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Abstract. Though skyline queries already have claimed their place in retrieval 
over central databases, their application in Web information systems up to now 
was impossible due to the distributed aspect of retrieval over Web sources. But 
due to the amount, variety and volatile nature of information accessible over 
the Internet extended query capabilities are crucial. We show how to efficiently 
perform distributed skyline queries and thus essentially extend the expressive-
ness of querying today’s Web information systems. Together with our innova-
tive retrieval algorithm we also present useful heuristics to further speed up the 
retrieval in most practical cases paving the road towards meeting even the real-
time challenges of on-line information services. We discuss performance 
evaluations and point to open problems in the concept and application of sky-
lining in modern information systems. For the curse of dimensionality, an in-
trinsic problem in skyline queries, we propose a novel sampling scheme that al-
lows to get an early impression of the skyline for subsequent query refinement.  

1   Introduction 

In times of the ubiquitous Internet the paradigm of Web information systems has 
substantially altered the world of modern information acquisition. Both in business 
and private life the support with information that is stored in a decentralized manner 
and assembled at query time, is a resource that users more and more rely on. Consider 
for instance Web information services accessible via mobile devices. First useful 
services like city guides, route planning, or restaurant booking have been developed 
[5], [2] and generally all these services will heavily rely on information distributed 
over several Internet sources possibly provided by independent content providers. 
Frameworks like NTT DoCoMo’s i-mode [18] already provide a common platform 
and business model for a variety of independent content providers. 

Recent research on web-based information systems has focused on employing 
middleware algorithms, where users had to specify weightings for each aspect of their 
query and a central compensation function was used to find the best matching objects 
[7], [1]. The lack of expressiveness of this ‘top k’ query model, however, has first 



been addressed by [8] and with the growing incorporation of user preferences into 
database systems [6], [10] and information services [22] the limitations of the entire 
model became more and more obvious. This led towards the integration of so-called 
‘skyline queries’ (e.g. [4]) into database systems. Basically the ‘skyline’ is a non-
discriminating combination of numerical preferences under the notion of Pareto opti-
mality. Since it was only proposed for database systems working over a central 
(multi-dimensional) index structure, extending its expressiveness also to the broad 
class of Web information systems is most desirable. The contribution of this paper is 
to undertake this task and present an efficient algorithm with proven optimality. We 
will present a distributed skylining algorithm and show how to enhance its efficiency 
for most practical cases by suitable heuristics. We will also give an extensive per-
formance evaluation and propose a scheme to cope with high-dimensional skylines.  

As a running example throughout this paper we will focus on a typical Web infor-
mation service scenario. Our algorithm will support a sample user interacting with a 
route planning service like e.g. Map-Quest’s Road Trip Planner or Driving Directions 
[16]. This is a characteristic example of a Web service where the gathering of on-line 
information is tantamount: though a routing service is generally capable of finding 
possible routes, the quality of certain routes - and thus their desirability to the user - 
may heavily differ depending on current information like road blockings, traffic jams 
or the weather conditions. Thus we first have to collect a set of user-specified prefer-
ences and integrate them with our query to the routing system. But of course users 
won’t be able to specify something like ‘for my purposes the shortest route is 0.63 
times more important than that there is no jam’ in a sensible, i.e. intuitive, way. Que-
ries rather tend to be formulated like ‘I would prefer my route to be rather short and 
with little jams’ giving no explicit weightings for a compensation function. Hence the 
skyline over the set of possible routes is needed for a high quality answer set. Since 
there often are many sources on the Internet offering current traffic information, usu-
ally the query also will have to be posed to a variety of sources needing an efficient 
algorithm for the distributed skyline computation. The example of a route planning 
service also stresses the focus on real time constraints, because most on-line informa-
tion like traffic jams or accidents will have to be integrated on the fly and delivered 
immediately to be of use for navigation. Since such efficient algorithms for distrib-
uted retrieval are still problematic, today’s web portals like Map-Quest allow only a 
minimum of additional information (e.g. avoiding toll roads) and use central data-
bases, that provide necessary information. However, given the dynamic nature of the 
Web this does not really meet the challenges of Web information systems.  

2   Web Information systems Architecture and Related Work 

Modern Web information systems feature an architecture like the one roughly 
sketched in figure 1. Using a (mobile) client device the user poses a query. Running 
on an application/Web server this query may be enriched with information about a 
user (e.g. taken from stored profiles) and will be posed to a set of Internet sources. 
Depending on the nature of the query different sources can be involved in different 
parts of the query, e.g. individual sources for traffic jams or weather information. 



Collecting the individual results the combining engine runs an algorithm to compute 
the overall best matching objects. These final results have then to be aggregated ac-
cording to each individual user’s specifications and preferences. After a transforma-
tion to the appropriate client format (e.g. using XSLT with suitable stylesheets) the 
best answers will be returned to the user. 

 

 
Fig 1. Web information system architecture 

The first area to address such a distributed retrieval problem was the area of ‘top k 
retrieval’ over middleware environments, e.g. [7], [9], [19]. Especially for content-
based retrieval of multimedia data these techniques have proven to be particularly 
helpful. Basically all algorithms distinguish between different query parts (subque-
ries) evaluating different characteristics, which often have to be retrieved from vari-
ous subsystems or web sources. Each subsystem assesses a numerical score value 
(usually normalized to [0,1]) to each object in the collection. The middleware algo-
rithms use two basic kinds of accesses that can be posed: there is the iteration over 
the best results from one source (or with respect to a single aspect of the query) called 
a ‘sorted access’ and there is the so-called ‘random access’ that retrieves the score 
value with respect to one source or aspect for a certain given object.  

