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ABSTRACT OF THE THESIS

Using Text Mining to Accelerate Automatic Curation of Biomedical Databases

by

Suvir Jain

Masters of Science in Computer Science

University of California, San Diego, 2015

Professor Chun-Nan Hsu, Chair

Numerous publicly available biomedical databases derive data by curating from

literatures. However, using curated data in Machine Learning is challenging, because

the exact mentions and locations in the text are lacking. This thesis describes a general

approach to use curated data as training examples for information extraction. The idea is

to formulate the problem as cost-sensitive learning from noisy labels, where the cost is

estimated by a committee of classifiers that consider both curated data and the text.
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Chapter 1

Introduction

1.1 Problem Description

Scientific literature is being produced at an exponential pace. Among various

articles published in journals, conferences and workshops, often only they key results of

a publication are of interest to other researchers in the same or related fields. To meet this

need, there exist structured databases of knowledge that are prepared by domain experts.

The standard method of preparing these structured repositories of knowledge involves

annotators and curators. They are tasked with reading the entire publication to extract the

entities of interest. Over the past few years, text mining has become a useful approach to

partially or completely automating this process of extracting entities of interest.

The science behind this use of text mining draws upon the well studied natural

language processing (NLP) problem of Name Entity Recognition (NER). Biomedical

text mining, the domain of text used in this thesis, has been a promising area for the

application of text mining from scientific literature to create and update structured

databases of knowledge [MS99]. In theory, well studied NLP methods should be

adequate to reduce human effort significantly. However, in practice, text mining often

1
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falls short and manual curation continues to be the standard practice today [WDC+09,

DWR+13, ABB+08, HWvM+10].

Other approaches have been considered as well. One such approach involves the

use of highly standardized templates [Mon05]. Arguably, a template is an option that

constrains the types of knowledge that can be extracted. Updating templates and promot-

ing adoption of standardized templates are other pitfalls. Some argue that crowdsourcing

can leverage the power of crowds to perform better than cutting-edge NLP techniques

[BDK+14, GS13, SOJN08].

All the approaches have merits and deficiencies. However, if one considers

scale of growth and the heterogenous nature of free-text, there is considerable potential

for automatic or semi-automatic [BCF+07] NLP-based approaches. Only by nearly

eliminating the human element from the process, can we aim to achieve a fully scalable

solution to this problem.

1.2 Annotation Vs Curation

Annotation and curation are fundamentally different processes.

An annotation is a label applied to a span of text. Hence, an annotation appears

verbatim in the source text. Annotated databases are rather labor-intensive albeit ideal

for text mining applications.

On the other hand, curated databases are prepared by domain experts who use a

common terminology to describe entities in text. For example, consider the Catalog of

Genome Wide Association Studies (GWAS) [WMM+14, HSJ+09], an online database

developed by the National Human Genome Research Institute (NHGRI). Curators of the

Catalog of Genome Wide Association Study (GWAS) use terms present in the Experiment

Factor Ontology (EFO) as curation labels.
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Curated databases require in-depth domain knowledge to produce but the result

often requires post-processing before being useful for text mining. Creation of annotated

databases is a labor-intensive task but the result is more amenable to application of text

mining.

1.3 Curated Databases

A large number of biomedical databases are available in the public domain. Many

of them contain data derived directly from the published literature either by curation by

teams of experts or submitted by authors or researchers. A survey estimated that in 2013,

of a total of 290 papers on biomedical databases that were published that also provided

open URL links to access the data. Among these 290 databases, 77.59% of them collected

data from the literature and contained citations as supportive information [KL14].

1.4 Challenges in Learning from Curated Databases

Curated databases cannot be readily used as training examples because the

databases provide no information of where and how the data were derived from the

text. The upper panel of Figure 1.1 shows an example entry in the Catalog of GWAS.

