
UC Berkeley
UC Berkeley Previously Published Works

Title
Efficient Distributed Skylining for Web Information Systems

Permalink
https://escholarship.org/uc/item/56r8m08h

Journal
Advances in Database Technology - EDBT 2004, Proceedings, 2992

ISSN
0302-9743

Authors
Balke, Wolf-Tilo
Guentzer, Ulrich
Zheng, Jason Xin

Publication Date
2004

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/56r8m08h
https://escholarship.org
http://www.cdlib.org/

Efficient Distributed Skylining for
Web Information Systems

Wolf-Tilo Balke1, Ulrich Güntzer2, Jason Xin Zheng1

1 Computer Science Department, University of California,
Berkeley, CA 94720, USA

{balke, xzheng}@eecs.berkeley.edu
2 Insitut für Informatik, Universität Tübingen,

72076 Tübingen, Germany
guentzer@informatik.uni-tuebingen.de

Abstract. Though skyline queries already have claimed their place in retrieval
over central databases, their application in Web information systems up to now
was impossible due to the distributed aspect of retrieval over Web sources. But
due to the amount, variety and volatile nature of information accessible over
the Internet extended query capabilities are crucial. We show how to efficiently
perform distributed skyline queries and thus essentially extend the expressive-
ness of querying today’s Web information systems. Together with our innova-
tive retrieval algorithm we also present useful heuristics to further speed up the
retrieval in most practical cases paving the road towards meeting even the real-
time challenges of on-line information services. We discuss performance
evaluations and point to open problems in the concept and application of sky-
lining in modern information systems. For the curse of dimensionality, an in-
trinsic problem in skyline queries, we propose a novel sampling scheme that al-
lows to get an early impression of the skyline for subsequent query refinement.

1 Introduction

In times of the ubiquitous Internet the paradigm of Web information systems has
substantially altered the world of modern information acquisition. Both in business
and private life the support with information that is stored in a decentralized manner
and assembled at query time, is a resource that users more and more rely on. Consider
for instance Web information services accessible via mobile devices. First useful
services like city guides, route planning, or restaurant booking have been developed
[5], [2] and generally all these services will heavily rely on information distributed
over several Internet sources possibly provided by independent content providers.
Frameworks like NTT DoCoMo’s i-mode [18] already provide a common platform
and business model for a variety of independent content providers.

Recent research on web-based information systems has focused on employing
middleware algorithms, where users had to specify weightings for each aspect of their
query and a central compensation function was used to find the best matching objects
[7], [1]. The lack of expressiveness of this ‘top k’ query model, however, has first

been addressed by [8] and with the growing incorporation of user preferences into
database systems [6], [10] and information services [22] the limitations of the entire
model became more and more obvious. This led towards the integration of so-called
‘skyline queries’ (e.g. [4]) into database systems. Basically the ‘skyline’ is a non-
discriminating combination of numerical preferences under the notion of Pareto opti-
mality. Since it was only proposed for database systems working over a central
(multi-dimensional) index structure, extending its expressiveness also to the broad
class of Web information systems is most desirable. The contribution of this paper is
to undertake this task and present an efficient algorithm with proven optimality. We
will present a distributed skylining algorithm and show how to enhance its efficiency
for most practical cases by suitable heuristics. We will also give an extensive per-
formance evaluation and propose a scheme to cope with high-dimensional skylines.

As a running example throughout this paper we will focus on a typical Web infor-
mation service scenario. Our algorithm will support a sample user interacting with a
route planning service like e.g. Map-Quest’s Road Trip Planner or Driving Directions
[16]. This is a characteristic example of a Web service where the gathering of on-line
information is tantamount: though a routing service is generally capable of finding
possible routes, the quality of certain routes - and thus their desirability to the user -
may heavily differ depending on current information like road blockings, traffic jams
or the weather conditions. Thus we first have to collect a set of user-specified prefer-
ences and integrate them with our query to the routing system. But of course users
won’t be able to specify something like ‘for my purposes the shortest route is 0.63
times more important than that there is no jam’ in a sensible, i.e. intuitive, way. Que-
ries rather tend to be formulated like ‘I would prefer my route to be rather short and
with little jams’ giving no explicit weightings for a compensation function. Hence the
skyline over the set of possible routes is needed for a high quality answer set. Since
there often are many sources on the Internet offering current traffic information, usu-
ally the query also will have to be posed to a variety of sources needing an efficient
algorithm for the distributed skyline computation. The example of a route planning
service also stresses the focus on real time constraints, because most on-line informa-
tion like traffic jams or accidents will have to be integrated on the fly and delivered
immediately to be of use for navigation. Since such efficient algorithms for distrib-
uted retrieval are still problematic, today’s web portals like Map-Quest allow only a
minimum of additional information (e.g. avoiding toll roads) and use central data-
bases, that provide necessary information. However, given the dynamic nature of the
Web this does not really meet the challenges of Web information systems.

2 Web Information systems Architecture and Related Work

Modern Web information systems feature an architecture like the one roughly
sketched in figure 1. Using a (mobile) client device the user poses a query. Running
on an application/Web server this query may be enriched with information about a
user (e.g. taken from stored profiles) and will be posed to a set of Internet sources.
Depending on the nature of the query different sources can be involved in different
parts of the query, e.g. individual sources for traffic jams or weather information.

Collecting the individual results the combining engine runs an algorithm to compute
the overall best matching objects. These final results have then to be aggregated ac-
cording to each individual user’s specifications and preferences. After a transforma-
tion to the appropriate client format (e.g. using XSLT with suitable stylesheets) the
best answers will be returned to the user.

Fig 1. Web information system architecture

The first area to address such a distributed retrieval problem was the area of ‘top k
retrieval’ over middleware environments, e.g. [7], [9], [19]. Especially for content-
based retrieval of multimedia data these techniques have proven to be particularly
helpful. Basically all algorithms distinguish between different query parts (subque-
ries) evaluating different characteristics, which often have to be retrieved from vari-
ous subsystems or web sources. Each subsystem assesses a numerical score value
(usually normalized to [0,1]) to each object in the collection. The middleware algo-
rithms use two basic kinds of accesses that can be posed: there is the iteration over
the best results from one source (or with respect to a single aspect of the query) called
a ‘sorted access’ and there is the so-called ‘random access’ that retrieves the score
value with respect to one source or aspect for a certain given object.

