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Abstract
Having accurate data to represent hyperelastic materials that underpin soft robotics would facilitate

their analysis, design, and validation. We seek to provide the reader with a useful tool to overcome a

mundane but crucially important problem in determining the hyperelastic material properties. We

show how to employ first dimensionless and then dimensional comparisons between experimental

data and the classic theoretical model representing this system to produce C1 and C2 for the

Mooney-Rivlin model, closely representing a variety of soft polymers.
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1 Introduction
Soft robotics has increasingly gained traction in research and applications over the last decade [1].

This typically involves making actuators of different sizes and configurations using hyperelastic

materials, biological materials, or synthetic soft tissues [2] to perform dextrous maneuvers that would

otherwise be impossible to conduct using conventional rigid robots. Hyperelastic materials can be

manufactured with biocompatibility and a broad range of elastic moduli, failure strains from 200% to

over 1000%, surface properties, solvent resistance, and thermal resistance. The material choice

depends upon the target application, making it one of the most critical parameters in research design

and development. The exponential growth of the soft robotics discipline has been driving a similar

growth in the number and variety of hyperelastic materials. Understanding and controlling their

behavior in applications is crucial to continue this growth.

In order to design and characterize the behavior of hyperelastic polymer materials, various

constitutive models have been developed in the past. Beyond the classic Neo-Hookean model [3], the

theory for large deformations of hyperelastic polymers was initiated by the seminal work of Mooney

[4] and further elaborated by Rivlin and Saunders [5] which has come to define the Mooney-Rivlin

model. Other well-known models include the Ogden [6], Yeoh [7], Blatz-Ko [8], Arruda-Boyce [9], and

Gent [10] models. Each of these constitutive models require one or more hyperelastic constants, and

finding values for those constants typically require a regimen of experiments.

In the case of the Neo-Hookean model, uniaxial tests are sufficient to fully determine the single

constant that it requires to define the material. However, most other models require more than one

material constant, and so more experimental tests are required, usually among the following choices:

pure shear, equibiaxial tension, planar tension, uniaxial compression, uniaxial tension, and biaxial

membrane (bulge) tests [11]. An alternative approach using atomic force microscopy

nanoindentation tests was studied by Dimitriadis, et al. [12], and subsequently in a few more studies

[13, 14, 15] where parameters B1 and B2 represent the hyperelastic constants. This approach requires

extraction of B1 and B2 using the Young’s modulus E , however there is no established relationship

between B1, B2, C1, and C2. There has been demonstration of a purely computational approach,

without experimental validation, that involves a finite element model (using ABAQUS, Dassault
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Systèmes, Vélizy-Villacoublay, France) comparing the results obtained from neo-Hookean,

Mooney-Rivlin and Yeoh models. Other approaches involve extraction of the storage modulus [13, 16]

to iteratively tailor the behavior of PDMS. The tensile and compressive moduli can also be extracted

using [17] tensile and compressive testing. In the two-parameter Mooney-Rivlin model, second-order

Yeoh and second-order Ogden models, two hyperelastic constants are required. For instance, the first

and second hyperelastic constants C1 and C2, also referred to as C10 and C01, respectively, in the

two-parameter Mooney-Rivlin case. While uniaxial tensile tests are sufficient to obtain the first

hyperelastic constant C1, biaxial membrane tests are typically necessary to obtain the second

hyperelastic constant C2. Various methods and results have been presented to extract the hyperelastic

constants [18, 19], however, there are limited benchmark results for the values of hyperelastic

constants of common materials such as polydimethylsiloxane (PDMS, Sylgard™ 184, Dow Corning

Corp., Midland, MI USA) and many other proprietary hyperelastic materials, such as the

platinum-cure silicone Dragon Skin (Smooth-On Corp., Macungie, PA USA).