The physical implementation of these accesses always strongly depends on the ap-
plication area and will usually differ from system to system. The gain of speeding up 
a single access (e.g. using a suitable index) will of course complement the total run-
time improvement by reducing the overall number of accesses. Therefore minimizing 
the number of necessary object accesses and thus also the overall query runtimes is 
tantamount to build practical systems (with real-time constraints) [1]. Prototypical 
Web information systems of that kind are e.g. given by [3], [5] or [2]. However, all 
these top k retrieval systems relied on a single combining function (often called ‘util-
ity function’) that is used to compensate scores between different parts of the query. 
Being worse in one aspect can be compensated by the object doing better in another 
part. However, the semantic meaning of these (user provided) combining functions is 
unclear and users often have to guess the ‘right’ weightings for their query. The area 
of operations research and research in the field of human preferences like [6] or [8] 
has already since long criticized this lack in expressiveness. 

A more expressive model of non-discriminating combination has been introduced 
into the database community by [15]. The ‘skyline’ or ‘Pareto set’ is a set of non-
dominated answers in the result for a query under the notion of Pareto optimality. The 
typical notion of Pareto optimality is that without knowing the actual database con-
tent, there can also be no precise a-priori knowledge about the most sensible optimi-



zation in each individual case (and thus something that would allow a user to choose 
weightings for a compensation function). The Pareto set or skyline hence contains all 
best matching object for all possible strictly monotonic optimization functions. An 
example for skyline objects with respect to two query parts and their scorings S1 and 
S2 is shown in figure 2. Each database object is seen as a point in multidimensional 
space characterized by its score values. For instance objects ox =(0.9, 0.5) and 
oy=(0.4, 0.9) both dominate all objects within a rectangular area (shaded). But ox and 
oy are not comparable, since ox dominates oy in S1 and oy dominates ox in S2. Thus 
both are part of the skyline. 

 
Fig. 2. Skyline objects and regions of domination 

Whereas [15] and the more recent extensive system in [12] with an algebra for in-
tegrating the concept of Pareto optimality with the top k retrieval model for prefer-
ence engineering and query optimization in databases [11], are more powerful in that 
they do not restrict skyline queries to numerical domains, they both rely on the naïve 
algorithm of quadratic complexity doing pairwise comparisons of all database ob-
jects. Focusing on numerical domains [4] was able to gain logarithmic complexity 
along the lines of [14]. Initially skyline queries were mainly intended to be performed 
within a single database query engine. Thus the first algorithms and subsequent im-
provements all work on a central (multidimensional) index structure like R*-trees 
[20], certain partitioning schemes [21] or k-nearest-neighbor searches [13]. However, 
such central indexes cannot be applied to distributed Web information systems. Since 
there is still no algorithm to process distributed skyline queries, up to now the exten-
sion of expressiveness of the query model could not be integrated in Web information 
services. We will deal with the problem of designing an efficient distributed algo-
rithm for computing skyline queries only relying on sorted and random accesses.  

3   A Distributed Skylining Algorithm 

In this section we will investigate distributed skylining and present a first basic algo-
rithm. As we have motivated in the previous section the basic skyline consists of all 
non-dominated database objects. That means all database objects for which there is 
no object in the database that is better or equal in all dimensions, but in at least one 
aspect strictly better. Assuming every database object to be represented by a point in 



n-dimensional space with the coordinates for each dimension given by its scores for 
the respective aspect, we can formulate the problem as: 

The Skyline Problem: Given set O :={o1,…,oN} of  N database objects, n score-
functions s1,…sn with si : O → [0,1]  and n sorted lists S1,…,Sn containing all data-
base objects and their respective score values using one of the score function for each 
list; all lists are sorted descending by score values starting with the highest scores. 
Wanted is the subset P of all non-dominated objects in O, i.e. {oi ∈ P | ¬∃ oj ∈O :  
( s1(oi) ≤ s1(oj) ∧…∧ sn(oi) ≤ sn(oj) ∧ ∃ q ∈[1,…,n] : sq(oi) < sq(oj)) } 

We will now approach a suitable distributed algorithm to efficiently find this set. 
Our algorithm basically consists of three phases: The first phase (step 1) will perform 
sorted accesses until we have definitely seen all objects that can possibly be part of 
the skyline. The second phase (step 2 and 3) will extend the accesses on all objects 
with minimum seen scores in the lists and will prune all other database objects. The 
third phase (step 4) will employ focused random accesses to discard all seen objects 
that are dominated before returning the skyline to the user. To keep track of all ac-
cessed objects we will need a central datastructure containing all available informa-
tion about all objects seen, but also group the objects with respect to the sorted lists 
that they have occurred in. The beauty of this design is that we only have to check for 
domination within the small sets for each list and can return some first results early. 
Basic Distributed Skyline Algorithm 
0. Initialize a datastructure P := ∅ containing records with an identifier and n real 
values indexed by the identifiers, initialize n lists K1,…,Kn := ∅ containing records 
with an identifier and a real value, and initialize n real values p1,…,pn := 1 
1. Initialize counter i := 1.  
1.1. Get the next object onew by sorted access on list Si  
1.2. If onew ∈ P, update its record’s i-th real value with si(onew), else create such a 
record in P 
1.3. Append onew with si(onew) to list Ki 
1.4. Set pi := si(onew) and i := (i mod n) +1 
1.5. If all scores sj(onew) (1≤ j ≤ n) are known, proceed with step 2 else with step 1.1. 
2. For i = 1 to n do 
2.1. While pi = si(onew) do sorted access on list Si and handle the retrieved objects like 
in step 1.2 to 1.3 
3. If more than one object is entirely known, compare pairwise and remove the domi-
nated objects from P. 
4. For i = 1 to n do 
4.1. Do all necessary random accesses for the objects in Ki that are also in P, immedi-
ately discard objects that are not in P 
4.2. Take the objects of Ki and compare them pairwise to the objects in Ki. If an ob-
ject is dominated by another object remove it from Ki and P 
5. Output P as the set of all non-dominated objects 

For ease of understanding we show how the algorithm works for our running ex-
ample: for mobile route planning in [2] we have shown for the case of top k retrieval 
how traffic information aspects can be queried from various on-line sources. Posing a 
query on the best route with respect to say its length (S1) and the traffic density (S2) 
our user employs functions that evaluate the different aspects, but is not sure how to 



compensate length and density. The following tables show two result lists with some 
routes Ri ordered by decreasing scores with respect to their length and current traffic 
density: 
S1   (length) S2   (traffic density) 
R1 R3 R5 R4 R7 … R2 R4 R6 R3 R8 … 
0.9 0.9 0.8 0.8 0.7 … 