The physical implementation of these accesses always strongly depends on the ap-
plication area and will usually differ from system to system. The gain of speeding up
a single access (e.g. using a suitable index) will of course complement the total run-
time improvement by reducing the overall number of accesses. Therefore minimizing
the number of necessary object accesses and thus also the overall query runtimes is
tantamount to build practical systems (with real-time constraints) [1]. Prototypical
Web information systems of that kind are e.g. given by [3], [5] or [2]. However, all
these top k retrieval systems relied on a single combining function (often called ‘util-
ity function’) that is used to compensate scores between different parts of the query.
Being worse in one aspect can be compensated by the object doing better in another
part. However, the semantic meaning of these (user provided) combining functions is
unclear and users often have to guess the ‘right’ weightings for their query. The area
of operations research and research in the field of human preferences like [6] or [8]
has already since long criticized this lack in expressiveness.

A more expressive model of non-discriminating combination has been introduced
into the database community by [15]. The ‘skyline’ or ‘Pareto set’ is a set of non-
dominated answers in the result for a query under the notion of Pareto optimality. The
typical notion of Pareto optimality is that without knowing the actual database con-
tent, there can also be no precise a-priori knowledge about the most sensible optimi-

zation in each individual case (and thus something that would allow a user to choose
weightings for a compensation function). The Pareto set or skyline hence contains all
best matching object for all possible strictly monotonic optimization functions. An
example for skyline objects with respect to two query parts and their scorings S1 and
S2 is shown in figure 2. Each database object is seen as a point in multidimensional
space characterized by its score values. For instance objects ox =(0.9, 0.5) and
oy=(0.4, 0.9) both dominate all objects within a rectangular area (shaded). But ox and
oy are not comparable, since ox dominates oy in S1 and oy dominates ox in S2. Thus
both are part of the skyline.

Fig. 2. Skyline objects and regions of domination

Whereas [15] and the more recent extensive system in [12] with an algebra for in-
tegrating the concept of Pareto optimality with the top k retrieval model for prefer-
ence engineering and query optimization in databases [11], are more powerful in that
they do not restrict skyline queries to numerical domains, they both rely on the naïve
algorithm of quadratic complexity doing pairwise comparisons of all database ob-
jects. Focusing on numerical domains [4] was able to gain logarithmic complexity
along the lines of [14]. Initially skyline queries were mainly intended to be performed
within a single database query engine. Thus the first algorithms and subsequent im-
provements all work on a central (multidimensional) index structure like R*-trees
[20], certain partitioning schemes [21] or k-nearest-neighbor searches [13]. However,
such central indexes cannot be applied to distributed Web information systems. Since
there is still no algorithm to process distributed skyline queries, up to now the exten-
sion of expressiveness of the query model could not be integrated in Web information
services. We will deal with the problem of designing an efficient distributed algo-
rithm for computing skyline queries only relying on sorted and random accesses.

3 A Distributed Skylining Algorithm

In this section we will investigate distributed skylining and present a first basic algo-
rithm. As we have motivated in the previous section the basic skyline consists of all
non-dominated database objects. That means all database objects for which there is
no object in the database that is better or equal in all dimensions, but in at least one
aspect strictly better. Assuming every database object to be represented by a point in

n-dimensional space with the coordinates for each dimension given by its scores for
the respective aspect, we can formulate the problem as:

The Skyline Problem: Given set O :={o1,…,oN} of N database objects, n score-
functions s1,…sn with si : O → [0,1] and n sorted lists S1,…,Sn containing all data-
base objects and their respective score values using one of the score function for each
list; all lists are sorted descending by score values starting with the highest scores.
Wanted is the subset P of all non-dominated objects in O, i.e. {oi ∈ P | ¬∃ oj ∈O :
(s1(oi) ≤ s1(oj) ∧…∧ sn(oi) ≤ sn(oj) ∧ ∃ q ∈[1,…,n] : sq(oi) < sq(oj)) }

We will now approach a suitable distributed algorithm to efficiently find this set.
Our algorithm basically consists of three phases: The first phase (step 1) will perform
sorted accesses until we have definitely seen all objects that can possibly be part of
the skyline. The second phase (step 2 and 3) will extend the accesses on all objects
with minimum seen scores in the lists and will prune all other database objects. The
third phase (step 4) will employ focused random accesses to discard all seen objects
that are dominated before returning the skyline to the user. To keep track of all ac-
cessed objects we will need a central datastructure containing all available informa-
tion about all objects seen, but also group the objects with respect to the sorted lists
that they have occurred in. The beauty of this design is that we only have to check for
domination within the small sets for each list and can return some first results early.
Basic Distributed Skyline Algorithm
0. Initialize a datastructure P := ∅ containing records with an identifier and n real
values indexed by the identifiers, initialize n lists K1,…,Kn := ∅ containing records
with an identifier and a real value, and initialize n real values p1,…,pn := 1
1. Initialize counter i := 1.
1.1. Get the next object onew by sorted access on list Si
1.2. If onew ∈ P, update its record’s i-th real value with si(onew), else create such a
record in P
1.3. Append onew with si(onew) to list Ki
1.4. Set pi := si(onew) and i := (i mod n) +1
1.5. If all scores sj(onew) (1≤ j ≤ n) are known, proceed with step 2 else with step 1.1.
2. For i = 1 to n do
2.1. While pi = si(onew) do sorted access on list Si and handle the retrieved objects like
in step 1.2 to 1.3
3. If more than one object is entirely known, compare pairwise and remove the domi-
nated objects from P.
4. For i = 1 to n do
4.1. Do all necessary random accesses for the objects in Ki that are also in P, immedi-
ately discard objects that are not in P
4.2. Take the objects of Ki and compare them pairwise to the objects in Ki. If an ob-
ject is dominated by another object remove it from Ki and P
5. Output P as the set of all non-dominated objects

