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Abstract

Topics in String Duality: D-Branes and Geometry

by

Christopher John Beem

Doctor of Philosophy in Physics

University of California, Berkeley

Professor Mina Aganagic, Chair

One of the most striking and surprising aspects of string theory is the vast web of
string dualities which relates many seemingly distinct string backgrounds. In this dis-
sertation, I explore several novel dualities between systems of D-branes and closed string
flux compactifications. I use geometric transitions to analyze a variety of supersymmetry-
breaking D-brane constructions. I additionally present an explanation of the Calabi-Yau
fourfold geometries which appear in the computation of superpotentials for D-branes on
compact Calabi-Yau threefolds.
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Introduction

The interplay of string dualities and D-branes has been an important source of insight
into string theory for many years. One of the most interesting aspects of this interplay
is that in some scenarios, D-brane configurations are related to closed string backgrounds
which can be described in purely geometric terms. Iconic examples of this type of relation
are the AdS/CFT correspondence [1], large N Chern-Simons/topological string duality [2],
and the description of type IIB orientifolds in terms of F-theory [3]. In this dissertation, I
investigate a number of relations of this type.

In chapter one of this thesis, I construct metastable configurations of branes and anti-
branes wrapping two-cycles inside local Calabi-Yau manifolds and study their large N
duals. These duals are Calabi-Yau manifolds in which the wrapped two-cycles have been
replaced by three-cycles with flux through them, and supersymmetry is spontaneously
broken. The geometry of the non-supersymmetric vacuum is exactly calculable to all orders
in the ’t Hooft parameter, and to leading order in 1/N . The computation utilizes the same
matrix model techniques that were used in the supersymmetric context. This provides
a novel mechanism for breaking supersymmetry in the context of flux compactifications.
These investigations were carried out in collaboration with Mina Aganagic, Jihye Seo, and
Cumrun Vafa. They have previously appeared in [4].

The second chapter describes an extension of this work to a more complex class of local
Calabi-Yau geometries. With only branes present, the Calabi-Yau manifolds in question
give rise to N = 2 ADE quiver theories deformed by superpotential terms. I show that
the large N duality conjecture of chapter one reproduces correctly the known qualitative
features of the brane/antibrane physics. In the supersymmetric case, the gauge theories
have Seiberg dualities, which are represented as flops in the geometry. Moreover, the
holographic dual geometry encodes the whole RG flow of the gauge theory. In the non-
supersymmetric case, the large N duality predicts that the brane/antibrane theories also
enjoy such dualities, and allows one to pick out the good description at a given energy
scale. These investigations were carried out in collaboration with Mina Aganagic and Ben
Freivogel. They have previously appeared in [5].
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In the third chapter, I show that the physics of D-brane theories that exhibit dynamical
SUSY breaking due to stringy instanton effects is well captured by geometric transitions,
which recast the nonperturbative superpotential as a classical flux superpotential. This
allows for simple engineering of Fayet, Polonyi, O’Raifeartaigh, and other canonical models
of supersymmetry breaking in which an exponentially small scale of breaking can be un-
derstood either as coming from stringy instantons or as arising from the classical dynamics
of fluxes. These investigations were carried out in collaboration with Mina Aganagic and
Shamit Kachru. They have previously appeared in [6].

In chapter four, geometric transitions are again used to study metastable vacua in
string theory and certain confining gauge theories. The gauge theories in question are,
again, N = 2 supersymmetric theories deformed to N = 1 by superpotential terms. I first
geometrically engineer supersymmetry-breaking vacua by wrapping D5 branes on rigid
two-cycles in non-compact Calabi-Yau geometries, such that the central charges of the
branes are misaligned. In a limit of slightly misaligned charges, this has a gauge theory
description, where supersymmetry is broken by Fayet-Iliopoulos D-terms. Geometric tran-
sitions relate these configurations to dual Calabi-Yaus with fluxes, where HRR, HNS , and
dJ are all nonvanishing. I argue that the dual geometry can be effectively used to study
the resulting non-supersymmetric, confining vacua. These investigations were carried out
in collaboration with Mina Aganagic. They have previously appeared in [7].

In the fifth chapter, I study N = 1 supersymmetric U(N) gauge theories coupled
to an adjoint chiral field with superpotential. I consider the full supersymmetric moduli
space of these theories obtained by adding all allowed chiral operators. These include
higher-dimensional operators that introduce a field-dependence for the gauge coupling. I
show how Feynman diagram/matrix model/string theoretic techniques can all be used to
compute the IR glueball superpotential. Moreover, in the limit of turning off the superpo-
tential, this leads to a deformation of N = 2 Seiberg-Witten theory. In the case where the
superpotential drives the squared gauge coupling to a negative value, I find that supersym-
metry is spontaneously broken, which can be viewed as a novel mechanism for breaking
supersymmetry. I propose a new duality between a class of N = 1 supersymmetric U(N)
gauge theories with field-dependent gauge couplings and a class of U(N) gauge theories
where supersymmetry is softly broken by nonzero expectation values for auxiliary fields
in spurion superfields. These investigations were carried out in collaboration with Mina
Aganagic, Jihye Seo, and Cumrun Vafa. They have previously appeared in [8].

The sixth and final chapter addresses the problem of computing spacetime superpoten-
tials for D-branes wrapping cycles in a compact Calabi-Yau threefold, which is computed
by the disk partition function of the open topological string. I use string duality to show
that when appropriately formulated, the problem admits a natural geometrization in terms
of a non-compact Calabi-Yau fourfold without D-branes. The duality relates the D-brane
superpotential to a flux superpotential on the fourfold. This sheds light on several features
of superpotential computations appearing in the literature, in particular on the observation
that Calabi-Yau fourfold geometry enters the problem. In one of the examples, I show that
the geometry of fourfolds also reproduces D-brane superpotentials obtained from matrix
factorization methods. These investigations were carried out in collaboration with Mina
Aganagic. They have previously appeared in [9].
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Chapter 1

Geometric Metastability and Holography

One of the central questions currently facing string theory is how to break super-
symmetry in a controllable way. The most obvious ways to break it typically lead to
instabilities signaled by the appearance of tachyons in the theory. One would like to find
vacua in which supersymmetry is broken, but stability is not lost. It seems difficult (or
impossible, at present) to obtain exactly stable non-supersymmetric vacua from string the-
ory. Therefore, the only candidates would appear to be metastable non-supersymmetric
vacua. This idea has already been realized in certain models (See [10] for a review and
the relevant literature). More recently, the fact that metastable vacua are also generic in
ordinary supersymmetric gauge theories [11] has added further motivation for taking this
method of breaking supersymmetry seriously within string theory. Potential realizations
of such metastable gauge theories have been considered in string theory [12,13,14] (see also
[15,16]).

The aim of this chapter is to study an alternative approach to breaking supersymmetry
via metastable configurations, as suggested in [17]. In this scenario, we wrap branes and
anti-branes on cycles of local Calabi-Yau manifolds, and metastability is a consequence of
the Calabi-Yau geometry. In a sense, this is a geometrically induced metastability. The
branes and the anti-branes are wrapped over two-cycles which are rigid and separated. In
order for the branes to annihilate, they have to move, which costs energy as the relevant
minimal two-spheres are rigid. This leads to a potential barrier due to the stretching of the
brane and results in a configuration which is metastable. It is particularly interesting to
study the same system at largeN , where we have a large number of branes and anti-branes.
In this case, it is better to use a dual description obtained via a geometric transition in
which the two-spheres shrink and are replaced by three-spheres with fluxes through them.
The dual theory has N = 2 supersymmetry, which the flux breaks spontaneously. If we
have only branes in the original description, then the supersymmetry is broken to an N = 1
subgroup. With only anti-branes present, we expect it to be broken to a different N = 1
subgroup, and with both branes and anti-branes, the supersymmetry should be completely
broken. The vacuum structure can be analyzed from a potential which can be computed
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exactly using topological string theory [18] or matrix models [19].
Unlike the cases studied before – involving only branes – with branes and anti-branes

present, we expect to find a metastable vacuum which breaks supersymmetry. We will find
that this is the case, and moreover this leads to a controllable way of breaking supersym-
metry at large N where to all orders in the ‘t Hooft coupling, but to leading order in the
1/N expansion, we can compute the geometry of the vacua and the low energy Lagrangian.

The organization of this chapter is as follows. In section 2 we review the case where
we have a single stack of branes and extend it to the case where we have a single stack
of anti-branes. In section 3 we discuss the case with more than one S2 in the geometry,
and then specialize to the case in which there are only two. We will explain how if we
have only branes or only anti-branes, supersymmetry is not broken, whereas if we have
branes wrapped on one S2 and anti-branes on the other, supersymmetry is spontaneously
broken. In section 4 we estimate the decay rate of the metastable vacuum. In section 5
we conclude with open questions and suggestions for future work.

1.1. Branes and Anti-Branes on the Conifold

Let us begin by recalling the physics of N D5 branes on the conifold singularity. We
consider type IIB string theory with the branes wrapping the S2 obtained by resolving the
conifold singularity. The local geometry of the Calabi-Yau threefold is a IP1 with normal
bundle given by the sum of two line bundles

O(−1) +O(−1)→ IP1

At low energies, the field theory on the space-filling D5 branes is a pure U(N) gauge
theory with N = 1 supersymmetry. That the theory has N = 1 supersymmetry follows
from the fact that string theory on the background of local Calabi-Yau manifolds preserves
N = 2, and the D-branes break half of it. In particular, there are no massless adjoint fields,
which follows from the important geometric fact that the IP1 which the D5 brane wraps is
isolated (its normal bundle is O(−1)+O(−1), which does not have a holomorphic section).
In other words, any deformation of the IP1 in the normal direction increases its volume,
and so corresponds to a massive adjoint field, at best. (see Fig. 1.1)

Fig. 1.1. The geometry near a resolved conifold. Moving away in the normal direction, the

volume of the wrapped two-cycle (represented here as an S1) must increase.
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The N = 1 pure Yang-Mills theory on the brane is expected to be strongly coupled in
the IR, leading to gaugino bilinear condensation, confinement, and a mass gap. There are
N massive vacua corresponding to the gaugino superfield getting an expectation value:

〈S〉 = Λ3
0 exp(−2πiα

N
) exp(

2πik

N
) k = 1, . . . , N (1.1.1)

In the future we will suppress the phase factor which distinguishes the N vacua. Above,
α is the bare gauge coupling constant defined at the cutoff scale Λ0

α(Λ0) = − θ

2π
− i 4π

gYM
2(Λ0)

,

and S = 1
32π2 TrWαW

α. Recalling that the gauge coupling in this theory runs as

2πiα(Λ0) = − log(
Λ

Λ0
)3N (1.1.2)

where Λ is the strong coupling scale of the theory, we can also write (1.1.1) as

〈S〉 = Λ3 (1.1.3)

The theory has an anomalous axial U(1)R symmetry which rotates the gauginos according
to λ→ λeiϕ, so

S → Se2iϕ.

The anomaly means that this is a symmetry of the theory only provided the theta angle
shifts

θ → θ + 2Nϕ. (1.1.4)

Since the theta angle shifts, the tree level superpotential Wtree = αS is not invariant
under the R-symmetry, and in the quantum theory additional terms must be generated to
correct for this. Adding the correction terms produces the effective Veneziano-Yankielowicz
superpotential [20],

W(S) = αS +
1

2πi
NS (log(S/Λ3

0)− 1) (1.1.5)

whose critical points are (1.1.1).
One can also understand the generation of this superpotential from the viewpoint of

the large N holographically dual theory [17]. This configuration of branes wrapping a
IP1 is dual to a closed string theory on the Calabi-Yau manifold obtained by a geometric
transition which replaces the wrapped IP1 with a finite sized S3.

In the dual theory, the 5-branes have disappeared, and in their place there are N units
of Ramond-Ramond flux ∮

A

H = N

through the three-cycle A corresponding to the S3. Here

H = HRR + τHNS
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where τ is the type IIB dilaton-axion, τ = C0+ i
gs

. There are also fluxes turned on through
the dual B cycle ∫

B

H = −α.

These fluxes generate a superpotential [21,22]:

W =

∫
H ∧ Ω

where Ω is the holomorphic (3, 0) form on the Calabi-Yau manifold. This can be written
in terms of the periods

S =

∮

A

Ω,
∂

∂S
F0 =

∫

B

Ω

as

W(S) = α S +N
∂

∂S
F0. (1.1.6)

Above, F0 is the prepotential of the N = 2 U(1) gauge theory which is the low-energy
effective theory of type IIB string theory on this geometry before turning on fluxes.

For our case, the B-period was computed in [17]

∂

∂S
F0 =

1

2πi
S (log(S/Λ3

0)− 1)

and so (1.1.6) exactly reproduces the effective superpotential (1.1.5) which we derived
from gauge theory arguments. Moreover, the superpotential is an F-term which should
not depend on the cutoff Λ0, so the flux has to run (this agrees with the interpretation of
Λ0 as an IR cutoff in the conifold geometry which regulates the non-compact B-cycle).

2πiα(Λ0) = − log(
Λ

Λ0
)3N

In the dual gauge theory, this corresponds to the running of the gauge coupling in the low
energy theory. This theory and the duality were studied from a different perspective in
[23] (see also [24]).

1.1.1. The anti-brane holography

Now consider replacing the D5 branes with anti-D5 branes wrapping the IP1. It is
natural that the physics in the presence of the two types of branes should be identical. In
particular, in the open string theory, we again expect gaugino condensation, a mass gap and
confinement. We conjecture that N antibranes wrapping the IP1 are also holographically
dual to the conifold deformation with flux through the S3. In fact, we have no choice but
to require this as it is the result of acting by CPT on both sides of the duality. On the open
string side, we replace the branes with anti-branes, and on the closed string dual we have
N units of flux through the S3, but N is now negative. In other words, the superpotential
is still given by (1.1.5), but with N < 0.
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At first sight, this implies that there is a critical point as given by (1.1.1), but now
with N negative. However, this cannot be right, since S, which is the size of the S3,

would grow without bound as we go to weak coupling S ∼ exp( 8π2

|N|gYM
2 ). This is clearly

unphysical, and moreover the description of the conifold breaks down when S is larger
than the cutoff Λ3

0 in the dual closed string geometry.
To see what is going on, recall that on the open string side the background has N = 2

supersymmetry, and adding D5 branes preserves an N = 1 subset of this, while adding
anti-branes preserves an orthogonalN = 1 subset. By holography, we should have the same
situation on the other side of the duality. Namely, before turning on flux, the background
has N = 2 supersymetry, and turning on flux should break this to N = 1. But now
holography implies that depending on whether we have branes or anti-branes in the dual
– so depending on the sign of N – we should have one or the other N = 1 subgroup of the
supersymmetry preserved.

It is clear that the superpotential (1.1.5) has been adapted to a superspace in which
the manifest N = 1 supersymmetry is the one preserved by branes, and hence is not well
adapted for the supersymmetry of the anti-branes. Nevertheless, the theory with nega-
tive flux should somehow find a way to capture the supersymmetry, as string holography
predicts! We will now show that this is indeed the case.

The vacua of the theory are clearly classified by the critical points of the physical
potential V of the theory:

∂SV = 0,

where
V = gSS |∂SW|2.

Above, gSS is the Kähler metric for S. In this case, the theory has softly broken N = 2
supersymmetry, and so g is given in terms of the prepotential as in the N = 2 case

gSS = Im(τ),

where

τ(S) = ∂2
SF0 =

1

2πi
log(S/Λ3

0)

With superpotential W as given in (1.1.6), the effective potential becomes

V =
2i

(τ − τ) |α+Nτ |2

It is easy to see that the critical points are at

∂SV = − 2i

(τ − τ)2 ∂
3
SF0 (α+Nτ) (α+Nτ) = 0.

This has two solutions. The first is at

α+Nτ = 0 (1.1.7)
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which solves ∂W = 0, and corresponds to (1.1.1). It is physical when N is positive. The
second critical point is at

α+Nτ = 0. (1.1.8)

Note that in this vacuum, ∂W 6= 0. In terms of S, it corresponds to

〈S〉 = Λ0
3 exp(

2πi

|N |α(Λ0)) (1.1.9)

and is the physical vacuum when N is negative (i.e. where we have |N | anti-branes).
So how can it be that even though ∂W 6= 0, supersymmetry is nevertheless preserved?

Toward understanding this, recall that before turning on flux, the closed string theory has
N = 2 supersymmetry with one N = 2 U(1) vector multiplet A. Adding D5 branes in
the original theory corresponds to turning on positive flux, which forces this to decompose
into two N = 1 supermultiplets: a chiral multiplet S containing S and its superpartner
ψ, and a vector multiplet Wα containing the U(1) gauge field (coming from the four-form
potential decomposed in terms of the harmonic three-form on S3 and a one-form in 4d)
and the gaugino λ:

A = (S,Wα)

where
S =S + θ ψ + . . .

Wα =λα +
i

2
(σµνθ)αFµν + . . . .

The Lagrangian in N = 1 superspace is given by

L = L0 + LW

where

L0 = Im

(∫
d2θd2θ Si

∂F0

∂Si
+

∫
d2θ

1

2

∂2F0

∂Si∂Sj
Wα
i Wjα

)

is the action for an N = 2 supersymmetric theory with prepotential F0, and the superpo-
tential term is

LW =

∫
d2θW(S) + c.c.

where the superpotential W(S) is given by (1.1.6) and is repeated here for the reader’s
convenience

W(S) = α S +N
∂

∂S
F0.

The puzzle is now what happens in the anti-D5 brane case. Since the Lagrangian with
flux apparently has only N = 1 supersymmetry preserved by the D5 branes for any value
of N , positive or negative, how is it possible that the anti-brane preserves a different
N = 1? One might guess that despite the flux, the Lagrangian L actually preserves the
full N = 2 supersymmetry. This is too much to hope for. In particular, turning on
flux should be holographically dual to adding in the branes, which does break half of the
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N = 2 supersymmetry of the background. Instead, it turns out that the flux breaks N = 2
supersymmetry in a rather exotic way. Namely, which N = 1 is preserved off-shell turns
out to be a choice of a “gauge”: we can write the theory in a way which makes either the
brane or the antibrane N = 1 supersymmetry manifest, no matter what N is. On shell
however we have no such freedom, and only one N = 1 supersymmetry can be preserved.
Which one this is depends only on whether the flux is positive or negative, and not on the
choice of the N = 1 supersymmetry made manifest by the lagrangian.

To see how all this comes about, let us try to make the spontaneously broken N = 2
supersymmetry manifest. The N = 2 vector multiplet A is really a chiral multiplet,
satisfying the N = 2 chiral constraint DiαA = 0,

A = S + θiΨi + θiθjXij +
1

2
(ǫijθ

iσµνθj)Fµν + . . . (1.1.10)

Here i, j = 1, 2 are the SU(2)R indices, and Ψi is a doublet of fermions:

Ψ =

(
ψ
λ

)
.

The auxiliary fields Xij of each N = 2 chiral superfield form an SU(2)R triplet, satisfying
a reality constraint

X
ij

= ǫilǫjkX
lk ≡ Xij . (1.1.11)

In particular, X11 = X
22

= X22, and so on.1

The action L can be written in terms of N = 2 superfields, where turning on fluxes
in the geometry corresponds to giving a vacuum expectation value to some of the N =
2 F-terms [17,25,26]. Our presentation here follows closely [26]. Namely, consider the
Lagrangian

Im

(∫
d2θ1d

2θ2 F0(A)

)
+XijE

ij +X ijEij. (1.1.12)

where Eij is the triplet of Fayet-Iliopolous terms, with same properties as X has. Since the
Xij transform by total derivatives, the FI termXijE

ij preserves theN = 2 supersymmetry.
This will match L precisely if we set

E11 = α = E
22
, E12 = 0

and moreover, we give Xij a non-zero imaginary part

Xij → Xij + iNij . (1.1.13)

1 More precisely, A is a reduced N = 2 chiral multiplet, meaning it satisfies an additional

constraint: DijDijA ∼ ∇2A, where Dij = DiαD
α
j , and ∇2 is the standard Laplacian. The

reducing constraint says that ∇2ǫilǫjkX
lk = ∇2X

ij
. This implies that we can shift X by a

constant imaginary part that does not satisfy (1.1.11).
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where
N11 = 0, N22 = 2N, N12 = 0. (1.1.14)

It is easy to see from (1.1.10) that to decompose A in terms of N = 1 multiplets, we can
simply expand it in powers of θ2

A(θ1, θ2) = S(θ1) + θα2 Wα(θ1) + θ2θ2 G(θ1) (1.1.15)

where the chiral multiplet G is given by (see, for example, [27])2

G(y, θ1) =

∫
d2θ1 S(y − iθ1σθ1, θ1) = X22 + . . . .

Then, plugging in the vacuum expectation values above in (1.1.12) and integrating over
θ2, we recover the N = 1 form of L. More precisely (this will get a nice interpretation
later) we recover it, with the addition of a constant term 8πN/g2

YM . Note that by shift-
ing X we have turned on a non-zero F term in the θ2 direction off-shell. This breaks
N = 2 supersymmetry, leaving the Lagrangian with only N = 1 supersymmetry along θ1

direction.
Consider now the vacua of the theory.3 Let us denote the full F -term as

X̂ij = Xij + iNij .

Then it is easy to see that X gets an expectation value,

〈X̂11〉 =
2i

τ − τ (α+Nτ) (1.1.16)

and

〈X̂22〉 =
2i

τ − τ (α+Nτ) (1.1.17)

Now, recall that the physical vacua depend on whether the flux is positive or negative. In
particular, in the brane vacuum, where N is positive, we have α+Nτ = 0, so

〈X̂11〉 = 0, 〈X̂22〉 6= 0.

2 Explicitly,

θ2θ2G(θ1) = X22θ2θ2 +
1

2
(ǫijθ

iσµνθ
j)(θ2σµνσρ∂ρψ) +

1

3!
(ǫijθ

iσµνθ
j)2∇2S.

See for example [28]
3 Explicitly, in this language, the F-term potential becomes

1

2i
τ X̂ij X̂

ij −
1

2i
τ X̂ij X̂

ij

+ X̂ij E
ij + X̂ij Eij .

where indices are always raised and lowered with ǫ tensor, e.g. X̂ij = ǫikǫjlX̂kl. Moreover, using

reality properties of X̂, it is easy to see that X̂
ij

= X̂ij − i(Nij +N ij), and the result follows.
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Now, since the supersymmetry variations of the fermions are

δΨi = i X̂ij ǫ
j + . . .

It follows immediately that in the brane vacuum

δψ = 0, δλ 6= 0

and λ is the goldstino. The unbroken supersymmetry pairs up S and ψ into a chiral field
S and λ and the gauge field into Wα, as in (1.1.15).

By contrast, in the anti-brane vacuum, α+Nτ = 0, so

〈X̂11〉 6= 0, 〈X̂22〉 = 0.

Correspondingly, now ψ is the goldstino:

δψ 6= 0, δλ = 0

Now the unbroken supersymmetry corresponds to pairing up S and λ into a chiral field S̃,
and ψ is the partner of the gauge field in W̃α. In other words, now, it is natural to write
A as

A = (S̃, W̃α)

or, more explicitly:

A(θ1, θ2) = S̃(θ2) + θα1 W̃α(θ2) + θ1θ1 G̃(θ2). (1.1.18)

It should now be clear how it comes about that even though the Lagrangian L has
only N = 1 supersymmetry, depending on whether the flux N is positive or negative, we
can have different N = 1 subgroups preserved on shell. The supersymmetry of the La-
grangian was broken since the flux shifted X as in (1.1.13). More precisely, supersymmetry
was broken only because this shift of X could not be absorbed in the field redefinition of
X , consistent with (1.1.11). Off shell, X is allowed to fluctuate, but because the shift is
by iNij , which is not of the form (1.1.11), its fluctuations could not be absorbed com-
pletely and supersymmetry really is broken. However the shift of X by Nij in (1.1.14) is
indistinguishable from shifting X by

N11 = −2N, N22 = 0, N12 = 0. (1.1.19)

since the difference between the two shifts can be absorbed into a redefinition of the fields.
This would preserve a different N = 1 subgroup of the N = 2 supersymmetry, the one that
is natural in the anti-brane theory. Correspondingly, in all cases, N = 2 supersymmetry is
broken to N = 1 already at the level of the Lagrangian. However, which N = 1 is realized
off-shell is a gauge choice.

Next we compute the masses of bosonic and fermionic excitations around the vacua.
The relevant terms in the N = 2 Lagrangian are:

∫
d4θ

1

2
∂3
SF0 (Ψiθ

i) (Ψjθ
j) (X̂klθ

kθl)
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In the present context, we can simplify this as

1

2
∂3
SF0(Ψ1Ψ1) X̂22 +

1

2
∂3
SF0(Ψ2Ψ2) X̂11

This gives fermion masses4

mψ =
2i

(τ − τ)2 (α+Nτ) ∂3
SF0

mλ =
2i

(τ − τ)2 (α+Nτ) ∂3
SF0.

For comparison, the mass of the glueball field S is5

mS =
2

|τ − τ |2
(
|α+Nτ |2 + |α+Nτ |2

) 1
2 |∂3

SF0|.

As a check, note that in the brane vacuum (1.1.7), λ is indeed massless as befits the partner
of the gauge field (since the original theory had N = 2 supersymmety, λ here is in fact a
goldstino!). Moreover, it is easy to see that the masses of ψ and S agree, as they should,

|mS | =
1

2π

N2

|S| |Im(α)| = |mψ|, mλ = 0.

Now consider the case of anti-branes where, in the holographic dual, we have negative
flux. This corresponds to the vacuum (1.1.8). The gauge field A is still massless and S
is massive. From (1.1.8), it follows that in this vacuum it is ψ which is massless, and λ
becomes massive. Moreover, the mass of λ is the same as for S.

|mS | =
1

2π

N2

|S| |Im(α)| = |mλ|, mψ = 0.

This is all beautifully consistent with holography!
To summarize, the anti-brane vacuum preserves different supersymmetry than the

brane vacuum, and the same is true in the large N dual. In other words the anti-
brane/negative flux has oriented the N = 1 supersymmetry differently, as is expected
based on the holographic duality.

Let us now try to see if we can understand the anti-brane gluino condensate (1.1.9)
directly from the gauge theory. Before adding in branes, the background has N = 2 super-
symmetry. The corresponding supercharges are two weyl fermions Q, Q̃ that transform as

4 This is the physical mass, with canonically normalized kinetic terms.
5 It is important to note here that the kinetic terms for S are fixed for us by the string large

N duality, and N = 2 supersymmetry. They differ from the “canonical” kinetic terms of [20]Ẇe

are writing here the physical masses, in the basis where all the fields have canonical kinetic terms.
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a doublet under the SU(2)R symmetry of the theory. In either vacuum with the branes,
only the U(1)R subgroup of the SU(2)R symmetry is preserved. If adding in D-branes pre-

serves Q, then anti-D branes will preserve Q̃. Since Q and Q̃ transform oppositely under
the U(1)R symmetry, in going from brane to anti-brane, the chirality of the world-volume
fermions flips.

The superpotential W̃ that is an honest F term with respect to the supersymmetry
preserved by the anti-brane theory, and which reproduces (1.1.9), is

W̃ = α S +
1

2πi
N S(log(S/Λ3

0)− 1),

where S is the anti-brane gaugino condensate, and N is negative. This reflects the fact
that, if we keep the background fixed, then θ transforms under the R symmetry still as
(1.1.4), but the gauginos transform oppositely from before. The rest is fixed by holography

– in other words, α is the good chiral field which has θ as a component. Since it is W̃ that
is the F-term in this case, it is this, and not W, that should be independent of scale for
the anti-brane, and hence α should run as

2πiα(Λ0) = − log(
Λ

Λ0
)−3N

Note that this is consistent with turning on the other F-term vev (1.1.19), which directly
preserves the anti-brane supersymmetry.

Finally, consider the value of the potential in the minimum. At the brane vacuum,
supersymmetry is unbroken, and

V brane = 0

At the anti-brane vacuum, with negative N , we have:

V anti−brane = −16π
N

g2
YM

= 16π
|N |
g2
YM

This treats branes and anti-branes asymmetrically. It is natural then to shift the zero of
the potential and have

V∗ = V + 8π
N

g2
YM

which leads to the minimum value

V anti−brane
∗ = 8π

|N |
g2
YM

= V brane
∗

This is equivalent to the inclusion of the constant term which came from the magnetic FI
term in the N = 2 theory. Note that this corresponds to the tension of |N | (anti-)branes
which is predicted by holography! We thus find a beautiful confirmation for the stringy
anti-brane holography.
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1.2. Geometric Metastability with Branes and Anti-Branes

There are many ways to naively break supersymmetry in string theory, but they
typically lead to instabilities. The simplest example of such a situation is found in type
IIB string compactifications on a Calabi-Yau, where one introduces an equal number of
D3 branes and anti-branes filling the spacetime, but located at points in the Calabi-Yau.
Supersymmetry is clearly broken, since branes and anti-branes preserve orthogonal subsets
of supersymmetry. This does not typically lead to metastability, however, as one can move
branes to where the anti-branes are located, and such a motion would be induced by an
attractive force. This is then similar to a familiar problem in classical electrostatics, and is
plagued by the same difficulty as one has in finding locally stable equilibrium configurations
of static electric charges.

One way to avoid such an obstacle, as was suggested in [17], is instead of considering
branes and anti-branes occupying points in the Calabi-Yau, to consider wrapping them
over minimal cycles inside the Calabi-Yau. Moreover, we choose the minimal cycles to be
isolated. In other words we assume there is no continuous deformations of the minimal
cycles. We wrap branes over a subset C1 of such cycles and we wrap the anti-branes over
a distinct subset C2. In the case of compact Calabi-Yau, it is necessary that the class
[C1] + [C2] = 0, so that there is no net charge (this condition can be modified if we have
orientifold planes). Because the branes and anti-branes cannot move without an increase
in energy, these will be a metastable equilibrium configurations (see Fig. 1.2). This is true
as long as the cycles C1 and C2 are separated by more than a string scale distance, so
that the geometric reasoning remains valid (when they are closer there are tachyon modes
which cause an instability).

Fig. 1.2. Before antibranes and branes can annihilate one other, they will have to move and meet

somewhere, and thus they will have to increase their volume due to the Calabi-Yau geometry.

Here we will consider non-compact examples of this scenario. This decouples the
lower dimensional gravity from the discussion, and moreover, the condition that the net
class [C1] + [C2] be zero is unnecessary as the flux can go to infinity. In particular, we
will consider type IIB strings on a non-compact Calabi-Yau threefold where we can wrap
4d space-time filling D5 and anti-D5 branes over different isolated S2’s in the Calabi-
Yau. The local geometry of each S2 will be the resolved conifold reviewed in the previous

– 12 –



section. The only additional point here is that we have more than one such S2 in the
same homology class. Moreover, we will consider the large N limit of such brane/anti-
brane systems and find that the holographically dual closed string geometry is the same
one as in the supersymmetric case with just branes, except that some of the fluxes will
be negative. This leads, on the dual closed string side, to a metastable vacuum with
spontaneously broken supersymmetry.

We will first describe general geometries of this kind which support metastable con-
figurations with both D5 and anti-D5 branes. The relevant Calabi-Yau geometries turn
out to be the same ones studied in [18], which led to a non-perturbative formulation of the
dual geometry in terms of matrix models [19]. The new twist is that we now allow not just
branes, but both branes and anti-branes to be present. We will describe the holographi-
cally dual flux vacua. We then specialize to the case of just two S2’s with branes wrapped
over one S2 and anti-branes wrapped over the other, and study it in more detail.

1.2.1. Local multi-critical geometries

Consider a Calabi-Yau manifold given by

uv = y2 +W ′(x)2 (1.2.1)

where

W ′(x) = g

n∏

k=1

(x− ak).

If, for a moment, we set g = 0, then this is an A1 ALE singularity at every point in the x
plane. One can resolve this by blowing up, and this gives a family of IP1, i.e. holomorphic
two-spheres, parameterized by x. Let us denote the size of the blown up IP1 by r. In
string theory, this is complexified by the BNS-field6. Turning g back on lifts most of the
singularities, leaving just n isolated IP1’s at x = ak. Of course, the S2 still exists over each
point x, but it is not represented by a holomorphic IP1. In other words, its area is not
minimal in its homology class. We have

A(x) = (|r|2 + |W ′|2)1/2. (1.2.2)

where A(x) denotes the area of the minimal S2 as a function of x. This can be seen by the
fact that the equation for each x is an ALE space and the above denotes the area of the
smallest S2 in the ALE geometry for a fixed x. Even though the minimal IP1’s are now
isolated, i.e. at points where W ′ = 0, they are all in the same homology class, the one
inherited from the ALE space7. Note also that the first term, |r|2, does not depend on x.

6 On the world volume of the D5 brane BNS gets mixed up with the RR potential, so more

precisely by r/gs we will mean the complex combination of the kahler modulus with BRR +τBNS .

To not have the dilaton turned on, we will in fact keep only the later, setting the geometric size

to zero [23].
7 As explained in [21], the parameters g and ai which enter (1.2.1) and W are not dynamical

fields, but enter in specifying the theory. This is possible because the Calabi-Yau is non compact.

– 13 –



One can now consider wrapping some number of branes Nk, k = 1, . . . n on each IP1.
The case when all Nk’s are positive and all the branes are D5 branes was studied in [18].
In that case, the gauge theory on the branes is an N = 1 supersymmetric U(N) gauge
theory with an adjoint matter field Φ and superpotential given by

TrW (Φ) (1.2.3)

whereW is the same polynomial whose derivative is given byW ′(x) in the defining equation
of Calabi-Yau [18,29,30,31]. The eigenvalues of Φ are identified with positions of the D5
brane on the x-plane. Here

N =
∑

k

Nk

and the choice of distribution of D5 branes among the critical points ak corresponds to
the choice of a Higgs branch of this supersymmetric gauge theory where, the gauge group
is broken

U(N)→
n∏

k=1

U(Nk)

In the low energy limit we have N = 1 Yang-Mills theories U(Nk) with Φ field correspond-
ing to a massive adjoint matter for each. Note that (1.2.3) is consistent with (1.2.2) in the
large r limit, because wrapping a brane over IP1 and considering its energy as a function of
x, it is minimized along with the area at points where W ′(x) = 0. Furthermore, it is clear
from this that the effective coupling constant gYM of the four dimensional gauge theory
living on the brane is the area of the minimal IP1’s times 1/gs:

1

g2
YM

=
|r|
gs

!

A!!"

Fig. 1.3. The brane theory with a tree level physical potential gsV (x) = |r| + 1
2r
|dW |2 ≈ A(x)

is depicted along a real line in the x-plane for the case where W has two critical points. The

potential reflects the Calabi-Yau geometry, and the leading term represents the brane tension.

