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1Division of Biostatistics, University of California, La Jolla, CA 92093
2Moores UCSD Cancer Center, University of California, La Jolla, CA 92093
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Abstract
In this paper we describe implementation and evaluation of a cluster-based enrichment strategy to
call hits from a high-throughput screen (HTS), using a typical cell-based assay of 160,000
chemical compounds. Our focus is on statistical properties of the prospective design choices
throughout the analysis, including how to choose the number of clusters for optimal power, the
choice of test statistic, the significance thresholds for clusters and the activity threshold for
candidate hits, how to rank selected hits for carry-forward to the confirmation screen, and how to
identify confirmed hits in a data-driven manner. While previously the literature has focused on
choice of test statistic or chemical descriptors, our studies suggest cluster size is the more
important design choice. We recommend clusters be ranked by enrichment odds ratio, not p-value.
Our conceptually simple test statistic is seen to identify the same set of hits as more complex
scoring methods proposed in the literature. We prospectively confirm that such a cluster-based
approach can outperform the naive top X approach, and estimate that we improved confirmation
rates by about 31.5%, from 813 using the Top X approach to 1187 using our cluster-based method.

Keywords
High Throughput Screening; hit calling; cluster analysis; Murcko fragments; fingerprint
descriptors; Top X; HTS hit selection

1. Introduction
High-throughput screening (HTS) is commonly used in drug discovery to identify active
compounds, or ‘hits’ with high activity levels in the assay. Several hundreds of thousands or
even millions of small molecules may be assayed without replication in the primary screen
and then selected ‘hits’ will be carried forward to a confirmation screen. False positive rates
are high among the selected hits, and confirmation rates are correspondingly low [1].
Several cluster-based hit selection methods have been proposed to improve confirmation
rates in small-molecule HTS experiments [2, 3, 4, 5], and similar methods have been
proposed in siRNA screens [6, 7]. However, there are few systematic expositions of how to
carry out such a cluster-based analysis in the context of a prospective screen, and there has
been little discussion of the statistical issues encountered [8].
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In this paper we describe the implementation and evaluation of a cluster-based enrichment
strategy to call hits, developing ideas first put forward in Klekota et al [2]. The supporting
idea is that compounds within the same cluster will be chemically similar, so that hits
selected from a cluster containing many neighboring hits might expected to have a higher
confirmation rate than hits selected on the basis of single compound activity value alone [2].
Our strategy was as follows: first, moderately sized clusters were formed according to
molecular similarity between compounds. Then compounds were ranked individually by
assay activity level, and compounds ranking above a relatively low threshold were identified
as candidate hits. Next, each cluster was scored for enrichment with candidate hits, using
Fisher’s exact test. The set of significant clusters was ranked by enrichment odds ratio, and
the ranked list of clusters was walked down until the desired number of hits was identified.
These were carried forward to a confirmation screen, and we identified confirmed hits using
a novel data-driven method which fit a mixture of two linear models to the combined
primary and confirmation screen data. As a backup strategy and to ensure compound
diversity, we also called additional hits using a top X approach.

Important statistical issues remain to be clarified in implementing such a cluster-based hit
selection strategy. The number of clusters is important: too many clusters means each cluster
will contain relatively few compounds and so will not have much power to detect
enrichment with active compounds; too few, too large clusters will not have strong
similarity of compounds within the cluster, also losing power. Choosing a low activity
threshold for candidate hits means there will be many candidate hits, increasing power to
detect cluster enrichment, but a threshold within the activity range of no-activation controls
will pick up many inactive compounds as well. As the threshold for statistical significance
of a cluster is lowered, the false discovery rate on truly significant clusters will increase. The
choice of test statistic to score the clusters for significant evidence about true hits should be
efficient across a wide range of cluster sample sizes. Hits from the primary screen will be
carried forward to a confirmation screen, but the low activity threshold used to identify
candidate hits in the primary screen may not be appropriate to identify confirmed hits in the
confirmation screen.

In the existing chemoinformatic literature, interest has focused on the choice of test statistic
to score the clusters [2, 3, 4, 5, 6, 7], and the importance of these other design parameters
has been less appreciated. Conflicting advice about how to rank the clusters appears in the
literature, and standard suggested measures to select the number of clusters appear to us to
be inappropriate [2, 9, 10]. Finally, the existing literature relies on retrospective analyses of
existing data sets, and does not compare the actual confirmation rates achieved by the use of
cluster-based and traditional hit selection. Thus a systematic description of these issues is
needed.

In the remainder of the paper, we first give a short literature review. In Section 2 we
describe the HTS study and the chemoinformatic descriptors we used. In Section 3 we
describe the methods we use to cluster the compounds, to call hits, and to estimate
confirmation rates. We validate our estimated confirmation rates using a randomly drawn
pilot screen. In Section 4 we describe how to choose the number of clusters according to
power considerations, and investigate odds ratios for the significant clusters in our HTS. In
Section 5, we present confirmation rates, and investigate how to prioritize hits, using
information from the confirmation screen. Finally, in Section 6 we conduct sensitivity
studies of the number of clusters k, the activity threshold for candidate hits, and the
significance threshold for enriched clusters. Section 7 contains the discussion and our
summary recommendations as to how to conduct cluster-based hit calling in a HTS assay.
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1.1. Review of HTS enrichment analysis methods
The standard activity-based approach (top X approach) to identifying hits from a HTS
usually selects compounds above a threshold which is set using the mean and standard
deviation of control compounds. For example, compounds more than 3 standard deviations
above the control mean may be identified as hits [11]. Thresholds can be set either by
pooling all plates in the high-throughput screen, or by considering each plate separately.
However, this approach is limited in sensitivity and specificity by the practice of performing
the assay without replication on each compound in the primary HTS [12].