For ease of understanding we show how the algorithm works for our running ex-
ample: for mobile route planning in [2] we have shown for the case of top k retrieval
how traffic information aspects can be queried from various on-line sources. Posing a
query on the best route with respect to say its length (S1) and the traffic density (S2)
our user employs functions that evaluate the different aspects, but is not sure how to

compensate length and density. The following tables show two result lists with some
routes Ri ordered by decreasing scores with respect to their length and current traffic
density:
S1 (length) S2 (traffic density)
R1 R3 R5 R4 R7 … R2 R4 R6 R3 R8 …
0.9 0.9 0.8 0.8 0.7 …

0.9 0.8 0.8 0.8 0.7 …
The algorithm in step 1 will in turn perform sorted accesses on both lists until the

first route R4 has been seen in both lists leading to the following potential skyline
objects:

Route R1 R2 R3 R4 R5 R6
Score S1 0.9 ? 0.9 0.8 0.8 ?
Score S2 ? 0.9 ? 0.8 ? 0.8

In step 2 we will do some additional sorted accesses on all routes that possibly
could also show the current minimum score in each list and find that R7 in S1 already
has a smaller score, hence we can discard it. In contrast R3 in S2 has the current mini-
mum score, hence we have to add it to our list, but can then discard the next object
R8 in S2, which does have a lower score. Step 3 now tests, if one of the two com-
pletely seen routes R3 and R4 is dominated: by comparing their scores we find that
R4 is dominated by R3 and can thus be discarded. We can now regroup objects into
sets Ki and do all necessary random accesses and the final tests for domination only
within each set.

K1 K2
R1 R3 R5 R2 R6 R3
0.9 0.9 0.8 ? ? 0.9
? 0.8 ?

0.9 0.8 0.8
Step 4 now works on the single sets Ki. We have to make a random access on R1

with respect to S2 and find that its score is say 0.5. Thus we get its score pair (0.9,
0.5) and have to check for domination within set K1. Since it is obviously dominated
by the score pair (0.9, 0.8) of R3, we can safely discard R1. Doing the same for object
R5 we may retrieve a value of say 0.6 thus R5’s pair (0.8, 0.6) is also dominated by
R3 and we are finished with set K1. Please note that we could have saved this last
random access on R5, since we already know that all unknown scores in S2 must be
smaller than the current minimum of the respective list (in this case 0.8). This would
already have shown R5’s highest possible score pair (0.8, 0.8) to be dominated by R3.
At this point we are already able to output the non-dominated objects of K1, since
lemma 2 shows that if any of the objects of set K1 should be dominated by objects in
another set Ki , they also always would be dominated by an object in K1.

Dealing with K2 we have to make random accesses for S1 on routes R2 and R6 and
find for route R2 a score value of say 0.6 leading to a score pair of (0.6, 0.9). But it
cannot be dominated by R3’s pair (0.9, 0.8), as its score in S2 is higher than R3’s.
Finally for R6 we may find a score of say 0.2, thus it is dominated by R3 and can be
discarded (also in these cases we could have saved two random accesses like shown
above). We now can deliver the entire skyline to our user’s query consisting of routes
R3 and R2. All other routes in the database (either seen or not yet accessed) are defi-
nitely dominated by at least one of these two routes.

Independently of any weightings a user could have chosen for a compensation
function thus either route R3 or R2 would have turned up as top object dominating all
other routes. Delivering them both as top objects saves users from having to state
unintuitive a-priori weightings and allows for an informed choice according to each
individual user’s preferences. But we still have to make sure, that upon termination
no pruned object can belong to the skyline and no dominated object will ever be re-
turned. We will state two lemmas and then prove the correctness of our algorithm.

Lemma 1 (Discarding unseen objects)
After an object ox has been seen in each list and all objects down to at least score
si(ox) (1 ≤ i ≤ n) in each list have also been seen, the objects not yet seen cannot be
part of the skyline, more precisely they are dominated by ox.

Proof: Let ox be the object seen in all lists. Then with pi as the minimum score
seen in each list we have due to the sorting of the lists ∀ i (1 ≤ i ≤ n) : si(ox) ≥ pi.
Since all objects having a score of at least score pi in list i have been collected, we can
conclude that any not yet seen object ounseen satisfies ∀ i (1 ≤ i ≤ n) : si(ounseen) < pi ≤
si(ox) and thus ∀ i (1 ≤ i ≤ n) : si(ounseen) < si(ox). Hence ounseen is dominated by ox and
thus cannot be part of the skyline independently of ox itself being part of the set or
being dominated.

We can even show the somewhat stronger result that, if we have seen an object ox
in all lists and stop the sorted accesses in step 2 after seeing only a single worse ob-
ject in any of the lists, we can still safely discard all unseen objects. This is because
we need the strict ‘<’ in one single list only. In the other lists ‘≤’ would still be suffi-
cient (since due to sorting ‘=’ is the highest possible).

Lemma 2 (Objects can only be dominated by objects in the same set Ki)
Assume that all objects that have been seen, are divided into n sets according to the
lists in which they occurred, i.e. if an object ox occurs in list i (1 ≤ i ≤ n) it is added to
set Ki. Lets further assume that in the lists in which ox occurred, all objects having at
least the respective score value of ox have also been seen. Then, if the object ox in any
set Ki is dominated by any other object, this object has also to be part of set Ki.

Proof: Let ox be any dominated object already seen and assigned to at least one set
Ki (1 ≤ i ≤ n). Due to Lemma 1 ox cannot be dominated by any unseen object, thus
the dominating object oy has already been seen and thus has also been assigned to at
least one of the sets Ki (1 ≤ i ≤ n). If ox and oy are in exactly the same sets there is
nothing to show. Thus let us assume oy dominates ox and there exists at least one set
Kj (1 ≤ j ≤ n) containing object ox, but not object oy. Thus due to the sorting of the
lists and the fact that we have seen all objects in list x having at least the respective
score value sj(ox) of object ox, we have to conclude that sj(oy) < sj(ox) in contrast to
the assumption that oy dominates ox.