Below, we will study what happens when some of the IP1’s are wrapped with D5
branes and others with anti-D5 branes. By making the vacua ai very widely separated,
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the branes and the anti-branes should interact very weakly. Therefore, we still expect to
have an approximate N = 1 supersymmetric gauge theory for each brane, with gaugino
condensation and confinement at low energies, just as discussed in the previous section.
However, because supersymmetry is broken and there are lower energy vacua available
where some of the branes annihilate, the system should be only metastable. Note that
the fact that the IP1’s are isolated but in the same class is what guarantees metastability.
For the branes to annihilate the anti-branes, they have to climb the potential depicted in
Fig. 1.3. This should be accurate description of the potential when the branes are far
away from each other, where the effect of supersymmetry breaking is small. When the
branes and anti-branes are very close together – for example when they are within a string
distance – there would be tachyon in the theory and the above potential will not be an
accurate description. Nevertheless it is clear that the minimum of a brane and anti-brane
system is realized when they annihilate each other. We have thus geometrically engineered
a metastable brane configuration which breaks supersymmetry. We will discuss aspects of
the open string gauge dynamics of this configuration in section 3.6. As we will discuss in
that section, unlike the supersymmetric case, there seems to be no simple field theory with
a finite number of degrees of freedom which captures the brane/anti-brane geometry. Of
course, one can always discuss it in the context of open string field theory.

We have a control parameter for this metastability, which also controls the amount of
supersymmetry breaking, which is related to the separation of the critical points ai. The
farther apart they are, the more stable our system is. We will discuss stability and decay
rate issues in section 4. In the next subsection, we study the large N holographic dual for
this system.

1.2.2. The large N dual description

The supersymmetric configuration of branes for this geometry was studied in [18],
where a large N holographic dual was proposed. The relevant Calabi-Yau geometry was
obtained by a geometric transition of (1.2.1) whereby the IP1’s are blown down and the
n resulting conifold singlularities at x = ak are resolved into S3’s by deformations of the
complex structure. It is given by

uv = y2 +W ′(x)2 + fn−1(x), (1.2.4)

where fn−1(x) is a degree n − 1 polynomial in x. As explained in [18], the geometry is
effectively described by a Riemann surface which is a double cover of the x plane, where
the two sheets come together along n cuts near x = ak (where the IP1’s used to be). The
A and B cycles of the Calabi-Yau project to one-cycles on the Riemann surface, as in Fig.
1.4. The geometry is characterized by the periods of the (3, 0) form Ω,

Sk =

∮

Ak

Ω, ∂Sk
F0 =

∫

Bk

Ω.
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Fig. 1.4. The multi-critical Calabi-Yau geometry projected to the x-plane. The cut structure

reflects the branching of y over the x plane for u = v = 0.

The complex scalars Sk are the scalar partners of the n U(1) vector multiplets under
the N = 2 supersymmetry, and F0(S) is the corresponding prepotential. As before, while
(1.2.4) depends also on ai and g, the latter are just fixed parameters.

If, before the transition, all of the IP1’s were wrapped with a large number of branes,
the holographically dual type IIB string theory is given by the (1.2.4) geometry, where the
branes from before the transition are replaced by fluxes

∮

Ak

H = Nk,

∫

Bk

H = −α.

We want to conjecture that this duality holds whether or not all the Nk ≥ 0. In fact, the
discussion of the previous section shows that if all the Nk ≤ 0 the duality should continue
to hold by CPT conjugation. Our conjecture is that it also holds as when some Nk are
positive and some negative. The flux numbers Nk will be positive or negative depending on
whether we had D5 branes or anti-D5 branes wrapping the k’th IP1 before the transition.
The flux through the Bk cycles will correspond to the bare gauge coupling constant on the
D-branes wrapping the corresponding IP1, and is the same for all k as the P1’s are all in
the same homology class. Turning on fluxes generates a superpotential [21]

W =

∫
H ∧ Ω,

W(S) =
∑

k

αSk +Nk∂Sk
F0. (1.2.5)

In [18], in the case when allNk’s are positive, theN = 1 chiral superfield corresponding
to Sk is identified with the gaugino condensates of the SU(Nk) subgroup of the U(Nk)
gauge group factor, Sk = 1

32π2 TrSU(Nk)WαW
α, before the transition. When we have

both branes and anti-branes, as long as they are very far separated, this picture should
persist. Namely, the brane theory should still have gaugino condensation and confinement,
and Sk’s should still correspond to the gaugino condensates, even though we expect the
supersymmetry to be completely broken in this metastable vacuum. Moreover, for each k,
there is a remaining massless U(1) gauge field in the dual geometry. It gets identified with
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the massless U(1) on the gauge theory side which is left over by the gaugino condensation
that confines the SU(Nk) subgroup of the U(Nk) gauge theory.

In the supersymmetric case studied in [18], the coefficients of the polynomial f(x)
determining the dual geometry and the sizes of Si is fixed by the requirement that

∂Sk
W (S) = 0

and this gives a supersymmetric holographic dual. In the case of interest for us, with
mixed fluxes, we do not expect to preserve supersymmetry. Instead we should consider
the physical potential V (S) and find the dual geometry by extremizing

∂Sk
V (S) = 0

which we expect to lead to a metastable vacuum. The effective potential V is given in
terms of the special geometry data and the flux quanta:

V = gSiSj ∂Si
W ∂Sj

W

where the Kähler metric is given by gij = Im(τij) in terms of the period matrix of the
Calabi-Yau

τij = ∂Si
∂Sj
F0.

In terms of τ , we can write

V =

(
2i

τ − τ

)jk
(αj + τjj′N

j′)(αk + τkk′N
k′) (1.2.6)

where we have all the αj = α. To be explicit, we consider in detail the case where we have
only two S3’s in the dual geometry before turning to the more general case.

1.2.3. More precise statement of the conjecture

Let us make our conjecture precise. We conjecture that the largeN limit of brane/anti-
brane systems are Calabi-Yaus with fluxes. In particular, the solutions to tree level string
equations on the closed string side lead to an all order summation of planar diagrams
of the dual brane/anti-brane system (i.e. to all orders in the ‘t Hooft coupling). We
translate this statement to mean that the geometry of the closed string vacuum at tree
level is captured by extremizing the physical potential. Moreover the physical potential is
characterized by the fluxes (which fix the superpotential) as well as by the Kähler potential;
the main ingredient for both of these objects is the special geometry of the Calabi-Yau
after transition. This, in turn, is completely fixed by tree level topological string theory, or
equivalently by the planar limit of a certain large N matrix model [19]. Here we are using
the fact that since N = 2 is softly broken by the flux terms, the special Kähler metric is
unaffected at the string tree level. It is quite gratifying to see that topological objects,
such as matrix integrals, play a role in determining the geometry of non-supersymmetric
string vacua!
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Of course the Kähler potential should be modified at higher string loops since. In
particular the 1/N corrections to our duality should involve such corrections. Note that,
in the supersymmetric case studied in [18], there were no 1/N corrections to modify the ge-
ometry of the vacua. We do expect the situation to be different in the non-supersymmetric
case. Note however, from the discussion of section 2, the soft breaking is such that it is
ambiguous which N = 1 supersymmetry the Lagrangian has. This should constrain what
kind of quantum corrections one can have beyond those allowed by a generic soft breaking.
This deserves further study.

1.2.4. The case of two S3’s

For simplicity we start with the case where we have just two S3’s. Before the transi-
tion, there are two shrinking IP1’s at x = a1,2. Let us denote by ∆ the distance between
them,

∆ = a1 − a2.

The theory has different vacua depending on the number of branes we put on each IP1.
The vacua with different brane/antibrane distributions are separated by energy barriers.
To overcome these, the branes must first become more massive.

The effective superpotential of the dual geometry, coming from the electric and mag-
netic FI terms turned on by the fluxes, is

W(S) = α(S1 + S2) +N1∂S1
F0 +N2∂S2

F0

The B-periods have been computed explicitly in [18]. We have

2πi∂S1
F0 = W (Λ0)−W (a1) + S1(log(

S1

g∆3
)− 1)−2(S1 + S2) log(

Λ0

∆
)

+(2S2
1 − 10S1S2 + 5S2

2)/(g∆3) + . . .

(1.2.7)
and

2πi∂S2
F0 = W (Λ0)−W (a2) + S2(log(

S2

g∆3
)− 1)−2(S1 + S2) log(

Λ0

∆
)

−(5S2
1 − 10S1S2 + 2S2

2)/(g∆3) + . . .

(1.2.8)
where the omitted terms are of order Sn2

1 Sn2

2 /(g∆3)n1+n2−1, for n1+n2 > 2. In the above,
Λ0 is the cutoff used in computing the periods of the non-compact B cycles, and physically
corresponds to a high energy cutoff in the theory.

To the leading order (we will justify this aposteriori), we can drop the quadatic terms
in the Sk

g∆3 ’s, and higher. To this order,

2πiτ11 =2πi ∂2
S1
F0 ≈ log(

S1

g∆3
)− log(

Λ0

∆
)2

2πiτ12 =2πi ∂S1
∂S2
F0 ≈ − log(

Λ0

∆
)2

2πiτ22 =2πi ∂2
S2
F0 ≈ log(

S2

g∆3
)− log(

Λ0

∆
)2
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In particular, note that at the leading order τ12 is independent of the Si, so we can use τii
as variables. It follows easily that the minima of the potential are at

Re(α) +Re(τ)ijN
j = 0

and
Im(α) + Im(τ)ij|N j | = 0

For example, with branes on the first IP1 and anti-branes on the second, N1 > 0 > N2,

〈S1〉 = g∆3 (
Λ0

∆
)2(

Λ0

∆
)2|

N2
N1

| e−2πiα/|N1|, 〈S2〉 = g∆3(
Λ0

∆
)2(

Λ0

∆
)2|

N1
N2

|e2πiα/|N2|.

(1.2.9)
To see how to interpret this, let us recall the supersymmetric situation when N1, N2 > 0.
There, to the same order, one finds

〈S1〉 = g∆3 (
Λ0

∆
)
2(1+|

N2
N1

|)
e−2πiα/|N1|, 〈S2〉 = g∆3(

Λ0

∆
)
2(1+|

N1
N2

|)
e−2πiα/|N2|. (1.2.10)

The interpretation of the above structure in the supersymmetric case is as follows. In the
IR, the theory flows to a product of two supersymmetric gauge theories with gauge group
U(N1)× U(N2), where each U(Ni) factor is characterized by a scale Λi,

〈S1〉 = Λ3
1, 〈S2〉 = Λ3

2. (1.2.11)

Let us denote by α1,2 the the bare coupling constants of the low energy theory U(N1) and
U(N2) theories, i.e.

2πiαi = − log(
Λi
Λ0

)3|Ni|, i = 1, 2 (1.2.12)

On the one hand, we can simply read them off from (1.2.10) since we can write (1.2.11) as
〈Si〉 = Λ3

0e
−2πiαi/|Ni|:

2πiα1 = 2πiα+ log(
Λ0

mΦ
)|N1| − 2 log(

Λ0

mW
)|N2|

2πiα2 = 2πiα+ log(
Λ0

mΦ
)|N2| − 2 log(

Λ0

mW
)|N1|.

(1.2.13)

We could also have obtained this by using the matching relations with the high energy
coupling α. Namely, in flowing from high energies we have to take into account the massive
fields we are integrating out. The fields being integrated out in this case are the massive
adjoint Φ near each vacuum, whose mass goes as mΦ = g∆, and the massive W bosons in
the bifundamental representation, whose masses are mW = ∆. The standard contribution
of these heavy fields to the running coupling constant is simply what is written in (1.2.13).

In the non-supersymmetric case, from (1.2.11) and (1.2.12), we can write the gaugino
vevs in (1.2.9) very suggestively exactly as in (1.2.13) except that we replace

Λ
|N1|+|N2|
0 → Λ

|N1|
0 Λ0

|N2|
,Λ

|N2|
0 Λ0

|N1|
,
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and
mW → mW

leading to

2πiα1 = 2πiα+ log(
Λ0

mΦ
)|N1| − 2 log(

Λ0

mW
)|N2|

2πiα2 = 2πiα+ log(
Λ0

mΦ
)|N2| − 2 log(

Λ0

mW
)|N1|

(1.2.14)

which gives back (1.2.9). In other words, the leading result is as in the supersymmetric
case, except that branes of the opposite type lead to complex conjugate running. In
particular, this implies that the real part of the coupling runs as before, but the θ-angle is
running differently due to the matter field coming between open strings stretched between
the branes and anti-branes. We will discuss potential explanations of this in section 3.6,
where we discuss the matter structure in the brane/anti-brane system.

The potential at the critical point is given by8

V +−
∗ =

8π

g2
YM

(|N1|+ |N2|)−
2

π
|N1||N2| log | Λ0

mW
|2 (1.2.15)

The first term, in the holographic dual, corresponds to the tensions of the branes. The
second term should correspond to the Coleman-Weinberg one loop potential which is gen-
erated by zero point energies of the fields. This interpretation coincides nicely with the
fact that this term is proportional to |N1||N2|, and thus comes entirely from the 1 − 2
sector of open strings with one end on the branes and the other on the anti-branes. The
fields in the 1− 1 and 2− 2 sectors with both open string endpoints on the same type of
brane do not contribute to this, as those sectors are supersymmetric and the boson and
fermion contributions cancel. We shall return to this in section 3.6. For comparison, in
the case of where both IP1’s were wrapped by D5 branes, the potential at the critical point
V ++
∗ equals

V ++
∗ =

8π

g2
YM

(|N1|+ |N2|) = V −−
∗

and is the same as for all anti-branes. This comes as no surprise, since the tensions are
the same, and the interaction terms cancel since the theory is now truly supersymmetric.

We now consider the masses of bosons and fermions in the brane/anti-brane back-
ground. With supersymmetry broken, there is no reason to expect the 4 real bosons of
the theory, coming from the fluctuations of S1,2 around the vacuum, to be pairwise de-
generate. To compute them, we simply expand the potential V to quadratic order. More

8 We have shifted the overall zero point energy of V as we did in the previous section, to make

the brane and the anti-brane tensions equal. More precisely, we set

V → V +
8π

g2
Y M

(N1 +N2).

– 20 –



precisely, to compute the physical masses as opposed to the naive hessian of the potential,
we have to go to the basis where kinetic terms of the fields are canonical. The computa-
tion is straightforward, if somewhat messy. At the end of the day, we get the following
expressions.

(m±(c))
2

=
(a2 + b2 + 2abcv)±

√
(a2 + b2 + 2abcv)2 − 4a2b2(1− v)2
2(1− v)2

where c takes values c = ±1, and

a ≡
∣∣∣∣

N1

2πΛ3
1Imτ11

∣∣∣∣ , b ≡
∣∣∣∣

N2

2πΛ3
2Imτ22

∣∣∣∣

v ≡ (Imτ12)
2

Imτ11Imτ22
.

Indeed we find that our vacuum is metastable, because all the m2 > 0 (which follows from
the above formula and the fact that v < 1 in the regime of interest |Si/g∆3| < 1). This
is a nice check on our holography conjecture, as the brane/anti-brane construction was
clearly metastable. Moreover, we see that there are four real bosons, whose masses are
generically non-degenerate, as expected for the spectrum with broken supersymmetry.

Since supersymmetry is completely broken from N = 2 to N = 0, we expect to find 2
massless Weyl fermions, which are the Goldstinos. More precisely, we expect this only at
the closed string tree level (i.e at the leading order in 1/N expansion). Namely, at string
tree level, we can think about turning on the fluxes as simply giving them an “expectation
value”, which would break the N = 2 supersymmetry spontaneously. However, at higher
orders, the Kähler potential should a priori not be protected in that breaking is soft, and
not spontaneous. This will affect the computation of the mass terms in section 2, which
relied on the N = 2 relation betweeen the Kähler potential and the superpotential, and
should result in only one massless fermion remaining. Masses of the fermions are computed
from the N = 2 Lagrangian, as in section two, but now with two vector multiplets. We
again redefine the fields so as to give them canonical kinetic terms. We indeed find two
massless fermions, at the order at which we are working at. Since supersymmetry is broken
these are interpreted as the Goldstinos (we will give a more general argument in the next
subsection). There are also two massive fermions, with masses

mf1 =
a

1− v , mf2 =
b

1− v ,

Note that v controls the strength of supersymmetry breaking. In particular when v → 0
the 4 boson masses become pairwise degenerate and agree with the two fermion masses a
and b, as expected for a pair of N = 1 chiral multiplets.

The mass splitting between bosons and fermions is a measure of the supersymmetry
breaking. In order for supersymmetry breaking to be weak, these splittings have to be
small. There are two natural ways to make supersymmetry breaking be small. One way
is to take the number of anti-branes to be much smaller than the number of branes. The
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other way is to make the branes and anti-branes be very far from each other. We will
consider mass splittings in both of these cases.

Adding a small anti-brane charge should be a small perturbation to a system of a
large number of branes. In that context, the parameter that measures supersymmetry
breaking should be |N2/N1|, where |N2| is the number of anti-branes. Let us see how this
is reflected in v. We should see that in this limit, v becomes small.

Note that (1.2.9) implies that

∣∣∣∣
S1

g∆3

∣∣∣∣
|N1|

=

∣∣∣∣
S2

g∆3

∣∣∣∣
|N2|

=

∣∣∣∣
Λ

∆

∣∣∣∣
2(|N1|+|N2|)

= exp

(
−(1− δ) 8π2

g2
YM

)

with

δ ≡
(gYM

2π

)2

(|N1|+ |N2|) log

∣∣∣∣
Λ0

∆

∣∣∣∣ .

Note that ∣∣∣∣
δ

1− δ

∣∣∣∣ =
∣∣∣∣
log Λ0/∆

log ∆/Λ

∣∣∣∣ (1.2.16)

For finite non-vanishing Si/g∆
3, clearly δ is very close to 1 because of the fact that

g2
YM is very small for large cutoff Λ0. Of course, this is compatible with the definition of
δ as we recall the running of g2

YM . Therefore, let us write

δ = 1− ǫ

We then have (without any approximation)

v =
(Imτ12)

2

Imτ11Imτ22
=

(1− ǫ)2

(1 + ǫ2) + ǫ(
∣∣∣N2

N1

∣∣∣+
∣∣∣N1

N2

∣∣∣)
(1.2.17)

And in the limit of |N1|
|N2|
→ ∞ (or similarly when |N2|

|N1|
→ ∞) we find that v → 0. This is

as expected, since in this limit our expectation is that supersymmetry breaking effects will
be small.

In Fig. 1.5, we plot the masses for non-supersymmetric vacua, with fixed |N1N2| but

varying log
∣∣∣N2

N1

∣∣∣. They demonstrate how mass splitting vanishes in the extreme limits of

the ratio N1/N2, where supersymmetry is restored.
It is also natural to consider the mass splittings in the limit of large separation of

branes, where supersymmetry is expected to be restored. We have to be somewhat careful
in taking this limit. It turns out that the right limit is when

|Λ| << |∆| << |Λ0|

and where
|∆/Λ| >> |Λ0/∆|

which implies from (1.2.16) that δ → 0 and from (1.2.17) we have v → 0 and thus the
mass splittings disappear as expected.
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Fig. 1.5. Here we depict the masses of the four bosons as solid lines and the two non-vanishing

fermionic masses as dashed lines. The other two fermions, not shown here, are massless Goldstinos.

Note that supersymmetry breaking is most pronounced when |N1| = |N2|. This plot is for fixed

|N1N2|, as we vary |N1/N2|.

It is also interesting to write the energy of the vacuum (1.2.15) as a function of v.
In particular let ∆E represent the shift in energy from when the branes are infinitely far
away from one another. Then we find from (1.2.15) that

∆E

E
= − δ

(
√

|N1|
|N2|

+
√

|N2|
|N1|

)2

Note that the energy shift goes to zero as |N2/N1| → 0,∞ as expected. It also goes to zero
in the large brane/anti-brane separation, because then δ → 0. The sign of the shift is also
correct, as one would expect that the attraction between the branes and the anti-branes
should would decrease the energy of the system. Note also that for fixed |N1N2|, ∆E/E, as
well as the mass splittings, is maximal when N1 = −N2, i.e. when we have equal number
of branes and anti-branes, whereas if one of them is much larger than the other, mass
splittings as well as ∆E/E → 0. This is again consistent with the fact that in the limit
with an extreme population imbalance of branes, the supersymmetry breaking goes away.

1.2.5. n S3’s

Let us now generalize our analysis to the case with an arbitrary number of blown up
S3’s. In this case, before the geometric transition there are n shrinking IP1’s located at
x = ai, i = 1, 2, . . . , k. We will denote the distance between them as

∆ij = ai − aj
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As in the simpler case, for a specified total number of branes, we can classify the vacua
of the theory by the distribution of the branes among the IP1’s, and these vacua will be
separated by potential barriers corresponding to the increase in the size of the wrapped
IP1 between critical points.

The effective superpotential of the dual geometry after the geometric transition, in
which the branes have been replaced by fluxes, is given by (1.2.4). The B-periods will now
take the form

2πi∂Si
F0 = Si log

Si
W ′′(ai)Λ2

0

+
∑

j 6=i

Sj log

(
∆2
ij

Λ2
0

)
+ . . .

where again, Λ0 is interpreted as a UV cutoff for the theory, and we are omitting terms
analogous to the polynomial terms in the example of the last section.

To leading order, the generalization of the 2 S3 case to the current situation is straight-
forward. We have

2πiτii =2πi ∂2
Si
F0 ≈ log

(
S1

W ′′(ai)Λ2
0

)

2πiτij =2πi ∂Si
∂Sj
F0 ≈ − log

(
Λ2

0

∆2
ij

)

The potential (3.7) has its critical points where

∂Si
V =

i

2
FijlgSjS

′
jgSkS

′
k(αj + τ jj′N

j′)(αk + τkk′N
k′) = 0 (1.2.18)

The solutions which correspond to minima are then determined by

Re(α) +Re(τ)ijN
j = 0

and
Im(α) + Im(τ)ij|N j | = 0

Indeed, in the case where all N i are either positive (negative), these are just the (non-
)standard F-flatness conditions of the N = 1 supersymmetric theory, so they will be
satisfied exactly. In the non-supersymmetric cases, the conditions will receive perturbative
corrections coming from the corrections to the Kähler potential at higher string loops.

The expectation values of the bosons Si take a natural form in these vacua, being
given by

〈Si〉 =W ′′(ai)Λ
2
0

Nj>0∏

j 6=i

(
Λ0

∆ij

)2
|Nj |

|Ni|
Nk<0∏

k 6=i

(
Λ0

∆ik

)2
|Nk|

|Ni|

exp

(
−2πiα

|Ni|

)
, Ni > 0

〈Si〉 =W ′′(ai)Λ
2
0

Nj>0∏

j 6=i

(
Λ0

∆ij

)2
|Nj |

|Ni|
Nk<0∏

k 6=i

(
Λ0

∆ik

)2
|Nk|

|Ni|

exp

(
2πiα

|Ni|

)
, Ni < 0
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The explanation of these expectation values is the natural generalization of the case from
the previous section. We characterize each gauge theory in the IR by a scale Λi, where
Si = Λ3

i . The massive adjoints near the i’th critical point now have mΦi
= W ′′(ai),

whereas the massive W bosons have mass mWij
= ∆ij . Then matching scales, we find

〈Sbrane
i 〉|Ni| = Λ

3|Ni|
i =e−2πiαΛ2Nbrane

0 Λ
2Nantibrane

0 m
|Ni|
Φi

same∏

j 6=i

mWij

−2Nj

opposite∏

j 6=i

mWij

−2Nj

〈Santibrane
i 〉|Ni| = Λ

3|Ni|
i =e2πiαΛ

2Nbrane

0 Λ2Nantibrane

0 m
|Ni|
Φi

same∏

j 6=i

mWij

−2Ni

opposite∏

j 6=i

mWij

−2Nj

Above, Nbrane and Nanti−brane are the total number of branes and anti-branes, respectively,
and the products are over the sets of branes of the same and opposite types as the brane
in question. In the supersymmetric case, this reduces to the expected relation between the
scales. The non-supersymmetric case is, to leading order, identical except that the branes
of opposite type contribute complex conjugate running, which is explained in section 3.6.

Similarly to the 2 S3 case, the gauge coupling constant in each U(Nk) factor will run
as

2πiαi = 2πiα+ log(
Λ0

mΦi

)|Ni| − 2

same∑

j 6=i

log(
Λ0

mWij

)|Nj | − 2

opposite∑

j 6=i

log(
Λ0

mWij

)|N2|,

for a brane, (Ni > 0). For antibrane, (Ni < 0) and the running is

2πiαi = 2πiα+ log(
Λ0

mΦi

)|Ni| − 2

same∑

j 6=i

log(
Λ0

mWij

)|Nj | − 2

opposite∑

j 6=i

log(
Λ0

mWij

)|N2|.

This again has a simple form corresponding to integrating out massive adjoints and W
bosons. Moreover, the fields corresponding to strings with both endpoints on branes, or
on the anti-branes, contribute to running of the gauge coupling as in the supersymmetric
case. The fields coming from strings with one end on the brane and the other on the
anti-brane, again give remarkably simple contributions, almost as in the supersymmetric
case: the only apparent difference being in how they couple to the θ angle. We will come
back to this later.

One could in principle compute the masses of the bosons and fermions in a generic
one of these vacua. We will not repeat this here. Instead, let us just try to understand
the massless fermions, or the structure of supersymmetry breaking in this theory. The
results of section 2 are easy to generalize, to find the fermion mass matrices9

9 Note that the mass matrices are now being expressed not in the basis in which the kinetic

terms take the canonical form, but in the basis in which the Lagrangian was originally expressed.

This will not affect our analysis.
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mψiψj = − i
2
gSlSkFijl(αk + τkk′N

k′)

mλiλj = − i
2
gSlSkFijl(αk + τkk′N

k′).

In the above, the repeated indices are summed over, and we have denoted

Fijk =
∂3F0

∂Si∂Sj∂Sk
.

At the order to which we are working (corresponding to one loop on the field theory side),
Fijk is diagonal. The masses then imply that in vacua where the standard F-term

∂Si
W = αi + τijN

j

fails to vanish, a zero eigenvalue is generated for the ψ mass matrix, while when the
non-standard F-term

∂Si
W̃ = αi + τijN

j

fails to vanish, a zero eigenvalue is generated for the λ mass matrix.
More generally, note that the exact conditions (at leading order in 1/N) for critical

points of the potential (1.2.18) can be re-written in terms of the fermion mass matrices as

mψiψjgSjSk(αk + τkk′N
k′) = 0 (1.2.19)

mλiλjgSjSk(αk + τkk′N
k′) = 0. (1.2.20)

In the case when supersymmetry is unbroken, and all the P1’s are wrapped by branes,
we will find both of these equations to be truly exact, and satisfied trivially: the λ mass
matrix vanish identically, so (1.2.20) is trivial, and (1.2.19) is satisfied without constraining
mψiψj directly since the vanishing of (αk + τkk′N

k′) is the F-flatness condition. A similar
story holds in the anti-brane vacuum.

In the case with both branes and antibranes, the equations are not trivial. Instead,
they say that both the ψ- and the λ-mass matrices have at least one zero eigenvalue.
At the string tree level (i.e at the leading order in 1/N expansion), we expect them to
have exactly one zero eigenvalue each. To this order, we can think about turning on
the fluxes as simply giving them an “expectation value”, which would break the N = 2
supersymmetry spontaneously. However, at higher orders, the Kähler potential is not
protected in that the symmetry breaking is soft, but not spontaneous. Consequently, the
form of the equations (1.2.19),(1.2.20) should presumably receive corrections, and only one
massles fermion should remain, corresponding to breaking N = 1 to N = 0.

The leading-order potential in these vacua is given by

V∗ =
8π

gYM
2

(
∑

i

|Ni|
)
−



Ni>0,Nj<0∑

i,j

2

π
|Ni| |Nj | log

∣∣∣∣
Λ0

∆ij

∣∣∣∣



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This takes the natural form of a brane-tension contribution for each brane in the system,
plus interaction terms between the brane/anti-brane pairs. If we define

δij ≡
(gYM

2π

)2

(
∑

k

|Nk|) log

∣∣∣∣
Λ0

∆ij

∣∣∣∣ .

Then in terms of these parameters δij , the physical potential takes the simpler form of

V∗ =
8π

gYM
2

(
∑

i

|Ni| −
∑Ni>0,Nj<0
i,j δij |Ni||Nj|∑

i |Ni|

)

so that the energy shift is

∆E

E
=
−∑Ni>0,Nj<0

i,j δij |Ni||Nj |
(
∑
i |Ni|)2

Once again, the forces among the (anti-)branes cancel. Moreover, the branes and the anti-
branes attract, which lowers the energy of the vacuum, below the supersymmetric one.
This energy shift will effectively vanish only when there is an extreme imbalance between
number of the branes and antibranes, just as in the 2 S3 case.

1.2.6. Brane/anti-brane gauge system

It is natural to ask whether we can find a simple description of the non-supersymmetric
theory corresponding to the brane/anti-brane system. This certainly exists in the full open
string field theory. However, one may wonder whether one can construct a field theory
version of this which maintains only a finite number of degrees of freedom. In fact, it is
not clear if this should be possible, as we will now explain.

Consider a simpler situation where we have a stack of N parallel D3 branes. This
gives an N = 4 supersymmetric U(N) gauge theory. Now consider instead (N + k) D3
branes and k anti-D3 branes separated by a distance a. This is clearly unstable, and will
decay back to a system with N D3 branes. Can one describe this in a field theory setup?
There have been attempts [32] along these lines (in connection with Sen’s conjecture [33]),
however no complete finite truncation seems to exist. This system is similar to ours. In
particular, consider the case with 2 S3’s, with a total of N D5 branes. We know that we
can have various supersymmetric vacua of this theory in which

U(N)→ U(N1)× U(N −N1)

where we have N1 branes wrap one IP1 and N −N1 wrap the other. However we also know
that the theory with N D5 branes can come from a metastable vacuum with (N + k) D5
branes wrap around one IP1 and k anti-D5 branes around the other. This theory would
have a U(N + k)× U(k) gauge symmetry. Clearly we need more degrees of freedom than
are present in the U(N) theory in order to to describe this theory. In fact, since k can
be arbtirarily large, we cannot have a single system with a finite number of degrees of
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freedom describing all such metastable critical points. Of course, one could imagine that
there could be a theory with a finite number of fields which decribes all such configurations
up to a given maximum k, but this does not seem very natural. It is thus reasonable to
expect that string field theory would be needed to fully describe this system.

Nevertheless we have seen, to leading order, a very simple running of the two gauge
groups in the non-supersymmetric case, and it would be natural to ask if we can explain
this from the dual open string theory. In this dual theory, where we have some branes
wrapping the first IP1 and some anti-branes the other, we have three different types of
sectors: the 1-1, 2-2 and the 1-2 open string sectors. The 1-1 and the 2-2 subsectors
are supersymmetric and give rise to the description of the N = 1 supersymmetric U(Ni)
theories for i = 1, 2, coupled to the adjoint matter fields Φ which are massive. This part
can be inherited from the supersymmetric case, and in particular explains the fact that
the running of the coupling constant of the U(Ni) from the massive field Φ is the same as
in the supersymmetric case. The difference between our case and the supersymmetric case
comes from the 1-2 subsector. In the NS sector we have the usual tachyon mode whose
mass squared is shifted to a positive value, as long as ∆ is sufficiently larger than the string
scale, due to the stretching of the open string between the far separated IP1’s. We also have
the usual oscillator modes. In the Ramond sector ground state the only difference between
the supersymmetric case and our case is that the fermions, which in the supersymmetric
case is the gaugino partner of the massive W12 boson, has the opposite chirality. The fact
that they have the opposite chirality explains the fact that the θ term of the gauge group
runs with an opposite sign compared to the supersymmetric case. In explaining the fact
that the norm runs the same way as the supersymmetric case, the contributions of the
fermions is clear, but it is not obvious why the NS sector contribution should have led to
the same kind of running. It would be interesting to explain this directly from the open
string theory annulus computation in the NS sector.

It is easy to generalize the discussion above to the n S3 case. In fact just as in the
2 S3 case, the only subsectors which are non-supersymmetric are the i − j sectors where
i is from a brane and j is from an anti-brane cut. This agrees with the results obtained
in the general case, where supersymmetry breaking contributions come, to leading order,
precisely from these sectors.

1.3. Decay Rates

In the previous sections, we constructed non-supersymmetric vacua of string theory
corresponding to wrapping D5 branes and anti-D5 branes on the two-cycles of the a local
Calabi-Yau. Here, branes and anti-branes are wrapping rigid two-cycles which are in the
same homology class, but are widely separated, and there are potential barriers between
them of tunable height. As we emphasized, the crucial aspect of this is that the vacua
obtained in this way can be long lived, and thus are different from brane-anti brane systems
in flat space, or systems of branes and anti-branes probing the Calabi-Yau manifold, which
have been considered in the literature. Moreover, when the numbers of branes on each
two-cycle is large, this has a holographic dual in terms of non-supersymmetric flux vacua.
By duality, we also expect the corresponding flux vacua to be metastable, despite breaking
supersymmetry. In this section we will explore the stability of these vacua in more detail.
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In both open and closed string language, the theory starts out in a non-supersymmetric
vacuum. Since there are lower energy states avaliable, the non-supersymmetric vacuum
is a false vacuum. As long as the theory is weakly coupled throughout the process, as is
the case here, the decay can be understood in the semi-classical approximation. This does
not depend on the details of the theory, and we will review some aspects of the beautiful
analysis in [34]. Afterwards, we apply this to the case at hand.

The false vacuum decays by nucleating a bubble of true vacuum by an instanton
process. The rate of decay Γ is given in terms of the action of the relevant instanton as

Γ ∼ exp(−SI).

The instanton action SI is the action of the euclidean bounce solution, which interpolates
between the true vacuum inside the bubble and the false vacuum outside of the bubble10.
Assuming that the dominant instanton is a spherical bubble of radius R, the euclidian
instanton action is given by [34]

SI = −π
2

2
R4∆V + 2π2R3SD

The first term is the contribution to the action from inside the bubble. Here ∆V is
the difference in the energy density between the true and the false vacuum, and this is
multiplied by the volume of the bubble (a four-sphere of radius R). The second term is
the contribution to the action from the domain wall that interpolates between the inside
and the outside on the bubble, assuming the domain wall is thin. There, SD is the tension
of the domain wall, and 2π2R3 is its surface area (the area of a three-sphere of radius R).
The radius R of the bubble is determined by energetics: The bubble can form when the
gain in energy compensates for the mass of the domain wall that is created. The energy
cost to create a bubble of radius R is

E = −4π

3
R3∆V + 4πR2SD

where the first term comes from lowering the energy of the vacuum inside the bubble, and
the last term is the energy cost due to surface tension of the domain wall. We can create
a bubble at no energy cost of radius

R∗ = 3
SD
∆V

.

Bubbles created with radia smaller than this recollapse. The bubbles created at R = R∗

expand indefinitely, as this is energetically favored. At any rate, the relavant instanton
action is SI(R∗), or

SI =
27π

2

S4
D

(∆V )3
.

10 The coefficient of proportionality comes from the one loop amplitude in the instanton back-

ground, and as long as SI is large, its actual value does not matter.
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Correspondingly, the vacuum is longer lived the higher the tension of the domain wall
needed to create it, and the lower the energy splitting between the true and the false
vacuum.

