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Abstract Spherical robots have a wide range of self-propulsion mechanisms. Of par-

ticular interest in this paper, are propulsion systems where wheels are placed in contact

with the inner surface of the spherical shell of the robot. Here, locomotion is achieved

by a combination of the actions of the motors along with the rolling constraints at the

point of contact of the shell with the ground surface. We ask and seek the answer to

the following question using elementary arguments: What is the minimal number of

actuations needed to completely prescribe the motion of the robot for the two distinct

cases where it is rolling and sliding on a surface? We find that two points of actuation

are all that is needed provided some simple geometric conditions are satisfied. Our

analysis is then applied to the BB-8 robot to show how locomotion is achieved in this

robot.

Keywords Spherical robots · Non-holonomic constraints · Locomotion · Rigid body

dynamics

1 Introduction

Mechanical toys featuring spherical shells that are propelled into motion on surfaces

using a wide range of internal mechanisms date to the early 1900s [1]. These toys

partially inspired the development of spherical robots later in the same century, devel-

opments which continue to the present day. This class of robots have a spherical shell

and a propulsion mechanism contained within the shell (see, e.g., [2,3,4,5]). Locomo-

tion is achieved by the rolling of the shell on a surface. The analyses of the dynamics
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of the rolling motion and controlling and planning the trajectory has a rich history (cf.

[6,7,8,9,10] and references therein) and has raised many interesting questions in the

dynamics and control of nonholonomic systems. Our present work contributes to this

literature by seeking simple explanations behind the kinematics needed to control a

spherical robot.

It can be argued that spherical robots were largely of academic interest until the

introduction of the Sphero-based BB-8 robot in the Star Wars: The Force Awakens

movie and its sequel captured the public imagination. From the patents [11,12,13]

for this robot and disassembling a working device (see Figure 1), we learn that self-

propulsion is achieved in a similar manner to how a hamster is able to move its cage

albeit using two wheels in contact with the inner surface of the shell.1 The tilting of the

external spherical cap (domed head), which is arguably its defining feature, is achieved

using magnets and a pendulum-like actuator.
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Fig. 1: The Sphero BB-8 robot. (a) The robot in motion showing the spherical shell (1)

and the spherical cap. (b) Deconstructed robot following cutting of the spherical shell

into hemispheres and removal of cap (2). (c) the inner mechanism of the robot showing

one of the two wheels (5) used to locomote the spherical shell and the pair of wheels (4)

used to help maintain contact. The pendular mechanism (3) which actuates the spherical

cap with the help of magnets is labelled. (d) Image of the inner mechanism showing the

pair of wheels used to locomote the spherical shell and the pendular mechanism. By way

of scale, the coin in the images is a US quarter dollar. The induction coil (6) used to

charge the batteries for the rotors is located at the bottom of the inner mechanism and

serves to help keep the center of mass of the robot below the geometric center of the

spherical shell.

1 A video [14] showing the inner workings of the Sphero BB-8 robot proved to be very
helpful.
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Our curiosity about the self-propulsion system used by BB-8 leads us to ask the

following questions: First, how many actuators are needed to control the motion of

such a device? Second, is it necessary for BB-8 to roll or is it also possible to control

the motion if the robot is sliding? While we didn’t find the answers to our questions in

the literature, we were able to find answers using elementary arguments. In short, we

find that it is necessary to prescribe the motion of two distinct points on a rigid body

and the motion of a third point in a single direction in order to completely control the

motion. Thus, we conclude that two actuators (as opposed to four in the design of some

spherical robots) are required to locomote a robot, even when the robot is sliding. We

conclude the paper with an application of our results to BB-8.

2 Elementary Kinematics

The motion of a rigid body can be described using the position vector x̄ of the center

of mass X̄ and the rotation tensor Q of the body. For our purposes it is convenient to

frame our discussion in terms of the velocity vector v̄ = ˙̄x of the center of mass and

the angular velocity vector ω of the rigid body. Our notation follows [15].

For an arbitrary material point A of the rigid body, we have the following relation-

ship:

vA = v̄ + ω× (xA − x̄) . (2.1)

In the sequel, we use a right-handed orthonormal corotational (or body fixed) basis

{e1, e2, e3} and the following representations:

v̄ = ẋ1e1 + ẋ2e2 + ẋ3e3, ω = ω1e1 + ω2e2 + ω3e3,

xA − x̄ = A1e1 + A2e2 + A3e3. (2.2)

Using a skew-symmetric matrix we can express the velocity equation (2.1) using arrays

and a matrix:

vA = v̄ − Aω (2.3)

where

vA =





vA · e1
vA · e2
vA · e3



 , v̄ =





v̄ · e1
v̄ · e2
v̄ · e3



 , A =





0 −A3 A2

A3 0 −A1

−A2 A1 0



 , ω =





ω1

ω2

ω3



 .

(2.4)

The san-serif font is used to distinguish scalar valued arrays and matrices from the

vector and tensor counterparts.

