & Brackett, M. Creating Emotionally Intelligent Schools with 

RULER. Emotion Review 8, doi:10.1177/1754073916650495 (2016). 

 

101 Magezi, D. A. Linear mixed-effects models for within-participant psychology experiments: an 

introductory tutorial and free, graphical user interface (LMMgui). Front Psychol 6, 2, 

doi:10.3389/fpsyg.2015.00002 (2015). 

 

102 Muth, C., Bales, K. L., Hinde, K., Maninger, N., Mendoza, S. P. & Ferrer, E. Alternative Models 

for Small Samples in Psychological Research: Applying Linear Mixed Effects Models and 

Generalized Estimating Equations to Repeated Measures Data. Educ Psychol Meas 76, 64-87, 

doi:10.1177/0013164415580432 (2016). 

 

103 Barr, D. J. Random effects structure for testing interactions in linear mixed-effects models. Front 

Psychol 4, 328, doi:10.3389/fpsyg.2013.00328 (2013). 

 

104 Lovheim, H. A new three-dimensional model for emotions and monoamine neurotransmitters. 

Med Hypotheses 78, 341-348, doi:10.1016/j.mehy.2011.11.016 (2012). 

 

105 Brookmeyer, R., Gray, S. & Kawas, C. Projections of Alzheimer's disease in the United States 

and the public health impact of delaying disease onset. Am J Public Health 88, 1337-1342, 

doi:10.2105/ajph.88.9.1337 (1998). 

 

106 Balte, P., Cassano, P. A., Couper, D., Jacobs, D., Kalhan, R., Acien, A. N., Kaplan, R. C., 

Sanders, J., O'Connor, G. T., Schwartz, J. E., Yende, S., Dransfield, M. T., White, W. & Oelsner, 

E. C. in C43. COPD AND POPULATION HEALTH     A4873-A4873. 

 

107 Sticca, F., Ruggieri, S., Alsaker, F. & Perren, S. Longitudinal Risk Factors for Cyberbullying in 

Adolescence. Journal of Community & Applied Social Psychology 23, 52-67, 

doi:10.1002/casp.2136 (2013). 

 



 

 

 

99 

 

 

108 Vaisto, J., Haapala, E. A., Viitasalo, A., Schnurr, T. M., Kilpelainen, T. O., Karjalainen, P., 

Westgate, K., Lakka, H. M., Laaksonen, D. E., Ekelund, U., Brage, S. & Lakka, T. A. 

Longitudinal associations of physical activity and sedentary time with cardiometabolic risk 

factors in children. Scand J Med Sci Sports 29, 113-123, doi:10.1111/sms.13315 (2019). 

 

109 Rueda-Ochoa, O. L., Smiderle-Gelain, M. A., Rizopoulos, D., Dhana, K., van den Berge, J.-K., 

Echeverria, L. E., Ikram, M. A., Deckers, J. W., Franco, O. H. & Kavousi, M. Risk factors for 

longitudinal changes in left ventricular diastolic function among women and men. Heart 105, 

1414-1422, doi:10.1136/heartjnl-2018-314487 (2019). 

 

110 Rubin, M. P. a. R. R. Patient-Reported Outcomes for an Integrated Real-Time Continuous 

Glucose Monitoring/Insulin Pump System. Diabetes Technology & Therapeutics 11, 57-62, 

doi:10.1089/dia.2008.0002 (2009). 

 

111 Omer, T. Empowered citizen ‘health hackers’ who are not waiting. BMC Med 14, 

doi:https://doi.org/10.1186/s12916-016-0670-y (2016). 

 

112 Sakata, R., Yoshitomi, T., Iwase, A., Matsumoto, C., Higashide, T., Shirakashi, M., Aihara, M., 

Sugiyama, K., Araie, M. & Lower Normal Pressure Glaucoma Study Members in Japan 

Glaucoma, S. Factors Associated with Progression of Japanese Open-Angle Glaucoma with 

Lower Normal Intraocular Pressure. Ophthalmology 126, 1107-1116, 

doi:10.1016/j.ophtha.2018.12.029 (2019). 

 

113 Mabuchi, F., Mabuchi, N., Sakurada, Y., Yoneyama, S., Kashiwagi, K., Iijima, H., Yamagata, Z., 

Takamoto, M., Aihara, M., Iwata, T., Hashimoto, K., Sato, K., Shiga, Y., Nishiguchi, K. M., 

Nakazawa, T., Akiyama, M., Kawase, K., Ozaki, M., Araie, M. & Japan Glaucoma Society 

Omics, G. Genetic variants associated with the onset and progression of primary open-angle 

glaucoma. Am J Ophthalmol, doi:10.1016/j.ajo.2020.03.014 (2020). 

 

114 Craig, J. E., Han, X., Qassim, A., Hassall, M., Cooke Bailey, J. N., Kinzy, T. G., Khawaja, A. P., 

An, J., Marshall, H., Gharahkhani, P., Igo, R. P., Jr., Graham, S. L., Healey, P. R., Ong, J. S., 

Zhou, T., Siggs, O., Law, M. H., Souzeau, E., Ridge, B., Hysi, P. G., Burdon, K. P., Mills, R. A., 

Landers, J., Ruddle, J. B., Agar, A., Galanopoulos, A., White, A. J. R., Willoughby, C. E., 

Andrew, N. H., Best, S., Vincent, A. L., Goldberg, I., Radford-Smith, G., Martin, N. G., 

Montgomery, G. W., Vitart, V., Hoehn, R., Wojciechowski, R., Jonas, J. B., Aung, T., Pasquale, 

L. R., Cree, A. J., Sivaprasad, S., Vallabh, N. A., consortium, N., Eye, U. K. B., Vision, C., 

Viswanathan, A. C., Pasutto, F., Haines, J. L., Klaver, C. C. W., van Duijn, C. M., Casson, R. J., 

Foster, P. J., Khaw, P. T., Hammond, C. J., Mackey, D. A., Mitchell, P., Lotery, A. J., Wiggs, J. 

L., Hewitt, A. W. & MacGregor, S. Multitrait analysis of glaucoma identifies new risk loci and 

enables polygenic prediction of disease susceptibility and progression. Nat Genet 52, 160-166, 

doi:10.1038/s41588-019-0556-y (2020). 

 

115 Brown, J. H. The biomedical engineer and the health care system. IEEE Trans Biomed Eng 22, 

95-100, doi:10.1109/tbme.1975.324425 (1975). 

 

116 Nass, S. J. & Balogh, E. National Cancer Policy Summit: addressing opportunities and challenges 

in cancer care and research. Clin Pharmacol Ther 89, 770-771, doi:10.1038/clpt.2011.64 (2011). 

 

117 Abernethy, A. P., Etheredge, L. M., Ganz, P. A., Wallace, P., German, R. R., Neti, C., Bach, P. B. 

& Murphy, S. B. Rapid-learning system for cancer care. J Clin Oncol 28, 4268-4274, 

doi:10.1200/JCO.2010.28.5478 (2010). 

https://doi.org/10.1186/s12916-016-0670-y


 

 

 

100 

 

 

 

118 Jones, R. D., Sabolch, A. N., Aakhus, E., Spence, R. A., Bradbury, A. R. & Jagsi, R. Patient 

Perspectives on the Ethical Implementation of a Rapid Learning System for Oncology Care. J 

Oncol Pract 13, e163-e175, doi:10.1200/JOP.2016.016782 (2017). 

 