The first reported values for PDMS were C1 = 34.3 kPa and C2 = 46.9 kPa [20], obtained from uniaxial

tensile tests. In a subsequent study, uniaxial experiments were conducted in both axisymmetric and

asymmetric fashion, and computational simulations using constitutive models were used to compare

against experimental data and establish material constant values for the models [21]. Sasso et al. [11]

added biaxial tests to uniaxial tests on rubber-like materials and validated the results with finite

element analysis (ABAQUS) to determine the values of the material constants for the Neo-Hookean,

Arruda-Boyce, Mooney-Rivlin, Ogden, and Yeoh material models. Later, the results of ultra-large

deformation bulge tests conducted on PDMS microballoons were compared to finite element analysis

(ANSYS, Inc., Canonsburg, PA USA) to obtain C1 = 75.5 kPa and C2 = 5.7 kPa for PDMS [22],

remarkably different than Kawamura et al. [20]. Uniaxial tensile and compression tests of dielectric

elastomers have been used in conjunction with finite element analysis (ABAQUS) to determine the

properties of dielectric elastomers [23], though these materials would certainly be expected to exhibit

mechanical properties different than pure PDMS.

The overall approach in the literature has been to validate experimentally-obtained results with finite

element analysis, and then use the results of this validation to derive the appropriate constants

necessary to represent the material with an analytical model. While the use of computation to
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compare with experimental results and determine the constants for use in an analytically-derived

model is convenient, it is tedious and subject to modeling and representation errors made in finite

element analysis. Since it is actually possible to directly use the theory in determining the appropriate

values for representative constants such as C1 and C2—without having to resort to computational

analysis—a viable alternative is to omit the computations. This avoids potential problems arising

from approximate representation of the boundary conditions and interfaces present in the system

when using finite element analysis. The theoretical approach likewise eliminates the computational

costs associated with obtaining and running FEA models.

We consider as an example of this approach the inflation of a small cylindrical disk of hyperelastic

media restrained at the periphery. Christensen and Feng [24] long ago combined the theory

developed by Mooney [4] and Rivlin [25] with an approximate closed-form solution for the inflation of

a thin circular disk to determine the hyperelastic material constants, but there has been no

demonstration since to use this theory to produce, for example, the C1 and C2 values for PDMS. In

other words, no one has used a purely analytical approach to validate the experimental data.

However, over this same time many [21, 11, 26] have used the comparatively painstaking approach of

introducing computations to determine these values, as they enable analogous representations of the

respective experiments conducted on the hyperelastic materials. In this paper, a

non-dimensionalized analytical validation method is provided as a universally applicable approach

regardless of the details, provided the minimum criterion for the stretch ratio is met as discussed later.

2 Method

2.1 Experiments

Different hyperelastic materials will exhibit independent hyperelastic constants. Uniaxial tensile tests

are frequently employed to extract the first hyperelastic constant C1, however to obtain the both C1

and C2, a biaxial membrane test is required. Biaxial tests can be conducted in different configurations,

either beginning with a three-dimensional balloon or biaxially inflating an initially flat disk. Making

uniform flat, thin films is easier than fabricating three-dimensional balloons with good surface

uniformity out of unknown materials, and so we adopt the biaxially inflated flat disk approach.
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Thin films of five different hyperelastic materials, PDMS (Sylgard™184), Dragon-Skin™10,

Eco-flex™30, Sorta-clear™40, and Dragon-Skin™mixed with hexane (weight ratio Dragon-Skin

A:B:hexane = 1:1:1), were made made by combining the base and curing agent in the manufacturer

recommended ratio. Glass slides were coated with release agent (Ease Release™200, Mann Release

Technologies, Macungie, PA, USA). All the hyper-elastic polymers were spin-coated at 750 RPM for 60

seconds. Upon curing, the resulting thin films were placed in a custom fixture shown in Fig. 1.

Steel plate

O-ring

a

b

Δ

Luer lock fluid inlet

Base plate

Membrane

Figure 1: a) A Luer connector base and steel plate with hole provided to pass the membrane through

when inflated, shown (b) from slightly above the horizontal view. The membrane, upon hydraulic

inflation from the Luer lock expands as a nearly spherical shape to produce a vertical height above

the steel plate, ¢, that grows with inflation until membrane failure. The O-ring beneath clamps the

membrane in place against the steel plate.