Each entry represents an observed association reported in an article, specifying that an

association between a genetic variant, given in the data field Strongest SNP, and a

phenotype, given in Disease/Trait, was observed from this study from an initial stage

sample, given in Initial Sample Size. The entry also specifies that the observation

was validated with a replication sample, given in Replication Sample Size. Other

data fields include information of where the genetic variant resides in the genome and

statistical strength of the observation.
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Figure 1.1: Example of an entry in the Catalog of GWAS (upper panel) and after
matching to the curated data in the text of the source paper [PTO+11].

The Catalog of GWAS is created and regularly updated by systematically selecting

research articles reporting large-scale GWAS and then manually extracting study-level

fields of information. The lower panel of Figure 1.1 shows the matching result of the

entry in the Catalog of GWAS with the actual passages in the text of the article for three

data fields. This example illustrates why curated data can be both useful and not useful

as training examples. They are useful because matching the data to the text will create

training examples. They are not useful because the matching is not trivial. As shown

in Figure 1.1, matching between the data and text requires background knowledge. In

fact, curated data rarely provide verbatim copies of what mentioned in the source article.

For the purpose of easy-to-search, categorization, summarization, and data integration,

curators usually adopt to a standardized terminology different from the text. Also, human

curated data inevitably contain typos and inconsistencies in following standards. Even

when an exact match with curated data is found, the passage might be about a review of

previous results but not where the data should be extracted. To sum up, curated data are
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useful but imperfect.

1.5 Cost-sensitive Learning to the Rescue

Machine learning has shown its potential in NLP and has been widely applied in

commercial applications. Machine learning algorithms have often won in international

challenges on biomedical text mining [KMS+08, ZDFYC07, SDF12, ZPZ+13]. How-

ever, supervised statistical learning algorithms require large training examples, which

may need an effort no less than creating a manually curated database.

This thesis presents a general approach to using curated data from existing biomed-

ical databases as training examples of NLP. The key idea is to estimate the reliability of

the training examples from a committee of computer programs, then use a cost-sensitive

learning algorithm to learn from training examples weighted by the estimated reliability.

In Machine Learning, this is known as an approach to agnostic learning from data with

noisy labels [LT14, NDRT13, SPI08, FV14, Ser03, KK09, Bou09] and has been inten-

sively studied but, to the best of our knowledge, never been applied to the problem of

learning from curated data. The work in this thesis applies this approach to the problem

of extracting the target disease/traits of a study from biomedical literature.

The reminder of this thesis is organized as follows. Chapter 2 reviews related

work and provides more detailed background. Chapter 3 presents a general framework

of the approach to using curated data as training examples. Chapter 4 provides details

about the data set and the implementation of the proposed approach used to extract study

targets of a GWAS study. Chapters 5 present the results of the various approaches used.

Lastly, chapter 6 analyzes the results, summarizes conclusions, and describes potential

future work.



Chapter 2

Background and Related Work

2.1 Cost-sensitive Learning

In a typical learning problem, the main goal of the learning step is to minimize

the number of incorrect predictions made by the learned model. The “cost” of any

mis-prediction is equivalent to the cost of any other mis-prediction. Certain applications

require a more nuanced approach to quantifying cost of mis-predictions.

Fraud detection is a good example of one such application. The financial repercus-

sions of a false negative classification i.e. a missed fraud are quite high. Similarly, false

positive classification of a fraud detection can potentially result in a customer service

nightmare. However, the consequences are not as dire as that of aa missed fraud. In other

words, the cost of a false negative is lower than that of a false positive.

In our application domain, we apply cost sensitive learning to identifying the

target disease (or trait) of a GWAS study. A GWAS study contains several mentions of

various diseases and associated traits. When identifying the target, the cost of missing

out a potential disease mention is greater than the cost of incorrectly picking a disease

mention as the true target of the study. Hence, the problem lends itself suitably to a cost

6
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sensitive approach.

For more background on cost-sensitive learning, [Elk01] and [ZE01] provide a

review of the theoretical foundations. They describe in detail how the cost of misclassi-

fication plays an important role in cost-sensitive learning algorithms. [CS98] provide

more background on the motivating example of fraud detection described above.