Klekota, et al [2] were the first to propose a chemoinformatic cluster-based approach to
calling hits from a HTS, attempting to improve the hit recovery rate by scoring entire
structural classes. Daylight fingerprints are commercially available molecular descriptors
that encode structural features of a molecule into a binary vector of 1024 bits [13]. Klekota,
et al used k-mode clustering of Daylight fingerprints to classify the compound library into
clusters on the basis of molecular similarity. They then selected a threshold activity level
( top 1% to 4% ) to define the set of candidate hits. Each cluster was scored for enrichment
of candidate hits as compared to the remaining compounds outside the cluster, using the p-
value from the hypergeometric distribution (Fisher’s exact test). This approach was used to
score a set of published test compounds and activity levels, and their scoring system
recovered over 80% of the known active compounds. The authors suggested that hits
selected using such a cluster scoring system based on Daylight fingerprints would have
higher confirmation rates than merely relying on the potency displayed by each compound
separately in a primary screen.

Yan, et al [3] conducted a similar investigation, also using Daylight fingerprint-based
clusters again with the goal of improving confirmation rates. Instead of using a static
threshold to define the set of candidate hits, the algorithm used a data-driven and cluster-
specific threshold, in a spirit similar to gene ontology or gene set enrichment analyses for
gene-expression data. Compounds were sorted by decreasing activity level, and at each
successive activity level in the list of compounds, the hypergeometric distribution was used
to score the cluster for enrichment with candidate hits. The activity level associated with the
lowest p-value for the cluster was used as the hit threshold for that cluster, and this
minimum p-value was used as the cluster score. Statistical significance of the cluster
enrichment score was assessed using a permutation test, separately for each cluster. A
combination of cluster p-values and compound activity levels were used to rank the ‘hits’
within significant clusters. They retrospectively assessed the performance of the method on
a set of existing HTS data. Importantly, in a pre-processing step, Yan, et al only considered
compounds with activity levels above a filtering threshold which was specified in advance.
Hence, in this approach there is still a universal activity threshold which needs to be
specified prior to the analysis.

Varin, et al [5] proposed a method similar to Yan to identify active chemical series, et al,
however using the Kolmogorov-Smirnov test to rank clusters, thus using the compound
activity level itself rather than a binary score indicating whether the activity level is above a
candidate threshold. This avoids the need to declare a candidate activity threshold, and
considers enrichment for even very low levels of activity. P-values for the Kolmogorov-
Smirnov test are available in closed form, avoiding the need for permutation tests. They
used a multiplicity corrected significance level. They used computationally simpler scaffold
tree compound classification to form the clusters, thus avoiding the computational burden of
clustering the data. Tong, et al [14] used a mixture model to determine the threshold for
calling hits in the primary high throughput screen, similar to our method of identifying
confirmed hits using the primary and confirmation screens.
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To address computational concerns about clustering very large data sets, Posner, et al [4]
proposed a local hit rate analysis method similar to Klekota, et al, however scoring
candidate hits against a neighborhood centered at the candidate compound with the goal to
improve the confirmation rate for selected comopounds. These local neighborhoods were
formed based on Daylight fingerprints and Tanimoto similarity values. Each compound was
scored using a χ2 test comparing the local hit rate within its neighborhood to a pre-specified
background hit rate. Thus this method is similar to Klekota, et al, however avoiding the
requirement to cluster the entire screening library.

Other reports have used cluster enrichment approaches to assist in design of HTS libraries,
using existing HTS experiments as training data. These ‘supervised’ clustering methods [15]
use existing HTS experiments as training data and include Laplacian-modified naïve Bayes
models [16], recursive partitioning [17] and support vector machines [18] These studies
have as a goal to identify active scaffolds. Emphasis has moved to using profiles of activity
across multiple screens, for example, by using affinity fingerprints [19, 20], or by integrating
chemical and genomics data base systems [21, 22]. Alternatively, the use of high content
screening that has multiple variables that describe a compound, such as photographic images
of cells, is being investigated to improve the quality of hits compared to single variable
activity assays [23]. These sequential screening methods have focused on model-based
compound selection to undergo a new HTS, rather than calling hits from the screen.

2. Overview of the HTS study
Briefly, the objective of the typical HTS assay we analyze here was to identify and
characterize small molecules that might serve as novel adjuvants in human vaccines,
including therapeutic anti-cancer vaccines. Compounds were to be tested for ability to
stimulate immune cells in a human in vitro cell system, in the first step of a long drug
discovery process. In the primary HTS, 160,000 compounds from eight commercially
available libraries (Bioactive, Diversity, Kinase-targeted and RNA-targeted) were screened
without replication, using a cell line which is engineered to express fluorescence when the
gene of interest is stimulated. The cells were plated in 384-well plates, each with three
columns of control wells (cell-free, full activation (LPS) and no activation wells (PBS)) and
one column of LPS titration wells for quality control. The readout of the assay was percent
activation, defined as the percent activation of compound over background, relative to the
full-activation controls. Each compound was tested in one well, using high throughput
robotics at a commercial HTS facility. The primary HTS was carried out continuously over
6 days. About 2,000 compounds were to be carried forward to a confirmation screen, using
the same protocol as the primary screen. Confirmed positive hits from these screens were to
be further triaged using cell-based toxicity screens, and then prioritized for further assays
and drug development.

