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Abstract

Cosmic Cartography: Mapping the Universe for Next-Generation Dark Energy Voyages

by

Elpida Ellie Kitanidis

Doctor of Philosophy in Physics

University of California, Berkeley

Professor Martin White, Chair

Mapping the distribution of matter and light in the Universe is key to unlocking some of
its most fundamental secrets. What drives the acceleration of cosmic expansion? Does
Einstein’s Theory of General Relativity fail on very large scales, requiring a new model of
gravity to account for an accelerating expansion? Or is there some exotic and invisible
form of “dark energy” that dominates the composition of our Universe? Beginning with the
Dark Energy Spectroscopic Instrument (DESI), a series of next-generation galaxy surveys
will revolutionize our understanding of dark energy, providing an unprecedented wealth of
data to solve these and other cosmic mysteries. Several major challenges directly determine
the ultimate success of ambitious missions such as DESI: how tightly systematic sources
of error and contamination can be controlled, how well the biases and properties of the
galaxy samples can be understood, and how accurately their positions can be mapped. This
thesis presents contributions I have made towards addressing these challenges and doing
early science with DESI, for which I received “Builder Status” by the DESI Collaboration.
Approximately two-thirds of this thesis are devoted to performing the first major analysis
of the systematics and clustering of DESI samples selected from deep imaging. In the final
part of this thesis, I present a cross-correlation between DESI galaxies and the lensing of the
cosmic microwave background, one of the most significant detections of this type of signal to
date, from which I further characterize the DESI samples and also study how the accuracy of
their positions impacts science goals. In addition to enabling future cosmology with DESI, the
methodologies and frameworks developed in this thesis have broader applications in future
dark energy experiments and, more generally, cosmological studies using deep imaging data.



i

For my parents, Ranna and Peter
And for Nate



ii

Contents

Contents ii

List of Figures iv

List of Tables vi

1 Introduction 1
1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Scientific Background & Motivations 3
2.1 Review of Relevant Cosmology . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 The Dark Energy Spectroscopic Instrument . . . . . . . . . . . . . . . . . . 6
2.3 Baryon Acoustic Oscillations . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 Redshift-Space Distortions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 DESI Imaging Systematics & Clustering 18
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2 Clustering Measurement and Theory . . . . . . . . . . . . . . . . . . . . . . 20
3.3 Imaging Catalogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.4 Imaging Masks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.5 Spatial Variations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.6 Potential Systematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.7 Angular Clustering Measurements . . . . . . . . . . . . . . . . . . . . . . . . 53
3.8 Spectroscopic Cross-Correlations . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.9 Summary and Conclusions for Chapter 3 . . . . . . . . . . . . . . . . . . . . 76

4 Cross-Correlating DESI LRGs with CMB Lensing 80
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.2 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.3 Galaxy Redshift Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.4 Measuring Angular Power Spectra . . . . . . . . . . . . . . . . . . . . . . . . 92
4.5 Magnification Bias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102



iii

4.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
4.7 Conclusions for Chapter 4 and Future Directions . . . . . . . . . . . . . . . . 114

5 Summary & Conclusions 116

Bibliography 117

A Clustering Redshift Formalism 126
A.1 Detailed Derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
A.2 Understanding I(z) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
A.3 Normalization and Scale-Dependent Bias . . . . . . . . . . . . . . . . . . . . 128



iv

List of Figures

2.1 DESI BAO constraints on expansion history of Universe . . . . . . . . . . . . . 14
2.2 Anisotropy in the clustering of matter due to RSD . . . . . . . . . . . . . . . . 16

3.1 Number of exposures in each band in DECaLS DR7 . . . . . . . . . . . . . . . . 28
3.2 Histograms of DECaLS DR7 depths in each band for different numbers of exposures 32
3.3 Cumulative sky fraction vs. 5σ limiting magnitudes in each band . . . . . . . . 33
3.4 Average density of DESI targets as a function of distance to bright stars . . . . 35
3.5 2D histograms of average density of targets around stacks of bright Tycho-2 stars 36
3.6 2D histograms of average density of targets around stacks of bright WISE stars 37
3.7 Average density of DESI targets as a function of distance to extended sources . 40
3.8 w(θ) for LRGs, ELGs, and QSOs calculated in NGC and SGC separately . . . . 41
3.9 Density maps of LRGs, ELGs, and QSOs, before and after masking . . . . . . . 42
3.10 Problematic regions discovered using jackknife analysis of QSO w(θ) . . . . . . . 44
3.11 Maps of spatially-varying potential systematics . . . . . . . . . . . . . . . . . . 46
3.12 Color-color plot of LRG, ELG, QSO target selection, along with stellar locus . . 47
3.13 Systematic dependences before applying photometric weights . . . . . . . . . . . 50
3.14 Systematic dependences after applying photometric weights . . . . . . . . . . . 52
3.15 Angular cross-correlation between DESI targets and stars . . . . . . . . . . . . . 54
3.16 Two-point angular correlation functions at each stage of the systematics analysis 56
3.17 Angular power spectrum C` for LRGs . . . . . . . . . . . . . . . . . . . . . . . . 60
3.18 Angular power spectrum C` for ELGs . . . . . . . . . . . . . . . . . . . . . . . . 61
3.19 Angular power spectrum C` for QSOs . . . . . . . . . . . . . . . . . . . . . . . . 62
3.20 Map of regions over which counts-in-cells distributions and moments estimated . 63
3.21 Counts-in-cells P (N) vs. N for 15 logarithmically-spaced angular scales . . . . . 64
3.22 Angular correlation functions for LRGs in magnitude bins . . . . . . . . . . . . 66
3.23 Angular correlation functions for ELGs in magnitude bins . . . . . . . . . . . . 67
3.24 Visualization of footprint overlap between the DECaLS and external spectroscopy 71
3.25 Visualization of redshift range overlap between DECaLS and external spectroscopy 72
3.26 Projected real-space cross-correlations between LRGs and external spectroscopy 73
3.27 Projected real-space cross-correlations between ELGs and external spectroscopy 74
3.28 Clustering-based dN/dz for LRGs derived from cross-correlations . . . . . . . . 75
3.29 Normalized dN/dz for LRGs in each of three broad magnitude bins . . . . . . . 76



v

4.1 Color-color plots of the LRG target selection in DECaLS DR8 . . . . . . . . . . 84
4.2 Maps of spatially-varying potential systematics in DECaLS DR8 . . . . . . . . . 87
4.3 Density of LRGs as a function of potential imaging systematics . . . . . . . . . 88
4.4 Visualization of redshift overlap between LRGs and external spectroscopy . . . . 93
4.5 Clustering redshift distribution with spline fit . . . . . . . . . . . . . . . . . . . 94
4.6 Projection kernels for the LRG sample and the CMB lensing convergence . . . . 95
4.7 Visualizations of the galaxy binary pixel map . . . . . . . . . . . . . . . . . . . 100
4.8 Maps of lensing convergence and galaxy overdensity . . . . . . . . . . . . . . . . 101
4.9 Fractional effects of magnification bias on power spectra . . . . . . . . . . . . . 103
4.10 Per-multipole and cumulative SNR for angular auto- and cross-spectra . . . . . 105
4.11 Effects of using tSZ-deprojected CMB lensing map versus not . . . . . . . . . . 106
4.12 Angular auto- and cross-spectra with HaloFit model . . . . . . . . . . . . . . . 108
4.13 Corner plot of MCMC posterior distributions for perturbation theory model . . 112
4.14 Angular auto- and cross-spectra with Lagrangian perturbation theory model . . 113



vi

List of Tables

2.1 Summary of fσ8 constraints from RSD in past galaxy surveys . . . . . . . . . . 17

3.1 Sky area covered by 0,1,2,3,4,5+ exposures in each optical band in DECaLS DR7 29
3.2 Summary of selection properties for main DESI target classes . . . . . . . . . . 29
3.3 Summary of all masks and how each impacts number of targets and effective area 31
3.4 Summary of stellar masks and impact on number of targets and effective area . 38
3.5 Average densities (uncorrected and corrected) for each of DESI main targets . . 54
3.6 Results from fitting angular correlation functions to power-law ξ(r) = (r/r0)−γ . 57
3.7 Fits of LRG large-scale bias from angular power spectra . . . . . . . . . . . . . 59
3.8 Counts-in-cells moments and cell-averaged n-point angular correlation functions 65
3.9 Fits of LRG angular clustering z-band magnitude bins . . . . . . . . . . . . . . 69
3.10 Fits of ELG angular clustering in g-band magnitude bins . . . . . . . . . . . . . 70
3.11 Fits of luminosity-binned LRG-CMASS cross-correlations . . . . . . . . . . . . . 77

4.1 Summary of foreground masks applied to DECaLS DR8 . . . . . . . . . . . . . 85
4.2 Summary of external catalogs and parameters of cross-correlation analysis . . . 92
4.3 Fitting auto- and cross-spectro to HaloFit model with photometric φ(z) . . . . . 107
4.4 Fitting auto- and cross-spectro to HaloFit model with clustering φ(z) . . . . . . 109
4.5 Fitting auto- and cross-spectro to HaloFit model with clustering b(z)φ(z) . . . . 109
4.6 Parameters, priors, and posteriors for perturbation theory model . . . . . . . . . 114



vii

Acknowledgments

I am deeply grateful to my advisor, Professor Martin White, for his guidance, generosity,
and support, as well as the other members of my doctoral committee, Professor Adrian
Lee and Professor Daniel Kasen, for their thoughtful feedback on this dissertation. I feel
incredibly lucky to have been surrounded by such distinguished scholars during my time at
UC Berkeley. To the fantastic community of staff scientists and postdoctoral researchers here
and at the Lawrence Berkeley National Lab, as well as my esteemed DESI collaborators, it has
been a pleasure working with you all and I have learned a great deal from our discussions.
I would like to especially thank Dr. David Schlegel, who served on my qualifying exam
committee and has been another wonderful mentor to me, and Dr. Yu Feng, whose high-
performance computing expertise saved the day too many times to count.

To my fellow physics and astronomy students at Berkeley, my awesome housemates, my
study buddies, my “cosmograds” cohort, the ladies of the Society of Women in the Physical
Sciences, and the past and present organizers of the Career Development Initiative in the
Physical Sciences, thank you for sharing the ups and downs of graduate life with me.

Last but not least, I am profoundly thankful for the love, encouragement, and support
of my family and friends throughout this marathon of grad school. Nate, Mom, and Dad - I
wouldn’t have made it to the finish line without you cheering me on. Dean, Phoebe, Janet,
Phil, Emily, Lincoln - thank you for making every milestone special by celebrating with me.



1

Chapter 1

Introduction

1.1 Overview

Over the last few decades, supported by a growing body of publicly available data, scientific
consensus has converged upon a new phenomenological model of the Universe: the ΛCDM
model. ΛCDM is often referred to as a“concordance model”because of its ability to explain a
multitude of seemingly disparate or conflicting observations, from the clustering of galaxies,
to the anisotropies in the cosmic microwave background, to the discovery that our Universe
is currently undergoing a period of accelerated expansion. ΛCDM can interpret all these
phenomena and more from within a single self-consistent framework. Even more remarkably,
it has made additional predictions that were later verified: the statistics of weak gravitational
lensing, the existence of baryonic acoustic oscillations, and the polarization of the cosmic
microwave background are a few of its notable recent successes.

While the ΛCDM model is appealingly predictive and well supported by experimental
evidence, it is also incomplete and slightly mystical. The key ingredients of ΛCDM are dark
energy, an exotic component of the Universe that acts as a sort of “anti gravity,” and cold
dark matter, an invisible particle that does not interact with light. Though we can detect
them only indirectly, dark energy and dark matter together make up over 95% of the energy
content of the Universe. Dark energy alone accounts for nearly 70% of this, yet it has not been
measured with adequate precision to narrow the field of possible theories or even definitively
confirm its existence. Fortunately, we are entering a new era of precision cosmology. As
galaxy surveys, as well as experiments mapping the cosmic microwave background, become
wider and deeper, span more frequencies, and enable more accurate measurements than ever
before, the answers to these fundamental questions may finally be within reach.

However, this new era of precision cosmology presents many new challenges. First, ultra-
precise measurements demand meticulous control over any and all sources of systematic
uncertainty, which are increasingly dominating the stingy error “budgets” of modern cosmol-
ogy experiments. Secondly, precise cosmological constraints require a mature understanding
of how the phenomena we are able to observe connect to the phenomena we wish to un-
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derstand; these relationships are profoundly complex and subtle, necessitating sophisticated
physical models and detailed characterizations of the data samples. Thirdly, with the rising
volume and multiplicity of astronomical data, and the corresponding surge in computation-
ally expensive, labor intensive, and time-consuming work, new tools must be innovated. For
example, it is no longer feasible to obtain spectroscopic redshifts for every galaxy detected,
and as photometric redshifts alone do not meet the required accuracy, we must seek out new
techniques such as inferring redshifts through cross-clustering measurements.

This thesis presents contributions I have made towards addressing each of the aforemen-
tioned challenges, mainly within the context of the Dark Energy Spectroscopic Instrument
(DESI) experiment, which is advancing the boundary of human understanding by creating
the largest 3D map of the Universe to date and providing unrivaled constraints on dark
energy. While these contributions are crucial stepping stones towards doing cosmology with
DESI, the methodologies and findings presented herein are also broadly applicable to next-
generation dark energy experiments and thus have significant implications beyond DESI.

1.2 Layout

Chapter 2 contextualizes this body of work, giving an overview of the state of the field, from
its foundations in Einstein’s Theory of General Relativity to the bleeding edge of modern
experiments. Throughout, we motivate the unique challenges facing cosmology in the next
decade, and explain how this thesis aims to address various aspects of those challenges.

Chapters 3 and 4 are papers (one accepted for publication, one to be submitted after the
conclusion of internal collaboration review) of which I was the first author. In each of these
multi-author works, I performed all of the analysis and writing. Co-authors contributed ad-
vice and helpful discussions, or were instrumental to the creation of data reduction pipelines
upstream of mine. For the sake of organizational clarity, I have made no significant alter-
ations to the content of these papers, choosing instead to include them in their original
versions with minor aesthetic changes and transitions. The introductory chapter serves to
unite these papers within a shared scientific context and give an integrated perspective.
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Chapter 2

Scientific Background & Motivations

2.1 Review of Relevant Cosmology

In this section, we give a brief review of the basic ideas of cosmology needed to motivate
and understand dark energy, which is the focus of the DESI experiment and this thesis. The
following is by no means intended to be a comprehensive treatment of these topics.

The Cosmological Principle and Hubble’s Discovery

Modern physical cosmology is built around a fundamental observation about the Universe:
on sufficiently large scales, it is homogeneous and isotropic. Phrased another way, this so-
called “Cosmological Principle” states that laws of physics are the same everywhere and that
our corner of the Universe is a statistically representative sample of the whole. We emphasize
that the Cosmological Principle applies on scales much larger than the typical size of a galaxy
cluster (a few Mpc); zoomed in on any particular region of space, there is plenty of texture,
structure, and asymmetry to be seen. However, averaged over scales > 100 Mpc, the cosmos
appears smooth and uniform, with no special locations or preferred directions.

Another very important observation about the Universe was made by Edwin Hubble1

(Hubble 1929) nearly a century ago: it is expanding. By estimating the distances and
velocities of stars in galaxies outside the Milky Way, Hubble determined that far away
galaxies are receding from one another, and moreover that the rate of recession is proportional
to their separation, with a slope given by the Hubble constant H0. Though not immediately
interpreted so by Hubble himself, this observation became a cornerstone for the subsequent
tower of experimental evidence that the Universe is expanding, a result that had already
been predicted from theory independently by Friedmann (1922) and Lemâıtre (1927).

Hubble estimated the velocities of objects from their redshifts. When the source of an
electromagnetic wave is moving away from the observer, its wavelength is increased, making
it appear “redder.” Meanwhile, elements such as hydrogen and helium absorb and emit pho-

1Though there is some controversy regarding the credit of this discovery! See e.g. Block 2012.
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tons at specific wavelengths, leading to characteristic patterns in the spectra of light from
astronomical objects. By seeing how these patterns have redshifted, astronomers can calcu-
late the velocities of objects relative to us - and, through Hubble’s law, their distances. By
far the most dominant contribution to this velocity is from the expansion of the Universe (see
Section 2.4 for a discussion of peculiar velocities in the context of redshift-space distortions),
and thus we can directly relate the redshift z to the scale factor a,

1 + z =
a0

a
(2.1)

where a(t) quantifies the size of the expanding Universe at time t relative to today, a0 ≡
a(ttoday) = 1, and is defined to be zero at the beginning of time.

General Relativity and Einstein’s Biggest Blunder

A few years prior to Hubble’s discovery, Einstein completed his Theory of General Relativity,
leading to some of the most revolutionary paradigm shifts in the history of science. In the
classical Newtonian view, gravity is a force that acts upon massive bodies and accelerates
them. In the relativistic Einsteinian view, gravity is an inherent feature of four-dimensional
spacetime, which is curved by the presence of massive bodies. The key principles of General
Relativity are often summarized as “mass tells spacetime how to curve, spacetime tells mass
how to move.” These ideas are encoded in Einstein’s Field Equations (EFE), 10 equations
that can be elegantly represented in a single line using Einstein tensor notation:

Rµν −
1

2
Rgµν + Λgµν =

8πG

c4
Tµν (2.2)

Without delving into details, the left side of the equations may be thought of as representing
curvature while the right side represents matter. These equations can be solved for the metric
tensor gµν , which describes the geometry of the Universe. Arguably the most important
exact solution to EFE is the Friedmann-Lemâıtre-Robertson-Walker (FLRW) metric, which
describes a homogeneous, isotropic, and expanding spacetime. From the FLRW metric and
EFE, we obtain the Friedmann equations governing cosmic dynamics at large scales:( ȧ

a

)2

=
8πG

3
ρ+

Λc2

3
− kc2

a2
(2.3)

ä

a
= − 4πG

3

(
ρ+

3p

c2

)
+

Λc2

3
(2.4)

The term ȧ/a in Equation 2.3 is called the Hubble parameter, H(z). Its present-day value is
the Hubble constant, H0. k is curvature (k = +1 for a positively curved Universe, k = 0 for
a flat Universe, and k = −1 for a negatively curved Universe), G is Newton’s gravitational
constant, c is the speed of light, and ρ and p are, respectively, the density and isotropic
pressure of the contents of the Universe. But what of Λ? What does this term represent?
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Einstein originally added the Λ term, called the “cosmological constant,” to his equations
in order to counterbalance the effects of gravitational attraction and allow for a static Uni-
verse. When the expansion of the Universe was confirmed, he abandoned this term, calling it
his “biggest blunder.” However, the cosmological constant was re-introduced after the 1998
discovery that the Universe’s expansion is accelerating (Perlmutter et al. 1998, Riess et al.
1998). In order to mathematically account for this acceleration, a new term must be added
to the Friedmann equations. It represents an exotic and pervasive type of energy, dubbed
“dark energy,” that accounts for nearly 70% of the energy content of the Universe and has
strange properties such as exerting negative pressure and not diluting in density as the vol-
ume of the Universe grows. The cosmological constant has thus been revived as the primary
dark energy candidate, due to its simple origins in EFE as well as its interpretability as a
“vacuum energy” of the sort that arises naturally in quantum field theories2.

The Composition and Dynamics of the Universe

The evolution of the Universe is complicated by the fact that it contains many different
types of energy, each of which evolves differently. In addition to the radiation and ordinary
baryonic matter we encounter in our daily lives, decades of observational evidence indicate
the existence of yet another type of matter, one that interacts gravitationally but not elec-
tromagnetically. This invisible matter, called “dark matter” (not to be confused with the
distinct concept of dark energy) is thought to make up 85% of the matter in the Universe.
Revisiting the first Friedmann equation, the density can now be written out in terms of
the different components of the Universe: ρ = ρm + ρr = (ρb + ρDM) + ρr. To include the
cosmological constant as a dark energy term, the substitution is usually made

ρ→ ρ− Λc2

8πG
(2.5)

which is conceptually equivalent to defining a new type of density ρΛ = Λc2

8πG
. Next, switching

to the second Friedmann equation, we make the substitution

p→ p+
Λc4

8πG
(2.6)

which is equivalent to the substitution we made for the density but with the added assump-
tion that dark energy is a perfect fluid (p = wρc2) with negative pressure given by wΛ = −1.

The Friedmann equations can be solved for a perfect fluid, giving density evolution

ρ(z) ∝ exp
(

3

∫ z

0

1 + w(z′)

1 + z′
dz′
)

(2.7)

2As of yet, however, the two theories have not been made consistent with one another; the discrepancy
between predicted values for Λ is so astonishingly large that it has been named “the vacuum catastrophe.”
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For matter (w = 0), ρm ∝ a−3. For radiation and other relativistic matter such as neutrinos
(w = 1/3), ρr ∝ a−4. For a cosmological constant (w = −1), ρΛ ∝ a0.

We can rewrite everything in terms of the dimensionless density parameter Ω, which is the
ratio of the actual density to the critical density of the Universe. The critical density is the
density corresponding to a flat Universe, ρcrit = 3H2

8πG
. Furthermore, we can write the density

parameter Ω at any time in terms of its value today Ω0 times its evolution. Putting this all
together and simplifying, we obtain a definition for the dimensionless Hubble parameter,

E(z) ≡ H(z)

H0

=
√

Ωm,0(1 + z)3 + Ωr,0(1 + z)4 + ΩΛ,0 + Ωk,0(1 + z)2 (2.8)

where we have also absorbed the curvature term, Ωk,0 = −kc2

H2
0

= 1− Ωm,0 − Ωr,0 − ΩΛ,0.

The cosmological constant is a key ingredient of the ΛCDM standard model of cosmology,
which has been one of the most successful predictive theories of all time. However, it is
important to emphasize that the cosmological constant is not the only dark energy candidate.
To obtain an accelerating Universe from the Friedmann equations, it is only necessary that
wDE < −1/3, not that wDE ≡ wΛ = −1. Furthermore, though the density of dark energy
has been measured at different redshifts and appears constant within errors, there has been
insufficient precision thus far to definitively rule out dynamic dark energy, wDE → wDE(z).
Several parametric models of dynamic dark energy have been proposed, the most common
being the Chevallier-Polarski-Linder (CPL) model (Chevallier & Polarski 2001, Linder 2003).
Furthermore, dark energy itself is not the only possible solution to cosmic acceleration; if,
instead, General Relativity were modified in some way, an accelerating Universe might be
explainable without dark energy at all. Next-generation dark energy experiments such as
DESI (described in the next section) will be critical to distinguishing between these different
theories and answering the most fundamental questions about the nature of the cosmos.

2.2 The Dark Energy Spectroscopic Instrument

Introduction

The Dark Energy Spectroscopic Instrument (DESI) is a state-of-the-art dark energy exper-
iment that is designed to create the largest three-dimensional map of the Universe to date.
DESI is a wide-area survey covering a ∼ 14,000 square degree footprint. The titular spec-
troscopic instrument boasts a unique robotic fiber positioning system that will allow it to
measure over 5,000 spectra simultaneously. Thus DESI inherits the legacy of the highly suc-
cessful and groundbreaking Baryon Oscillation Spectroscopic Survey (BOSS; Dawson et al.
2013b), and extends it in both redshift and sky area, leading to a remarkable order of mag-
nitude improvement in the number of galaxies observed and the volume of the Universe
mapped. DESI is a trailblazer, representing the first “Stage IV” dark energy experiment on
the sky, as defined by the Dark Energy Task Force (a committee convened to advise the De-
partment of Energy, the National Aeronautics and Space Administration, and the National
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Science Foundation on the future of dark energy research) in their detailed community plan-
ning report (Albrecht et al. 2006). Installed on the Mayall telescope at Kitt Peak, DESI
is currently in its survey validation phase, during which time the various data collection,
processing, and analysis pipelines are tested over small regions of the sky. Following survey
validation, DESI is expected to begin its five-year mission sometime in 2020.

DESI’s main science goals are to chart the expansion history of the Universe through
baryon acoustic oscillations (BAO; see Section 2.3) and constrain the growth of large-scale
structure through redshift-space distortions (RSD; see Section 2.4) with unprecedented pre-
cision. As we will discuss, both BAO and RSD are powerful probes of dark energy, and
together they will provide some of the best constraints to date. In addition to dark energy,
DESI will enable other cosmological studies, for example of the sum of neutrino masses and
theories of inflation; as these are not the focus of this thesis, we will not provide details here.

Main targets

DESI will measure spectra for approximately 6 million luminous red galaxies (LRG) up to z =
1.0, 17 million [OII] emission-line galaxies (ELG) up to z = 1.6, and 2.5 million quasars (QSO)
up to z = 3.5. These three main target classes, briefly described below, are selected from
deep optical photometry provided by the Legacy Surveys (Dey et al. 2018), complemented
by near-infrared imaging from the Wide-field Infrared Survey Explorer (WISE; Wright et al.
2010). Each target type requires its own unique set of techniques for selecting a sample from
photometry that will optimize spectroscopic completeness and efficiency when it is time to
acquire spectra. In addition, bad imaging or target selection may even lead to types of
contamination that cannot be deprojected with spectroscopy.

LRGs are massive, bright, early-type galaxies that are inherently red due to their old
stellar populations. Their strong clustering make them excellent probes of large-scale struc-
ture at low redshift. A homogeneous sample of LRGs can be selected from photometry by
exploiting the 1.6µm (rest frame) peak in their spectral energy distributions and similarly
the 4000Å break continuum feature makes it easy to reliably measure their redshifts across
the desired redshift range 0.4 < z < 1.0.

ELGs are late-type galaxies that are inherently blue due to their high rates of active
star formation, exhibiting strong emission lines from the ionized gas around their massive,
luminous stars, most notably the [OII] doublet. This distinctive feature enables highly
accurate redshift measurements. The majority of the galaxies targeted for spectroscopy by
DESI will be ELGs, spanning the wide redshift range 0.6 < z < 1.6.

QSOs are exceptionally bright due to the energy released as gas falls in towards the super-
massive black holes at their centers. Though relatively rare, their extreme luminosity ensures
that QSOs can be measured to very high redshift, making them invaluable tools for studying
the Universe. QSOs in the redshift range 0.9 < z < 2.1 will be used for their clustering as
direct tracers of dark matter, similar to LRGs and ELGs. Furthermore, QSOs can be used
to probe even higher redshifts due their Lyman-α features. The Lyman-α forest is a series of
absorption lines in the spectra of distant quasars as the light travels through neutral hydrogen
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in the inter-galactic medium (IGM) prior to the formation of galaxy clusters. Thus, with
high enough density, these features can be interpolated to create maps of the distribution of
hydrogen at z > 2.1.

Synergies with CMB

In combination with other experiments, DESI will also enable powerful statistical constraints
that would be impossible otherwise. For example, DESI overlaps with the Dark Energy
Survey (DES) and the Large Synoptic Spectroscopic Telescope (LSST; LSST Science Col-
laboration et al. 2009), two deep photometric surveys that probe dark energy in complemen-
tary ways to DESI. In particular, we would like to draw attention to synergies with cosmic
microwave background experiments (CMB). For example, cross-correlations between DESI
galaxies and the lensing of matter by the CMB, as measured by modern high-resolution
experiments such as Planck, will greatly improve the signal-to-noise ratio of the lensing
signal (and thus constraints on cosmological parameters such as the density of matter). Fur-
thermore, by breaking degeneracies between galaxy bias and dark matter clustering, such
studies allow us to cleanly extract information about the tracer samples. We perform this
measurement and analysis using an LRG sample selected from imaging in Chapter 4.

2.3 Baryon Acoustic Oscillations

In this section, we provide background on the topic of baryon acoustic oscillations (BAO),
the primary deliverable of many next-generation dark energy experiments including DESI.
In the first sub-section, we motivate the idea of using “statistical standard rulers” to probe
dark energy, after which we briefly review the physics of BAO and why it makes for an
ideal statistical standard ruler. In the final sub-section, we summarize the status of BAO
measurements, tease the new ultra-precise constraints that DESI is capable of achieving, and
highlight the role of this thesis towards helping the collaboration reach its goals.