The work described in this thesis applies cost sensitive learning in a problem

domain with noisy labels. This problem is also called “Agnostic Active Learning”

and [BBL06] states and analyzes one of first algorithms proposed for such a problem.

[DMH07] also state an algorithm for this problem.

2.2 Recognizing Disease Mentions

The task of recognizing disease names in free text can be formalized as a Named

entity recognition (NER) task. Since diseases are often mentioned in biomedical texts,

Biomedical named entity recognition (BNER) is a more apt formalism.

There are a lot of BNER systems focusing specifically on gene/protein mention

recognition such as [THWL09]. [BDS+08] describe a system that extracts disease names

using features generally used for gene/protein mention recognition. [AS08] describe a

system that can identify drug name mentions.

[JJRL+08] describe some solutions for disease named entity recognition. [LG+08]

describe BANNER, a publicly available system specifically for extracting biomedical enti-

ties. [CF+10] describes a system based on a feature set tuned specifically for recognizing

disease names.
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2.3 Entity Normalization

A challenging next step after BNER is to normalize entity mentions in terms

of entities from a standardized knowledge source. [KLH11], [Coh05], [HPL+08] and

[WTH09] describe systems that normalize gene name mentions. [MLW+08] provide an

overview of methods used for the gene normalization task in BioCreative II.

In the context of normalizing disease names, [LIDL13] describe a system that

uses a pairwise ranking algorithm to rank pairs of disease mentions and normalized

disease terms. [IDL12] describe an inference method for disease name normalization.

[KSA+13] describe a rule-based system for disease normalization.



Chapter 3

Cost-sensitive Committee Learning

Framework

This section describes a general framework of the approach to using curated

data as training examples. The approach aims to be general enough to be applicable for

extracting all kinds of entities in free-text. The work described in this thesis specifically

applies this approach to extracting target disease/traits in a study. Colleagues of the

author have used the same framework to extract other entities such as ethnicity of a

sample, size of a sample etc. from a GWA study.

Figure 3.1 shows the five components and the workflow of the whole learning

approach. The input is a large corpus of research articles for training. For each article,

Step (A) identifies the passages that may contain the information to be extracted in the

text. The identification of passages should be inclusive in the sense that any suspect

passages will be extracted and no passage is missed.

Step (B) pairs each passage with a piece of matched curated data and creates a

feature vector for the pair as the input to the committee classifiers. For example, we pair

passage 2 in Figure 1.1 (lower panel) to data item "1683 Indonesian Individuals"

9
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Figure 3.1: System architecture summarizing the steps in the machine learning training
process.



11

from the Catalog of GWAS, because passage 2 is likely where the data item was derived.

Again, the matching should be inclusive to contain all potential pairs. Note that although

the features are created from one passage, the feature creator may take whatever context

in the article where the passage is extracted to create the features. In this way, we can

provide the learner to learn from a wide variety of free-text expressions.

Step (C) then sends the feature vectors to a committee of classifiers (diamonds

on top of Figure 3.1). Each classifier classifies each pair into positive, if the passage is

deemed to contain the information given in the curated data, or negative otherwise. The

classifiers can be as “weak” as simple decision rules, like “whether the passage contains

a substring that exactly matches the curated data.” Therefore, each committee member

classifier provides noisy positive-negative labels of the passages extracted from the text.

Combining the classification results of all committee members for all extracted passages

creates a a large matrix of yes-or-no votes, where each element (i, j) containing the vote

from classifier i for candidate passage j.

Step (D) estimates from the matrix the probability that candidate passage j is truly

positive by a label estimator that applies an Expectation-Maximization (EM) algorithm to

compute maximum likelihood estimation of the probabilities, which can then be treated

as the weight, or the reliability of a candidate training example. A similar approach was

used in the BioCreative III gene normalization task [ARA+11] to create a silver standard.