2.1. Design of the HTS
There were three sequential screens (Figure 1). A pilot screen (Screen A) of 10,000
compounds randomly chosen from the full screening library was used for quality control.
Screen B was the primary screen; all the compounds of interest were screened, including
those in Screen A. Screen C was the confirmation screen, carried out on 2033 hits selected
from screens A and B. The number 2033 was determined by the budget and the initial
estimate of the confirmation rate from screen A to screen B. Compounds identified as active
(hits) in two screens are considered to be confirmed hits.
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2.2. Chemoinformatic descriptors used
Two distinct sets of chemoinformatic clusters were used in the enrichment strategy, one
based on functional information and the other on molecular scaffolds. We expected that
these two sets of descriptors would give complementary information.

Functional Class Fingerprints from Scitegic corporation (FCFP 6) are path-style fingerprints
obtained by ‘walking’ the chemical structure of the molecule, and coding the component
atoms as to their functional role. As each heavy (non-hydrogen) atom in the molecule is
encountered, a code is assigned based on its estimated functional role relative to its
neighbors [13]. The FCFP 6 algorithm results in a long bit string, which is then folded or
reformatted into 1024 bits.

Murcko fragments are molecular scaffolds which form the backbone of a compound [24]. A
compound is abstracted into its Murcko fragment scaffold on the basis of ring, linker,
framework and side chain atoms. Each molecule is assigned to exactly one scaffold. It is
computationally much simpler to abstract compounds into given Murcko scaffolds than to
cluster a large library of compounds, and software Pipeline Pilot was used for our data [25].

3. The Clustering Algorithm, Test Statistic, and Confirmation Rate Model
3.1. The clustering algorithm

We applied a clustering algorithm to the functional class fingerprint descriptors, in order to
assign each compound to a functional family. This was a moderately large clustering
problem, of 160,000 compounds on the basis of 1024 binary variables. We used k-medoids
hierarchical agglomerative clustering [26] based on Euclidian distance [2]. The R Clara
function (R cluster package, v.12.0, www.r-project.org) was able to cluster this compound
library into 200 clusters in approximately 142 minutes on a unix machine with 8 cores of
Intel (R) Xeon (R) processor X5355 (4MB cache, 2.66GHz, 2666MHz FSB) and 16GB
memory. The choice of number of clusters k was crucial, as too few (large) or too many
(small) clusters could each adversely affect the confirmation rate and the number of hits
called. We chose the number of clusters on the basis of power considerations and median
cluster size, as described in section 4.1 below.

We also used the computationally simpler Murcko scaffolds [24]. As each molecule is
assigned to one Murcko scaffold, these implicitly form the clusters. We did not have control
over the number of clusters created, and there were many more, but smaller, clusters
compared to the functional class clusters.

3.2. Algorithm to call hits using enriched clusters
We called cluster-supported hits separately using the Murcko scaffold clusters and the
Functional Class clusters, because we thought the two sets of descriptors might provide
different sets of information. After quality control and filtering, compounds were ranked
individually by assay activity level. Compounds ranking above 12% activation (in the top
2% of activity) were called candidate hits, yielding 3079 candidates. The threshold of the
top 2% was chosen by considering the distribution of the no-activation control wells.
Activity of 12% was considered to be low, which was at approximately the 98.3th percentile
of the no-activation controls (note that the top 4% of activity was at the 95.1th percentile).

Each cluster was scored for enrichment of candidate hits within the cluster as compared to
the remaining compounds outside the cluster, using Fisher’s exact test. The Benjamini-
Hochberg method [27] was used to control the false discovery rate (FDR) over the clusters,
and the threshold for significance was a q-value of less than 0.05. We computed the FDR
adjustment separately for the two kinds of clusters (Murcko or Functional Class). Because
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enrichment was negatively correlated between clusters, whereas Benjamini-Hochberg
requires independence or positive correlation, a permutation test was used to assess FDR
control. For both sets of clusters, the permutation test validated the set of selected clusters as
statistically significant. Candidate hits contained in a significantly enriched cluster were
called as hits, and carried forward to the confirmation screen.

3.3. Data-driven estimation of confirmation rates
It is usual in HTS to both call and confirm hits by comparison with a fixed activity threshold
established during the primary screen. The confirmation rate is then calculated as the
number of compounds above this threshold in the confirmation screen, divided by the total
number of hits carried forward from the primary screen to the confirmation screen.
However, in our cluster enrichment strategy we intended to set the activity threshold in the
primary screen at a purposefully low value, to identify candidate hits for further data
analysis. Thus it may not be appropriate to use the same low threshold for confirming hits in
the subsequent screen. Hence we investigated methods of identifying the appropriate
confirmation threshold using data from both the primary and confirmation screens.

We used the 10,192 compounds with activity data from both the pilot and primary screens
(Figure 2) to study how to estimate confirmation rates. We first called 187 hits in Screen B,
using as criterion activity more than 3 standard deviations above the mean of all testing
compounds on each plate (12% activity threshold). We used the pilot screen as confirmation.
Figure 2a) shows a plot of activity level from the ‘confirmation screen’ (Screen A) against
the primary screen (Screen B) for these 187 called hits. The figure clearly shows two distinct
clusters: a ‘confirmed active’ cluster (red) and a ‘false positive’ cluster (black). We then
used a mixture of two linear regression models to classify compounds into confirmed and
false positive hits. We constrained the slope for the ‘false positive’ cluster to be zero; when
we removed this constraint and estimated the slope instead, it was almost always not
statistically different from zero in these data sets. The mixture model was:

where y is the activity level in the confirmation screen, x is the activity level in the primary

screen, and  for i = 1, 2. An EM algorithm was used to estimate model
parameters [28]. A compound was classified into Cluster 1 if π > 0.5, with the exception
that if yi ≤ β02, the estimated mean activity from the false positive cluster, the compound
was classified as false positive. This latter was introduced to take care of a few low outliers
which were assigned to the true positive class by the model.