Given three points A, B, and C on a rigid body, such as those shown in Figure 2,

we have the following identities:

vA − vC = ω× (xA − xC) , vB − vC = ω× (xB − xC) . (2.5)

The relative velocities in these expressions are not independent. After taking an inner

product and rearranging the resulting triple product, we find that

(vA − vC) · (xB − xC) = − (vB − vC) · (xA − xC) . (2.6)

Thus, at most five of the six scalar relations (2.5) are independent. We also note for

future reference that the relative velocity vectors and relative position vectors are

orthogonal:

(vA − vC) · (xA − xC) = 0, (vB − vC) · (xB − xC) = 0. (2.7)
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Fig. 2: (a) Schematic of the material points A, B, and C on a rigid body and the

center of mass X̄ of the rigid body B. (b) A rigid body in motion on a surface. The

instantaneous point of contact of the body with the surface is B and the normal vector

at the contact point is n. The basis {E1,E2,E3} is a fixed right-handed Cartesian basis.

3 Prescribing the Motions of Two Points

Imagine holding a rigid body in space with two fingers and then attempting to move

the body using these fingers. It is easy to see that while some of the motion of the body

can be controlled in this manner, it is not possible to control a motion where the body

rotates about an axis that joins the two fingers. Similarly, if BB-8 were thrown in the

air and then the pair of motors were actuated, it would not be possible to control all

six components of v̄ and ω.

To see how these limitations manifest in the kinematics of the rigid body, we sup-

pose that the velocity vectors at two points A and B of the rigid body are prescribed:

vA = v̄ + ω× (xA − x̄) , vB = v̄ + ω× (xB − x̄) . (3.1)

We can express these relations as a matrix equation:

[

vA

vB

]

=

[

I −A

I −B

][

v̄

ω

]

. (3.2)

If (xA − x̄) × (xB − x̄) 6= 0, then the square matrix in Eqn. (3.2) has rank 5 and a

non-zero null vector. The null vector corresponds to

v̄ = λ (xA − x̄)× (xB − x̄) , ω = λ (xB − xA) , (3.3)

where λ is a scalar. Thus, given vA and vB , we can prescribe all of the components

of v̄ and ω except those for a motion where the body rotates at an arbitrary angular

speed about an axis passing through the fixed points A and B (i.e., vA = 0, vB = 0,

and v̄ ⊥ xA − xB).
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4 Prescribing the Motions of Three Points

To attempt to eliminate the uncontrolled motion that appears when the motions of

two points are prescribed, we next suppose that the velocity vector at three points A,

B, and C of the rigid body are prescribed:

vA = v̄ + ω× (xA − x̄) , vB = v̄ +ω× (xB − x̄) , vC = v̄ + ω× (xC − x̄) .

(4.1)

Writing these equations in a matrix notation:





vA

vB

vC



 =





I −A

I −B

I −C





[

v̄

ω

]

. (4.2)

The 9× 6 matrix in this equation has rank 6. It row reduces to a matrix which has a

block structure consisting of a 6× 6 identity matrix and a 3× 6 zero matrix.

Without loss of generality, we can assume that the velocities we wish to control are

ω and vC . (4.3)

That is, we only need to determine ω. Suppose we now prescribe vB and vA. Then,

vA − vC = ω× (xA − xC) , vB − vC = ω× (xB − xC) . (4.4)

As mentioned earlier, the relative velocities in Eqn. (4.4) are not independent (cf. Eqn.

(2.6)). Without loss of generality, we choose {e1, e2, e3} such that

xA − xC = D3e3. (4.5)

We still need to compute ω in order to determine the motion of the body using the

remaining equations:
[

vA − vC

vB − vC

]

=

[

−A1

−B1

]

[

ω
]

, (4.6)

where

A1 =





0 −D3 0

D3 0 0

0 0 0



 , B1 =





0 −B3 + C3 B2 − C2

B3 − C3 0 −B1 + C1

−B2 + C2 B1 − C1 0



 . (4.7)

The null spaces of A1 and B1 are column vectors composed of the components of

xA − xC and xB − xC , respectively. Provided A, B, and C are not co-linear, that is

(xA − xC)× (xB − xC) 6= 0, (4.8)

then the 6×3 matrix in (4.6) has rank 3. We can solve for ω1 and ω2 using the equation

vA − vC = ω× (xA − xC):

ω1 = ω̂1 ≡ −
(vA − vC) · e2

D3
, ω2 = ω̂2 ≡

(vA − vC) · e1
D3

. (4.9)
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The solutions are ornamented with a hat for future reference. The remaining three

scalar equations from Eqn. (4.6) now reduce to





(vB − vC) · e1
(vB − vC) · e2
(vB − vC) · e3



 = −B1







−(vA−vC)·e2

D3

(vA−vC)·e1

D3

ω3







. (4.10)

Solving for ω3, we find

ω3 = ω̂3 ≡
1

(B2 − C2)
[(B3 − C3) ω̂2 − (vB − vC) · e1] . (4.11)

Thus, by prescribing the velocity vectors of three non-colinear points, the motion of

the rigid body is completely prescribed.