With this in hand, let us consider the decays of the vacua we found. When the number
of branes wrapping each IP1 is small, the open string picture is appropriate. Consider, for
simplicity, the case where the superpotential has only two critical points

W ′(x) = g(x− a1)(x− a2),

and we have only a single brane at x = a1 and a single anti-brane at x = a2. The effective
potential that either of these branes sees separately is given simply by the size of the
2-sphere it wraps

A(x) = (|W ′(x)|2 + |r|2)1/2 (1.3.1)

where |r| is the tension of the brane wrapping the minimal IP1 (see section 3). The branes
are, of course, also charged, so there is an electric field flux tube (of the six-form potential)
running between the brane and the anti-brane, along a three-cycle corresponding to an
S2 being swept from x = a1 to x = a2. Despite the flux tube, the system is (meta)stable
if the potential barrier from (1.3.1) is high enough. The decay process corresponds, for
example, to having the D5-brane tunnel under the energy barrier from the vacuum at
x = a1 to the vacuum x = a2, to annihilate with the anti-D5-brane there. More precisely,
what happens is that a bubble of true vacuum is created in R3,1, inside of which the
branes are anihilated. The boundary of the bubble is a domain wall which, in the thin
wall approximation, corresponds to a D5 brane wrapping the S2 boundary of the bubble
in R3 and the three-cycle in the Calabi-Yau where the flux tube was. The tension of the
domain wall is the the size of the three-cycle that the D5 brane wraps in the Calabi-Yau
times the tension of the 5-brane

SD =
1

gs

∫ a2

a1

A(x)dx ≈ 1

gs
|W (a2)−W (a1)| =

1

3gs

∣∣g∆3
∣∣

where the second term in (1.3.1) gives vanishingly small contribution11 in the limit ∆≫ r.
The difference in the cosmological constants of the two vacua corresponds, to the leading
order, to the difference in tensions between the original configuration, with Vi = 2|r|/gs
and the final one where the branes have annihilated Vf = 0, so the gain in energy is simply

∆V = 2
|r|
gs

=
2

g2
YM

When the number of branes wrapping the IP1’s is large, we use the dual geometry
from after the transition, with fluxes. Consider, for example, the case when N1 branes
wraps the first IP1 and |N2| anti-branes the second, with |N1,2| large, and satisfying

N1 > 0 > N2.

11 For us, the mass of the brane comes from the B-field only, and the brane is heavy only

because the string coupling is weak.
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Then, the C cycle that runs between the two cuts, [C] = [B1] − [B2] is a compact flux
tube, with |N2| units of HRR flux running through it. To decay, one kills off the flux lines
one by one, by creating an D5 brane wrapping a zero size IP1 where the first IP1 used to
be before the transition. This brane grows and eats up the flux line until it vanishes again
at the first cut. After all the flux has decayed, this leaves us with N1 + N2 units of flux
through the first S3. The tension of the corresponding domain wall is

SD =
|N2|
gs

∫

C

|Ω|

where ∮

C

Ω =

∫

B1

Ω−
∫

B2

Ω ≈ W (a2)−W (a1).

where we omit terms that are exponentially suppressed in the vacuum.12 In this case, the
energy of the false vacuum is, to the leading order, Vi = (|N1|+ |N2|)|r|/gs. After the flux
has decayed, we have Vf = (|N1| − |N2|)|r|/gs coming from the flux through first S3 only.
The difference is just

∆V = Vi − Vf ≈ 2|N2|
|r|
gs

=
2|N2|
g2
YM

We see that both the domain wall tension and the difference in vacuum energies before and
after are equal to what we found in the open string picture, albeit rescaled by the amount
of brane charge which dissapears! This is, of course, not surprising because the domain
wall relevant in the closed string case is the same one as that relevant in the open string
case, just before the large N transition.

We can now put everything together to compute the action of the instanton corre-
sponding to nucleating a bubble of true vacuum:

SI ≈
π

48

|N2|
gs

∣∣(g∆3)4
∣∣

|r|3 .

This leads to the decay rate
Γ ∼ exp(−SI).

Note that the relevant instantons come from D-branes wrapping cycles, and thus it is
natural for the instanton action to depend on gs in the way the D-brane action does.

This exactly reproduces the results one would have expected from our discussion in
section 3. There are two effects controling the stability of the system. Namely, one is the
height of the potential barrier, which is controlled by here by g∆3 and which enters the
action of the domain wall. The branes and anti-branes become more separated the larger
the ∆, and their interactions weaker. In addition, increasing the height of the potential

12 More precisely, we should evaluate the corrections to this at the values of S1,2 correpsonding

to being somewhere in the middle between the true and the false vacuum. Either way, the omitted

terms are suppressed by, at least,
Λ1,2

∆
, and we can neglect them.
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barrier by making ∆ larger, overcomes the electrostatic attraction of the branes. The other
relevant parameter is the relative difference in energies of the true and the false vacuum,
which depends on the ratio of brane to anti-brane numbers |N2/N1|. When this is very
small, the vacuum with both the branes and the anti-branes is nearly degenerate with the
vacuum with just the branes, and correspondingly, the decay time gets longer as ∆V/V
gets smaller.

1.4. Open Questions

In this chapter, we have seen how a large N system of branes which geometrically
realizes metastability by wrapping cycles of a non-compact CY can be dual to a flux
compactification which breaks supersysmmetry. We provided evidence for this duality by
studying the limit where the cycles of the Calabi-Yau are far separated.

There are a number of open questions which remain to be studied: It would be nice to
write down a non-supersymmetric gauge theory with finite number of degrees of freedom
which describes this brane configuration. It is not clear that this should be possible, but
it would be interesting to settle this question conclusively one way or the other. This is
also important for other applications in string theory where dynamics of brane/anti-brane
systems is relevant.

Another issue which would be important to study is the phase structure of our system.
Since we have broken supersymmetry, we have no holomorphic control over the geometry
of the solutions. It would be interesting to see what replaces this, and how one should
think of the global phase structure of these non-supersymmetric solutions. Since the full
potential is characterized by the N = 2 prepotential and the flux data, which in turn
are characterized by integrable data (matrix model integrals of the superpotential), one
still expects that the critical points of the potential should be characterized in a nice way.
Understanding this structure would be very important. For example, it would tell us what
happens when the separation of the wrapped cycles is small where one expects to lose
metastability due to the open string tachyons stretching between branes and anti-branes.

One other issue involves the 1/N corrections to the holographic dual theory. In this
chapter we have focused on the leading order in the 1/N expansion, i.e. at the string
tree level. How about subleading corrections? This is likely to be difficult to address, as
one expects non-supersymmetric corrections to string tree level to be difficult to compute.
The fact that we have a metastable system suggests that we would not want to push this
question to an exact computation, as we know the system is ultimately going to decay to
a stable system. However, we would potentially be interested in studying the regions of
phase space where metastability is just being lost, such as when the cycles are close to one
another.

Finally, perhaps the most important question is about the embedding of our mecha-
nism for inducing metastable flux compactification vacua into a compact Calabi-Yau ge-
ometry (see [35]). At first sight, it may be unclear whether there would be any obstacles
to a compact embedding of our story. There is at least an example similar to what we
are expecting in the compact case. In [36], among the solutions studied, it was found
that flipping the signs of some fluxes leads to apparently metastable non-supersymmetric
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vacua. It would be interesting to see if this connects to the mechanism introduced in this
chapter, where the existence of metastability for flux vacua is a priori expected. Moreover,
from our results it is natural to expect that most flux vacua do have metastable non-
supersymmetric solutions. For instance, in the non-compact case we have studied, only 2
out of 2n choice of signs for the n fluxes 2 were non-supersymmetric. This suggests that
in the study of flux compactifications, the most natural way to break supersymmetry is
simply studying metastable vacua of that theory, without the necessity of introducing any
additional anti-branes into the system. It would be very interesting to study this further.
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Chapter 2

Metastable Quivers and Holography

Geometric transitions have proven to be a powerful means of studying the dynamics
of supersymmetric D-branes. String theory relates these transitions to large N dualities,
where before the transition, at small ’t Hooft coupling, one has D-branes wrapping cycles in
the geometry, and after the transition, at large ’t Hooft coupling, the system is represented
by a different geometry, with branes replaced by fluxes. The AdS/CFT correspondence
can be thought of in this way. Geometric transitions are particularly powerful when the
D-branes in question wrap cycles in a Calabi-Yau manifold. Then, the topological string
can be used to study the dual geometry exactly to all orders in the ’t Hooft coupling. In
[4] it was conjectured that topological strings and large N dualities can also be used to
study non-supersymmetric, metastable configurations of branes in Calabi-Yau manifolds,
that confine at low energies. This conjecture was considered in greater detail in [37,38].
String theory realizations of metastable, supersymmetry breaking vacua have appeared in
[16,17,39-46]. The gauge theoretic mechanism of [11] has further been explored in string
theory in [12,13,14,47-51].

In this chapter we study D5 brane/anti-D5 brane systems in IIB on non-compact,
Calabi-Yau manifolds that are ADE type ALE space fibrations over a plane. These gener-
alize the case of the A1 ALE space studied in detail in [4,37,38]. The ALE space is fibered
over the complex plane in such a way that at isolated points, the two-cycles inherited from
the ALE space have minimal area. These minimal two-cycles are associated to positive
roots of the corresponding ADE Lie algebra. Wrapping these with branes and antibranes is
equivalent to considering only branes, but allowing both positive and negative roots to ap-
pear, corresponding to two different orientations of the S2’s. The system can be metastable
since the branes wrap isolated minimal two-cycles, and the cost in energy for the branes
to move, due to the tensions of the branes, can overwhelm the Coulomb/gravitational
attraction between them.

The geometries in question have geometric transitions in which the sizes of the minimal
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S2’s go to zero, and the singularities are resolved instead by finite sized S3’s. The conjecture
of [4] is that at large N , the S2’s disappear along with the branes and antibranes and are
replaced by S3’s with positive and negative fluxes, the sign depending on the charge of the
replaced branes. As in the supersymmetric case (see [18,31,52]), the dual gravity theory
has N = 2 supersymmetry softly broken to N = 1 by the fluxes. The only difference is
that now some of the fluxes are negative. On-shell, the positive and the negative fluxes
preserve different halves of the original supersymmetry, and with both present, the N = 2
supersymmetry is completely broken in the vacuum (see [53] for discussion of a similar
supersymmetry breaking mechanism and its phenomenological features in the context of
heterotic M-theory). The topological string computes not only the superpotential, but
also the Kähler potential.13 We show that the Calabi-Yau’s with fluxes obtained in this
way are indeed metastable, as expected by holography. In particular, for widely separated
branes, the supersymmetry breaking can be made arbitrarily weak.14 In fact, we can use
the gravity dual to learn about the physics of branes and antibranes. We find that at one-
loop, the interaction between the branes depends on the topological data of the Calabi-Yau
in a simple way. Namely, for every brane/antibrane pair, so for every positive root e+ and
negative root e−, we find that the branes and the antibranes attract if the inner product

e+ · e−

is positive. They repel if it is negative, and do not interact at all if it is zero. In the Ak type
ALE spaces, this result is already known from the direct open string computation [54,55],
so this is a simple but nice test of the conjecture for these geometries. Moreover, we show
that certain aspects of these systems are universal. We find that generically, just like in
[37], metastability is lost when the ’t Hooft coupling becomes sufficiently large. Moreover,
once stability is lost, the system appears to roll down toward a vacuum in which domain
walls interpolating between different values of the fluxes become light. We also present
some special cases where the non-supersymmetric brane/antibrane systems are exactly
stable. In these cases, there are no supersymmetric vacua to which the system can decay.

When all the branes are D5 branes and supersymmetry is preserved, the low energy
theory geometrically realizes [31,52] a 4d N = 2 supersymmetric quiver gauge theory with
a superpotential for the world-volume adjoints which breaks N = 2 to N = 1. These
theories are known to have Seiberg-like dualities [56] in which the dual theories flow to the
same IR fixed point, and where different descriptions are more weakly coupled, and hence
preferred, at different energy scales. The Seiberg dualities are realized in the geometry
in a beautiful way [52]. The ADE fibered Calabi-Yau geometries used to engineer the

13 While the superpotential is exact, the Kähler potential is not. Corrections to the Kähler

potential coming from warping, present when the Calabi-Yau is compact, have been investigated

in [46].
14 The natural measure of supersymmetry breaking in this case is the mass splitting between the

bosons and their superpartners. For a compact Calabi-Yau, the scale of supersymmetry breaking

is set by the mass of the gravitino, which is of the order of the cosmological constant. In our case,

gravity is not dynamical, and the mass splittings of the dynamical fields are tunable [4].
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gauge theories have intrinsic ambiguities in how one resolves the singularities by blowing
up S2’s. The different possible resolutions are related by flops that shrink some two-cycles,
and blow up others. The flops act nontrivially on the brane charges, and hence on the
ranks of the gauge groups. The flop of a two-cycle S2

i0
corresponds to a Weyl reflection

about the corresponding root of the Lie algebra. On the simple roots ei, this acts by

S2
i → S̃2

i = S2
i − (ei · ei0)S2

i0
.

Brane charge conservation then implies that the net brane charges transform satisfying
∑

i

Ni S
2
i =

∑

i

Ñi S̃
2
i . (2.0.1)

Moreover, from the dual gravity solution one can reconstruct the whole RG flow of the
gauge theory. The sizes of the wrapped two-cycles encode the gauge couplings, and one
can read off how these vary over the geometry, and correspondingly, what is the weakly
coupled description at a given scale. Near the S3’s, close to where the branes were prior
to the transition, corresponds to long distances in the gauge theory. There, the S2’s have
shrunken, corresponding to the fact that in the deep IR the gauge theories confine. As
one goes to higher energies, the gauge couplings may simply become weaker, and the
corresponding S2’s larger, in which case the same theory will describe physics at all energy
scales. Sometimes, however, some of the gauge couplings grow stronger, and the areas of the
S2’s eventually become negative. Then, to keep the couplings positive, the geometry must
undergo flop transitions.15 This rearranges the brane charges and corresponds to replacing
the original description at low energies by a different one at high energies. Moreover, the
flops of the S2’s were found to coincide exactly with Seiberg dualities of the supersymmetric
gauge theories.

In the non-supersymmetric case, there is generally no limit in which these brane
constructions reduce to field theories with a finite number of degrees of freedom. Thus
there are no gauge theory predictions to guide us. However, the string theory still has
intrinsic ambiguities in how the singularities are resolved. This is exactly the same as in
the supersymmetric case, except that now not all Ni in (2.0.1) need be positive. Moreover,
we can use holography to follow the varying sizes of two-cycles over the geometry, and
find that indeed in some cases they can undergo flops in going from the IR to the UV.
When this happens, descriptions in terms of different brane/antibrane configurations are
more natural at different energy scales, and one can smoothly interpolate between them.
This is to be contrasted with, say, the A1 case, where regardless of whether one considers
just branes or branes and antibranes, it is only one description that is ever really weakly
coupled, and the fact that another exists is purely formal.

The chapter is organized as follows. In section 2 we introduce the metastable D5
brane/anti-D5 brane configurations, focusing on Ak singularities, and review the conjec-
ture of [4] applied to this setting. In section 3 we study in detail the A2 case with a

15 It is important, and one can verify this, that this happens in a completely smooth way in

the geometry, as the gauge coupling going to infinity corresponds to zero Kähler volume of the

two-cycle, while the physical size of the two-cycle is finite everywhere away from the S3’s.
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quadratic superpotential. In section 4 we consider general ADE type geometries. In sec-
tion 5 we discuss Seiberg-like dualities of these theories. In section 6 we study a very simple,
exactly solvable case. In appendices A and B, we present the matrix model computation
of the prepotential for A2 ALE space fibration, as well as the direct computation from
the geometry. To our knowledge, these computations have not been done before, and the
agreement provides a direct check of the Dijkgraaf-Vafa conjecture for these geometries.
Moreover, our methods extend easily to the other An cases. In appendix 2.C, we collect
some formulas useful in studying the metastability of our solutions in section 3.

2.1. Quiver Branes and Antibranes

Consider a Calabi-Yau which is an Ak type ALE space,

x2 + y2 +
k+1∏

i=1

(z − zi(t)) = 0, (2.1.1)

fibered over the t plane. Here, zi(t) are polynomials in t. Viewed as a family of ALE
spaces parameterized by t, there are k vanishing two-cycles,

S2
i , i = 1, . . . , k (2.1.2)

that deform the the singularities of (2.1.1). In the fiber over each point t in the base, the
two-cycle in the class S2

i has holomorphic area given by

∫

S2
i,t

ω2,0 = zi(t)− zi+1(t). (2.1.3)

where ω2,0 is the reduction of the holomorphic three-form Ω on the fiber. The only singu-
larities are at points where x = y = 0 and

zi(t) = zj(t), i 6= j (2.1.4)

for some i and j. At these points, the area of one of the two-cycles inherited from the ALE
space goes to zero.

These singularities can be smoothed out by blowing up the two-cycles, i.e., by changing
the Kähler structure of the Calabi-Yau to give them all nonvanishing area.16 The homology
classes of the vanishing cycles (2.1.4) then correspond to positive roots of the Ak Lie algebra
(see e.g. [31]).17 In this case, the k simple, positive roots ei correspond to the generators
of the second homology group. These are the classes of the S2

i mentioned above which

16 As we will review later, the blowup is not unique, as not all the Kähler areas of the cycles

in (2.1.2) need to be positive for the space to be smooth. Instead, there are different possible

blowups which differ by flops.
17 The negative roots correspond to two-cycles of the opposite orientation.
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resolve the singularities where zi(t) = zi+1(t). We denote the complexified Kähler areas of
the simple roots by

ri =

∫

S2
i

k + iBNS ,

where k is the Kähler form. In most of our applications, we will take the real part of ri to
vanish. The string theory background is nonsingular as long as the imaginary parts do not
also vanish. They are positive, per definition, since we have taken the S2

i to correspond to
positive roots. In classical geometry, the ri are independent of t. Quantum mechanically,
in the presence of branes, one finds that they are not.

There are also positive, non-simple roots eI =
∑l
i=j ei, for l > j where zl+1(t) = zj(t).

The two-cycle that resolves the singularity is given by

S2
I =

l∑

i=j

S2
i

in homology. Its complexified Kähler area is given as a sum of Kähler areas of simple roots

rI =

l∑

i=j

ri.

The total area A(t) of a two-cycle S2
I at a fixed t receives contributions from both Kähler

and holomorphic areas:

AI(t) =
√
|rI |2 + |W ′

I(t)|2. (2.1.5)

The functions W ′
I capture the holomorphic volumes of two-cycles, and are related to the

geometry by

WI(t) =
k∑

i=j

Wi(t),

Wi(t) =

∫
(zi(t)− zi+1(t))dt. (2.1.6)

These will reappear as superpotentials in matrix models which govern the open and closed
topological string theory on these geometries.

For each positive root I there may be more than one solution to (2.1.4). We will label
these with an additional index p when denoting the corresponding two-cycles, S2

I,p. For

each solution there is an isolated, minimal area S2, but they are all in the same homology
class, labeled by the root. They have minimal area because (2.1.5) is minimized at those
points in the t plane where W ′

I(t) vanishes. These, in turn, correspond to solutions of
(2.1.4).

We will consider wrapping branes in the homology class

∑

I,p

MI,p S
2
I ,
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with I running over all positive roots, and p over the corresponding critical points. We
get branes or antibranes on S2

I,p depending on whether the charge MI,p is positive or

negative.18 We will study what happens when we wrap branes on some of the minimal
S2’s and antibranes on others.

The brane/antibrane system is not supersymmetric. If we had branes wrapping all of
the S2’s, they would have each preserved the same half of the original N = 2 supersym-
metry. However, with some of the branes replaced by antibranes, some stacks preserve the
opposite half of the original supersymmetry, and so globally, supersymmetry is completely
broken. The system can still be metastable. As in flat space, there can be attractive
Coulomb/gravitational forces between the branes and the antibranes. For them to annihi-
late, however, they have to leave the minimal two-cycles that they wrap. In doing so, the
area of the wrapped two-cycle increases, as can be seen from (2.1.5), and this costs energy
due to the tension of the branes. At sufficiently weak coupling, the Coulomb and gravita-
tional interactions should be negligible compared to the tension forces – the former are a
one-loop effect in the open string theory, while the latter are present already at tree-level
– so the system should indeed be metastable. For this to be possible, it is crucial that
the parameters of the background, i.e. the Kähler moduli ri and the complex structure
moduli that enter into the Wi(t), are all non-normalizable, and so can be tuned at will.

While this theory is hard to study directly in the open string language, it was con-
jectured in [4] to have a holographic dual which gives an excellent description when the
number of branes is large.

2.1.1. Supersymmetric large N duality

Here we review the case where only branes are wrapped on the minimal S2’s, and so
supersymmetry is preserved. Denoting the net brane charge in the class S2

i by Ni, this

geometrically engineers an N = 2 supersymmetric
∏k
i=1 U(Ni) quiver gauge theory in four

dimensions, deformed to N = 1 by the presence of a superpotential. The corresponding
quiver diagram is the same as the Dynkin diagram of the Ak Lie algebra. The k nodes
correspond to the k gauge groups, and the links between them to bifundamental hyper-
multiplets coming from the lowest lying string modes at the intersections of the S2’s in
the ALE space. The superpotential for the adjoint valued chiral field Φi, which breaks the
supersymmetry to N = 1, is

Wi(Φi), i = 1, . . . k

where Wi(t) is given in (2.1.6). The chiral field Φi describes the position of the branes
on the t plane. As shown in [31], the gauge theory has many supersymmetric vacua,
corresponding to all possible ways of distributing the branes on the S2’s,

k∑

i=1

Ni S
2
i =

∑

I,p

Mp,I S
2
I ,

18 We could have instead declared all the MI,p to be positive, and summed instead over positive

and negative roots.
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where I labels the positive roots and p the critical points associated with a given root.
This breaks the gauge symmetry as

∏

i

U(Ni)→
∏

p,I

U(Mp,I). (2.1.7)

At low energies the branes are isolated and the theory is a pure N = 1 gauge theory with
gauge group (2.1.7). The SU(MI,p) subgroups of the U(MI,p) gauge groups experience
confinement and gaugino condensation.

This theory has a holographic, large N dual where branes are replaced by fluxes. The
large N duality is a geometric transition which replaces (2.1.1) with a dual geometry

x2 + y2 +

k+1∏

i=1

(z − zi(t)) = fr−1(t)z
k−1 + f2r−1(t)z

k−2 + . . .+ fkr−1(t), (2.1.8)

where fn(t) are polynomials of degree n, with r being the highest of the degrees of zi(t).
The geometric transition replaces each of the S2

I,p’s by a three-sphere, which will be denoted
AI,p, with MI,p units of Ramond-Ramond flux through it,

∫

AI,p

HRR + τHNS = MI,p.

In addition, there is flux through the non-compact dual cycles BI,p,

∫

BI,p

HRR + τHNS = −αI ,

where τ is the IIB axion-dilaton τ = a + i
gs

. These cycles arise by fibering S2
I,p over the

t plane, with the two-cycles vanishing at the branch cuts where the S3’s open up. The
nonzero H flux through the B-type cycles means that

∫

S2
I,p

BRR + τBNS

varies over the t plane. In the gauge theory, this combination determines the complexified
gauge coupling. Since

4π

g2
i

=
1

gs

∫

S2
i

BNS ,
θi
2π

=

∫

S2
i

BRR + aBNS ,

one naturally identifies αi with the gauge coupling of the U(Ni), N = 2 theory at a high
scale19

αi = − θi
2π
− 4πi

g2
i

.

19 For the large N dual to be an honest Calabi-Yau, as opposed to a generalized one, we will

work with
∫

S2
i

k = 0.
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For each positive root I, we then define αI as

αI =
k∑

i=j

αi

Turning on fluxes gives rise to an effective superpotential [21]

Weff =

∫

CY

(HRR + τHNS) ∧ Ω.

Using the special geometry relations∫

AI,p

Ω = SI,p,

∫

BI,p

Ω = ∂SI,p
F0,

the effective superpotential can be written as

Weff =
∑

I,p

αI SI,p +MI,p ∂SI,p
F0. (2.1.9)

Here, SI,p gets identified with the value of the gaugino bilinear of the U(MI,p) gauge
group factor on the open string side. The effective superpotential (2.1.9) can be computed
directly in the gauge theory. Alternatively, it can be shown [19,57] that the relevant
computation reduces to computing planar diagrams in a gauged matrix model given by
the zero-dimensional path integral

1
∏k
i=1 vol U(Ni)

∫ k∏

i=1

dΦi dQi,i+1dQi+1,i exp
(
− 1

gs
TrW(Φ, Q)

)

where

TrW(Φ, Q) =

r∑

i=1

TrW (Φi) + Tr (Qi+1,iΦiQi,i+1 −Qi,i+1Φi+1Qi+1,i).

The critical points of the matrix model superpotential correspond to the supersym-
metric vacua of the gauge theory. The prepotential F0(SI,p) that enters the superpotential
(2.1.9) is the planar free energy of the matrix model [19,58,59,60], expanded about a critical
point where the gauge group is broken as in (2.1.7). More precisely, we have

2πiF0(S) = F np
0 (S) +

∑

{ha}

F0,{ha}

∏

a

Sha
a

where F0,{ha}

∏
a(Mags)

ha is the contribution to the planar free energy coming from dia-
grams with ha boundaries carrying the index of the U(Ma) factor of the unbroken gauge
group. Here a represents a pair of indices,

a = (I, p),

and we’ve denoted Sa = Mags. The “nonperturbative” contribution, F np
0 (S), to the ma-

trix model amplitude comes from the volume of the gauge group (2.1.7) that is unbroken in
the vacuum at hand [58,60], and is the prepotential of the leading order conifold singularity
corresponding to the shrinking S3, which is universal. We will explain how to compute the
matrix integrals in appendix 2.A. The supersymmetric vacua of the theory are then given
by the critical points of the superpotential Weff .
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2.1.2. Non-supersymmetric large N duality

Now consider replacing some of the branes with antibranes while keeping the back-
ground fixed. The charge of the branes, as measured at infinity, is computed by the RR
flux through the S3 that surrounds the branes. In the large N dual geometry, the S3

surrounding the wrapped S2
I,p is just the cycle AI,p. Replacing the branes with antibranes

on some of the S2’s then has the effect of changing the signs of the corresponding MI,p’s.
Moreover, supersymmetry is now broken, so the vacua of the theory will appear as critical
points of the physical potential

V = GSaSb ∂Sa
Weff ∂Sb

Weff + V0. (2.1.10)

The superpotential Weff is still given by (2.1.9), and G is the Kähler metric of the N = 2
theory,

Gab = Im(τ)ab

where
τab = ∂Sa

∂Sb
F0

and a, b stand for pairs of indices (I, p). In the absence of gravity, we are free to add a
constant, V0, to the potential,20 which we will take to be

V0 =
∑

I,p

MI,p

g2
I

. (2.1.11)

A priori, V0 can be either positive or negative, depending on the charges. However, we
will see that in all the vacua where the theory is weakly coupled, the leading contribution
to the effective potential at the critical point will turn out to be just the tensions of all the
branes, which is strictly positive.

2.2. A Simple Example

We now specialize to an A2 quiver theory with quadratic superpotential. The geometry
which engineers this theory is given by (2.1.1), with

z1(t) = −m1(t− a1), z2(t) = 0, z3(t) = m2(t− a2).

There are three singular critical points (2.1.4) (assuming generic mi) corresponding to

t = ai, i = 1, 2, 3

where a3 = (m1a1 +m2a2)/(m1 +m2). Blowing up to recover a smooth Calabi-Yau, the
singular points are replaced by three positive area S2’s,

S2
1 , S

2
2 , S

2
3

20 This simply adds a constant to the Lagrangian, having nothing to do with supersymmetry,

or its breaking.
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with one homological relation among them,

S2
3 = S2

1 + S2
2 . (2.2.1)

S2
1,2 then correspond to the two simple roots of the A2 Lie algebra, e1,2, and S2

3 is the one
non-simple positive root, e1 + e2. Now consider wrapping branes on the three minimal
two-cycles so that the total wrapped cycle C is given by

C = M1 S
2
1 +M2 S

2
2 +M3 S

2
3 .

If some, but not all, of the MI are negative, supersymmetry is broken. As was explained
in the previous section, as long as the branes are widely separated, this system should be
perturbatively stable.

Fig. 2.1. The figure corresponds to the A2 singularity in the z-t plane with quadratic “superpo-

tential”. There are three conifold singularities at zi = zj which can be blown up by three S2’s,

spanning two homology classes. Wrapping M1 anti-D5 branes on S2
1 and M2,3 D5 branes on S2

2,3,

we can engineer a metastable vacuum. The orientations of the branes are indicated by arrows.

Non-perturbatively, we expect the branes to be able to tunnel to a lower energy state.
The minimum energy configuration that this system can achieve depends on the net brane
charges in the homology classes S2

1 and S2
2 , given by N1 = M1 +M3 and N2 = M2 +M3.

When N1 and N2 have the same sign, the system can tunnel to a supersymmetric vacuum
with new charges

MI →M ′
I

where all theM ′
I share the same sign, and the net chargesN1 = M ′

1+M
′
3 andN2 = M ′

2+M
′
3

are unchanged. All the supersymmetric vacua are degenerate in energy, but for the
metastable, non-supersymmetric vacua, the decay rates will depend on the M ′

I . Alter-
natively, if one of the N1,2 is positive and the other is negative, the lowest energy configu-
ration is necessarily not supersymmetric. In this way we get a stable, non-supersymmetric
state which has nowhere to which it can decay.

In the remainder of this section, we will study these systems using the large N dual
geometry with fluxes.

– 43 –



2.2.1. The large N dual

The large N dual geometry in this case is given by

x2 + y2 + z(z −m1(t− a1))(z +m2(t− a2)) = cz + dt+ e. (2.2.2)

The three S2’s at the critical points have been replaced by three S3’s, AI , whose sizes are
related to the coefficients c, d, e above. There are also three non-compact, dual three-cycles
BI . The geometry of the Calabi-Yau is closely related to the geometry of the Riemann
surface obtained by setting x = y = 0 in (2.1.8). The Riemann surface can be viewed as a
triple cover of the t plane, by writing (2.2.2) as

0 = (z − z′1(t))(z − z′2(t))(z − z′3(t))
where z′i(t) correspond to the zi(t) which are deformed in going from (2.1.1) to (2.2.2)İn
particular, the holomorphic three-form Ω of the Calabi-Yau manifold descends to a one-
form on the Riemann surface, as can be seen by writing

Ω = ω2,0 ∧ dt
and integrating ω2,0 over the S2 fibers, as in (2.1.3). The A and B cycles then project to
one-cycles on the Riemann surface. The three sheets are glued together over branch cuts
which open up at t = aI . We have

SI =
1

2πi

∫ aI
+

aI
−

(z′J(t)− z′K(t)) dt, ∂SI
F0 =

1

2πi

∫ Λ0

aI
+

(z′J (t)− z′K(t)) dt

for cyclic permutations of distinct I, J and K. This allows one to compute the prepotential
F0 by direct integration (see appendix 2.B). Alternatively, by the conjecture of [58], the
same prepotential can be computed from the corresponding matrix model. The gauge
fixing of the matrix model is somewhat involved, and we have relegated it to appendix
2.A, but the end result is very simple. The field content consists of:

a. Three sets of adjoints Φii of U(Mi), which describe the fluctuations of the branes
around the three S2’s.

b. A pair of bifundamental matter fields Q12, Q̃21, coming from the 12 strings.

c. Anticommuting bosonic ghosts, B13, C31 and B32, C23, representing the 23 and 31
strings.

Note that physical bifundamental matter from S2’s with positive intersection corresponds
to commuting bosonic bifundamentals in the matrix model, whereas W bosons between
S2’s with negative intersection in the physical theory correspond to bosonic ghosts, simi-
larly to what happened in [60].

The effective superpotential for these fields is

Weff =
1

2
m1 TrΦ2

11 +
1

2
m2 TrΦ2

22 +
1

2
m3 TrΦ2

33

+ a12 TrQ12Q̃21 + a23 TrB32C23 + a31 TrB13C31

+Tr(B32Φ22C23 − C23Φ33B32) + Tr(B13Φ33C31 − C31Φ11B13)

+Tr(Q̃21Φ11Q12 −Q12Φ22Q̃21)
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where aij = ai − aj . From this we can read off the propagators

〈ΦiiΦii〉 =
1

mi
, 〈Q12Q̃21〉 =

1

a12

and

〈B23C32〉 = − 1

a23
, 〈B31C13〉 = − 1

a31
,

as well as the vertices.

Fig. 2.2. Some of the two-loop Feynman graphs of the matrix model path integral, which are

computing the prepotential F0. The path integral is expanded about a vacuum corresponding

to distributing branes on the three nodes. Here, the boundaries on node one are colored red, on

node two are green and on node three are blue.

Keeping only those contractions of color indices that correspond to planar diagrams,
and carefully keeping track of the signs associated with fermion loops, we find:

2πiF0(Si) =
1

2
S2

1 (log(
S1

m1Λ
2
0

)− 3

2
) +

1

2
S2

2 (log(
S2

m2Λ
2
0

)− 3

2
) +

1

2
S2

3 (log(
S3

m3Λ
2
0

)− 3

2
)

− log(
a12

Λ0
)S1S2 + log(

a31

Λ0
)S1S3 + log(

a23

Λ0
)S2S3

+
1

2∆3
(S2

1S2 + S2
2S1 + S2

3S1 + S2
3S2 − S2

1S3 − S2
2S3 − 6S1S2S3) + . . .

where

∆3 =
m1m2

m3
a2
12, m3 = m1 +m2. (2.2.3)

The terms quadratic in the Si’s correspond to one-loop terms in the matrix model, the
cubic terms to two-loop terms, and so on. The fact that the matrix model result agrees
with the direct computation from the geometry is a nice direct check of the Dijkgraaf-Vafa
conjecture for quiver theories. The large N limit of quiver matrix models was previously
studied using large N saddle point techniques in [31,52,61,62].
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Consider now the critical points of the potential (2.1.10),

∂SI
V = 0.

The full potential is very complicated, but at weak ’t Hooft coupling (we will show this
is consistent a posteriori) it should be sufficient to keep only the leading terms in the
expansion of F0 in powers of S/∆3. These correspond to keeping only the one-loop terms
in the matrix model. In this approximation, the physical vacua of the potential (2.1.10)
correspond to solutions of

αI +
∑

MJ>0

τIJM
J +

∑

MJ<0

τ IJM
J = 0. (2.2.4)

To be more precise, there are more solutions with other sign choices for ±MJ , but only
this choice leads to Im(τ) being positive definite. Since Im(τ) is also the metric on the
moduli space, only this solution is physical.

Depending on how we choose to distribute the branes, there are two distinct classes
of non-supersymmetric vacua which can be constructed in this way. We will discuss both
of them presently.

2.2.2. M1 < 0, M2,3 > 0

In this case, the critical points of the potential correspond to

S1
|M1|

=
(
Λ2

0m1

)|M1|(a12

Λ0

)|M2|(a31

Λ0

)−|M3|

exp(−2πiα1)

S2
|M2| =

(
Λ2

0m2

)|M2|(a12

Λ0

)|M1|(a23

Λ0

)−|M3|

exp(−2πiα2)

S3
|M3| =

(
Λ2

0m3

)|M3|(a23

Λ0

)−|M2|(a31

Λ0

)−|M1|

exp(−2πiα3)

.

The Si are identified with the gaugino condensates of the low energy, U(M1)× U(M2) ×
U(M3) gauge theory. The gaugino condensates are the order parameters of the low energy
physics and as such should not depend on the cutoff Λ0. Let’s then introduce three new
confinement scales, Λi, defined as

Si = Λ3
i .