We validated this mixture model approach to estimating the confirmation rate, using
available data from screen C. Among the 187 hits selected by the top X approach in screen
B, 108 (B+ and A−) compounds were classified as false positives by our mixture model
(Figure 2a; black circles); Of these, 71 also had Screen C data. Activities for these
compounds were then plotted against screen C and only one among these ‘false positives’
failed to validate, by recording a value above 12% (Figure 2b). This confirms that for the
majority of these compounds designated as false positive, an unknown factor associated with
Screen B caused them to have high activities in the primary screen, which did not replicate
in the other two screens. In addition, the slope in Figure 2b was estimated using a simple
linear regression and it was not statistically different from 0 (slope = 0.02; p =0.45), whereas
for the confirmed hits in Figure 2c, the estimated slope remained significantly above zero
(slope =0.76, p ≪ 0.0001). While some confirmed hits have low activity in the confirmation
screen, this is consistent with a mixture model with normally distributed errors, and gave an
estimated confirmation rate of 42% for the top X approach, which was consistent with
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results from the primary and confirmation screens and in line with other HTS studies. Thus
we used this data-driven threshold for estimating the confirmation rate, which we felt was
more appropriate for our cluster enrichment analysis..

4. Choice of number of clusters k
4.1. Number of clusters k and statistical power

The first important data analysis decision was the criterion to choose the number of clusters
k. Table 1 below gives the size distribution of the clusters and the number of cluster-
supported hits and that would be selected for various choices of k. Our thinking was that size
would influence both power to detect enrichment (larger is better) and the similarity of
compounds within the cluster (smaller is better). We speculated that smaller, more similar
clusters might have a higher confirmation rate, while larger clusters might have a greater
chance of being declared significantly enriched.

Following the literature, we first considered using similarity measures as the criterion for
selecting the optimal number of clusters, including the total dissimilarity score [9], the
average silhouette width [10], as well as a chemoinformatic entropy score that tests the
chemical similarity principle within clusters [2]. However, all these measures continued to
change significantly as k increased up to 800 clusters, suggesting that more and smaller
clusters were needed. However, we feared that with too many clusters we would pay too
large a penalty to control the false discovery rate, and that within small clusters the effect
odds ratios would have to be very large in order for the cluster to be called statistically
significant, leading to low power. Finally, when ranking clusters, we feared that estimated
enrichment odds ratios would be too variable to be be informative if there were many small
clusters. These fears appear to have been born out in our analysis of the confirmation screen
data on the Murcko clusters (Section 5), which were very numerous and very small.

Having decided against use of information measures in selecting the number of clusters, we
investigated power considerations. Given that 2% of compounds were considered candidate
hits, we can derive the asymptotic power of Pearsons’s Chi-squared test by considering the
asymptotically equivalent approximately normal test statistic

where the subscript c refers to the compounds within the cluster and r the remaining
compounds, p the proportion of candidate hits, and n the number of compounds. If pc is
small, pr = 0.02, and nr is large, this test statistic has mean (pc − 0.02) and standard deviation

approximately . Using this relation, given a cluster size n we solved for the
proportion pc(nc) and subsequently the enrichment odds ratio that would give a relative
effect size of 2 (that is, the for which the test statistic mean would be approximately 2
standard deviations above zero), considering that this would give adequate asymptotic
power. In terms of absolute odds ratios, we thought that enrichment odds ratios of between
1.5 and 2 would represent a reasonable range for meaningful detectable effect sizes; using
the relation between pc(nc) and nc, we found a detectable effect size of from 1.5 to 2
corresponded to cluster sizes of 200 to 700. Thus we aimed to have the bulk of our clusters
within this range, and from Table 1, k = 200 seemed to best fit this criterion.

Although we did not formally include the loss of power due to the FDR correction with
increasing number of clusters, this is clearly seen in Table 1. The number of FDR adjusted
hits falls substantially when comparing k = 400 with k = 800. The robustness of the choice
of k across a wide range is also seen. In fact, the set of hits selected was fairly stable across

Pu et al. Page 7

Stat Med. Author manuscript; available in PMC 2013 December 30.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



the range of 50 ≤ k ≤ 400; thus any k within this range may have been reasonable, although
we chose k=200 based on the power considerations above.

4.2. Resulting size distribution of clusters
Functional Class clusters—With the number of clusters set to 200, the median cluster
size was 345 compounds, with first and third quartiles 133 and 793, respectively. Thus we
were able to obtain a cluster set with about half of the clusters near or within our desired
range of cluster sizes. However, eighteen clusters contained more than 2000 compounds and
just under half of all compounds (69,565 or 44.8%) resided in one of these large clusters.

Murcko scaffold clusters—We had less control over the size distribution of the Murcko
scaffold clusters, and the Murcko clusters were smaller than we desired. Compounds in the
primary screen belonged to a total of 43,973 Murcko scaffold clusters, most of which had
four or fewer compounds. To reduce loss due to the FDR correction, we restricted our
analysis to the 5452 clusters which contained at least 5 compounds. Together these
contained the majority (100,040, or 64.4%) of compounds. Consequently, among 3079
candidate hits, only the 1942 (63.1%) residing in these clusters were considered by this
approach, clearly demonstrating the loss of power by using clusters that are too numerous
and too small.