The 3-mm diameter of the circular hole in the base plate and steel plate are similar to eliminate

potential lateral stretching. The 4-mm diameter, 0.5-mm thickness O-ring prevents air leakage
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between the Luer connector base and the steel plate; it is sized to be commensurate with the inner

diameter of the steel plate to prevent interference with the membrane expansion from the circular

hole. The entire assembly ensures the entire membrane’s edge along a circular section is clamped

together, leaving a 3 mm radius circular region free to inflate in the middle from an inlet in the

substrate to which the membrane and clamp were fastened. Water was introduced through a Luer

lock connection into the chamber formed by the clamped membrane and inlet using a high precision

microfluidic system (microfluidics control, OB1, Elveflow®, Paris, France). Water was used as the

driving fluid to eliminate the potential effects of compressibility associated with pneumatic (air or

gas) inflation. The membranes were inflated to failure with pressure increments of 3 kPa/second and

filmed using a high-speed camera (Fastcam Mini UX100, Photron, Irvine, CA, USA) combined with a

long-distance microscope (CF–1, Infinity, Boulder, CO, USA). The Elveflow system provided the

inflation pressure as a function of time to a computer, and was used to trigger the camera to

synchronize inflation of the membrane with video recording saved on the same computer. The

deformation of the membranes as a function of the inflation pressure was obtained using custom

image processing code on MATLAB (MATLAB, Natick, MA, USA).

2.2 Analysis

In order to evaluate the hyperelastic constant values, a relation between the inflation pressure and

deformation of the membrane must be established. For a hyperelastic material, the Mooney-Rivlin

form of the strain energy function, W is defined as [4, 5]

W =C1 (J1 °3)+C2 (J2 °3) . (1)

The constant C1 is proportional to the number of molecular strands per unit volume, and C2

represents additional restraints on the molecular strands; the shear modulus G = 2(C1 +C2) while J1 is

a measure of the strain defined as [27]

J1 =∏2
1 +∏2

2 +∏2
3 , (2)
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and J2 is defined as

J2 =∏°2
1 +∏°2

2 +∏°2
3 . (3)

When an initially flat, circular disc of an elastomeric material with radius R is inflated in a biaxial

membrane, or “bulge”, test to produce a spherical cap shape, the stretch ratio, ∏, for the maximum

displacement of the membrane, ¢, is defined as [24]

∏=
√
¢
R + R

¢

2

!
sin°1

√
2

¢
R + R

¢

!
. (4)

The relationship between the inflating pressure, P , the maximum deformation of the membrane, ¢,

and the stretch ratio, ∏ is defined as [24]

P = 8C1H

R
°
¢
R + R

¢

¢
∑µ

1° 1
∏6

∂
+Æ

µ
∏2 ° 1

∏4

∂∏
, (5)

where H is the thickness of the membrane and Æ=C2/C1 is the ratio of the hyperelastic constants.

Non-dimensionalizing the pressure and the deformation as

P̃ = RP
4C1H

and ¢̃= ¢

R0
,

where R0 is the initial radius of the membrane, produces

P̃ = 2≥
¢̃+ 1

¢̃

¥
∑µ

1° 1
∏6

∂
+Æ

µ
∏2 ° 1

∏4

∂∏
, (6)

where

∏=

8
>>><
>>>:
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¥
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µ
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¢̃

∂∂
if ¢̃∏ 1

. (7)

The dimensionless analytical pressure P̃ was obtained as a function of the stretch ratio ¢̃ using

eqn. (6). The experimental Pexp was scaled by PR ¥ Pexp
ØØ
¢=R to produce the nondimensional pressure

P̃exp = Pexp/PR . The pressure PR is the pressure required for the membrane to deform an amount

equivalent to the initial membrane radius, ¢= R. For an increase dr of the membrane radius, the
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expansion of the surface requires an amount of work proportional to the pressure. The hyperelastic

constants define the factor of proportionality. Least-squares minimization was used to determine the

best value of Æ in minimizing the error between the dimensionless experimental

pressure-deformation data and the analytical dimensionless pressure obtained from eqn. (6) across

the stretch ratios. Since the materials tested in this study have different mechanical properties, the

values of PR and Æ are different for each material.