In fact, only two of these are independent. As a consequence of homology relation (2.2.1),
the gauge couplings satisfy α1 + α2 = α3, which implies that

(Λ1

∆

)3|M1|(Λ2

∆

)3|M2|

=
(Λ3

∆

)3|M3|

,

where ∆ is given in (2.2.3). Requiring that the scales Λi do not depend on the cutoff scale,
we can read off how the gauge couplings run with Λ0,

g−2
1 (Λ0) =− log

( Λ3
1

Λ2
0m1

)|M1|

− log
( Λ0

a12

)|M2|

− log
( Λ0

a13

)−|M3|

g−2
2 (Λ0) =− log

( Λ3
2

Λ2
0m2

)|M2|

− log
( Λ0

a12

)|M1|

− log
( Λ0

a23

)−|M3|

.

(2.2.5)
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As was noticed in [4], this kind of running of the gauge couplings and relation between
strong coupling scales is very similar to what occurs in the supersymmetric gauge theory
(as studied in [52]) obtained by wrapping Mi branes of the same kind on the three S2’s.
The only difference is that branes and antibranes lead to complex conjugate running, as
if the spectrum of the theory remained the same, apart from the chirality of the fermions
on the brane and the antibrane getting flipped. This is natural, as the branes and the
antibranes have opposite GSO projections, so indeed a different chirality fermion is kept.
In addition, the open string RR sectors with one boundary on branes and the other on
antibranes has opposite chirality kept as well, and this is reflected in the above formulas.

To this order, the value of the potential at the critical point is

V∗ =
∑

I

|MI |
g2
I

− 1

2π
|M1||M2| log

(
|a12

Λ0
|
)

+
1

2π
|M1||M3| log

(
|a13

Λ0
|
)

The first terms are just due to the tensions of the branes. The remaining terms are
due to the Coulomb and gravitational interactions of the branes, which come from the
one-loop interaction in the open string theory. There is no force between the M2 branes
wrapping S2

2 and the M3 branes on S2
3 , since M2,3 are both positive, so the open strings

stretching between them should be supersymmetric. On the other hand, the M1 antibranes
on S2

1 should interact with the M2,3 branes as the Coulomb and gravitational interactions
should no longer cancel. This is exactly what one sees above. The M1 antibranes on
S2

1 attract the M3 branes on S2
3 , while they repel the branes on S2

2 . We will see in the
next section that more generally, branes and antibranes wrapping two-cycles with negative
intersection numbers (in the ALE space) attract, and those wrapping two-cycles with
positive intersection numbers repel. Since21

e1 · e2 = 1, e1 · e3 = −1,

this is exactly what we see here.

2.2.3. M1,2 > 0, M3 < 0

With only the non-simple root wrapped by antibranes, the critical points of the po-
tential now correspond to

S1
|M1| =

(
Λ2

0m1

)|M1|(a12

Λ0

)|M2|(a31

Λ0

)−|M3|

exp(−2πiα1)

S2
|M2| =

(
Λ2

0m2

)|M2|(a12

Λ0

)|M1|(a23

Λ0

)−|M3|

exp(−2πiα2)

S3
|M3|

=
(
Λ2

0m3

)|M3|(a23

Λ0

)−|M2|(a31

Λ0

)−|M1|

exp(−2πiα3)

21 The second relation is due to the self intersection numbers of S2
1 and S2

2 being −2.
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In this case, the Kähler parameters α1,2 run as

g−2
1 (Λ0) =− log

( Λ3
1

Λ2
0m1

)|M1|

− log
( Λ0

a12

)|M2|

− log
( Λ0

a13

)−|M3|

g−2
2 (Λ0) =− log

( Λ3
2

Λ2
0m2

)|M2|

− log
( Λ0

a12

)|M1|

− log
( Λ0

a23

)−|M3|

where (Λ1

∆

)3|M1|(Λ2

∆

)3|M2|

=
(Λ3

∆

)3|M3|

.

This follows the same pattern as seen in [4] and in the previous subsection. The branes
and antibranes give complex conjugate running, as do the strings stretching between them.

The value of potential at the critical point is, to this order,

V∗ =
∑

I

|MI |
g2
I

+
1

2π
|M1||M3| log

(
|a13

Λ0
|
)

+
1

2π
|M2||M3| log

(
|a23

Λ0
|
)
.

Again, the first terms are universal, coming from the brane tensions. The remaining terms
are the one-loop interaction terms. There is no force between the M1 branes wrapping S2

1

and the M2 branes on S2
2 , since now both M1,2 have the same sign. The M3 antibranes

on S2
3 attract both M1 branes on S2

1 and the M2 branes on S2
2 , since, in the ALE space

e1 · e3 = e2 · e3 = −1.

In the next subsection, we will show that both of these brane/antibrane systems are
perturbatively stable for large separations.

2.2.4. Metastability

The system of branes and antibranes engineered above should be perturbatively stable
when the branes are weakly interacting – in particular, at weak ’t Hooft coupling. The
open/closed string duality implies that the dual closed string vacuum should be metastable
as well. In this subsection, we will show that this indeed is the case. Moreover, following
[37], we will show that perturbative stability is lost as we increase the ’t Hooft coupling.
While some details of this section will be specific to the A2 case discussed above, the
general aspects of the analysis will be valid for any of the ADE fibrations discussed in the
next section.

To begin with, we note that the equations of motion, derived from the potential
(2.1.10), are

∂kV =
−1

2i
FkefGaeGbf (αa +M cτac)(αb +Mdτ bd) = 0, (2.2.6)

and moreover, the elements of the Hessian are

∂p∂qV =GiaGbjiFabpq(αi +Mkτki)(αj +M rτ rj)

+ 2GiaGbcGdjiFabpiFcdq(αi +Mkτki)(αj +M rτ rj)

∂q∂qV =−GiaGbcGdjiFabpiFcdq(αi +Mkτki)(αj +M rτrj)

−GicGdaGbjiFabpiFcdq(αi +Mkτki)(αj +M rτ rj)

(2.2.7)
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where we have denoted ∂cτab = Fabc, and similarly for higher derivatives of τ .
In the limit where all the ’t Hooft couplings g2

iNi are very small, the sizes of the dual
three-cycles Sa = Λ3

a are small compared to the separations between them, so we can keep
only the leading terms in the expansion of F0 in powers of S, i.e., the one-loop terms in
the matrix model. At one-loop, the third and fourth derivatives of the prepotential are
nonzero only if all of the derivatives are with respect to the same variable. Expanding
about the physical solution to this order,

αa +
∑

Mb>0

τabMb +
∑

Mb<0

τabMb = 0. (2.2.8)

The nonvanishing elements of the Hessian are

∂i∂jV =
1

4π2

|M iM j |
SiSj

Gij i, j opposite type

∂i∂jV =
1

4π2

|M iM j |
SiSj

Gij i, j same type

(2.2.9)

where the ‘type’ of an index refers to whether it corresponds to branes or antibranes.
To get a measure of supersymmetry breaking, consider the fermion bilinear couplings.

Before turning on fluxes, the theory has N = 2 supersymmetry, and the choice of super-
potential (2.1.6) breaks this explicitly to N = 1. For each three-cycle, we get a chiral
multiplet (Si, ψi) and a vector multiplet (Ai, λi) where ψi, λi are a pair of Weyl fermions.
It is easy to work out [4] that the coefficients of the nonvanishing fermion bilinears are

mψaψb =
1

2
Gcd(αd +M eτde)Fabc,

mλaλb =
1

2
Gcd(αd +M eτde)Fabc,

and evaluating this in the vacuum we find

mψaψb = − 1

4π

Ma + |Ma|
Sa

δab,

mλaλb = − 1

4π

Ma − |Ma|
Sa

δab.

Bose-Fermi degeneracy is restored in the limit where we take

(Gij)
2/GiiGjj ≪ 1, i, j opposite type.

In this limit we get a decoupled system of branes and antibranes except that for nodes
wrapped with branes, the Sa get paired up with ψ’s, and for nodes wrapped with an-
tibranes they pair with λ’s, corresponding to a different half of N = 2 supersymmetry
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being preserved in the two cases.22 This is the limit of extremely weak ’t Hooft coupling,
and the sizes of the cuts are the smallest scale in the problem by far

Λi
∆
≪ aij

Λ0
,

∆

Λ0
< 1. (2.2.10)

In this limit the Hessian is manifestly positive definite. In fact the Hessian is positive def-
inite as long as the one-loop approximation is valid. To see this note that the determinant
of the Hessian is, up to a constant, given by

Det(∂2V ) ∼
(

1

DetG

n∏

i=1

∣∣∣∣
M i

Si

∣∣∣∣
2
)2

. (2.2.11)

It is never zero while the metric remains positive definite, so a negative eigenvalue can
never appear. Thus, one can conclude that as long as all the moduli are in the regime
where the ’t Hooft couplings are small enough for the one-loop approximation to be valid,
the system will remain stable to small perturbations.

Let’s now find how the solutions are affected by the inclusion of higher order correc-
tions. At two loops, an exact analysis of stability becomes difficult in practice. However, in
various limits one can recover systems which can be understood quite well. For simplicity,
we will assume that the αi are all pure imaginary, and all the parameters aij and Λ0 are
purely real. Then there are solutions where the Si are real. In appendix 2.B, we show that
in this case, upon including the two-loop terms, the determinant of the Hessian becomes

(
Det Gab

)2
(
∏

c

|M c|
iFccc

)4

Det

(
δcb +Gcb

iFbbbbδb
iFbbbiFccc|M c|

)
Det

(
δcb −Gcb

iFbbbbδb
iFbbbiFccc|M c|

)

(2.2.12)
where

δk =
1

2|Mk|Fkkk
Fkab(−|Ma||M b|+MaM b) (2.2.13)

and δcb is the Kronecker delta. The first two terms in (2.2.12) never vanish, since the
metric has to remain positive definite, so we need only analyze the last two determinants.
We can plug in the one-loop values for the various derivatives of the prepotential, and in
doing so obtain

Det

(
δab ± 2πGab

Sa

∆3

xb

|Ma|

)
= 0 (2.2.14)

with either choice of sign. Above, we have rewritten eq. (2.2.13) as

δa =
Sa

∆3
xa. (2.2.15)

This is a convenient rewriting because S/∆3 is the parameter controlling the loop expan-
sion, and xa is simply a number which depends on the N i but no other parameters.

22 The kinetic terms of both bosons and fermions are computed with the same metric Gab.

– 50 –



Consider the case where, for some i, a given S3
i grows much larger than the other two.

We can think of this as increasing the effective ’t Hooft coupling for that node, or more
precisely, increasing (ΛMi

∆

)3

= exp
(
− 1

|Mi|g2
i,eff (∆)

)
.

Recall that the two-loop equations of motion for real Si, are given by

g−2
i,eff (∆) = −|Mi| log(| Si

∆3
|) +Gikδ

k (2.2.16)

where
g−2
1,eff(∆) = g−2

1 (Λ0)− |M1|(L12 + L13) + |M2|L12 − |M3|L13

g−2
2,eff(∆) = g−2

2 (Λ0)− |M2|(L12 + L23) + |M1|L12 − |M3|L13

g−2
3,eff(∆) = g−2

3 (Λ0)− |M3|(L13 + L23)− |M1|L13 − |M2|L23.

Here we’ve adopted the notation Lij = log Λ0

aij
and the δk are as defined in (2.2.13). Note

that in each case, two of the equations can be solved straight off. It is the remaining
equations which provide interesting behavior and can result in a loss of stability. Corre-
spondingly, the vanishing of the Hessian determinant in (2.2.12) is then equivalent to the
vanishing of its ii entry (where we have assumed a vacuum at real S):

1±Gii
Si
∆3

xi
|Mi|

= 0. (2.2.17)

We will see that we can approximate

Gii = − log(| Si
∆3
|) + Li ∼ Li

where we have defined
Li = Lij + Lik, i 6= j 6= k,

so this provides the following conditions:

±1 = Li
xi
|Mi|

Si
∆3

. (2.2.18)

The above equation, taken with positive sign, is equivalent to the condition for stability
being lost by setting the determinant of the gradient matrix of the equations to zero. The
equation with minus sign comes from losing stability in imaginary direction. Correspond-
ingly, the equation of motion for the one node with growing ’t Hooft coupling becomes

g−2
i,eff = −|Mi| log

Si
∆3

+ Lixi
Si
∆3

. (2.2.19)

One of the equations (2.2.18) must be solved in conjunction with (2.2.19) if stability is to
be lost.

– 51 –



The sign of xi can vary depending on the specifics of the charges. In all the cases, as the
effective ’t Hooft coupling increases, solutions move to larger values of Si. For sufficiently
large values, in the absence of some special tuning of the charges, (2.2.18) will be satisfied
for one of the two signs. The only question then is whether the Si can get large enough,
or whether a critical value above which the equation of motion can no longer be solved is
reached before an instability sets in. In the equation above, if xi is negative, then there
will be no such critical value, and Si can continue to grow unbounded. Correspondingly, a
large enough value of the ’t Hooft coupling can always be reached where (2.2.18) is satisfied
with negative sign. Alternatively, if the coefficient xi is positive, there will be a critical
value for Li at which the right hand side of the equation takes a minimum value. This

occurs at (Si,∗/∆
3) = |Mi|

xiLi
, which is precisely (2.2.18) with positive left hand side. So, for

any value of xi an instability develops at finite effective ’t Hooft coupling corresponding
to

Si,∗
∆3

=
|Mi|
|xi|Li

,

or more precisely, at

|Mi|g2
i,eff(∆) = log−1(

|Mi|
xiLi

).

This critical value of the effective ’t Hooft coupling can be achieved by increasing the num-
ber of branes on that node, or, in case of nodes one and two, by letting the corresponding
bare ’t Hooft coupling increase. This is true as long as supersymmetry is broken and the
corresponding two-loop correction is nonvanishing, i.e. as long as xi 6= 0. It is reasonable
to suspect that in the degenerate case, where charges conspire to set xi to zero even with
broken supersymmetry, the instability would set in at three loops.

It is natural to ask the fate of the system once metastability is lost. It should be the
case [37] that it rolls to another a critical point corresponding to shrinking the one compact
B-type cycle, B1 +B2 −B3. To describe this point in the moduli space, introduce a new
basis of periods in which this shrinking B-cycle becomes one of the A periods:

∮

A′
1

H = M1 +M3,

∮

A′
2

H = M2 +M3,

∮

A′
3

H = 0,

∫

B′
1

H = α1,

∫

B′
2

H = α2,

∫

B′
3

H = M3,

where H = HRR+τHNS . In particular, there is no flux through the new cycle A′
3. In fact,

by setting M1 = M2 = −M3 = M , there is no flux through any of the A′ cycles.23 For
S′
i =

∫
A′ Ω sufficiently large that we can ignore the light D3 branes wrapping this cycle,

τ ′ii ∼
1

2πi
log

S′
i

∆3
, τ ′i6=j ∼ const,

23 In the more general case, the system should be attracted to a point where only A′

3 shrinks.
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it is easy to see that the system has an effective potential that would attract it to the point
where the S′

i = 0 and the cycles shrink:

Veff ∼ V0 +
∑

i

∣∣∣ ci

log | S
′
i

∆3 |

∣∣∣
2

where ci ∼
∫
B′

i

H. By incorporating the light D3 branes wrapping the flux-less, shrinking

cycles, the system would undergo a geometric transition to a non-Kähler manifold [63].
There, the cycle shrinks and a new two-cycle opens up, corresponding to condensing a D3
brane hypermultiplet. However, this two-cycle becomes the boundary of a compact three-
cycle B′ which get punctured in the transition that shrinks the A′ cycles. A manifold
where such a two-cycle has nonzero volume is automatically non-Kähler, but it is super-
symmetric. As we will review shortly, the shrinking cycle A′

3 is also the cycle wrapped by
the D5 brane domain walls that mediate the nonperturbative decay of the metastable flux
vacua. The loss of metastability seems to be correlated with existence of of a point in the
moduli space where the domain walls become light and presumably fluxes can annihilate
classically (this also happened in the A1 model studied in [37]). In particular, in the last
section of this chapter, we will provide two examples of a system where the corresponding
points in the complex structure moduli space are absent, but which are exactly stable
perturbatively even though they are non-supersymmetric (one of them will be stable non-
perturbatively as well). It must be added, as discussed in [37], that it is far from clear
whether the light domain walls can be ignored, and so whether the system truly rolls down
to a supersymmetric vacuum. A more detailed analysis of the physics at this critical point
is beyond the scope of this chapter.

It was suggested in [37] that the loss of stability might be related to the difference
in the value of V∗ between the starting vacuum and a vacuum to which it might tunnel
becoming small, and thus the point where Coulomb attraction starts to dominate in a
subset of branes. In the more complicated geometries at hand, it seems that such a simple
statement does not carry over. This can be seen by noting that, for certain configurations
of brane charges in our case, an instability can be induced without having any effect on
the ∆V∗ between vacua connected by tunneling events. We are led to conclude that the
loss of stability is a strong coupling effect in the non-supersymmetric system, which has
no simple explanation in terms of our open string intuition. This should have perhaps
been clear, in that the point to which the system apparently rolls has no straightforward
explanation in terms of brane annihilation.

2.2.5. Decay rates

We now study the decays of the brane/antibrane systems of the previous section. This
closely parallels the analysis of [4]. We have shown that when the branes and antibranes
are sufficiently well-separated, the system is perturbatively stable. Non-perturbatively, the
system can tunnel to lower energy vacua, if they are available. In this case, the available
vacua are constrained by charge conservation – any two vacua with the same net charges

N1 = M1 +M3, N2 = M2 +M3
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are connected by finite energy barriers. The false vacuum decay proceeds by the nucleation
of a bubble of lower energy vacuum.

The decay process is easy to understand in the closed string language. The vacua are
labeled by the fluxes through the three S3’s

∫

AI

HRR = MI . I = 1, 2, 3

Since RR three-form fluxes jump in going from the false vacuum to the true vacuum, the
domain walls that interpolate between the vacua are D5 branes. Over a D5 brane wrapping
a compact three-cycle C in the Calabi-Yau, the fluxes jump by an amount

∆MI = #(C ∩ AI)

In the present case, it is easy to see that there is only one compact three-cycle C that
intersects the A-cycles,

C = B1 +B2 −B3.

So, across a D5 brane wrapping C, the fluxes through A1,2 decrease by one unit, and the
flux through A3 increases by one unit. Note that this is consistent with charge conservation
for the branes. In fact, the domain walls in the open and the closed picture are essentially
the same. In the open string language, the domain wall is also a D5 brane, but in this case
it wraps a three-chain obtained by pushing C through the geometric transition. The three-
chain has boundaries on the minimal S2’s, and facilitates the homology relation (2.2.1)
between the two-cycles.

The decay rate Γ is given in terms of the action Sinst of the relevant instanton.

Γ ∼ exp(−Sinst)

Since the Calabi-Yau we have been considering is non-compact, we can neglect gravity,
and the instanton action is given by

Sinst =
27π

2

S4
D

(∆V∗)3

where SD is the tension of the domain wall, and ∆V∗ is the change in the vacuum energy
across the domain wall. While this formula was derived in [34] in a scalar field theory, it
is governed by energetics, and does not depend on the details of the theory as long as the
semi-classical approximation is applicable.

In the present case, the tension of the domain wall is bounded below by

SD =
1

gs

∫

C

Ω, (2.2.20)

since the
∫
C

Ω computes the lower bound on the volume of any three-cycle in this class,
and the classical geometry is valid to the leading order in 1/N , the order to which we
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are working. The tension of the domain wall is thus the same as the tension of a domain
wall interpolating between the supersymmetric vacua, and to leading order (open-string
tree-level) this is given by the difference between the tree-level superpotentials (2.1.6)

∫

C

Ω ∼W3(a3)−W1(a1)−W2(a2) =
1

2
∆3,

where ∆3 is defined in (2.2.3). This is just the “holomorphic area” of the triangle in figure
2.1. The area is large as long as all the brane separations are large, and as long as this is
so, it is independent of the fluxes on the two sides of the domain wall.

At the same time, the difference in the potential energy between the initial and the
final states is given by the classical brane tensions,

∆V = Vi − Vf =
∑

I

(|MI | − |M ′
I |)/g2

I .

The fate of the vacuum depends on the net charges. If N1,2 are both positive, then
the true vacuum is supersymmetric. Moreover, there is a landscape of degenerate such
vacua, corresponding to all possible ways of distributing branes consistent with charge
conservation such that M ′

I are all positive. Starting with, say, (M1,M2,M3) = (N1 +
k,N2 + k,−k), where k > 0, this can decay to (N1, N2, 0) since

∆V = Vi − Vf = 2
k|r3|
gs

,

corresponding to k branes on S2
3 getting annihilated, where r3 is the Kähler area of S2

3 .
The decay is highly suppressed as long as string coupling gs is weak and the separation
between the branes is large. The action of the domain wall is k times that of (2.2.20),24 so

Sinst =
27π

32

k

gs

|∆|12
|r3|3

=
27π

32

|g3|3
g4
s

k|∆|12. (2.2.21)

The instanton action (2.2.21) depends on the cutoff scale Λ0 due to the running of the gauge
coupling g−2

3 (Λ0). The dependence on Λ0 implies [45] that (2.2.21) should be interpreted
as the rate of decay corresponding to fluxes decaying in the portion of the Calabi-Yau
bounded by Λ0.

If instead we take say N1 > 0 > N2, then the lowest energy state corresponds to N1

branes on node 1, N2 antibranes on node 2, with node 3 unoccupied. This is the case at
least for those values of parameters corresponding to the system being weakly coupled.
In this regime, this particular configuration gives an example of an exactly stable, non-
supersymmetric vacuum in string theory – there is no other vacuum with the same charges
that has lower energy. Moreover, as we will discuss in section 6, for some special values of
the parameters m1,2 the system is exactly solvable, and can be shown to be exactly stable
even when the branes and the antibranes are close to each other.

24 All quantities being measured in string units.
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2.3. Generalizations

Consider now other ADE fibrations over the complex plane. As in (2.1.1) we start
with the deformations of two-complex-dimensional ALE singularities:

Ak : x2 + y2 + zk+1 = 0

Dr : x2 + y2z + zr−1 = 0

E6 : x2 + y3 + z4 = 0

E7 : x2 + y3 + yz3 = 0

E8 : x2 + y3 + z5 = 0

and fiber these over the complex t plane, allowing the coefficients parameterizing the de-
formations to be t dependent. The requisite deformations of the singularities are canonical
(see [31] and references therein). For example, the deformation of the Dr singularity is

x2 + y2z + z−1(

r∏

i=1

(z − z2
i )−

r∏

i=1

z2
i ) + 2

r∏

i=1

zi y.

In fibering this over the t plane, the zi become polynomials zi(t) in t.25 After deformation,
at a generic point in the t plane, the ALE space is smooth, with singularities resolved by
a set of r independent two-cycle classes

S2
i , i = 1, . . . r

where r is the rank of the corresponding Lie algebra. The two-cycle classes intersect
according to the ADE Dynkin diagram of the singularity:

Fig. 2.3. Dynkin diagrams of the ADE Lie algebras. Every node corresponds to a simple root

and to a two-cycle class of self intersection −2 in the ALE space. The nodes that are linked

correspond to two-cycles which intersect with intersection number +1.

25 This is the so called “non-monodromic” fibration. The case where the zi are instead multi-

valued functions of t corresponds to the “monodromic” fibration [31].
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The deformations can be characterized by “superpotentials”,

W ′
i (t) =

∫

S2
i,t

ω2,0,

which compute the holomorphic volumes of the two-cycles at fixed t. For each positive
root eI , which can be expanded in terms of simple roots ei as

eI =
∑

I

niIei

for some positive integers niI , one gets a zero-sized, primitive two-cycle at points in the
t-plane where

W ′
I(t) =

∑

i

niIW
′
i (t) = 0. (2.3.1)

Blowing up the singularities supplies a minimal area to the two-cycles at solutions of
(2.3.1),

t = aI,p,

where I labels the positive root and p runs over all the solutions to (2.3.1) for that root.
As shown in [31] and references therein, the normal bundles to the minimal, holomor-

phic S2’s obtained in this way are always O(−1)⊕O(−1), and correspondingly the S2’s are
isolated.26 This implies that when branes or antibranes are wrapped on the S2’s, there is
an energy cost to moving them off. Moreover, the parameters that enter into defining the
Wi, as well as the Kähler classes of the S2’s, are all nondynamical in the Calabi-Yau. As a
consequence, if we wrap branes and antibranes on minimal S2’s, the non-supersymmetric
system obtained is metastable, at least in the regime of parameters where the S2’s are well
separated.

The ALE fibrations have geometric transitions in which each minimal S2 is replaced
by a minimal S3. A key point here is that none of the two-cycles have compact, dual four-
cycles, so the transitions are all locally conifold transitions. The one-loop prepotential F0

for all these singularities was computed in [52], and is given by

2πiF0(S) = 1
2

∑
b S

2
b

(
log
(

Sb

W ′′
I

(ab) Λ2
0

)
− 3

2

)
+ 1

2

∑
b6=c eI(b) · eJ(c) Sb Sc log

(
abc

Λ0

)
,

(2.3.2)
where the sum is over all critical points b = (I, p), and I(b) = I denotes the root I to which
the critical point labeled by b corresponds. We are neglecting cubic and higher order terms

26 In [31] the authors also considered the monodromic ADE fibrations, where the two-cycles of

the ALE space undergo monodromies around paths in the t plane. In this case, the novelty is

that the S2’s can appear with normal bundles O ⊕ O(−2) or O(−1) ⊕ O(3). Wrapping branes

and antibranes on these cycles is not going to give rise to new metastable vacua, since there will

be massless deformations moving the branes off of the S2’s. It would be interesting to check this

explicitly in the large N dual.
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in the SI,p, which are related to higher loop corrections in the open string theory. Above,
WI(t) is the superpotential corresponding to the root eI , and eI · eJ is the inner product
of two positive, though not necessarily simple, roots. Geometrically, the inner product is
the same as minus the intersection number of the corresponding two-cycles classes in the
ALE space.

Consider wrapping Mb branes or antibranes on the minimal S2’s labeled by b = (I, p).
We will take all the roots to be positive, so we get branes or antibranes depending on
whether Mb is positive or negative. The effective superpotential for the dual, closed-string
theory is given by (2.1.9). From this and the corresponding effective potential (2.1.10), we
compute the expectation values for Sb in the metastable vacuum to be

Sb
|Mb|

=
(
Λ2

0 W
′′
I (ab)

)|Mb|
Mc<0∏

b6=c

(abc
Λ0

)|Mc|
Mc>0∏

c

(abc
Λ0

)|Mc|

exp(−2πiαI(b)), Mb < 0

Sb
|Mb| =

(
Λ2

0 W
′′
I (ab)

)|Mb|
Mc>0∏

b6=c

(abc
Λ0

)|Mc|
Mc<0∏

c

(abc
Λ0

)|Mc|

exp(−2πiαI(b)). Mb > 0

The value of the effective potential at the critical point is given by

V∗ =
∑

b

|Mb|
g2
I(b)

+

Mb>0>Mc∑

b,c

1

2π
eI(b) · eJ(c) log

(∣∣∣abc
Λ0

∣∣∣
)
.

The first term in the potential is just the contribution of the tensions of all the branes
and antibranes. The second term comes from the Coulomb and gravitational interactions
between branes, which is a one-loop effect in the open string theory. As expected, at this
order only the brane/antibrane interactions affect the potential energy. The open strings
stretching between a pair of (anti)branes, are supersymmetric, and the (anti)branes do not
interact. The interactions between branes and antibranes depend on

eI · eJ

which is minus the intersection number – in the ALE space – of the two-cycle classes
wrapped by the branes. The branes and antibranes attract if the two-cycles they wrap
have negative intersection, while they repel if the intersection number is positive, and do
not interact at all if the two-cycles do not intersect.

For example, consider the Ak quiver case, and a set of branes and antibranes wrapping
the two-cycles obtained by blowing up the singularities at

zi(t) = zj(t), zm(t) = zn(t)

where i < j and m < n. The branes do not interact unless i or j coincide with either m or
n. The branes attract if i = m or j = n, in which case the intersection is either −1 or −2,
depending on whether one or both of the above conditions are satisfied. This is precisely
the case when the branes and antibranes can at least partially annihilate. If j = m or
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i = n, then the two-cycles have intersection +1, and the branes repel. In this case, the
presence of branes and antibranes should break supersymmetry, but there is a topological
obstruction to the branes annihilating, even partially. In fact, in the Ak type ALE spaces,
this result is known from the direct, open string computation [54,55]. The fact that the
direct computation agrees with the results presented here is a nice test of the conjecture
of [4].

2.4. A Non-Supersymmetric Seiberg Duality

In the supersymmetric case, with all MI positive, the engineered quiver gauge theories
have Seiberg-like dualities. In string theory, as explained in [52], the duality comes from
an intrinsic ambiguity in how we resolve the ADE singularities to formulate the brane
theory.27 The different resolutions are related by flops of the S2’s under which the charges
of the branes, and hence the ranks of the gauge groups, transform in nontrivial ways. The
RG flows, which are manifest in the large N dual description, force some of the S2’s to
shrink and others to grow, making one description preferred over the others at a given
energy scale. In this section, we argue that Seiberg dualities of this sort persist even when
some of the branes are changed to antibranes and supersymmetry is broken.

2.4.1. Flops as Seiberg dualities

For a fixed set of brane charges, one can associate different Calabi-Yau geometries.
There is not a unique way to blow up the singularity where an S2 shrinks, and the different
blowups are related by flops that shrink some two-cycles and grow others. Instead of giving
a two-cycle class S2

i a positive Kähler volume

ri =

∫

S2
i

BNS

we can give it a negative volume, instead. This can be thought of as replacing the two-cycle
class by one of the opposite orientation

S2
i → S̃2

i = −S2
i .

The flop of a simple root S2
i acts as on the other roots as a Weyl reflection which permutes

the positive roots
S2
j → S̃2

j = S2
j − (ej · ei) S2

i . (2.4.1)

The net brane charges change in the process, but in a way consistent with charge conser-
vation ∑

i

Ni S
2
i =

∑

i

Ñi S̃
2
i . (2.4.2)

27 The idea that Seiberg dualities have a geometric interpretation in string theory goes back

a long while, see for example [64-68]. The fact that these dualities arise dynamically in string

theory has for the first time been manifested in [23,52].
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We can follow how the number of branes wrapping the minimal two-cycles change in this
process. If i is the simple root that gets flopped,28 then Mi,p goes to M̃i,p = −Mi,p and
for other roots labeled by J 6= i

MJ,p = M̃w(J),p (2.4.3)

where w(J) is the image of J under the Weyl group action.
The size of the wrapped S2 is proportional to the inverse gauge coupling for the theory

on the wrapping branes,

g−2
i (t) ∝ 1

gs

∫

S2
i,t

BNS , (2.4.4)

so the flop (2.4.1) transforms the gauge couplings according to

g−2
j → g̃−2

j = g−2
j − (ej · ei) g−2

i . (2.4.5)

Generally, there is one preferred description for which the gauge couplings are all positive.
In the geometry, we have the freedom to choose the sizes of the two-cycles S2

i,t at some
fixed high scale, but the rest of their profile is determined by the one-loop running of the
couplings (2.2.5) throughout the geometry and by the brane charges. The most invariant
way of doing this is to specify the scales Λi at which the couplings (2.4.4) become strong.
We can then follow, using holography, the way the B-fields vary over the geometry as one
goes from near where the S3’s are minimal, which corresponds to low energies in the brane
theory, to longer distances, far from where the branes were located, which corresponds
to going to higher energies. The S2’s have finite size and shrink or grow depending on
whether the gauge coupling is increasing or decreasing. We will see that as we vary the
strong coupling scales of the theory, we can smoothly interpolate between the two dual
descriptions. Here it is crucial that the gauge coupling going through zero is a smooth
process in the geometry: while the Kähler volume of the two-cycle vanishes as one goes
through a flop, the physical volume, given by (2.1.5), remains finite. Moreover, we can
read off from the geometry which description is the more appropriate one at a given scale.

2.4.2. The A2 example

For illustration, we return to the example of the A2 quiver studied in section 3. To
begin with, for a given set of charges Mi, we take the couplings g−2

i of the theory to be
weak at the scale ∆ set by the “superpotential”. This is the characteristic scale of the
open-string ALE geometry. Then Si/∆

3 is small in the vacuum, and the weak coupling
expansion is valid. From (2.2.5), we can deduce the one-loop running of the couplings with
energy scale µ = t

µ
d

dµ
g−2
1 (µ) = (2|M1|+ |M3| − |M2|), µ

d

dµ
g−2
2 (µ) = (2|M2|+ |M3| − |M1|). (2.4.6)

28 Flopping non-simple roots can be thought of in terms of a sequence of simple node flops, as

this generates the full Weyl group.
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Suppose now, for example

2|M1|+ |M3| ≤ |M2|, (2.4.7)

so then at high enough energies, g−2
1 (µ) will become negative, meaning that the size of

S2
i,t has become negative. To keep the size of all the S2’s positive, at large enough t, the

geometry undergoes a flop of S2
1 that sends

S2
1 → S̃2

1 = −S2
1

S2
2 → S̃2

2 = S2
2 + S2

1 ,
(2.4.8)

and correspondingly,

Ñ1 = N2 −N1, Ñ2 = N2, (2.4.9)

while

M̃1 = −M1, M̃2 = M3, M̃3 = M2. (2.4.10)

Recall the supersymmetric case first. The supersymmetric case with M1 = 0 was studied
in detail in [52]. It corresponds to a vacuum of a low energy U(N1)×U(N2), N = 2 theory
where the superpotential breaks the gauge group to U(M2)×U(M3). The formulas (2.4.6)
are in fact the same as in the supersymmetric case, when all the Mi are positive – the beta
functions simply depend on the absolute values of the charges. If (2.4.7) is satisfied, the
U(N1) factor is not asymptotically free, and the coupling grows strong at high energies.
There, the theory is better described in terms of its Seiberg dual, the asymptotically free
U(Ñ1)× U(Ñ2) theory, broken to U(M̃2)× U(M̃3) by the superpotential.29 The vacua at
hand, which are visible semi-classically in the U(N1)×U(N2) theory, are harder to observe

in the U(Ñ1)×U(Ñ2) theory, which is strongly coupled at the scale of the superpotential.
But, the duality predicts that they are there. In particular, we can smoothly vary the strong
coupling scale ΛN1

of the original theory from (i) ΛN1
< ∆ < µ, where the description

at scale µ is better in terms of the original U(N1)× U(N2) theory, to (ii) ∆ < µ < ΛN1
,

where the description is better in terms of the dual U(Ñ1)× U(Ñ2) theory.
For the dual description of a theory to exist, it is necessary, but not sufficient (as

emphasized in [12]), that the brane charges at infinity of the Calabi-Yau be the same in
both descriptions. In addition, the gauge couplings must run in a consistent way. In this
supersymmetric A2 quiver, this is essentially true automatically, but let’s review it anyway
with the non-supersymmetric case in mind. On the one hand, (2.4.5) implies that the
under the flop, the couplings transform as

g−2
1 (µ)→ g̃−2

1 (µ) = −g−2
1 (µ)

g−2
2 (µ)→ g̃−2

2 (µ) = g−2
1 (µ) + g−2

2 (µ).
(2.4.11)

29 The superpotential of the dual theory is not the same as in the original. As explained in [52],

we can think of the flop as permuting the z′i(t), in this case exchanging z′1(t) with z′2(t), which

affects the superpotential as W1(Φ1) → −W1(Φ1), and W2(Φ2) →W1(Φ2) +W2(Φ2).
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On the other hand, from (2.2.5) we know how the couplings g̃−2
i corresponding to charges

M̃i run with scale µ. The nontrivial fact is that the these two are consistent – the flop
simply exchanges M̃2 = M3 and M̃3 = M2, and this is consistent with (2.4.11).