Theorem 1: (Correctness of the Basic Algorithm)
The basic algorithm always terminates and delivers the entire set of non-dominated
objects and only the set of non-dominated objects.

Proof: Since the termination is obvious, we have to show that a) no relevant object
is missed by our algorithm and that b) no object in the returned set can be dominated
by any other object.

Ad a) Steps 1 and 2 of the algorithm collect all objects, until one object has been
seen in all lists and all objects of the minimum score in each list have also been seen.

Thus Lemma 1 applies and we can safely discard all unseen objects, since they cannot
be part of the skyline. In steps 3 and 4 only dominated objects are discarded (in step 4
we also might use upper boundary estimations of some scores for discarding, but
since the upper boundaries are best case estimations, it is obvious that objects dis-
carded in step 4 would also be discarded using their actual score values). Thus the set
returned in step 5 will contain all objects of the skyline.

Ad b) After steps 1 to 3 Lemma 2 applies and we can restrict the search for domi-
nating objects to the sets Ki (1 ≤ i ≤ n). Since in any set Ki no object can be domi-
nated by an object having a strictly smaller score with respect to the i-th list, it is
sufficient to do pairwise comparisons with those objects having a larger or equal
score. Thus Step 4 correctly discards all dominated objects within the sets Ki and
since all objects returned in step 5 must have been part of at least one Ki, they cannot
be dominated by any object.

Since the algorithm is supposed to work with distributed web sources thus having
rather high access costs, for the optimality and complexity considerations we have to
focus on the necessary object accesses instead of main memory operations. The next
theorem will show that the termination condition of phase 1 is optimal, since one of
the objects seen in all lists is definitely part of the skyline. Stopping earlier would
thus discard possibly non-dominated objects; we therefore have to see an object in all
lists.

Theorem 2 (Optimality of Sorted Accesses):
The basic algorithm uses an optimal number of sorted accesses.

Proof: Sorted accesses are only made during the first two steps. After the first step
one object has been seen in all lists. In step 2 we do further sorted accesses to get all
objects with at least one score equal to the respective minimum score in each list. If
we can show that among these objects and the object seen in all lists there always is at
least one object belonging to the skyline, we could not stop doing sorted accesses
earlier and thus use an optimal number of sorted accesses.

Let ox be the first object that has occurred in all lists and pi (1 ≤ i ≤ n) be the mini-
mum scores in each list. Then we get ∀ i si(ox) ≥ pi and sk(ox) = pk for at least one 1 ≤
k ≤ n. For every object o ≠ ox seen during step 1 of our algorithm there is at least one
list Sj (1 ≤ j ≤ n) in which o has not been seen and hence we have either sj(o) < pj ≤
sj(ox) (A) or sj(o) = pj (B).

If case (A) applies for an object o, it cannot dominate the object ox. Thus object ox
can only be dominated by an object for which case (B) applies, i.e. one of those ob-
jects that have occurred during step 2 of our algorithm. Choose among those objects
the maximum object om dominating ox. We will then show by contradiction that om
belongs to the skyline:

If om would not be part of the skyline, it would have to be dominated by another
object. Due to Lemma 1 om cannot be dominated by any unseen object, and due to
being maximal among those objects occurring in step 2, it would have to be domi-
nated by an object o seen in step 1and not seen in step 2 of the algorithm. This means,
that there is an index j, such that sj(o) is smaller than pj (cf. case 1 above). Therefore o
can dominate neither ox nor om leading to the contradiction.

4 Improvements by Advanced Heuristics

Having shown that we will have to see at least one object in all the lists we will now
focus on heuristics to find this object that causes the first phase to terminate more
quickly and will try to minimize the necessary comparisons within the sets Ki.

Fig. 3. Savings implemented by heuristic 1

Consider the situation shown in figure 3. Having adopted a round robin strategy in
our basic algorithm, we have to expand all the lists until an object (e.g. ox) occurs in
all lists. But our proof of correctness allows us to immediately disregard even all
those objects that have only occurred in any list after ox (i.e. the shaded areas). Thus
using all information about discovered objects at an early stage and employing a
sophisticated control flow, we can improve our algorithm by immediately focusing on
objects that can be assumed to foster early termination by being the first object to
occur in all lists with reasonably high probability. Having chosen such an object we
will no longer do sorted accesses on lists in which this object has already occurred,
but rather expand lists in which its score is still unknown. Therefore we need to know
how to find an object that is most probable to terminate our algorithm. In case studies
on multi-objective optimization like [3] one of the most effective functions in estimat-
ing dominating objects is a greedy strategy called ‘maximin’ function. Our heuristic
for estimating an appropriate object has been built along the lines of this function. But
whereas the ‘maximin’ function only focuses on the maximum value after evaluating
the minimum scores for each object and thus advocates the smallest possible expan-
sion in every list, our heuristic additionally will take advantage of the fact that be-
cause of the sorting of the lists and recent sorted accesses on it, we exactly know the
current score value in each list and thus can better estimate the necessary expansion.

Heuristic 1: If all scores of an object are known (either by sorted or by random
access) consider all scores value in lists where it has not yet been seen by sorted ac-
cess. If we sum up the difference between these values and the last score value seen
by sorted access on the respective list, we get an aggregated value for each object.
The object with a minimum value can be considered the most promising object. It still
needs the least expansion in all lists. Therefore it is probable to be the object that will
first occur in all of the lists. If there are more objects with the same minimum score,
the one with the minimum sum of scores will need the least expansion of all lists.

To find these objects, we will mix sorted and random accesses already in the first
phase to immediately get all information about an object. Since these accesses would
have been necessary in the third phase of the basic algorithm anyway, by doing them
immediately we just spend a few random accesses too much for those objects that we
might already have seen by sorted access in more than one list. Knowing all scores
we can now estimate how far we would have to expand all the lists, if we had to see
the latest object in all lists adding up the differences between values seen by random
access and the current score in the respective list. Focusing only on the best object
with respect to necessary list expansions, we will employ indicators that tell us which
lists to expand next, avoiding those lists our object has already occurred in.