 

0.9 0.8 0.8 0.8 0.7 … 
The algorithm in step 1 will in turn perform sorted accesses on both lists until the 

first route R4 has been seen in both lists leading to the following potential skyline 
objects:  

Route R1 R2 R3 R4 R5 R6 
Score S1 0.9 ? 0.9 0.8 0.8 ? 
Score S2 ? 0.9 ? 0.8 ? 0.8 

In step 2 we will do some additional sorted accesses on all routes that possibly 
could also show the current minimum score in each list and find that R7 in S1 already 
has a smaller score, hence we can discard it. In contrast R3 in S2 has the current mini-
mum score, hence we have to add it to our list, but can then discard the next object 
R8 in S2, which does have a lower score. Step 3 now tests, if one of the two com-
pletely seen routes R3 and R4 is dominated: by comparing their scores we find that 
R4 is dominated by R3 and can thus be discarded. We can now regroup objects into 
sets Ki and do all necessary random accesses and the final tests for domination only 
within each set. 

K1 K2 
R1 R3 R5 R2 R6 R3 
0.9 0.9 0.8 ? ? 0.9 
? 0.8 ? 

 

0.9 0.8 0.8 
Step 4 now works on the single sets Ki. We have to make a random access on R1 

with respect to S2 and find that its score is say 0.5. Thus we get its score pair (0.9, 
0.5) and have to check for domination within set K1. Since it is obviously dominated 
by the score pair (0.9, 0.8) of R3, we can safely discard R1. Doing the same for object 
R5 we may retrieve a value of say 0.6 thus R5’s pair (0.8, 0.6) is also dominated by 
R3 and we are finished with set K1. Please note that we could have saved this last 
random access on R5, since we already know that all unknown scores in S2 must be 
smaller than the current minimum of the respective list (in this case 0.8). This would 
already have shown R5’s highest possible score pair (0.8, 0.8) to be dominated by R3. 
At this point we are already able to output the non-dominated objects of K1, since 
lemma 2 shows that if any of the objects of set K1 should be dominated by objects in 
another set Ki , they also always would be dominated by an object in K1.  

Dealing with K2 we have to make random accesses for S1 on routes R2 and R6 and 
find for route R2 a score value of say 0.6 leading to a score pair of (0.6, 0.9). But it 
cannot be dominated by R3’s pair (0.9, 0.8), as its score in S2 is higher than R3’s. 
Finally for R6 we may find a score of say 0.2, thus it is dominated by R3 and can be 
discarded (also in these cases we could have saved two random accesses like shown 
above). We now can deliver the entire skyline to our user’s query consisting of routes 
R3 and R2. All other routes in the database (either seen or not yet accessed) are defi-
nitely dominated by at least one of these two routes.  



Independently of any weightings a user could have chosen for a compensation 
function thus either route R3 or R2 would have turned up as top object dominating all 
other routes. Delivering them both as top objects saves users from having to state 
unintuitive a-priori weightings and allows for an informed choice according to each 
individual user’s preferences. But we still have to make sure, that upon termination 
no pruned object can belong to the skyline and no dominated object will ever be re-
turned. We will state two lemmas and then prove the correctness of our algorithm. 

Lemma 1 (Discarding unseen objects)  
After an object ox has been seen in each list and all objects down to at least score 
si(ox) (1 ≤ i ≤ n) in each list have also been seen, the objects not yet seen cannot be 
part of the skyline, more precisely they are dominated by ox. 

Proof: Let ox be the object seen in all lists. Then with pi as the minimum score 
seen in each list we have due to the sorting of the lists ∀ i (1 ≤ i ≤ n) : si(ox) ≥ pi. 
Since all objects having a score of at least score pi in list i have been collected, we can 
conclude that any not yet seen object ounseen satisfies ∀ i (1 ≤ i ≤ n) : si(ounseen) < pi  ≤ 
si(ox) and thus ∀ i (1 ≤ i ≤ n) : si(ounseen) < si(ox). Hence ounseen is dominated by ox and 
thus cannot be part of the skyline independently of ox itself being part of the set or 
being dominated.                                                                                                 

We can even show the somewhat stronger result that, if we have seen an object ox 
in all lists and stop the sorted accesses in step 2 after seeing only a single worse ob-
ject in any of the lists, we can still safely discard all unseen objects. This is because 
we need the strict ‘<’ in one single list only. In the other lists ‘≤’ would still be suffi-
cient (since due to sorting ‘=’ is the highest possible). 

Lemma 2 (Objects can only be dominated by objects in the same set Ki)  
Assume that all objects that have been seen, are divided into n sets according to the 
lists in which they occurred, i.e. if an object ox occurs in list i (1 ≤ i ≤ n) it is added to 
set Ki. Lets further assume that in the lists in which ox occurred, all objects having at 
least the respective score value of ox have also been seen. Then, if the object ox in any 
set Ki is dominated by any other object, this object has also to be part of set Ki.  

Proof: Let ox be any dominated object already seen and assigned to at least one set 
Ki (1 ≤ i ≤ n).  Due to Lemma 1 ox cannot be dominated by any unseen object, thus 
the dominating object oy has already been seen and thus has also been assigned to at 
least one of the sets Ki (1 ≤ i ≤ n). If ox and oy are in exactly the same sets there is 
nothing to show. Thus let us assume oy dominates ox and there exists at least one set 
Kj (1 ≤ j ≤ n) containing object ox, but not object oy. Thus due to the sorting of the 
lists and the fact that we have seen all objects in list x having at least the respective 
score value sj(ox) of object ox, we have to conclude that sj(oy) < sj(ox) in contrast to 
the assumption that oy dominates ox.                                                                        

Theorem 1: (Correctness of the Basic Algorithm)   
The basic algorithm always terminates and delivers the entire set of non-dominated 
objects and only the set of non-dominated objects. 