Now consider the non-supersymmetric case. Let’s still take M1 = 0, but now with
M2 > 0 > M3, such that (2.4.7) is satisfied. It is still the case that if we go to high
enough energies, i.e. large enough µ, the gauge coupling g−2

1 will become negative, and
the corresponding S2

1 will undergo a flop. We can change the basis of two-cycles as in
(2.4.5) and (2.4.8) so that the couplings are all positive, and then the charges transform
according to (2.4.10). Moreover, just as in the supersymmetric theory, after the flop the

gauge couplings run exactly as they should given the new charges M̃i, which are again
obtained by exchanging node two and three. Moreover, by varying the scale ΛN1

where
g−2
1 becomes strong, we can smoothly go over from one description to the other, just as

in the supersymmetric case. For example, in the A2 case we have a non-supersymmetric
duality relating a U(|N1|) × U(N2) theory, where the rank N1 = M3 is negative and

N2 = M2 +M3 positive, which is a better description at low energies, to a U(Ñ1)×U(Ñ2)

theory with positive ranks Ñ1 = N2 − N1 = M2 and Ñ2 = N2 = M2 + M3, which is a
better description at high energies.

More generally, one can see that this will be the case in any of the ADE examples of
the previous section. This is true regardless of whether all MI,p are positive and super-
symmetry is unbroken, or they have different signs and supersymmetry is broken. In the
case where supersymmetry is broken, we have no gauge theory predictions to guide us, but
it is still natural to conjecture the corresponding non-supersymmetric dualities based on
holography. Whenever the charges are such that in going from low to high energies a root
ends up being dualized

S2
i,p → −S2

i,p,

there should be a non-supersymmetric duality relating a brane/antibrane system which
is a better description at low energies to the one that is a better description at high
energies, with charges transforming as in (2.4.2) and (2.4.3). The theories are dual in the
sense that they flow to the same theory in the IR, and moreover, there is no sharp phase
transition in going from one description to the other. This can be seen from the fact that
by varying the strong coupling scales of the theory, one can smoothly interpolate between
one description and the other being preferred at a given energy scale µ. We don’t expect
these to correspond to gauge theory dualities (in the sense of theories with a finite number
of degrees of freedom and a separation of scales), but we do expect them to be string
theory dualities.

2.4.3. Dualizing an occupied root

When an occupied node gets dualized, negative ranks M < 0 will appear. This is true
even in the supersymmetric case. It is natural to wonder whether this is related to the
appearance of non-supersymmetric vacua in a supersymmetric gauge theory. Conversely,
starting with a non-supersymmetric vacuum at high energies, one may find that the good
description at low energies involves all the charges being positive. We propose that when
an occupied node gets dualized, there is essentially only one description which is ever
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really weakly coupled. In particular, “negative rank” gauge groups can appear formally
but never at weak coupling. Moreover, while the supersymmetric gauge theories can have
non-supersymmetric vacua, the phenomenon at hand is unrelated to that. This is in tune
with the interpretation given in [52].

Consider the A2 theory in the supersymmetric case, M̃1,2,3 > 0, with both gauge

groups U(Ñ1,2) being asymptotically free. The U(Ñ1) × U(Ñ2) theory gives a good de-
scription at low energies, for

Λ
Ñ1
≪ ∆

where ∆ is the characteristic scale of the ALE space, and Λ
Ñ1

is the strong coupling scale

of the U(Ñ1) theory. Now consider adiabatically increasing the strong coupling scale until

Λ
Ñ1
≥ ∆.

Then the U(N1)×U(N2) description appears to be better at low energies, with N ’s related
as in Namely, from (2.4.11) we can read off the that the strong coupling scales match up
as ΛN1

= Λ
Ñ1

, so at least formally this corresponds to a more weakly coupled, IR free

U(N1) theory. However, after dualizing node 1, its charge becomes negative

M̃1 = −M1.

How is the negative rank M1 < 0 consistent with the theory having a supersymmetric
vacuum?

The dual theory clearly cannot be a weakly coupled theory. A weakly coupled theory
of branes and antibranes breaks supersymmetry, whereas the solution at hand is super-
symmetric. Instead, as we increase ΛN1

and follow what happens to the supersymmetric
solution, the scale ΛM1

associated with gaugino condensation on node 1 increases as well,
∆ < ΛM1

∼ ΛN1
, and we find that at all energy scales below ΛM1

we have a strongly
coupled theory, without a simple gauge theoretic description. The holographic dual theory
of course does have a weakly coupled vacuum with charges M1 < 0, M2,3 > 0, which breaks
supersymmetry. However, the gauge couplings in this vacuum run at high energies in a
different way than in the supersymmetric U(N1) × U(N2) gauge theory. As emphasized
in [12], this means we cannot interpret this non-supersymmetric vacuum as a metastable
state of the supersymmetric gauge theory.

We could alternatively start with a weakly coupled, non-supersymmetric A2 theory
with M1 < 0, M2,3 > 0. If (2.4.7) is not satisfied, the theory is asymptotically free.
Increasing the strong coupling scale ΛN1

of this theory until ΛN1
∼ ∆, the theory becomes

strongly coupled, and one is tempted to dualize it to a theory with M̃i > 0 at lower
energies. However, from the vacuum solutions in section 3, we can read off that, just as
in the supersymmetric case, this implies that the scale ΛM1

of the gaugino condensate of
node 1 becomes larger than the scale ∆, and no weakly coupled description exists. What
is new in the non-supersymmetric case is that, as we have seen in section 3, increasing the
strong coupling scale ΛM1

to near ∆ causes the system to lose stability.
Nevertheless, we can formally extend the conjectured Seiberg dualities to all the su-

persymmetric and non-supersymmetric vacua even when the node that gets dualized is
occupied, except that the dual description is, in one way or another, always strongly cou-
pled.
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2.5. A Very Simple Case

Let’s now go back to the A2 case studied in section 3 and suppose that two of the
masses are equal and opposite m1 = −m2 = −m, so30

z1(t) = 0, z2(t) = −mt, z3(t) = −m(t− a). (2.5.1)

It is easy to see from (2.1.4) that there are now only two critical points at t = 0 and t = a,
which get replaced by S2

1 and S2
3 . The third intersection point, which corresponds to the

simple root S2
2 , is absent here, and so is the minimal area two-cycle corresponding to it.

We study this as a special case since now the prepotential F0 can be given in closed form,
so the theory can be solved exactly. This follows easily either by direct computation from
the geometry, or from the corresponding matrix model (see appendix 2.A). The large N
dual geometry corresponds to the two S2’s being replaced by two S3’s:

x2 + y2 + z(z +mt)(z +m(t− a)) = s1(z +ma) + s3(z +m(t− a)).

The exact prepotential is given by

2πiF0(S) =
1

2
S2

1

(
log(

S1

mΛ2
0

)− 3

2

)
+

1

2
S2

3

(
log(

S3

mΛ2
0

)− 3

2

)
+ S1S3 log(

a

Λ0
). (2.5.2)

Fig. 2.4. There are only two minimal S2’s in the A2 geometry with m1 = −m2. The figure on

the left corresponds to the first blowup discussed in the text, with two minimal S2’s of intersection

number +1 in the ALE space wrapped by M1 anti-D5 branes and M3 D5 branes. The figure on

the right is the flop of this.

We can now consider wrapping, say, M1 antibranes on S2
1 and M3 branes on S2

3 . We
get an exact vacuum solution at

S1
|M1|

=
(
Λ2

0m
)|M1|( a

Λ0

)−|M3|

exp(−2πiα1),

S3
|M3| =

(
Λ2

0m
)|M3|( a

Λ0

)−|M1|

exp(−2πiα3),

30 More precisely, relative to the notation of that section, we’ve performed a flop here that

exchanges z1 and z2.
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where the potential between the branes is given by

V∗ =
|M1|
g2
1

+
|M3|
g2
3

+
1

2π
|M1||M3| log

(
| a
Λ0
|
)
.

Using an analysis identical to that in [4], it follows that the solution is always stable,
at least in perturbation theory. Borrowing results from [4], the masses of the four bosons
corresponding to fluctuations of S1,3 are given by

(m±(c))
2

=
(a2 + b2 + 2abcv)±

√
(a2 + b2 + 2abcv)2 − 4a2b2(1− v)2
2(1− v)2 (2.5.3)

and the masses of the corresponding fermions are

|mψ1
| = a

1− v , |mψ2
| = b

1− v (2.5.4)

where c takes values c = ±1, and

a =

∣∣∣∣
M1

2πΛ3
1Imτ11

∣∣∣∣ , b =

∣∣∣∣
M3

2πΛ3
3Imτ33

∣∣∣∣ . (2.5.5)

The parameter controlling the strength of supersymmetry breaking v is defined by

v =
(Imτ13)

2

Imτ11Imτ33
.

That v controls the supersymmetry breaking can be seen here from the fact that at v = 0,
the masses of the four real bosons become degenerate in pairs, and match up with the
fermion masses [4]. The masses of bosons are strictly positive since the metric on the
moduli space Imτ is positive definite, which implies

1 > v ≥ 0

ΛN1,2
≪ a

where ΛN1,2
is the scale at which the gauge coupling g−2

1,2 becomes strong.31

The fact that the system is stable perturbatively is at first sight surprising, since from
the open string description one would expect that for sufficiently small a an instability
develops, ultimately related to the tachyon that appears when the brane separation is
below the string scale. In particular, we expect the instability to occur when the coupling
on the branes becomes strong enough that the Coulomb attraction overcomes the tension
effects from the branes. However, it is easy to see that there is no stable solution for small
a. As we decrease a, the solution reaches the boundary of the moduli space,

Λ0 exp(− 1

g2
1,3|M3,1|

) < a,

31 From the solution, one can read off, e.g., g−2
1 = −(2|M1| + |M3|) log(

ΛN1

Λ0
).
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where Imτ is positive definite, before the instability can develop.32 Namely, if we view Λ0

as a cutoff on how much energy one has available, then for a stable solution to exist at
fixed coupling, the branes have to be separated by more than ∼ Λ0, and said minimum
separation increases as one moves towards stronger coupling. The couplings, however, do
run with energy, becoming weaker at higher Λ0, and because of that the lower bound on
a actually decreases with energy. Alternatively, as we will discuss in the next subsection,
there is a lower bound on how small |a| can get, set by the strong coupling scales ΛN1,2

of
the brane theory. When this bound is violated, the dual gravity solution disappears.

The fact that the system is perturbatively stable should be related to the fact that
in this case there is no compact B cycle. Namely, in section 3 we have seen that when
perturbative stability is lost, the system rolls down to a new minimum corresponding to
shrinking a compact B-cycle without flux through it. In this case, such a compact B-cycle
is absent, so the system has no vacuum it can roll away to, and correspondingly it remains
perturbatively stable.

The theory has another vacuum with the same charges, which can have lower energy.
This vacuum is not a purely closed string vacuum, but it involves branes. Consider, for
example, the case with M1 = −M3 = −M . In this case, the brane/antibrane system
should be exactly stable for large enough separation a. However, when a becomes small
enough, it should be energetically favorable to decay to a system with simply M branes
on S2

2 , which is allowed by charge conservation. This should be the case whenever

A(S2
2) ≤ A(S2

1) +A(S2
3)

where the areas on the right hand side refer to those of the minimal S2’s at the critical
points of W ′

1(t) = z1(t)− z2(t) and W ′
3(t) = z1(t)− z3(t),

A(S2
1) = |r1|, A(S2

3) = |r1|+ |r2|.

In the class of S2
2 , there is no holomorphic two-cycle, as W ′

2(t) = z2(t) − z3(t) = −ma
never vanishes, so

A(S2
2) =

√
|r2|2 + |ma|2. (2.5.6)

Clearly, when a is sufficiently small, the configuration with M branes on S2
2 should cor-

respond to the ground state of the system. If instead M1,3 are generic, we end up with a
vacuum with intersecting branes, studied recently in [50]. Here one has additional massless
matter coming from open strings at intersection of the branes, and correspondingly there
is no gaugino condensation and no closed string dual. As a result, the methods based on
holography we use here have nothing to say about this vacuum.

32 Since Im(τ) is a symmetric real matrix of rank two, a necessary condition for the eigenvalues

to be positive is that the diagonal entries are positive. The equation we are writing corresponds

to the positivity of the diagonal entries of Im(τ) evaluated at the critical point. For weak gauge

coupling, this is also the sufficient condition.
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2.5.1. A stable non-supersymmetric vacuum

Consider now the flop of the simple A2 singularity of the previous sub-section, where
z1 and z2 get exchanged,

z̃1(t) = −mt, z̃2(t) = 0, z̃3(t) = −m(t− a),

and where
S2

1 → S̃2
1 = −S2

1 .

We now wrap M̃1 < 0 antibranes on S̃2
1 and M̃2 > 0 branes on S̃2

2 . In this case, one
would expect the system to have a stable, non-supersymmetric vacuum for any separation
between the branes. This is the case because the system has nowhere to which it can decay.
Suppose we wrap one antibrane on S̃2

1 and one brane on S̃2
2 . If a cycle C exists such that

C = −S̃2
1 + S̃2

2 (2.5.7)

then the brane/antibrane system can decay to a brane on C. In the present case, such a C
does not exist. The reason for that is the following. On the one hand, all the curves in this
geometry come from the ALE space fibration, and moreover all the S2’s in the ALE space
have self intersection number −2. On the other hand, because the intersection number of
S̃2

1 and S̃2
2 is +1, (2.5.7) would imply that the self intersection of C is −6. So, the requisite

C cannot exist. The vacuum is, in fact, both perturbatively and nonperturbatively stable;
we will see that the holographic dual theory has no perturbative instabilities for any
separation between the branes.

Because the z’s have been exchanged and the geometry is now different; we get a new
prepotential F̃0 and effective superpotential

Weff =
∑

i=1,2

α̃i S̃i + M̃i ∂S̃i
F̃0(S̃) (2.5.8)

where

2πiF0(S̃) =
1

2
S̃2

1 (log(
S̃1

(−m)Λ2
0

)− 3

2
) +

1

2
S̃2

2 (log(
S̃2

mΛ2
0

)− 3

2
)− S̃1S̃2 log(

a

Λ0
).

Alternatively, we should be able to work with the old geometry and prepotential (2.5.2),
but adjust the charges and the couplings consistently with the flop. The charges and the
couplings of the two configurations are related by

M̃1 = −M1, M̃2 = M3, (2.5.9)

where M1,3 are now both positive, and

g̃−2
1 = −g−2

1 , g̃−2
2 = g−2

3 , (2.5.10)
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where g−2
1 is now negative. The effective superpotential is

Weff =
∑

i=1,3

αi Si +Mi ∂Si
F0(S), (2.5.11)

in terms of the old prepotential (2.5.2). Indeed, the two are related by F0(S1, S3) =

F̃0(S̃1, S̃2) and a simple change of variables

S̃1 = −S1, S̃2 = S3,

leaves the superpotential invariant. The critical points of the potential associated to
(2.5.11) with these charges are

S̃1

|M̃1|

=
(
Λ2

0m
)|M̃1|( a

Λ0

)|M̃2|

exp(−2πiα1)

S̃
|M̃2|
2 =

(
Λ2

0m
)|M̃2|( a

Λ0

)|M̃1|

exp(−2πiα2)

with effective potential at the critical point

V∗ =
|M̃1|
g̃2
1

+
|M̃2|
g̃2
2

− 1

2π
|M̃1||M̃2| log

(
| a
Λ0
|
)
.

The masses of the bosons in this vacuum are again given by (2.5.3)(2.5.5) with the obvious
substitution of variables. Just as in the previous subsection, the masses are positive in any
of these vacua. Moreover, because there are no two-loop corrections to the prepotential,
as we have seen in section 3, the vacuum is stable as long as the metric remains positive
definite. In the previous section, we expected an instability for small enough a, and found
that the perturbatively stable non-supersymmetric solution escapes to the boundary of the
moduli space (defined as the region where Imτ is positive definite) when this becomes the
case. In this case, we do not expect any instability for any a, as there is nothing for the
vacuum to decay to. Indeed, we find that Imτ is now positive definite for any a 6= 0.

The vacuum is stable perturbatively and nonperturbatively – there simply are no
lower energy states with the same charges available to which this can decay. So, this
gives an example of an exactly stable, non-supersymmetric vacuum in string theory, albeit
without four dimensional gravity.33 Moreover, since in this case there are no tachyons in
the brane/antibrane system, this should have a consistent limit where we decouple gravity
and stringy modes, and are left with a pure, non-supersymmetric, confining gauge theory,
with a large N dual description. This is currently under investigation [69].

33 This fact has been noted in [55].
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Appendix 2.A. Matrix Model Computation

Using large N duality in the B model topological string [58], the prepotential F0 of
the Calabi-Yau manifolds studied in this chapter can be computed using a matrix model
describing branes on the geometry before the transition. The same matrix model [19]
captures the dynamics of the glueball fields S in the N = 1 supersymmetric gauge theory
in space-time, dual to the Calabi-Yau with fluxes in the physical superstring theory. In this
appendix, we use these matrix model/gauge theory techniques to compute the prepotential
for Calabi-Yau manifolds which are A2 fibrations with quadratic superpotentials, as studied
in sections 3 and 6. To our knowledge, this computation has not previously been carried
out.

The matrix model is a U(N1) × U(N2) quiver with Hermitian matrices Φ1 and Φ2

which transform in the adjoint of the respective gauge groups, and bifundamentals Q and
Q̃ which correspond to the bifundamental hypermultiplets coming from 12 and 21 strings.
The relevant matrix integral is then given by

Z =
1

vol (U(N1)× U(N2))

∫
dΦ1dΦ2dQdQ̃ exp

(
1

gs
TrW(Φ1,Φ2, Q, Q̃)

)

where W is the superpotential of the corresponding N = 1 quiver gauge theory, given by

W = TrW1(Φ1) + TrW2(Φ2) + Tr(Q̃Φ1Q)− Tr(QΦ2Q̃) (2.A.1)

with

TrW1(Φ1) = −m1

2
Tr(Φ1 − a1idN1

)2, TrW2(Φ2) = −m2

2
Tr(Φ2 − a2idN2

)2.

The saddle points of the integral correspond to breaking the gauge group as

U(N1)× U(N2)→ U(M1)× U(M2)× U(M3) (2.A.2)

where
N1 = M1 +M3, N2 = M2 +M3,

by taking as expectation values of the adjoints and bifundamentals to be

Φ1,∗ =

(
a1 idM1

0
0 a3 idM3

)
, Φ2,∗ =

(
a2 idM2

0
0 a3 idM3

)

where a3 = (m1a1 +m2a2)/(m1 +m2), and

(QQ̃)∗ =

(
0 0
0 −W ′

1(a3) idM3

)
, (Q̃Q)∗ =

(
0 0
0 W ′

2(a3) idM3

)
,

where −W ′
1(a3) = m1(a1 − a3) = W ′

2(a3).
Now let’s consider the Feynman graph expansion about this vacuum. The end result

is a very simple path integral. However, to get there, we need to properly implement the
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gauge fixing (2.A.2), and this is somewhat laborious. It is best done in two steps. First,
consider fixing the gauge that simply reduces U(N1,2) to U(M1,2)× U(M3). This follows
[60] directly. Let

Φ1 =

(
Φ1

11 Φ1
13

Φ1
31 Φ1

33

)
.

To set the M1 ×M3 block in Φ1 to zero

F1 = Φ1
13 = 0

we insert the identity into the path integral in the form

id =

∫
dΛ δ(F1) Det(

δF1

δΛ
),

where the integral is over those gauge transformations not in U(M1)×U(M3). The deter-
minant can be expressed in terms of two pairs of ghosts, B13, B31 and C31, C13, which are
anticommuting bosons, as

Det(
δF1

δΛ
) =

∫
dB13dC31dB31dC13 exp

( 1

gs
Tr(B13Φ

1
33C31 − C31Φ

1
11B13)

)

exp
( 1

gs
Tr(B31Φ

1
11C13 − C13Φ

1
33B31)

)
.

By an identical argument, we can gauge fix the second gauge group factor

U(N2)→ U(M1)× U(M3)

to set the M2 ×M3 block of Φ2 to zero. We do this by again inserting the identity into
the path integral, but now with the determinant replaced by

Det(
δF2

δΛ
) =

∫
dB23dC32dB32dC23 exp

( 1

gs
Tr(B23Φ

2
33C32 − C32Φ

2
22B23)

)

exp
( 1

gs
Tr(B32Φ

2
22C23 − C23Φ

2
33B32)

)
.

Finally, since the vacuum will break the two copies of U(M3) to a single copy, we need
to gauge fix that as well. To do this, we will fix a gauge

F3 = Q33 − q id = 0

where Q33 refers to the 33 block of Q, and integrate over q. This is invariant under the
diagonal U(M3) only. To implement this, insert the identity in the path integral, written
as

id =

∫
dΛ33

∮
dq

q
δ(Q33 − q id) qM

2
3 .
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The above is the identity since

Det(
δF3

δΛ33
) = qM

2
3 ,

and we have taken the q-integral to be around q = 0. Inserting this, we can integrate out
Q33, and Q̃33. The Q33 integral sets it to equal q. The Q̃33 integral is a delta function
setting

Φ1
33 = Φ2

33, (2.A.3)

but there is a left over factor of q−M
2
3 from the Jacobian of δ(q(Φ1

33 − Φ2
33)). Integrating

over q gives simply 1.
The remaining fields include a pair of regular bosons Q13, Q̃31 in the bifundamental

representation of U(M1) × U(M3) and a pair of ghosts C13, B31, with exactly the same
interactions. Consequently, we can integrate them out exactly and their contribution is
simply 1. This also happens for Q32, Q̃23 and B23, C32, which also cancel out. We are left
with the spectrum presented in section 3 which very naturally describes branes with open
strings stretching between them.

2.A.1. A special case

In the special case when m2 = −m1 = m, the matrix integral is one-loop exact. To
begin with, the effective superpotential is given by (2.A.1) with

TrW1(Φ1) = −m
2

Tr(Φ1)
2, TrW2(Φ2) =

m

2
Tr(Φ2 − a idN2×N2

)2.

The theory now has only one vacuum, where Φ1 and Q, Q̃ vanish, and

Φ2 = a idN2×N2
.

Expanding about this vacuum, the superpotential can be re-written as

Weff = −m
2

TrΦ2
1 +

m

2
TrΦ2

2 − aTrQQ̃+ Tr(Q̃Φ1Q−QΦ2Q̃).

If we now redefine

Φ̃1 = Φ1 +
1

m
QQ̃, Φ̃2 = Φ2 +

1

m
Q̃Q,

the superpotential becomes quadratic in all variables, and the planar free energy is given
by the exact expression:

F0 =
S2

1

2

(
log

S1

mΛ2
0

− 3

2

)
+
S2

2

2

(
log

S2

(−m)Λ2
0

− 3

2

)
− S1S2 log

a

Λ0

There are higher genus corrections to this result, but they all come from the volume of the
U(N) gauge groups, and receive no perturbative corrections.
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Appendix 2.B. Geometrical Calculation of the Prepotential

One can derive the same prepotential by direct integration. We only sketch the com-
putation here. The equation for the geometry (2.2.2) can be rewritten

x2 + y2 + z(z−m1(t− a1))(z +m2(t− a2)) =

− s1m1(z +m2(t− a2))− s2m2(z −m1(t− a1))− s3m3z.
(2.B.1)

Here si are deformation parameters. This is a convenient rewriting of (2.2.2) because we
will find that the periods of the compact cycles are given by Si = si+O(S2). As mentioned
in the main text, the holomorphic three-form Ω of the Calabi-Yau descends to a one-form
defined on the Riemann surface obtained by setting x = y = 0 in (2.B.1). The equation
for the Riemann surface is thus

−1 =
m1s1

z(z −m1(t− a1))
+

m2s2
z(z +m2(t− a2))

+
m3s3

(z −m1(t− a1))(z +m2(t− a2)).
(2.B.2)

The one-form can be taken to be ω = zdt − tdz. The one-form is only defined up to a
total derivative; a total derivative changes only the periods of the non-compact cycles, and
our choice avoids quadratic divergences in the non-compact periods. These divergences
would not contribute to physical quantities in any case. The equation for the Riemann
surface is a cubic equation for z(t), so the Riemann surface has three sheets, which are
glued together along branch cuts. The compact periods are given by integrals around the
cuts, while the non-compact periods are given by integrals from the cuts out to a cutoff,
which we take to be t = Λ0.

It is convenient to make the change of variables

u =
−t+ a1 + z/m1

a21
v = −z m3

a21m1m2
(2.B.3)

where a21 = a2− a1. In the new variables, the equation for the Riemann surface takes the
simple form

1 =
s1
∆3

1

uv
− s2

∆3

1

v(u+ v + 1)
+

s3
∆3

1

u(u+ v + 1)
(2.B.4)

with ∆3 = (a2− a1)
2m1m2/m3 as in the main text. The change of variables is symplectic

up to an overall factor, so in the new variables the one-form becomes

ω = ∆3(udv − vdu). (2.B.5)

The change of variables makes it clear that we can think of the problem as having one
dimensionful scale ∆, and three dimensionless quantities, si/∆

3, which we will take to
be small. There are many other dimensionless quantities in the problem, such as mi/mj ,
but they do not appear in the rescaled equations so they will not appear in the periods,
with one small caveat. While the equation for the Riemann surface and the one-form only
depend on ∆ and si/∆

3, the cutoff is defined in terms of the original variables, t = Λ0, so
the cutoff dependent contributions to the periods can depend on the other parameters.
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We sketch how to compute one compact period and one non-compact period. Though
it is not manifest in our equations, the problem has a complete permutation symmetry
among (s1, s2,−s3), so this is actually sufficient. One compact cycle (call it S1) is related
to the region in the geometry where u and v are small, so that to a first approximation

1 ≈ s1
∆3

1

uv
. (2.B.6)

We expand (2.B.4) for small u, v to get

uv =
s1
∆3
− s2

∆3
u(1− u− v) +

s3
∆3

v(1− u− v) + . . . (2.B.7)

This will be sufficient for the order to which we are working, and the equation is quadratic.
We could solve for u(v) or v(u) in this regime; we would find a branch cut and integrate
the one-form around it. Equivalently, we can do a two dimensional integral

S1 = ∆3

∫
du ∧ dv (2.B.8)

over the region bounded by the Riemann surface (this is Stokes’ Theorem). One can
derive a general formula for the integral over a region bounded by a quadratic equation by
changing coordinates so that it is the integral over the interior of a circle. In this case, the
result is

S1 = s1 +
1

∆3
(s1s2 − s1s3 − s2s3) +O

(
s3

∆6

)
. (2.B.9)

The permutation symmetry of the problem then determines the other compact periods.
Now we compute the integral over the cycle dual to S1. The contour should satisfy

uv ≈ s1/∆
3 and go to infinity. Also, the contour must intersect the compact one-cycle in

a point. A contour which satisfies these criteria is to take u, v to be real and positive (this
choice works as long as the si are real and positive, but the result will be general). We
will need two different perturbative expansions to do this integral: one for small u and the
other for small v. Since we have uv ≈ s1/∆3, we will need a “small u” expansion which is
valid up to u ∼

√
s1/∆3, and similarly for the small v expansion.

To expand for small v, we first multiply (2.B.4) through by v to get

v =
s1
∆3

1

u
− s2

∆3

1

1 + u+ v
+
s3
∆3

v

u(1 + u+ v)

We now solve perturbatively for v(u), using the fact that throughout the regime of interest
v << 1 + u. The largest that v/(1 + u) gets in this regime is

v

1 + u
<

√
s1
∆3

.

To zeroth order in v/(1 + u),

v(0) =
s1
∆3

1

u
− s2

∆3

1

1 + u
. (2.B.10)
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To first order,

v(1) =
s1
∆3

1

u
− s2

∆3

1

1 + u+ v(0)
+

s3
∆3

v(0)

u(1 + u)
,

which upon expanding becomes

v(1) =
s1
∆3

1

u
− s2

∆3

(
1

1 + u
− v(0)

(1 + u)2

)
+

s3
∆3

v(0)

u(1 + u)
. (2.B.11)

We need keep one more order in the perturbative expansion in order to get the prepotential
to the desired order:

v(2) =
s1
∆3

1

u
− s2

∆3

1

1 + u+ v(1)
+

s3
∆3

v(1)

u(1 + u+ v(0))

which upon expanding becomes

v(2) =
s1
∆3

1

u
− s2

∆3

[
1

1 + u
− v(1)

(1 + u)2
+

(v(0))2

(1 + u)3

]
+

s3
∆3

[
v(1)

u(1 + u)
− (v(0))2

(1 + u)2

]
(2.B.12)

Note that using (2.B.10)(2.B.11), this is an explicit equation for v(u). We could similarly
expand to find u(v) in the regime of small u, but actually we can save ourselves the
computation by noting that the equation for the Riemann surface is invariant under u↔
v, s2 ↔ −s3. We are now in a position to perform the integral of the one-form ω over the
contour. We use the approximation (2.B.12) for the part of the integral where v is small,
and the corresponding formula for u(v) for the part of the integral where u is small. We can
choose to go over from one approximation to another at a point umin = vmin. Such a point
will be approximately umin =

√
s1/∆3, but we need a more precise formula. By setting

u = v in the equation for the Riemann surface, and perturbing around umin =
√
s1/∆3,

we find

u2
min =

s1
∆3
− s2 − s3

∆3

√
s1
∆3

+
(s2 − s3)2

2∆6
+

2s1(s2 − s3)
∆6

+ . . .

We spare the reader the details of the integration. The result is cutoff dependent, and
we assume that the cutoff is sufficiently large so that we can drop contributions which
depend inversely on the cutoff. After doing the integral, we rewrite the result in terms of
the compact periods Si using (2.B.9). The result is:

∂S1
F0 = (S1 − S2) log umax + (S1 + S3) log vmax − (S1 log

S1

∆3
− S1)

− 1

∆3

(
1

2
S2

2 +
1

2
S2

3 + S1S2 − S1S3 − 3S2S3

)
+O

(
S3

∆6

)
.

Here umax and vmax are cutoffs at large u, v. Since our cutoff is t = Λ0, we can solve for
umax, vmax. When u is large, v is small, since uv ≈ S1/∆

3. Looking back at the change of
variables (2.B.3), we find

umax =
Λ0

a21
vmax =

Λ0m3

a21m2
=

Λ0

a31
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Again, the other non-compact periods are determined by symmetry. It is now a simple
matter to find F0:

2πiF0 = 1
2S

2
1 log

Λ2
0

a21a31
+ 1

2S
2
2 log

Λ2
0

a21a23
+ 1

2S
2
3 log

Λ2
0

a31a23

− S1S2 log
Λ0

a21
+ S1S3 log

Λ0

a31
+ S2S3 log

Λ0

a23

− 1
2S

2
1

(
log S1

∆3 − 3
2

)
− 1

2S
2
2

(
log S2

∆3 − 3
2

)
− 1

2S
2
3

(
log S3

∆3 − 3
2

)

− 1

2∆3

(
S1S

2
2 + S2

1S2 + S1S
2
3 − S2

1S3 + S2S
2
3 − S2

2S3 − 6S1S2S3

)
+O

(
S4

∆6

)
.

This result agrees with the matrix model computation of appendix 2.A. Recall that we
dropped terms which depend inversely on the cutoff. More precisely, we dropped con-
tributions to the non-compact period of the form Si|a12|/Λ0. This is necessary in order
to match the result of the matrix model computation. In particular, in order to justify
keeping the corrections we do keep, we require

Si
∆3

>>
|a12|
Λ0

. (2.B.13)

Appendix 2.C. The Hessian at Two Loops

The equations required to analyze stability simplify if we introduce the notation

ua ≡ iGabαb.

Since we are taking the αi to be pure imaginary, ua will be real and positive. Furthermore,
since we are taking τab to be pure imaginary, we can replace it with the metric, τab = iGab.
Then the equation of motion (2.2.6) takes the simple form

1

2
iFkab(uaub −MaM b) = 0. (2.C.1)

At one-loop, the third derivative of the prepotential is nonzero only if all of the derivatives
are with respect to the same variable, so at one-loop the solutions are ua = ±Ma. As
discussed earlier, the physically relevant solutions are

ua = |Ma|. (2.C.2)

This is just a rewriting of the one-loop solutions (2.2.8) in terms of the new notation.
At two loops, we can find the solution by perturbing around the one-loop result. Let

ua = |Ma|+ δa. We find that

δk =
1

2|Mk|Fkkk
Fkab(−|Ma||M b|+MaM b). (2.C.3)
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Having solved the equations of motion at two loops, we proceed to the Hessian, providing
less detail. Assuming the same reality conditions, the matrices of second derivatives are
given by

∂k∂lV = ∂k∂lV =
1

2

(
iFabkl + iFcakiFdblGcd

)
(uaub −MaM b), (2.C.4)

∂k∂lV = ∂k∂lV =
1

2
iFcakiFdblGcd(uaub +MaM b). (2.C.5)

The relations between the different mixed partial derivatives arise because we are perturb-
ing about a real solution.

At two loops, taking four derivatives of the prepotential gives zero unless all of the
derivatives are with respect to the same variable, so the first term in (2.C.4) can be
simplified as

iFabkl(uaub −MaM b) = δkliFkkkk(ukuk −MkMk) = 2δkliFkkkk|Mk|δk. (2.C.6)

Though it is not obvious at this stage, the other terms on the right hand side can be
approximated by their one-loop value in the regime of interest. This is very useful because,
as mentioned previously, at one-loop the third derivatives of the prepotential vanish unless
all indices are the same. With these simplifications, the nonzero second derivatives become

(∂a + ∂a)(∂b + ∂
b
)V =

∑

c

2iFaaaiFcccGac|Ma||M c|
(
δcb +Gcb

iFbbbbδb
iFbbbiFccc|M c|

)
,

(2.C.7)

(∂a − ∂a)(−∂b + ∂b)V =

∑

c

2iFaaaiFcccGac|Ma||M c|
(
δcb −Gcb

iFbbbbδb
iFbbbiFccc|M c|

)
.

(2.C.8)

In these equations, no indices are implicitly summed over.
In order to analyze the loss of perturbative stability, we compute the determinant of

the Hessian. Since the eigenvalues remain real, in order to go from a stable solution to
an unstable one, an eigenvalue should pass through zero. We therefore analyze where the
determinant is equal to zero. Up to possible constant factors, the determinant is given by

(
Det Gab

)2
(
∏

c

|M c|
iFccc

)4

Det

(
δcb +Gcb

Fbbbbδb
iFbbbFccc|M c|

)
Det

(
δcb −Gcb

Fbbbbδb
iFbbbFccc|M c|

)

(2.C.9)
and so in order to vanish, one of the last two determinants must go to zero.
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Chapter 3

Geometric Transitions and Dynamical Su-
persymmetry Breaking

It is of significant interest to find simple examples of dynamical supersymmetry break-
ing in string theory. One class of examples, where stringy D-instanton effects play a star-
ring role, was described in [70]. These models exhibit “retrofitting” of the classic SUSY
breaking theories (Fayet, Polonyi and O’Raifeartaigh) [71]without incorporating any non-
trivial gauge dynamics. Instead, stringy instantons [72,16] automatically implement the
exponentially small scale of SUSY breaking in theories with only Abelian gauge fields. A
related idea using disc instantons instead of D-instantons appears in [73]. These models
are simpler in many ways than their existing field theory analogues [74].