The EM algorithm works as follows:

1. Input: matrix M of committee (column)-passages (row), where each element in

the matrix is either positive (= 1) or negative (= 0);

2. Let pi be the probability that the i-th passage should be positive, e j be the error

rate of the j-th committee classifier; Let t = 0;

3. Initialize e j(0) = 0 for all j;
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4. Update pi(t) =
Â(1�e j(t�1))Mi j+k

J+K , where J is the number of the committee, k/K is

the Laplace prior;

5. Update e j(t) =
Â pi(t)Mi j+k0

I+K0 , where I is the number of the passages, k0/K0 is the

Laplace prior;

6. t = t +1 and repeat update steps until convergent;

7. Output: p̂i and ê j be the final values.

With the estimated probability of each candidate passage, we can assign it a

cost, and train a cost-sensitive learner [YXR14, CZL09, LWWL11] using the candi-

date passages as the cost-weighted training examples to learn to select correct passages

that contain the desired information as Step (E). The cost that we use here is derived

according to Lemma 1 in [LT14], where the problem of classification with noisy la-

bels is solved by importance re-weighting. They show that an error bound can be

achieved if the misclassification cost of a training example (x,y) is set to p(y|x)/pr(y|x),

where r denotes sampling from a noise perturbed distribution. Though neither p(y|x)

nor pr(y|x) are known, we can approximate pi(y =“+”|x) by p̂i and pr(y =“+”|x) by

p(p̂(y =“+”|x)> 0.5) for a training example estimated as positive and analogously for a

negative one. That is, let yi = round(p̂i). If yi = 1 then ci =
p̂i

Âi yi/I , else ci =
1�p̂i

1�Âi yi/I .

We note that this cost-sensitive classifier may use a completely different set of

features to characterize a passage.

After all of the learning described above completes, to extract desired data from a

given new article, we apply the same Step (A) to extract passages and send them to the

cost-sensitive classifier to extract data from positive passages.

The content in this chapter in part is currently being prepared for submission

for publication of the material. The thesis author was the primary investigator of this

material. Prof. Chun-Nan Hsu was the primary author of this chapter.



Chapter 4

Applying the Framework to Extract

Study Targets

4.1 Data Set Used

We gather the articles curated and included in the Catalog of GWAS. A genome-

wide association study (GWAS) is an approach to detecting genetic variations associated

with particular diseases or traits by scanning markers across the genomes of a large-

scale sample of subjects in a high-throughput manner. In less than a decade, GWAS

studies have been successfully producing discovery and replication of many new disease

loci. Discovered genetic associations have led to development of better strategies to

diagnose, treat and prevent diseases. The number of GWAS is growing rapidly. There

is a need for a database that allows researchers to easily query and search for previous

results. A well-curated database also provides a resource for overview investigations and

summarization of associated genetic sites and may help suggest pleiotropic genes. Such

a database has been created and maintained by the National Human Genome Research

Institute (NHGRI), called “A Catalog of Published Genome-Wide Association Studies”

13
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(Catalog of GWAS). The catalog has led to interesting characterization of previous results

in GWAS and NHGRI has been continuing to update and curate the catalog regularly by

a team of expert curators.

The Catalog of GWAS was first released on November 25, 2008 with 5,120 entries

available for search. Since then a large number of new GWAS articles were published

and the Catalog has been updated regularly. On a weekly basis, epidemiologists from

NHGRI’s Office of Population Genomics manually curate information from published

GWAS and add them to the catalog. As of May 2015, the catalog of GWAS contains

totally 28,870 entries and 1290 unique curated disease/traits.

Work described in this thesis involved 1,272 publications for which a curated

target disease or trait is available. Among them, 307 papers have full text available in

the NXML format [NCfBI15] and are used as test data. The rest 965 papers serve as

training data. Their PDF versions are all transcribed into a XML format using the method

proposed in [Hsu14, CPV13].

The curated catalog was provided to us by NHGRI in the form a spreadsheet

[EFO14]. The spreadsheet contained the following information.