Since we gather all information about an object at its first occurrence and immedi-
ately assess its probable utility for termination, we will not expand any list more than
necessary. If we can choose several lists for the next sorted access, we can either pick
one randomly, or, if we expect non-uniform data distributions a complementing indi-
cator technique e.g. using the derivatives of the score distribution function in each list
along the lines of [9] may be employed to estimate the expected gain in each list.
Please note that our heuristic 1 will not affect the abstract order of complexity from
our previously stated optimality results, because the maximum improvement factor
over the round robin strategy can only be the number of lists (n). But, given the rather
expensive costs of object accesses over the Internet even small numbers of accesses
saved will improve the overall run-time behavior like shown in [5] or [1]. Thus, also
improvements taking only constant factors off the algorithm’s complexity should be
employed towards meeting real-time constraints.

Our second heuristic will focus on the necessary comparisons within the sets Ki.
Obviously no object having a smaller score with respect to Si will be able to dominate
any object having a larger score. Thus we do not really need the pairwise compari-
sons like suggested in the basic algorithm. We only have to compare pairwise be-
tween objects within the same set Ki having equal scores and can otherwise test, if
the objects with smaller scores are dominated by ones having larger score values.

Heuristic 2: Start with the objects first seen in each set Ki and compare pairwise
all objects with the same score value. Then only test for domination by objects with
higher scores.

To implement this we employ the fact that since the lists are ordered, also all Ki are
ordered. We will use two counters q and b and divide each Ki into subsets grouping
same score values. Starting with the first set we will assume the objects as enumer-
ated and set q to the number of the first object of a subset and b to the number of the
last. According to heuristic 2 we don’t need any comparisons with objects on num-
bers larger than b, we need pairwise comparisons for all objects between q and b and
we need a test for domination by all objects with numbers smaller than q.

Using our heuristics we will now present our improved algorithm for distributed
skyline queries. Again we need the initialization of a central datastructure for the set
of possible skyline objects and sets containing the objects for each sorted list as be-
fore. Additionally we need a variable for the object that is considered most promising
to terminate our algorithm. Note that all necessary random accesses are now already
performed in step 1 in order to derive a greedy estimation of the object most probable
to foster early termination.

Improved Distributed Skyline Algorithm
0. Initialize a datastructure P := ∅ containing records with an identifier and n real
values for scores indexed by the identifiers, initialize n lists K1,…,Kn := ∅ contain-
ing records with an identifier and one real value, initialize a record term_oid contain-
ing an identifier and a real value := 0 and initialize n real values p1,…,pn := 1
1. Initialize counter i := 1.
1.1. Get the next object onew by sorted access on list Si, set pi := si(onew) and update the
real value in term_oid according to step 1.3
1.2. If onew ∉ P
1.2.1. Create a record in P containing oid and score in Si in the i-th entry in its record.
1.2.2. Do random accesses on all missing scores and update the record in P like above
1.3. Add up the difference between onew’s score values in lists, where it has not yet
been seen, and the pi in these lists
1.4. If this sum is smaller than the value in term_oid, replace the oid and the value in
term_oid with the oid and new value of onew
1.5. If the sum is equal to the value in term_oid, replace like in 1.4 only, if the total
sum of scores for onew is larger than the sum for the object given by term_oid
1.6. Append onew with si(onew) to list Ki
1.7. Set i to any number of a set Ki in which the object given by term_oid has not yet
occurred. If it is element of all Ki proceed with step 2 else with step 1.1.
2. Let oterm be the object given by term_oid. For i = 1 to n do
2.1. While pi = si(oterm) do sorted access on list Si and update pi like in step 1.4, ap-
pend it to list Ki like in step 1.3 and if the retrieved objects is not in P handle it like in
step 1.2.1 and 1.2.2
3. For i = 1 to n do
3.1. q :=0, b:= 0
3.2. While there is an q+1-th entry in Ki do
3.2.1. Repeat (collect an object of Ki and set b:= b+1) until the value of the b+1-th
entry in Ki is strictly smaller than the b-th entry or there is no b+1-th entry
3.2.2. If any collected object does not exist in P, discard the object and remove it
from Ki and set b := b-1
3.2.3. Compare the collected objects pairwise. If any of these objects is dominated,
discard it and remove it from Ki and P and set b := b-1
3.2.4. Compare all collected objects pairwise to all objects being on a position smaller
or equal than q in Ki. If any collected object is dominated, discard it and remove it
from Ki and P and set b := b-1
3.2.5. Set q := b
4. Output P as the set of all non-dominated objects, i.e. the skyline.

Since the correctness of the improved algorithm is straightforward along the lines
of the basic algorithm and also the optimality holds, we will again return to our ex-
ample to show how the algorithm works. Again we pose a query on the best route
with respect to its length (S1) and the traffic density (S2). The following tables show
our result lists with routes ordered by scores:
S1 (length) S2 (traffic density)
R1 R3 R5 R4 R7 … R2 R4 R6 R3 R8 …
0.9 0.9 0.8 0.8 0.7 …

0.9 0.8 0.8 0.8 0.7 …

The algorithm in step 1 will perform sorted accesses on S1 and finds route R1. A
random access will reveal R1’s second score 0.5 and that its sum of unseen values is
(1.0-0.5)=0.5. That means our first estimation is that we will have to expand the list
S2 down to score 0.5 in order to see R1 in all lists. Thus we have to do a sorted access
on list S2 trying to decrease the scores to find R1’s second score, and we get route R2.
The second score of R2 leads to a sum of differences of 0.3. Thus it is more promis-
ing than R1 and we will focus on lists where R2 has not yet occurred. Accessing S1
we encounter object R3, whose second score 0.8 again leads to a change in our
term_oid to R3 with value 0.1. After we have also accessed R4 and R6 in list S2 who
both show larger sums, we finally encounter R3 and can terminate step 1.