Observe that we have two remaining equations from Eqn. (4.6):

(vB − vC) · e2 = − (B3 − C3) ω̂1 + (B1 − C1) ω̂3,

(vB − vC) · e3 = (B2 − C2) ω̂1 − (B1 − C1) ω̂2. (4.12)

As anticipated from the rank calculation for the 6 × 3 matrix in Eqn. (4.6), the pair

of equations (4.12) is identically satisfied by the solutions ω̂i for ωi. To see this, we

rearrange Eqn. (4.12) and use the identities (2.7) to find that the two equations (4.12)

can be expressed in the respective forms:

(B3 − C3) ((vA − vC) · (xB − xC) + (vB − vC) · (xA − xC)) = 0,

(vA − vC) · (xB − xC) + (vB − vC) · (xA − xC) = 0. (4.13)

Invoking Eqn. (2.6), we can conclude that Eqn. (4.12) are identically satisfied.

5 The Minimal Case

The fact that two of the nine conditions arising when the velocity vectors of three points

are prescribed are redundant naturally leads us to seek the minimal set of prescriptions.

To this end, we now consider the case where the velocity vectors of two points A and C

are prescribed but only one component of B is prescribed. This situation arises when

a spherical robot is in sliding contact with a surface. In this case, we prescribe

vA, vC , and vB · n, (5.1)

where n is the unit-normal vector to the surface at the instantaneous point of contact

B of the robot with the surface (cf. Figure 2(b)).

Without loss in generality, we can assume that the velocities we wish to control are

ω and vC . Paralleling the arguments of the previous section, we find that prescribing

vA and vC enables us to compute the components of ω orthogonal to (xA − xC) (cf.

Eqn. (4.9)). We still need to prescribe the component of ω that is parallel to (xA − xC).

We have a single equation remaining that can be used to solve for this component:

(vB − vC) · n = (ω× (xB − xC)) · n. (5.2)

We again choose {e1, e2, e3} so that Eqn. (4.5) holds and define a vector q

q = q1e1 + q2e2 + q3e3 = (xB − xC)× n. (5.3)
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Whence we find that the remaining unknown component of ω is

ω3 = ω̂3 =
1

q3
((vB − vC) · n− ω̂1q1 − ω̂2q2) . (5.4)

For the solution to this equation to be defined we require q3 6= 0. This is equivalent to

the condition

((xA − xC)× (xB − xC)) · n 6= 0. (5.5)

In other words, the relative position vectors xA − xC and xB − xC and the normal

vector n are linearly independent. When Eqn. (5.5) is satisfied, the prescription of vC ,

vB · n, and the two components of vA that are orthogonal to (xA − xC) is necessary

and sufficient to prescribe v̄ and ω =
∑3

i=1 ω̂iei of the rigid body.

e1

e2

e3

A

G

vA B

C

g

vC

Fig. 3: Schematic of BB-8 in motion on a horizontal plane. The points of actuation of

the motor-driven wheels are labelled A and C, the instantaneous point of contact of the

shell with the ground plane is labeled B, and the geometric center of the shell is labeled

G. The relative velocity vector vA − vC = ve1.

6 Application to a Rolling Spherical Robot and a Sliding Spherical Robot

For BB-8 rolling on a surface, actuation of the robot is achieved by two wheels in

contact with the inner surface of the spherical shell (see the wheels labeled “5” in

Figure 1). Thus only certain components of the velocity vectors of A, B, and C are

prescribed. As shown in Figure 3, we label the point of contact of the wheels with the

shell by A and C and the instantaneous point of contact as B. Thus vB is completely

prescribed (i.e., vB = 0 when the spherical shell is rolling). Without loss of generality,

in addition to our earlier selection of e3, we also choose e1 so that

vA − vC = ve1, xA − xC = D3e3. (6.1)

That is e3 is parallel to the axles of the wheels which contact the spherical shell at A

and C. A cursory examination of a BB-8 robot shows that (4.8) holds. Whence from

(4.9), we can conclude that

ω = ω̂2e2 + ω̂3e3 (6.2)
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is prescribed with ω̂1 ≡ 0.

Given the weight of the structure containing the motors for the wheels and the

induction coil, we assume that e2 is approximately parallel to the position vector of

the geometric center G of the spherical shell of radius r0 relative to the point of contact

B: xG − xB ≈ r0e2. Whence,

vG = vB + ω× (xG − xB) = −r0ω̂3e1

=

((

B3 − C3

D3

)

(vA − vC) · e1 + vC · e1

)

e1 (6.3)

where we used Eqn. (4.11) to simplify the resulting expression for vG. From the ex-

pression for vG we can conclude that the geometric center will move in a direction

orthogonal to the axis connecting A and C. By varying the relative speed of rotation

of the wheels at A and C we can rotate e3 and so control the direction of the motion

of G. In this simple manner, the pair of wheels control the trajectory of G.

For the BB-8 robot, an examination of its geometry shows that we do not expect

the kinematical condition (5.5) to hold. Consequently, locomotion of BB-8 on a surface

with sliding contact (as opposed to rolling contact) is not anticipated.
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