1. Curated study target: Disease or trait chosen by curators as the study target of

the publication. This is the study target that all the work in this thesis is trying to

predict.

This may not necessarily match the terms as they appear in the text. To account

for this difference, we had to make some changes in the evaluation phase. For the

hold-out 307 articles used to evaluate the results, we manually augmented these

terms with the corresponding terms that actually appear in the articles to serve as

our gold standard.

2. EFO term: The Experimental Factor Ontology (EFO) [MHA+10] is an open
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access ontology of experimental variables. These variables include disease and

their associated traits. This column lists the EFO term chosen by curators as the

normalized form of the study target. The study target and EFO term can be identical

in some cases but quite different in others. For example, schizophrenia appears

both as a study target and the corresponding EFO term. In another example, the

normalized EFO term for the study target “Male-pattern baldness” is “androgenetic

alopecia”.

3. EFO parent term: A less granular term from the EFO for the same study target.

This term is often very general and would not appear in the text itself. For ex-

ample, the parent term corresponding to the EFO term “waist-hip ratio” is “body

measurement”.

4. PubMed ID: The identification number assigned to the GWAS publication in

PubMed.

5. Author name: Name of the primary author of the GWAS publication.

6. Date of publication: Date on which the journal was published.

7. Journal name: Name of the journal in which the publication was published.

For example, the GWAS publication with PubMed ID 18463370 [MMB+08]

was published in the National English Journal of Medicine on 9th May 2008. The

primary author was “Maris JM”. The curated study target was “Neuroblastoma”. The

corresponding EFO term and EFO parent term were “neuroblastoma” and “cancer”,

respectively.
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4.2 Extracting Study Targets

The problem of identify target disease or traits of a GWAS study is different

from the well-studied problem of disease mention tagging and normalization [LIDL13,

LL14, DLL14] in that not all mentions but only the study targets need to be identified

and that GWAS study targets include not only diseases but traits like eye colors, response

to treatments, sleeping habits, and other phenotypes.

Step (A): Passage Extractor. In this step, we identify all mentions of any disease

or trait using exact string matching approach, which is based on a dictionary of all diseases

and traits from the search menu of the Web query interface of the Catalog of GWAS 1.

After string matching, we extracted 117,384 mentions in the training and 72,914

in the test data. Note that these numbers are the total mentions of any disease or trait in

all articles in the data set (i.e., a paper usually contains multiple mentions).

Step (B): Feature Creator. The following features are generated for each train-

ing sample:

• Token-based features: Character-level n-grams of the mention.

• Context-based features: Word-level and character-level n-grams for up to 10 words

before and after the mention.

• Position-based features: The location of each mention can be indicated using

positional tags (e.g., harticle-titlei and habstracti) in the converted XML papers;

therefore, whether a mention locates within positional tags are extracted as binary

features. These tags, however, are not always available from the PDF transcribed

XML versions.

For each mention, token-based and context-based features are represented as
1https://www.genome.gov/26525384
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normalized TF-IDF vectors. Together with position-based features, each mention has

approximately 120,000 features.

Step (C): Committee of Classifiers. To build the committee matrix, we design

five rule-based binary classifiers as follows.

• Title or Abstract: Whether disease / trait mention occurs in the title or abstract of

the paper; this is a simple yet strong indicator of a disease mentioned being the

actual target of the paper.

• Exact match: Whether disease / trait mention exactly matches the target given by

human curator.

• Sub-string match: Whether disease / trait mention partially matches the target

given by the human curator (e.g., a mention of “Diabetes” would be classified as

positive, if the human curator determines the disease as “Type-2 Diabetes”).

• Synonym: Whether disease / trait mention is an exact or partial match of a synonym

of the target determined by the human curator. The synonyms are collected from

UMLS [Bod04]; for a given disease or trait mention, all UMLS concepts that

shared the same CONCEPT-ID are considered to be synonymous. To reduce noise,

we only keep the synonyms which are in English and are preferred terms (i.e., the

IS-PREF flag set to Y in UMLS).