Route R1 R2 R3 R4 R6
Score S1 0.9 0.6 0.9 0.8 0.2
Score S2 0.5 0.9 0.8 0.8 0.8
term_oid R1 R2 R3 R3 R3
next access S2 S1 S2 S2 S2

In step 2 we will do some additional accesses on all routes also showing the cur-
rent minimum score in each list and find that R5 in S1 already has a smaller score,
hence we can discard it, and we can also discard the next object R8 in S2.

K1 K2
R1 R3 R2 R6 R4 R3
0.9 0.9

0.9 0.8 0.8 0.8
Step 3 now focuses on the sets Ki and finds that in K1 R3 dominates R1 and in K2

we first have to compare R6, R4 and R3 pairwise and find that R3 dominates all and
then only have to test, if R3 is dominated by R2. However, as R2 does not dominate
R3 we can return them as the skyline. Please note that besides more efficient com-
parisons within the Ki, even in this limited example our indicator technique already
saved us expensive object accesses on routes R5 and R7, which now remain unseen.

5 Evaluation of Distributed Skylining

The presented algorithm for the first time addresses the problem of distributed skylin-
ing in Web information systems, thus in our evaluation we obviously cannot compare
it to similar algorithms. Since comparisons with algorithms over central indexes
(which of course will be faster not having to deal with network latencies) will also
yield no sensible results, we will concentrate on the necessary number of object ac-
cesses, the total number of objects in the skyline for some practical cases and the
improvements that can be gained over the basic algorithm by using our advanced
heuristics. For all experiments we used an independent data distribution of scores.

Let us first take a glance on the savings due to our heuristics and then evaluate the
performance of our improved algorithm. We will focus on the improvement factors in
terms of overall object accesses saved. Figure 4 shows the average improvement
factors for different numbers of lists (3,5, and 10) and two different database sizes of
10000 and 100000 database objects. We can clearly see that independent of the data-
base size the average improvement factors for our experiments range between 1.5 for

small numbers of lists and around 2.5 for higher numbers. Thus, even using just these
simple heuristics without any tuning we instantly halve the necessary object accesses.
We can even expect higher factors by tuning the given heuristic to adapt more closely
to the data distribution like shown e.g. in [9].

Average Improvement Factor

0

0,5

1

1,5

2

2,5

3 5 10 3 5 10

N = 10,000 N = 100,000

Database Size Pruned in %

0

25

50

75

100

3 5 10 3 5 10

N = 10 ,0 0 0 N = 10 0 ,0 0 0

Fig. 4. Improvement due to heuristics Fig. 5. Saved accesses w.r.t. database size

Now we can concentrate on the object accesses that our algorithm saves with re-
spect to the database size. Figure 5 shows what percentage of the database can be
pruned, again for different numbers of lists and different database sizes. We can see
clearly that our algorithm scales well with the database size and for lower numbers of
lists works well, e.g. prunes more than 95% over 3 lists. However, we can also see
that the performance quickly deteriorates with a growing number of lists. To explain
this behavior we have to consider the portions of skyline objects among all objects
that have been accessed (cf. figure 6). We find that, though our algorithm’s perform-
ance seems to deteriorate with growing numbers of lists, its precision in terms of how
many objects that are not part of the skyline have to be accessed, heavily increases
with growing numbers of lists. For instance in the case of 10 lists over a database of
10000 objects almost 60% of the accesses are definitely necessary to see the entire
skyline, i.e. to terminate the algorithm correctly. Considering this instance further we
can conclude that, if we access about 90% of 10000 objects and about 55% of them
are necessary, the skyline has to be about 49.5% of the entire database.

Percentage of Skyline Objects

0
10
20
30
40
50
60

3 5 10 3 5 10
N = 10 ,0 0 0 N = 10 0 ,0 0 0

Fig. 6. Skyline objects among all objects accessed

To support these considerations we performed more experiments on the actual av-
erage size of the skyline for varying numbers of lists and different database sizes. In
table 1 we can see that our considerations have been correct (also confirmed by ex-
periments in [4]). Indeed the size of the skyline rapidly increases with larger numbers

of lists. We are forced to conclude that, though the concept of skylining may be a
very intuitive model for querying, its output behavior seems only to be feasible for
rather small numbers of lists to combine. In fact skyline sizes grow exponentially
with the number of dimensions. Thus, independently of the retrieval algorithms the
problem itself does not scale and we still need a effective dimensionality reduction
for skyline queries that are probable to retrieve huge results.

Table 1. Size of the skyline with respect to different numbers of database objects and lists

Size of database (N) Number of lists Size of skyline (in % of database size)
3 0.51
5 4.44

10,000

10 49.25
3 0.07
5 1.00

100,000

10 25.11

6 Sampling the Efficient Frontier for Improved Scalability

So even if an algorithm could compute high-dimensional skylines in acceptable time,
it would still not be sensible to return something like 50% of database objects to the
user for manual processing. If on the other hand, users first aggregate all lists in
which a compensation between scores can be defined, and then use the skyline query
model only for modest numbers of these aggregated lists, the skyline will consist of
sensible numbers of elements and can be retrieved reasonably well. But how to know,
which dimensions can be compensated and over which dimensions we still need a
skyline? As pointed out in [4] specific characteristics of dimensions like correlation
have an essential influence on the manageability of the resulting skyline. Correlated
data usually results in smaller skylines than the independently distributed case. In
contrast anti-correlated distributions amount in a vast increase of the number of sky-
line objects. Measures to assess such characteristics that hint at the size of the result,
are for example the objects’ average consistency of performance, i.e. if scores for
each object show similar absolute values in all different dimensions. The hope is to
see in advance e.g. if there are correlations between some dimensions, which in turn
could be condensed into a single dimension. Since computing skylines of small num-
bers of dimensions (say 3) are still not at all problematic, our main idea is to get an
impression of the original characteristics of the skyline by investigating skylines of
some representative low-dimensional subsets of the original dimensions. The follow-
ing theorem states that -without having to calculate the high-dimensional skyline- our
sampling can nevertheless rely on actual skyline objects, which in turn improves the
sampling’s quality.