Proof: Since the termination is obvious, we have to show that a) no relevant object 
is missed by our algorithm and that b) no object in the returned set can be dominated 
by any other object. 

Ad a) Steps 1 and 2 of the algorithm collect all objects, until one object has been 
seen in all lists and all objects of the minimum score in each list have also been seen. 



Thus Lemma 1 applies and we can safely discard all unseen objects, since they cannot 
be part of the skyline. In steps 3 and 4 only dominated objects are discarded (in step 4 
we also might use upper boundary estimations of some scores for discarding, but 
since the upper boundaries are best case estimations, it is obvious that objects dis-
carded in step 4 would also be discarded using their actual score values). Thus the set 
returned in step 5 will contain all objects of the skyline. 

Ad b) After steps 1 to 3 Lemma 2 applies and we can restrict the search for domi-
nating objects to the sets Ki (1 ≤ i ≤ n). Since in any set Ki no object can be domi-
nated by an object having a strictly smaller score with respect to the i-th list, it is 
sufficient to do pairwise comparisons with those objects having a larger or equal 
score. Thus Step 4 correctly discards all dominated objects within the sets Ki and 
since all objects returned in step 5 must have been part of at least one Ki, they cannot 
be dominated by any object.                                                                                     

Since the algorithm is supposed to work with distributed web sources thus having 
rather high access costs, for the optimality and complexity considerations we have to 
focus on the necessary object accesses instead of main memory operations. The next 
theorem will show that the termination condition of phase 1 is optimal, since one of 
the objects seen in all lists is definitely part of the skyline. Stopping earlier would 
thus discard possibly non-dominated objects; we therefore have to see an object in all 
lists.  

Theorem 2 (Optimality of Sorted Accesses):  
The basic algorithm uses an optimal number of sorted accesses.  

Proof: Sorted accesses are only made during the first two steps. After the first step 
one object has been seen in all lists. In step 2 we do further sorted accesses to get all 
objects with at least one score equal to the respective minimum score in each list. If 
we can show that among these objects and the object seen in all lists there always is at 
least one object belonging to the skyline, we could not stop doing sorted accesses 
earlier and thus use an optimal number of sorted accesses. 

Let ox be the first object that has occurred in all lists and pi (1 ≤ i ≤ n) be the mini-
mum scores in each list. Then we get ∀ i si(ox) ≥ pi and sk(ox) = pk for at least one 1 ≤ 
k ≤ n. For every object o ≠ ox seen during step 1 of our algorithm there is at least one 
list Sj (1 ≤ j ≤ n) in which o has not been seen and hence we have either sj(o) < pj ≤ 
sj(ox)  (A) or sj(o) = pj  (B). 

If case (A) applies for an object o, it cannot dominate the object ox. Thus object ox 
can only be dominated by an object for which case (B) applies, i.e. one of those ob-
jects that have occurred during step 2 of our algorithm. Choose among those objects 
the maximum object om dominating ox. We will then show by contradiction that om 
belongs to the skyline: 

If om would not be part of the skyline, it would have to be dominated by another 
object. Due to Lemma 1 om cannot be dominated by any unseen object, and due to 
being maximal among those objects occurring in step 2, it would have to be domi-
nated by an object o seen in step 1and not seen in step 2 of the algorithm. This means, 
that there is an index j, such that sj(o) is smaller than pj (cf. case 1 above). Therefore o 
can dominate neither ox nor om  leading to the contradiction.                                     



4   Improvements by Advanced Heuristics 

Having shown that we will have to see at least one object in all the lists we will now 
focus on heuristics to find this object that causes the first phase to terminate more 
quickly and will try to minimize the necessary comparisons within the sets Ki. 

 

Fig. 3. Savings implemented by heuristic 1 

Consider the situation shown in figure 3. Having adopted a round robin strategy in 
our basic algorithm, we have to expand all the lists until an object (e.g. ox) occurs in 
all lists. But our proof of correctness allows us to immediately disregard even all 
those objects that have only occurred in any list after ox (i.e. the shaded areas). Thus 
using all information about discovered objects at an early stage and employing a 
sophisticated control flow, we can improve our algorithm by immediately focusing on 
objects that can be assumed to foster early termination by being the first object to 
occur in all lists with reasonably high probability. Having chosen such an object we 
will no longer do sorted accesses on lists in which this object has already occurred, 
but rather expand lists in which its score is still unknown. Therefore we need to know 
how to find an object that is most probable to terminate our algorithm. In case studies 
on multi-objective optimization like [3] one of the most effective functions in estimat-
ing dominating objects is a greedy strategy called ‘maximin’ function. Our heuristic 
for estimating an appropriate object has been built along the lines of this function. But 
whereas the ‘maximin’ function only focuses on the maximum value after evaluating 
the minimum scores for each object and thus advocates the smallest possible expan-
sion in every list, our heuristic additionally will take advantage of the fact that be-
cause of the sorting of the lists and recent sorted accesses on it, we exactly know the 
current score value in each list and thus can better estimate the necessary expansion. 

Heuristic 1: If all scores of an object are known (either by sorted or by random 
access) consider all scores value in lists where it has not yet been seen by sorted ac-
cess. If we sum up the difference between these values and the last score value seen 
by sorted access on the respective list, we get an aggregated value for each object. 
The object with a minimum value can be considered the most promising object. It still 
needs the least expansion in all lists. Therefore it is probable to be the object that will 
first occur in all of the lists. If there are more objects with the same minimum score, 
the one with the minimum sum of scores will need the least expansion of all lists. 



To find these objects, we will mix sorted and random accesses already in the first 
phase to immediately get all information about an object. Since these accesses would 
have been necessary in the third phase of the basic algorithm anyway, by doing them 
immediately we just spend a few random accesses too much for those objects that we 
might already have seen by sorted access in more than one list. Knowing all scores 
we can now estimate how far we would have to expand all the lists, if we had to see 
the latest object in all lists adding up the differences between values seen by random 
access and the current score in the respective list. Focusing only on the best object 
with respect to necessary list expansions, we will employ indicators that tell us which 
lists to expand next, avoiding those lists our object has already occurred in.  