In this chapter, we show that these results (and many generalizations) admit a clear
and computationally powerful understanding using geometric transition techniques [17]
(see also [23,24]). Such techniques are well known to translate quantum computations of
superpotential interactions in nontrivial gauge theories to classical geometric computations
of flux-induced superpotentials [21]. They are most powerful when the theories in question
exhibit a mass gap. While the classic models we study do manifest light degrees of freedom
(and hence do not admit a complete description in terms of geometry and fluxes), we find
that a mixed description involving small numbers of D-branes in a flux background –
which arises after a geometric transition from a system of branes at a singularity – nicely
captures the relevant physics of supersymmetry breaking.34 In the original theory without
flux, the SUSY breaking effects are generated by D-instantons either in U(1) gauge factors
or on unoccupied, but orientifolded, nodes of the quiver gauge theory (analogous to those
studied in [70,75,43]). Both are in some sense “stringy” effects. Simple generalizations
involve more familiar transitions on nodes with large N gauge groups.

34 For an application of geometric transitions to the study of supersymmetry breaking in the

context of brane/antibrane systems, see [4,37,38,46,5].
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The geometric transition techniques we apply have two advantages over the description
using stringy instantons in a background without fluxes. First, they allow for a classical
computation of the relevant superpotential instead of requiring a nontrivial instanton cal-
culation. Second, they incorporate higher order corrections (due to multi-instanton effects
in the original description) which had not been previously calculated.

The organization of this chapter is as follows. In section 2, we remind the reader of the
relevant background about geometric transitions. In section 3, we discuss the geometries
we will use to formulate our theories of dynamical supersymmetry breaking. In sections
4-6, we give elementary examples that yield Fayet, Polonyi, and O’Raifeartaigh models
that break SUSY at exponentially low scales. In section 7, we present a single geometry
that unifies the three models, reducing to them in various limits. In section 8, we provide
a more general, exact analysis of the existence of these kinds of susy-breaking effects. In
section 9, we give a few other examples of simple DSB theories (related to recent or well-
known literature in the area). Finally, in section 10, we extend the technology to orientifold
models, in particular recovering models which are closely related to the specific examples
of [70].

3.1. Geometric Transitions

Computing nonperturbative corrections in string theory, even to holomorphic quanti-
ties such as a superpotential, is in general very difficult. A surprising recent development
[17,19] is that in some cases – namely for massive theories – these nonperturbative effects
can be determined by perturbative means in a dual language.35

Consider, for example, N D5 branes in type IIB string theory wrapping an isolated,
rigid IP1 in a local Calabi-Yau manifold. In the presence of D5 branes, D1 brane instantons
wrapping the IP1 generate a superpotential for its Kähler modulus.36 The instanton effects
are proportional to

exp

(
− t

Ngs

)

where t =
∫
S2(B

NS+ igsB
RR). For general N , these D1 brane instantons are gauge theory

instantons. More precisely, they are the fractional U(N) instantons of the low energy
N = 1 U(N) gauge theory on the D5 brane. However, on the basis of zero-mode counting,
one expects that stringy instanton effects are present even for a single D5 brane.

In the absence of D5 branes, the theory has N 2 supersymmetry, and the Kähler
moduli space is unlifted. In that case, the local Calabi-Yau with a rigid IP1 is known to
have another phase where the S2 has shrunk to zero size and has been replaced by a finite
S3. The two branches meet at t = 0, where there is a singularity at which D3 branes
wrapping the S3 become massless.

What happens to this phase transition in the presence of D5 branes? Classically, we
can still connect the S2 to the S3 side by a geometric transition. The only difference is

35 For a two-dimensional example, see [76].
36 This is a slight misnomer, since t is a parameter, and not a dynamical field for a non-compact

Calabi-Yau.
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that to account for the D5 brane charge, we need there to be N units of RR flux through
the S3, ∫

S3

HRR = N.

Quantum mechanically the effect is more dramatic. In the presence of D5 branes, there is
no sharp phase transition at all between the S2 and the S3 sides; the interpolation between
them is completely smooth. As a consequence, the two sides of the transition provide dual
descriptions of the same physics. Since the theory is massive now, the interpolation occurs
by varying the coupling constants of the theory. The fact that the singularity where the
S3 shrinks to zero size is eliminated is consistent with the fact that D3 branes wrapping
an S3 with RR flux through it are infinitely massive. The most direct proof of the absence
of a phase transition is in the context of M-theory on a G2 holonomy manifold [77,78,79].
This is related to the present transition by mirror symmetry and an M-theory lift. In
M-theory, the transition is analogous to a perturbative flop transition of type IIA string
theory at the conifold, except that in M-theory, the classical geometry gets corrected by
M2 brane instantons instead of worldsheet instantons [77]. The argument that the two
sides are connected smoothly is analogous to Witten’s argument for the absence of a sharp
phase transition in IIA [80]. In both cases, the presence of instantons is crucial for the
singularities in the interior of the classical moduli space to be eliminated.

The fact that the two sides of the transition are connected smoothly implies that the
superpotentials should be the same on both sides. The instanton-generated superpotential
has a dual description on the S3 side as a perturbative superpotential generated by fluxes.
The flux superpotential

W =

∫
H ∧ Ω

is perturbative, given by

W =
t

gs
S +N ∂SF0 (3.1.1)

where F0(S) is the prepotential of the Calabi-Yau, and

S =

∫

S3

Ω.

The first term in (3.1.1) comes from the running of the gauge coupling, t/gs, which implies
that there is a nonzero HNS flux through a three-chain on the S2 side. This three-chain
becomes the non-compact three-cycle dual to the S3 after the transition. Near the conifold
point,

∂SF0 = S

(
log

(
S

∆3

)
− 1

)
+ . . .

where the omitted terms are a model dependent power series in S, and ∆ is a high scale
at which t is defined. Integrating out S in favor of t, the superpotential W becomes

Winst = −∆3 exp(− t

Ngs
) + . . .
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up to two- and higher-order instanton terms that depend on the power series in F0(S).
The duality should persist even in the presence of other branes and fluxes, as long as the
S2 that the branes wrap remains isolated, and the geometry near the branes is unaffected.
As we will discuss in section 10, this can also be extended to D5 branes wrapping IP1’s in
Calabi-Yau orientifolds.

3.2. The Theories

To construct the models in question, we will consider type IIB on non-compact Calabi-
Yau threefolds which are Ar ADE type ALE spaces fibered over the complex plane C[x].
These are described as hypersurfaces in C4 as follows:

uv =
r+1∏

i=1

(z − zi(x)). (3.2.1)

This geometry is singular at points where u, v = 0 and zi(x) = zj(x) = z. At these points,
there are IP1’s of vanishing size which can be blown up by deforming the Kähler parameters
of the Calabi-Yau. There are r two-cycle classes, which we will denote

S2
i .

These correspond to the blow-ups of the singularities at zi = zi+1, i = 1, . . . r. It is upon
these IP1’s that we wrap D5 branes to engineer our gauge theories.

The theory on the branes can be thought of as an N = 2 theory, corresponding to D5
branes wrapping two-cycles of the ALE space, which is then deformed to an N = 1 theory
by superpotentials for the adjoints. For the branes on S2

i , this superpotential is denoted
Wi(Φi). The adjoints Φi describe the positions of the branes in the x-direction, and the
superpotential arises because the ALE space is fibered nontrivially over the x-plane. The
superpotential can be computed by integrating [81,30]

W =

∫

C

Ω

over a three-chain C with one boundary as the wrapped S2. In this particular geometry,
it takes an extra simple form (the details of the computation appear in appendix 3.A),

Wi(x) =

∫
(zi(x)− zi+1(x))dx. (3.2.2)

In addition to the adjoints, for each intersecting pair of two-cycles S2
i , S

2
i+1 there is a

bifundamental hypermultiplet at the intersection, consisting of chiral multiplets Qi,i+1

and Qi+1,1, with a superpotential interaction inherited from the N = 2 theory,

Tr(Qi,i+1Φi+1Qi+1,i −Qi,i+1Qi+1,iΦi).
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Classically, the vacua of the theory correspond to the different ways of distributing
branes on the minimal IP1’s in the geometry [31]. When one of the nodes is massive, the
instantons corresponding to D1 branes wrapping the S2 can be summed up in the dual
geometry after a geometric transition. As explained in [70], and as we will see in the next
section, this can trigger supersymmetry breaking in the rest of the system.

As an aside, we note that the systems we are studying are a slight generalization of
those described in [75,70]. Those geometries are related to the family of geometries studied
here, but correspond to particular points in the parameter space where the adjoint masses
have been taken to be large and the branes and/or O-planes have been taken to coincide
in the x-plane. In addition, we allow the possibility of U(1) (or in some cases higher-
rank) gauge groups on the transitioning node, whereas in [75,70] the instanton effects were
associated with nodes that were only occupied by O-planes. Nevertheless, we will find the
same qualitative physics as in [70] in this broader class of theories.

3.3. The Fayet Model

We now turn to a specific geometry which will engineer the Fayet model at low energies.
This is an A3 geometry, and (3.2.1) can be written explicitly as

uv = (z −mx)(z +mx)(z −mx)(z +m(x− 2a)). (3.3.1)

After blowing up, we wrap M branes each on S2
1 at z1(x) = z2(x) and S2

2 at z2(x) =
z3(x), and one brane on S2

3 at z3(x) = z4(x). The tree-level superpotential (3.2.2) is now
given by

W =
3∑

i=1

Wi(Φi) + Tr(Q12Φ2Q21 −Q21Φ1Q12) + Tr(Q23Φ3Q32 −Q32Φ2Q23) (3.3.2)

where
W1(Φ1) = mΦ2

1, W2(Φ2) = −mΦ2
2, W3(Φ3) = m(Φ3 − a)2.

Fig. 3.1. The A3 geometry, used for retrofitting the Fayet model, before the geometric transition.

The red lines represent the IP1’s, wrapped by D5 branes. The third node does not intersect the

other two and is massive. The geometry after the transition sums up the corresponding instantons.

For N = 1 branes on S2
3 , the instantons are stringy. For N > 1, these are fractional instantons

associated with gaugino condensation in the pure U(N) N = 1 gauge theory on that node.
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The branes on nodes one and two intersect, since both of the corresponding IP1’s are
at x = 0. However, the third node, and the single brane on it, is isolated at x = a, and the
theory living on it is massive. Correspondingly, the instanton effects due to D-instantons
wrapping the third node can be summed up in a dual geometry where we trade S2

3 for a
three-cycle S3 with one unit of flux through it,

∫

S3

HRR = 1 .

The geometry after the transition is described by the deformed equation

uv = (z −mx)(z +mx)((z −mx)(z +m(x− 2a))− s), (3.3.3)

where the size of the S3 ∫

S3

Ω = S

is given by S = s/m. It is fixed to be exponentially small by the flux superpotential, as
we shall see shortly. The third brane is gone now, and so are the fields Q23, Q32 and Φ3.
The effective superpotential can now be written to leading order in S as

Weff = W1(Φ1) + W̃2(Φ2, S) + Tr(Q12Φ2Q21 −Q21Φ1Q12) +Wflux(S).

In this geometry, the exact flux superpotential is

Wflux =
t

gs
S + S

(
log

S

∆3
− 1

)

without any polynomial corrections in S. It is crucial here that the superpotential for Φ2

has changed, due to the change in the geometry, to W̃2(Φ2), where

W̃2(x) =

∫
(z2(x)− z̃3(x))dx,

while the superpotential for Φ1 is unaffected. We have defined

(z − z̃3(x))(z − z̃4(x)) = (z − z3(x))(z − z4(x))− s

with z̃3(x) being the branch which asymptotically looks like z3(x) at large values of x. In
other words,

W̃2(x) =

∫ x

∆

(
−m(x′ + a)−

√
m2(x′ − a)2 + s

)
dx′.

This superpotential sums up the instanton effects due to Euclidean branes wrapping node
three.

Before the transition, the vacuum was at Φ2 = 0. At the end of the day, we expect
it to be perturbed by exponentially small terms of order S, so the relevant part of the
superpotential is

W̃2(Φ2) = −mTrΦ2
2 −

1

2
S Tr log

a− Φ2

∆
+ . . . , (3.3.4)
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where we’ve omitted terms of order S2 and higher and dropped an irrelevant constant. We
comment on the form of these corrections in appendix 3.B.

The theories on nodes one and two are asymptotically free. If the fields S and Φ1,2

have very large masses, we can integrate them out and keep only the light degrees of
freedom. Keeping only the leading instanton corrections, the relevant F-terms are

FΦ1
= 2mΦ1 −Q12Q21

FΦ2
= −2mΦ2 +Q21Q12 +

S

2(a−Φ2)

FS = t/gs + logS/∆3 − 1

2
Tr log(a−Φ2)/∆

(3.3.5)

Setting these to zero, we obtain

S∗ = ∆3 exp(− t̃

gs
) + . . .

where

t̃ = t− 1

2
Mgs log(a/∆)

and

Φ1,∗ = − 1

2m
Q12Q21

Φ2,∗ =
1

2m
Q21Q12 +

1

4ma
S∗ + . . . .

(3.3.6)

The omitted terms are higher order in Q21Q12/ma and exp(− t̃
gs

). The low energy, effective
superpotential is

Weff =
1

m
Tr(Q12Q21Q12Q21) −

S∗

4ma
TrQ12Q21 + . . . ,

where we have neglected corrections to the quartic coupling, and the higher order couplings
of Q’s, all of which are exponentially suppressed. As shown in [70], in the presence of a
generic FI term for the off-diagonal U(1) under which Q12 and Q21 are charged,

D = Q12Q
†
12 −Q†

21Q21 − r,

the exponentially small mass for Q will trigger F-term supersymmetry breaking with an
exponentially low scale; we can set Q12,∗ =

√
r, and then

FQ21
∼
√
r

4ma
S∗ .

Geometrically, turning on the FI term corresponds to choosing the central charges of the
branes on the two nodes to be misaligned. Combined with the fact that nodes one and two
have become massive with an exponentially low mass, this provides an extremely simple
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mechanism of breaking supersymmetry at a low scale. The non-supersymmetric vacuum
we found classically is reliable as long as the scale of supersymmetry breaking is far above
the strong coupling scales of the U(M) × U(M) gauge theory. If we take N branes on
the massive node instead of one, the story is the same, apart from the fact that the flux
increases, and correspondingly the vacuum value of S changes to S∗ ∼ ∆3 exp(−t̃ / Ngs).
In this case, however, the instantons that trigger supersymmetry breaking are the fractional
U(N) instantons.

3.4. The Polonyi Model

In this section we construct the Polonyi model with an exponentially small linear
superpotential term for a chiral superfield Φ. This will turn out to be somewhat more
subtle, and the existence of the (meta)stable vacuum will depend sensitively on the Kähler
potential. We describe specific cases where we know that the relevant Kähler potential
does yield a stable vacuum in section 7.

Consider an A2 geometry given by

uv = (z −mx)(z −mx)(z +m(x− 2a)) (3.4.1)

which has one D5 brane wrapped on the S2
1 blown up at z1(x) = z2(x), and one D5 brane

wrapped on the S2
2 blown up at z2(x) = z3(x). This system has a tree-level superpotential

W = W1(Φ1) +W2(Φ2) +Q12Φ2Q21 −Q21Φ1Q12, (3.4.2)

where
W1(Φ1) = 0, W2(Φ2) = m(Φ2 − a)2.

There is a classical moduli space of vacua parameterized by the expectation value of Φ1

and where Q12,∗ = Q21,∗ = 0, and Φ2,∗ = a.
At a generic point in the moduli space, away from Φ1 = a, the theory on the branes

wrapping S2
2 is massive. Then, the instanton effects associated with D1 branes wrapping

this node can be summed up by a geometric transition that replaces S2
2 by an S3 with one

unit of flux through it. This deforms the Calabi-Yau geometry to

uv = (z −mx)((z −mx)(z +m(x− 2a))− s),

which now has an S3 of size ∫

S3

Ω = S

where S = s/m. With this deformation, the superpotential for node one is altered as well:

W̃1(x) =

∫
(−m(a− x) +

√
m2(a− x)2 + s)dx.

The effective superpotential after the transition is simply

Weff = W̃1(Φ1, S) +Wflux(S)
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where the flux superpotential assumes the simple form

Wflux(S) =
t

gs
S + S(logS/∆3 − 1).

Note that there is no supersymmetric vacuum, since FΦ1
6= 0 always.

Suppose that at a point in the moduli space, say at Φ1 = 0, the Kähler potential takes
the form

K = |Φ1|2 + c|Φ1|4 + . . .

where the higher order terms are suppressed by a characteristic mass scale (which we set
to one). Then, provided

|ca2| ≫ 1, c < 0,

the theory has a non-supersymmetric vacuum at

Φ1,∗ =
1

ca∗
(3.4.3)

which breaks SUSY at an exponentially low scale. This can be seen as follows. Expanded
about small Φ1, the superpotential W̃1 takes the form

W̃1(Φ1) = −S
2

log(a− Φ1)/∆ + . . .

where the subleading terms are suppressed by additional powers of S, but are otherwise
regular at the origin of Φ1 space. Integrating out S first, by solving its F-term constraint,
we find

S∗ = ∆3 exp(−t̃/gs) + . . .

where
t̃ = t− 1

2
gs log(a/∆)

and the subleading terms are of order Φ1/a, which will turn out to be small in the vacuum.
For large t̃, S is generically very massive, so integrating it out is justified.

The potential for Φ1 now becomes

Veff (Φ1) =
1

1 + c|Φ1|2
|S∗|2
|a− Φ1|2

+ . . .

It is easy to see that, up to corrections of order 1/|a2c| and S∗/(ma
2), this has a non-

supersymmetric vacuum at (3.4.3) where Φ1 has a mass squared of order

−c
∣∣∣∣
S∗

a

∣∣∣∣
2

.

This is positive, and the vacuum is (meta)stable, as long as c < 0. Note that we could
have obtained the Polonyi model as a limit of the Fayet model in which we turn on a very
large FI term for the off-diagonal U(1) of nodes one and two. In this case, the stability
of the Fayet model for a generic (effectively canonical) Kählerpotential guarantees that
the Polonyi model obtained from it is stable. In fact, as we will review in section 7, one
can show this directly by computing the relevant correction to the Kähler potential arising
from loops of massive gauge bosons [70].
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3.5. The O’Raifeartaigh Model

To represent the third simple classic class of SUSY breaking models, we engineer an
O’Raifeartaigh model. Consider the A3 fibration with

z1(x) = mx, z2(x) = mx, z3(x) = mx, z4(x) = −m(x− 2a) . (3.5.1)

The defining equation of the non-compact Calabi-Yau is then

uv = (z −mx)(z −mx)(z −mx)(z +m(x− 2a)) (3.5.2)

and we wrap a single D5 brane on each of S2
1,2,3. The adjoints Φ1 and Φ2 are massless,

while Φ3 obtains a mass from its superpotential,

W3(x) =

∫
(z3(x)− z4(x)) dx (3.5.3)

which gives
W3(Φ3) = m(Φ3 − a)2 .

Of course, there are also quarks Q12, Q21 and Q23, Q32. They couple via superpotential
couplings

Q12Φ1Q21 −Q12Φ2Q21 +Q23Φ2Q32 −Q23Φ3Q32 . (3.5.4)

Because Φ3 is locked at a, for generic values of Φ2, Q23 and Q32 are massive. Then node
three is entirely massive, and we can perform a geometric transition.

The resulting theory has a new glueball superfield S, and effective superpotential

Weff = Q12Φ1Q21−Q12Φ2Q21−
1

2
S log(a−Φ2)/∆+S(log(S/∆3)−1)+

t

gs
S+ . . . (3.5.5)

Integrating out the S field yields (at leading order)

S∗ = ∆3e−t̃/gs (3.5.6)

where

t̃ = t+
1

2
gs log(a/∆).

Plugging this into the superpotential yields

Weff = Q12Φ1Q21 −Q12Φ2Q21 −
1

2
S∗Φ2/a + . . . (3.5.7)

The omitted terms are suppressed by more powers of Φ2/a. We recognize (3.5.7) as the
superpotential for an O’Raifeartaigh model, very similar to the one considered in [70].
We see that setting FΦ1

= FΦ2
= 0 is impossible, so one obtains F-term supersymmetry

breaking, with a small scale set by ∆3 exp(−t/3gs).
The stability of the non-supersymmetric vacuum again depends on the form of (tech-

nically) irrelevant corrections to the Kähler potential. As in the case of the Polonyi model,
corrections which yield a stable vacuum can be arranged by embedding the model in a
slightly larger theory. We now turn to a general analysis of one such larger theory.

– 86 –



3.6. A Master Geometry

It is possible to construct one configuration of branes on an A4 geometry which, in
appropriate limits, can be made to reduce to any of the three simple models discussed in
the previous sections. The geometry is described by the defining equation

uv = (z −mx)(z −mx)(z +mx)(z −mx)(z +m(x− 2a)) (3.6.1)

where we wrap N branes on nodes one, two and three, and a single brane on node four,
leading to a superpotential given by

Wmaster =
4∑

i=1

Wi(Φi) +
3∑

i=1

Tr(Qi,i+1Φi+1Qi+1,i −Qi+1,iΦiQi,i+1). (3.6.2)

The superpotentials for the adjoints are given by

W1(Φ1) = 0, W2(Φ2) = −mTr(Φ2
2), W3(Φ3) = mTr(Φ2

3), W4(Φ4) = −m(Φ4 − a)2 .

In the interest of simplicity, we will set N = 1 in this section. The non-Abelian general-
ization is immediate, since all the nodes are asymptotically free (for large adjoint masses).
As long as the scale of supersymmetry breaking driven by the geometric transition is high
enough, we can ignore the non-Abelian gauge dynamics on the other nodes.

Fig. 3.2. The master A4 geometry that gives rise to Fayet, Polonyi and O’Raifeartaigh models

by turning on suitable FI terms. The stringy instantons associated with the massive fourth node

generate the nonperturbative superpotential that triggers dynamical supersymmetry breaking in

the rest of the theory.

The master theory has a metastable, non-supersymmetric vacuum for generic, nonzero
FI terms. We can recover all three of the models discussed above by introducing large
Fayet-Iliopoulos terms for certain pairs of quarks, so we expect that these will have non-
supersymmetric vacua as well. This approach to obtaining the canonical models is par-
ticularly useful in the case of Polonyi and O’Raifeartaigh models, for which we needed
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to assume a particular sign for the subleading correction to the Kähler potential. By ob-
taining the theories from the master theory, we can compute the leading corrections to
the Kählerpotential directly and show that they are of the type required to stabilize the
susy-breaking vacua.

To see that the master theory has a metastable, non-supersymmetric vacuum, we can
proceed as in the Fayet model. Node four is massive, and the corresponding nonpertur-
bative superpotential can be computed in the geometry after a transition. The effective
superpotential after performing the transition and integrating out the massive adjoints
Φ2,3 is then

Weff = Q12Q21Φ1 +
S∗

4ma
(Q23Q32 + . . .)

where we have omitted quartic and higher order terms in the Q’s which do not affect the
status of the vacuum. With generic FI terms setting

|Q12|2 − |Q21|2 = r2, |Q23|2 − |Q32|2 = r3 ,

this is easily seen to have an isolated vacuum which breaks supersymmetry.
We will now show that we can recover all of the the three models studied so far in

particular regimes of large FI terms.

3.6.1. O’Raifeartaigh

We can recover the O’Raifeartaigh construction by turning on a large FI term for
Q23 and Q32 – that is, for the U(1) under which these are the only charged quarks. This
generates a D-term

DO′R = |Q23|2 − |Q32|2 − r3. (3.6.3)

Taking r3 ≫ 0, this requires that Q23 acquire a large expectation value. Additionally,
there is an F-term for Q32

FQ32
= Q23(Φ3 −Φ2) (3.6.4)

which, in light of the D-term constraint, will set Φ2 equal to Φ3. The superpotential
then becomes just the O’Raifeartaigh superpotential of the previous section (with certain
indices renamed),

WO′R = m(Φ4 − a)2 +Q12Q21(Φ2 − Φ1) +Q24Q42(Φ4 −Φ2) . (3.6.5)

By performing a geometric transition on the massive node, we recover the superpotential
(3.5.5).

3.6.2. Fayet

Alternatively, we could have turned on a large FI term for Q12 and Q21, generating a
D-term

DFayet = |Q12|2 − |Q21|2 − r2. (3.6.6)
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In conjunction with the F-term for Q21, by the same process as in the O’Raifeartaigh
model, Φ1 is set equal to Φ2. This time, the remaining superpotential is given by

WFayet = mΦ2
2 −mΦ2

3 +m(Φ4 − a)2 +Q23Q32(Φ3 − Φ2) + . . . (3.6.7)

which is precisely the superpotential associated with the Fayet geometry (3.3.1). Per-
forming a geometric transition on S2

4 , we recover the Fayet model as discussed in section
4.

3.6.3. Polonyi

From the Fayet model above, before the geometric transition, we can turn on another
D-term for the quarks Q23 and Q32 which, along with the F-term for Q32 sets Φ2 = Φ3.
The superpotential becomes

W = −mΦ2
3 +m(Φ4 − a)2 +Q34Q43(Φ4 −Φ3)

which reproduces the Polonyi model of section 5. Again, performing the geometric transi-
tion on S2

4 results in the actual Polonyi model.

3.6.4. The Kähler potential

The O’Raifeartaigh and Polonyi models have flat directions at tree level. As we
discussed for, e.g., the Polonyi model, the existence of a stable SUSY-breaking vacuum
depends on the sign of the leading quartic correction to the Kähler potential. When we
obtain the model as a suitable limit of our master model as above, we can compute this
correction and verify explicitly that the vacuum is stable. Let us go through this in some
detail. In fact, for simplicity, we will focus on obtaining a stable Polonyi model as a limit
of a Fayet model [70].

After the geometric transition in the Fayet model, the effective theory is characterized
by a superpotential

W =
S∗

ma
Q23Q32 + . . . (3.6.8)

and a D-term
D = |Q32|2 − |Q23|2 − r3 . (3.6.9)

Here r3 is the FI term for the U(1) under which only Q23 and Q32 carry a charge. We can
expand this theory about the vev Q23 =

√
r3. Renaming

X = Q32 ,

the effective theory then has

W =
S∗

ma

√
r3X . (3.6.10)

To find the Kähler potential for X , we should integrate out the massive U(1) gauge
multiplet. What happens to the potential contribution from the D-term of (3.6.9)? As
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explained in [82], in the theory with the U(1) gauge field, gauge invariance relates D-term
and F-term vevs at any critical point of the scalar potential. When one integrates out
the U(1) gauge field, there is a universal quartic correction to the Kähler potential which
(using the relation) precisely reproduces the potential contribution from the D-term. For
the theory in question, the quartic correction to the Kähler potential for X is just

∆K = −
g2
U(1)

M2
U(1)

(X†X)2 . (3.6.11)

Here MU(1) is the mass of the U(1) gauge boson, MU(1) ∼ gU(1)
√
r3. The result is a quartic

correction to K

∆K = − 1

r3
(X†X)2 . (3.6.12)

So in the notation of section 5,

c = − 1

r3

and the sign c < 0 results in a stable vacuum, as expected. Plugging in the F-term
FX ∼ S∗

ma

√
r3, (3.6.12) gives X a mass

mX ∼
S∗

ma
,

in agreement with what it was in the full Fayet model. Note that while one would obtain
other quartic couplings in K after integrating out the U(1) gauge boson, they don’t play
any role. They involve powers of the heavy field Q34, and since FQ34

≪ FX , cross-couplings

of the form Q†
34Q34X

†X in K do not appreciably correct the estimate obtained above for
the mass of X .

3.7. Generalization

We now present a very general argument for the existence of supersymmetry-breaking
effects in a class of stringy quiver gauge theories which includes those just discussed.
Suppose we have such an Ar quiver theory in which the last node is isolated and undergoes
a transition. Note that this is the case in the master geometry considered in the previous
section.

In this case, the transition deforms the geometry to the following:

uv =

(
r−1∏

i=1

(z − zi(x))
)

((z − zr(x))(z − zr+1(x))− s)

in which case the superpotential for the branes on the second-to-last node becomes

W̃r−1(Φr−1) =

∫
dx(z̃r(x)− zr−1(x))
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where z̃r(x) is the solution to the equation

(z − zr(x))(z − zr+1(x)) = s (3.7.1)

which asymptotically approaches zr(x). We can rewrite the superpotential as a correction
to the pre-transition superpotential as

W̃r−1(Φr−1) =

∫
dx(z̃r(x)− zr(x)) +Wr−1(Φr−1)

and the F-term for Φr−1 and the remaining adjoints are then given by

FΦr−1
= W ′

r−1(Φr−1) + (z̃r(Φ)− zr(Φ)) +Qr−1,rQr,r−1

FΦi
= W ′

i (Φi) +Qi−1,iQi,i−1 −Qi,i+1Qi+1,i

(3.7.2)

which we can combine to obtain the constraint

r−1∑

i

W ′
i (Φi) = zr(Φr−1)− z̃r(Φr−1). (3.7.3)

Note that the right hand side here cannot vanish for any value of Φr−1 since zr(x) can
never solve (3.7.1), the solution to which defines z̃r(x)

If we now consider turning on generic FI terms for the U(1) gauge groups, the D-term
constraints will require that, say, the Qi,i+1’s acquire vevs while the Qi+1,i’s get fixed at
zero. The F-terms for the Qi+1,i’s will then in turn require

Φi = Φj

for all i, j. When the brane superpotentials for the first r − 1 nodes are of the form

Wi(Φi) = ǫimΦ2
i , i = 1, . . . r − 1,

where ǫi = 0± 1, the left hand side of (3.7.3) vanishes, while the right hand side is strictly
nonzero. It is exponentially small, as long as the last node was isolated,

Wr(Φr) = m(Φr − a)2,

before the transition. This generically triggers low-scale susy breaking.
In terms of the classic models discussed in this chapter, one can immediately see that

the susy breaking in the Fayet model and in the master geometry can be explained by the
above analysis. In the case of the Polonyi and O’Raifeartaigh models, it is even simpler,
since the left hand side of (3.7.3) vanishes identically for those models. One could conduct
a similar analysis for configurations with more complicated superpotentials and nongeneric
F-terms on a case-by-case basis. What we see is that often the susy-breaking effects caused
by the geometric transition can be understood at an exact level.
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3.8. SUSY Breaking by the Rank Condition

In this section, we present models which break supersymmetry due to the “rank
condition.” This class of models is very similar to those arising in studies of metastable
vacua in SUSY QCD [11]. However, we work directly with the analogue of the magnetic
dual variables, and the small scale of SUSY breaking is guaranteed by retrofitting [71].

Consider the A3 fibration with

z1(x) = mx, z2(x) = −mx, z3(x) = −mx, z4(x) = −m(x− 2a) . (3.8.1)

Then the defining equation is

uv = (z −mx)(z +mx)(z +mx)(z +m(x− 2a)) . (3.8.2)

We choose to wrap Nf − Nc D5 branes on S2
1 , Nf D5 branes on S2

2 , and a single D5 on
S2

3 . The tree level superpotential is

W =

3∑

i=1

Wi(Φi) +

2∑

i=1

(Qi,i+1Φi+1Qi+1,i −Qi+1,iΦiQi,i+1), (3.8.3)

where

W1(Φ1) = mTr(Φ1)
2, W2(Φ2) = 0, W3(Φ3) = −m(Φ3 − a)2

Fig. 3.3. The (magnetic) A3 geometry that retrofits the ISS model.

Now, we replace the third (U(1)) node with an S3 with flux, and integrate out Φ1

trivially (we can take the mass to be very large). The result is a superpotential

W = S(log (S/∆3)− 1) +
t

gs
S − 1

2
S Tr log(a− Φ2)/∆−Q12Φ2Q21 + . . . (3.8.4)
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where the omitted terms are suppressed by additional powers of S. Integrating out S in a
Taylor expansion about Φ2 = 0 produces a theory with superpotential

W = S∗TrΦ2/a− TrQ12Φ2Q21 + . . . (3.8.5)

where
S∗ = ∆3 exp(−t̃/gs) , (3.8.6)

and t̃ = t−Nf 1
2
gs log(a/∆). Computing FΦ2

, we see that the contribution from the first
term in (3.8.5) has rank Nf , while the contribution from the second term has maximal
rank Nf −Nc < Nf . The two cannot cancel, and so SUSY is broken. However, due to the
small coefficient of the TrΦ2 term, the breaking occurs at an exponentially small scale.

This model resembles the theories analyzed in [11] (for Nc + 1 ≤ Nf <
3
2Nc) and in

section 4 of [50]. One difference is that the origin of the small parameter is dynamically
explained. The discussion of corrections due to gauging of the U(Nf ) factor (which is a
global group in [11]) is identical to that in [50] up to a change of notation, and we will not
repeat it here. For large a, the higher order corrections to (3.8.5) (which are suppressed
by powers of Φ2/a) should not destabilize the vacuum at the origin, described in [11,50].

We could also replace the U(1) at node 3 with a U(N) gauge group, still in the same
geometry. Then, in (3.8.4), the coefficient of the S logS term is changed to N . The only
effect, after a geometric transition at node three, is the replacement e−t/gs → e−t/gsN in
(3.8.6). This model, where the node which undergoes the geometric transition has non-
Abelian gauge dynamics, is a literal example of the retrofitting constructions of [71]. The
field Φ2 appears in the gauge coupling function of the U(N) gauge group at node three
because it controls the masses of the quarks Q23 and Q32 which are charged under U(N).
At energies below the quark mass, the U(N) is a pure N = 1 gauge theory and produces
a gaugino condensation contribution Λ3

N in the superpotential. The standard result for
matching the dynamical scale of the low-energy, pure U(N) theory to the scale ΛN,Nf

of
the higher energy theory with Nf quark flavors with mass matrix m̃ is37

Λ3N
N = Λ

3N−Nf

N,Nf
detm̃ . (3.8.7)

Identifying S with the gaugino condensate [17]

S ∼ tr(W 2
α) = Λ3

N ,

and identifying the mass matrix m̃ = a− Φ2, we predict

SN = Λ
3N−Nf

N,Nf
det(a− Φ2) . (3.8.8)

This is precisely what carefully integrating S out of (3.8.4) produces, with Λ
3N−Nf

N,Nf
=

∆3N−Nf e−t/gs . So, in our model with N > 1, the small Tr(Φ2) term in (3.8.5) can really
be thought of as arising from the presence of Φ2 in the gauge coupling function for the
U(N) factor.

37 Here, we are assuming the adjoints are very massive, m → ∞, and are just matching the

QCD theories with quark flavors.
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3.9. Orientifold Models

In the presence of orientifold 5-planes, we expect D1 brane instantons wrapping two-
cycles that map to themselves to contribute to the superpotential. The D1 brane instanton
contributions should again be computable using a geometric transition that shrinks the
S2 and replaces it with an S3. Geometric transitions with orientifolds have been studied,
e.g., in [83,84].