Standard clocks, candles, and rulers

Dark energy is studied through its effect on the expansion history of the Universe. Recall
that the dimensionless Hubble parameter can be written,

E(z) =
H(z)

H0

=
√

Ωm,0(1 + z)3 + Ωr,0(1 + z)4 + ΩDE,0f(z) + Ωk,0(1 + z)2 (2.9)

where we have replaced the cosmological constant model wΛ = −1 with a more general
dark energy model having equation of state wDE(z) and corresponding density evolution
f(z). Thus, one way to constrain dark energy is to directly measure the Hubble parameter
- for example, through the “differential age” method, also known as “cosmic chronometers”
(Jimenez & Loeb, 2002), where passively evolving galaxies are age-dated based on their
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stellar populations and the redshift-time relation ∆z
∆t
≈ dz

dt
gives a direct estimate of H(z).

This is a “standard clock” method, taking advantage of features of known duration or age.
However, such measurements are presently still highly dominated by the systematics involved
in determining galaxy ages (see e.g. discussion in Moresco et al. 2016).

Another way to probe the expansion history of the Universe is to use distance mea-
surements from “standard rulers” or “standard candles,” meaning features of known size or
luminosity, respectively. We recall that the line-of-sight co-moving distance is given by

dC(z) = c

∫ z

0

dz′

H(z′)
(2.10)

while the transverse comoving distance is given by

dM(z) =


c
H0

1√
Ωk

sinh(
√

ΩkdC(z)H0/c) Ωk > 0

dC(z) Ωk = 0
c
H0

1√
|Ωk|

sin(
√
|Ωk|dC(z)H0/c) Ωk < 0

(2.11)

We now define the angular diameter distance,

dA(z) ≡ x(te)

θ
=

x(to)

θ(1 + z)
(2.12)

where x is the physical size and θ is the observed angular size, and we also define the
luminosity distance,

dL ≡
√

L

4πS
(2.13)

where L is the intrinsic luminosity and S is the observed (bolometric) flux. These distance
measurements are related to dM by

dA(z) =
1

1 + z
dM(z) (2.14)

dL(z) = (1 + z)dM(z) (2.15)

Thus, if we measure dA(z) by observing the angle that an object of known transverse size
extends in the sky, or dL(z) by observing the flux of an object with known intrinsic luminosity,
we obtain a measurement of dM(z). This gives a constraint on dC(z) that is inherently
degenerate with curvature Ωk. Furthermore, since dC(z) is an integral over H(z)−1 which is
itself an integral over w(z), any rapidly oscillating features in the parameter of interest will
be washed out. However, while standard candles can only measure dM(z), standard rulers
fortunately can also estimate H(z), assuming the characteristic physical scale is present along
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the line-of-size dimension as well as the transverse dimension. The line-of-sight co-moving
distance between two nearby events (that are close in redshift) is given by

dC(z + dz)− dC(z) =

∫ z+dz

z

c dz′

H(z′)
≈ c dz

H(z)
(2.16)

Using standard rulers, we can simultaneously measure H(z) and dA(z), capturing both the
instantaneous and integrated expansion history of the Universe, which allows us to distinguish
between different cosmological models and achieve much tighter constraints on dark energy.

Historically, possible standard rulers have included certain types of radio sources (e.g.
Kellermann 1993, Buchalter et al. 1998), as well as galaxy clusters (e.g. Allen et al. 2002).
However, a class of astrophysical objects usually can’t be observed at many different redshifts
or with high enough densities to overcome shot noise. Furthermore, such objects are generally
neither uniform enough nor well enough constrained in their properties to give precise results.
Thus, cosmologists’ attentions turned to“statistical standard rulers,”meaning rulers based on
statistical properties of the Universe, such as the Hubble scale at matter-radiation equality.
However, by far the most powerful and successful statistical standard ruler thus far has been
the BAO scale, for the following reasons: it is based on well-understood physics (described
in the next section), it can be calibrated over most of the age of the Universe, and it has a
value that is squarely in the linear regime, thus permitting perturbative treatment.

The physics of BAO

The formation of structure relies on the notion of gravitational instability - that is, the notion
that overdense regions will become more overdense with time as their self-gravity overcomes
the opposing influence of cosmic expansion, while the inverse is true for underdense regions.
However, during the early history of our Universe, density perturbations behaved instead
as acoustic waves, giving rise to features seen in the anisotropies of the cosmic microwave
background as well as patterns in the clustering of matter. Thus, in order to explain the
physics of BAO, we must give a brief history of the first million years of the Universe.

Fractions of a moment after the birth of the Universe, small perturbations in its smooth
background, generated by quantum fluctuations, were expanded to cosmic scales through
a period of rapid exponential growth known as inflation. Inflation imprinted these initial
perturbations in all species and on all scales simultaneously. Since the expansion of the
Universe was faster than the speed of light during the inflationary epoch, some perturbations
were planted on super-horizon (i.e. not causally connected) scales. The establishment of
these gravitational potential wells seeded the large-scale structures seen today.

Three minutes after the Big Bang, the young Universe was comprised of a hot, dense
particle soup of photons, electrons, protons, and neutrons. Due to the high temperature and
photon-to-baryon density ratio, neutral hydrogen and helium could not form without getting
broken apart immediately by photons, so the plasma was ionized. This primordial world
was also opaque, as photons experienced extremely short mean free paths before Compton
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scattering off the free electrons3, which in turn interacted with the protons via the Coulomb
force. Through these interactions, the system remained in thermal equilibrium, behaving as
a tightly coupled photon-baryon fluid. The fluid oscillated due to the competing forces of
the background gravitational potential (due initially to the relativistic species i.e. photons
and neutrinos, and later to dark matter after matter-radiation equality at z ∼ 3570) acting
on the electrons and nucleons to compress the fluid, and radiation pressure from the photons
resisting the compression. The resulting acoustic waves propagated outwards from every
initial perturbation with a relativistic sound speed cs ≈ c/

√
3. Dark matter, in the meantime,

was not affected by radiation pressure and did not oscillate; instead, it grew in place over
the initial perturbations, although its growth was retarded prior to matter-domination.

Over the next ∼ 380,000 years, the Universe expanded and cooled to ∼ 4,000 K. At
this temperature, even the high tail-end of the blackbody spectrum did not possess enough
photons with the ionizing energy (13.6 eV) required to prevent electrons and nucleons from
combining, and thus neutral hydrogen began to form. This phase-transition event, referred to
(rather confusingly) as “recombination,” took place over ∼ 70, 000 years, with the midpoint
typically defined as occurring at z ∼ 1370 when the number density of neutral atoms became
equal to the number density of ions. As the ionization fraction decreased and photons gained
the freedom to travel farther and farther without scattering off electrons, they began to
decouple from the baryon gas, and the photon-baryon wave slowed. The epoch of photon
decoupling is usually defined as occurring when the interaction rate of photons became equal
to the rate of the expansion of the Universe, though decoupling was not an instantaneous
process; the gradual diffusion of the photons can be seen in the Silk damping of the acoustic
oscillations. When the last photons decoupled from the plasma (known as the “surface of
last scattering,” z ∼ 1100), the pressure waves stalled, leaving spherical shells of baryons
at the sound horizon radius 150 h−1Mpc. The photons that streamed away are the cosmic
microwave background we observe today. Over time, the dark matter perturbations and
baryonic matter perturbations converged, both growing under their combined gravitational
attractions and eventually developing the sites of the first stars and galaxies.

Thus, baryonic acoustic oscillations are detectable not only in the CMB anisotropies,
which measure the photon perturbations directly, but also as a subtle bump in the distri-
bution of matter in configuration space (or a series of wiggles in Fourier space), which is
dominated by the initial dark matter perturbations but also contains the BAO signature as
a density excess at the characteristic scale of 150 h−1Mpc.

BAO as a standard ruler

Proposals for using BAO as a statistical standard ruler to constrain cosmology were first
developed in Eisenstein et al. 1998, Eisenstein 2003, and Blake & Glazebrook 2003. Letting

3Scattering between photons and protons was negligible compared to the scattering between photons and
electrons because the Thomson cross section is proportional to the inverse of the mass squared and protons
are over a thousand times more massive than electrons.
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the characteristic BAO scale defined by the sound horizon be s, with s very well calibrated
by the structure of the peaks in the CMB, we have

dA(z) =
s⊥(tthen)

θ
=
s⊥(tnow)

θ(1 + z)
(2.17)

where s⊥(tnow) = s‖(tnow) ≈ 150 h−1Mpc. Therefore,

s⊥(tnow) = (1 + z)dA(z)θ = dM(z)θ (2.18)

Meanwhile, the line-of-sight co-moving distance is given by

s‖(tnow) ≈ c dz

H(z)
(2.19)

Thus, by observing the BAO peak in the two-point correlation function and measuring both
its transverse and line-of-sight modes, we have a means to measure dA(z) and H(z) simul-
taneously, giving unique constraints on dark energy. As previously discussed, BAO can
generally be described with linear theory; however, at low redshifts, the nonlinear growth of
structure can cause systematic errors in the measurement of the position and shape of the
acoustic peak. Peculiar velocity flows from gravitational forces and small-scale clustering af-
fect the separations between matter by as much as ∼ 10 h−1Mpc. Eisenstein et al. 2007 and
Padmanabhan et al. 2012 lay out a straightforward framework for reversing these displace-
ments and reconstructing the initial positions. Reconstruction is able to dramatically undo
the degradation of the BAO signal, and is now a standard part of BAO analysis pipelines.

Current status and future of BAO measurements

The first clear detection of the BAO peak in the galaxy two-point correlation function was
obtained over a decade ago using a catalog of 46,748 luminous red galaxies at z ∼ 0.35 from
the Sloan Digital Sky Survey (Eisenstein 2005). Concurrently, BAO features were found
in the power spectrum of galaxies at z ∼ 0.2 from the Two-degree-Field Galaxy Redshift
Survey (Cole et al. 2005). Since then, several measurements of the BAO scale at a range of
redshifts z < 1 have been made (and subsequently refined) with precision at the level of a
few percent using newer galaxy surveys such as the Six-degree-Field Galaxy Survey (Beutler
et al. 2011), the WiggleZ Dark Energy Survey (Blake et al. 2011, Kazin et al. 2013), the
Baryon Oscillation Spectroscopic Survey (BOSS) (Anderson et al. 2012, Anderson et al. 2014,
Tojeiro et al. 2014, Alam et al. 2017), and the extended Baryon Oscillation Spectroscopic
Survey (eBOSS) (Bautista et al. 2018). In addition, quasars have enabled measurement at
higher redshift, not only as biased tracers of dark matter at intermediate redshifts 1 < z < 2
(Ata et al. 2018, Zhu et al. 2018) but also as probes of the distribution of neutral hydrogen
through their Lyman-α features, enabling measurements out to z ≈ 2 (Busca et al. 2013,
Slosar et al. 2013, Kirkby et al. 2013, Font-Ribera et al. 2014b, Delubac et al. 2015, Bautista



CHAPTER 2. SCIENTIFIC BACKGROUND & MOTIVATIONS 13

et al. 2017, du Mas des Bourboux et al. 2017), something that only recently became possible
when BOSS dramatically increased the number density of observed quasars.

The next generation of dark energy experiments will measure BAO at even higher pre-
cision and significance. In this work, we focus on DESI, which will provide an order of
magnitude improvement over BOSS in both the volume and the target density of the three-
dimensional map it creates, enabling sub-percent precision distance measurements from BAO
at more than thirty redshifts. Figure 2.1 shows the expansion history of the Universe as de-
termined from past BAO measurements as well as measurements from Type Ia supernovae
(the premier standard candle method). Expected constraints from the DESI BAO measure-
ments are included, showing how DESI will be able to, for the first time, distinguish between
dark energy models with very subtle effects on the cosmic expansion.

To obtain the unprecedented precision that DESI hopes for in its BAO measurements,
all possible sources of observational error must be controlled and corrected for, ideally with
a minimum loss of the survey volume and target density that gives DESI its competitive
edge. Furthermore, the galaxy bias of each target class must be well understood in order to
relate its observed correlation function to the clustering of dark matter. Targets for which
reliable spectroscopic redshifts are not obtained will have additional uncertainty in the radial
direction, with the BAO analysis requiring σz/(1 + z) ∼ 0.0005. In this thesis, we present
our contributions towards reducing systematic errors, characterizing galaxy samples, and
quantifying and reducing redshift uncertainty in galaxies without spectroscopy.

2.4 Redshift-Space Distortions

In addition to BAO, DESI will also measure redshift-space distortions (RSD) from the
anisotropic clustering of galaxies. RSD helps constrain the growth of structure, which probes
dark energy in a very complementary way to the distance measurements discussed in the
previous section; while distance measurements predict the growth of structure under the
assumption of unmodified general relativity (GR), measurements of the growth of structure
for a given cosmic expansion history are sensitive to deviations from GR. In the following
section, we briefly review the theory behind RSD and then summarize the current status
and DESI projections of its measurement.

Measuring the growth of structure

Another way of probing dark energy is through its effects on the growth of structure. In
particular, the function that charts the evolution of the amplitude of growth is dictated
by the delicate interplay between gravity and expansion, and thus is an excellent probe of
modified gravity models of dark energy. Under the assumption of standard GR, small matter
density fluctuations δ = (ρ− ρ̄)/ρ̄ grow according to the equation

δ̈ + 2Hδ̇ − 4πGρδ = 0 (2.20)
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Figure 2.1: The expansion history of the Universe for different models of dark energy, with
the inset showing the very fine spacing between cosmological models with slightly different
values of wΛ. Current measurements from supernovae (SNe) and BAO are overlaid in blue
and red, respectively, while the DESI BAO projections are shown in black. Source: DESI
Collaboration et al. 2016.
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in the linear regime |δ| � 1 (early times and large scales). Thus the linear growth in this
framework can be modelled simply as

δ(z) = D(z)δ(z = 0) (2.21)

where D(z) increases with decreasing redshift and is called, appropriately, the linear growth
rate. Furthermore, under GR, D(z) is entirely specified by the expansion history of the
Universe, and is given approximately by

f ≡ d lnD(a)

d ln a
≈ Ωm(z)γ∼0.55 (2.22)

However, explanations for cosmic acceleration based on modifying GR on large scales will
necessarily change these equations. A common parameterization of the modified growth rate
under alternative theories of GR is to simple change the growth index γ. More generally,
modified gravity could potentially introduce scale-dependence in D(z). By constraining the
growth of structure as a function of redshift, we can test these theories of modified gravity.

The origins and effects of RSD

Galaxy surveys measure redshifts, which are converted to distances assuming Hubble flow,

cz = H0d (2.23)

Yet in addition to capturing the bulk recession due to cosmic expansion, redshifts also reflect
small components of a galaxy’s “peculiar velocity” sourced by local gravitational effects.
More formally, we might say that the observation of the density field in redshift-space is a
combination of the true real-space density and momentum fields. These peculiar velocities
alter the apparent correlations between galaxies along the line-of-sight, leading to anisotropy
in the observed clustering, as shown in Figure 2.2 and described below:

At larger scales, the coherent velocity of an infalling shell is small compared to its radius,
so the shell appears squashed along the line-of-sight direction. This is called the Kaiser
effect (Kaiser 1987). The squashing increases to smaller scales until “turnaround,” when the
peculiar infall velocity exactly cancels the Hubble expansion, making the structure appear
pancake-flat. At small scales, when the peculiar velocity is great compared to its radius, the
galaxy’s coordinates seem to turn inside-out in redshift space. And at even smaller scales,
galaxies inside virialized dark matter halos seem stretched out along the line of sight due to
their random velocities in an effect known as Fingers of God (Jackson 1972).

Under the Kaiser approximation, to leading order, the density fluctuation in redshift-
space is related to the real-space perturbation as

δs(~k) = δ(~k)(1 + βµ2) (2.24)
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Figure 2.2: The two-dimensional correlation function in redshift-space of galaxies from 2dF-
GRS, showing a range of RSD effects including the large-scale Kaiser effect as well as the
small-scale Fingers of God effect. Source: Peacock et al. 2001.

where β = f/b (with b being the galaxy bias) and µ is the directional cosine between the

wave-number ~k and the line-of-sight direction. Written in terms of the power spectrum,

Ps(~k) = (b+ fµ2)2Pm(k) (2.25)

Thus for an assumed expansion history, measuring RSD in the galaxy correlation function
can provide a unique prediction for the growth f , which must be measured across a wide
range of scales and redshifts to robustly test GR. In practice, we see from Equation 2.25 that
the measurement of f is degenerate with the overall normalization of the present-day linear
matter power spectrum Pm, which is conventionally set at σ2

8, with σ8 defined as the amount
of matter clustering averaged over a sphere of radius 8 h−1Mpc. RSD provides constraints
on the combined quantity fσ8 as a function of redshift.

Current status and future of RSD measurements

Over the last decade, RSD studies have been performed by several recent surveys. For an
assumed expansion history and flat ΛCDM cosmology, the resulting constraints on fσ8 at a
range of low redshifts are summarized in Table 2.1. DESI is expected to improve the preci-
sion of these constraints by a factor of 4-10 (Font-Ribera et al. 2014b). Due to its superior
number density, DESI will be able to measure RSD in fine redshift bins, with predicted
aggregate precision from the combined target classes ∼ 0.0035% (Huterer et al. 2015). As
most observational systematics are on large-scales and thus do not impact the RSD mea-
surements significantly, the breakdown of the Kaiser approximation due to nonlinear effects
is the central source of uncertainty. A large body of methods to correct for nonlinear compli-
cations using both theory and simulation exists in the literature, but accurate calibration of
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Survey (Sample) z fσ8 Reference

2dFGRS 0.17 0.51± 0.06 Percival et al. 2004

VVDS 0.77 0.49± 0.18 Guzzo et al. 2008

WiggleZ

0.22 0.42± 0.07

Blake et al. 2011
0.41 0.45± 0.04

0.6 0.43± 0.04

0.78 0.38± 0.04

6dFGRS 0.067 0.42± 0.06 Beutler et al. 2012

SDSS (LRG)
0.25 0.35± 0.06

Samushia et al. 2012
0.37 0.46± 0.04

VIPERS 0.80 0.47± 0.08 de la Torre et al. 2013

BOSS (CMASS) 0.57 0.45± 0.03 Samushia et al. 2014

FastSound 1.4 0.48± 0.12 Okumura et al. 2016

Table 2.1: Summary of fσ8 constraints from RSD in past galaxy surveys

the mapping between galaxy clustering and dark matter clustering is crucial to all of them.
Thus, characterizing the clustering of DESI targets is an important first step to obtaining
accurate RSD measurements, and one that this thesis contributes towards.
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Chapter 3

Imaging Systematics and Clustering
of DESI Main Targets

In this chapter, we evaluate the impact of imaging systematics on the clustering of lumi-
nous red galaxies (LRG), emission-line galaxies (ELG) and quasars (QSO) targeted for the
upcoming Dark Energy Spectroscopic Instrument (DESI) survey. Using Data Release 7 of
the DECam Legacy Survey, we study the effects of astrophysical foregrounds, stellar con-
tamination, differences between north galactic cap and south galactic cap measurements,
and variations in imaging depth, stellar density, galactic extinction, seeing, airmass, sky
brightness, and exposure time before presenting survey masks and weights to mitigate these
effects. With our sanitized samples in hand, we conduct a preliminary analysis of the cluster-
ing amplitude and evolution of the DESI main targets. From measurements of the angular
correlation functions, we determine power law fits r0 = 7.78± 0.26 h−1Mpc, γ = 1.98± 0.02
for LRGs and r0 = 5.45 ± 0.1 h−1Mpc, γ = 1.54 ± 0.01 for ELGs. Additionally, from the
angular power spectra, we measure the linear biases and model the scale dependent biases
in the weakly nonlinear regime. Both sets of clustering measurements show good agree-
ment with survey requirements for LRGs and ELGs, attesting that these samples will enable
DESI to achieve precise cosmological constraints. We also present clustering as a function
of magnitude, use cross-correlations with external spectroscopy to infer dN/dz and measure
clustering as a function of luminosity, and probe higher order clustering statistics through
counts-in-cells moments.

3.1 Introduction

The Dark Energy Spectroscopic Instrument (DESI; DESI Collaboration et al. 2016) is
a ground-based dark energy experiment whose mission is to produce the largest three-
dimensional map of the Universe to date. This map will enable unprecedented constraints
on dark energy (for a comprehensive review, refer to Weinberg et al. 2013 or Amendola et al.
2013) by charting the expansion history of the Universe through studies of baryon acoustic
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oscillations (BAO; see Eisenstein 2005 or Bassett & Hlozek 2010 reviews) and constraining
the growth of structure through redshift-space distortion measurements (RSD; see e.g. Rug-
geri et al. 2019 for a recent study). In addition, it will provide a means to precisely measure
the sum of neutrino masses (Font-Ribera et al. 2014a), and to investigate theories of infla-
tion (Gariazzo et al. 2015, Tellarini et al. 2016) and modified gravity (Jain & Khoury 2010,
Joyce et al. 2015, Casas et al. 2017, Amendola et al. 2019). Installed on the Mayall 4-meter
telescope at Kitt Peak, DESI is a Stage IV dark energy project1 consisting of a highly mul-
tiplexed fiber-fed spectrograph that can measure as many as 5000 spectra in parallel using
robot fiber positioners. DESI will obtain spectra for four main target classes selected from
imaging, including approximately 6 million luminous red galaxies (LRG) up to z = 1.0, 17
million [OII] emission-line galaxies (ELG) up to z = 1.6, and 2.5 million quasars (QSO).
QSOs with z < 2.1 will serve as tracers of the underlying dark matter distribution, while
a high redshift sample of QSOs (2.1 < z < 3.5) will be used for their Lyman-α absorption
features to probe the distribution of neutral hydrogen in the intergalactic medium. During
“bright time,” when the position of the moon above the horizon impacts the observation of
faint, high redshift targets, DESI will conduct the Bright Galaxy Survey (BGS), observing
over 10 million galaxies up to z ∼ 0.4, and also the Milky Way Survey (MWS) of local stars.

DESI is currently in its commissioning phase, with survey validation scheduled for the
spring of 2020. At this stage of the project, it is vital to ensure that the targets selected from
imaging will satisfy the science requirements of the collaboration, which demand meticulous
control over all possible systematics. Since it is not obvious how systematics in the distri-
bution of targets selected from imaging will translate to systematics in the 3D clustering of
the spectroscopic samples, it is prudent to identify and mitigate them to the greatest ex-
tent possible. Furthermore, while acquiring spectra will allow us to remove any low redshift
contaminants and deproject any purely angular systematics, the targeting efficiency of the
survey will be adversely affected. In this chapter, we analyze the impact of potential system-
atics from imaging and target selection on the observed clustering of the main DESI samples
and develop methods to ameliorate those effects. Using the resulting value-added large-scale
structure catalogs, we begin to characterize the properties of these tracer samples, both as a
first step for analysis in cosmological studies and to aid in generating accurate mock catalogs.

The chapter is organized as follows: Section 3.2 outlines our techniques for measuring and
modeling clustering. Section 3.3 describes the imaging data and explains how we build our
large-scale structure catalogs. In Section 3.4, we implement and test some preliminary survey
masks; Section 3.4 deals with imaging completeness and its sensitivity to depth variations
and color cuts, while Section 3.4 covers masking around bright foregrounds. In Section 3.5,
we explore spatial variations in the clustering of the targets and identify additional prob-
lematic or anomalous regions. In Section 3.6, we investigate the effects of varying survey
properties and instrument characteristics on the densities of targets, obtaining photometric
weights for the most dominant systematics, with Section 3.6 focusing on the impact of stellar
contamination in the QSO sample. Section 3.7 presents our preliminary characterization of

1As defined in the Dark Energy Task Force report (Albrecht et al., 2006).
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the angular distribution of of the tracer samples, including mean surface densities, angu-
lar correlation functions, angular power spectra, linear biases, counts-in-cells moments, and
clustering as a function of magnitude. In Section 3.8, we use external spectroscopic cata-
logs to measure real-space projected cross-correlations, clustering dN/dz, and clustering as
a function of luminosity. Section 3.9 summarizes our results and conclusions.

Throughout, we will work in co-moving coordinates and assume a flat ΛCDM cosmology
with h = 0.676, Ωmh

2 = 0.142, Ωbh
2 = 0.022, ns = 0.962, and σ8 = 0.848 (the default

parameters in CLASS, see e.g. Blas et al. 2011). Additionally, all magnitudes are quoted as
AB magnitudes, unless otherwise specified.

3.2 Clustering Measurement and Theory

To characterize the properties of DESI main samples and understand how systematics im-
pact their observed distributions, we must be able to accurately quantify clustering as well as
compare our results to theoretical predictions and survey expectations. To convert between
angular clustering measurements and 3D clustering theory in Section 3.7, we assume the
fiducial redshift distributions in the DESI Science Final Design Report (DESI Collaboration
et al. 2016, henceforth FDR), calculated from cross-matching and photometric methods (pri-
vate communications: Rongpu Zhou, Anand Raichoor, and Nathalie Palanque-Delabrouille
for the DR7 LRG, ELG, and QSO dN/dz, respectively). These redshift distributions are
plotted in Figure 3.25. In Section 3.8, we use cross-correlations with external spectroscopy
to obtain clustering dN/dz.

Angular correlation functions

One of the simplest and most powerful measurements of clustering is the two-point corre-
lation function ξ(r), which measures the excess probability, compared to a random Poisson
distribution, that a pair of objects lie at a given separation (see e.g. Peebles 1980, Peacock
1999). The two-point correlation function and its Fourier transform, the power spectrum,
fully characterize a Gaussian random field. For samples that lack redshifts, the 2D angular
correlation function w(θ), representing the probability in excess of random of finding two
objects separated by a given angle, may be used instead.

Pair-count estimators

We measure w(θ) of the targets with direct pair-count estimators, namely the Landy-Szalay
estimator (Landy & Szalay, 1993)2,

ŵLS(θ) =
D1D2 −D1R2 −D2R1 +R1R2

R1R2

(3.1)

2Normalization factors are not included here.
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where DD, DR, and RR respectively refer to counts of data-data, data-random, and random-
random pairs at average separation θ (within annular bins θ ± δθ). For auto-correlations,
this simplifies to ŵLS(θ) = (DD − 2DR + RR)/RR. When cross-correlating with external
data sets that don’t have a corresponding random catalog readily available, we instead use
the Davis-Peebles estimator (Davis & Peebles, 1983),

ŵDP (θ) =
D1D2 −D2R1

D2R1

(3.2)

which has a slightly larger variance (see Landy & Szalay 1993 for a comparison of pair-count
estimators) but only requires one set of randoms. We count pairs within 16 logarithmically
spaced angular bins between θ = 0.001◦ and θ = 1◦.

Limber approximation

We wish to generate a prediction for the observed angular clustering of objects in the sky,
w(θ), given an assumed model for the full three-dimensional clustering, ξ(r), and redshift
distribution, dN/dz. An approximation first introduced by Limber (1953) and Rubin (1954)
is frequently employed for this purpose. Briefly, the Limber approximation assumes redshift
distributions that do not vary appreciably over the coherence length of the structures defined
by ξ(r). Though not a requirement, it is often further assumed that the sky may be treated
as flat. In this section, we state the general result, as well as the simplified expression for
the case of a power-law ξ(r). A more detailed derivation can be found in e.g. Simon (2007)
or Loverde & Afshordi (2008).

Written in center-of-mass and relative coordinates, r̄ = (r1 + r2)/2 and ∆r = r2− r1, the
Limber approximation straightforwardly relates the angular and spatial correlations between
two samples,

w1,2(θ) =

∫ ∞
0

dr̄ f1(r̄) f2(r̄)

∫ ∞
−∞

d∆r ξ1,2(R, r̄) (3.3)

where f1 and f2 are the normalized radial distributions, and R =
√
r̄2θ2 + ∆r2. If we further

presume a power-law for the correlation function, with correlation length r0,

ξ(r) =

(
r

r0

)−γ
(3.4)

then we can evaluate the ∆r integral directly, and Limber’s approximation gives a particularly
simple result,

w1,2(θ) = θ1−γ rγ0
√
π

Γ(γ/2− 1/2)

Γ(γ/2)

∫ ∞
0

dr̄ f1(r̄) f2(r̄) r̄1−γ

≡ Awθ
1−γ (3.5)

Using this equation with tabulated dN/dz’s, we can compare observation to theory by de-
termining the clustering length r0 and slope γ that best fit the observed w(θ).
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Projected real-space cross-correlations

We can extract additional clustering information by cross-correlating the samples with other
samples of known redshift. We begin by deriving a relation between the angular correlation
function w(θ) and the projected real-space correlation function wp(rp), the latter being de-
fined as the integral of the 2D spatial correlation function ξ(rπ, rp) over the line of sight rπ
(Davis & Peebles, 1983).