Since we gather all information about an object at its first occurrence and immedi-
ately assess its probable utility for termination, we will not expand any list more than 
necessary. If we can choose several lists for the next sorted access, we can either pick 
one randomly, or, if we expect non-uniform data distributions a complementing indi-
cator technique e.g. using the derivatives of the score distribution function in each list 
along the lines of [9] may be employed to estimate the expected gain in each list. 
Please note that our heuristic 1 will not affect the abstract order of complexity from 
our previously stated optimality results, because the maximum improvement factor 
over the round robin strategy can only be the number of lists (n). But, given the rather 
expensive costs of object accesses over the Internet even small numbers of accesses 
saved will improve the overall run-time behavior like shown in [5] or [1]. Thus, also 
improvements taking only constant factors off the algorithm’s complexity should be 
employed towards meeting real-time constraints.  

Our second heuristic will focus on the necessary comparisons within the sets Ki. 
Obviously no object having a smaller score with respect to Si will be able to dominate 
any object having a larger score. Thus we do not really need the pairwise compari-
sons like suggested in the basic algorithm. We only have to compare pairwise be-
tween objects within the same set Ki having equal scores and can otherwise test, if 
the objects with smaller scores are dominated by ones having larger score values. 

Heuristic 2: Start with the objects first seen in each set Ki and compare pairwise 
all objects with the same score value. Then only test for domination by objects with 
higher scores. 

To implement this we employ the fact that since the lists are ordered, also all Ki are 
ordered. We will use two counters q and b and divide each Ki into subsets grouping 
same score values. Starting with the first set we will assume the objects as enumer-
ated and set q to the number of the first object of a subset and b to the number of the 
last. According to heuristic 2 we don’t need any comparisons with objects on num-
bers larger than b, we need pairwise comparisons for all objects between q and b and 
we need a test for domination by all objects with numbers smaller than q.  

Using our heuristics we will now present our improved algorithm for distributed 
skyline queries. Again we need the initialization of a central datastructure for the set 
of possible skyline objects and sets containing the objects for each sorted list as be-
fore. Additionally we need a variable for the object that is considered most promising 
to terminate our algorithm. Note that all necessary random accesses are now already 
performed in step 1 in order to derive a greedy estimation of the object most probable 
to foster early termination. 



Improved Distributed Skyline Algorithm 
0. Initialize a datastructure P := ∅ containing records with an identifier and n real 
values for scores indexed by the identifiers, initialize n lists K1,…,Kn   := ∅ contain-
ing records with an identifier and one real value, initialize a record term_oid contain-
ing an identifier and a real value := 0 and initialize n real values p1,…,pn := 1 
1. Initialize counter i := 1.  
1.1. Get the next object onew by sorted access on list Si, set pi := si(onew) and update the 
real value in term_oid according to step 1.3 
1.2. If onew ∉ P  
1.2.1. Create a record in P containing oid and score in Si in the i-th entry in its record.  
1.2.2. Do random accesses on all missing scores and update the record in P like above 
1.3. Add up the difference between onew’s score values in lists, where it has not yet 
been seen, and the pi in these lists  
1.4. If this sum is smaller than the value in term_oid, replace the oid and the value in 
term_oid with the oid and new value of onew 
1.5. If the sum is equal to the value in term_oid, replace like in 1.4 only, if the total 
sum of scores for onew is larger than the sum for the object given by term_oid 
1.6. Append onew with si(onew) to list Ki 
1.7. Set i to any number of a set Ki in which the object given by term_oid has not yet 
occurred. If it is element of all Ki proceed with step 2 else with step 1.1. 
2. Let oterm be the object given by term_oid. For i = 1 to n do 
2.1. While pi = si(oterm) do sorted access on list Si and update pi like in step 1.4, ap-
pend it to list Ki like in step 1.3 and if the retrieved objects is not in P handle it like in 
step 1.2.1 and 1.2.2 
3. For i = 1 to n do 
3.1. q :=0, b:= 0 
3.2. While there is an q+1-th entry in Ki do 
3.2.1. Repeat (collect an object of Ki and set b:= b+1) until the value of the b+1-th 
entry in Ki is strictly smaller than the b-th entry or there is no b+1-th entry 
3.2.2. If any collected object does not exist in P, discard the object and remove it 
from Ki and set b := b-1 
3.2.3. Compare the collected objects pairwise. If any of these objects is dominated, 
discard it and remove it from Ki and P and set b := b-1 
3.2.4. Compare all collected objects pairwise to all objects being on a position smaller 
or equal than q in Ki. If any collected object is dominated, discard it and remove it 
from Ki and P and set b := b-1 
3.2.5. Set q := b 
4. Output P as the set of all non-dominated objects, i.e. the skyline. 

Since the correctness of the improved algorithm is straightforward along the lines 
of the basic algorithm and also the optimality holds, we will again return to our ex-
ample to show how the algorithm works. Again we pose a query on the best route 
with respect to its length (S1) and the traffic density (S2). The following tables show 
our result lists with routes ordered by scores: 
S1   (length) S2   (traffic density) 
R1 R3 R5 R4 R7 … R2 R4 R6 R3 R8 … 
0.9 0.9 0.8 0.8 0.7 … 

 

0.9 0.8 0.8 0.8 0.7 … 



The algorithm in step 1 will perform sorted accesses on S1 and finds route R1. A 
random access will reveal R1’s second score 0.5 and that its sum of unseen values is 
(1.0-0.5)=0.5. That means our first estimation is that we will have to expand the list 
S2 down to score 0.5 in order to see R1 in all lists. Thus we have to do a sorted access 
on list S2 trying to decrease the scores to find R1’s second score, and we get route R2. 
The second score of R2 leads to a sum of differences of 0.3. Thus it is more promis-
ing than R1 and we will focus on lists where R2 has not yet occurred. Accessing S1 
we encounter object R3, whose second score 0.8 again leads to a change in our 
term_oid to R3 with value 0.1. After we have also accessed R4 and R6 in list S2 who 
both show larger sums, we finally encounter R3 and can terminate step 1. 