Theorem 3 (Skyline of Subsets of Dimensions):
For each object o in the skyline of a subset of the dimensions (i.e. a subset of score
lists) there is always a corresponding object o’ in the skyline of all dimensions having
exactly the same scores as o with respect to the subset of dimensions.

Proof: Assume that we have chosen an arbitrary subset of score lists. We can then
calculate the skyline P of this subset. Let o be any object of P. We have to show that
there is a corresponding object o’ in the skyline Q for all score lists having same
scores in the chosen subset. If o already is also part of Q the statement is trivially true.
Thus let us assume that o is not element of Q and therefore must be dominated by at
least one object p. That means for all lists si(p) ≥ si(o) holds. If, however, considering
only the chosen lists there would be any some list for which ‘strictly better’ holds, i.e.
si(p) > si(o), object o would already be dominated by p with respect to our subset.
Since this would be in contradiction to our assumption of o being part of the skyline
of the subset, for the entire subset si(p) = si(o) has to hold and p is our object o’.

Using this result we will now propose the sampling scheme. We will sample the
skyline in three steps: choosing q subsets of the lists, calculating their lower-
dimensional skylines and merging the results as the subsequent sampling. Since sky-
lines can already grow large for only 4 to 5 dimensions, we will always sample with
three-dimensional subsets. Values of q = 5 for 10 score lists and q = 15-20 for 15
score lists in our experiments have provided sufficient sampling quality. For simplic-
ity we just take the entire low-dimensional skyline (2.1)and merge it (2.2). As theo-
rem 3 shows, should two objects feature the same score within a low-dimensional
skyline, random accesses on all missing dimensions could be used to rule out a few
dominated objects sometimes. We experimented with this (more exact) approach, but
found it to perform much worse, while improving the sampling quality only slightly.
Sampling Skylines by Reduced Dimensions
1. Given m score lists randomly select q three-dimensional subsets, such that all lists
occur in at least one of the subsets. Initialize the sampling set P := ∅
2. For each three-dimensional subset do

2.1. Calculate the skyline Pi of the subset
2.2. Union with the sampling set P := P ∪ Pi

3. The set P is a sample of the skyline for all m score lists
Now we have to investigate the quality of our sampling. An obvious quality meas-

ure is the manageability of the sample; its number of objects should be far smaller
than the actual skyline. Also the consistency of performance is also an interesting
measure, because larger number of consistent objects will mean some amount of
correlation and therefore hints at rather small skylines. Our actual measurement here
takes the perpendicular distance between each skyline object and the diagonal in
score space [0,1]n normalized to a value between 0 and 100% and aggregated within
10% intervals. The third measure will be a cluster analysis dividing each score di-
mension into upper and lower half, thus getting 2m buckets. Our cluster analysis
counts the elements in each bucket and groups the buckets according to the number of
‘upper halves’ (i.e. score values > 0.5) they contain. Again having more elements in
the clusters with either higher or lower numbers of ‘upper halves’ indicate correla-
tion, whereas objects in the buckets with medium numbers hint at anti-correlation.

Our experiments on how adequately the proposed sampling technique predicts the
actual skyline, will focus on a 10-dimensional skyline for a database containing
N=100,000 objects. Score values over all dimensions have been uniformly distributed
and statistical averages over multiple runs and distributions have been taken. We have
fixed q := 5 and compare our measurement against the quality of a random sample of

the actual 10-dimensional skyline, i.e. the best sample possible (which, however, in
contrast to our sample cannot be taken without inefficiently calculating the high-
dimensional skyline). Since our sample is expected to essentially reduce the number
of objects, we will use a logarithmic axis for the numbers of objects in all diagrams.

Consistency of performance

0,01
0,1

1
10

100
1000

10000

10
%

30
%

50
%

70
%

90
%

skyline
sample
random

Fig. 7. Consistency of performance

Cluster analysis

0,01

0,1

1

10

100

1000

10000

0 1 2 3 4 5 6 7 8 9 10

skyline
sample
random

Fig. 8. Cluster analysis for the 10-dim sample

We have randomly taken 5 grips of 3 score lists and processed their respective sky-
lines like shown in our algorithm. Measuring the manageability we have to compare
the average size of the 10-dim skyline and our final sample: the actual size of the
skyline is on average 25133.3 objects whereas our sample consists of only 313.4
objects, i.e. 1.25% of the original size. Figure 7 shows the consistency of perform-
ance measure for the actual skyline, our sample and a random sample of about the
same size as our sample. The shapes of the graphs are quite accurate, but whereas the
peaks of the actual set (dark line) and its random sample (light line) are aligned, the
peak for our sampling (dashed line) is slightly shifted to the left. We thus underesti-
mate the consistency of performance a little, because when focusing on only a subset
of dimensions, some quite consistent objects may ‘hide’ behind optimal objects with

respect to these dimensions, having only slightly smaller scores, but nevertheless a
better consistency. But this effect only can lead to a slight overestimation of the sky-
line’s size and thus is in tune with our intentions of preventing the retrieval of huge
skylines. Figure 8 addresses our cluster analysis. Again we can see that our sampling
graph snugly aligns with the correct random sampling and the actual skyline graph.
Only for the buckets of count 3 there is a slight irritation, which is due to the fact that
we have sampled using three dimensions and thus have definitely seen all optimal
objects with scores >0.5 in these three dimensions. Thus we slightly overestimate
their total count. Overall we see that our sampling strategy with reduced dimensions
promises -without having to calculate the entire skyline- to give us an impression of
the number of elements of the skyline almost as accurate as a random sample of the
actual skyline would provide. Using this information for either safely executing que-
ries or passing them back to the user for reconsideration in the case of too many esti-
mated skyline objects seems promising to lead to a better understanding and manage-
ability of skyline queries.