Starting with the simple case in which the spectroscopic sample lies at χ = χ0, the
flat-sky approximation yields

w(θ) =

∫
dχf(χ)ξ

(√
χ2

0θ
2 + (χ− χ0)2

)
(3.6)

where f(χ) is the normalized radial distribution of the photometric sample, and the second
integral over the radial distribution of the spectroscopic sample, a delta function, has been
performed. Applying the Limber approximation (Section 3.2), this simplifies to

w(θ) ' f(χ0)

∫
drπξ(rp, rπ)

= f(χ0)wp(rp)

(3.7)

where wp(rp) is a real-space measurement, since redshift space distortions only affect rπ.
Generalizing to a narrow spectroscopic redshift slice, such that the clustering can still

be treated as constant over the slice, we adopt the approach of Padmanabhan et al. (2009):
for each pair in a given bin, we assume the photometric object lies at the same redshift as
the spectroscopic object it is being correlated with, allowing us to re-bin the pair counts in
transverse separation, wθ(rp), such that Equation 3.7 becomes

wθ(rp) =
〈
f(χ)

〉
wp(rp) (3.8)

where
〈
f(χ)

〉
is averaged over the spectroscopic redshift bin in question and wθ(rp) is the an-

gular correlation function but binned in physical distance instead of angle using the redshifts
of the spectroscopic objects for conversion.

To compare with theory, we note also the form wp(rp) takes for a power-law correlation
function model ξ(r) = ( r

r0
)−γ:

wp(rp) = r1−γ
p rγ0

√
π

Γ(γ/2− 1/2)

Γ(γ/2)
(3.9)

Bootstrap errors

As an internal error estimate, we use the bootstrap technique of Efron (1979), splitting the
sample into multiple subsamples and then randomly selecting with replacement to obtain
many different realizations of the underlying distribution. Since resampling on individual
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objects has been shown to lead to unreliable errors (Mo et al. 1992, Fisher et al. 1994), with
variance underestimated in underdense regions and overestimated in overdense regions, we
instead partition the sky into equal area pixels and resample these.

The choice of the bootstrap over similar methods such as the jackknife is motivated
by comparative studies (e.g. Norberg et al. 2009) suggesting that, though the bootstrap
tends to overestimate variance on all scales, it recovers the principal eigenvectors of the true
covariance matrix in an unbiased fashion. As such, we caution that our bootstrap error bars
are likely overestimated in some cases.

In detail, we use the HEALPix package3 (Górski et al., 2005) with NSIDE = 4 to divide the
surface of a sphere into 192 equal area pixels of approximate size ∼215 sq deg, then throw
away any pixels that do not overlap with the footprint, leaving 83 pixels. We then randomly
select pixels with replacement until the number of randoms in each bootstrap realization
is similar to the number of randoms in the footprint. We use 500 bootstrap realizations
to obtain an estimate of the variance. Our results are robust to variations in the NSIDE

resolution and the number of bootstrap realizations.

Angular power spectra

The angular power spectrum, C`, is another powerful tool for quantifying clustering, allowing
us to study the Fourier modes of the angular distribution of galaxies. It complements the
statistical information derived from the angular correlation function, to which it is related
via a Legendre transform:

w(θ) =
∑
`

2`+ 1

4π
P`(cos θ)C` (3.10)

Large-scale systematics are more clearly visible in the power spectrum than in the correlation
function, which potentially has long-wavelength modes affecting all angular scales. On the
other hand, the correlation function is more sensitive to small scales, where nonlinear evolu-
tion dominates and introduces correlations between different C`’s at large `. Additionally, it
is faster to compute small-scale clustering in configuration space and large-scale clustering
in Fourier space. Thus, we focus our analysis of the angular power spectrum on large scales
` ≤ 500, corresponding to angular scales greater than θ ∼ 180◦/` ≈ 0.4◦, or spatial scales
greater than a few h−1 Mpc at the characteristic survey depth of 1 h−1 Gpc.

Measurement

We use HEALPix with NSIDE = 512 and estimate the angular power spectrum from harmonic
analysis of the pixelised map of density contrast δg = n/n̄ − 1, where n is the number of
galaxies in a given pixel and n̄ is the average density over the entire masked sample multiplied
by the given pixel’s effective area. We mask out pixels whose effective area is less than 25%
of its full area, such that only pixels which are fully (or mostly) inside the survey geometry

3http://healpix.sf.net

http://healpix.sf.net
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are considered4. Using anafast, we obtain the estimated angular power spectrum C`, which
is the sum of the signal and the shot noise. To first-order correct the effects of partial
sky, we divide by a factor of fsky, the fraction of sky covered by the masked footprint; full
deconvolution of the mask is deferred to a future work. We find that the angular power
spectrum of the mask has its power concentrated in the large-scale modes, with the mask
dropping to half power at ` ∼ 10 and falling below 10% power beyond ` ∼ 20. We also divide
out the pixel window function. The variance of the estimator can be modelled analytically
as

σ2
` =

1

fsky

2C2
`

2`+ 1
(3.11)

On a small section of sky φ, multipole resolution is limited by ∆` ≈ 180◦/φ, with the `min

mode constrained to be the wavelength that fits into the angular patch (Peebles, 1980). We
bin C` using 10 linearly spaced bins from `min = 30 to `max = 500 and take the weighted
arithmetic mean and variance for each bin.

C̄bin =

∑
` in bin

C`

σ2
`∑

` in bin

1
σ2
`

1

σ2
bin

=
∑
` in bin

1

σ2
`

(3.12)

Theory

In the first-order correction to the Limber approximation (Loverde & Afshordi, 2008), the
multipole expansion of the galaxy angular power spectrum is given by

C` =

∫
dχ f(χ)2 1

χ2
Pg(k = (`+ 1/2)/χ, z)

=

∫
dχ f(χ)2 b(z)2

χ2
Pm(k = (`+ 1/2)/χ, z) (3.13)

where f(χ) ≡ dN/dχ = dN/dzH(z)
c

is the normalized radial distribution, Pm is the linear
dark matter power spectrum, and b(z) is the large-scale bias, which we assume takes the
form5 b(z) = b0/D(z) as per the DESI FDR. In Section 3.7, we fit the linear bias b0 and also
explore the scale-dependence of the bias in the weakly nonlinear regime.

4Since effective area is calculated using a set of uniformly distributed random points, there is some
natural Poisson variance, hence why we do not use a more restrictive threshold.

5D(z) is the linear growth function with normalization D(z = 0) = 1. Thus the approximation b ∝
D−1(z) assumes that the clustering is constant, since the evolution of P (k, z) is cancelled by the evolution
of b2(z).
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Clustering dN/dz

Overview

The idea of using cross-correlations to infer redshift information about objects in the night
sky has been circulating for decades (e.g. Seldner & Peebles 1979, Phillipps & Shanks 1987,
Landy et al. 1996, Ho et al. 2008), but has received renewed attention in the context of
modern astronomical surveys, which are probing deeper than ever and imaging far more
objects than can feasibly be targeted for spectroscopic observation. In recent years, a num-
ber of dN/dz cross-correlation estimators have been proposed and studied (Newman 2008,
Matthews & Newman 2010, Schulz 2010, Matthews & Newman 2012, McQuinn & White
2013, Ménard et al. 2013) and applied to real or simulated data (Schmidt et al. 2013, Scottez
et al. 2016, Hildebrandt et al. 2017, Scottez et al. 2018, Davis et al. 2018, Gatti et al. 2018,
Chiang et al. 2018, Krolewski et al. 2019). Following Ménard et al. (2013), which presents
a simple and practical method for estimating the clustering dN/dz of a sample, we probe
the redshift distributions of objects targeted for DESI in Section 3.8. Unlike other methods,
the Ménard method takes advantage of small-scale clustering information and reduces the
impact of systematics by sidestepping autocorrelation functions. We briefly describe the
formalism of Ménard method and the details of our implementation below.

Method

Consider two populations. Let the reference (spectroscopic) sample have a redshift distribu-
tion dNr/dz, a mean surface density n̄r, and a total number of objects Nr. The corresponding
properties for the unknown (photometric) sample will be labeled dNu/dz, n̄u, and Nu, re-
spectively. The angular cross-correlation between the reference sample and the unknown
sample is estimated by

wur(θ, z) =
〈nu(θ, z)〉

n̄u
− 1 (3.14)

where 〈nu(θ, z)〉 is the mean surface density of objects from the unknown sample lying within
an angular distance θ of objects in the reference sample at redshift z. To calculate this, we
bin the reference sample into narrow redshift bins δzi. Then, for each δzi, we estimate
wur(θ, zi) by pair counting with the Davis-Peebles estimator Equation 3.2.

In practice, we actually integrate over an annulus around each reference object, from
θmin to θmax, because the sensitivity of the estimator is improved by encoding information
from many clustering scales (Ménard et al., 2013). In order to maximize the SNR, we weight
each point by θ−1, which gives equal amounts of clustering information per logarithmic scale
(dθ/θ = d log θ).

w̄ur(z) =

∫ θmax

θmin

dθ
wur(θ, z)

θ
(3.15)

To avoid excess signal from cross-correlations between duplicate objects that appear in both
catalogs, it is necessary to impose a minimum radius, θmin which is at least as large as the
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astrometric uncertainties in the survey. Furthermore, as we go to smaller scales < 1 Mpc,
clustering becomes increasingly nonlinear and bias becomes increasingly scale-dependent, so
the assumptions underpinning the estimator break down, potentially affecting the accuracy
of the result. Finally, we note that as the scale falls below the mean separation of spectro-
scopic objects, cross-correlations between redshift bins become more significant. Meanwhile,
at larger scales, the advantage of a linear bias6 must be balanced against the cost of de-
graded signal-to-noise since the clustering signal decreases with radius and the noise due
to systematics increases as more background sources are included in the counts. Thus, for
samples which have little to no bias evolution, small scales are ideal for recovering dN/dz;
for samples with some bias evolution, intermediate scales are recommended; and for samples
with extensive bias evolution, restricting to large scales may be the best strategy.

Counts-in-cells

To aid in simulations, we wish to also provide some measurement of the higher order clus-
tering statistics of the DESI samples. In particular, for regions of high density, spectroscopic
incompleteness due to the physical limitation of fiber allocation is expected to introduce
systematic effects on the observed clustering (Cahn et al. 2017, Burden et al. 2017, Pinol
et al. 2017) which must be included in any realistic mock catalog. Thus, rich clustering
information down to the scale of the DESI fiber patrol radius of 1.4′ is invaluable for the
purpose of mock calibration and validation.

Since a discrete map of galaxies or quasars samples the continuous density field of matter,
the number of galaxies within a randomly placed cell (counts-in-cells: Hubble 1934; White
1979; Peebles 1980) provides a window into the higher-order correlations. Let P (N) be the
probability that a cell with area Ω contains exactly N galaxies. The factorial moments of
this distribution, Fp = 〈N(N − 1)...(N − p+ 1)〉, are related to the corresponding moments
of the spatially smoothed underlying density field, µp = 〈(1 + δ)p〉, via the simple relation

µp = Fp

〈N〉p , which tidily includes shot noise corrections arising from the fact that we are

dealing with a discrete, locally Poissonian representation of the continuous field (Szapudi
& Szalay 1993a, Szapudi et al. 1996). From these moments, we can extract the correlation
functions of corresponding order (also smoothed over the characteristic cell size), wp(Ω) =
1

Ωp

∫
Ω
dΩ1...dΩpwp(θ1, ..., θp). The first few are listed below (e.g. Fry 1985, Fry et al. 2011):

µ2 = 1 + w2

µ3 = 1 + 3w2 + w3 (3.16)

µ4 = 1 + 6w2 + 3w2
2 + 4w3 + w4

Szapudi & Colombi (1996) classifies theoretical errors on counts-in-cells statistics as either
cosmic errors (due primarily to shot noise, edge effects, and finite volume) or measurement

6The bias measured by these angular cross-correlations is dominated by scales of hundreds of kpc to a few
Mpc, and thus should be distinguished from the large-scale (>10 Mpc) bias, which may evolve differently.
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errors (due to the finite number of sampling cells), the latter scaling as the inverse of the
number of sampling cells used. The counts-in-cells distribution and its moments are usually
determined by throwing random cells over the region of interest, with massive oversampling
required to control the measurement errors. However, Szapudi (1998) describes a method of
implementing counts-in-cells that is essentially equivalent to using an infinite number of ran-
dom cells, thereby eliminating the measurement error entirely. We implement this method
using our publicly available code infcic7. Therefore, we present only the uncertainty asso-
ciated with cosmic errors, which we approximate by calculating counts-in-cells over two large
fields, one in each galactic hemisphere, and measuring the mean and dispersion, weighted by
effective area.

3.3 Imaging Catalogs

Imaging data

The DECam Legacy Survey (DECaLS) is a wide-field photometric survey amassing deep
multicolor imaging within the footprints of ongoing and future spectroscopic surveys. Using
the DECam instrument (Flaugher et al., 2015) at the Blanco 4m telescope, DECaLS observed
in three optical/near-infrared bands (g, r, z), complemented by four mid-infrared bands
from the Wide-field Infrared Survey Explorer (WISE; Wright et al. 2010). DECaLS aims to
obtain images up to 5σ point-source depths g = 24.7, r = 23.9, and z = 23.0 AB mag, and
is designed to boost the science power of spectroscopic observations by providing publicly
available imaging with superior depth (1-2 magnitudes fainter) and enhanced image quality
compared to existing photometry from SDSS, ATLAS, and Pan-STARRS. DECaLS covers
a large equatorial region (bounded by δ < 32◦ in galactic coordinates), corresponding to
roughly two-thirds of the optical imaging used for DESI targeting, and is a key piece of the
Legacy Survey project, which has imaged the full 14000 square degrees of extragalactic sky
making up the DESI survey (Dey et al., 2018).

Raw DECam images are processed through the NOAO Community Pipelines, with astro-
metric calibration and photometric characterization based on Pan-STARRS-1 measurements.
The calibrated images are then run through The Tractor8 (Lang et al., 2016), which pro-
duces an inference-based catalog by optimizing the likelihood for source properties, given the
data and a noise model. We use Data Release 7 (DR7), the seventh public data release of
the Legacy Survey, which is the last DECaLS-only data release, including observations from
August 2013 through March 2018 (NOAO survey program 0404). It also uses non-DECaLS
observations from DECam conducted between August 2013 and March 2018, including some
data from the Dark Energy Survey (DES; DES Collaboration et al. 2005). Together, these
cover approximately 9766 square degrees in the g-band, 9853 square degrees in the r-band,

7https://github.com/ekitanidis/infcic
8https://github.com/dstndstn/tractor

https://github.com/ekitanidis/infcic
https://github.com/dstndstn/tractor
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Figure 3.1: Number of exposures in each DECaLS band in DR7, estimated by sampling the
footprint with randoms. No map projection is applied here.
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NEXP fsky Area (deg2)

g r z all g r z all

0 0.14 0.11 0.05 1.0 1572.5 1263.8 541.6 11243.6

1 0.17 0.14 0.11 0.82 1865.1 1529.1 1292.5 9273.5

2 0.23 0.21 0.18 0.63 2620.5 2329.9 2035.4 7114.6

3 0.2 0.22 0.24 0.39 2279.5 2430.0 2665.8 4380.5

4 0.09 0.11 0.16 0.19 1032.8 1274.3 1846.3 2185.9

5+ 0.17 0.21 0.25 0.11 1873.2 2416.5 2861.9 1220.6

Table 3.1: Area and sky fraction covered by exactly 0,1,2,3,4,5+ exposures in each optical
band in DECaLS DR7. The “all” columns are cumulative, such that the NEXP = 1 row refers
to area and sky fraction covered by at least one exposure in all bands. Areas are estimated
by sampling the footprint with randoms. In this context, the sky fraction is defined relative
to the total DECaLS footprint, whereas elsewhere in the chapter, it is defined relative to the
area where imaging exists (NEXP > 0) in all three optical bands.

Target Redshift range Selection bands

Primary Other

LRG 0.4 - 1.0 z g, r, W1

ELG 0.6 - 1.6 g r, z

QSO (tracers) < 2.1 r g, z, W1, W2

QSO (Ly-α) 2.1 - 3.5 r g, z, W1, W2

Table 3.2: Summary of selection properties for each of the dark time DESI target classes.
W1 and W2 denote WISE bands. “Primary” refers to the band used to define the limiting
magnitude, which is relevant for the completeness mask (see Section 3.4).

and 10610 square degrees in the z-band, with 9298 square degrees observed in all three optical
bands (see also Table 3.1, Figure 3.1).

Target selection

Table 3.2 summarizes the primary target types evaluated in this chapter. These targets are
defined in great detail in the FDR and their selection algorithms are briefly outlined below.
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LRG

LRG targets are selected from the g, r, z, and W1 bands by applying a series of color cuts
using extinction-corrected magnitudes. No morphology cut is applied.

18.01 <z < 20.41

0.75 < r − z < 2.45

−0.6 < (z −W1)− 0.8 (r − z)

(z − 17.18) / 2 < r − z < (z − 15.11) / 2

(r − z > 1.15) || (g − r > 1.65)

(3.17)

ELG

ELG targets are selected from the g, r, and z bands by applying a series of color cuts using
extinction-corrected magnitudes. No morphology cut is applied.

21.00 < g < 23.45

0.3 < (r − z) < 1.6

(g − r) < 1.15 (r − z)− 0.15

(g − r) < 1.6− 1.2 (r − z)

(3.18)

QSO

QSO targets are selected by applying a machine learning method based on Random Forests
(RF) which relies only on extinction-corrected object colors in the g, r, z, W1, W2 bands
(Christophe Yèche, private communication). The algorithm is trained using all known QSOs
in the footprint with an initial cut of r < 23 against a sample of unresolved objects from
Stripe 82 without known QSOs and objects exhibiting QSO-like variations in their light
curves. In the target selection itself, a tighter initial cut of r < 22.7 is applied.

Catalogs and randoms

DESI target catalogs and uniform random catalogs are created with our public code Imag-

ingLSS9. ImagingLSS processes the outputs of the DECaLS pipeline and selects DESI targets
from it, as well providing the option for auxiliary, user-defined targets. Uniform unclustered
randoms are sampled from the imaging survey footprint. Geometric survey masks (for ex-
ample, vetoing by proximity to bright objects) can be applied to both catalogs and randoms
in a consistent manner. In addition to DECaLS data, ImagingLSS uses the SFD98 dust map
(Schlegel, Finkbeiner & Davis, 1998) to correct for extinction, as well as the Tycho-2 star
catalog (Høg et al., 2000) and the AllWISE catalog (Cutri et al., 2015) to mask out bright
stars.

9https://github.com/desihub/imaginglss

https://github.com/desihub/imaginglss
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Target Mask Number Area (deg2) fsky

LRG

no mask 4882206 9298.91 1.0

complete only 4872537 9281.0 1.0

bright star only 4304375 8584.68 0.92

all masks 4296486 8568.65 0.92

ELG

no mask 23224353 9298.91 1.0

complete only 23032874 9227.78 0.99

bright star only 20329143 8638.84 0.93

all masks 20166887 8575.15 0.92

QSO

no mask 3125148 9298.91 1.0

complete only 3116976 9288.35 1.0

bright star only 1814359 6655.11 0.72

all masks 1810801 6648.68 0.71

Table 3.3: Summary of masks and how each affects the number of targets and the effective
area and sky fraction. Here, sky fractions are quoted relative to the “no mask” case, which is
simply the joint regions of the footprint where imaging is available in all three optical bands.

3.4 Imaging Masks

We develop two types of initial masks, completeness and bright star, to reject possibly
problematic regions of the imaging data. The effects of these masks on the survey efficiency
and effective area are summarized in Table 3.3. Our baseline sample is selected from regions
where imaging exists in all three optical bands used for targeting (“no mask”), and all sky
fractions are quoted relative to this sample. In subsequent sections, we will review the
purpose and implementation of each mask, with Section 3.4 focused on imaging completeness,
and Section 3.4 describing our bright star mask. We also investigate whether there is need
for a mask around extended sources such as large galaxies.

Survey depth and completeness

Tractor catalogs contain an estimation of the imaging depth at each observed pixel in the
footprint. This depth is affected by the number of exposures, exposure times, observational
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Figure 3.2: Histograms of 5σ point-source depths of randoms in each band, normalized
as probability densities, with the colored curves corresponding to different numbers of ex-
posures. The solid vertical lines are the DESI nominal 5σ depth requirements g = 24.0,
r = 23.4, z = 22.5 for an ELG galaxy with half-light radius of 0.45 arcsec.

conditions, and instrument effects10. Due to the multi-pass nature of the imaging survey and
the fact that it is ongoing, variations in depth across the footprint are substantial. In DR7,
some of the sky has been covered just once, while the deepest regions have received five or
more passes (see Table 3.1 and Figure 3.1).

To select a uniform and complete sample, we implement a “completeness” mask. Since
two exposures, at minimum, are needed to meet the nominal depth requirements of DESI

10Note that we do not explicitly apply the ALLMASK flag, which uses the NOAO Community Pipeline’s
data quality map to mask out bad pixels on the CCD and pixels affected by bleed trail, transients such as
cosmic rays, and saturation. These effects are accounted for in the estimation of the depths (Dey et al.,
2018) and thus are perforce included in our completeness mask.
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Figure 3.3: Cumulative sky fraction vs. 5σ limiting magnitudes, with target selection cuts
shown as vertical lines to demonstrate the effect that shifting a magnitude limit up or down
would have on the completeness of the corresponding target.

over most of the footprint (Dey et al., 2018), a reasonable approach might be to mask out
areas with fewer than two exposures in each band. However, not every pixel will exceed
target depth for a given number of overlapping exposures (see Figure 3.2), and thus the
result will still be biased towards regions with more passes. Even with perfectly uniform
coverage, variations in observing conditions affect depths and therefore the homogeneity of
the resulting catalog.

Instead, using the 5σ point-source depths as limiting magnitudes, combined with DESI
target definitions, we construct a “binary completeness mask,” in which a particular observed
pixel is in the“complete”area for a target type if and only if it meets the following conditions:

1. the limiting magnitudes in the bands used for magnitude cuts are sufficient to observe
even the faintest targets with 5σ confidence;

2. imaging exists for all bands used in the target definitions.

This ensures that only the “deep enough” regions of the sky are used to generate DESI
catalogs and randoms for analysis. Figure 3.3 shows the sky fraction as a function of depth
for each band, with the magnitude cuts for the three targets plotted as vertical lines, to
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visualize how shifting a magnitude cut up or down would affect usable sky area. As Figure 3.3
shows, all depths are sufficient to detect the full target samples.

By only requiring the existence of imaging in the bands used for color cuts, we are
implicitly assuming that uncertainties in the colors do not affect the reliability of the target
selection. Alternatively, we could require a 5σ detection in all bands, not just the primary
bands used to apply magnitude cuts. However, it is not clear how to define a detection limit
in a band that is only used for color cuts, as the targets are not necessarily bounded in these
bands. The other advantage of defining the completeness mask on only the bands used for
magnitude cuts is that it makes it easier to apply the definition to target selections of finer
granularity in the color space, for example, represented by a forest of decision trees.

Bright foregrounds

As discussed in Section 3.3, we correct for galactic extinction by adjusting the color of objects
using the SFD98 dust map. In addition to extinction, bright objects in the foreground (point
sources such as stars, and extended sources such as nearby galaxies) can also affect the
detection of targets in their angular vicinity, due to CCD saturation and diffraction spikes
that contaminate the surrounding pixels. The systematics due to these bright objects in the
target catalogs are spatially localized and uncorrelated with the underlying true density of
the targets. Thus, we can quantify these systematic effects by measuring the densities of
targets as a function of their proximity to the bright foreground objects, and mitigate them
via masks.

Bright stars

We use two bright star catalogs, Tycho-2 and WISE. Tycho-2 is a reference catalog of the
2.5 million brightest stars in the sky, with photometry in two optical bands, λBT = 435 nm
and λV T = 505 nm. It has highly accurate astrometric positions and is 99% complete out to
V T ∼ 11 magnitude, making it well suited to our analysis. However, some stars not included
in the Tycho-2 catalog may still be bright enough in the near-infrared bands to affect the
detection of LRGs and QSOs, both of which use the WISE band W1 in their target selection
(QSOs also use W2). To be safe, we create separate veto masks for each star catalog and
apply both to our data. Table 3.4 compares the effective areas and sky fractions of the two
star masks.

For both catalogs, we follow a similar procedure to construct and test a radial mask for
each target class. We begin by splitting the sample of stars into magnitude bins, since the
masking radius will be magnitude-dependent. The bin widths are chosen such that each bin
contains a similar number of stars and therefore has comparable Poisson errors. For a given
magnitude bin, we use the pair-enumeration algorithm in KDcount11 to efficiently locate all
star-galaxy pairs within a distance of θ = 0.05 rad ≈ 104 arcsec of one another. We calculate

11https://github.com/rainwoodman/kdcount

https://github.com/rainwoodman/kdcount
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Figure 3.4: Average density of DESI targets as a function of distance to bright stars from
Tycho-2 (left) and WISE (right). Both star catalogs are divided into magnitude bins, which
are spaced such that each contains a roughly comparable number of stars. In each plot,
three bins are highlighted for illustration, with the dashed vertical lines representing the cor-
responding masking radius (Equations 3.19 and 3.20) calculated using the average magnitude
of that bin.
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Figure 3.5: 2D histograms of the density of DESI targets around stacks of bright stars from
Tycho-2. The solid black circles represent our star masks (Equation 3.19). The horizontal
features appearing in some maps, which are due to insufficient masking of charge bleed trails
in the CCDs, are only a few arcsec in width, and we find that removing them with a separate
rectangular mask has no perceptible impact on the densities around stars.
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Figure 3.6: 2D histograms of the density of DESI targets around stacks of bright stars from
WISE. The solid black circles represent our star masks (Equation 3.20). The horizontal
features appearing in some maps, which are due to insufficient masking of charge bleed trails
in the CCDs, are only a few arcsec in width, and we find that removing them with a separate
rectangular mask has no perceptible impact on the densities around stars.
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Target Mask Number Area (deg2) fsky

LRG

no mask 4882206 9298.91 1.0

Tycho mask only 4385463 8752.25 0.94

WISE mask only 4529935 8970.73 0.96

both star masks 4304375 8584.68 0.92

ELG

no mask 23224353 9298.91 1.0

Tycho mask only 21378695 8811.44 0.95

WISE mask only 21065984 8970.73 0.96

both star masks 20329143 8638.84 0.93

QSO

no mask 3125148 9298.91 1.0

Tycho mask only 2192932 7541.98 0.81

WISE mask only 2030414 7269.13 0.78

both star masks 1814359 6655.11 0.72

Table 3.4: Summary of star masks and how each affects the number of targets and the
effective area and sky fraction. Here, sky fractions are quoted relative to the “no mask”
case, which is simply the joint regions of the footprint where imaging is available in all three
optical bands.

the density of targets around each star in logarithmically-spaced annular bins up to this
maximum separation, then average across all stars to determine the mean density of targets
in each annular bin. By assigning a conservative cutoff radius to each magnitude bin by eye
and fitting the results, we obtain the following magnitude-radius relations:

For Tycho-2:

R =


−2.5× V T 3 + 77.4× V T 2

−813.6× V T + 2969 arcsec, LRG, ELG

2.8V T 2 − 143.4V T + 1387.1 arcsec, QSO

(3.19)

For WISE:

R =

{
10 3.29 − 0.18 × W1 arcsec, LRG, ELG

10 3.29 − 0.12 × W1 arcsec, QSO
(3.20)

For both types of star mask, the LRGs and ELGs can be fit to the same magnitude-radius
relation, while the QSOs require their own, more conservative mask. We found that relaxing
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the QSO stellar masks (by, for instance, applying the LRG/ELG masks instead) led to a
measurable increase in stellar contamination, evidenced by inflated QSO autocorrelation and
QSO-star cross-correlation measurements.