4.3. Results: significant clusters and called hits
Among the 200 functional clusters, 29 (14.5%) were found to be significantly enhanced.
About one-third (1,149 of 3079) of candidate hits were called as hits because they were
contained in a significantly enhanced Functional Class cluster. Among the 5425 Murcko
scaffold clusters, 62 (1.1%) were significantly enhanced. About one-quarter (496 of 1942) of
screened candidates were called as hits, and the total number of contributed hits was much
lower, confirming the low power of the scaffold clusters.

It is possible that the low power of the Murcko classes was because these descriptors simply
carry less information. However, Figure 3 confirms the strong negative correlation between
cluster size and OR among clusters selected as significant. The Murcko clusters are seen to
be generally smaller and with larger enrichment odds ratios, compared to the larger
Fingerprint clusters. The large number of Murcko clusters further reduced power by
requiring a large FDR correction in order to avoid false positive clusters. There is no
apparent difference between cluster types (functional or scaffold) in the relation between
cluster size and enrichment odds ratio. Further, all but 106 of the Murcko class hits had
already been selected by the Functional Class clusters and and a majority of the significant
Murcko class clusters were a subset of a significant Functional class cluster. This supports
the interpretation that the information carried by these two sets of descriptors was similar,
and that the low power of the Murcko clusters was because they were too numerous and too
small.

An important observation is that our enrichment methods together failed to reach the goal of
2033 hits, selecting only a total of 1255 compounds. To reach the desired number of hits, the
top X approach was used to select additional compounds. To avoid auto-fluorescence, we
included all compounds with activity between 22% and 120%. Thus, 778 additional
compounds were selected using only the individual activity readout.

5. Confirmation rates, and prioritizing the hit list
We carried forward the 2033 selected hits to the confirmation screen. Here we investigate
whether the cluster-based methods increased the confirmation rate and the number of
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confirmed hits selected. We see whether the lower number of selected hits using smaller
Murcko clusters was offset by higher confirmation rates. We also investigate how to best
prioritize hit selection during analysis of the primary screen. In these analyses, we use our
data driven estimates of the confirmation rate, as described in Section 3.3.

5.1. Comparison of confirmation rates and number of confirmed hits
The overall confirmation rate for the 2033 selected hits was 58.4%, which gave us a total of
1187 hits. Figure 4 shows the activity distribution of confirmed hits and false positives
separately for the three sets of hits. Compounds supported by Murcko clusters had the
highest confirmation rate (83.3%) but also the smallest number of compounds selected
(496), for a total of 413 confirmed hits (Figure 4a). The confirmation rate from the
Functional Class clusters was lower (67.3%), however a larger number of hits were selected
(1149), to arrive at 773 confirmed hits (Figure 4b). A total of 310 compounds were
confirmed hits by both the methods. The Top X approach on the remaining data had the
lowest confirmation rate, at 40% (Figure 4c), and contributed 311 confirmed hits.

Thus, the cluster based methods were highly successful in increasing the confirmation rate
compared to a Top-X approach. The smaller number of confirmed hits selected by the
Murcko clusters again is consistent with the cluster size being too small for adequate power,
and this was not overcome by its higher confirmation rate. Overall, we would have liked to
have been able to call additional hits using either cluster-based approach without sacrificing
a high confirmation rate, as we fell short of the goal of 2033 hits. How to best do so is
investigated in Section 6.

5.2. Prioritizing the hit list
A fundamental goal in selecting hits from a HTS is to optimize the confirmation rate given
the total number of hits selected. The desired number of hits may be dictated by
programmatic reasons, which in our case were budgetary and dictated 2033 hits. Our
strategy was to first rank the significant clusters according to enrichment OR, as a proxy for
the unknown cluster confirmation rate. Then we walked down the list, sequentially adding
the supported hits within each cluster, until the desired number of hits was selected.
(Because we found too few hits, in fact we used all available clusters.) This strategy should
optimize the confirmation rate given the total number of hits selected, provided there is a
monotone increasing relationship between OR and confirmation rate.

To evaluate this method, Figure 5a shows the cumulative confirmation rate using data from
the confirmation screen (C) versus the number of compounds selected, as each additional
ranked cluster is called significant and its candidate hits are added to the hit list. To calculate
the cumulative confirmation rate for cluster i, all the compounds in clusters 1 to i were
included. (Here, for the Top X approach, compounds were sorted in descending order of
activity level and grouped into 20 same-sized clusters. ) Thus, the cumulative confirmation
rate at a given cluster shows what the confirmation rate and number of selected hits would
have been, had the total number of selected clusters stopped at that point. The last data point
for each series shows the final number of selected hits and the final confirmation rate for our
HTS.

In Figure 5a, one can see both the steep decline of the Murcko clusters as additional clusters
are called significant and the smaller number of hits called. Extrapolating these trends,
should we have continued, the confirmation rate for Murcko clusters would have been below
the Functional Class clusters after about 800 hits called. On the other hand, the Functional
Class clusters could have apparently continued at about 67% confirmation rate, potentially
increasing the overall confirmation rate. This suggests that an effective strategy to increase
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the number of hits called would have been to lower the significance threshold on the
clusters. We investigate this strategy in Section 6 below.