• Compound token: Whether the mention has multiple tokens separated by a space

or hyphen (e.g., “Parkinson’s disease” would be classified as positive because it

consists of compound tokens separated by a space).

It should be noted that although some rule-based classifier is extremely weak (e.g.,

compound token), our idea is to show that multiple weak classifiers can actually contribute

to a strong committee and make accurate predictions.
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Step (D): Label Estimator. In this step, we apply the EM method described in

Section 3 to label each pair of passage and curated disease or trait with an estimated

confidence (i.e., the conditional probability given the pair is positive).

Step (E): Cost-sensitive Learner. In this step, we utilize the estimated confi-

dence generated by the Label Estimator to assign the cost to train a cost-sensitive variant

of Support Vector Machine (SVM).

Post-processing. Each paper may contains multiple mentions of various disease

and traits. For example, a paper may contain 10 times of “Diabetes”, and 30 times of

“Hypertension”. However, our cost-sensitive classifier may predict only part of them to

be positive. This is reasonable because even though two sentences mention the same

disease / trait, it is not always the case that both are stating that the disease / trait is the

study target. We consider the following two scores for the post-processing, inspired by

TF and IDF, respectively:

1. PT F =
Vpi

Vpi+Vni
, where Vni is the number of negative votes assigned to the i-th candi-

date. In our example, PT F(“Diabetes”)= 8/10= 0.8, and PT F(“Hypertension”)=

12/30 = 0.4.

2. PIDF =
Vpi

ÂVpi
, where Vpi is the number of positive votes assigned to the i-th candidate.

In our example, PIDF(“Diabetes”)= 8/(8+12)= 0.4, and PIDF(“Hypertension”)=

12/(8+12) = 0.6.

To combine PT F and PIDF , we apply two mean computation, namely arithmetic

and harmonic, to calculate the final scores and determine our predicted disease / traits.

The harmonic mean better represents the mean value of these two metrics. That is because

the PT F and PIDF values are often quite small and include outlying values. Harmonic

mean is a more sensitive measure in such cases. In our example, the arithmetic mean of

“Diabetes” is 0.6, while that of “Hypertension” is 0.5; therefore we predict the disease of
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the paper as “Diabetes” using the arithmetic mean method. The results using harmonic

mean method can be computed in the similar way.

4.3 EFO Term Identification

The catalog of GWAS also provides a normalized EFO term corresponding to

each curated study target, as described in Section 4.1. For each of the two study targets

identified by the “harmonic mean” approach in the previous section, we used the string

matching algorithms to predict the most likely corresponding EFO term. If any one of

these two predictions matched that in the curated gold standard, it was considered a

positive result.

We experimented with two string matching techniques as follows.

1. Edit distance Levenshtein distance was computed between the two possible study

targets and the complete list of all study targets in the GWAS catalog. The EFO

term corresponding to the most similar study target was chosen as the possibly

correct EFO term.

2. Gestalt pattern matching approach The methodology followed was identical to

the edit distance approach. The gestalt pattern matching or Ratcliff/Obershelp

pattern-matching algorithm ([RM88]) approach tries to recursively look for the

longest contiguous matching subsequences. In this approach, it is possible to

discover similar strings that do not have the minimal edit distance.

In our experiments, the Gestalt pattern matching approach performed better than

the edit distance approach. Results for both these approaches are presented in the results

section.

The content in this chapter in part is currently being prepared for submission for
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publication of the material. The thesis author was the primary investigator and author of

this material.



Chapter 5

Results

In our experiment, we apply our method to predict the top-2 (either using arith-

metic or harmonic mean method) target diseases or traits for each article. The reason

of choose top-2 is that GWAS publications may focus on one or more diseases / traits.

The Catalog of GWAS, however, provides only one target disease / trait for each article.

To evaluate our results, we use accuracy based on the top-2 predictions. That is, if

either of these two predicted disease / traits matches the human curator’s annotation, it is

considered a true positive for computing accuracy.