In our analysis, we implement Equations 3.19 and 3.20 instead of using the MASKBITS

column provided by DECaLS to mask out stars. We have found that our geometric masks
are more aggressive than the combination of available stellar bitmasks; in particular, they
are necessary for removing contaminated areas at larger radii.

Figure 3.4 shows the resulting target densities vs. distance to bright stars, sectioned
by target type and star catalog, with each magnitude bin plotted separately. Three bins
are highlighted for illustration, with the corresponding dashed vertical lines representing the
relevant masking radii calculated with the average magnitude of that bin. These plots show
how the masks eliminate spurious clustering due to bright stars. In Figures 3.5 and 3.6,
we also present 2D histograms of target densities around stacks of bright stars, plotted in
equatorial coordinates12 with star masks drawn on as circles, again showing well-fiting mask
radii.

Bright extended sources

Similarly to bright stars, we examine the density of targets near bright extended sources
such as nearby galaxies. We use the 2MASS Extended Source Catalog (Jarrett et al., 2000),
a catalog of near-IR extended sources complete for angular sizes greater than ∼10 arcsec.
Restricting to 10 < J < 15 total J-band magnitude, we find no appreciable impact on the
density of our DESI dark time targets (Figure 3.7), and thus we do not apply a mask.

3.5 Spatial Variations

NGC vs. SGC

We calculate the angular correlation functions in the north galactic cap (NGC) and the
south galactic cap (SGC) individually, as the two hemispheres may suffer from different
systematics, and earlier analyses have found NGC/SGC variations in BOSS data (see Ross
et al. 2012 Section 4.1 for an explanation of the origin of this difference in number density
between the NGC and SGC in BOSS). The results are shown in Figure 3.8. For LRGs,
the autocorrelations are virtually identical. For ELGs, there is a slight divergence, most
noticeably in the 0.02◦ < θ < 0.09◦ range. For QSOs, the difference between NGC and SGC
is significantly more pronounced. The NGC results appear more impacted by systematics,
as indicated by a bulge in the correlation function with extremely large bootstrap errors.
This is likely due to the fact that parts of the SGC, where there is DES imaging, are very

12We also performed this analysis in ecliptic coordinates, to see if additional structure could be identified.
In some of the fainter magnitude bins, resolution and contrast could be manipulated to resolve an x-shaped
feature in the 2D stacked plots, but this feature was very fine, and we found that removing it beforehand
had no perceptible impact on the 1D density plots.
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Figure 3.7: Average density of DESI dark time targets as a function of distance to extended
sources from 2MASS-XSC.

deep (see also Figure 3.9 in the following section to visually observe how the NGC appears
more impacted by systematics for QSO).

Visual inspection

As an initial sanity check, we create maps of the density contrast δ = n/n̄− 1 averaged over
HEALPix pixels of NSIDE = 256. The results are shown in Figure 3.9, with the unmasked
catalogs mapped on the left and their masked counterparts on the right. The masked catalogs
are visually cleaner, with the star masks reducing stellar contamination and the completeness
masks cancelling the imprint of imaging depth on target density. Several features remaining
in the masked maps are highlighted and discussed below.

While LRG clustering appears relatively uniform, ELG clustering shows some troubling
large-scale trends. For example, the shape of the DES region in the south is detectable,
appearing under-dense despite its superior depth. This suggests contamination in non-DES
regions, likely due to the effect of low redshift (z < 0.8) objects preferentially scattering
into the ELG target selection across the low-z color cut (g − r) < 1.15 (r − z)− 0.15 in
regions of worse depth. This was tested (Ashley Ross, private communication) by injecting
artificial noise into regions of very deep imaging and examining the photometric redshifts
of the resulting scattered objects. Additionally, a few suspicious “hot spots” appear in the
ELG density. When examined closely, most of these occur around a small set of very bright
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Figure 3.9: Maps of the density contrast δ = n/n̄ − 1 calculated with HEALPix resolution
NSIDE = 256. Mollweide projection in equatorial coordinates with right ascension centered
at RA = 100◦. Masked data (right) is less impacted by stellar contamination and variations
in imaging depth than raw data (left).
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stars (such as Arcturus) which have been successfully masked, but which cause dramatic
and complex artifacts in the image beyond the expected masking radius due to reflections
of pupil ghosts. Finally, looking at the density of QSOs, there remains noticeable stellar
contamination along the galactic plane even after applying conservative masks, as well as
the Sagittarius Stream in the north, and there are also some effects at the edges of the
footprint.

Outlier analysis

As another test of spatial variation, we perform a jackknife-inspired outlier analysis on the
data. Again using the HEALPix scheme, we divide the footprint into large pixels and re-
calculate w(θ) with each non-empty pixel excluded in turn, still performing the full boot-
strap error analysis on the remaining pixels for each iteration. We begin with the coarsest
pixels, corresponding to NSIDE = 1, and increase the resolution as needed to resolve any
anomalies that are detected. For LRGs and ELGs, the results are indistinguishable even at
this minimum resolution. However, for QSOs, we find two pixels at resolution NSIDE = 4
which, when either is excluded, lead to a significant change in the correlation function (see
Figure 3.10). Likely culprits are the Coma Cluster (Abell 1656), which contains over 1,000
galaxies, and M3/NGC 5272, one of the largest and brightest globular clusters in the sky.

3.6 Potential Systematics

Potential systematics include astrophysical foregrounds, variations in observing conditions,
and uncertainties in data calibration, processing, and reduction (for similar studies in the
context of SDSS, see e.g. Myers et al. 2006, Crocce et al. 2011, Ross et al. 2011; for similar
analyses using DES Verification Data, see e.g. Suchyta et al. 2016, Crocce et al. 2016, Leist-
edt et al. 2016, Elvin-Poole et al. 2018). We introduce maps of spatially-varying potential
systematics in Section 3.6, and examine their impact on the densities of DESI targets, before
and after applying photometric weights, in Section 3.6. The purpose of these weights is to
mitigate the density trends by up-weighting (or down-weighting) regions where target density
is diminished (or enhanced) due to systematics. Finally, in Section 3.6, we cross-correlate
the targets with stars and attempt to quantify stellar contamination in the QSO sample.

Maps of potential systematics

We begin by using the HEALPix scheme with NSIDE = 256 to divide the data into equal-
area pixels of approximately 0.05 square degrees each. This resolution was chosen to avoid
the shot noise limit in which most pixels contain zero or one targets. For our LRG, ELG,
QSO samples with approximate mean densities (per square degree) 500, 2400, and 260,
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respectively, it produces an average of 10-20 LRGs/QSOs and ∼100 ELGs per pixel.13 In
every pixel, an average value for the potential systematic is calculated. For survey properties
measured per CCD, unless otherwise noted, we first average over overlapping exposures to
obtain a mean value for each random, then pixelise using the randoms. The resultant maps
are shown below, along with brief descriptions of how they are determined and why they are
included in the analysis.

1. Stellar density

In addition to the detection issues near bright foreground stars discussed in Sec-
tion 3.4, the presence of stars impacts the measured density and clustering of galaxies
in other ways (e.g. Crocce et al. 2011, Ross et al. 2011). Stars with similar colors (see
Figure 3.12) can contaminate the samples, and the inclusion of a separate population
manifests as an enhanced clustering signal. The observed clustering may also be im-
printed with the density gradient of stars, which increases towards the galactic plane.
Furthermore, residual PSF tails of some fainter stars may pollute the pixels used to
calculate sky background and therefore affect target photometry.

We create a catalog of stars from DECaLS by selecting objects lying in the stellar
locus (using the color cut 17 < r < 18) with PSF morphology. The density of this
class of objects, shown in the top left panel of Figure 3.11, indicates that it is a reliable
stellar template.

2. Galactic extinction

Galactic extinction is the wavelength-dependent absorption and scattering of light
by interstellar dust in the Milky Way, causing sources to appear redder. DESI and its
imaging surveys deliberately avoid regions of high extinction along the galactic plane.
In addition, we use extinction-corrected fluxes in our analysis. The total extinction in
each band is provided by the DECaLS pipeline, calculated from the SFD98 dust map
combined with a set of extinction coefficients Aλ/EB−V for each DECam and WISE
filter. The extinction coefficients were determined at airmass = 1.3 from the values
recommended by Schlafly & Finkbeiner (2011) using the Fitzpatrick (1999) extinction
curve at RV = 3.1. These values are 3.214, 2.165, 1.211 for g, r, z. However, it has
been shown in other surveys that residual errors in this correction may cause spuri-
ous clustering (see e.g. Scranton et al. 2002, Myers et al. 2006, Ross et al. 2006). In
addition, erroneously correcting the photometry of stars in the foreground of the dust
could potentially bias their color and cause some of them to scatter into target selec-
tion. Hence, we treat EB−V as a potential systematic and test its effect on the density
field.

13Note that most of the systematics studied here (with the exception of EB−V and stellar density) are
not available at higher resolution than this pixelisation scheme in any case, as they are measured per CCD.
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Figure 3.11: Maps of spatially-varying potential systematics in equatorial coordinates with
Mollweide projection and astronomy convention (east towards left).



CHAPTER 3. DESI IMAGING SYSTEMATICS & CLUSTERING 47

4 2 0 2 4
g r

2

1

0

1

2

3
r

z

LRG
ELG
QSO (RF)
STELLAR LOCUS

Figure 3.12: Color-color plot of LRG, ELG, QSO target selection, with the shape of the
stellar locus selected from DECaLS as PSF-type objects with 17 < r < 18.

3. Seeing

Astronomical seeing is the blurring of an image due to turbulence in the Earth’s
atmosphere. The distortions fill out a point spread function (PSF) whose full width
at half maximum quantifies the quality of the seeing conditions. In DECaLS, seeing is
determined by fitting the median PSF of stars on the CCD to a 2D Gaussian. Since
seeing varies between nights and even exposures, a mean value is reported, calculated
by averaging the inverse of the effective number of pixels in the PSF (such that images
with better seeing dominate the mean, as they contain more information). We use this
mean PSF size to determine the impact of seeing conditions on the density field, since
bad seeing causes larger magnitude errors as well as more cross-contamination with
stars due to poor morphological fits.

4. Airmass

Airmass is the optical path length of light through the Earth’s atmosphere. When
photons from a celestial source travel to a terrestrial observer, they are absorbed and
scattered by the atmosphere. Light that must traverse more atmosphere will be atten-
uated more, so sources appear dimmer at the horizon than at the zenith. For zenith
angles / 60◦, we can approximate the atmosphere as plane-parallel, and also assume
its density is more or less constant. In this limit, the airmass is simply the secant of
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the angle from the zenith to the source location on the sky. We treat the mean airmass
as a potential systematic, as it contributes to magnitude errors (for instance, airmass
induces atmospheric differential refraction as a function of color, which can affect the
photometry) and is entangled with the extinction and seeing corrections.

5. Sky brightness

Variations in the background brightness of the sky (due to various sources such
as airglow, scattered starlight, Moon phase, light pollution) can affect the measured
flux errors and therefore the density of targets by scattering objects in or out of color
cuts. Sky brightness also has a strong dependence on airmass, which increases the
brightness of airglow. We include the mean sky background in each band measured on
the individual CCDs as a potential systematic.

6. Exposure time

DECam can attain the depths required for DESI targeting in total exposure times
of 166, 134, and 200 sec for g, r, z bands, given median observing conditions. As part
of the imaging strategy, dynamic exposure times are increased to compensate for poor
observing conditions in order to obtain a more uniform sample. We look at variations
with mean exposure time in each band, which affects depth and is correlated with other
potential systematics, to see how it modulates the observed density.

Target densities vs. potential systematics

We can determine the post-masking target density per pixel using the random catalogs. Since
the randoms are uniformly distributed, counting the number of post-masking randoms in a
pixel is equivalent to measuring its effective area, up to a proportionality factor:

δi = ngal
i /n̄gal − 1 = Ngal

i /N ran
i ×N ran

masked/N
gal
masked − 1 (3.21)

For each potential systematic, we bin the pixels by systematic value and then plot the
average density versus the average systematic value of the bins. The results are shown in
Figure 3.13, with LRGs, ELGs, and QSOs plotted together in each subplot and cumulative
sky fraction displayed in the upper panels. The errors bars represent the Poisson noise in
each bin; using standard error of the mean gives minuscule error bars, as the variance within
each bin is very small, regardless of the exact bin size or pixel resolution used. In general,
LRGs show very little dependence on survey properties, while ELGs and QSOs appear more
impacted, with QSOs often displaying a nonlinear dependence likely due to the more complex
selection function. We find that the NGC and SGC density trends are similar and thus do
not need to be plotted separately, with the exception of EB−V for ELGs and stellar density
for QSOs. For these two special cases, we include the NGC-only (dashed) and SGC-only
(dotted) trend lines in Figure 3.13.
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The most significant systematic effects indicated are from stellar density and extinction.
ELG density decreases significantly with increasing stellar density and extinction, with 10%
level effects in some areas, while QSO density presents the opposite trend. The observed
correlation between stellar density and QSO density, and anti-correlation between stellar den-
sity and ELG density, is also present in the angular cross-correlation results (Section 3.6).
One possible explanation for the extinction dependence is the issue of infrared emission from
background galaxies contaminating the SFD dust maps used to correct DECaLS magni-
tudes. This has been shown to lead to underestimation of the reddening in low extinction
(EB−V < 0.15) regions (Yahata et al. 2007, Kashiwagi et al. 2013, Kashiwagi et al. 2015),
attributed to the fact that the extragalactic contamination dominates the dust signal in such
regions. Looking at the shape of the targets selection functions in colorspace (Figure 3.12),
underestimation of reddening could preferentially scatter objects out of the ELG selection or
into the QSO selection. While the resultant underestimation of extinction in these regions
is small, it may be highly correlated with the targets.

Some minor dependence on seeing and sky background are also observable, particularly for
QSOs, as it is more difficult to distinguish between QSOs and stars in regions with bad seeing
and bright sky backgrounds. The relationships between target densities and mean exposure
times is more complex. Due to the use of dynamic exposure times, there is entanglement
with other systematics; for example, exposures are scaled longer for higher airmass or regions
of higher galactic extinction. CCDs with exposure times less than 30 sec are automatically
removed in the image reduction pipeline, and the “jumps” or discontinuities in sky fraction at
various other times are artifacts of the observing strategy. The fact that we are averaging the
exposure times over multiple overlapping CCDs slightly muddies the interpretation as well.
Nevertheless, it is clear that the attempt to obtain more uniform depths through dynamic
exposure times is not perfectly successful for QSOs.

Based on these findings, we create photometric weights to reduce the variance in target
densities due to systematics. Working directly with the HEALPix pixels defined in the pre-
vious section, we use principal component analysis (PCA) to transform the list of potential
systematics into a minimum set of linearly uncorrelated variables. PCA using a full SVD
solver reduces the dimensionality from 12 scaled features to 11 components. The first com-
ponent explains ∼22% of the variance and last component explains ∼3% of the variance,
with ∼50% of the variance explained by the first 3 components and ∼75% of the variance
explained by the first 6 components

Unsurprisingly, we find that exposure times contain a great deal of information, as they
are correlated with all of the other systematics by design. However, since exposure times are
difficult to interpret, we also perform a version of the component analysis with the exposure
times removed from consideration, in order to show more clearly how the other features
contribute and in what combinations. We find that nearly equal contributions from stellar
density and galactic extinction tend to strongly dominate a few components, while more
complex mixtures of sky background, seeing, and airmass features dominate the others, as
physical intuition might lead us to expect.

We discretize the feature-space to reduce the impact of noisy pixels and outliers, then
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Figure 3.13: Systematic dependences before applying photometric weights: Mean density
fluctuations for LRGs (red circles), ELGs (green squares), and QSOs (blue diamonds), as a
function of (from top-left to bottom-right) mean stellar density, color excess EB−V , airmass,
seeing, sky background, and exposure time in each band, with Poisson errors. The top panel
in each figure is the cumulative sky fraction for each systematic. We generally find that
splitting between NGC and SGC has negligible effects on the 1D density trends, with the
exception of EB−V for ELGs and stellar density for QSOs; for these two cases, we have added
the NGC-only (dashed) and SGC-only (dotted) trend lines.
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apply multilinear regression. The resulting model of density as a function of potential sys-
tematics is used to generate weights.14 We apply our photometric weights to the randoms,
modulating the effective area (and therefore target density) of the survey based on the local
values of systematics. Weights are normalized in the sense that the proportionality factor
in Equation 3.21 changes from the number of randoms in the masked footprint to the sum
of their weights. Plots of the density vs. systematics after applying weights is shown in
Figure 3.14, with the linear parts of the trends improved. Figure 3.16 demonstrates the
effect of applying these weights on the angular correlation functions. All clustering results
presented in Section 3.7 and Section 3.8 are computed using the weighted values.

Correlation with stars and stellar contamination fraction

We also measure the angular cross-correlation between the targets (after masking but before
weighting) and our stellar catalog, with the results shown in Figure 3.15. Consistent with the
density trends observed in Figure 3.13, LRGs appear uncorrelated with stars, while ELGs
demonstrate a small constant anticorrelation, and QSOs show a more significant constant
correlation.

Using the angular cross-correlation, we can estimate the fraction of stellar contamination
in the QSO sample. Let us assume that the observed number of QSOs at any given location
includes some non-trivial number of contaminants, as seems strongly indicated. Let Nstar be
the total number of stars that modulate the QSO density in some way:

Nobs = Ntrue + ε̄Nstar (3.22)

where ε̄ is the average number of impacted sources associated with each star. For stars which
are simply misclassified as QSOs, ε = 1. For spurious QSO detections in the immediate
vicinity of stars, ε > 0. For occulted QSOs in the immediate vicinity of stars, ε < 0. Note
that for the latter two effects (spurious or occulted sources near stars) we are considering
fainter stars that were not masked out in Section 3.4. Thus, any cross-correlations between
these sources and their own associated star are negligible beyond very small scales, so the
cross-correlation between contaminants and stars is dominated by the autocorrelation of
stars times the multiplicative factor ε.

The fraction of the total sample which is made up of these problematic stars is approxi-
mately given by

fstar =
〈Nstar〉
〈Nobs〉

(3.23)

where the brackets signify a spatial average. Similarly, the fraction of true objects is

ftrue =
〈Ntrue〉
〈Nobs〉

(3.24)

14For randoms where any of the potential systematics were undefined due to lack of exposures in one or
more bands, the weights were manually set to one. The randoms used in our clustering analysis have had
the completeness mask of Section 3.4 applied, and thus are not affected by this.
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Figure 3.14: Systematic dependences after applying photometric weights: Mean density
fluctuations for LRGs (red circles), ELGs (green squares), and QSOs (blue diamonds), as a
function of (from top-left to bottom-right) mean stellar density, color excess EB−V , airmass,
seeing, sky background, and exposure time in each band, with Poisson errors. The top panel
in each figure is the cumulative sky fraction for each systematic.
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We can rewrite this in terms of the density contrasts δ = N/〈N〉 − 1, by exploiting the fact
that 〈Nobs〉 = 〈Nstar〉/fstar = 〈Ntrue〉/ftrue, such that the observed density of objects is

δobs =
Nobs

〈Nobs〉
− 1 =

Ntrue

〈Nobs〉
+ ε̄

Nstar

〈Nobs〉
− 1

= ftrue
Ntrue

〈Ntrue〉
+ ε̄fstar

Nstar

〈Nstar〉
− 1

= ftrue(δtrue + 1) + ε̄fstar(δstar + 1)− 1

= ftrueδtrue + ε̄fstarδstar (3.25)

Thus we can extract the contamination fraction by dividing the QSO-star cross-correlation
by the stellar autocorrelation function, wcross(θ)/wstar(θ) = 〈δobs, δstar〉/〈δstar, δstar〉 = ε̄fstar ≡
fcontam, since the cross-correlation between true QSOs and stars vanishes.15

As the stellar density varies significantly across the sky (see Figure 3.11), with a strong
gradient towards the galactic plane, we first divide the sky into three bins: |b| < 40, 40 <
|b| < 60, and |b| > 60. For each galactic latitude bin, we calculate wcross(θ) and wstar(θ),
averaged across all angular scales (as both correlation functions are flat, within error bars, for
all bins), and then bootstrap upon these averaged values to obtain error bars. The resulting
stellar contamination fractions are fcontam = 7% ± 4.9% for |b| < 40, fcontam = 4.9% ± 2.7%
for 40 < |b| < 60, and fcontam = 4.1% ± 2.3% for |b| > 60.

3.7 Angular Clustering Measurements

Mean densities

The average target densities for DR7 are given in Table 3.5. We present the raw densities
as well as the densities after observational effects have been accounted for using the masks
and weights described in this chapter. Here, densities are calculated by taking the ratio
of the total number of objects and the total area, with the latter being estimated using
counts of uniform randoms with the masks and weights applied to them. For an independent
calculation of raw target densities, column 2 of the counts-in-cells tables in Section 3.7 gives
the average number of objects N̄ within a square cell of some width, and thus can be divided
by the corresponding cell area to give the mean (raw) density smoothed over that scale.

Angular correlation functions with r0, γ fits

The measured angular correlation functions for the three target classes are shown in Fig-
ure 3.16. We present the correlation functions at various stages of analysis, to demonstrate

15We have assumed an ideal stellar template; in reality, there may be a small fraction of true QSOs in
the star sample, or a fraction of galaxies in both the QSO and star samples which correlate with each other,
but these fractions should be much smaller than the fraction of stellar contaminants in the QSO sample, and
hence we can ignore them to first order.
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Figure 3.15: Angular cross-correlation between DESI targets and stars, with errors from
bootstrapping on the area.

Avg. density (deg−2)

Target Raw Masked Masked & Weighted FDR

LRG 525.0 501.4 498.9 480

ELG 2497.5 2351.8 2352.7 2400

QSO 336.1 261.2 256.2 260

Table 3.5: Average densities for each target type, calculated over the available footprint.
The first column is the uncorrected densities, the second column has only had the masks
of Section 3.4 applied, and the third column has additionally had the photometric weights
of Section 3.6 applied. The projected target densities from the FDR are also included for
reference.



CHAPTER 3. DESI IMAGING SYSTEMATICS & CLUSTERING 55

the effects of applying masks, weights, and so on. The final, “cleanest”version is fit to theory,
as described below.

According to the current paradigm of galaxy formation, galaxies form within collapsed
overdensities of dark matter called“halos” (for a recent review on the galaxy-halo connection,
see Wechsler & Tinker 2018). Under this model, the correlation function of galaxies is the
sum of two contributions: a 2-halo term corresponding to pairs of galaxies within different
halos, and a 1-halo term corresponding to pairs of galaxies within the same halo. On small
scales, where the 1-halo term dominates, the correlation function depends on the complex
baryonic physics of galaxy formation and evolution, while on larger scales, where the 2-halo
term dominates, the correlation function is characterized by the halo bias describing how
dark matter halos trace the dark matter distribution. When combined, these two terms
result in an approximate power law, with a feature corresponding to the 1-halo to 2-halo
transition occurring around 1-2 h−1 Mpc, the typical virial radius of a halo. Motivated by
this, we assume the real-space correlation function is a simple power law of the form ξ(r) =
(r/r0)−γ. Using tabulated dN/dz for each target and applying the Limber approximation
(Equation 3.5), we obtain constraints on r0 and γ, listed in Table 3.6.

For LRGs, we determine r0 = 7.78± 0.26 h−1Mpc and γ = 1.98± 0.02, which agrees well
with previous results for similar samples from the literature; for example, Sawangwit et al.
(2011) (Table 2, row 4) finds r0 = 7.56± 0.03 h−1Mpc and γ = 1.96± 0.01 for a photometric
subsample of LRGs from SDSS imaging with z̄ = 0.68 and a similar redshift distribution,
over approximately the same range of angular scales. While the LRG correlation function
shows some additional structure that is not fit perfectly by a power law model, no strong
features are observed on these scales, which is generally consistent with earlier findings from
eBOSS and SDSS LRG studies (see e.g. Zehavi et al. 2005).

We find that the ELG correlation function has a broken form. When fitting from θ =
0.001◦ to θ = 0.01◦, the correlation function is well fit by r0 = 6.70 ± 0.10 h−1Mpc and
γ = 1.85 ± 0.01. However, for scales θ > 0.05◦, the slope becomes shallower, and the
correlation function is better fit by r0 = 5.45 ± 0.10 h−1Mpc and γ = 1.54 ± 0.01. At the
mean effective redshift of the DESI ELG sample, z ∼ 0.85, the co-moving scale of this break
is approximately 1 h−1Mpc, consistent with a 1-halo to 2-halo transition. The second slope
matches with the findings of Favole et al. (2016), who modeled a sample of ELGs selected
from the Canada-France Hawaii Telescope Legacy Survey (CFHTLS), cross-matched with
BOSS ELG and VIPERS redshifts, at mean redshift z̄ ≈ 0.8, to obtain s0 = 5.3±0.2 h−1Mpc
and γ = 1.6± 0.1. Furthermore, when calculating the angular correlation function over the
full CFHTLS footprint, they also observed a change of slope occurring at θ ≈ 0.01◦ − 0.05◦,
and found that this clustering was consistent with an HOD model having halo masses on
the order of 1012M� and satellite fraction fsat ∼ 22%. Similarly, Jouvel et al. (2015) found
s0 = 4.2 ± 0.26 h−1Mpc and γ = 1.48 ± 0.04 for a bright sample of eBOSS ELGs selected
from DES photometry at z̄ = 0.86. The real-space clustering amplitudes and slopes for both
LRGs and ELGs are also consistent with the results from Mostek et al. (2013) for red and
blue galaxy populations in DEEP2.

The QSO correlation function still contains a significantly enhanced clustering signal due
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Figure 3.16: Two-point angular correlation functions for LRGs, ELGs, and QSOs at several
levels of systematics analysis: without any corrections (green triangles), after applying masks
(blue squares), and after applying both masks and photometric weights (red error bars).
For QSOs, we perform the additional intermediate step of removing the anomalous regions
discussed in Section 3.5 (orange circles). The red lines are fit to a power-law model for the
three-dimensional clustering ξ(r) = (r/r0)−γ. The values of these fits are listed in more
detail in Table 3.6.

to systematics and contamination, with r0 = 21.9 ± 0.10 h−1Mpc and γ = 1.81 ± 0.02. By
comparison, some fiducial values of QSO clustering amplitude at z ∼ 2 from the literature
are: r0 = 5.84± 0.33 and γ = 1.65± 0.05 (Croom et al., 2005), or r0 = 4.56± 0.48 at fixed
γ = 1.5 (Myers et al., 2009).
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Target θmin, θmax r0 (h−1Mpc) γ log10Aw

LRG 0.001◦, 1◦ 7.78± 0.26 1.98± 0.02 −4.01± 0.05

ELG 0.001◦, 1◦ 5.98± 0.30 1.90± 0.03 −4.25± 0.06

0.001◦, 0.01◦ 6.70± 0.10 1.85± 0.01 −4.01± 0.02

0.05◦, 1◦ 5.45± 0.10 1.54± 0.01 −3.22± 0.02

QSO 0.001◦, 1◦ 21.9± 1.01 1.81± 0.03 −3.31± 0.07

Table 3.6: Results from fitting the correlation functions to a power-law ξ(r) = (r/r0)−γ,
where we have used the expected redshift distributions of DESI targets in the Limber ap-
proximation to convert between angular clustering and real-space clustering. We list the
angular scales fitted over, the expected z̄ of each sample, and the best fit parameter values
and errors.

Angular power spectra with b0, b(k) fits

We measure the angular power spectra of the three main DESI target samples using the
methods described in Section 3.2. We reiterate that the results presented here have already
had the masks and weights of the previous sections applied. Similar to their effect on the
angular correlation functions, the impact of the photometric weights derived in Section 3.6
on the angular power spectra is to reduce power on large scales. For LRGs, not using the
weights would increase the amplitude by ∼ 15% at ` ∼ 20 down to ∼ 1% at ` ∼ 75. For
ELGs, it would increase by ∼ 43% at ` ∼ 20 down to ∼ 1% at ` ∼ 150. For QSOs, it would
increase by ∼ 12% at ` ∼ 20 down to < 1% at ` ∼ 75.