The reason for the steep decline of the cumulative confirmation rate for the Murcko clusters
can be seen in Figure 6, which shows the cluster-level confirmation rate plotted against
estimated enrichment OR, separately for Murcko clusters and Functional Class clusters. For
the Functional Class clusters, as expected the average confirmation rate increases with
increasing OR (ρ = 0.34, p = 0.08). This confirms that the cluster ranking strategy to call hits
worked well for Functional Class clusters. However, for the Murcko clusters after the first
18 clusters are excluded, there is no longer a relation between enrichment OR and
confirmation rate (ρ = −0.08, p = 0.80). Increased variability of the OR for Murcko
compared to Functional Class clusters is also apparent in figure 6; this may be due to the
small size of the Murcko clusters. Thus, after the first few clusters, ranking the clusters by
OR adds no information on the eventual confirmation rate for Murcko clusters.

It has been suggested in the literature that ranking clusters by p-value, or by a combination
of p-value and activity ratio is an appropriate metric [3]. Note that there was no correlation
of confirmation rate with p-value for the Functional Class clusters (Figure 5b). Thus
enrichment odds ratio (OR) is an appropriate metric for ranking significant clusters in order
to choose hits, but p-value is not.

6. Sensitivity studies using the Pilot Data: choice of the cluster scoring
statistic, the threshold for candidate hits, and cluster size

In this section we use the 10,192 compounds with complete data in both pilot and main
screens to evaluate the a priori choices that must be made during cluster-based analysis of a
HTS. These include the number and size of clusters, the scoring algorithm used to call
clusters as significant, and the strategy for ranking clusters and thresholding them for hit
selection. Note that these choices must be made prior to observing confirmation data, as was
the case in our prospective HTS. Recall that we selected fewer than the optimal number of
hits using cluster based methods, and would have liked to have found additional cluster-
supported hits.

We used Screen A as the confirmation screen and screen B as the primary screen; thus for
these sensitivity studies we have complete confirmation data on all the compounds in a
random subset of the primary screen, in contrast to our actual experiment. The compounds
were clustered into functional classes using the Functional Class descriptors as input to the
R Clara program, or using Murcko fragments, as before.

6.1. Choice of test statistic for scoring clusters
Much attention has been paid in the literature to the choice of test statistic for scoring
clusters [3, 5]. While simple and effective, our method has the potential drawback that the
threshold for the candidate hits must be specified in advance. Recall that we set this
threshold at 12% activation by considering activity levels for the no-activation controls. In
this section, we compare this simpler method to using a data-driven threshold for candidate
hits which is specific to each cluster [3], similar to gene-ontology analysis.

We clustered the compounds into 25 clusters using the Functional Class descriptors, which
gave a median cluster size of 101 compounds. To apply the data-driven method proposed by
Yan et al [3], we first ranked all the compounds by activity level in screen B. Let x(i)
represent the activity level from the ith ordered compound. Let pij be the hypergeometric p-
value assessing enrichment of cluster j with candidate hits, where compounds with activity
above x(i) are considered candidate hits. Finally, let pj = mini{pij} be the enrichment score
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assigned to cluster j. Permutation p-values were used to assess the statistical significance of
the pj, with a separate permutation of size 1,000 computed for each cluster, and significance
was assessed at the 5% level without an FDR correction. Because we wanted a truly data
driven approach, we did not prefilter the compounds we considered to those with activity
levels above a threshold, in contrast to the published method [3]. Consequently, we
discovered the lowest p-values sometimes fell at very low activity levels, and thus we were
selecting for enrichment with inactive compounds rather than active compounds. To remedy
this, we considered only p-values which came from activity thresholds within the first 300
compounds. Interestingly, it seems an implicit global candidate activity threshold is required
for this method as well.

For our global- threshold method, the top 3% (activity cut-off ≥ 12%, as before) of the
compounds were considered to be candidate hits, and each cluster was scored for enrichment
using Fisher’s exact test, with significance assessed at the 5% level without an FDR
correction. For each test statistic, hits were selected as the candidate hits within significant
clusters. We then compared confirmation rates using screen A as the pilot screen.

Using the data-driven method, at 5% significance level 107 compounds were selected and
the confirmation rate was 53.3%. Using our global threshold method,111 compounds were
selected with a confirmation rate (CR) of 52.3%. Most compounds selected were the same.
This pattern repeated if we changed the significance level to 1%: Yan’s method selected 37
compounds with a CR of 78.4% and our fixed threshold method selected 34 compounds
with a CR of 79.4%. Again most compounds selected were the same. Thus, for the most
reasonable choice of parameters, the two methods were very similar in hits selected, but our
method is much simpler.

We then explored the effect of changing the number of clusters and the threshold for
candidate hits. Table 2 shows the confirmation rates and number of confirmed hits selected
given different choices for the number of clusters, K, and the candidate hit threshold, θ, for
both Yan’s method and the fixed threshold method. In implementing Yan’s method, if θ
=3%, we only searched for the lowest p-value in the top 3% of the activity-sorted compound
list. Clusters were called significant based on unadjusted p-values below 5% significance
level, and we estimated confirmation rates using the mixture model approach. Overall, these
studies confirm the equivalence of the two test statistics for scoring clusters: they generated
equivalent confirmation rates and a similar number of hits, and often selected virtually the
same set of compounds.

In summary, in this study there was no advantage seen for the more complex cluster specific
threshold method in [3]. A global threshold was in fact still required, and if this threshold
was set to a comparable level, virtually the same hit set was selected as by our simpler
scoring using Fisher’s exact test against a global threshold.