Route R1 R2 R3 R4 R6 
Score S1 0.9 0.6 0.9 0.8 0.2 
Score S2 0.5 0.9 0.8 0.8 0.8 
term_oid R1 R2 R3 R3 R3 
next access S2 S1 S2 S2 S2 

In step 2 we will do some additional accesses on all routes also showing the cur-
rent minimum score in each list and find that R5 in S1 already has a smaller score, 
hence we can discard it, and we can also discard the next object R8 in S2.  

K1 K2 
R1 R3 R2 R6 R4 R3 
0.9 0.9 

 

0.9 0.8 0.8 0.8 
Step 3 now focuses on the sets Ki and finds that in K1 R3 dominates R1 and in K2 

we first have to compare R6, R4 and R3 pairwise and find that R3 dominates all and 
then only have to test, if R3 is dominated by R2. However, as R2 does not dominate 
R3 we can return them as the skyline. Please note that besides more efficient com-
parisons within the Ki, even in this limited example our indicator technique already 
saved us expensive object accesses on routes R5 and R7, which now remain unseen. 

5   Evaluation of Distributed Skylining 

The presented algorithm for the first time addresses the problem of distributed skylin-
ing in Web information systems, thus in our evaluation we obviously cannot compare 
it to similar algorithms. Since comparisons with algorithms over central indexes 
(which of course will be faster not having to deal with network latencies) will also 
yield no sensible results, we will concentrate on the necessary number of object ac-
cesses, the total number of objects in the skyline for some practical cases and the 
improvements that can be gained over the basic algorithm by using our advanced 
heuristics. For all experiments we used an independent data distribution of scores. 

Let us first take a glance on the savings due to our heuristics and then evaluate the 
performance of our improved algorithm. We will focus on the improvement factors in 
terms of overall object accesses saved. Figure 4 shows the average improvement 
factors for different numbers of lists (3,5, and 10) and two different database sizes of 
10000 and 100000 database objects. We can clearly see that independent of the data-
base size the average improvement factors for our experiments range between 1.5 for 



small numbers of lists and around 2.5 for higher numbers. Thus, even using just these 
simple heuristics without any tuning we instantly halve the necessary object accesses. 
We can even expect higher factors by tuning the given heuristic to adapt more closely 
to the data distribution like shown e.g. in [9]. 
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Fig. 4. Improvement due to heuristics           Fig. 5. Saved accesses w.r.t. database size 

Now we can concentrate on the object accesses that our algorithm saves with re-
spect to the database size. Figure 5 shows what percentage of the database can be 
pruned, again for different numbers of lists and different database sizes. We can see 
clearly that our algorithm scales well with the database size and for lower numbers of 
lists works well, e.g. prunes more than 95% over 3 lists. However, we can also see 
that the performance quickly deteriorates with a growing number of lists. To explain 
this behavior we have to consider the portions of skyline objects among all objects 
that have been accessed (cf. figure 6). We find that, though our algorithm’s perform-
ance seems to deteriorate with growing numbers of lists, its precision in terms of how 
many objects that are not part of the skyline have to be accessed, heavily increases 
with growing numbers of lists. For instance in the case of 10 lists over a database of 
10000 objects almost 60% of the accesses are definitely necessary to see the entire 
skyline, i.e. to terminate the algorithm correctly. Considering this instance further we 
can conclude that, if we access about 90% of 10000 objects and about 55% of them 
are necessary, the skyline has to be about 49.5% of the entire database. 
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Fig. 6. Skyline objects among all objects accessed 

To support these considerations we performed more experiments on the actual av-
erage size of the skyline for varying numbers of lists and different database sizes. In 
table 1 we can see that our considerations have been correct (also confirmed by ex-
periments in [4]). Indeed the size of the skyline rapidly increases with larger numbers 



of lists. We are forced to conclude that, though the concept of skylining may be a 
very intuitive model for querying, its output behavior seems only to be feasible for 
rather small numbers of lists to combine. In fact skyline sizes grow exponentially 
with the number of dimensions. Thus, independently of the retrieval algorithms the 
problem itself does not scale and we still need a effective dimensionality reduction 
for skyline queries that are probable to retrieve huge results. 

Table 1. Size of the skyline with respect to different numbers of database objects and lists 

Size of database (N)  Number of lists  Size of skyline (in % of database size) 
3 0.51 
5 4.44 

10,000 

10 49.25 
3 0.07 
5 1.00 

100,000 

10 25.11 

6   Sampling the Efficient Frontier for Improved Scalability 

So even if an algorithm could compute high-dimensional skylines in acceptable time, 
it would still not be sensible to return something like 50% of database objects to the 
user for manual processing. If on the other hand, users first aggregate all lists in 
which a compensation between scores can be defined, and then use the skyline query 
model only for modest numbers of these aggregated lists, the skyline will consist of 
sensible numbers of elements and can be retrieved reasonably well. But how to know, 
which dimensions can be compensated and over which dimensions we still need a 
skyline? As pointed out in [4] specific characteristics of dimensions like correlation 
have an essential influence on the manageability of the resulting skyline. Correlated 
data usually results in smaller skylines than the independently distributed case. In 
contrast anti-correlated distributions amount in a vast increase of the number of sky-
line objects. Measures to assess such characteristics that hint at the size of the result, 
are for example the objects’ average consistency of performance, i.e. if scores for 
each object show similar absolute values in all different dimensions. The hope is to 
see in advance e.g. if there are correlations between some dimensions, which in turn 
could be condensed into a single dimension. Since computing skylines of small num-
bers of dimensions (say 3) are still not at all problematic, our main idea is to get an 
impression of the original characteristics of the skyline by investigating skylines of 
some representative low-dimensional subsets of the original dimensions. The follow-
ing theorem states that -without having to calculate the high-dimensional skyline- our 
sampling can nevertheless rely on actual skyline objects, which in turn improves the 
sampling’s quality. 