From the angular power spectra, we fit the linear bias. First, we restrict to very large
scales where the bias is approximately constant, then relax this restriction as we probe the
scale dependence of the bias using the “P model” (Smith et al. 2007, Hamann et al. 2008,
Cresswell & Percival 2009), which treats the nonlinear correction to the bias as an extra
non-Poissonian shot noise term arising from the assumption that galaxies populate halos
(Seljak 2001, Schulz & White 2006, Guzik et al. 2007):

Pg −→ Pg + P =⇒ (3.26)

b(z)2 =
b2

0

D(z)2
−→ b(k, z)2 =

b2
0

D(z)2

(
1 +

P

b2
0Pm(k, z)

)

In terms of the angular power spectra, which involve convolution with the radial distributions
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(see Equation 3.13), we have

C` −→ C` + C

C = P

∫
dχ f(χ)2 1

χ2

1

D(z)2
(3.27)

Using CLASS, we compare C` derived from linear and HALOFIT (Smith et al., 2003) predic-
tions of the matter power spectrum to estimate `max where they begin to diverge, taking the
common assumption that the nonlinear correction to the matter power spectrum becomes
significant at approximately the same scale as nonlinear effects in the galaxy bias (see e.g.
Fry & Gaztanaga 1993, Modi et al. 2017, Desjacques et al. 2018, Wilson & White 2019). We
find that `max ≈ 200 is appropriate for LRGs and ELGs, and slightly conservative for QSOs,
which are at higher mean redshift.

LRGs

With `max = 200, we use the linear theory matter power spectrum and fit the scale-
independent bias in two ways: first, by fixing the Poisson shot noise term W̃ = 1/n̄ and
only fitting b0, and second, by simultaneously fitting b0 and W̃ . Then, we extend out to
`max = 500 and add the additional P parameter to our model. We fit P in several ways:
both using the previously found values of b0 and W̃ from the `max = 200 case, and also
doing a simultaneous fit to b0 and P , with W̃ absorbed into P . The results of all fits are
shown in Table 3.7 for LRGs, with all models giving similar results and showing agreement
with expectation. In Figure 3.17, we plot the binned data, the best fit model, and the FDR
expectation curve.

ELGs

For ELGs, we find that attempting to co-fit the bias and shot noise terms simultaneously
returns unphysical negative values for the latter, due to enhanced power at scales ` < 150
even after applying masks and weights (fortunately, these scales should not directly impact
BAO and RSD measurements). However, when fixing the shot noise as W̃ = 1/n̄, we obtain
b0 = 1.273±0.005, which agrees well with e.g. Comparat et al. (2013), Delubac et al. (2017).

We also calculate the corresponding C` for each of the two power-law model w(θ) fits
in Figure 3.16 and plot these as well in Figure 3.18, with shot noise contributions fitted as
additional free parameters. The results show consistency between our w(θ) and C` results,
both of which give clustering parameters falling within the range of fiducial values found in
previous studies.

The DESI FDR assumes a conservative lower limit of b0 = 0.84, also plotted in Fig-
ure 3.18, and we confirm that the ELG clustering bias is higher than this value. This is sig-
nificant as it has the effect of improving the statistical errors on BAO, while also somewhat
degrading the RSD forecasts, since more strongly biased tracers exhibit weaker anisotropy.
We note that allowing the shot noise term to float in the FDR curve in order to raise its
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LRG, bFDR
0 = 1.7

`max = 200 `max = 500

scale-independent bias P model

b0 n̄W̃ χ2

d.o.f
b0 n̄W̃ P χ2

d.o.f

1.570± 0.014 1 (fixed) 5.0 / 9 - - 3539± 99 12.6 / 25

1.607± 0.040 1.61± 0.43 3.7 / 8 - - 965± 99 18 / 25

1.569± 0.017 0 (fixed) 7120± 198 12.6 / 24

Table 3.7: Fitting the LRG large-scale bias from the angular power spectra. We initially limit
to ` ≤ 200 and fit the linear bias to a constant; first, by fixing the Poisson shot noise term
as 1/n̄, and second, by fitting the bias and noise simultaneously. Then we extend to ` = 500
and fit an additional parameter P for the scale-dependent bias model; first, by holding the
previously found values fixed and fitting only the non-Poisson shot noise term P at larger
`, and second, by fitting the linear bias and P simultaneously, with P now absorbing both
shot noise terms.

amplitude still results in a very poor fit, as it flattens the curve such that it can only achieve
artificial agreement with observation at very large `.

QSOs

For QSOs, the angular power spectrum, like the angular correlation function, is significantly
inflated with non-cosmological signals. As such, we do not report fitted values, but merely
plot the results in Figure 3.19 alongside FDR expectation to demonstrate the discrepancy.
Furthermore, whereas the LRGs and ELGs show no difference when comparing NGC and
SGC measurements, QSOs once again show a mismatch between galactic hemispheres; after
removing the problematic pixels found in Section 3.5, which caused disproportionately strong
small-scale clustering in the NGC, the shapes of the angular power spectra in the NGC and
SGC become identical, but the SGC is enhanced on all scales compared to the NGC. This
is consistent with our other findings, namely that the SGC has more stellar contamination
than the NGC and that the clustering of these stellar contaminants is relatively flat across
scales (Section 3.6).

16Since uncertainty in the shot noise terms would normally dominate the model errors (see Figure 3.17),
the “envelope” with fixed shot noise appears very thin.
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Figure 3.17: Angular power spectrum C` for LRGs. The red error bars are the binned errors
from Equation 3.12. The solid black line is the theoretical curve using the FDR value for the
linear bias. The orange envelope is our best fitting P-model result, with the model errors
dominated by uncertainty in the shot noise terms.

Counts-in-cells moments

As discussed in Section 3.2, detailed small-scale clustering information is invaluable for ac-
curate modelling and mock calibration. We calculate the counts-in-cells statistics over two
large fields, one in each galactic hemisphere, with effective areas Seff,N = 3300 deg2 and
Seff,S = 562.5 deg2 (Figure 3.20). We select these fields to be regular in shape and relatively
smooth, avoiding areas that are tattered or full of holes. We calculate the probability dis-
tribution P (N) for each field, then measure the weighted average and standard error of the
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Figure 3.18: Angular power spectrum C` for ELGs. The red error bars are the binned errors
from Equation 3.12. The solid black line is the theoretical curve using the FDR value for the
linear bias. The orange envelope16 is our best fit for the linear bias, using fixed shot noise
W̃ = 1/n̄. The dashed and dotted lines are the angular power spectra corresponding to the
power-law fits to the angular clustering determined in Section 3.7, with the shot noise terms
fit as extra free parameters.

factorial moments Fp (Wolk et al., 2013):

F̄p =

∑
i=N,S

Seff,iFp,i∑
i=N,S

Seff,i

(∆Fp)
2 =

∑
i=N,S

Seff,i(Fp,i − F̄p)2

∑
i=N,S

Seff,i

Following the reasoning of Wolk et al. (2013), we do not perform the complex error prop-
agation from factorial moments to correlation functions, as the error estimate is already a
crude approximation limited by the small number of fields.
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Figure 3.19: Angular power spectrum C` for QSOs. The red error bars are the binned errors
from Equation 3.12. The magenta circles and blue squares are for measurements restricted
to the NGC and SGC, respectively. The solid black line is the theoretical curve using the
FDR value for the linear bias and fixed shot noise W̃ = 1/n̄.

Figure 3.21 shows the probability distributions P (N) evaluated in square cells with differ-
ent widths from θ = 0.01◦ to θ = 1◦ for each target class, with a cell width close to the fiber
patrol radius (1.4′ ≈ 0.023◦) highlighted. The dashed vertical line drawn for this highlighted
cell represents the expected number of targets calculated from multiplying the mean target
density with the cell area. Note that even for ELGs, the first few angular bins are shot-noise
dominated (N̄ < 1 so most cells contain one or zero targets).

Table 3.8 presents the following quantities for each of the three main target classes:

• mean N̄ ≡ 〈N〉

• variance σ2 ≡ 〈(N − N̄)2〉

• skewness 〈(N − N̄)3〉/σ3

• kurtosis 〈(N − N̄)4〉/σ4

• cell-averaged angular correlation functions w2, w3, w4
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Figure 3.20: Two patches over which we calculate the counts-in-cells distributions and mo-
ments. These were chosen by eye as survey regions with no tattered edges and relatively few
holes.

From the above quantities, other quantities of interest can be determined, such as the
hierarchical moments Sp = wp/w

p−1
2 (Szapudi & Szalay 1993b, Colombi & Szapudi 2001),

fitted power law parameters for w2 (see e.g. Blake & Wall 2002), etc. More directly, these
quantities can be used for the training and testing of mock catalogs.

Clustering as a function of magnitude

Angular clustering is expected to scale with sample depth (Peebles, 1980), so analyzing w(θ)
as a function of magnitude provides another test for the presence of systematics.

We divide the LRG and ELG samples into eight disjoint, equally wide magnitude slices,
from the bright limit (mz = 18.01 for LRGs, mg = 21 for ELGs) to the faint limit (mz = 20.41
for LRGs, mg = 23.4 for ELGs) of the target selection. For each bin, we evaluate w(θ)17. The
results are shown in Figures 3.22 and Figures 3.23, with the upper plots showing w(θ) for each
slice, and the lower plots showing the same functions but with the angular dependence divided
out using a representative value of γ determined from fitting the full sample (Table 3.6).

Qualitatively, the results match expectation: the brighter subsamples have larger clus-
tering amplitudes and break from the power law form at larger scales. We also note that, for
both LRGs and ELGs, the minimum inflection slides to smaller scales at fainter magnitudes,
again consistent with a 1-halo to 2-halo transition; fainter bins are at higher redshift (so the

17Note, we do not re-evaluate the photometric weights for each magnitude bin but instead apply the same
weights to all bins.
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Figure 3.21: P (N) vs. N for 15 logarithmically spaced cell widths from θ = 0.01◦ to θ = 1◦.
The highlighted cell has width 0.268◦ ≈ 1.61 arcmin, close to the fiber patrol radius of 1.4
arcmin, and the dashed vertical lines correspond to the average target density times the cell
area. The dotted vertical line at N = 1 marks the limit where shot noise dominates (N̄ < 1).
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Width N̄ σ2 〈(N−N̄)3〉
σ3

〈(N−N̄)4〉
σ4 w2 w3 w4

LRG 0.010◦ 0.0490± 0.0019 0.0550± 0.0023 7.50± 0.23 260± 35 2.410± 0.014 250± 18 88000± 8100

0.014◦ 0.0950± 0.0036 0.1120± 0.0047 7.30± 0.35 340± 49 1.870± 0.022 146.0± 9.4 40000± 3400

0.019◦ 0.1840± 0.0069 0.2320± 0.0097 7.50± 0.45 410± 58 1.420± 0.025 81.0± 4.3 16000± 1200

0.027◦ 0.350± 0.013 0.490± 0.020 8.10± 0.48 470± 55 1.060± 0.025 45.0± 1.5 6200± 300

0.037◦ 0.680± 0.026 1.050± 0.042 9.10± 0.45 550± 44 0.780± 0.024 24.90± 0.21 2520± 21

0.052◦ 1.320± 0.050 2.290± 0.086 10.00± 0.38 620± 29 0.560± 0.020 13.10± 0.15 990± 26

0.072◦ 2.550± 0.096 5.10± 0.18 10.10± 0.22 617.0± 4.3 0.390± 0.015 6.30± 0.21 360± 28

0.100◦ 4.90± 0.19 11.40± 0.36 9.200± 0.090 500± 22 0.270± 0.012 2.80± 0.13 110± 12

0.139◦ 9.50± 0.36 26.00± 0.75 7.550± 0.016 330± 20 0.1820± 0.0086 1.090± 0.066 27.0± 3.5

0.193◦ 18.40± 0.70 61.0± 1.6 5.710± 0.016 190± 12 0.1260± 0.0063 0.410± 0.028 5.80± 0.83

0.268◦ 35.0± 1.3 145.0± 3.2 4.070± 0.049 95.0± 6.9 0.0880± 0.0047 0.150± 0.012 1.20± 0.19

0.373◦ 69.0± 2.6 359.0± 6.0 2.790± 0.093 45.0± 4.2 0.0620± 0.0036 0.0560± 0.0060 0.250± 0.044

0.518◦ 132.0± 5.1 906.0± 8.7 1.90± 0.13 21.0± 2.6 0.0440± 0.0029 0.0210± 0.0031 0.050± 0.011

0.720◦ 256.0± 9.8 2338.0± 5.3 1.30± 0.14 11.0± 1.6 0.0320± 0.0024 0.0080± 0.0016 0.0100± 0.0028

1.000◦ 490± 19 6110± 99 0.90± 0.13 6.0± 1.1 0.0230± 0.0020 0.00360± 0.00083 0.00230± 0.00080

ELG 0.010◦ 0.2350± 0.0030 0.290± 0.010 5.0± 1.2 90± 47 1.10± 0.27 30± 15 2000± 1100

0.014◦ 0.4530± 0.0058 0.630± 0.034 5.0± 1.5 110± 56 0.90± 0.21 19.0± 9.4 800± 520

0.019◦ 0.870± 0.011 1.40± 0.10 6.0± 1.8 120± 61 0.70± 0.16 12.0± 5.7 400± 230

0.027◦ 1.690± 0.022 3.20± 0.30 7.0± 2.0 140± 67 0.50± 0.12 7.0± 3.4 200± 100

0.037◦ 3.260± 0.042 7.30± 0.79 7.0± 2.2 160± 75 0.380± 0.088 4.0± 1.9 80± 49

0.052◦ 6.290± 0.080 17.0± 1.9 7.0± 2.2 150± 72 0.260± 0.055 1.90± 0.92 30± 18

0.072◦ 12.10± 0.15 37.0± 3.7 6.0± 1.8 110± 54 0.170± 0.030 0.80± 0.35 7.0± 4.6

0.100◦ 23.40± 0.30 83.0± 5.6 5.0± 1.2 70± 30 0.110± 0.013 0.30± 0.11 1.60± 0.92

0.139◦ 45.30± 0.57 192.0± 3.3 4.00± 0.50 50± 11 0.0720± 0.0036 0.110± 0.021 0.40± 0.12

0.193◦ 87.0± 1.1 460± 24 3.40± 0.25 34.0± 3.4 0.0490± 0.0018 0.0480± 0.0058 0.110± 0.019

0.268◦ 169.0± 2.1 1200± 170 3.0± 1.0 30± 15 0.0350± 0.0049 0.030± 0.013 0.050± 0.038

0.373◦ 326.0± 3.9 3100± 760 3.0± 1.7 30± 24 0.0260± 0.0065 0.020± 0.014 0.030± 0.034

0.518◦ 628.0± 7.3 9000± 3000 3.0± 2.1 30± 28 0.0200± 0.0071 0.010± 0.013 0.020± 0.027

0.720◦ 1210± 14 30000± 11000 3.0± 2.3 30± 29 0.0170± 0.0071 0.010± 0.010 0.020± 0.020

1.000◦ 2340± 25 80000± 39000 2.0± 2.2 20± 25 0.0140± 0.0068 0.0070± 0.0079 0.010± 0.012

QSO 0.010◦ 0.02990± 0.00011 0.03700± 0.00054 18.0± 1.6 1500± 290 7.90± 0.42 2900± 440 1900000± 420000

0.014◦ 0.05780± 0.00022 0.0800± 0.0018 25.0± 3.2 3000± 650 6.70± 0.43 2300± 410 1500000± 360000

0.019◦ 0.11160± 0.00042 0.1820± 0.0064 36.0± 5.7 5000± 1300 5.70± 0.44 1800± 370 1100000± 300000

0.027◦ 0.21550± 0.00081 0.440± 0.022 49.0± 8.9 9000± 2300 4.70± 0.44 1300± 310 800000± 230000

0.037◦ 0.4160± 0.0016 1.080± 0.077 60± 12 12000± 3400 3.80± 0.41 900± 240 500000± 150000

0.052◦ 0.8030± 0.0030 2.70± 0.25 70± 15 13000± 4200 2.90± 0.37 600± 170 240000± 85000

0.072◦ 1.5510± 0.0058 6.70± 0.76 70± 17 12000± 4200 2.10± 0.30 300± 100 100000± 38000

0.100◦ 2.990± 0.011 16.0± 2.1 70± 16 10000± 3300 1.50± 0.22 170± 54 40000± 13000

0.139◦ 5.780± 0.021 39.0± 5.2 60± 13 7000± 2300 1.00± 0.15 80± 24 11000± 4000

0.193◦ 11.160± 0.040 90± 12 50± 10 5000± 1500 0.640± 0.094 34.0± 9.9 3000± 1100

0.268◦ 21.550± 0.077 210± 27 42.0± 7.5 3400± 930 0.400± 0.055 13.0± 3.6 700± 250

0.373◦ 41.60± 0.15 450± 59 32.0± 5.4 2000± 510 0.240± 0.033 4.0± 1.2 140± 49

0.518◦ 80.30± 0.29 1000± 130 23.0± 3.7 1000± 260 0.140± 0.019 1.40± 0.38 25.0± 8.5

0.720◦ 155.20± 0.56 2100± 270 16.0± 2.5 500± 130 0.080± 0.011 0.40± 0.11 4.0± 1.4

1.000◦ 300.0± 1.1 4500± 570 10.0± 1.5 230± 54 0.0460± 0.0061 0.120± 0.031 0.60± 0.20

Table 3.8: Mean, variance, skewness, kurtosis, and cell-averaged n-point angular correlation
functions for each of the three main DESI target classes measured in square cells.
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Figure 3.22: Angular correlation functions for LRGs in eight magnitude bins (upper plot),
with the angular dependence scaled out for a fixed slope of γ = 1.98 (lower plot), which is
the slope determined from fitting over the full LRG sample in Table 3.6.
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Figure 3.23: Angular correlation functions for ELGs in eight magnitude bins (upper plot),
with the angular dependence scaled out for a fixed slope of γ = 1.54 (lower plot), which is
the slope determined from fitting over the full ELG sample in Table 3.6.
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characteristic scale of the transition will shift to smaller angles due to the larger angular
diameter distance) and/or lower luminosity (thus the 1-halo term will be weaker, as less
luminous galaxies reside in less massive halos).

The best fit values for the clustering amplitudes Aw and slopes γ are reported in Ta-
bles 3.9 and 3.10. We fit Aw with the fixed representative value of γ, and also fit Aw and γ
simultaneously, finding similar results in either case. We also perform the fits over different
sets of angular scales, starting with a minimum cutoff of θ = 0.005 for LRGs to avoid scales
where the power law model appears to break down, and obtaining fits for θ < 0.05◦ and
0.05◦ < θ < 1◦ separately as well as for the full range.

3.8 Spectroscopic Cross-Correlations

Clustering as a function of redshift

External catalogs

To probe the clustering as a function of redshift through cross-correlations, as described
in Sections 3.2 and 3.2, we make use of several external spectroscopic catalogs. We use
the CMASS galaxy sample from DR12 of the Baryon Oscillation Spectroscopic Survey
(BOSS; Eisenstein et al. 2011; Dawson et al. 2013a), which selects higher redshift galax-
ies at 0.4 < z < 0.8 and has significant angular overlap with the DECaLS footprint. We also
use galaxies from the the final data release of the VIMOS Public Extragalactic Redshift Sur-
vey18 (VIPERS; Scodeggio et al. 2018). VIPERS extends over two narrow CFHTLS fields,
W1 and W4, with a combined area of approximately 23.5 deg2, and has nearly 90, 000 redshifts
out to z ∼ 1. Finally, we use the main sample of QSOs from eBOSS DR14 (Dawson et al.,
2016), which overlaps with the DECaLS footprint in the south galactic cap. Figure 3.24
shows where the footprints of these surveys intersect with DECaLS DR7, and Figure 3.25
demonstrates how their redshift distributions span the expected redshift ranges of the DESI
targets.

Projected real-space cross-correlation functions

We present the real-space projected cross-correlation functions (derived in Section 3.2) for
LRGs in Figure 3.26, using CMASS galaxies, VIPERS galaxies, and eBOSS QSOs in bins
of width δz = 0.1. Some noisy redshift bins are omitted from the plots. The error bars are
from bootstrapping on the area, and therefore are likely overestimated for VIPERS, which
has very small fields.

For ELGs, we initially find that the cross-correlations with CMASS galaxies flatten above
θ ∼ 0.01◦ for all redshift bins. However, using the CMASS systematics weights in concert
with our own photometric weights eliminates this effect, indicating a correlation between

18http://vipers.inaf.it/

http://vipers.inaf.it/
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LRG

θmin, θmax mz bin med mz # objects log10Aw (γ = 1.98) log10Aw γ

0.005◦, 0.05◦ 20.11, 20.41 20.26 868849 −3.94 −3.92
−3.96 −4.01 −3.88

−4.15 2.00 2.07
1.93

19.81, 20.11 19.96 790503 −3.90 −3.88
−3.92 −3.97 −3.82

−4.12 2.00 2.08
1.92

19.51, 19.81 19.66 692920 −3.83 −3.81
−3.86 −3.91 −3.72

−4.10 2.00 2.09
1.91

19.21, 19.51 19.37 596349 −3.80 −3.78
−3.82 −3.87 −3.71

−4.04 2.00 2.08
1.92

18.91, 19.21 19.06 518696 −3.77 −3.75
−3.79 −3.84 −3.68

−4.01 2.00 2.08
1.92

18.61, 18.91 18.78 434355 −3.69 −3.68
−3.70 −3.76 −3.66

−3.86 2.00 2.04
1.96

18.31, 18.61 18.48 257434 −3.56 −3.55
−3.58 −3.63 −3.50

−3.76 2.00 2.06
1.94

18.01, 18.31 18.19 137380 −3.41 −3.39
−3.43 −3.48 −3.25

−3.72 2.00 2.10
1.90

0.05◦, 1◦ 20.11, 20.41 20.26 868849 −3.85 −3.83
−3.87 −3.56 −3.50

−3.61 1.87 1.91
1.83

19.81, 20.11 19.96 790503 −3.82 −3.80
−3.85 −3.56 −3.50

−3.61 1.88 1.92
1.84

19.51, 19.81 19.66 692920 −3.78 −3.76
−3.81 −3.43 −3.39

−3.48 1.85 1.88
1.82

19.21, 19.51 19.37 596349 −3.75 −3.72
−3.78 −3.31 −3.26

−3.35 1.81 1.85
1.78

18.91, 19.21 19.06 518696 −3.74 −3.71
−3.77 −3.27 −3.22

−3.31 1.80 1.83
1.77

18.61, 18.91 18.78 434355 −3.67 −3.65
−3.69 −3.25 −3.23

−3.27 1.82 1.83
1.81

18.31, 18.61 18.48 257434 −3.55 −3.53
−3.57 −3.20 −3.17

−3.23 1.85 1.86
1.83

18.01, 18.31 18.19 137380 −3.43 −3.41
−3.46 −3.01 −2.96

−3.06 1.82 1.85
1.78

0.005◦, 1◦ 20.11, 20.41 20.26 868849 −3.90 −3.88
−3.92 −3.65 −3.60

−3.70 1.90 1.93
1.87

19.81, 20.11 19.96 790503 −3.87 −3.85
−3.88 −3.68 −3.63

−3.74 1.92 1.95
1.89

19.51, 19.81 19.66 692920 −3.81 −3.80
−3.83 −3.67 −3.62

−3.73 1.94 1.97
1.91

19.21, 19.51 19.37 596349 −3.78 −3.76
−3.80 −3.61 −3.56

−3.67 1.93 1.96
1.90

18.91, 19.21 19.06 518696 −3.76 −3.74
−3.77 −3.62 −3.56

−3.67 1.94 1.96
1.91

18.61, 18.91 18.78 434355 −3.68 −3.67
−3.69 −3.55 −3.51

−3.59 1.94 1.96
1.92

18.31, 18.61 18.48 257434 −3.55 −3.54
−3.57 −3.45 −3.40

−3.49 1.94 1.97
1.92

18.01, 18.31 18.19 137380 −3.43 −3.41
−3.44 −3.40 −3.33

−3.47 1.97 2.00
1.94

Table 3.9: Best fit parameters from modelling the angular clustering of LRGs in z-band
magnitude bins using Equation 3.5. The clustering amplitude Aw is reported for a fixed
slope of γ = 1.98 (taken from the fit over the full LRG sample; see Table 3.6), as well as the
results of fitting amplitude and slope simultaneously. θmin and θmax are the angular scales
fit over, and mz is in AB magnitudes.
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ELG

θmin, θmax mz bin med mz # objects log10Aw (γ = 1.54) log10Aw γ

0◦, 0.05◦ 23.1, 23.4 23.27 8530522 −3.15 −3.08
−3.22 −4.10 −3.98

−4.22 1.80 1.87
1.73

22.8, 23.1 22.97 4768510 −2.98 −2.91
−3.07 −4.66 −4.59

−4.72 1.99 2.02
1.95

22.5, 22.8 22.68 2462312 −2.67 −2.59
−2.76 −4.43 −4.32

−4.54 2.00 2.05
1.95

22.2, 22.5 22.38 1224671 −2.36 −2.27
−2.47 −4.09 −3.94

−4.24 2.00 2.06
1.94

21.9, 22.2 22.07 614394 −1.97 −1.88
−2.09 −3.68 −3.53

−3.84 2.00 2.05
1.95

21.6, 21.9 21.77 334669 −1.74 −1.61
−1.90 −3.31 −3.16

−3.47 2.00 2.05
1.95

21.3, 21.6 21.47 205434 −1.74 −1.45
−2.28 −3.00 −2.90

−3.11 2.00 2.03
1.97

21.0, 21.3 21.16 138431 −1.74 −1.17
−2.31 −2.68 −2.62

−2.75 2.00 2.01
1.98

0.05◦, 1◦ 23.1, 23.4 23.27 8530522 −3.23 −3.21
−3.26 −2.93 −2.87

−2.99 1.43 1.48
1.39

22.8, 23.1 22.97 4768510 −3.15 −3.13
−3.17 −2.80 −2.79

−2.82 1.41 1.42
1.40

22.5, 22.8 22.68 2462312 −2.99 −2.98
−3.01 −2.76 −2.74

−2.78 1.45 1.46
1.44

22.2, 22.5 22.38 1224671 −2.77 −2.76
−2.78 −2.64 −2.62

−2.65 1.49 1.50
1.48

21.9, 22.2 22.07 614394 −2.47 −2.46
−2.48 −2.53 −2.49

−2.58 1.56 1.59
1.54

21.6, 21.9 21.77 334669 −2.22 −2.19
−2.25 −2.51 −2.42

−2.60 1.66 1.71
1.61

21.3, 21.6 21.47 205434 −2.04 −2.01
−2.08 −2.47 −2.33

−2.61 1.72 1.80
1.65

21.0, 21.3 21.16 138431 −1.93 −1.89
−1.97 −2.37 −2.17

−2.57 1.72 1.83
1.62

0◦, 1◦ 23.1, 23.4 23.27 8530522 −3.17 −3.12
−3.21 −4.08 −3.99

−4.17 1.79 1.85
1.74

22.8, 23.1 22.97 4768510 −3.05 −2.99
−3.11 −4.16 −4.06

−4.25 1.87 1.92
1.81

22.5, 22.8 22.68 2462312 −2.80 −2.73
−2.87 −4.09 −3.99

−4.19 1.92 1.96
1.87

22.2, 22.5 22.38 1224671 −2.53 −2.45
−2.63 −4.00 −3.89

−4.11 1.98 2.02
1.94

21.9, 22.2 22.07 614394 −2.32 −2.22
−2.43 −3.69 −3.59

−3.79 2.00 2.04
1.96

21.6, 21.9 21.77 334669 −2.13 −2.04
−2.24 −3.35 −3.25

−3.44 2.00 2.03
1.97

21.3, 21.6 21.47 205434 −1.98 −1.88
−2.09 −3.11 −2.99

−3.23 2.00 2.04
1.96

21.0, 21.3 21.16 138431 −1.89 −1.80
−2.01 −2.99 −2.76

−3.22 2.00 2.09
1.91

Table 3.10: Best fit parameters from modelling the angular clustering of ELGs in g-band
magnitude bins using Equation 3.5. The clustering amplitude Aw is reported for a fixed
slope of γ = 1.54 (taken from the fit over the full ELG sample; see Table 3.6), as well as the
results of fitting amplitude and slope simultaneously. θmin and θmax are the angular scales
fit over, and mg is in AB magnitudes.
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Figure 3.24: Visualizing the overlap between the DECaLS DR7 footprint (gray) and the
footprints of the external catalogs used for cross-correlations. Positions are mapped using
Mollweide projection.

systematics in the two catalogs, likely the anti-correlation with stars found in both DESI
ELGs and CMASS samples. The projected real-space cross-correlations are plotted in Fig-
ure 3.27, along with the power-law predictions from the ELG w(θ) fits in Table 3.6, which
we translate into wp(rp) using Equation 3.7. We thus have consistency between ELG w(θ)
in Figure 3.16, C` in Figure 3.18, and wp(rp) in Figure 3.27. We also note that the break at
small scales becomes less pronounced at higher redshift, as the 2-halo term becomes more
dominant.