7 Summary and Outlook

We addressed the important problem of skyline queries in Web information systems.
Skylining extends the expressiveness of the conventional ‘exact match’ or the ‘top k’
retrieval models by the notion of Pareto optimality. Thus it is crucial for intuitive
querying in the growing number of Internet-based applications. Distributed Web
Information services like [5] or [2] are premium examples benefiting from our contri-
butions. In contrast to traditional skylining, we presented a first algorithm that allows
to retrieve the skyline over distributed data sources with basic middleware access
techniques and have proven that it features an optimal complexity in terms of object
accesses. We also presented a number of advanced heuristics further improve per-
formance towards real-time applications. Especially in the area of mobile information
services [22] using information from various content providers that is assembled on
the fly for subsequent use, our algorithm will allow for more expressive queries by
enabling users to specify even complex preferences in an intuitive way. Confirming
our optimality results our performance evaluation shows that our algorithm scales
with growing database sizes and already performs well for reasonable numbers of
lists to combine. To overcome the deterioration for higher numbers of lists (curse of
dimensionality) we also proposed an efficient sampling technique enabling us to
estimate the size of a skyline by assessing the degree of data correlation. This sam-
pling can be performed efficiently without computing high-dimensional skylines and
its quality is comparable to a correct random sample of the actual skyline.

Our future work will focus on the generalization of skylining and numerical top k
retrieval towards the problem of multi-objective optimization in information systems,
e.g. over multiple scoring functions like in [10]. Besides we will focus more closely
on quality aspects of skyline queries. In this context especially a-posteriori quality
assessments along the lines of our sampling technique and qualitative assessments
like in [17] may help users to cope with large result sets. We will also investigate our
proposed quality measures in more detail and evaluate their individual usefulness.

Acknowledgements
We are grateful to Werner Kießling, Mike Franklin and to the German Research
Foundation (DFG), whose Emmy-Noether-program funded part of this research.

References

1. W.-T. Balke, U. Güntzer, W. Kießling. On Real-time Top k Querying for Mobile Services,
In Proc. of the Int. Conf. on Coop. Information Systems (CoopIS’02), Irvine, USA, 2002

2. W.-T. Balke, W. Kießling, C. Unbehend. A situation-aware mobile traffic information proto-
type. In Hawaii Int. Conf. on System Sciences (HICSS-36), Big Island, Hawaii, USA, 2003

3. R. Balling. The Maximin Fitness Function: Multi-objective City and Regional Planning. In
Conf. on Evol. Multi-Criterion Optimization (EMO’03), LNCS 2632, Faro, Portugal, 2003

4. S. Börzsönyi, D. Kossmann, K. Stocker. The Skyline Operator. In Proc. of the Int. Conf. on
Data Engineering (ICDE’01), Heidelberg, Germany, 2001

5. N. Bruno, L. Gravano, A. Marian. Evaluating Top-k Queries over Web-Accessible Data-
bases. In Proc. of the Int. Conf. on Data Engineering (ICDE’02), San Jose, USA, 2002.

6. J. Chomicki. Querying with intrinsic preferences. In Proc. of the Int. Conf. on Advances in
Database Technology (EDBT), Prague, Czech Republic, 2002

7. R. Fagin, A. Lotem, M. Naor. Optimal Aggregation Algorithms for Middleware. ACM Symp.
on Principles of Database Systems (PODS’01), Santa Barbara, USA, 2001

8. P. Fishburn. Preference Structures and their Numerical Representations. Theoretical Com-
puter Science, 217:359-383, 1999

9. U. Güntzer, W.-T. Balke, W. Kießling. Optimizing Multi-Feature Queries for Image Data-
bases. In Proc. of the Int. Conf. on Very Large Databases (VLDB’00), Cairo, Egypt, 2000

10. R. Keeney, H. Raiffa. Decisions with Multiple Objectives: Preferences and Value Trade-
offs. Wiley & Sons, 1976

11. W. Kießling. Foundations of Preferences in Database Systems. In Proc. of the Int. Conf. on
Very Large Databases (VLDB’02), Hong Kong, China, 2002

12. W. Kießling, G. Köstler. Preference SQL - Design, Implementation, Experiences. In Proc.
of the Int. Conf. on Very Large Databases (VLDB’02), Hong Kong, China, 2002

13. D. Kossmann, F. Ramsak, S. Rost. Shooting Stars in the Sky: An Online Algorithm for
Skyline Queries. In Conf. on Very Large Data Bases (VLDB’02), Hong Kong, China, 2002

14. H. Kung, F. Luccio, F. Preparata. On Finding the Maxima of a Set of Vectors. Journal of
the ACM, vol. 22(4), ACM, 1975

15. M. Lacroix, P.Lavency. Preferences: Putting more Knowledge into Queries. In Proc. of the
Int. Conf. on Very Large Databases (VLDB’87), Brighton, UK, 1987

16. Map-Quest Roadtrip Planner. www.map-quest.com, 2003
17. M. McGeachie, J. Doyle. Efficient Utility Functions for Ceteris Paribus Preferences. In

Conf. on AI and Innovative Applications of AI (AAAI/IAAI’02), Edmonton, Canada, 2002
18. NTT DoCoMo home page. http://www.nttdocomo.com/home.html, 2003
19. M. Ortega, Y. Rui, K. Chakrabarti, et al. Supporting ranked boolean similarity queries in

MARS. IEEE Trans. on Knowledge and Data Engineering (TKDE), Vol. 10 (6), 1998
20. D. Papadias, Y. Tao, G. Fu, et.al. An Optimal and Progressive Algorithm for Skyline Que-

ries. In Proc. of the Int. ACM SIGMOD Conf. (SIGMOD’03), San Diego, USA, 2003
21. K.-L. Tan, P.-K. Eng, B. C. Ooi. Efficient Progressive Skyline Computation. In Proc. of

Conf. on Very Large Data Bases (VLDB’01), Rome, Italy, 2001
22. M. Wagner, W.-T. Balke, et al.. A Roadmap to Advanced Personalization of Mobile Ser-

vices. In Proc. of the. DOA/ODBASE/CoopIS (Industry Program), Irvine, USA, 2002.