Theorem 3 (Skyline of Subsets of Dimensions):   
For each object o in the skyline of a subset of the dimensions (i.e. a subset of score 
lists) there is always a corresponding object o’ in the skyline of all dimensions having 
exactly the same scores as o with respect to the subset of dimensions.  



Proof: Assume that we have chosen an arbitrary subset of score lists. We can then 
calculate the skyline P of this subset. Let o be any object of P. We have to show that 
there is a corresponding object o’ in the skyline Q for all score lists having same 
scores in the chosen subset. If o already is also part of Q the statement is trivially true. 
Thus let us assume that o is not element of Q and therefore must be dominated by at 
least one object p. That means for all lists si(p) ≥ si(o) holds. If, however, considering 
only the chosen lists there would be any some list for which ‘strictly better’ holds, i.e. 
si(p) > si(o), object o would already be dominated by p with respect to our subset. 
Since this would be in contradiction to our assumption of o being part of the skyline 
of the subset, for the entire subset si(p) = si(o) has to hold and p is our object o’.     

Using this result we will now propose the sampling scheme. We will sample the 
skyline in three steps: choosing q subsets of the lists, calculating their lower-
dimensional skylines and merging the results as the subsequent sampling. Since sky-
lines can already grow large for only 4 to 5 dimensions, we will always sample with 
three-dimensional subsets. Values of q = 5 for 10 score lists and q = 15-20 for 15 
score lists in our experiments have provided sufficient sampling quality. For simplic-
ity we just take the entire low-dimensional skyline (2.1)and merge it (2.2). As theo-
rem 3 shows, should two objects feature the same score within a low-dimensional 
skyline, random accesses on all missing dimensions could be used to rule out a few 
dominated objects sometimes. We experimented with this (more exact) approach, but 
found it to perform much worse, while improving the sampling quality only slightly. 
Sampling Skylines by Reduced Dimensions 
1. Given m score lists randomly select q three-dimensional subsets, such that all lists 
occur in at least one of the subsets. Initialize the sampling set P := ∅  
2. For each three-dimensional subset do 

2.1. Calculate the skyline Pi of the subset 
2.2. Union with the sampling set P := P ∪ Pi 

3. The set P is a sample of the skyline for all m score lists  
Now we have to investigate the quality of our sampling. An obvious quality meas-

ure is the manageability of the sample; its number of objects should be far smaller 
than the actual skyline. Also the consistency of performance is also an interesting 
measure, because larger number of consistent objects will mean some amount of 
correlation and therefore hints at rather small skylines. Our actual measurement here 
takes the perpendicular distance between each skyline object and the diagonal in 
score space [0,1]n normalized to a value between 0 and 100% and aggregated within 
10% intervals. The third measure will be a cluster analysis dividing each score di-
mension into upper and lower half, thus getting 2m buckets. Our cluster analysis 
counts the elements in each bucket and groups the buckets according to the number of 
‘upper halves’ (i.e. score values > 0.5) they contain. Again having more elements in 
the clusters with either higher or lower numbers of ‘upper halves’ indicate correla-
tion, whereas objects in the buckets with medium numbers hint at anti-correlation. 

Our experiments on how adequately the proposed sampling technique predicts the 
actual skyline, will focus on a 10-dimensional skyline for a database containing 
N=100,000 objects. Score values over all dimensions have been uniformly distributed 
and statistical averages over multiple runs and distributions have been taken. We have 
fixed q := 5 and compare our measurement against the quality of a random sample of 



the actual 10-dimensional skyline, i.e. the best sample possible (which, however, in 
contrast to our sample cannot be taken without inefficiently calculating the high-
dimensional skyline). Since our sample is expected to essentially reduce the number 
of objects, we will use a logarithmic axis for the numbers of objects in all diagrams. 
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Fig. 7. Consistency of performance 
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Fig. 8. Cluster analysis for the 10-dim sample 

We have randomly taken 5 grips of 3 score lists and processed their respective sky-
lines like shown in our algorithm. Measuring the manageability we have to compare 
the average size of the 10-dim skyline and our final sample: the actual size of the 
skyline is on average 25133.3 objects whereas our sample consists of only 313.4 
objects, i.e. 1.25% of the original size. Figure 7 shows the consistency of perform-
ance measure for the actual skyline, our sample and a random sample of about the 
same size as our sample. The shapes of the graphs are quite accurate, but whereas the 
peaks of the actual set (dark line) and its random sample (light line) are aligned, the 
peak for our sampling (dashed line) is slightly shifted to the left. We thus underesti-
mate the consistency of performance a little, because when focusing on only a subset 
of dimensions, some quite consistent objects may ‘hide’ behind optimal objects with 



respect to these dimensions, having only slightly smaller scores, but nevertheless a 
better consistency. But this effect only can lead to a slight overestimation of the sky-
line’s size and thus is in tune with our intentions of preventing the retrieval of huge 
skylines. Figure 8 addresses our cluster analysis. Again we can see that our sampling 
graph snugly aligns with the correct random sampling and the actual skyline graph. 
Only for the buckets of count 3 there is a slight irritation, which is due to the fact that 
we have sampled using three dimensions and thus have definitely seen all optimal 
objects with scores >0.5 in these three dimensions. Thus we slightly overestimate 
their total count. Overall we see that our sampling strategy with reduced dimensions 
promises -without having to calculate the entire skyline- to give us an impression of 
the number of elements of the skyline almost as accurate as a random sample of the 
actual skyline would provide. Using this information for either safely executing que-
ries or passing them back to the user for reconsideration in the case of too many esti-
mated skyline objects seems promising to lead to a better understanding and manage-
ability of skyline queries. 