More puzzlingly, ELGs appear to show no correlation with eBOSS QSOs over the over-
lapping redshift range. This null signal is consistent within error bars across all redshift bins,
and remains null even when switching to brighter ELG subsamples. At present, we wish to
avoid speculating on why there is no cross-correlation between ELGs and eBOSS QSOs, as a
full investigation with survey validation data and spectra is expected to paint a much clearer
picture. Given the reasonable ELG autocorrelation and ELG × CMASS cross-correlation,
we do not believe this is indicative of catastrophic failure in the ELG sample. Finally, we
note that the QSO cross-correlations are too noise-dominated to obtain a meaningful signal.

Clustering dN/dz

For ELGs and QSOs, issues with cross-correlation measurements discussed in the previous
section prevent us from obtaining meaningful dN/dz over the full redshift ranges of the
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Figure 3.25: Visualizing the redshift ranges for DESI targets compared to catalogs from
spectroscopic surveys which overlap the DECaLS footprint. The solid lines correspond to
the expected dN/dz per square degree of the DESI target classes, while the histograms are
from the external catalogs.

targets. We therefore focus on LRGs and defer further investigation of ELGs and QSOs to
a future work.

Using the method outlined in Section 3.2, we integrate over each set of cross-correlations
in the overlapping redshift ranges to piece together the shape of the LRG dN/dz. We choose
the minimum and maximum physical scales of integration in such a way as to reduce the
propagated errors on dN/dz; for LRG × CMASS and LRG × VIPERS, we use smin = 0.05
h−1 Mpc, smax = 5 h−1 Mpc, whereas for LRG × eBOSS we use smin = 0.2 h−1 Mpc,
smax = 10 h−1 Mpc.

To minimize the potential impact of bias evolution in the photometric sample, we first
divide it by color before cross-correlating each subsample separately, as discussed by Ménard
et al. (2013), Schmidt et al. (2013), Rahman et al. (2015), Gatti et al. (2018),. In Figure 1 of
Prakash et al. (2016), the photometric redshifts of eBOSS LRGs are plotted in color-space,
with a transition from mostly z < 0.6 objects to mostly 0.6 < z < 1.0 objects occurring
when r−W1 is in the range between 2 and 3. Motivated by this, we select a roughly median
value of r −W1 = 2.6 to create two similarly sized LRG subsamples. We cross-correlate
these two subsamples separately with the three external catalogs, with the combined results
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Figure 3.26: Projected real-space cross-correlations between LRGs and three external sam-
ples with spectroscopic redshifts: CMASS galaxies, VIPERS galaxies, and eBOSS QSOs.
Error bars are from bootstrapping.
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Figure 3.27: Projected real-space cross-correlations between ELGs and CMASS galaxies.
Error bars are from bootstrapping. Dashed and dotted lines are the power-law fits of the
ELG autocorrelation from Table 3.6.

shown in Figure 3.28 and compared to the results derived without binning the sample.
We find that the clustering dN/dz from all three cross-correlations match very well with

the fiducial FDR dN/dz.19 Along with the excellent agreement between measured and fidu-
cial bias found in Section 3.7, this suggests that the LRG sample will be able to fully meet
the cosmology goals of the collaboration. Additionally, the upper panel of Figure 3.28 con-
firms that the color cut at r−W1 = 2.6 effectively splits the LRG sample into high and low
redshift subsamples with an approximate boundary at z ∼ 0.65.

Clustering as a function of luminosity

By cross-correlating magnitude binned LRGs with redshift binned spectroscopic catalogs, we
can also probe the luminosity dependence of the sample. We begin by dividing the LRGs into
three broader magnitude bins from mz = 18.01 to mz = 20.41, the bright and faint limits,
respectively, of the target selection. To improve signal-to-noise, we also double the widths
of the redshift bins to δz = 0.2 and focus on the cross-correlations with CMASS galaxies,
which involve the smallest error bars. Through these cross-correlations, we can crudely
reconstruct dN/dz for each of the magnitude bins, shown in Figure 3.29. The behavior

19We note that the fiducial redshift distributions in Figure 3.25 are of the targets selected from imaging,
including contaminants.
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Figure 3.28: The clustering-based dN/dz for LRGs derived from cross-correlations with
CMASS galaxies (magenta), VIPERS galaxies (orange), and eBOSS QSOs (lime), with the
expected dN/dz plotted as a dashed line. The upper plot shows dN/dz calculated using two
r−W1 color bins, a proxy for a z ∼ 0.6 cut in order to reduce the impact of bias evolution,
while the lower plot is determined using the full sample. Error bars are from propagating
bootstrap errors from the cross-correlations through the dN/dz calculation.
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Figure 3.29: Normalized dN/dz for each of three broad magnitude bins, derived from cross-
correlations with CMASS galaxies in broad redshift bins of δz = 0.2. Error bars are from
propagating bootstrap errors from the cross-correlations through the dN/dz calculation.

is as expected; brighter objects are at lower mean redshift, with the redshift distributions
generally appearing as deeper and deeper copies of each other.

This result allows us to convert angular cross-correlations into projected real-space cross-
correlations, as detailed in Section 3.2, giving us wp(rp) in three broad luminosity bins
for a given redshift bin. We select a bin near the middle of the CMASS redshift range20,
0.4 < z < 0.6, and fit the clustering for each corresponding luminosity bin to a power law,
wp(rp) = Ar1−γ

p . The results are given in Table 3.11.

3.9 Summary and Conclusions for Chapter 3

In order to fully realize the statistical power of the DESI experiment, it is vital to assess the
quality of the imaging data and target definitions, and to account for any non-cosmological
sources of spatial fluctuations in the galaxy catalogs that could bias the cosmological analyses.
In the first part of this chapter, we diagnose causes of systematic errors in the clustering of
DESI main targets selected from imaging and present masks and photometric weights aimed
at reducing these effects. The masks and weights will be used in construction of cosmological
clustering samples. Our key results are summarized below:

20Since CMASS galaxies are selected by color cuts, as are our LRGs, objects at the edges of the redshift
range (particularly the low end, where interlopers become more probable) may be physically different from
objects in the middle, with different clustering.
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LRG × CMASS, 0.4 < z < 0.6

mz bin Mz(z̄ = 0.5) log10A (γ = 1.98)

19.61, 20.41 -21.87, -21.07 −3.40 −3.36
−3.44

18.81, 19.61 -22.67, -21.87 −2.51 −2.49
−2.53

18.01, 18.81 -23.47, -22.67 −2.56−2.54
−2.59

Table 3.11: Fits to the luminosity binned LRG-CMASS cross-correlations assuming wp(rp) =
Ar1−γ

p . The first column specifies the LRG apparent magnitude bins, while the second column
calculates the corresponding absolute magnitude bin at the midpoint of the CMASS redshift
bin 0.4 < z < 0.6.

• We find that obscuration due to bright stars in the foreground creates significant varia-
tions in density, particularly for QSOs. Implementing aggressive masks around Tycho-2
and WISE stars, which remove 7-8% of the usable sky area for galaxies and 28% of the
usable sky area for QSOs, dramatically improves the agreement of the angular correlation
functions with cosmological predictions.

• We determine that a general mask around large galaxies and other extended sources is
not indicated; however, by visual inspection, we discover that failing to mask around the
Coma cluster and M3 will create a significantly overestimated clustering signal for QSOs
in the north galactic cap. Additionally, the images of a small number of very bright stars
are plagued by complex patterns of reflected pupil ghosts, which create structures in the
ELG density beyond the scope of even our highly conservative bright star masks.

• We find that masked LRGs exhibit only minor density variations as a function of potential
systematics such as stellar density, extinction, airmass, seeing, sky brightness, and exposure
time. By contrast, masked ELG and QSO densities still fluctuate significantly, with the
most dominant systematics, stellar density and extinction, affecting densities by as much
as 10%. We find that ELGs are anti-correlated with stars and extinction, while QSOs are
positively correlated. Photometric weights calculated by performing multilinear regression
on these trends significantly ameliorates them.

• We perform angular cross-correlations between the targets and stars, and again find that
LRGs are uncorrelated, ELGs are anti-correlated, and QSOs are positively correlated.
Dividing the stars into three galactic latitude bins, we use QSO-star cross-correlations and
star autocorrelations to estimate the stellar contamination fraction in the QSO sample as
a function of galactic latitude.

We stress that this process has been highly iterative, with our efforts continuously inform-
ing the evolution of DESI’s imaging data reduction pipelines and target selection algorithms.
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The Legacy Survey Data Release 9, which is currently being processed and will be used for
DESI target selection, has made several algorithmic upgrades motivated in part by the feed-
back in this study. These include changes to the pixel-level flat-field response functions and
an improved modeling of sky subtraction. The latter improvements are most pronounced
for ELG targets that are faint relative to the sky and therefore have their target densities
modulated by errors in the sky modeling. The new sky model also helps with issues of
scattered light around bright stars that affect the selection of QSO targets. In addition,
the imaging team has added more aggressive foreground masking and has flagged other bad
data from the list of problematic regions identified in this study (such as the ghost pupils
around certain visibly bright stars, and the M3/NGC contaminants in the north). Similarly,
the target selection algorithms have been iteratively updated many times in response to our
findings.

In addition to being a crucial first step towards constraining cosmology with DESI clus-
tering measurements, our findings have important implications for other ongoing and future
imaging surveys. As multi-epoch surveys become deeper and more sensitive, they will be
increasingly limited by systematic uncertainties from instrument calibration, survey charac-
teristics, and observing conditions. Our framework for identifying and mitigating the effects
of such systematics, such as our new approach to quantifying contamination due to stars, is
therefore highly relevant and widely applicable to future imaging surveys.

After applying masks and weights, we devote the second part of this chapter to modeling
the properties of the samples, providing the first large-scale clustering analysis of DESI
targets. Modeling the samples is an important first step for doing cosmology with DESI, and
our clustering results will also aid in the creation and validation of accurate mock catalogs.
Additionally, we present several new methodologies, including the technique of probing the
luminosity dependent clustering by cross-correlating magnitude-binned photometric samples
with redshift-binned spectroscopic samples. These methods can be applied to other clustering
studies with deep photometric data, for instance in future studies with data from the Large
Synoptic Survey Telescope (LSST Science Collaboration et al., 2009). Our main results are
outlined below:

• We present the average densities before and after the corrections have been applied, finding
that all three target densities are in reasonably good agreement with expectation after
masking and weighting.

• We model the angular correlation functions of the samples, assuming power law spatial
correlation functions. For LRGs, we recover values which agree very well with earlier stud-
ies. For ELGs, we see a broken power law, with different slopes for θ < 0.01◦ and θ > 0.05◦

which agree reasonably well with similar studies. For QSOs, we obtain a highly inflated
value for the clustering amplitude, indicating that substantial contamination remains.

• We compare the observed angular power spectra to theory to determine the linear large-
scale bias, and also probe the scale dependence of the bias in the weakly nonlinear regime.
For LRGs, we find a value of b0 that agrees very well with the DESI FDR prediction. For
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ELGs, we find a value of b0 that is higher than the conservative lower limit given by the
FDR but is similar to values from the literature and is self-consistent with our angular and
real-space clustering measurements. By contrast, the observed angular power spectrum
for QSOs is a poor fit to theory, with all scales seemingly affected by non-cosmological
signals.

• We use cross-correlations with external spectroscopy to determine real-space projected
cross-correlation functions in redshift bins, through which we also derive clustering dN/dz.
For LRGs, the clustering as a function of redshift behaves as expected, and we see an excel-
lent match with the expected dN/dz from target selection. For ELGs, the redshift-binned
cross-correlations with CMASS are consistent with expectation, but cross-correlations with
eBOSS QSOs show no significant correlation. For QSOs, the cross-correlations are not cur-
rently clean enough to meaningfully model dN/dz.

• The clustering of LRGs and ELGs as a function of magnitude also behaves as predicted,
with clustering amplitude scaling with depth. We provide fits to the angular correlation
functions in magnitude bins. We also cross-correlate magnitude binned LRGs with redshift
binned CMASS galaxies to probe luminosity dependent clustering.

• We present counts-in-cells moments and cell-averaged higher order correlation functions
to further facilitate mock calibration and validation.

Overall, our results suggest that the quality of the imaging and the selection of targets
are suitable for achieving the ambitious scientific objectives of the DESI collaboration. With
imaging surveys completed and spectroscopic first light announced in October 2019, the
commissioning phase is on track for completion in January 2020. After a survey validation
period in the spring, the 5-year survey is expected to begin in the summer of 2020. We
look forward to the exciting and impactful new science that DESI will enable in the coming
decade.



80

Chapter 4

Cross-Correlating DESI LRGs with
CMB Lensing

Cross-correlations between the lensing of the cosmic microwave background and tracers of
large-scale structure provide a unique way to reconstruct the growth of dark matter, break
degeneracies between cosmology and galaxy physics, and test theories of modified gravity.
In this chapter, we present a detection of the cross-correlation between DESI-like luminous
red galaxies (LRGs) selected from DECaLS imaging and CMB lensing maps reconstructed
with the Planck satellite at a significance of S/N = 27.2 over scales `min = 30, `max = 1000.
To correct for magnification bias, we determine the slope of the LRG cumulative magnitude
function at the faint limit as s = 0.999 ± 0.015, finding corrections on the order of a few
percent for Cκg

` , C
gg
` across the scales of interest. We fit the large-scale galaxy bias at the

effective redshift of the cross-correlation zeff ≈ 0.68 using two different bias evolution agnostic
models: a HaloFit times linear bias where the bias evolution is folded into the clustering-
based estimation of the redshift kernel, and a Lagrangian perturbation theory model of the
clustering evaluated at zeff . We also determine the error on the bias from uncertainty in the
redshift distribution; within this error, the two methods show excellent agreement with each
other and with DESI survey expectations.

4.1 Introduction

Modern cosmology hinges on observations of the large-scale structure of the Universe, which
is rich with clues about gravity, dark energy, and the mechanisms of cosmic expansion.
Next-generation galaxy surveys, including spectroscopic experiments such as the Dark En-
ergy Spectroscopic Instrument (DESI, DESI Collaboration et al. 2016) and deep imaging
experiments such as the Large Synoptic Survey Telescope (LSST, LSST Science Collabora-
tion et al. 2009), will map billions of galaxies in the coming decade and tighten constraints on
key fundamental parameters. While spectroscopic redshifts can be obtained for some subset
of imaged galaxies, the majority will increasingly rely on photometric redshift estimates (see
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e.g. Hogg et al. 1998 and references contained therein) or clustering-based redshift estimates
(see e.g. Newman 2008), enabling higher number density but noisier catalogs of galaxy
positions.

Measurements of the cosmic microwave background (CMB) provide another window into
the growth of large-scale structure, due to the lensing of the CMB photons as they free-
stream through the Universe and are deflected (on the order of a few arcminutes) by the
gravitational potentials of matter in their path. In the weak regime, gravitational lensing
remaps the CMB temperature and polarization primary anisotropies in predictable ways that
can be exploited to reconstruct high resolution maps of the projected matter density over
the past 13 billion years (Zaldarriaga & Seljak 1999, Hu & Okamoto 2002, Lewis & Challinor
2006). Detections of this mass lensing signal from the CMB have been made in a number of
ways, including cross-correlations with other tracers of large-scale structure (see e.g. Omori
et al. 2019 for a recent list).

CMB lensing offers the advantage of directly probing the underlying distribution of dark
matter, but suffers from information loss since it is a two-dimensional projection of the
three-dimensional matter density integrated along the line of sight from the surface of last
scattering (z ≈ 1100) to the present day. In contrast, galaxy samples with narrow redshift
windows are relatively well localized in position but are biased tracers of dark matter due
to the complex processes involved in galaxy formation. This leads to degeneracies between
these galaxy bias parameters and cosmological parameters of interest such as σ8. Cross-
correlations between CMB lensing and galaxy catalogs thus provide a means to chart the
growth of dark matter with time and break the degeneracy between galaxy physics and
cosmology. Additionally, on a practical level, systematics in the galaxy sample are unlikely
to be correlated to systematics in the CMB lensing maps, and a higher degree of uncertainty
in the galaxy redshift distribution can also be tolerated due to the broad redshift kernel of
the CMB lensing.

In this work, we leverage the high number density and completeness of the luminous red
galaxy (LRG) target class as defined by DESI and selected from deep multi-band imaging,
in combination with the all-sky CMB lensing convergence maps of the Planck collaboration,
to detect a galaxy-matter cross-correlation at high significance out to small scales `max =
1000. We jointly model the angular auto- and cross- spectra to probe the amplitude and
evolution of the galaxy bias. In the absence of spectroscopic redshifts, we use a combination
of photometric and clustering-based estimations of the galaxy redshift distribution. Within a
simple linear bias model Pgg(k, z) ≈ bg(z)Pmm(k, z), the advantage of the the clustering-based
method is that it allows us to measure an effective bias without assuming a bias evolution
model. By comparing results using photometric versus clustering redshift distributions, we
also evaluate the impact of uncertainty in the redshift distribution on the inferred parameters.

This chapter is organized as follows: Section 4.2 describes the lensing products and
imaging data, and outlines the construction of the DESI-like LRG catalog. In Section 4.3, we
characterize the redshift distribution of the galaxy sample based on angular cross-correlations
with external spectroscopic catalogs, and present a framework for modeling bias evolution
using these results. Section 4.4 outlines our methods for measuring and modelling angular



CHAPTER 4. CROSS-CORRELATING DESI LRGS WITH CMB LENSING 82

power spectra and covariances on a partial sky. Section 4.5 is devoted to determining and
applying corrections for the effects of magnification bias. In Section 4.6, we present and
model the resulting spectra, with Section 4.6 fitting the linear Eulerian galaxy bias under
the HaloFit (Smith et al., 2003) prescription while Section 4.6 interprets the results within
a Lagrangian perturbation theory framework. Finally, in Section 4.7, we summarize our
findings and suggest future directions.

Throughout, we work in co-moving coordinates and assume the fiducial cosmology of the
Planck 2018 results (Planck Collaboration et al. 2018a, Table 2, Column 7). All magnitudes
are quoted as AB magnitudes, unless otherwise specified.

4.2 Data

Planck CMB lensing maps

Using the most recent reconstructed lensing convergence maps and analysis masks provided
in the Planck 2018 release1 (Planck Collaboration et al., 2018b), we focus mainly on the
baseline estimates obtained from the SMICA DX12 CMB maps with a minimum-variance
(MV) estimate determined from both the temperature and polarization maps. To gauge the
impact of the thermal Sunyaev-Zeldovich (tSZ) effect, which has been shown to bias the
lensing reconstruction and contaminate cross-correlations with other tracers of large-scale
structure (see e.g. Osborne et al. 2014; van Engelen et al. 2014; Madhavacheril & Hill 2018;
Schaan & Ferraro 2019), we also repeat the analysis using the lensing estimate obtained
from a temperature-only SMICA map where tSZ has been deprojected using multifrequency
component separation. Throughout the remainder of this chapter, these two lensing maps
will be referred to as BASE and DEPROJ, respectively.

The spherical harmonic coefficients of the reconstructed lensing convergence maps are
provided in HEALPix2 (Górski et al., 2005) format with maximum order `max = 4096, and
the associated analysis masks are given as HEALPix maps with resolution NSIDE = 2048.
The approximate lensing noise power spectrum for the fiducial cosmology used in Planck
Collaboration et al. (2018b) is also provided up to `max = 4096.

Photometric DESI LRGs

The Dark Energy Spectroscopic Instrument (DESI; DESI Collaboration et al. 2016) is an
upcoming Stage IV3 dark energy experiment, installed on the Mayall 4m telescope at Kitt
Peak. DESI aims to produce the largest ever three-dimensional map of the Universe, with a
massively multiplexed spectrograph that will use robotic fiber positioners to measure as many
as 5000 spectra in parallel. Among the four main classes targeted by DESI are luminous

1https://wiki.cosmos.esa.int/planck-legacy-archive
2http://healpix.sf.net
3As defined in the Dark Energy Task Force report (Albrecht et al., 2006).

https://wiki.cosmos.esa.int/planck-legacy-archive
http://healpix.sf.net
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red galaxies (LRGs) out to z ≈ 1. LRGs, as their name suggests, are luminous and intrin-
sically red due to their high stellar mass and lack of recent star formation activity. LRGs
are excellent tracers of large-scale structure; as early-type galaxies with generally old popu-
lations of stars, they are expected to reside in massive halos and therefore cluster strongly.
Furthermore, their inherent brightness and the strong 4000Å feature in their spectral energy
distributions enable the efficient selection of a homogeneous sample using photometry.

DECaLS imaging data

The DECam Legacy Survey (DECaLS) is a deep, wide-field survey providing the optical
imaging used to conduct targeting for approximately two-thirds of the DESI footprint, cov-
ering the region bounded by δ . 32◦. Through the DECam instrument (Flaugher et al.,
2015) on the Blanco 4m telescope, DECaLS observes in three optical and near-IR bands
(g, r, z), with four additional mid-IR bands (W1, W2, W3, W4) provided by the Wide-
field Infrared Survey Explorer (WISE; Wright et al. 2010). DECam images are processed
and calibrated though the National Optical Astronomy Observatory (NOAO) Community
Pipeline, then fed into The Tractor 4 (Lang et al., 2016), which uses forward-modeling to
perform source extraction and produce probabilistic inference of source properties.

Our analysis is based on Data Release 8 (DR8), the final data release of the Legacy Survey
(Dey et al., 2018), which contains DECaLS observations from August 2014 through March
2019 (NOAO survey program 0404). DR8 also includes some non-DECaLS observations from
the DECam instrument, mainly from the Dark Energy Survey (DES; DES Collaboration
et al. 2005). In total, the DECaLS +DES portion of DR8 covers approximately 14,996
square degrees in the g-band, 15,015 square degrees in the r-band, 15,130 square degrees in
the z-band, and 14,781 square degrees in all three optical bands jointly.5

Galaxy selection

DESI LRGs are selected from DECaLS by applying a complex series of color cuts on
extinction-corrected magnitudes in g, r, z, and W1:

zfiber < 21.5

r − z > 0.7

(z −W1) > 0.8 (r − z)− 0.6

((g −W1 > 2.6) AND (g − r >1.4)) OR (r −W1 > 1.8)

(r − z > (z − 16.83) 0.45) AND (r − z > (z − 13.80) 0.19)

(4.1)

We note that the faint magnitude limit uses fiber flux, which is defined as the flux within

4https://github.com/dstndstn/tractor
5Estimated from using randoms distributed uniformly across the footprint to sum up the areas with at

least one exposure in each band.

https://github.com/dstndstn/tractor
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Figure 4.1: Color-color plots of the LRG target selection in DECaLS DR8.

a 1.5 arcsec diameter circular aperture centered on the model convolved with a 1.0 arcsec
FWHM Gaussian. Color-color plots of the resulting sample are displayed in Figure 4.1.

Masks

Instrument effects and transients create artifacts in the images which may impact the detec-
tion or fitting of sources. Additionally, bright foregrounds, including point sources such as
stars and extended sources such as large galaxies, globular clusters, and planetary nebulae,
can contaminate the pixels around them with false targets, thereby affecting the apparent
angular distribution of the target sample. DR8 provides bitmasks which leverage the NOAO
Community Pipeline’s data quality map, as well as several external catalogs, to reject bad
pixels and mask around foregrounds. The bits we use in our analysis are summarized in
Table 4.1 and briefly described below:

The ALLMASK_X bits are set for pixels that touch a bad pixel (as flagged by the NOAO
Community Pipeline) in all of the overlapping X-band images. The WISEM1 and WISEM2 bits
are set for pixels that touch a pixel in a mask around bright stars from the WISE catalog,
with the two masks using the W1 and W2 bands, respectively. The MEDIUM bit is set for
pixels that touch a pixel containing a medium-bright (phot_g_mean_mag < 16) star from
the Gaia DR2 catalog (?) or a bright (V T < 13) star from the Tycho-2 catalog (Høg et al.,
2000). The GALAXY bit is set for pixels that touch a pixel containing a large galaxy, where
the source catalog used for this mask is taken from John Moustakas’ Legacy Survey Large
Galaxy Atlas6 work with Dustin Lang. Finally, clusters and nebulae from OpenNGC7 are
masked around using a circular mask whose diameter is equal to the major axis of the object
being masked, and the CLUSTER bit is set for pixels touching this mask.

6https://github.com/moustakas/LSLGA
7https://github.com/mattiaverga/OpenNGC

https://github.com/moustakas/LSLGA
https://github.com/mattiaverga/OpenNGC
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Mask Number Area (deg2) fsurvey

no masks 9003243 14610.72 1.000

bits

ALLMASK_G 9002762 14610.72 1.000

ALLMASK_R 9002742 14610.72 1.000

ALLMASK_Z 9002458 14610.72 1.000

WISEM1 8578461 14230.96 0.974

WISEM2 8679070 14406.05 0.986

MEDIUM 8566358 13945.27 0.954

GALAXY 8996317 14599.17 0.999

CLUSTER 9003232 14609.73 1.000

all bits 8559863 13933.29 0.954

geometric
Tycho-2 8675511 14181.29 0.971

WISE 8488111 14094.18 0.965

all geometric 8399015 13859.42 0.949

all masks 8390823 13851.50 0.948

Table 4.1: Summary of foreground masks.

As demonstrated in Table 4.1, foreground stars are the dominant consideration. To
determine whether any additional stellar masking is warranted, we measure the density of
targets as a function of proximity to stars after the above bitmasks have been applied.
Using the Tycho-2 and WISE catalogs, we first bin the stars by their magnitudes (using the
V T and W1 bands, respectively), and then determine the density of LRGs in annular bins
around these stacks of stars. We find that there are still residual effects near Tycho-2 stars,
particularly for the brightest bins, that are not entirely captured by the bitmasks. We find
even more significant effects around WISE stars, with the LRG density peaking beyond the
radius of the bitmasks. We fit a magnitude-dependent masking radius for each star catalog
to apply as additional geometric masks:

R =

{
10 3.41 − 0.16 × V T arcsec, Tycho-2

10 2.87 − 0.13 × W1 arcsec, WISE
(4.2)

The addition of the geometric masks results in a slight increase in the total masked area.
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Tests of potential systematics

Astrophysical foregrounds, poor observing conditions, and systematic errors in instrument
calibration or data reduction can introduce non-cosmological density variations in the galaxy
sample, which may in turn bias cosmological analyses (see e.g. Myers et al. 2006, Crocce
et al. 2011, Ross et al. 2011, Suchyta et al. 2016, Crocce et al. 2016, Leistedt et al. 2016,
Elvin-Poole et al. 2018 for studies of imaging systematics in the context of other surveys). A
full analysis of the effect of imaging systematics on the clustering of DESI main targets using
data from DECaLS DR7 is presented in Kitanidis et al. 2019. Here, we briefly perform tests
of the LRG dependence on these potential systematics using DR8 data and target selection.