6.2. Varying the number of clusters k
Table 2 appears to confirm our earlier remarks regarding size and number of clusters. For
any given θ ≥ 3%, within a wide range of the number of clusters (50 ≤ K ≤ 500), the
confirmation rate and number of confirmed hits appears to be fairly stable. However, if k is
too small so that clusters are too large, both the number of confirmed hits and the
confirmation rate are lower, and the same is true if k is too large. Thus we recommend
choosing the number of clusters based on power considerations as in Section xx.
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6.3. Setting the activity threshold for candidate hits and the FDR threshold for significant
clusters

Recall that, in retrospect, we would have liked to call additional hits using the cluster
enrichment strategy. However, we used all the significant clusters and still fell short of our
goal of 2033 hits to carry forward to the confirmation screen. There are two ways we might
have increased the number of significant clusters: one might lower the threshold for
candidate hits, thereby increasing the number of candidate hits residing within each cluster.
Or, one might directly increase the number of significant clusters by relaxing the FDR q-
value at which a cluster is declared significant.

Table 2 shows that as the candidate hit threshold θ decreases from 2% to 6%, the
confirmation rate appears to be fairly stable, with only a small decrease. However, the
absolute number of hits increases. This suggests that lowering the threshold θ is an effective
way to increase the number of hits selected while maintaining a high confirmation rate.
However, for each new value of θ, the scoring statistic has to be recomputed across all the
clusters.

It is computationally simpler to choose a fixed value for θ, to score all the clusters using
Fisher’s exact test, and then to relax the significance standard α for calling a cluster
significant. We compared these methods using a starting values of α = 0.05 and θ = 3%, for
three sets of cluster sizes (k = 50, 100, 500). Results are plotted in Figure 7, where we let α
range from 0.05 to 0.25 at θ = 3% and let θ range from 3% to 6% at α = 0.05. It can be seen
that the two methods perform similarly in terms of confirmation rate vs number of hits
selected. At least in this example, relaxing the candidate hit threshold θ increases the
potential total number of hits that might be selected, while relaxing the p-value (or q-value)
is more easily done for a given set of scored clusters.

Thus in practice, we recommend choosing the candidate activity threshold θ from intrinsic
properties of the assay, and then walking down the clusters in order of enrichment OR until
the desired number of hits are called. If this number is insufficient at a reasonable FDR
value such as 5% to 20%, then we suggest further relaxing θ. In addition, in practice
additional hits may be called for programmatic reasons such as diversity.

7. Discussion
In this paper, we have discussed how to prospectively conduct a cluster-based analysis to
identify hits in a high throughput screen, and have demonstrated a resulting improvement in
both the confirmation rate and total number of confirmed hits from the screen. Although
cluster-based statistics have previously been proposed [2, 3], we aimed to provide a unified
evaluation of all the design parameters required in the analysis.

Our studies suggest that the screening library first be clustered into a number of moderate-
sized clusters, based on power considerations. Then, a relaxed activity threshold should be
chosen, in order to call a large number of candidate hits. The clusters are then scored for
enrichment with candidate hits. Clusters that pass an FDR-adjusted significance level are
prioritized by enrichment odds ratio, not p-value. One can then walk down the ranked list of
candidate hits until the desired number of hits is called. If the desired number of hits is not
achieved, either the activity threshold or the FDR level can be further relaxed, and the
analysis repeated. Once the selected hits are assayed in the confirmation screen, confirmed
hits are identified using a data-driven threshold. By using this strategy, we estimate that we
were able to improve the number of confirmed hits by about 31.5%, from 813(= 2033 × 0.4)
using the Top X approach to 1187 (see section 5.1) using our cluster-based method, in the
HTS presented here.
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Importantly, among all design choices, the choice of test statistic to score the clusters
appears to be relatively unimportant, despite the attention paid to this aspect in the literature.
Comparing our Fisher exact test to a more complex data-driven approach [3], we arrived at
nearly identical hit sets. Our approach was similar to Klekota, et al, although more
statistically motivated. Our studies suggest that cluster size is the most important parameter,
and that this should be chosen based on power considerations.

We used enrichment odds ratios rather than p-values to rank the clusters, however only
clusters with a statistically significant FDR adjusted q-value were considered. Figure 5
showed that the cumulative confirmation rate decreased as expected across clusters when
ordered by odds ratios, but this was not the case when ordered by p-values. The figure also
demonstrates that it is helpful if clusters are large enough to reliably estimate the enrichment
odds ratios.

In previous studies [2, 3] the numbers of compounds considered were in the ballpark of our
pilot data; thus our application, an order of magnitude larger, is more typical of HTS
practice. We used a k-medoids clustering algorithm, suitable for clustering the 160,000
compounds in the primary screen using 1024 variables, and this was feasible and worked
well. The choice of number of clusters k was among the most important analysis decisions,
as this determined the distribution of cluster sizes. Unlike other published methods, we
chose not to discard compounds with very low activities in order to reduce computational
burden of clustering, because we wanted to retain an objective estimate of the percentages of
active compounds contained within the clusters. We chose the number of clusters k
attempting to maximize the number of FDR adjusted hits using a priori power
considerations, rather than similarity measures as suggested in the literature. We
demonstrated the loss of power if too many, too small clusters are used, as would be the case
using similarity measures to determine k.

We used two classes of molecular descriptors to form clusters: Functional Class fingerprints
and Murcko scaffold fragments. Although the Functional Class clusters had a lower
confirmation rate (67% compared to 83%), a larger number of hits were called, which
resulted in more than double the number of confirmed hits. Our analysis suggested that
somewhat surprisingly, the information carried by the Murcko scaffolds and the Functional
Class clusters was similar, and the reason for the improved performance of the latter was a
better size distribution across clusters. Both of the cluster-based approaches greatly
improved confirmation rates compared to the standard Top X approach, providing additional
evidence that treating each compound individually is not optimal.