We compare our proposed cost-sensitive learner with cost-insensitive learner.

Also, we attempted the following additional alternatives to improve the cost-sensitive

learner:

• Principle Component Analysis (PCA): We use PCA method to reduce the dimension

of the feature vector to 10,000. We tried various settings of the dimensions and

chose the best one.

• Sparse Random Projection (SRP): Similar to PCA, we use another dimension

reduction method, sparse random projection, to reduce the dimension of feature

vector to 5,000.

21
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• BIOADI: We identify and normalize the abbreviations in the input text using the

BIOADI system [KLLH09] to pre-process data in an attempt to minimize the

chance of missing an abbreviated disease or trait mention.

• Conditional Random Field (CRF): In order to deal with new diseases and traits

that do not appear in training dictionary, we also tried to apply CRF in the Passage

Extractor step of our method. The design of the features for the CRF is based on the

method described in [CF+10]; we use a mixture of general linguistic, orthographic,

contextual, syntactic dependency, and dictionary lookup features. By using this

CRF model, we discover 59,648 mentions in test data.

We split the available articles into training and test sets as described in Section 4.1

to test all methods.

Table 5.1 shows the performance results, which show that the cost-sensitive

learner outperforms the cost insensitive learner, and that harmonic averaging outperforms

arithmetic averaging. However, additional alternatives to reduce dimensionality (PCA

and SRP) and improve passage extraction (BIOADI and CRF) fail to improve the result

of the cost-sensitive learner.

Table 5.2 shows the results for the accuracy of the corresponding EFO term

identified. For each of the two study targets identified by the “harmonic mean” approach

in Table 5.1, we used the string matching approach described in Section 4.3 to come up

with the most likely corresponding EFO term. If any of these predictions matched the

EFO term in the curated gold standard (as described in Section 4.1) , it was considered

a correct match. The Gestalt pattern matching approach performed better than the Edit

Distance approach. Results are presented for both these approaches.

Note that if the study target was identified incorrectly, the EFO term would also

be incorrect. Keeping this in mind, these numbers were normalized to reflect the accuracy

with respect to those papers in which the study target was correctly identified.



23

For example, the Gestalt pattern matching approach could identify the correct

EFO term in 77.55% of papers that were correctly identified as positives by the cost-

insensitive method using Harmonic mean ranking.

Though these simple edit distance metrics can reach near 80% of accuracies for

all alternative methods, ideally all positives should match to their correct corresponding

EFO terms and there is plenty of room for improvement.

Table 5.1: Accuracy of identifying target disease / trait mention of a GWAS study

Method Arithmetic Harmonic
Cost-Insensitive 68.65% 79.62%
Cost-Sensitive 78.05% 87.46%

PCA 76.54% 82.73%
SRP 76.22% 84.03%

BIOADI 75.57% 87.29%
CRF 65.79% 75.24%

Table 5.2: Accuracy of EFO term identification

Method Edit Distance Gestalt pattern matching
Cost-Insensitive 75.59% 77.55%
Cost-Sensitive 75.26% 78.13%

PCA 78.34% 81.88%
SRP 77.51% 77.51%

BIOADI 75.37% 78.73%
CRF 78.35% 80.95%

The content in this chapter in part is currently being prepared for submission for

publication of the material. The thesis author was the primary investigator and author of

this material.



Chapter 6

Discussion of Results and Conclusion

A large number of curated biomedical databases available in the public domain

provides an unprecedented opportunity to train NLP systems to comprehend biomedical

publications. This thesis presents an approach to take advantage of this opportunity. The

approach applied methods from learning from noisy-label and committee classifiers to

assign costs to train cost-sensitive classifiers. This was tested on the problem of extracting

target disease/trait in a GWAS publication.