7   Summary and Outlook 

We addressed the important problem of skyline queries in Web information systems. 
Skylining extends the expressiveness of the conventional ‘exact match’ or the ‘top k’ 
retrieval models by the notion of Pareto optimality. Thus it is crucial for intuitive 
querying in the growing number of Internet-based applications. Distributed Web 
Information services like [5] or [2] are premium examples benefiting from our contri-
butions. In contrast to traditional skylining, we presented a first algorithm that allows 
to retrieve the skyline over distributed data sources with basic middleware access 
techniques and have proven that it features an optimal complexity in terms of object 
accesses. We also presented a number of advanced heuristics further improve per-
formance towards real-time applications. Especially in the area of mobile information 
services [22] using information from various content providers that is assembled on 
the fly for subsequent use, our algorithm will allow for more expressive queries by 
enabling users to specify even complex preferences in an intuitive way. Confirming 
our optimality results our performance evaluation shows that our algorithm scales 
with growing database sizes and already performs well for reasonable numbers of 
lists to combine. To overcome the deterioration for higher numbers of lists (curse of 
dimensionality) we also proposed an efficient sampling technique enabling us to 
estimate the size of a skyline by assessing the degree of data correlation. This sam-
pling can be performed efficiently without computing high-dimensional skylines and 
its quality is comparable to a correct random sample of the actual skyline. 

Our future work will focus on the generalization of skylining and numerical top k 
retrieval towards the problem of multi-objective optimization in information systems, 
e.g. over multiple scoring functions like in [10]. Besides we will focus more closely 
on quality aspects of skyline queries. In this context especially a-posteriori quality 
assessments along the lines of our sampling technique and qualitative assessments 
like in [17] may help users to cope with large result sets. We will also investigate our 
proposed quality measures in more detail and evaluate their individual usefulness. 



 
Acknowledgements 
We are grateful to Werner Kießling, Mike Franklin and to the German Research 
Foundation (DFG), whose Emmy-Noether-program funded part of this research. 

References 

1. W.-T. Balke, U. Güntzer, W. Kießling. On Real-time Top k Querying for Mobile Services, 
In Proc. of the Int. Conf. on Coop. Information Systems (CoopIS’02), Irvine, USA, 2002 

2. W.-T. Balke, W. Kießling, C. Unbehend. A situation-aware mobile traffic information proto-
type. In Hawaii Int. Conf. on System Sciences (HICSS-36), Big Island, Hawaii, USA, 2003 

3. R. Balling. The Maximin Fitness Function: Multi-objective City and Regional Planning. In 
Conf. on Evol. Multi-Criterion Optimization (EMO’03), LNCS 2632, Faro, Portugal, 2003 

4. S. Börzsönyi, D. Kossmann, K. Stocker. The Skyline Operator. In Proc. of the Int. Conf. on 
Data Engineering (ICDE’01), Heidelberg, Germany, 2001 

5. N. Bruno, L. Gravano, A. Marian. Evaluating Top-k Queries over Web-Accessible Data-
bases. In Proc. of the Int. Conf. on Data Engineering (ICDE’02), San Jose, USA, 2002.  

6. J. Chomicki. Querying with intrinsic preferences. In Proc. of the Int. Conf. on Advances in 
Database Technology (EDBT), Prague, Czech Republic, 2002 

7. R. Fagin, A. Lotem, M. Naor. Optimal Aggregation Algorithms for Middleware. ACM Symp. 
on Principles of Database Systems (PODS’01), Santa Barbara, USA, 2001 

8. P. Fishburn. Preference Structures and their Numerical Representations. Theoretical Com-
puter Science, 217:359-383, 1999 

9. U. Güntzer, W.-T. Balke, W. Kießling. Optimizing Multi-Feature Queries for Image Data-
bases. In Proc. of the  Int. Conf. on Very Large Databases (VLDB’00), Cairo, Egypt, 2000 

10. R. Keeney, H. Raiffa. Decisions with Multiple Objectives: Preferences and Value Trade-
offs. Wiley & Sons, 1976 

11. W. Kießling. Foundations of Preferences in Database Systems. In Proc. of the Int. Conf. on 
Very Large Databases (VLDB’02), Hong Kong, China, 2002 

12. W. Kießling, G. Köstler. Preference SQL - Design, Implementation, Experiences. In Proc. 
of the Int. Conf. on Very Large Databases (VLDB’02), Hong Kong, China, 2002 

13. D. Kossmann, F. Ramsak, S. Rost. Shooting Stars in the Sky: An Online Algorithm for 
Skyline Queries. In Conf. on Very Large Data Bases (VLDB’02), Hong Kong, China, 2002 

14. H. Kung, F. Luccio, F. Preparata. On Finding the Maxima of a Set of Vectors. Journal of 
the ACM, vol. 22(4), ACM, 1975 

15. M. Lacroix, P.Lavency. Preferences: Putting more Knowledge into Queries. In Proc. of the 
Int. Conf. on Very Large Databases (VLDB’87), Brighton, UK, 1987 

16. Map-Quest Roadtrip Planner. www.map-quest.com, 2003 
17. M. McGeachie, J. Doyle. Efficient Utility Functions for Ceteris Paribus Preferences. In 

Conf. on AI and Innovative Applications of AI (AAAI/IAAI’02), Edmonton, Canada, 2002 
18. NTT DoCoMo home page. http://www.nttdocomo.com/home.html, 2003 
19. M. Ortega, Y. Rui, K. Chakrabarti, et al. Supporting ranked boolean similarity queries in 

MARS. IEEE Trans. on Knowledge and Data Engineering (TKDE), Vol. 10 (6), 1998 
20. D. Papadias, Y. Tao, G. Fu, et.al. An Optimal and Progressive Algorithm for Skyline Que-

ries. In Proc. of the Int. ACM SIGMOD Conf. (SIGMOD’03), San Diego, USA, 2003 
21. K.-L. Tan, P.-K. Eng, B. C. Ooi. Efficient Progressive Skyline Computation. In Proc. of 

Conf. on Very Large Data Bases (VLDB’01), Rome, Italy, 2001 
22. M. Wagner, W.-T. Balke, et al.. A Roadmap to Advanced Personalization of Mobile Ser-

vices. In Proc. of the. DOA/ODBASE/CoopIS (Industry Program), Irvine, USA, 2002. 