We use the HEALPix scheme with NSIDE = 256 to divide the footprint into pixels of equal
area, over which we average each systematic. These pixelised maps are shown in Figure 4.2.
The survey properties we look at are stellar density, galactic extinction, airmass, seeing, sky
background, and exposure time. For full descriptions of these survey properties, how they
are calculated, and why they are included in the analysis, see Section 6 of Kitanidis et al.
2019.

For each map, we bin the pixels by the value of the survey property, and then determine
the average density per bin. The resulting plots of LRG density contrast δ = n/n̄ − 1 as
a function of survey properties are shown in Figure 4.3, with the cumulative sky fractions
shown in the upper panels and the dotted lines corresponding to 1% fluctuations. We show
that LRG density variation due to systematic sources of error are controlled to within 5%
and, more often than not, 1%. As such, we conclude that imaging systematics should not
significantly affect our cross-correlation measurements.

4.3 Galaxy Redshift Distribution

In order to convert between angular and 3D measurements, information about the distribu-
tion of the redshifts of the photometrically selected galaxies is required. One option is to use
photometrically determined redshifts (photo-z’s) for this purpose; for instance, Zhou et al.
2020 outlines a method for determining photo-z’s for DESI LRGs selected from DECaLS
DR7 using a machine learning method based on decision trees. We use the DR8 version of
the resulting dN/dz provided by Rongpu Zhou in private communications. However, such
methods have intrinsic scatter due to photometric errors and can be biased if the distribution
of galaxies used in the training set is not representative of the overall population. It is thus
useful to have an alternative method for estimating the redshift distribution, if only as a
proxy to gauge the effect of errors in dN/dz on the desired parameter estimation. We apply
a clustering-based redshift method, as described in the following sections.

Clustering redshift formalism

As modern deep imaging surveys probe ever greater volumes, they detect many more sources
than can realistically be targeted for spectroscopy. The idea of leveraging cross-correlations
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Figure 4.2: Maps of spatially-varying potential systematics in equatorial coordinates with
Mollweide projection and the astronomy convention (east towards left).

between a spectroscopic sample and a photometric sample to infer redshift information about
the latter is not a new one (see e.g. Seldner & Peebles 1979, Phillipps & Shanks 1987, Landy
et al. 1996, Ho et al. 2008, Newman 2008). However, as clustering-based redshift estimation
presents an attractive alternative to photometric redshift methods, it has experienced a
recent resurgence in popularity. Over the last decade or so, a number of clustering dN/dz
estimators have been presented and analyzed (Matthews & Newman 2010, Schulz 2010,
Matthews & Newman 2012, McQuinn & White 2013, Ménard et al. 2013) and tested on real
or simulated data (Schmidt et al. 2013, Scottez et al. 2016, Hildebrandt et al. 2017, Scottez
et al. 2018, Davis et al. 2018, Gatti et al. 2018, Chiang et al. 2018, Kitanidis et al. 2019,
Krolewski et al. 2019).

We use a version of the estimator proposed by Ménard et al. (2013), which exploits
small-scale clustering information and avoids using autocorrelation functions since they are
necessarily more impacted by systematic errors than cross-correlations. We provide a detailed
derivation of our formalism and its assumptions in Appendix A, and simply state the key
result here:

wps(θ, zi) ∝ φp(zi)
H(zi)

c
bp(zi)bs(zi)I(θ, zi) (4.3)

where wps is the angular cross-correlation, φp(zi) is the photometric redshift distribution,
bp(zi) and bs(zi) are the large-scale biases of the two samples, and

I(θ, zi) ≡
∫ χmax

χmin

dχ ξmm

(√
χ2

i θ
2 + (χ− χi)2, zi

)
(4.4)
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Figure 4.3: Density of LRGs as a function of stellar density, galactic extinction (color excess),
airmass, seeing in each optical band, sky subtraction in each optical band, and exposure
time in each optical band. Densities and survey properties are smoothed over the scale of
the pixelised maps in Figure 4.2. The upper panels show the cumulative sky fractions for
each survey property, and the dotted lines correspond to ±1% density fluctuations.

can be computed directly from Hankel transforming the theoretical dark matter power spec-
trum,

ξmm(r, z) =

∫ ∞
0

dk

2π2
k2Pmm(k, z)j0(kr) (4.5)

Bias evolution

Note that we do not need to know the amplitudes of the biases bp and bs in order to leverage
Equation 4.3, since they are degenerate with the overall normalization of φp. We only
need to know the shapes of the bias evolutions. For the spectroscopic catalog, this can be
determined directly. For the photometric catalog, we use two complementary methods for
modelling bp(z) = b0 × f(z) for some unknown evolution f(z):

1. Fit “effective” bias beff ≡
∫
dz bp(z)φp(z).
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2. Assume parametric form for f(z), fit present day bias b0.

These two methods are explained in detail in the subsections below.

Fit beff without parametric f(z)

In principle, we do not need to know the evolution of bp in order to model the angular power
spectra C`, since bp(z)φp(z) is the quantity that enters the C` integrals for a linear bias model
(see e.g. Equation 4.22). Equations 4.3-4.4 allow us to constrain f(z)dNp/dz times some
unknown proportionality constant.8 After normalization, we obtain the quantity

q(z) ≡ f(z)dNp/dz∫
dz′ f(z′)dNp/dz′

(4.6)

Meanwhile, in the C` equations, the term bp(z)φp(z) can be rewritten

bp(z)φp(z) =
b0f(z)dNp/dz∫
dz′ dNp/dz′

=
b0q(z)

∫
dz′ f(z′)dNp/dz

′∫
dz′ dNp/dz′

(4.7)

= beffq(z) (4.8)

where beff is the effective bias term

beff ≡
b0

∫
dz f(z)dNp/dz∫
dz dNp/dz

(4.9)

=

∫
dz b0f(z)φp(z) =

∫
dz bp(z)φp(z) (4.10)

Thus, by not assuming a shape for the bias evolution, we are fitting an integrated effective bias
beff rather than the present day bias b0. This beff essentially represents the bias weighted by
the redshift distribution; for a sharply peaked photometric redshift distribution and weakly
evolving bias as expected in the LRG sample, beff ≈ b(zeff).

Fit b0 with parametric f(z)

Working with a parametric form (e.g. bp(z) = b0/D(z) based on DESI’s Final Design Re-
port), b0 can be measured directly. Equations 4.3-4.4 constrain dNp/dz times some unknown
proportionality constant. After normalizing to get φp(z), we insert this into the C` integrals,
along with the parametric f(z). Thus by “floating” b0 until theory matches observation, we
obtain a value for b0.

8We are using dN/dz to refer to the un-normalized redshift distributions, whereas φ(z) is normalized.
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Integrating over scales

Following the method of Ménard et al. 2013, we integrate wps over a range of angular scales
as the sensitivity of the estimator is improved by encoding information from many clustering
scales. In order to maximize the SNR, we weight each point by θ−1, which gives equal
amounts of clustering information per logarithmic scale:

w̄ps(zi) =

∫ θmax

θmin

dθ
1

θ
wps(θ, zi) (4.11)

Hence, we have

w̄ps(zi) ∝ φp(zi)
H(zi)

c
bp(zi)bs(zi)Ī(zi) (4.12)

where

Ī(zi) =

∫ θmax

θmin

dθ
1

θ

∫ χmax

χmin

dχ ξmm

(√
χ2

i θ
2 + (χ− χi)2, zi

)
(4.13)

In order to integrate over the same range of physical scales for each redshift bin, we take the
following approach: for each photometric-spectroscopic pair, we assume that the photometric
object is at the same redshift as the spectroscopic object, allowing us to convert from angle
θ to projected distance rp = χ(zi)θ. Thus, we obtain an rp-binned wps measurement. Then,
in our equations, we perform a change of variables from θ to rp:

w̄ps(zi) =

∫ rp,max

rp,min

drp
1

rp

wps(rp, zi) (4.14)

Ī(zi) =

∫ rp,max

rp,min

drp
1

rp

∫ χmax

χmin

dχ ξmm

(√
r2

p + (χ− χi)2, zi

)
(4.15)

Note that in this section we have implicitly assumed scale-independent biases. In Ap-
pendix A, we explore how scale-dependent bias can make the shape of the estimated redshift
distribution sensitive to the choice of θmin, θmax.

Measurement

We use three well-defined spectroscopic samples that overlap significantly with our LRG
sample and span its full redshift range (see Figure 4.4): CMASS galaxies from Data Release
12 of the Baryon Oscillation Spectroscopic Survey (BOSS; Eisenstein et al. 2011, Dawson
et al. 2013a); galaxies from the the final data release of the VIMOS Public Extragalactic
Redshift Survey (VIPERS; Scodeggio et al. 2018); and the main sample of quasars (QSOs)
from Data Release 14 of eBOSS (Dawson et al. 2016) in the South Galactic Cap. We
assume passive bias evolution for the CMASS and VIPERS galaxies, based on previous
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clustering studies of these samples (e.g. Rodŕıguez-Torres et al. 2016 and Laurent et al.
2017, respectively) and for the eBOSS QSOs, we assume the functional fit to b(z) published
in Marulli et al. 2013 (and further validated using finer redshift bins in Krolewski et al. 2019).

To measure the angular cross-correlation wps(θ, zi) between photometric sources and spec-
troscopic sources, with the latter first divided into narrow redshift bins zi ± δzi, we use the
Landy-Szalay pair-count estimator (Landy & Szalay, 1993),

ŵLS(θ) =
D1D2 −D1R2 −D2R1 +R1R2

R1R2

(4.16)

where DD, DR, and RR are the counts of data-data, data-random, and random-random
pairs at average separation θ, within annular bins θ ± δθ. We use 16 logarithmically spaced
angular bins from θ = 0.001◦ to θ = 1◦. For each redshift bin, we convert the angular bins
into bins of projected distance rp using the mean redshift of the bin. If we make the modest
approximation that every photometric object is at the same redshift as the spectroscopic
object it is being correlated with, we can obtain the angular correlation function binned in
rp rather than θ, wps(rp, zi).

We estimate the errors on wps using bootstrapping (Efron, 1979). Rather than resampling
on individual objects, which has been shown to lead to unreliable errors (Mo et al. 1992,
Fisher et al. 1994), we partition the sky into equal area sub-regions, using the HEALPix

scheme with coarse resolution NSIDE = 4. We discard any sub-regions that are fully disjoint
from either the photometric or spectroscopic survey, then randomly select (with replacement)
from the remaining sub-regions until the number of randoms in each bootstrap realization
is similar to the total number of randoms in the overlapping part of the footprint9. The
mean and variance are estimated from 500 bootstrap realizations, and are found to be highly
robust to increasing or decreasing the number of bootstrap realizations.

As Table 4.2 and Figure 4.4 show, the three spectroscopic catalogs vary widely in their
available overlapping area, their number density, and the widths of their redshift distribu-
tions. In order to maximize the signal-to-noise of each cross-correlation, the hyper parameters
are adjusted individually. For instance, since VIPERS is made up of two very small windows,
we must use a higher resolution of NSIDE = 16 to create the sub-regions for bootstrapping.
The greatest signal-to-noise is achieved from the cross-correlation with the CMASS sample,
whose large overlapping area and high number density near the peak of the LRG distribution
allows us to use finer redshift bins of δz = 0.05 compared to δz = 0.1 used for the other two
samples.

Results

Following Equation 4.3, we obtain an estimate for dNp/dz from each cross-correlation. Boot-
strap errors from wps are propagated to φ(z) by performing the full calculation, including

9Since the randoms are uniformly distributed and massively oversampled, the number of randoms can
be treated as as a proxy for the effective area.
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Spectroscopic Catalog CMASS VIPERS eBOSS QSO

Overlapping Area (deg2) ∼7461 ∼23.5 ∼940

Overlapping Number 615,056 68,022 19,266

Redshift Bin Size Used 0.05 0.1 0.1

NSIDE Resolution Used 4 16 4

# Bootstrap Ensembles 500 500 500

rp,minrp,minrp,min, rp,maxrp,maxrp,max (h−1 Mpc) 0.5, 5 0.005, 1 0.5, 5

Table 4.2: Summary of the external spectroscopic catalogs and the parameters of the cross-
correlation analysis. “Overlapping Area” is the approximate intersection of the spectroscopic
and DESI-DECaLS DR8 footprints. “Overlapping Number” is the number of spectroscopic
objects falling within this overlap with redshifts in the range 0.1 < z < 1.2 (see Figure 4.4
for a visualization of the overlap in redshift distributions). For bootstrapping, we reject
any pixels lying entirely outside either survey; the remaining sub-regions are sampled with
replacement to create the bootstrap ensembles.

normalization, with each bootstrap separately, and then determining the standard deviation
in φ(z). We use a cubic B-spline to fit the combined results, where each value φi is weighed
by the inverse of its standard deviation, wi = 1/σi. A common rule of thumb recommends
using a value of the smoothness parameter s in the range m±

√
2m where m is the number

of data points being fit; based on this, we choose a value of s = 41, which results in 6 interior
knots. In order the respect the physicality of φ(z) ≥ 0 for all z, we force any negative spline
coefficients to be zero. The clustering-based φ(z) points and fit are shown in Figure 4.5,
along with the photo-z derived φ(z). Unsurprisingly, the spline fit is dominated by the
CMASS cross-correlations (highlighted in blue in the figure) due to the comparatively high
signal-to-noise of these cross-correlations. The photo-z and clustering redshift distributions
are qualitatively similar but not identical, with the clustering φ(z) having a sharper peak.

4.4 Measuring Angular Power Spectra

Angular power spectra in the Limber approximation

Galaxy overdensity δg and CMB lensing convergence κ are both projections of 3D density
fields, expressed as line-of-sight integrals over their respective projection kernels. The angular



CHAPTER 4. CROSS-CORRELATING DESI LRGS WITH CMB LENSING 93

0.0 0.5 1.0 1.5 2.0 2.5 3.0
z

0.0

0.5

1.0

1.5

2.0

N
um

be
r 

pe
r 

z=
0.

05

×105

0

1

2

3

4

5

(z
) p

er
 s

q 
de

g

×103

CMASS
VIPERS ×10
eBOSS ×10
Photo (z)

Figure 4.4: Visualizing how the redshifts of the external spectroscopic catalogs (histograms)
overlap with the redshift distribution of DESI LRGs selected from DECaLS, as estimated
using photometric redshifts (solid line).

cross-spectrum between two such fields X and Y is given by

CXY
` =

∫
dχ1

∫
dχ2 W

X(χ1) W Y (χ2)∫
2

π
k2dk PXY (k; z1, z2) j`(kχ1) j`(kχ2) (4.17)

where WX and W Y are the projection kernels, PXY is the real-space power cross-spectrum,
and j` are spherical Bessel functions of the first kind. As we are primarily interested in
angular scales . 1◦ (` & 100), we can adopt the Limber approximation (Limber, 1953;
Rubin, 1954) and its first order correction (Loverde & Afshordi, 2008), under which the k
integral evaluates to

PXY

(
k =

`+ 1/2

χ1

; z
) 1

χ2
1

δD(χ1 − χ2) (4.18)
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Figure 4.5: The normalized redshift distribution derived from cross-correlations with external
spectroscopy (gray error bars) and resulting cubic B-spline fit (black solid line). The normal-
ized redshift distribution derived from photo-z’s is shown for comparison (red dashed line).
The spline fit is dominated by the cross-correlation with CMASS galaxies (blue highlight).

Hence the angular cross-spectrum may be expressed as a single integral over line-of-sight
co-moving distance,

CXY
` =

∫
dχ WX(χ)W Y (χ)

1

χ2
PXY

(
k =

`+ 1/2

χ
; z
)

(4.19)

=

∫
dz

H(z)

c
WX(z)W Y (z)

1

χ2
PXY

(
k =

`+ 1/2

χ
; z
)

(4.20)

The projection kernels for galaxy overdensity and CMB lensing convergence are, respectively,

W g(z) = φ(z) =
c

H(z)
φ(χ) =

c

H(z)
W g(χ)

W κ(z) =
3

2c
Ωm0

H2
0

H(z)
(1 + z)

χ(χ∗ − χ)

χ∗
=

c

H(z)
W κ(χ)

(4.21)
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Figure 4.6: Projection kernels for the galaxy sample (dashed blue line) and CMB lensing
(dotted red line), both normalized to a unit maximum.

where χ∗ = χ(z∗≈1100) ≈ 9400 h−1Mpc is the distance to the surface of last scattering, and
φ(z) is the normalized redshift distribution of the galaxy sample. These kernels are plotted
in Figure 4.6.
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Plugging in and simplifying the expressions for the spectra,

Cκg
` =

∫
dχ

3Ωm0H
2
0

2c2

1 + z

χ2

χ(χ∗ − χ)

χ∗
φ(χ)Pmg

(
k =

`+ 1/2

χ
; z
)

=

∫
dz

3Ωm0H
2
0

2cH(z)

1 + z

χ2

χ(χ∗ − χ)

χ∗
φ(z)Pmg

(
k =

`+ 1/2

χ
; z
)

Cgg
` =

∫
dχ φ(χ)2 1

χ2
Pgg

(
k =

`+ 1/2

χ
; z
)

(4.22)

=

∫
dz

H(z)

c
φ(z)2 1

χ2
Pgg

(
k =

`+ 1/2

χ
; z
)

Cκκ
` =

∫
dχ
(3Ωm0H

2
0

2c2

1 + z

χ2

χ(χ∗ − χ)

χ∗

)2

Pmm

(
k =

`+ 1/2

χ
; z
)

=

∫
dz

H(z)

c

(3Ωm0H
2
0

2cH(z)

1 + z

χ2

χ(χ∗ − χ)

χ∗

)2

Pmm

(
k =

`+ 1/2

χ
; z
)

Estimating angular power spectra

Many different approaches for estimating angular power spectra from cosmological maps
exist in the literature, including maximum likelihood estimators (Bond et al. 1998, Wandelt
& Hansen 2003), the optimal quadratic estimator (Tegmark 1997, Tegmark & de Oliveira-
Costa 2001), and Bayesian sampling techniques (e.g. Eriksen et al. 2004, Taylor et al. 2008).
While these methods have the advantage of recovering the unbiased power spectrum directly,
they are computationally expensive to implement, particularly for the high resolution maps
produced by modern experiments, since they scale as O(`6

max). Sub-optimal but numerically
efficient pseudo-C` algorithms (Hivon et al., 2002) are a popular alternative when dealing
with multipoles ` > 30 (Efstathiou, 2004a), as they take advantage of speedy spherical
harmonics transforms to recover the power spectrum in O(`3

max) time. Below, we briefly
outline the pseudo-C` approach.

Any function T (n̂) defined on a sphere may be expanded into spherical harmonics Y`m
with expansion coefficients a`m as

T (n̂) =
∞∑
`=0

∑̀
m=−`

a`mY`m(n̂) (4.23)

a`m =

∫
4π

dΩ T (n̂) Y ∗`m(n̂) (4.24)

The angular power spectrum C` measures the amplitude as a function of wavelength averaged
over direction,

C` =
1

2`+ 1

∑̀
m=−`

|a`m|2 (4.25)
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This is the observed angular power spectrum of a given Gaussian realization; the average over
an ensemble of Universes, 〈C`〉 ≡ Cth

` , is specified by the physics (primordial perturbations,
galaxy formation, etc.) with uncertainty due to cosmic variance given by

σ2
` =

CXX
` CYY

` + (CXY
` )2

2`+ 1
(4.26)

However, in practice, we are not dealing with measurements over the full sky, but rather
a masked and weighted partial sky. We must account for the effect of the masking window
function W (n̂), which couples different ` modes and biases the estimator. Naive calculation
of the spherical harmonics transform on a partial sky map produces the pseudo angular
power spectrum, whose coefficients are a convolution of the mask and the true coefficients,

C̃` =
1

2`+ 1

∑̀
m=−`

|ã`m|2 (4.27)

ã`m =

∫
4π

dΩ T (n̂) W (n̂) Y ∗`m(n̂) (4.28)

Fortunately, their ensemble averages are related simply as

〈C̃`〉 =
∞∑
`′=0

M``′〈C`′〉 (4.29)

where the mode-mode coupling matrix M can be determined purely from the geometry of
the mask. This `-by-` matrix is generally singular in the case of large sky cuts. In order to
perform matrix inversion, a common method is to use a set of discrete bandpower bins L and
assume the angular power spectrum is a step-wise function in each bin. Using this approach,
the MASTER algorithm (Hivon et al., 2002) is able to efficiently calculate and invert the
L-by-L mode-mode coupling matrix to extract the binned angular power spectrum from the
binned pseudo angular power spectrum,

〈CL〉 =
∑
L′

M−1
LL′〈C̃L′〉 (4.30)

We use the implementation NaMaster (Alonso et al., 2019) to calculate the mode-mode cou-
pling matrix and decoupled angular power spectra in bandpower bins. Multipole resolution
is limited by ∆` ≈ 180◦/φ, where φ is the smallest dimension of the angular patch, and the
minimum multipole that can be meaningfully constrained is the wavelength corresponding
to this angular scale (Peebles, 1980). Since the angular power of the mask is concentrated
at large modes, dropping to below 10% power at ` ∼ 20, we choose a conservative binning
scheme with linearly spaced bins of size ∆` = 20 from `min = 30 to `max = 1500. However,
following the approach of Krolewski et al. (2019), we run NaMaster out to larger `max to
avoid power leakage near the edge of the measured range.
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Evaluating the observational results requires consistent application of the same binning
scheme to the theory curves. Since the theory curves are not necessarily piecewise constant,
they must first be convolved with the mode-mode coupling matrix M``′ , then binned into
the appropriate bandpowers, and then finally decoupled.

Additionally, the observed auto-spectra will be a combination of signal plus noise,

Cgg
L = SggL +N gg

L (4.31)

Cκκ
L = SκκL +Nκκ

L (4.32)

Here, N gg is the shot noise of the galaxy field, 1/n̄ (where n̄ is the mean number of galaxies
per square steradian), while an estimate of the lensing noise Nκκ

` due to e.g. instrumental
and atmospheric effects is provided by the Planck collaboration and binned into bandpowers
using the method discussed above. In subsequent analysis, we have subtracted the noise
terms from the observed auto-spectra, as well as dividing out the appropriate pixel window
functions.

Estimating covariance matrices

The Gaussian or “disconnected” part of the covariance matrix, i.e. the covariance for per-
fectly Gaussian fields, dominates the total covariance matrix on linear and weakly nonlinear
scales. While trivial to compute for full-sky fields, the exact correlations between different
modes induced by a partial sky are computationally expensive to calculate, requiring O(`6

max)
operations (Efstathiou 2004b, Garćıa-Garćıa et al. 2019). A common approximation assumes
that the off-diagonal elements remain negligible after mode coupling and simply modifies the
diagonal elements by rescaling the number of degrees of freedom,

ΣXY
``′ = (σXY

` )2δ``′ (4.33)

(σXY
` )2 =

[(CXX
` +NXX

` )(CYY
` +NYY

` ) + (CXY
` +NXY

` )2]th
fsky(2`+ 1)

w4

w2
2

where fsky is the fraction of the sky masked,

fsky =

∫
4π

dΩ W (n̂) (4.34)

and wi is related to the ith moment as

wi =
1

fsky

∫
4π

dΩ W i(n̂) (4.35)

The factor fskyw
2
2/w4 accounts for the loss of modes induced by masking. This analytic

expression has been shown to reproduce errors that are nearly identical to those obtained
from Monte Carlo simulations (Hivon et al., 2002).
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We average over the bandpower bins with the inverse weighting

1

(σXY
L )2

=
1

∆`

∑
`∈L

1

(σXY
` )2

(4.36)

where ∆` is the width of the bandpower bin.

Pixelised maps and masks

To create our galaxy density map, we pixelise the sky using the HEALPix scheme with resolu-
tion NSIDE = 512, corresponding to a pixel area of approximately 0.013 square degrees. This
resolution was chosen to avoid the shot noise limit in which most pixels contain zero or one
galaxies (for our sample with mean density ≈ 610 per square degree, it produces an average
of 5-10 galaxies per pixel), while still probing the scales of interest, `max ∼ 3×NSIDE ≈ 1500.
Using galaxy and random catalogs with the masks of Section 4.2 applied to both, we calcu-
late the density contrast δ = n/n̄ − 1 within each pixel. Under the HEALPix scheme, pixels
have identical areas; however, the effective area of some pixels may be less than this if they
straddle the irregular shape of the footprint boundary or overlap with masked regions around
bright stars, large galaxies, etc. Since our masks are applied to both the galaxy and random
catalogs in a consistent manner, we can use the random catalog to estimate the effective
area of each pixel, and thus calculate accurate mean galaxy densities even in pixels that are
partially masked.

To construct the pixelised galaxy mask, we measure where the distribution of effective
areas deviates from a Poisson distribution, since the effective areas are estimated directly
from the number of randoms per pixel, which is a Poisson process. We determine a cutoff
of aeff/atot = 0.5, and confirm that the pixels below this cutoff lie mainly along footprint
boundary, as shown in Figure 4.7. Here, the effective area is calculated by using the random
catalog pre-masking, hence why the distribution is centered at aeff/atot ≈ 1. The equivalent
distribution calculated using masked randoms results in a slightly lower mean ãeff/atot ≈ 0.95
(matching the masked sky fraction of Table 4.1) and an enhanced left tail since a substantial
fraction of pixels are now partially masked. However, we do not necessarily need to discard
these partially masked pixels as long as we are able to accurately estimate the density within
them, since the pixelisation smooths the density on scales smaller than the pixel size. Hence,
for our binary pixel mask, we use the cutoff calculated using the unmasked randoms, with
the mask set to 1 for aeff/atot > 0.5 and 0 otherwise.

The galaxy density map and mask are then upgraded to NSIDE = 2048 to match the
resolution of the Planck CMB lensing map and mask, and converted from equatorial to
galactic coordinates. To improve the stability of the matrix inversion, the Planck mask
is apodized using a 1◦ FWHM Gaussian. The resulting masked galaxy density and CMB
lensing convergence maps are shown in Figure 4.8.
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Figure 4.7: Upper: Histogram of the effective areas of pixels created with HEALPix resolution
NSIDE = 512, showing a slight deviation from a Poisson distribution at the low end due to
pixels straddling the footprint boundary or holes from the galaxy mask. Lower: Pixels
selected as aeff/atot < 0.5 lie predominately on the edges of the footprint.
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Figure 4.8: Maps of Planck BASE CMB lensing convergence (upper) and DESI LRG galaxy
overdensity (lower) in galactic coordinates. Uses HEALPix scheme with resolution NSIDE =
2048, Mollweide projection, and the astronomy convention (east towards left). Both maps
are multiplied by their corresponding masks. The CMB lensing convergence is additionally
smoothed on a scale of 10 arcmin for visual clarity.
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4.5 Magnification Bias

Magnification bias is a well-known weak lensing effect (for a review of weak lensing, we
refer the reader to Bartelmann & Schneider 2001) that modulates the number density of
galaxies in a flux-limited survey. When distant galaxies are magnified by gravitational lenses
along the line-of-sight, their observed number per unit area is decreased due to the apparent
stretching of space between and around them. At the same time, there is a corresponding
increase in their observed brightness; as a consequence, the lensed galaxies are drawn from
a fainter source population than the unlensed galaxies, leading to an increase in the number
count as galaxies that would normally fall below the limiting magnitude of the survey become
detectable with magnification. Through these two competing effects, magnification induces
correlations between the galaxies and intervening matter in their foreground, and thus can
bias the galaxy-galaxy and galaxy-convergence angular power spectra (see e.g. LoVerde et al.
2008, Ziour & Hui 2008, and references contained therein).