After establishing the value of Æ, the dimensional pressure P was evaluated in terms of the

dimensional deformation ¢ using eqn. (5), where the thickness of the membranes was obtained using

a surface profilometer (Dektak 150, Veeco, Plainview, NY, USA). Least-squares minimization was

performed to determine the value of C1 that minimizes the error between the dimensional

experimental pressure-deformation data and the analytical pressure-deformation obtained from

eqn. (1). Since the value of Æ is known from the previous step, C2 =C1Æ can also be determined.

3 Results
The experimental nondimensionalized pressure is plotted with respect to the stretch for two of the

materials, Ecoflex™and Sylgard™184 (PDMS), as shown in Fig. 1. The remaining materials’ plots are

provided in the supplementary information.
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Figure 2: Dimensionless inflation pressure, P/PR plotted with respect to the dimensionless defor-

mation of the membrane, ¢/R0 (x-axis) for a) Ecoflex™ and b) Sylgard™184 (PDMS). Least-squares

minimization was used to determine the value of the ratio of the hyperelastic constants, Æ, to directly

fit the non-dimensionalized analytical model to the non-dimensionalized experimental data (Ecoflex:

Æ= 0.1, R2 = 0.91; PDMS: Æ= 0.04 , R2 = 0.99).

Least squares minimization was used between the experimental data and eqn. (3) to determine the

value of Æ and obtain the best-fit plots in Fig. 1.

Once the value of ratio of the hyperelastic constants, Æ, is found, the value of C1 may then be found by

least squares fitting of eqn. (1) to the dimensional pressure-deformation results as illustrated in Fig. 3.
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Figure 3: Dimensional inflation pressure, P as a function of the maximum deformation of the mem-

brane, ¢ for a) Ecoflex™and b) Sylgard™184 (PDMS). Least squares minimization was used to find

the best fit for C1 knowing the appropriate value of Æ from the dimensionless fitting. The values of C1

found from this procedure are provided in Table 1 and R2 = 0.89 (Ecoflex) and R2 = 0.99 (PDMS).

Table 1 lists all the materials tested in this study, and their respective values of C1 and C2, indicating

an ability to test a rather broad range of materials, and likewise notably indicating the remarkable

range possible from relatively similar soft polymer materials.

Table 1: Values of hyperelastic constants C1 and C2 = ÆC1 obtained by fitting the two-parameter

Mooney-Rivlin model.

Material C1 (kPa) C2 (kPa)

Dragon-Skin™10 180 11.7

Ecoflex™ 75 7.5

Sorta-Clear™40 830 52.3

Sylgard™184 (PDMS) 270 10.8

Dragon-Skin™10 + Hexane at 1:1 weight ratio 180 14.9

Table 2 shows the values of the hyperelastic constants C1 and C2 obtained for PDMS compared to

previously published results.
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Table 2: Comparison of hyperelastic constant values for Sylgard™184 (PDMS) through the analytical

approach and previous studies with biaxial membrane (bulge) tests.