After the transition, we generally get two different contributions to the superpotential.
First, charge conservation for the D5/O5 brane that disappears after the transition requires
a flux through the S3 equal to the amount of brane charge,

Wflux =
t

gs
S +ND5/O5∂SF0.

Second, there can be additional O5 planes that survive as the fixed points of the holo-
morphic involution after the transition. The O5 planes, just like D5 branes, generate a
superpotential [85]

WO5 =

∫

Σ

Ω,

where the integral is over a three-chain with a boundary on the orientifold plane. The
contributions to the superpotential due to O5 planes and RR flux of the orientifold planes
are both computed by topological string RP 2 diagrams. The contribution of physical brane
charge comes from sphere diagrams.

In this way, geometric transitions can be used to sum up the instanton-generated
superpotentials in orientifold models. In analogy to our discussion in the previous sections,
this can be used to understand models of dynamical supersymmetry breaking. We will
discuss the Fayet model in detail; other models can be seen to follow in naturally.

3.9.1. The Fayet model

Consider orientifolding the theory from section 3 by combining worldsheet orientation
reversal with an involution I of the Calabi-Yau manifold. For this to preserve the same
supersymmetry as the D5 branes, the holomorphic involution I of the Calabi-Yau has to
preserve the holomorphic three-form Ω = du

u
dzdx = −dv

v
dzdx.

An example of such an involution is one that takes

x→ −x

and

u→ v, v → u

A simple, Fayet-type model built on this orientifold is an A5 geometry that is roughly
a doubling of that in section 4,

uv = (z −mx)2(z +mx)2(z −m(x− 2a))(z +m(x− 2a)).
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We will blow this up according to the ordering

z1(x) = mx, z2(x) = −m(x− 2a), z3(x) = mx,

z4(x) = −mx, z5(x) = +m(x+ 2a), z6(x) = −mx.

It can be shown that the orientifold projection ends up mapping

S2
i → S2

6−i,

fixing S2
3 . Consider wrapping M branes on S2

i for i = 1, 2, and their mirror images, and
2N branes on S2

3 . With a particular choice of orientifold projection, the gauge group on
the branes is going to be

U(M)× U(M)× Sp(N).

Since the orientifold flips the sign of x, on the fixed node, S2
3 . it converts Φ3 to an adjoint

of Sp(N). (Having chosen that the orientifold sends x to minus itself, the action on the
rest of the coordinates is fixed by asking that it preserve the same SUSY as the D5 branes
and that it remain a symmetry after blowing up.) In the model at hand, the tree-level
superpotential is

W =

3∑

i=1

Wi(Φi) + Tr(Q12Φ2Q21 −Q21Φ1Q12) + Tr(Q23Φ3Q32 −Q32Φ2Q23).

where

W1(Φ1) = mTr(Φ1 − a)2, W2(Φ2) = −mTr(Φ2 − a)2, W3(Φ3) = mTrΦ2
3.

Note that, even though the IP1 is fixed by the orientifold action, it is not fixed pointwise.
This means there is no O5+ plane charge on it. Instead, there are two non-compact
orientifold 5-planes. This model is T-dual [86] to the O6 plane models of [75].

After the geometric transition that shrinks node three and replaces it with an S3,

S2
3 → S3,

the geometry becomes

uv = (z −mx)(z +mx)(z −m(x− 2a))2(z +m(x− 2a))2((z −mx)(z +mx)− s),

where ∫

S3

Ω = S

with S = s/m. Since the orientation reversal acted freely on the S2
3 , there are only N

units of D5 flux through the S3, ∫

S3

HRR = N,

– 95 –



which gives rise to a superpotential

Wflux =
t

2gs
S +NS(log

S

∆3
− 1).

The overall factor of 1/2 comes from the fact that both the charge on the S2 and its
size have been cut in half by the orientifold action. Above, t =

∫
S2

3

k + igsB
RR is the

combination of Kähler moduli that survives the orientifold projection. In addition, the
two non-compact O5+ planes get pushed through the transition. Because the space still
needs two blowups to be smooth, to give a precise description of the O5 planes would
require using a geometry covered with 4 patches. At the end of the day, effectively, the O5
planes correspond to non-compact curves over the two points on the Riemann surface

(z − z̃3(x))(z − z̃4(x)) = ((z −mx)(z +mx)− s) = 0

located at x = 0 and the corresponding values of z, z±(0). They generate a superpotential

WO5+ =

∫ z−(0)

(z̃3 − z̃4)dx+

∫ z+(0)

(z̃3 − z̃4)dx.

One can show that the contribution of the O5 planes is

WO5+ = +S(log
S

∆3
− 1).

The fact that the RP 2 contribution is proportional to that of the sphere is not an accident.
It has been shown generally that the contribution of O5 planes in these classes of models
is ±∂SFS2 [87,84]. This means that the O5 planes and the fluxes add up to N + 1 units
of an “effective” flux on the S3.

After the transition, the branes on node three have disappeared, and with them, the
fields Φ3 and Q23, Q32. In addition, the deformation of the geometry induces a deformation
of the superpotential for node two,

W̃2(x) =

∫
(z2(x)− z̃3(x))dx,

where one picks for z̃3 the root that asymptotes to +mx. This deformed superpotential is
then

W̃2(x) =

∫
(−m(x− 2a)−

√
(mx)2 + s)dx,

which, when expanded near the vacuum at x = a, gives

W̃2(Φ2) = −Trm(Φ2 − a)2 − 1
2S Tr log(Φ2/∆) + . . .

The full effective superpotential that sums up the instantons is thus

Weff = W1(Φ1) + W̃2(Φ2, S) + Tr(Q12Φ2Q21 −Q21Φ1Q12) +Wflux +WO5
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Up to an overall shift of both Φ1,2 by a, this is the same model as in section 3.
We expect a transition here even when N = 0, and there are no D5 branes on the

S2. The transition for Sp(0) is analogous to the transition that occurs for the U(1) gauge
theory of a single D-brane on the S2. In both cases, the smooth joining of the S2 and the
S3 phases is due to instantons that correct the geometry. In the orientifold case at hand,
it is important to note that, while there is no flux through the S3, the D3 brane wrapping
it is absent: the orientifold projection projects out [88] the N = 1 U(1) vector multiplet
associated with the S3, and with it the D3 brane charged under it.

Picking the other orientifold projection, the Sp(N) gauge group gets replaced by
SO(2N), with Φ3 becoming the corresponding adjoint. In this case, much of the story
remains the same, except that the RP 2 contribution becomes

WO5− = −S(log
S

∆3
− 1).

This means that the O5− planes and the fluxes add up to N − 1 units of an “effective”
flux on the S3. This is negative or zero for N ≤ 1. Naively, the negative effective flux
breaks supersymmetry after the transition. This is clearly impossible. It has been argued
in [84] that the correct interpretation of this is that in fact SO(2), SO(1) and SO(0) cases
do not undergo geometric transitions. This has to correspond to the statement that, in
these cases, there are no D1 brane instantons on node three, and so the classical picture
is exact. This translates to the statement that in these cases, S should not be extremized,
but rather set to zero identically in the effective superpotential,

Weff =Weff |S=0.

Note that with the SO projection on the space-filling branes, a D-instanton wrapping
the same node enjoys an Sp projection. As discussed in [89,75], in this situation, direct
zero-mode counting also suggests that the instanton should not correct the superpotential.
There are more than two fermion zero modes coming from the Ramond sector of strings
stretching from the instanton to itself. This is in accord with the results of [84]. In
contrast, when one has an Sp projection on the space-filling branes, the instanton receives
an SO projection, and the instanton with SO(1) worldvolume gauge group has the correct
zero-mode count to contribute. The presence of instanton effects for this projection (and
their absence without it), was also confirmed by direct studies of the renormalization group
cascade ending in the appropriate geometry in [75].

Appendix 3.A. Brane Superpotentials

We can compute the superpotential W (Φ) as function of the wrapped two-cycles Σ
by using the superpotential [81,30]

W =

∫

C

Ω

where C is a three-chain with one boundary being Σ and the other being a reference two-
cycle Σ0 in the same homology class. It is easy to show [81] that the critical points of the
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superpotential are holomorphic curves. We will evaluate it for the geometries at hand. We
can write the holomorphic three-form of the non-compact Calabi-Yau in the usual way,

Ω =
dv ∧ dz ∧ dx

dF
du

=
dv

v
∧ dz ∧ dx. (3.A.1)

Now for fixed values of x and z, the equation for the CY threefold becomes uv = const,
which is the equation for a cylinder. By shifting the definition of u or v by a phase, we
can insist that the constant is purely real, and then by writing u = x + iy, v = x − iy,
the equation can be reformulated as two real equations in terms of the real (xR, yR) and
imaginary (xI , yI) parts of x and y.

x2
R + y2

R = C + x2
I + y2

I , xRxI = yRyI . (3.A.2)

The first of these can be solved for any given values of xI and yI to give an S1. The second
equation restricts the possible values which we choose for xI and yI to a one-dimensional
curve in the (xI , yI) plane, and so we have the topology of S1 ×R, where the size of the
S1 degenerates at the points where z = zi(x) for any i. By simultaneously shifting the
phases of u and v according to

u→ eiθu

v → e−iθv

the equation for the cylinder remains unchanged, and we simply rotate about the S1 factor.
We can thus integrate Ω around the circle and obtain

∫

S1

Ω = dz ∧ dx

up to an overall constant. Now the IP1’s on which we are wrapping the D5 branes are the
product of the S1 just discussed and an interval in the z direction between values where
the S1 fiber degenerates. Thus, for a given IP1 class in which the vanishing S1 occurs for
zi(x) and zj(x), we can integrate dz ∧ dx over the interval in the z-plane and obtain

∫

S1×Iij

Ω = (zi(x)− zj(x))dx.

The superpotential for the D-branes then becomes a superpotential for the location of the
branes on the t-plane. Defining an arbitrary reference point t∗, we then have

W (x) =

∫ t

t∗

(zi(x)− zj(x))dx. (3.A.3)

Of course, the contribution to the superpotential coming from the limit of integration at t∗
is just an arbitrary constant and is not physically relevant. Thus we write (3.A.3) instead
as the indefinite integral

W (x) =

∫
(zi(x)− zj(x))dx. (3.A.4)
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Appendix 3.B. Multi-Instanton Contributions

In this appendix we demonstrate the computation of multi-instanton corrections to
the superpotential using the Polonyi model of section 5 as an example. All the information
about these corrections is contained in the deformed superpotential for Φ,

W̃ (x) =

∫ (
m(x− a)−

√
m2(x− a)2 +mS

)
dx (3.B.1)

along with the flux superpotential38

Wflux =
t

gs
S + S

(
log

S

∆3
− 1

)
, (3.B.2)

where the scale ∆ is determined by the one-loop contributions to the matrix model free
energy. The models considered in this chapter are particularly convenient since the purely
quadratic superpotential for the massive adjoint at the transition node guarantees that the
flux superpotential will be exact at one-loop order in the associated matrix model [19].

Extremizing the flux superpotential and expanding in powers of the instanton action

Sinst ∼ exp(−t/Ngs),

we can determine multi-instanton contributions to a given superpotential term. Summing
up the series contributing to a given Φk term in will correspond to computing corrections
to a fixed, explicit disc diagram, and so we might expect these series to exhibit some
integrality properties.

We first expand the deformed superpotential W1(Φ) as a power series in the glueball
superfield S,

W̃ (Φ) =

∫ (
m(x− a)−m(x− a)(1 +

∞∑

n=1

(−1)n−1n(2n− 2)!

22n−1(n!)2
yn)

)
dx (3.B.3)

where the expansion parameter y can also be expanded as a power series in x,

y =
S

m(x− a)2 =
S

ma2

(
1 +

∞∑

n=1

(n+ 1)(−1)n
(x
a

)n
)
. (3.B.4)

We can integrate (3.B.3) term by term to obtain an expansion of the effective superpotential
in powers of Φ. However, it will be useful to represent this schematically

W1(Φ) = c1TrΦ + c2TrΦ2 + . . . ci =
∞∑

n=1

c
(n)
i Sn

38 In the case of the Polonyi model these two terms constitute the entire superpotential. In the

more general case, however, there will be more fields with superpotential terms, but it will remain

the case that only these two contributions play a role in determining instanton corrections.
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where the coefficients ci are themselves written as power series in S. Extremizing the
superpotential with respect to S gives an equation for the values of S

log
S

∆3
= − t

gs
−

∞∑

n=1

∞∑

i=1

n c
(n)
i Sn−1TrΦi (3.B.5)

which can be solved perturbatively in powers of Sinst. Reinserting the resulting values into
the original superpotential then allows us to read off the instanton-corrected superpotential
of the low energy theory up to any given number of instantons. Below we display the linear
and quadratic terms at the four-instanton level:

Weff = µTrΦ +mTrΦ2

where

µ = −1

2

∆3

a
e−

t
gs +

1

8

∆6

ma3
e−

2t
gs − 1

16

∆9

m2a5
e−

3t
gs +

5

128

∆12

m3a7
e−

4t
gs + . . .

m = −3

8

∆3

a2
e−

t
gs +

5

16

∆6

ma4
e−

2t
gs − 9

32

∆9

m2a6
e−

3t
gs +

67

256

∆12

m3a8
e−

4t
gs + . . .

(3.B.6)

It may be interesting to see if there is some way to relate these to the exact formulae
for multicovers derived in the resolution of the singularity in hypermultiplet moduli space
when a two-cycle shrinks in IIB string theory, given (up to mirror symmetry) in [90].

– 100 –



Chapter 4

Geometric Transitions and D-Term Super-
symmetry Breaking

In the interest of finding controllable, realistic string vacua, it is important to find
simple and tractable mechanisms of breaking supersymmetry in string theory. A powerful
method which has been put forward in [4] consists of geometrically engineering metastable
vacua with D-branes wrapping cycles in a Calabi-Yau manifold, and using geometric tran-
sitions and topological string techniques to analyze them. In [4], metastable vacua were
engineered by wrapping D5 branes and anti-D5 branes on rigid two-cycles in a Calabi-Yau.
The non-supersymmetric vacuum obtained in this fashion was argued to have a simple
closed-string dual description, in which branes and antibranes are replaced by fluxes. In
[6], geometric transitions were used to study the physics of D-brane theories that break
supersymmetry dynamically. Namely, the authors showed that the instanton-generated
superpotential that triggers supersymmetry breaking can be computed by classical means
in a dual geometry, where some of the branes are replaced by fluxes (for an alternative
approach see [75]).

In this chapter, we propose another way of using geometric transitions to study su-
persymmetry breaking. As in [4], we consider D5 branes wrapping rigid cycles in a non-
compact Calabi-Yau X . If b2(X) > 1, supersymmetry can be broken by choosing the
complexified Kähler moduli so as to misalign the central charges of the branes,

Zi =

∫

S2
i

J + iBNS .

Since the two-cycles wrapped by the D5 branes are rigid, any deformation of the branes
costs energy, and the system is guaranteed to be metastable.39 In the extreme case of

39 Supersymmetry breaking by the misalignment of central charges of D5 branes wrapped on

rigid curves was also studied in [91] in the context of compact Calabi-Yau manifolds.
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anti-aligned central charges, we recover the brane/antibrane configurations of [4,5]. For
slightly misaligned central charges, the system has a gauge theory description in terms
of an N = 2 quiver theory deformed to N = 1 by superpotential terms [18,31], and
with Fayet-Iliopoulos D-terms turned on [92,93,94].40 The D-terms trigger spontaneous
supersymmetry breaking in the gauge theory.

We argue that the dynamics of this system is effectively captured by a dual Calabi-Yau
with all branes replaced by fluxes. Turning on generic Kähler moduli on the open-string
side has a simple interpretation in the dual low-energy effective theory as turning on a
more generic set of FI parameters than hitherto considered in this context, but which are
allowed by the N = 2 supersymmetry of the background. On shell, this breaks some or all
of the N = 2 supersymmetry. Geometrically, this corresponds to not only turning on HNS

and HRR fluxes on the Calabi-Yau, but also allowing for dJ 6= 0 [96,97].41 Moreover, we
show that the Calabi-Yau geometries with these fluxes turned on have non-supersymmetric,
metastable vacua, as expected by construction in the open-string theory.

The chapter is organized as follows. In section two, we review the physics of D5 branes
on a single conifold and the dual geometry after the transition, paying close attention to the
effect of Fayet-Iliopoulos terms. In section three, we consider the case of an A2 geometry
where misaligned central charges lead to supersymmetry breaking. We provide evidence
that the dual geometry correctly captures the physics of the non-supersymmetric brane
system. We show that the results are consistent with expectations from the gauge theory,
to the extent that these are available. We also comment on the relation of this work to
[6], and point out some possible future directions. In an appendix, we lay out the general
case for larger quiver theories. We show that in the limit of large separations between
nodes, the theory has metastable, non-supersymmetric vacua in all cases where they are
expected.

4.1. The Conifold

In this section, we consider N D5 branes on the resolved conifold. We will first review
the open-string theory on the branes, and then discuss the dual closed-string description.
Our discussion will be more general than the canonical treatment in that we will consider
the case where the D5 branes possess an arbitrary central charge.

4.1.1. The D-brane theory

To begin with, let us recall the well-known physics of N D5 branes wrapping the
S2 tip of the resolved conifold. This geometry can be represented as a hypersurface in
C4[u, v, z, t],

uv = z(z −mt).

40 Some geometric aspects of supersymmetry breaking by F-terms in this context were recently

discussed in [95].
41 For another example of supersymmetry breaking by turning on HNS , HRR and dJ fluxes,

see [98].
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The geometry has a singularity at the origin of C4 which can be repaired by blowing up a
rigid IP1. This gives the IP1 a complexified Kähler class

Z =

∫

S2

(J + iBNS) = j + i bNS . (4.1.1)

The theory on the D5 branes at vanishing j reduces in the field theory limit to a d = 4,
N = 1, U(N) gauge theory with an adjoint-valued chiral superfield of mass m. The bare
gauge coupling is given by

4π

g2
YM

=
bNS
gs

(4.1.2)

for positive bNS . In string theory, the tension of the branes generates an energy density
related to the four dimensional gauge coupling by

V∗ =
2N

g2
YM

= N
bNS
2πgs

. (4.1.3)

Turning on a small, nonzero j can be viewed as a deformation of this theory by a
Fayet-Iliopoulos parameter for the U(1) center of the gauge group [92,93]. This deforms
the Lagrangian by

∆L =
√

2ξTrD, (4.1.4)

where D is the auxiliary field in the N = 1 vector multiplet and

ξ =
j

4πgs
, (4.1.5)

where the factor of gs comes from the disk amplitude. This deformation (4.1.4) breaks the
N = 1 supersymmetry which was linearly realized at j = 0. In particular, turning on j
increases the energy of the vacuum. Integrating out D from the theory by completing the
square in the auxiliary field Lagrangian,

LD =
1

2g2
YM

TrD2 +
√

2ξTrD,

raises the vacuum energy to

V∗ = N
bNS
2πgs

(
1 +

1

2

j2

b2NS

)
. (4.1.6)

Supersymmetry is not broken, however. At nonzero j, a different N = 1 supersym-
metry is preserved42 – one that was realized nonlinearly at vanishing j [99,100]. Which

42 This is true even in the field theory limit, despite the presence of the constant FI term.

Namely, a second, nonlinearly realized supersymmetry is present in the gauge theory as long as

there is only a constant energy density [99]. We thank A. Strominger for explaining this to us.
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subgroup of the background N = 2 supersymmetry is preserved by the branes is deter-
mined by Z in (4.1.1), the BPS central charge in the extended supersymmetry algebra.43

For any Z, the open-string theory on the branes has an alternative description which is
manifestly N = 1 supersymmetric, with vanishing FI term and bare gauge coupling related
to the magnitude of the central charge [31],

1

g̃2
YM

=

√
b2NS + j2

4πgs
. (4.1.7)

Geometrically, this is just the quantum volume of the resolving IP1. As such, the central
charge also determines the exact tension of a single D5 brane at nonzero j,

V∗ = N

√
b2NS + j2

2πgs
. (4.1.8)

For small Kähler parameter,
j ≪ bNS ,

this agrees with the vacuum energy in the field theory limit (4.1.6).
For any j, the theory is massive; it is expected to exhibit confinement and gaugino

condensation at low energies, leaving an effective U(1) gauge theory in terms of the center
of the original U(N) gauge group. We will show next that the strongly coupled theory has
a simple description for any value of Z in terms of a large N dual geometry with fluxes.

4.1.2. The geometric transition at general Z

We will now discuss the large N dual geometry for general values of the central
charge Z. Special cases (either vanishing j or vanishing bNS) have been considered in
the literature, but the present, expanded discussion is, to our knowledge, new.44 We
will see that the dual geometry exactly reproduces the expected D5 brane physics. From
the perspective of the low-energy effective action, the consideration of general central
charge corresponds to turning on a more general set of N = 2 FI terms than previously
considered in this context. Geometrically, this will lead us to consider generalized Calabi-
Yau manifolds, for which dJ is nonvanishing in addition to having HNS and HRR fluxes
turned on. This will provide a local description of the physics for each set of branes in the
more general supersymmetry-breaking cases of section three and four.

To begin, let us recall the large N dual description of the D5 brane theory at vanishing
j. This is given in terms of closed-string theory on the deformed conifold geometry,

uv = z(z −mt) + s. (4.1.9)

43 Strictly speaking, the central charge of N branes is NZ. In this chapter, we will always take

the number of branes N to be positive, so that we interpolate between branes and antibranes by

varying Z.
44 See related discussion in [31].
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This is related to the open-string geometry by a geometric transition which shrinks the
IP1 and replaces it with an S3 of nonzero size,

S =

∫

A

Ω,

where A is the three-cycle corresponding to the new S3, and the period of the holomorphic
three-form over A is related to the parameters of the geometry by S = s/m. The D5
branes have disappeared and been replaced by N units of Ramond-Ramond flux through
the S3, ∫

A

HRR = N. (4.1.10)

There are Ramond-Ramond and Neveu-Schwarz fluxes through the dual, non-compact
B-cycle as well,

α =

∫ Λ0

B

(HRR + iHNS/gs) = bRR + ibNS/gs, (4.1.11)

which corresponds to the complexified gauge coupling of the open-string theory,

α =
θ

2π
+

4πi

g2
YM

.

The B-cycle is cut off at the scale, Λ0, at which α is measured.45 The dependence of α
on the IR cutoff in the geometry corresponds to its renormalization group running in the
open-string theory.

If it were not for the fluxes, the theory would have N = 2 supersymmetry, with S
being the lowest component of an N = 2 U(1) vector multiplet. That theory is completely
described by specifying the prepotential, F0(S), which can be determined by a classical
geometry computation, ∫

B

Ω =
∂

∂S
F0.

The presence of nonzero fluxes introduces electric and magnetic Fayet-Iliopoulos terms in
the low-energy theory for the U(1) vector multiplet and its magnetic dual [22,17,25,26].
The effect of the fluxes (4.1.10),(4.1.11) can also be described in the language of N = 1
superspace as turning on a superpotential for the N = 1 chiral superfield with S as its
scalar component,

W(S) =

∫

X

Ω ∧ (HRR + iHNS/gs).

For the background in question, this takes the form

W(S) = αS −N ∂

∂S
F0. (4.1.12)

45 For simplicity, the IIB axion is set to zero in this chapter.
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In terms of the parameters of the D-brane theory, S is identified with the vev of the gaugino
condensate. One way to see this is by comparing the superpotentials on the two sides of
the duality. The αS superpotential on the closed string side corresponds to the classical
superpotential term α

4
TrWαW

α on the gauge theory side.
What does the FI term deformation of the D-brane theory correspond to in the closed-

string theory? To begin with, let us address this question from the perspective of the low-
energy effective action. We know that the U(1) gauge field after the transition coincides
[18,101] with the U(1) gauge field that is left over after the SU(N) factor of the gauge
group confines. This suggests that we should simply identify Fayet-Iliopoulos D-terms on
the two sides. More precisely, the Lagrangian of the theory after the transition can be
written in terms of N = 1 superfields,

S = S +
√

2θψ + θθF, (4.1.13)

Wα = −iλα + θαD +
i

2
(σµνθ)αFµν , (4.1.14)

as an N = 2 action deformed to N = 1 by the superpotential (4.1.12),

L =
1

4π
Im
(∫

d2θd2θ S ∂F0

∂S +

∫
d2θ

1

2

∂2F0

∂S2
WαWα + 2

∫
d2θ W(S)

)
. (4.1.15)

The Fayet-Iliopoulos deformation (4.1.4) should produce an additional term in this La-
grangian,

∆L =
j

2
√

2πgs
D, (4.1.16)

corresponding to an FI term as in (4.1.5). Note that on the D-brane side, the center of mass
U(1) corresponds to 1/N times the identity matrix in U(N), so that the normalization of
(4.1.16) precisely matches (4.1.4).

We now show that the deformation (4.1.16) leads to exactly the physics that we expect
on the basis of large N duality. After turning on the FI term, the effective potential of the
theory becomes

V =
1

4π
GSS

(
|∂SW|2 + |j/gs|2

)
+ const. (4.1.17)

where

GSS =
1

2i
(τ − τ), τ =

∂2

∂S2
F0.

We have also shifted the potential by an (arbitrary) constant, which we choose to be the
tension of the branes at vanishing j,

const. = N
bNS
2πgs

,

for convenience. We can then rewrite (4.1.17) as

V =
i

2π(τ − τ)
(
|α−Nτ |2 + |j/gs|2

)
+ const.

=
i

2π(τ − τ) |α̃−Nτ |
2 + const.

(4.1.18)
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where

α̃ = bRR +
i

gs

√
b2NS + j2

and the constant has shifted. As expected from the D-brane picture, the effective potential
of the theory with the FI term turned on and with gauge coupling (4.1.2) is the same as
that of the theory without the FI term and with gauge coupling (4.1.7).

In this simple example, the prepotential is known to be given exactly by

2πiF0(S) =
1

2
S2

(
log(

S

Λ2
0m

)− 3

2

)
.

The vacuum of the theory is determined by the minimum of (4.1.18), which occurs at

α̃−Nτ = 0, (4.1.19)

or, in terms of the expectation value of the gaugino bilinear, at

S∗ = mΛ2
0 exp(2πiα̃/N). (4.1.20)

Finally, we note that the energy in the vacuum (4.1.20) is larger than that in the j = 0
vacuum by the constant that enters (4.1.18), giving

V∗ = N

√
b2NS + j2

2πgs
, (4.1.21)

which is precisely the tension of the brane after turning on j. This is a strong indication
that we have identified parameters correctly on the two sides of the duality.

It is easy to see that in the vacuum, neither the F-term

F = ∂SW,

nor the D-term vanishes. Nevertheless, as will now show, this new vacuum preserves half
of the N = 2 supersymmetry of the theory we started with, though not the one manifest
in the action as written. Defining the SU(2)R doublet of fermions

Ψ =

(
ψ
λ

)
,

the relevant part of the supersymmetry transformations of the N = 2 theory are

δΨi = X ijǫj

where X is a matrix of F- and D-terms, shifted by an imaginary part due to the presence
of a “magnetic” FI term (see, for example, [4] and references therein)

X =
i√
2

(
−Y1 − iY2 +N Y3

Y3 Y1 − iY2 +N

)
(4.1.22)
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where the N = 2 auxiliary fields are identified with the auxiliary F-term of S in (4.1.13)
and the D-term of the gauge field in (4.1.14) according to

(Y1 + iY2) = 2iF Y3 =
√

2D.

Note that the triplet ~Y = (Y1, Y2, Y3) transform like a vector of the SU(2)R symmetry of
the N = 2 theory. In the vacuum (4.1.19)

X =
iN√

2(b2NS + j2)

(
bNS −

√
b2NS + j2 j

j −bNS −
√
b2NS + j2

)
.

The supersymmetry manifest in (4.1.15) corresponds to ǫ1, and it is clearly broken in the
vacuum for nonvanishing j, since neither the F- nor the D-term vanish. However, the
determinant of X vanishes, and so there is a zero eigenvector corresponding to a preserved
supersymmetry.

So far, we have identified turning on j with turning on an FI term in the low-energy
effective action. It is natural to ask what this corresponds to geometrically in the Calabi-
Yau manifold. In [22,17] (following [63,102]) it was shown that turning on a subset of the
FI terms of the low-energy N = 2 theory arising from IIB compactified on a Calabi-Yau
manifold corresponds to turning on HNS and HRR fluxes in the geometry. This is what
we used in (4.1.12). The question of what corresponds to introducing the full set of FI
terms allowed by N = 2 supersymmetry was studied, for example, in [96,97]. To make the
SU(2)R symmetry of the theory manifest, we can write the triplet of the N = 2 FI terms
as

E =
i√
2

(
−E1 − iE2 E3

E3 E1 − iE2

)

where (E1, E2, E3) transform as a vector under SU(2)R and enter the action as

1

4π
Re(TrXE)

These are given in terms of ten dimensional quantities by46

E1 =

∫

B

HNS/gs, E2 =

∫

B

HRR, E3 =

∫

B

dJ/gs.

Note that this agrees precisely with what we have just derived using large N duality.
Just as the bare gauge coupling

∫
S2 BNS/gs = bNS/gs gets mapped to

∫
B
HNS/gs after the

transition due to running of the coupling, SU(2)R covariance of the theory demands that
turning on

∫
S2 J/gs = j/gs before the transition get mapped to turning on

∫
B
dJ/gs after

46 This follows from equation (3.53) of [97] up to an SU(2)R rotation and specializing to a local

Calabi-Yau. More precisely, to derive this statement one needs to look at the the transformations

of the N = 2 gauginos, not the gravitino as in [97], but these are closely related. See, for example,

[102].
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the transition. Moreover, we saw in this section that the latter coupling gets identified
as a Fayet-Iliopoulos D-term for the U(1) gauge field on the gravity side. This exactly
matches the result of [96,97], since E3 is the Fayet-Iliopoulos D-term parameter. It is
encouraging to note that [96,97] reach this conclusion via arguments completely orthogonal
to our own. Finally, we observe that an SO(2) ⊂ SU(2)R rotation can be used to set the
Fayet-Iliopoulos D-term E3 = j/gs to zero, at the expense of replacing E1 = bNS/gs by
E1 =

√
b2NS + j2/gs, and this directly reproduces (4.1.18).

4.2. An A2 Fibration and the Geometric Engineering of a Metastable Vacuum

By wrapping D5 branes on rigid IP1’s in more general geometries with b2(X) > 1,
we can engineer vacua which are guaranteed to be massive and break supersymmetry by
choosing the central charges of the branes to be misaligned. Since the D-brane theories
experience confinement and gaugino condensation at low energies, we expect to be able to
study the dynamics of these vacua in the dual geometries where the branes are replaced
by fluxes.

In this section, we will consider the simple example of an A2 singularity fibered over
the complex plane C[t]. This is described as a hypersurface in C4,

uv = z(z −mt)(z −m(t− a)). (4.2.1)

This geometry has two singular points at u, v, z = 0 and t = 0, a. The singularities are
isolated, and blowing them up replaces each with a rigid IP1. The two IP1’s are independent
in homology, and the local geometry near each of them is the same as that studied in the
previous section.

Consider now wrapping N1 D5 branes on the IP1 at t = 0 and N2 branes on the IP1

at t = a. If the central charges of the branes,

Zi =

∫

S2
i

J + iBNS = ji + ibNS,i (4.2.2)

are aligned (e.g., if the Kähler parameters ji both vanish), the theory on the branes has
N = 1 supersymmetry. At sufficiently low energies, it reduces to a U(N1)× U(N2) gauge

theory with a bifundamental hypermultiplet Q, Q̃, a pair of adjoint-valued chiral fields Φ1,2

and a superpotential given by

W =
m

2
TrΦ2

1 −
m

2
TrΦ2

2 − aTrQQ̃+ Tr(QΦ1Q̃−QQ̃Φ2). (4.2.3)

For a small relative phase of the central charges, e.g., if the theory at vanishing Kähler
parameters is deformed by ji by

ji/bNS,i ≪ 1, (4.2.4)

we expect this to have a pure gauge theory description at low energies in terms of the
supersymmetric theory with Fayet-Iliopoulos terms for the two U(1)’s.
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Misaligning the central charges such that

Z1 6= c12Z2, (4.2.5)

for any positive, real constant c12, should break all the supersymmetries of the background.
Nevertheless, for large enough m and a, the vacuum should be stable. Since the theory
is massive, we expect it to exhibit confinement at very low energies, with broken super-
symmetry. Nevertheless, as we will now argue, the dynamics of the theory can be studied
effectively for any ji in the dual geometry, where the branes have been replaced by fluxes.

4.2.1. Large N dual geometry

The Calabi-Yau (4.2.1) has a geometric transition which replaces the two IP1’s by two
S3’s,

S2
i → S3

i i = 1, 2.

The complex structure of the geometry after the transition is encoded in its description as
a hypersurface,

uv = z(z −mt)(z −m(t− a)) + ct+ d, (4.2.6)

where c, d are related to the periods, S1,2, of the three-cycles, A1,2, corresponding to the
two S3’s,

Si =

∫

Ai

Ω,
∂

∂Si
F0 =

∫

Bi

Ω.

As before, Bi are the non-compact three-cycles dual to Ai, and F0 is the prepotential of
the N = 2 theory. The prepotential in this geometry is again given by an exact formula,

2πiF0 =
1

2
S2

1 (log(
S1

Λ2
0m

)− 3

2
) +

1

2
S2

2 (log(
S2

Λ2
0m

)− 3

2
)− S1S2 log(

a

Λ0
).

The theory with Ni D5 branes on the IP1
i before the transition is dual to a theory with Ni

units of RR flux through S3
i after the transition:

∫

Ai

HRR = Ni.

There are additional fluxes turned on through the non-compact, dual B-cycles,

αi =

∫

Bi

(HRR + iHNS/gs) = bRR,i + ibNS,i/gs,

corresponding to running gauge couplings, and

∫

Bi

dJ/gs = ji/gs
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corresponding to Fayet-Iliopoulos terms. The fluxes generate a superpotential,

W =

∫

X

Ω ∧ (HRR + iHNS/gs)

or

W =
∑

i

αiSi −Ni
∂

∂Si
F0,

and Fayet-Iliopoulos D-terms,

∆L =
∑

i

ji

2
√

2πgs
Di,

where Di are auxiliary fields in the two N = 1 vector multiplets.

Large N duality predicts that for misaligned central charges (4.2.5), the fluxes should
break all supersymmetries, and moreover, that the non-supersymmetric vacuum should be
metastable. We now show that this indeed the case. The tree-level effective potential of
the theory is

V =
1

4π
Gik
(
∂iW∂kW + jijk/g

2
s

)
+ const,

where

Gik =
1

2i
(τ − τ)ik τik =

∂2

∂Si∂Sk
F0,

and the Kähler metric is determined by the off-shell N = 2 supersymmetry of the back-
ground. We have shifted the zero of the potential energy by the tension of the branes at
vanishing ji,

const. =
∑

i=1,2

Ni
bNS,i
2πgs

.

In the case at hand,

τ11 =
1

2πi
log(

S1

Λ2
0m

), τ22 =
1

2πi
log(

S2

Λ2
0(−m)

),

whereas τ12 is a constant47 independent of the Si,

τ12 = − 1

2πi
log(a/Λ0).