In practice, the magnification bias introduces an additional term in the galaxy window
function,

W g(z) −→ W g(z) +W µ(z) (4.37)

which, to first order, is given by

W µ(z) = (5s− 2)
3

2c
Ωm0

H2
0

H(z)
(1 + z)

∫ z∗

z

dz′g(z′) (4.38)

g(z′) =
χ(z)(χ(z′)− χ(z))

χ(z′)
φ(z′) (4.39)

where s is the slope of the cumulative magnitude function, i.e. the response of the number
density of the sample to a multiplicative change in brightness at the limiting magnitude of
the survey,

s =
d log10 n(m < mlim)

dm
|m=mlim

(4.40)

This W µ term in the galaxy window function leads to additional terms in the galaxy-
convergence and galaxy-galaxy angular power spectra,

Cκg
` −→ Cκg

` + Cκµ
` (4.41)

Cgg
` −→ Cgg

` + 2Cgµ
` + Cµµ

` (4.42)

We calculate s by perturbing the observed optical and infrared magnitudes of the imaged
objects by a small differential in each direction ∆m = ±0.01, then reapplying target selection
(as defined in Section 4.2) and measuring the corresponding shifts in the number density of
the new LRG samples. Using the finite difference method, we determine s = 0.999± 0.015,
with the error computed as ∆s = (log10(N)− log10(N −

√
N))/∆m.
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Figure 4.9: The magnification bias terms of Equations 4.41 and 4.42 as a fraction of the
total observed (after subtracting shot noise, in the galaxy-galaxy case) spectra, i.e. before
correcting for magnification bias. The error bars represent error on the fraction and are
dominated by the errors of the denominator.

We plot the magnification bias corrections as a fraction of the observed spectra (after
noise subtraction) in Figure 4.9. The corrections to the galaxy-galaxy spectrum are at a
level of approximately 5% over most of the range of scales considered, with 1-2% increases
at edges of the range ` < 100 and ` > 900, while the correction to the cross-spectrum is flat
within error bars10 at 4-5%. Though the DESI LRG redshift distribution is relatively narrow
and peaks at z < 1, the high number density and low clustering bias coupled with a steep
faint end slope contribute to effects at the level of a few percent, as Figure 4.9 shows.

4.6 Results

A cross-correlation measurement between DESI-like LRGs selected from DECaLS imaging
and CMB lensing from Planck 2018 is detected at a significance of S/N = 27.2 over the range
of scales `min = 30 to `max = 1000. In Figure 4.10, we plot per-multipole and cumulative

10These error bars are dominated by the errors in the cross-spectrum, which become significant at ` > 700.
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signal-to-noise ratios for both the galaxy-galaxy and galaxy-convergence spectra, where the
signal-to-noise ratio of the XY angular power spectrum at multipole ` is given by(

S

N

)
(`) =

CXY
`

σXY
`

(4.43)

and the cumulative signal-to-noise ratio up to `max is

(
S

N

)
(< `max) =

√√√√ `max∑
`′=Lmin

(CXY
`′ )2

(σXY
`′ )2

(4.44)

The galaxy-galaxy S/N peaks at ` ∼ 500 whereas the galaxy-convergence generally decreases
over the range of scales considered. We note that the theoretical galaxy-convergence S/N
would be expected to peak at ` ∼ 100 and fall off at smaller `; as this is within the regime at
which both the pseudo-C` framework and the Limber approximation begin to break down,
this feature is washed out in the observed S/N.

We also compare the cross-spectrum using the baseline MV CMB lensing map versus
using the TT-only tSZ-deprojected map. The two curves are shown in the top panel of
Figure 4.11, and clearly lie well within 1σ of one another. The fractional difference is shown
in the lower panel. Since the error bars on the cross-spectra are generally large, they dominate
the errors on the fraction, but as Figure 4.11 illustrates, the errors associated with tSZ are
on the order of a few percent and very subdominant to the overall lensing noise.

In the following sub-sections, we present the angular power spectra and interpret them
using two different models for the galaxy-galaxy and matter-galaxy 3D power spectra: the
HaloFit dark matter power spectrum multiplied by a linear large-scale bias, and a convo-
lutional Lagrangian effective field theory with Lagrangian bias. Additionally, we perform
the fits using both photometric- and clustering-derived redshift distributions for the galaxy
sample, which not only suggests an estimate of the error associated with uncertainty in the
redshift distribution, but also allows us to evaluate the bias at an effective redshift z ≈ 0.68
in both models and to test the assumption of passive bias evolution.

HaloFit Modeling

Within a framework for modeling the galaxy-galaxy and matter-galaxy power spectra Pgg(k),
Pmg(k), the observed angular power spectra Cgg

` , Cκg
` can constrain cosmological and galaxy

bias parameters. A particularly simple and interpretable model is to use the HaloFit (Smith
et al., 2003) fitting function for the nonlinear dark matter power spectrum, PHF

mm(k), and
multiply by scale-independent linear biases to obtain the galaxy-galaxy and galaxy-matter
power spectra,

Pgg(k, z) = bgg(z)2PHF
mm(k, z) (4.45)

Pκg(k, z) = bκg(z)PHF
mm(k, z) (4.46)
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Figure 4.10: Per multipole (upper) and cumulative (lower) signal-to-noise ratio for the
galaxy-galaxy (blue dotted line) and galaxy-convergence (red dashed line) angular power
spectra measurements.
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HaloFit Model, Photo φ(z)

`max bgg χ2
gg/d.o.f. bκg χ2

κg/d.o.f.

200 1.57± 0.05 0.7 / 8 1.27± 0.07 4.2 / 8

400 1.63± 0.03 3.4 / 18 1.32± 0.06 8.1 / 18

600 1.66± 0.02 8.4 / 28 1.32± 0.05 12.1 / 28

800 1.67± 0.02 9.9 / 38 1.32± 0.05 20.9 / 38

1000 1.64± 0.02 30.4 / 48 1.32± 0.05 26.8 / 48

Table 4.3: Fitting linear bias from the observed Cgg
` , Cκg

` up to different `max using the
HaloFit model for the nonlinear dark matter power spectrum, photometric φ(z), and the
assumption b(z) ∝ D(z)−1.

Differences between bgg and bκg are expected, due in large part to the stochastic contribution
arising from the the fact that the galaxy field is a discrete sampling of the underlying dark
matter distribution. As such, this stochastic component, which may include scale-dependent
and non-Poissonian behavior, affects the galaxy-galaxy auto-spectrum and matter-galaxy
cross-spectrum differently.

Using the Boltzmann code CLASS (Blas et al., 2011) to calculate the HaloFit dark matter
power spectrum for the fiducial Planck 2018 cosmology, we take the photometric φ(z) and
assume a bias evolution bgg(z), bκg(z) ∝ D(z)−1. We then perform weighted least squares
fits of the present day biases. The results are given in Table 4.3, with the fits repeated for
`max = 200, 400, 600, 800, 1000. We find that the linear biases are unaffected by the choice of
`max and that the cross bias bκg is consistently lower than the galaxy bias bgg, with the latter
agreeing well with DESI survey expectations and the findings of Kitanidis et al. 2019.

We then repeat the same measurement using the clustering-derived φ(z) discussed in
Section 4.3, again finding that the choice of `max has negligible impact. The results, given
in Table 4.4, show that uncertainty in the redshift distribution causes a difference in the
derived galaxy bias parameters of σbgg = 0.08. By contrast, the cross bias is extremely stable
with respect to changes in the redshift distribution, not changing at all when the redshift
distribution is changed from the photometric estimate to the clustering estimate; this may
be explained by the fact that the cross-spectrum only depends on one factor of φ(z) while
the auto-spectrum requires φ(z)2.

Another advantage of using the clustering-based φ(z) is the ability to extract a galaxy
redshift kernel with bias evolution baked in, rather than assuming a parametric form e.g.
b(z) ∝ D(z)−1. As discussed in Section 4.3, this type of modeling allows us to constrain
beff ≈ b(zeff) rather than the present day bias. We find the results, given in Table 4.5, to be
in perfect agreement with the results of Table 4.4 under the assumption b(z) ∝ D(z)−1 used
in the latter, giving for instance bgg = 1.56± 0.01 and bκg = 1.31± 0.05 for the `max = 1000
case.
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Figure 4.12: The observed galaxy-galaxy (upper plot, blue diamonds) and galaxy-
convergence (lower plot, red diamonds) angular power spectra, after subtracting noise and
correcting for magnification bias. Solid lines correspond to the the theoretical predictions
using a HaloFit matter power spectrum and the best fit linear biases from Table 4.3. The
dotted horizontal line is the galaxy shot noise floor, and the dashed black curve is the lensing
noise.
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HaloFit Model, Clustering φ(z)

`max bgg χ2
gg/d.o.f. bκg χ2

κg/d.o.f.

200 1.50± 0.05 0.8 / 8 1.27± 0.07 4.0 / 8

400 1.55± 0.03 3.4 / 18 1.32± 0.06 8.0 / 18

600 1.59± 0.02 8.7 / 28 1.32± 0.05 11.9 / 28

800 1.59± 0.02 10.2 / 38 1.32± 0.05 20.8 / 38

1000 1.56± 0.01 29.9 / 48 1.32± 0.05 26.7 / 48

Table 4.4: Fitting linear bias from the observed Cgg
` , Cκg

` up to different `max using the
HaloFit model for the nonlinear dark matter power spectrum, clustering φ(z), and the as-
sumption b(z) ∝ D(z)−1.

HaloFit Model, Clustering b(z)φ(z)

`max beff
gg χ2

gg/d.o.f. beff
κg χ2

κg/d.o.f.

200 2.14± 0.07 0.8 / 8 1.80± 0.10 4.0 / 8

400 2.21± 0.04 3.4 / 18 1.89± 0.08 8.0 / 18

600 2.26± 0.03 8.7 / 28 1.88± 0.08 12.0 / 28

800 2.27± 0.02 10.2 / 38 1.88± 0.07 20.8 / 38

1000 2.23± 0.02 29.9 / 48 1.88± 0.07 26.7 / 48

Table 4.5: Fitting effective bias beff ≈ b(zeff = 0.68) from the observed Cgg
` , Cκg

` up to different
`max using the HaloFit model for the nonlinear dark matter power spectrum, clustering
b(z)φ(z) (normalized), and no assumptions regarding the shape of the bias evolution.

Perturbation Theory Modelling

We next apply an analytic model. Higher order perturbation theory is a natural approach
considering that the cross-correlation is most sensitive to structure at large scales (see Fig-
ure 4.10). We use a Lagrangian bias model and the convolution Lagrangian effective field
theory (hereafter CLEFT) outlined in Vlah et al. 2016 and the references contained therein.
Under this formalism, the matter-galaxy and galaxy-galaxy power spectra are (see e.g. Equa-
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tion 2.7 from Modi et al. 2017 and Equation B.2 from Vlah et al. 2016):

Pmg = (1− α×k
2

2
)PZ + P1L +

b1

2
Pb1 +

b2

2
Pb2 (4.47)

Pgg = (1− αak
2

2
)PZ + P1L + b1Pb1 + b2Pb2+ (4.48)

b1b2Pb1b2 + b2
1Pb2

1
+ b2

2Pb2
2

where we have dropped the terms corresponding to shear bias as we find they mainly affect
scales ` > 1000. Here, PZ and P1L are the Zeldovich and 1-loop dark matter contributions (see
e.g. Vlah et al. 2015), b1 and b2 are the Lagrangian bias parameters for the galaxy sample,
and the effective field theory terms α× and αa (which are not necessarily the same) are free
parameters encapsulating the small-scale physics not modeled by Lagrangian perturbation
theory.

Under the CLEFT formalism, the power spectrum contributions PZ, P1L, Pb1 , Pb2 , etc.
can be computed analytically and combined with the free parameters α×, αa, b1, b2. With
these additional degrees of freedom, CLEFT provides a more flexible model than the phe-
nomenological approach of Section 4.6, and allows us to fit the cross-spectrum and galaxy
auto-spectrum simultaneously.

We use a version of the public code velocileptors11 (Chen et al. 2020) to calculate the
power spectrum terms and the MCMC likelihood estimator emcee12 (Foreman-Mackey et al.
2013) to optimize our model parameters. To reduce model expense, we evaluate the power
spectrum terms at a single effective redshift,

zXYeff =

∫
dχ z WX(χ)W Y (χ)/χ2∫
dχ WX(χ)W Y (χ)/χ2

(4.49)

which is zeff = 0.67 for κg and zeff = 0.68 for gg13. Given the narrow redshift distribution
and presumed passive bias evolution of our galaxy sample, this substitution should not affect
the C`’s significantly (Modi et al., 2017), and we confirm that the overall impact on the
scales of interest is sub-percent level. Additionally, this allows us to more easily interpret
the Lagrangian bias parameters as being also evaluated at the effective redshift. We use
the photometric redshift distribution to eliminate the need to assume a shape for the bias
evolution.

We perform a joint fit on both the galaxy-galaxy auto-spectrum and galaxy-convergence
cross-spectrum using a simple Gaussian likelihood function:

L(d|ϑ) ∝ exp
{
− 1

2
(Ĉ(ϑ)− C) Σ−1 (Ĉ(ϑ)− C)T

}
(4.50)

11https://github.com/sfschen/velocileptors
12https://github.com/dfm/emcee
13To jointly fit the auto- and cross-spectrum, we assume zeff = 0.68 for both.

https://github.com/sfschen/velocileptors
https://github.com/dfm/emcee
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The vectors C and Ĉ(ϑ) are, respectively, the observed and predicted angular power spectra,
with the auto- and cross-spectrum measurements joined together as

CL = (Cκg
L , C

gg
L ) (4.51)

for each bandwidth bin L. The covariance matrix is also created by stitching together four
constituent covariance matrices,

ΣLL′ =

(
Σκg
LL′ (Σκg−gg

LL′ )T

Σκg−gg
LL′ Σgg

LL′

)
(4.52)

The covariance matrices Σκg
LL′ and Σgg

LL′ are given by Equations 4.33. Similarly, the Gaussian
part of the covariance between the auto-spectrum and cross-spectrum measurements is given
by

Σκg−gg
LL′ = (σκg−ggL )2δLL′ (4.53)

where

1

(σκg−ggL )2
=

1

∆`

∑
`∈L

1

(σκg−gg` )2
(4.54)

(σκg−gg` )2 =
[2Cκg

` (Cgg
` +N gg

` )]th
fsky(2`+ 1)

w4

w2
2

(4.55)

We use flat priors for the four model parameters, and additional impose a loose Gaussian
prior on b2 centered on the peak-background split prediction for a given b1. The results of
the MCMC analysis are listed in Table 4.6, calculated using `max = 1000. As in the case
of the HaloFit model, we repeat our analysis for `max = 200, 400, 600, 800 and find that the
best fit parameters remain stable within error bars. The corner plots visualizing the 1D and
2D posterior distributions are shown in Figure 4.13, and the resulting theory predictions are
plotted against the binned data in Figure 4.14, both for the `max = 1000 case. The values
and errors are based on 16th, 50th, and 84th percentiles of the posterior distributions. The
model is able to constrain b1 very well, and provides a more flexible fit to the shape of the
data.

We can compare the Lagrangian b1 to the Eulerian bias found in the previous section,

b(zeff) = 1 + b1(zeff) (4.56)

= b(0)/D(zeff) (4.57)

For zeff = 0.68, the best fit b1 = 1.33 corresponds to b(0) = 1.64, in perfect agreement with
the result from our HaloFit model using the photometric redshift distribution. Furthermore,
after accounting for the uncertainty associated with photometric versus clustering redshift
distributions σbgg = 0.08, the effective bias from the perturbation theory model is consistent
with the effective bias measured using the clustering b(z)φ(z) (Table 4.5). Thus, these two
models show excellent consistency with each other, and both are consistent with the assumed
bias evolution model.
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Figure 4.13: Marginalized 1D and 2D posterior probability distributions of the parameters.
Vertical lines are median values.
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Figure 4.14: The observed galaxy-galaxy (upper plot, blue diamonds) and galaxy-
convergence (lower plot, red diamonds) angular power spectra, after subtracting noise and
correcting for magnification bias. Solid lines correspond to the predictions from the CLEFT
perturbation theory framework using MCMC fitted parameters (Table 4.6). The dotted
horizontal line is the galaxy shot noise floor, and the dashed black curve is the lensing noise.
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CLEFT Model, Photo φ(z), `max = 1000

Parameter Prior Posterior

b1 ∈ [0.5, 1.5] 1.33+0.04
−0.04

b2 ∈ [−1, 2] 0.514+0.255
−0.283

∝ N
(
b̃2, 0.3

)
α× ∈ [−100, 100] 19.74+5.94

−6.13

αa ∈ [−100, 100] 33.23+17.54
−18.25

Table 4.6: The second column lists the priors used for the LPT model parameters, while
the third column is the medians and 1σ confidence intervals based on the 16th and 84th
percentiles of the posterior distributions. All priors are flat except for the prior on b2, which
is a Gaussian loosely centered at the peak-background split prediction for a given b1.

4.7 Conclusions for Chapter 4 and Future Directions

In this chapter, we present a cross-correlation between DESI-like LRGs selected from DE-
CaLS DR8 and all-sky CMB lensing maps from Planck, and report a detection significance
of S/N = 27.2 over a wide range of scales from `min = 30 to `max = 1000.

To correct for the effects of magnification bias on the galaxy-galaxy auto-spectrum and
galaxy-convergence cross-spectrum, we calculate the slope of the LRG cumulative magnitude
function at the limiting magnitude of the survey, determining a value of order unity, s =
0.999± 0.015. We find that the resulting corrections to the spectra are on the order of 4-6%.
We also test the impact of tSZ bias in the lensing map, showing the associated errors on the
galaxy-lensing cross-correlation to be highly sub-dominant to the overall lensing noise.

Within two different frameworks for modeling galaxy clustering and using two different
methods for estimating the redshift distribution of the LRG sample, we fit the galaxy bias
in multiple complementary ways and cross-check the results, both for internal consistency
and to ascertain the impact of uncertainty in the redshift distribution on the inferred bias
parameters.

1. Under a simple linear bias times HaloFit model, using a photometric φ(z) and an
assumed bias evolution b(z) ∝ D(z)−1, we determine best fit values for the present day
bias bgg = 1.64 ± 0.02 and bκg = 1.32 ± 0.05. This value of the galaxy bias is similar
to the prediction in the DESI Final Design Report (DESI Collaboration et al., 2016),
bLRG(z) = 1.7/D(z).

2. Under a simple linear bias times HaloFit model, using a clustering φ(z) and an assumed
bias evolution b(z) ∝ D(z)−1, we determine best fit values for the present day bias
bgg = 1.56 ± 0.01 and bκg = 1.32 ± 0.05. We note that the value of bgg changes
by σbgg = 0.08 in switching from the photometric estimate of φ(z) to the clustering
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estimate of φ(z), whereas the cross-correlation is far more robust to this uncertainty
in the redshift distribution, with the inferred parameter bκg unchanged.

3. Under a simple linear bias times HaloFit model, using a clustering b(z)φ(z) with bias
evolution implicitly folded into the overall redshift kernel, we determine best fit values
for the effective bias beff ≈ b(zeff = 0.68), finding beff

gg = 2.23±0.02 and beff
κg = 1.88±0.07.

We find perfect consistency with the results of (ii) under the latter’s assumed bias
evolution.

4. Under a Lagrangian effective field theory with a Lagrangian bias model, and using a
photometric φ(z), we determine model parameters evaluated at the effective redshift
zeff = 0.68. The Lagrangian bias parameter b1 = 1.33 ± 0.04, when converted into
Eulerian bias b = 1 + b1, agrees with the results of (iii) within the error found to be
associated with uncertainty in the redshift distribution. Furthermore, after applying
the bias evolution assumption b(z) ∝ D(z)−1, this result is also in perfect agreement
with the results of (i).

In summary, we find strong constraints on the present day and effective linear bias, with
the largest errors on these inferred parameters originating from errors in the galaxy redshift
distribution but having negligible effect on the cross bias term bκg. We also present a united
framework for modeling bias in a bias evolution agnostic way, and use this to validate the
assumption of passive bias evolution for LRGs. In future works, we intend to use the same
framework to perform joint constraints on cosmological and galaxy bias parameters.
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Chapter 5

Summary & Conclusions

This thesis describes original contributions to the field of physical cosmology, specifically the
task of mapping the Universe for next-generation dark energy experiments such as the Dark
Energy Spectroscopic Instrument (DESI). Chapter 2 provides a review of the theoretical
background needed to motivate and contextualize this work, with particular focus on dark
energy and two of its most powerful probes, baryon acoustic oscillations and redshift-space
distortions (the key deliverables of DESI). In order to fully leverage the statistical power
of DESI and other next-generation galaxy surveys, it is crucial to account for and control
any non-cosmological signals in the data that could bias scientific studies, and to have a
sophisticated understanding of the connection between galaxy clustering and the underlying
distribution of dark matter. Chapter 3 presents the first major analysis of the systematics
and clustering of the DESI main targets selected from deep imaging, laying the ground-
work for all subsequent cosmology with DESI. We present masks and weights that will be
used in the construction of cosmological catalogs, and also characterize the large-scale clus-
tering properties of the DESI samples, a vital first step for enabling cosmological analyses
and simulations. Furthermore, this chapter presents widely applicable new techniques and
frameworks for diagnosing systematic errors as well as performing clustering studies with
photometric data. Chapter 4 describes a measurement of the cross-correlation between a
sample of DESI-like luminous red galaxies and the matter lensing convergence of the cosmic
microwave background, one of the strongest such detections to date. We present two com-
plementary ways to estimate the effective galaxy bias without assuming a form of the bias
evolution, and obtain tight constraints on both present day and effective bias. We further
quantify the error caused by uncertainty in the redshift distribution of the galaxies. Overall,
our findings suggest that DESI is on the path to highly impactful new scientific discoveries.
The next generation of dark energy surveys will shed light on the mysteries of our Universe,
making this a truly exciting decade to look forward to.
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Appendix A

Clustering Redshift Formalism

A.1 Detailed Derivation

The angular cross-correlation function is related to the spatial cross-correlation function by
the equation

wps(θ, zi) =

∫ ∞
0

dχ1

∫ ∞
0

dχ2 φp(χ1)φs(χ2)

× ξps

(√
χ2

1 + χ2
2 − 2χ1χ2 cos θ, zi

)
(A.1)

where the φ(χ)’s are the normalized radial distributions, and are related to the normalized
redshift distributions φ(z) by φ(χ) = φ(z)H(z)/c. Applying algebraic massaging to the
argument of ξps, we have√

χ2
1 + χ2

2 − 2χ1χ2 cos θ =√
2(
χ1 + χ2

2
)2(1− cos θ) +

(χ2 − χ1)2

2
(1 + cos θ) (A.2)

Since we are restricting to θ ≤ 1◦, we can use the small-angle approximation1, cos θ ≈ 1−θ2/2,
to simplify this expression.

wps(θ, zi) =

∫ ∞
0

dχ1

∫ ∞
0

dχ2 φp(χ1)φs(χ2)

× ξps

(√
(
χ1 + χ2

2
)2θ2 + (χ2 − χ1)2, zi

)
(A.3)

Furthermore, if the redshift bins are sufficiently narrow, we can treat the spectroscopic
redshift distribution as a Dirac delta function φs(z) ∝ δD(z − zi) for each bin and perform

1At 1◦, this approximation is accurate to within ≈ 4× 10−9.
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the dχ2 integral directly. We also note that the dχ1 integral is, in practice, only evaluated
over the range of redshifts for which φp(z) is non-zero, zmin to zmax.

wps(θ, zi) ∝
∫ χmax

χmin

dχ φp(χ)

× ξps

(√
(
χ+ χi

2
)2θ2 + (χ− χi)2, zi

)
(A.4)

We now rewrite ξps in terms of the underlying dark matter correlation function times the
linear biases of the photometric and spectroscopic samples,

wps(θ, zi) ∝
∫ χmax

χmin

dχ φp(χ)bp(χ)bs(χi)

× ξmm

(√
(
χ+ χi

2
)2θ2 + (χ− χi)2, zi

)
(A.5)

Next, we apply the Limber approximation (generally valid for scales θ ≤ 1◦), which
assumes that φp and bp do not vary appreciably over the characteristic scale defined by ξmm,
and thus can be taken out of the integral. Since the integrand is sharply peaked around
χ = χi, this gives

wps(θ, zi) ∝ φp(χi)bp(χi)bs(χi)

×
∫ χmax

χmin

dχ ξmm

(√
χ2

i θ
2 + (χ− χi)2, zi

)
(A.6)

= φp(zi)
H(zi)

c
bp(zi)bs(zi)I(θ, zi) (A.7)

where

I(θ, zi) ≡
∫ χmax

χmin

dχ ξmm

(√
χ2

i θ
2 + (χ− χi)2, zi

)
(A.8)

can be computed directly from theory.

A.2 Understanding I(z)

To understand the shape of I(z), it is useful to switch the integration variable from dχ to
dz = H(z)/cdχ, such that we have

I(θ, zi) =

∫ zmax

zmin

dz
c

H(z)
ξmm

(√
χ2

i θ
2 + (χ− χi)2, zi

)
(A.9)
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For linear scales, ξmm(r, z) = D(z)2ξmm(r, z = 0) =⇒

I(θ, zi) =

∫ zmax

zmin

dz
cD(z)2

H(z)
ξmm

(√
χ2

i θ
2 + (χ− χi)2, 0

)
(A.10)

Since the integrand is sharply peaked around χ(z) = χi,

I(θ, zi) ≈
cD(zi)

2

H(zi)

∫ zmax

zmin

dz ξmm

(√
χ2

i θ
2 + (χ− χi)2, 0

)
(A.11)

This form tells us that I(θ, zi) ∝ D(zi)
2/H(zi) multiplied by an integral that is only weakly

dependent on zi through the co-moving distance χi = χ(zi). Furthermore, we note that if
both biases are passively evolving b(z) ∝ D(z)−1, then Equation A.7 reduces to a direct
proportionality wps(θ, zi) ∝ φ(zi) for linear scales.

A.3 Normalization and Scale-Dependent Bias

One of the principal challenges of determining φ(z) through cross-correlation analysis is the
fact that each cross-correlation measurement is only reliable over the subset of the redshift
range in which the two samples overlap. Hence, while it’s often touted that only the redshift
dependence of the various functions such as bias are required to constrain φ(z), as the many
proportionality constants can be normalized away, the different measurements must first be
connected piece-wise. Even when all nuisance parameters can be tracked and accounted
for, the analysis is ultimately limited by the fact that the biases may be somewhat scale-
dependent on the scales in which signal-to-noise is high for angular cross-correlations. Hence,
the choice of which scales to integrate over, as discussed in Section 4.3, can lead to additional
factors. In practice, we often need to integrate over different physical scales for different cross-
correlations to optimize S/N (for example, VIPERS has high surface density but very small
area, so the information lies mostly in smaller scales compared to CMASS and eBOSS),
leading to some residual offsets between the measurements.

As an example to probe how scale dependence can change the clustering-derived φ(z), we
consider the “P-model” (Smith et al. 2007, Hamann et al. 2008, Cresswell & Percival 2009),
where the nonlinear correction to the bias is represented as an additional constant in the
power spectrum that accounts for non-Poissonian shot noise associated with the 1-halo term
(Seljak 2001, Schulz & White 2006, Guzik et al. 2007),

Pg(k) −→ b2
gPmm(k) + P =⇒ (A.12)

ξps(r) −→ bpbsξmm(r) + ξP(r) (A.13)
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where ξP(r) is simply the Hankel transformed P ,

ξP(r) =

∫
dk

k

k3

2π2
P j0(kr) (A.14)

=
P

2π2

∫
dk k2j0(kr) (A.15)

Hence,

wps(θ, zi) ∝ φp(zi)
H(zi)

c
(bp(zi)bs(zi)I(θ, zi) + J(θ, zi)) (A.16)

where

J(θ, zi) ≡
∫ χmax

χmin

dχ ξP

(√
χ2

i θ
2 + (χ− χi)2, zi

)
(A.17)

Without knowing the value of P , the exact normalization (and, indeed, the shape) of φp(z)
cannot be computed, since

φp(zi) ∝
wps(θ, zi)

c
H(zi)

bp(zi)bs(zi)I(θ, zi) + J(θ, zi)
(A.18)

Assuming that the scale-dependent term is sub-dominant, J/I � 1, we can expand in this
ratio,

φp(zi) ∝
wps(θ, zi)

c
H(zi)

bp(zi)bs(zi)I(θ, zi)

1

1 + J(θ,zi)
bp(zi)bs(zi)I(θ,zi)

(A.19)

≈
wps(θ, zi)

c
H(zi)

bp(zi)bs(zi)I(θ, zi)
(1− J(θ, zi)

bp(zi)bs(zi)I(θ, zi)
+O2)

and thus obtain an estimate of the leading order effect of including scale-dependent bias for
a given P and range of redshifts and angles.
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