Sylgard™184 (PDMS) C1 (kPa) C2 (kPa)

Analytical approach 270.0 10.8

Kawamura et al. [20] 34.3 46.9

Yoon et al. [22] 75.5 5.7

4 Conclusions
Biaxial membrane tests were conducted on five different hyperelastic materials. High resolution

imagery, high precision microfluidic systems, and custom MATLAB image processing code were used

to extract the inflation pressure as a function of the stretch ratio for the hyperelastic membranes. Each

of the membranes were tested to failure to ensure the minimum criterion for the stretch ratio was

met. As an example, the two-parameter Mooney-Rivlin model was used in conjunction with an

analytical approximation for the large deformation of elastic discs to establish the hyperelastic

material properties of five different hyperelastic materials. This approach, although quite simplified,

is applicable to a large variety of hyperelastic materials enabling the extraction of their hyperelastic

constants through analytical validation of the experimental data. Although the values of the

hyperelastic constants in previous studies substantially differ between themselves and the values we

found, this can be attributed to different material formulations [16] and curing conditions,

particularly temperature and cure duration [17].

However, the facile method presented in this paper provides a means to easily determine the

mechanical characteristics of a hyperelastic material. The method avoids computational analysis

which introduces problems of its own, and can be quickly performed so that many material choices

can be considered in design. Because it is simple to set up and conduct, the method also enables the

reader to quickly produce useful property values from their own materials that may be then used in

more accurately modeling their robots and other devices.
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5 Supplementary Information
Plots for the experimental and analytically obtained curves of best fit for the dimensional and

dimensionless data.
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Figure 4: Dimensionless inflation pressure, P/PR plotted with respect to the dimensionless defor-

mation of the membrane, ¢/R0 for Dragon-Skin™ with the analytically obtained best fit. Æ = 0.07,

R2 = 0.94.
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Figure 5: Dimensional inflation pressure, P as a function of the maximum deformation of the mem-

brane, ¢ for Dragon-Skin™, with the analytically obtained best fit. R2 = 0.94.

17



0 1 2 3 4
0

0.5

1

1.5

Experimental
Analytical- Dimensionless

Figure 6: Dimensionless inflation pressure, P/PR plotted with respect to the dimensionless deforma-

tion of the membrane,¢/R0 for Dragon-Skin™ + Hexane (1:1, by weight) with the analytically obtained

best fit. Æ= 0.08, R2 = 0.98.
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Figure 7: Dimensional inflation pressure, P (y-axis) as a function of the maximum deformation of the

membrane, ¢ (x-axis) for Dragon-Skin™ + Hexane (1:1, by weight) with the analytically obtained best

fit. R2 = 0.98.
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Figure 8: Dimensionless inflation pressure P/PR plotted with respect to the dimensionless deformation

of the membrane, ¢/R0 for Sorta-Clear™ with the analytically obtained best fit. Æ= 0.06, R2 = 0.98.
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Figure 9: Dimensional inflation pressure, P (y-axis) as a function of the maximum deformation of the

membrane, ¢ (x-axis) for Sorta-Clear™ with the analytically obtained best fit. R2 = 0.98.

R2 values for the dimensionless and dimensional data for all five materials tested are provided in

Table 3.
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Table 3: R2 values obtained through minimization of the least squared error comparing the analytical

and experimental data.

Material R2 Dimensionless R2 Dimensional

Dragon-Skin™10 0.94 0.94

Ecoflex™ 0.91 0.90

Sorta-Clear™40 0.98 0.98

Sylgard™184 (PDMS) 0.99 0.99

Dragon-Skin™10 + Hexane(1:1) 0.98 0.98

Figure 10: Dimensional inflation pressure, P (y-axis) as a function of the maximum deformation of the

membrane, ¢ (x-axis) for Dragon-Skin™ for separate experiments with the same material.
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Figure 11: Dimensionless inflation pressure P/PR plotted with respect to the dimensionless defor-

mation of the membrane, ¢/R0 for Dragon-Skin™ with the analytically obtained best fit. Æ = 0.072,

R2 = 0.95. (Repeat run.)
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Figure 12: Dimensional inflation pressure, P (y-axis) as a function of the maximum deformation of the

membrane, ¢ (x-axis) for Dragon-Skin™ with the analytically obtained best fit. R2 = 0.95. C1 = 177.5

kPa, C2 = 12.78 kPa (Repeat run.)
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