6.1 Discussion of Results

6.1.1 Number of Suggestions Considered

Our proposed method returns up to 2 suggestions because there are a few studies

with 2 target disease or traits. We experimented with more than 2 suggestions as well. If

we consider five suggestions, the accuracy of at least one of them being correct is higher

than 93%. However, we don’t think that is a reasonable approach and decided to just

consider 2 suggestions. If we return a single suggestion, the accuracy drops by a few

percentage points but stays above 82%.
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Figure 6.1: Example of sentences in free text from which the system extracts study
targets.

6.1.2 Challenges and Issues

Figure 6.1 shows some examples illustrating the issues that make this problem

difficult. These issues are described in more detail below.

• Pharmacogenomic studies Papers describing pharmacogenomic studies are another

challenging example. For example, one such study’s target was “Response to

citalopram treatment”. Note that the string “Response to citalopram treatment”

does not contain any disease or trait mentions. The system discovered various

possible study targets such as “schizophrenia”, “major depressive disorder”, “type

2 diabetes” etc. In absence of a more accurate curated label, it is difficult to use a

machine learning approach that can handle such examples.
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Figure 6.1 provides more examples of sample sentences occurring in the text of

such studies.

• Varying concept granularity In some cases, the disease or trait mentions in the

paper are at a different conceptual granularity from the curator’s label. For example,

in one of the papers, the system correctly identifies “sleepiness” and “insomnia”

as the two study targets. However, the curator labeled “Sleep-related phenotypes”

as the study target. A system that could deterministically map traits of varying

granularity to a single concept would have helped in such cases.

Figure 6.1 provides more examples of sample sentences occurring in the text of

such studies.

• Terminology dichotomy In its current form, the system deals in an identical manner

with disease and trait mentions. The curators of GWAS catalog also only label a

single column “Disease / trait”. However, semantically the two are quite different.

Results could have been further improved in the presence of a system that can

normalize diseases and their associated traits. For example, “obesity” is associated

with the traits “body mass index” and “waist-hip ratio”. Studies aim at obesity may

measure the traits of the subjects. In some cases, the system correctly discovers

“obesity” as the target disease but human curators might have labeled “body mass

index” as the target.

Figure 6.1 provides more examples of sample sentences occurring in the text of

such studies.

• Studies with several target entities to extract. For example, one of the papers

studied 22 associated traits. In such cases, curators choose a broad target disease /

traits such “Common traits”, “Quantitative traits” or “Selected biomarker traits”.
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Without more specific curation labels, it is difficult to train a machine learning

system from these curated data.

Figure 6.1 provides more examples of sample sentences occurring in the text of

such studies.

6.2 Better Curation Guidelines

One of the end goals for text mining would include automated systems that could

some day replace human curators. In fact, with the accelerating pace of GWAS study

publications, such systems might soon be a necessity. However, during the course of

this work, we realized that curation standards need to be revised in order to generate

reliable labels that can be used to train machine learning systems. An ideal set of curation

guidelines would have to better handle many of the issues discussed in the points above -

• Vague labels

• Labels of different granularity

• Treating diseases and traits separately

• Possibly considering different standard for different types of GWA studies.

Nevertheless, the results show that our approach is effective and outperforms

alternative approaches by reaching a F1 score greater than 0.8. We will continue to

investigate if it is possible to define standard passage extractors and weak learners

applicable to extract commonly interested biomedical entities, attributes and relations

to enable rapid development and portability between domains for biomedical literature

mining.
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6.3 Conclusion and Future Work

Efforts to learn from curated databases often do not perform as well as expected

due to the difficulty in learning from curated labels. The work presented in this thesis has

shown that it is possible to learn quite accurately from such curated databases. Curated

labels are a noisy source of labels for any supervised learner. However, using a committee

of simple learners to estimate the true label mitigates this shortcoming to a great extent.

Future work in this direction could potentially involve semi-supervised methods.

Semi-supervised methods hold the promise to significantly accelerate and partially

automate the curation of databases. Text mining methods that learn both from a curated

subset of the database and the uncurated remainder, would be promising avenues for

future research endeavors.

The content in this chapter in part is currently being prepared for submission for

publication of the material. The thesis author was the primary investigator and author of

this material.
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