In our HTS, we did not achieve our target number of hits using our cluster-based approach,
and we supplemented the cluster-supported hits by calling additional top X hits. In
retrospect, based on the studies reported here, we could have selected additional cluster-
supported hits by either lowering the threshold for a candidate hit or by relaxing the
significance level at which a cluster was selected. Our studies using a random subsample of
the data with complete screening information suggest that either method would perform
about equally well, and that either would outperform Top X; thus we suggest relaxing the
significance level to achieve the desired number of hits as it is computationally simpler. If
the target number of hits cannot be achieved at reasonable significance levels, then the
threshold for a candidate hit can be lowered, and significance levels recomputed.

To identify confirmed hits, we used a novel data-driven method based on fitting a mixture of
two linear models to the combined primary and confirmation screening data. We validated
this approach using our pilot data: estimated confirmation rates for the Top X approach
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using our pilot data were within the ballpark of other studies and agreed with the rate seen in
the confirmation screen, which was around 40%.

A potential limitation of a cluster-based approach is that it may miss singleton compounds
that may be good candidates but which lack related active compounds within a large
structural family. This may potentially reduce the chemical or biological diversity of the
selected hits. Thus it may be desirable to increase diversity by selecting only a few hits from
within each cluster, or by supplementing cluster supported hits with additional hits called
using the top X approach, with an eye to increasing compound diversity. The computational
burden of clustering may also be a limitation for very large screening libraries. In this case, a
top X approach could be used to filter out compounds with very low activity and the
remaining compounds could be clustered. In large dedicated HTS facilities, there may be
capacity to run large scale confirmatory screens, in which case our method may be of less
interest. These methods will be useful in settings, such as our early stage research, where
confirmatory screening capacity is limited, and so it is of importance to increase the
confirmation rate.

In summary, our cluster-based approach to analyzing the data from a HTS appears to have
improved both the confirmation rates and the number of called hits. In our screen,
confirmation rates using Murcko fragments were 83.3%, and those using Functional Class
clusters were 67.3%. We estimate these methods enabled us to increase the number of
confirmed hits by about 31.5%. This project demonstrates the value of applying careful
statistical analysis to calling hits from High Throughput Screening assays.
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Figure 1.
Experimental Design.
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Figure 2.
Performance of the data-driven threshold for estimating confirmation rates. 187 hits were
selected from among the pilot data (n=10,192) using the top X approach in the primary
screen (screen B), and confirmed using screen A. A mixture model applied to data from both
screens was used to identify confirmed hits. Screen C was then used to independently assess
performance of the mixture model. (a) Activity levels in the primary (Screen B) and
‘confirmation’ screen (Screen A) are plotted for these 187 hits. Confirmed hits (red) and
false positives (black) were identified by fitting a mixture model. (b) False positive hits
identified by the mixture model and carried forward to screen C showed that these
compounds also had low activity in Screen C. (c) Confirmed hits identified by the mixture
model in (a) and carried forward to Screen C. Most of the confirmed hits were also
independently confirmed in Screen C, establishing that the mixture model gives reasonable
estimates of confirmed and false positive hits.
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Figure 3.
Estimated enrichment log odds ratio (OR) vs log cluster size for clusters selected as
significantly enriched. For Functional class clusters, we targeted the cluster size as closely as
possible to be powered to detect an OR of 1.5 to 2, thinking these would be practically
meaningful and robustly estimated effect sizes; Murcko clusters sizes were smaller than we
desired. The relation between observed OR and cluster size is consistent with our power
calculations and does not appear to differ between the two sets of descriptors, consistent
with the interpretation that cluster size was the major difference between them.
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Figure 4.
Estimation of confirmation rates using a mixture model of two linear regressions, which
identifies confirmed hits (red) and false positives (black). It is apparent that fewer hits are
selected, but with higher confirmation rates, for Murcko clusters. However the total number
of confirmed hits (red) is smaller than that of the Functional Class Fingerprints method.
Analysis suggests this is a function of the smaller cluster size of the Murcko clusters.
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Figure 5.
Ranking of significant clusters. (a) Cumulative confirmation rate versus number of selected
hits, among significant clusters as ranked by enrichment odds ratio, for three approaches.
Although Murcko clusters have higher confirmation rates, the total number of hits selected
is smaller and the confirmation rate declines more rapidly, as compared to Functional Class
Clusters. The ‘Top X’ approach has the least satisfactory performance. (b) Confirmation rate
versus the number of compounds selected by Functional Class clusters, ordered by either
odds ratio (open circles) or cluster p-value (solid circles). P-values are unrelated to
confirmation rate, demonstrating that enrichment odds ratio is a better metric by which to
rank significant clusters.
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Figure 6.
Confirmation rate vs the enrichment odds ratio for statistically significant clusters.
Triangles: Murcko scaffold fragments; Circles: Clusters made using Scitegic FCFP6
functional class descriptors. The larger functional class clusters show consistent correlation
between odds ratio and confirmation rate; the smaller and more variable Murcko clusters do
not.
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Figure 7.
Confirmation rate vs number of compounds selected when including all significant clusters,
by relaxing two different selection criteria: (a) lowering the threshold θ for candidate hits;
(b) raising the significance level α for significant clusters. α ranges from 0.05 to 0.25 at θ =
3% and θ ranges from 3% to 6% at α = 0.05. Each method is shown on three different
cluster sets. Either method appears to work well for increasing the potential number of hits
selected; the significance level is computationally more convenient.
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