It is straightforward to see that the critical points of the potential correspond to solutions

47 For convenience, we will take τ12 to be purely imaginary.
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of the following equations

Re(αi) +Re(τik)N
k =0

GjiGjk
(
Im(αi)Im(αk) + jijk/g

2
s

)
= (N j)2.

The first equation fixes the phase of Si’s, and the second their magnitude. Consider the
case where the two nodes are widely separated, namely, where the sizes Si of the two S3’s
are much smaller than the separation a between them. In this limit, the equations of
motion can be easily solved to obtain

SN1

1,∗ =(Λ2
0m)N1(

a

Λ0
)N2 cos θ12 exp(2πiα̃1) + . . .

SN2

2,∗ =(−Λ2
0m)N2(

a

Λ0
)N1 cos θ12 exp(2πiα̃2) + . . .

(4.2.7)

where θij is the relative phase between the central charges Zi and Zj . We can see that
in the limit where the Zi are aligned, this reduces to the simple case without FI terms
where the effective gauge coupling has been replaced with the parameter α̃i. The case of
anti-aligned central charges was studied in [4,5]. The weak coupling limit of two widely
separated nodes, in which our approximation is justified, corresponds to

Si,∗ ≪ a < Λ0. (4.2.8)

Si,∗’s should be identified with the vev’s of gaugino condensates on the branes, and are
the order parameters of the theory. This is the case even in the presence of FI terms,
as explained in the previous section. For small FI terms, this relies only on the off-shell
N = 1 supersymmetry of the theories on both sides of the duality and a comparison of
superpotentials. In [4] it was conjectured that this also holds in the brane/antibrane case,
where the central charges are anti-aligned and supersymmetry is maximally broken. It
is natural, then, that the above limit should correspond to the the theory being weakly
coupled at the scale of the superpotential (4.2.3).

In the same limit, the vacuum energy is given by

V∗ = N1

√
b2NS,1 + j21

2πgs
+N2

√
b2NS,2 + j22

2πgs
+

1

4π2
N1N2 log(

a

Λ0
)(1− cos θ12) + . . . (4.2.9)

Note that in the limit of aligned central charges, the potential energy is simply the brane
tension. This is in fact true exactly, and is related to the fact (which we will demonstrate
later on) that in this case supersymmetry is preserved. For any other value of the angle,
there is an additional attraction. In the extreme case, when we increase θ12 from zero to
π, we end up with a brane/antibrane system on the flopped geometry. We can view this as
varying one of the Zi’s until the BNS field through that cycle goes to minus itself. This
is a flop, and by comparing to [5], it follows that the solution we found above for θ12 = π
precisely corresponds to a brane/antibrane system in the flopped geometry.
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Fig. 4.1. The A2 geometry from in the text, drawn in the T -dual NS5 brane picture. The D5

branes map to D4 branes and appear as red lines. The NS5 branes are drawn as blue lines/points.

At θ12 = 0 the system is supersymmetric. For any other value of θ12, supersymmetry is broken.

Varying θ12 continuously from zero to π produces a geometry which is related to the original A2

geometry by a flop.

To see that supersymmetry is broken by the vacuum at nonvanishing θ12, we write
the action (4.1.15) in an N = 2 invariant way in terms of N = 2 chiral multiplets Ai
consisting of N = 1 chiral multiplets Si, and Wα

i ,

Ai = (Si,Wα
i )

or

Ai = Si + θaΨa,i + θaθbXab,i +
1

2
ǫab(θ

aσµνθb)Fµν + . . . .

The appropriate N = 2 Lagrangian is given by

L =
1

4π
Im
(∫

d4θd4x F0(Ai)
)

+
1

4π
Re(Xab

i E
i

ab)

where Xab
i is defined as in (4.1.22). Then, the relevant supersymmetry variations of the

fermions are given by
δǫΨ

a
i = Xab

i ǫb, (4.2.10)

and at the extrema of the effective potential,

Xi =
i√
2

(
N i +GikIm(αk) −Gikjk/gs
−Gikjk/gs N i −GikIm(αk)

)
. (4.2.11)

The equations of motion imply that the determinants of both X1,2 vanish. For each node,
then, Xi has one zero eigenvalue. It can be shown (see the general discussion of appendix
4.A), that (4.2.10) and (4.2.11) imply that a global supersymmetry is preserved if and only
if the central charges (4.2.2) are aligned, i.e., if a positive real constant c12 exists such that

Z1 = c12Z2.

This is exactly as expected from the open-string picture, and provides a nice test of the
large N duality conjecture for general central charges.
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Now we will show that the vacuum is indeed metastable. Consider the masses of
bosonic fluctuations about the non-supersymmetric vacuum. As was found to be the
case in [5], the Hessian of the scalar potential can be block diagonalized. After changing
variables to bring the kinetic terms into their canonical form, the eigenvalues become

M2
φ1,2

=
(a2 + b2 + 2abv)±

√
(a+ b)2(a− b)2 + 4abv(a+ b)(b+ a)

2(1− v)2

M2
φ3,4

=
(a2 + b2 + 2abv cos θ)±

√
(a+ b)2(a− b)2 + 4abv(a+ b cos θ)(b+ a cos θ)

2(1− v)2
(4.2.12)

where we’ve adopted the notation of [4] in defining

a =
N1

2πG11|S1|
, b =

N2

2πG22|S2|
,

and

v =
G2

12

G11G22
,

with all quantities evaluated in the vacuum. In addition, we’ve introduced a new angle,
which is defined by the equation

~Y 1 · ~Y 2 = N1N2 cos θ,

where ~Y i are related to X i as in (4.1.22) for each i. In the limit (4.2.8),

θ = θ12 +O(v),

so we can treat this as being the same as the phase which appears in (4.2.7),(4.2.9). Note
that in the limit

cos θ → 1, (4.2.13)

we recover the results for a supersymmetric system, with the masses of bosons becoming
pairwise degenerate. The other extreme of anti-aligned charges can be shown to correspond
to

cos θ → −1,

where the results of [5] should be recovered. Indeed by plugging in and rearranging terms
we recover the mass formulas from page 25 of [5]. These then provide exact values for the
tree-level masses of the component fields in the supersymmetry-breaking vacuum. For any
θ, the masses of the bosons are all positive as long as

v < 1.

This, in turn, is ensured as long as the metric on moduli space is positive definite in the
vacuum. So indeed, the system is metastable, as expected.
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To get a measure of supersymmetry breaking, let’s now compare the masses of the
bosons and the fermions in this vacuum. The fermion masses arise from the superspace
interaction which appears as

1

4π
Im

(∫
d4θd4x

1

2
Fijk(Ψi

aθ
a)(Ψj

bθ
b)(Xk

cdθ
cθd)

)
,

where Fijk = ∂i∂j∂kF0. For the geometry in question, the prepotential is exact at one-
loop order, and the third derivatives vanish except when all derivatives are with respect
to the same field. We can then write the fermion mass matrices for a given node (and
non-canonical kinetic terms) as

M i
ab =

1

16π2Si
ǫacX

i
cdǫdb

Performing a change of basis to give the fermion kinetic terms a canonical form, we can
diagonalize the resulting mass matrix and obtain the mass eigenvalues. There are two zero
modes,

Mλ1,2
= 0,

corresponding to two broken supersymmetries. In addition there are two massive fermions,
which we label by ψi,

Mψ1,2
=

(a+ b)±
√

(a− b)2 + 2abv(1 + cos θ)

2(1− v) . (4.2.14)

Note that in the supersymmetric limit (4.2.13), the masses of ψ1 and ψ2 match those of
φ1,3 and φ2,4, which have become pairwise degenerate. For small misalignment, and large
separation of the two nodes, the mass splittings of bosons and fermions are easily seen to
go like

M2
φ −M2

ψ

M2
φ +M2

ψ

∼ vθ2
12,

where v goes to zero in the limit of large separation, and θ12 measures the misalignment
of the central charges.

4.2.2. Gauge theory limit

In the gauge theory limit (4.2.4), the vacuum energy (4.2.9) reduces to

V∗ =
∑

i

Ni
bNS,i
2πgs

(1 +
1

2

j2i
b2NS,i

) +
1

8π2
N1N2 log(

a

Λ0
)
( j1
bNS,1

− j2
bNS,2

)2

+ . . . . (4.2.15)

The first terms are classical contributions, as we saw in section two. The last term comes
from a one-loop diagram in string theory, with strings stretched between the two stacks of
branes running around the loop.
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To begin with, consider the Abelian case,48

U(1)× U(1),

when the gauge theory has no strong dynamics at low energies. We should be able to
reproduce (4.2.15) directly in the field theory by computing the one-loop vacuum amplitude
in a theory with FI terms turned on. We can write the classical F- and D-term potential
of the gauge theory as

Vtree =|FΦ1
|2 + |FΦ2

|2 + |FQ|2 + |F
Q̃
|2+

1

2
g2
YM,1(|q|2 − |q̃|2 −

√
2ξ1)

2 +
1

2
g2
YM,2(|q̃|2 − |q|2 −

√
2ξ2)

2,

where

FΦ1
= mφ1 − qq̃ FΦ2

= mφ2 − qq̃ FQ = q̃(a+ φ2 − φ1) F
Q̃

= q(a+ φ2 − φ1)

and φi, q, q̃ are the lowest components of the corresponding chiral superfields. The gauge
theory quantities are related to those of the string theory construction by

1

g2
YM,i

=
bNS,i
4πgs

, ξi =
ji

4πgs
.

The identification between the field theory FI term and the string theory parameter is
expected to hold only for small ji/bNS,i. For nonzero ξ1,2, supersymmetry appears to be
broken since the two D-term contributions cannot be simultaneously set to zero with the
F-terms. In fact, we know that if the central charges are aligned, this is just a relic of
writing the theory in the wrong superspace.

For large m, a, this potential has a critical point at the origin of field space. At this
point, all the F-terms vanish, and there is pure D-term supersymmetry breaking. The
spectrum of scalar adjoint and gauge boson masses is still supersymmetric at tree-level,
since the only contribution to the masses in the Lagrangian is the FI-dependent piece
for the bifundamentals. This means that the only relevant contribution to the one-loop
corrected potential is from the bifundamental fields. The scalar components develop a
tree-level mass which is simply given by49

m2
q = a2 + r, m2

q̃
= a2 − r (4.2.16)

48 Although the rank of the gauge group is not large in this case, the geometric transition is still

expected to provide a smooth interpolation between the open- and closed-string geometries. For

a recent review, see [6], and references therein. It is natural to expect that for small deformations

by FI terms that break supersymmetry, the two sides still provide dual descriptions of the same

physics.
49 One can readily check that for small r, the masses agree with what we expect from string

theory. The bifundamental matter is the same as for the 0− 4 system, with small B-fields turned

on along the D4 branes. See, e.g., [103,104].
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while the fermion masses retain their supersymmetric value,

m2
ψq

= m2
ψ

q̃

= a2.

We have defined the constant

r =
√

2(ξ2g
2
YM,2 − ξ1g2

YM,1) =
√

2(
j2

bNS,2
− j1
bNS,1

). (4.2.17)

The one-loop correction to the vacuum energy density is given by

V (1−loop) =
1

64π2


∑

b

m4
b log

m2
b

Λ2
0

−
∑

f

m4
f log

m2
f

Λ2
0


 ,

where mb,f are the boson and the fermion masses, and Λ0 is the UV cutoff of the theory.
The limit in which we expect a good large N dual is when the charged fields are very
massive, r ≪ a2, and at low energies the theory is a pure gauge theory. Expanding to the
leading order in r/a2, the one-loop potential is then given by

V = Vtree +
1

16π2
r2 log

a

Λ0
.

We have omitted the Λ0 independent terms which correspond to the finite renormalization
of the couplings in the Lagrangian and are ambiguous. We see that this exactly agrees with
effective potential (4.2.9),(4.2.15) as computed in the dual geometry, after the transition.

In the general, U(N1)× U(N2) case, we have a strongly coupled gauge theory at low
energies. Nevertheless, since in the (Ni, N i) sector supersymmetry is preserved, the one-
loop contribution of that sector to the vacuum energy density should vanish beyond the
classical contribution. Thus, we expect that only the bifundamental fields contribute to
the vacuum energy at this level. The one-loop computation then goes through as in the
Abelian case, up to the N1N2 factor from multiplicity, once again reproducing the answer
(4.2.15) from large N dual geometry.

4.2.3. Relation to the work of [6]

We close with a comment on the relation to the work of [6], to put the present work
in context. The A2 model at hand is the same as the geometry used to engineer the Fayet
model in [6]. More precisely, the authors there engineered a “retrofitted” Fayet model.
The parameter a that sets the mass of the bifundamentals was generated by stringy or
fractional gauge theory instantons, and thus was much smaller than the scale set by the FI
terms, which were taken to be generic. That resulted in F-term supersymmetry breaking
which was dynamical.

In the present context, we still have a Fayet-type model, but we find ourselves in a
different regime of parameters of the field theory, where r/a2 < 1, with r defined in terms
of the FI parameters as in (4.2.17). Outside of this regime, the vacuum at the origin of
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field space, with Q and Q̃ vanishing, becomes tachyonic even in the field theory, as can be
seen from (4.2.16). Once this becomes the case, the large N dual presented here is unlikely
to be a good description of the physics. For example, for N1 = N2 = N and r/a2 > 1, it
was found in [6] that the theory has a non-supersymmetric vacuum where all the charged
bifundamental fields are massive and the gauge symmetry is broken to U(N). This may
still have a description in terms of some dual geometry with fluxes, but not the one at
hand. This may be worth investigating.

Thus, unlike the models of [6], those considered here break supersymmetry sponta-
neously but not dynamically. It would be nice to find a way to retrofit the current models
and to generate low scale supersymmetry breaking in this context. This would require
finding a natural way of obtaining small FI terms. The mechanism of [6] does not apply
here, since the terms in question are D-terms and not F-terms. This may be possible in the
context of warped compactifications50 and compact Calabi-Yau manifolds, perhaps along
the lines of [107].

Appendix 4.A. Fayet-Iliopoulos Terms for ADE Singularities

The largeN duality we studied in the previous sections should generalize to other ADE
fibered geometries. In this appendix, we demonstrate that the large N dual geometries for
these more general spaces have some of the same qualitative features. Consider the ADE
type ALE spaces

Ak : x2 + y2 + zk+1 = 0

Dr : x2 + y2z + zr−1 = 0

E6 : x2 + y3 + z4 = 0

E7 : x2 + y3 + yz3 = 0

E8 : x2 + y3 + z5 = 0

which are fibered over the complex t-plane, allowing the coefficients parameterizing the de-
formations to be t-dependent. The requisite deformations of the singularities are canonical
(see [31] and references therein). In fibering this over the t-plane, the zi become polyno-
mials zi(t). At a generic point in the t-plane, the ALE space is smooth, with singularities
resolved by blowing up r independent two-cycle classes

S2
i , i = 1, . . . r

where r is the rank of the corresponding Lie algebra. This corresponds to turning on
Kähler moduli

Zi =

∫

S2
i

(J + iBNS) = ji + ibNS,i.

50 The effects of warping in the context of [4] have been studied in [46]. In [105], the authors

constructed supergravity solutions that were subsequently interpreted in [106] to correspond to

D5 branes on the conifold with Fayet-Iliopolous terms turned on, i.e. the theory we studied in

section two. We thank Y. Nakayama for directing us to the latter work.
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The two-cycles S2
i intersect according to the ADE Dynkin diagram of the singularity.

Consider now wrapping Ni D5 branes on the i’th two-cycle class. The theory on the
branes is an N = 2 quiver theory with gauge group

∏

i

U(Ni),

with a bifundamental hypermultiplet Qij , Qji for each pair of nodes connected by a link
in the Dynkin diagram. The fibration breaks the supersymmetry to N = 1 by turning on
superpotentials Wi(Φi) for the adjoint chiral multiplets Φi,

W ′
i (t) =

∫

S2
i,t

ω2,0,

which compute the holomorphic volumes of the two-cycles at fixed t. The superpotentials
Wi(t) can be thought of as parameterizing the choice of complex structure of the ALE
space at each point in the t-plane. The full tree-level superpotential of the theory is given
by

W =
∑

i

TrWi(Φi) +
∑

i<j

Tr(QijQjiΦi −QijΦjQji)

where the latter sum runs over nodes that are linked.
For vanishing ji, the structure of the vacua of the theory was computed in [31]. For

each positive root eI of the lie algebra,

eI =
∑

I

niIei

for positive integers niI , one gets a rigid IP1 at points in the t-plane

t = aI,p,

where

W ′
I(aI,p) =

∑

i

niIW
′
i (aI,p) = 0. (4.A.1)

Here I labels the positive root and p runs over all the solutions to (4.A.1) for that root.
The choice of vacuum breaks the gauge group down to

∏

I,p

U(MI,p)

where

Ni =
∑

I

MI,pn
i
I .

– 119 –



Turning on generic Fayet-Iliopoulos terms for the U(1) centers of the gauge group factors,

∆L =
∑

i

ji

2
√

2πgs
TrDi,

breaks supersymmetry while retaining (meta)stability of the vacuum as long as ji is much
smaller than the mass of all the bifundamentals in the vacuum.

The ALE fibrations have geometric transitions in which each IP1 is replaced by a
minimal S3. The leading order prepotential F0 for all these singularities was computed in
[52], and is given by

2πiF0(S) =
1

2

∑

b

S2
b

(
log
( Sb
W ′′
I (ab) Λ2

0

)
− 3

2

)
+

1

2

∑

b6=c

eI(b) · eJ(c) Sb Sc log
(abc

Λ0

)
+ . . . ,

(4.A.2)
where the sum is over all critical points

b = (I, p),

and I(b) = I denotes the root I to which the critical point labeled by b corresponds. We
are neglecting cubic and higher order terms in the SI,p, which are related to higher loop
corrections in the open string theory. Above, eI · eJ is the inner product of two positive,
though not necessarily simple, roots. Geometrically, the inner product is the same as
minus the intersection number of the corresponding two-cycles classes in the ALE space.
In addition, there are fluxes turned on in the dual geometry which are determined by
holography:

∫

Aa

HRR =Ma

∫

Ba

(HRR +
i

gs
HNS) = bRR,I(a) +

i

gs
bNS,I(a) ,

∫

Ba

dJ = jI(a).

The theory on this geometry without fluxes is anN = 2, U(1)k gauge theory, where k is the
number of S3’s. The effect of the fluxes on the closed-string theory in this background was
determined in [96,97]. The result is a set of electric and magnetic N = 2 Fayet-Iliopoulos
terms, which enter the N = 2 superspace Lagrangian,

L =
1

4π
Im

(∫
d4θ F0(Aa)

)
+

1

4π
Re(~Y a · ~Ea).

with

~Ea =

(
bNSa
gs

, bRR,a ,
ja
gs

)
,

and where the auxiliary fields ~Y a are shifted by the magnetic FI term,

~Ma = ( 0 , Ma , 0 ).
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The auxiliary field Lagrangian then has the form

Laux =
1

8π
GabRe(~Y )a ·Re(~Y )b +

1

4π
Re(τab)Re(~Y )a · ~M b +

1

4π
Re(~Y )a · ~Ea

and integrating out the auxiliary fields sets them equal to their expectation values,

~Y a = −Gab
(
~Eb +Re(τbc) ~M

c
)

+ i ~Ma

or, to be more precise,

−Gab~Y b =
(
bNSa /gs , b

RR
a + τabM

b , ja/gs
)
.

We can make contact with the more familiar form of this action and its scalar potential by
reducing to N = 1 superspace. There, the auxiliary fields ~Y a get identified with auxiliary
fields of the vector and chiral multiplets corresponding to the a’th S3, and the fluxes give
rise to the usual flux superpotential

W =
∑

a

αaSa −Ma∂Sa
F0(S).

In addition, there are Fayet-Iliopoulos terms for the U(1)’s, and the total scalar potential
is given by

V =
1

4π
Gab

(
∂aW∂bW + jajb/g

2
s

)

where
αa = bRR,a + ibNS,a/gs.

There are vacua at the field values which satisfy

∂aV ∼ FabcGceGbd
(
(αe − τ emMm)(αd − τdnMn) + jejd/g

2
s

)
= 0.

At one-loop order, the prepotential has nonvanishing third derivatives only when all deriva-
tives are with respect to the same field. The vacuum condition can be simplified to this
order, and upon considering the equation as two real equations for the real and imaginary
part, the conditions become

(bRR,a −Re(τab))M b =0

GacGad (bNS,cbNS,d + jcjd) = (Mags)
2.

The first of these can be solved easily for the phases of the Sa. Moreover, we see that it is
equivalent to the condition that the real part of the auxiliary fields Y a2 vanish for all a in
the N = 2 superspace Lagrangian,

GabRe(Y
b
2 ) = 0.
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In light of that result, the second condition can be written as

~Ya · ~Ya = 0. (4.A.3)

Since the supersymmetry transformations are

δǫΨa = Xaǫ+ . . .

where

Xa =
i√
2

(
−Y a1 − iRe(Y2)

a +Ma Y a3
Y a3 Y a1 − iRe(Y2)

a +Ma

)
,

(4.A.3) is precisely the condition that there exists some supersymmetry transformation on
each node which is locally preserved by the vacuum. Of course, for supersymmetry to be
conserved globally, these supersymmetry transformations must match for all nodes. The
condition for this to be the case is

Y a1
Ma

=
Y b1
M b

Y a3
Ma

=
Y b3
M b

,

which, along with the requirement that the metric on moduli space be positive definite in
the vacuum, requires that

Za = cabZb

for a positive, real constant cab. This conforms to our intuition from the open-string
picture that preserving supersymmetry should require that the complex combination of
the FI terms and gauge couplings should have the same phase on each node.

We can also see that the vacuum we just found is metastable, as we expect based on
large N duality. Consider the Hessian of the potential,

4π∂a∂cV =
1

8π2SaScg2
s

(
GiaGacGcj(biNSb

j
NS + jijj)−GacMaM cg2

s

)
,

4π∂a∂cV =
1

8π2SaScg2
s

(
GiaGacGcj(biNSb

j
NS + jijj) +GacMaM cg2

s

)
,

and similarly for complex conjugates. The eigenvalues of the Hessian are manifestly pos-
itive in the limit where Gab vanishes for a 6= b, which corresponds to widely separated
nodes, and where the matrix ∂∂V is diagonal. Moreover, the determinant of the Hessian
is strictly positive for any Gab, so the one-loop Hessian remains positive definite for any
Gab.

Finally, we can compute the value of the vacuum energy in the limit where the branes
are far separated. The relevant limit in this more general case is

Sa,∗ ≪ abc < Λ0.

The vacuum energy is then given by

V∗ =
∑

b

M b

√
b2NS,b + j2b

2πgs
− 1

8π2

∑

b6=c

eI(b) · eJ(c)M
bM c log

abc
Λ0

(1− cos θbc)

which reduces to the one-loop value in the gauge-theory limit, as in the A2 case.
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Chapter 5

Extended Supersymmetric Moduli Space
and a SUSY/Non-SUSY Duality

The last decade has seen great progress in our understanding of the dynamics of
N = 1 supersymmetric gauge theories, with string theory playing a large role in these de-
velopments thanks to its rich web of dualities. In particular, motivated by string theoretic
considerations [18], a perturbative approach was proposed for the computation of glue-
ball superpotentials in certain N = 1 supersymmetric gauge theories using matrix models
[19,59], which leads to non-perturbatively exact information for these theories at strong
coupling. Further evidence for this proposal was provided through direct computations
[57], as well as from consideration of N = 1 chiral rings [108].

The simplest class of gauge theories considered in [18] involve an N = 1 supersym-
metric U(N) gauge theory with an adjoint superfield Φ together with a superpotential

TrW (Φ) =
∑

k

akTrΦk.

In this chapter, we consider further deforming this theory by the most general set of
single-trace chiral operators. This is accomplished by the introduction of superpotential
terms ∫

d4xd2θTr [α(Φ)WαWα] ,

whereWα is the field strength superfield. In string theory, these theories are constructed by
wrapping D5 branes on vanishing cycles in local Calabi-Yau threefolds, where the addition
of a background B-field which depends holomorphically on one complex coordinate of the
threefold leads to the above deformation, with

α(Φ) = B(Φ) =
∑

k

tkΦ
k.
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We show how the strongly coupled IR dynamics of these theories can be understood using
both string theoretic techniques (large N duality via a geometric transition) and a direct
field theory computation as in [57]. Moreover, following [101], we can consider the limit
where W (Φ) is set to zero, in which case we recover an N = 2 supersymmetric theory with
Lagrangian given by

L =

∫
d4xd4θF(Φ).

The prepotential F(Φ) is related to α(Φ) by

F ′′(Φ) = α(Φ), (5.0.1)

where Φ is an adjoint-valued N = 2 chiral multiplet. In this limit, our solution reduces to
that of the extended Seiberg-Witten theory with general prepotential (5.0.1). Our results
are in complete agreement with the beautiful earlier work of [109], which uses Konishi
anomaly [108] and instanton techniques [110] to study these same supersymmetric gauge
theories.51

The stringy perspective which we develop, however, sheds light on non-supersymmetric
phases of these theories, which will be our main focus. In particular,it turns out that if
α(Φ) is chosen appropriately, there are vacua where supersymmetry is broken. The idea is
that a suitable choice of higher-dimensional operators can lead to negative values of g2

YM

for certain factors of the gauge group. Motivated by string theory considerations, we will
show that strong coupling effects can make sense of the negative value for g2

YM, and at
the same time lead to supersymmetry breaking. In the string theory construction, this
arises from the presence of antibranes in a holomorphic B-field background. When g2

YM is
negative in all the gauge group factors, we propose a complete UV field theory description
of these vacua. This is another U(N) gauge theory, already studied in [112,113,96,114],

with an adjoint field Φ̃ and superpotential

∫
d2θ Tr[t0W̃αW̃α + W̃ (Φ̃)], (5.0.2)

where
W̃ (Φ̃) =

∑

k

(ak + 2itkθθ)Φ̃
k.

Note that since the spurion auxiliary fields have nonzero vevs tk, this theory breaks super-
symmetry.

A duality between supersymmetric and non-supersymmetric theories may appear con-
tradictory. The way this arises is as follows (see figure 5.1). We have an IR effective N = 1
theory which is valid below a cutoff scale Λ0. The IR theory is formulated in terms of chi-
ral fields which we collectively denote by χ (for us, these are glueball fields). The theory
depends on some couplings t, and for each value of t we find two sets of vacua – one which
is supersymmetric, and one which is not. However, for any given values of t, only one of

51 A special case of these theories with a particular choice of W (Φ) was also studied in [111].
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these vacua is physical, in that the expectation value of the chiral fields is below the cutoff
scale |〈χ〉| < Λ0. The other solution falls outside of this region of validity. In particular,
in one regime of parameter space, only the supersymmetric solution is acceptable. As we
change t, the supersymmetric solution leaves the allowed region of field space, and at the
same time the non-supersymmetric solution enters the allowed region. We obtain in this
way a duality between a supersymmetric and a non-supersymmetric theory. Moreover, we
are able to identify two dual UV theories. However, unlike the effective IR theory, which
is valid for the entire parameter space, each UV theory is valid only for part of the full
parameter space. The supersymmetric IR solution matches onto a supersymmetric UV
theory, and the non-supersymmetric IR solution matches onto another UV theory where
supersymmetry is broken softly by spurions.

t

Λ
0

SUSY SUSY

< >χ

Fig. 5.1. A phase diagram for the supersymmetric/nonsupersymmeric duality. The

horizontal axis represents the full parameter space, and the vertical axis represents

field vevs. A wavy line at the cutoff Λ0 is the region where we begin to lose validity

of a given solution – we can trust solutions only below this scale.

The organization of this chapter is as follows. In section 2 we establish the
basic field theories which will be studied. In section 3 we show how these field
theories can be realized in type IIB string theory on local Calabi-Yau threefolds.
In section 4 we show how this string theory construction leads to a solution for
the IR dynamics of the theory. In section 5 we derive the same result directly
from field theory considerations. In section 6 we specialize to the N = 2 case.
In section 7 we consider these field theories when some of the gauge couplings
g2
YM become negative. We explain why this leads to supersymmetry-breaking

and propose a dual description. Some aspects of the effective superpotential
computation are presented in an appendix.
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5.1. Field Theory

Consider an N = 2 supersymmetric U(N) gauge theory with no hyper-
multiplets. Classically, this theory is described by a holomorphic prepotential
F̧(Φ) which appears in the N = 2 Lagrangian,

L =

∫
d4xd4θF(Φ) (5.1.1)

where Φ is an adjoint-valued N = 2 chiral multiplet, and

F(Φ) =
t0
2

TrΦ2. (5.1.2)

Above, t0 determines the classical gauge coupling and θ angle

t0 =
θ

2π
+

4πi

g2
YM

, (5.1.3)

and the integral in (5.1.1) is over a chiral half of the N = 2 superspace. The
low energy dynamics of this theory were studied in [115], where it was shown
that the theory admits a solution in terms of an auxiliary Riemann surface and
one-form.

This theory admits a natural extension via the introduction of higher-
dimensional single-trace chiral operators,

F(Φ) =
∑

k=0

tk
(k + 1)(k + 2)

TrΦk+2, (5.1.4)

which deform the theory in the ultraviolet. One effect of these new terms is
that the effective gauge coupling at a given point in moduli space now depends
explicitly on the expectation value of the scalar component φ of the superfield
Φ,

t0 → F ′′(φ) =
∑

k=0

tkφ
k.

We therefore define
α(Φ) ≡ F ′′(Φ).

In this chapter, we will solve for the low energy dynamics of this extended
Seiberg-Witten theory.

We will also study deformations of the theory (5.1.1) to an N = 1 super-
symmetric theory by the addition of a superpotential,

TrW (Φ) =
n+1∑

k=0

akTrΦk, (5.1.5)
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for the N = 1 chiral multiplet Φ that sits inside Φ. In N = 1 language, the full
superpotential of the theory then becomes

∫
d2θ
(
Tr [α(Φ)WαWα]− TrW (Φ)

)
, (5.1.6)

where Wα is the gaugino superfield.
Classically, the superpotential W (Φ) freezes the eigenvalues of φ at points

in the moduli space where
W ′(φ) = 0. (5.1.7)

For generic superpotential, we can write

W ′(x) = g

n∏

i=1

(x− ei), (5.1.8)

with ei all distinct, so the critical points are isolated and the choice of a vacuum
breaks the gauge symmetry as

U(N)→
n∏

k=1

U(Ni) (5.1.9)

for the vacuum with Ni of the eigenvalues of φ placed at each critical point
x = ei.

As long as the effective gauge couplings of the low-energy theory are posi-
tive, i.e.

Im[α(ei)] =

(
4π

g2
YM

)

i

> 0, i = 1, . . . n (5.1.10)

the general aspects of the low energy dynamics of this theory are readily ap-
parent. In the vacuum (5.1.9), at sufficiently low energies, the theory is pure
N = 1 super-Yang-Mills, which is expected to exhibit confinement and gaugino
condensation.

When the original N = 2 theory has canonical prepotential (5.1.2), the
condition (5.1.10) is satisfied trivially, and in this case the problem of computing
the vacuum expectation values of gaugino condensates in the N = 1 theory,

Sk = TrWα,kWα
k , (5.1.11)

has been studied extensively from both string theory [18] and gauge theory
[57,108] perspectives. The question can be posed in terms of the computation
of an effective glueball superpotential [18],

Weff (Si),

whose critical points give the supersymmetric vacua of the theory. In this
chapter, we will show how to computeWeff for the N = 1 theory with the more
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general prepotential (5.1.4). Note that physically inequivalent choices of α(Φ)
correspond to polynomials in Φ of degree at most n − 1. This is because, for
the supersymmetric theory, any operator of the form

Tr
[
ΦkW ′(Φ)WαWα

]
∼ 0

is trivial in the chiral ring [108].
In section 7, we will ask what happens when (5.1.10) is not satisfied and it

appears that some of the gauge couplings of (5.1.9) become negative in the vac-
uum. We will show that in this case, the theory (5.1.6) generically breaks super-
symmetry. Moreover, the supersymmetry-breaking vacua still exhibit gaugino
condensation and confinement, and we will be able to compute the correspond-
ing expectation values (5.1.11) as critical points of a certain effective scalar
potential Veff(Si).

5.2. The String Theory Construction

In this section we give the string theory realization of the above gauge
theory. To begin with, we consider type IIB string theory compactified on an
A1 singularity,

uv = y2, (5.2.1)

which is fibered over the complex x-plane. This has a singularity for all x at
u, v, y = 0, which can be resolved by blowing up a finite IP1. Wrapping N D5
branes on the IP1 gives a d = 4 U(N) N = 2 gauge theory at sufficiently low
energies. The adjoint scalar φ of the gauge theory corresponds to motion of the
branes in the x-plane.

In the microscopic N = 2 gauge theory we also have a choice of prepoten-
tial F̧(Φ). What does this correspond to geometrically? To answer this, note
that the microscopic prepotential determines the bare 4d gauge coupling, which
arises in the geometry from the presence of nonzero B-fields,

θ

2π
+

4πi

g2
YM

=

∫

IP1

(
BRR +

i

gs
BNS

)
. (5.2.2)

In the undeformed theory with the prepotential (5.1.2), the gauge coupling was
a constant t0. This translates to the statement that, classically, as the ALE
space is fibered over the x-plane, the Kähler modulus of the IP1 (in particular
the B-fields in (5.2.2)) does not vary with x. In the extended Seiberg-Witten
theory, the complexified gauge coupling becomes φ-dependent. Since the adjoint
scalar φ parameterizes the positions of the D5 branes in the x plane, making
the gauge coupling φ-dependent should correspond to letting the background
B-fields in (5.2.2) be x-dependent,

B(x) =

∫

S2
x

(
BRR +

i

gs
BNS

)
, (5.2.3)

– 128 –



where the integral on the right hand side is over the S2 at a point in the x
plane. In order to reproduce the gauge theory, we require

B(x)→ B0(x) = α(x) =
n−1∑

k=0

tkx
k. (5.2.4)

To summarize, the gauge theory in section 2 is realized as the low-energy
limit of N D5 branes wrapped on an A1 ×C singularity with H-flux turned on,

∫

S2
x

H0 = dB0(x) 6= 0. (5.2.5)

It may seem surprising that turning on H-flux does not break supersymmetry
down to N = 1.52 In the case at hand, the flux we are turning on is due to a
B-field that varies holomorphically over the complex x-plane. It is known that
if the B-field varies holomorphically, the full N = 2 supersymmetry is preserved
[116,110].

As was explained in [18], turning on a superpotential TrW (Φ) for the ad-
joint chiral superfield, as in (5.1.5), corresponds in the geometry to fibering the
ALE space over complex x-plane nontrivially,

uv = y2 −W ′(x)2, (5.2.6)

where

W (x) =

n+1∑

k=1

akx
k.

The resulting manifold is a Calabi-Yau threefold and supersymmetry is broken
to N = 1. After turning on W (x), the minimal S2’s (the holomorphic IP1’s)
are isolated at n points in the x-plane, x = ei, which are critical points of the
superpotential,

W ′(x) = g

n∏

i=1

(x− ei).

At each of these points, the geometry develops a conifold singularity, which is
resolved by a minimal IP1. The gauge theory vacuum where the gauge symmetry
is broken as in (5.1.9) corresponds to choosing Ni of the D5 branes to wrap the
i’th IP1. In particular, the tree-level gauge coupling for the branes wrapping
the IP1 at x = ei is given by

∫

IP1
i

B0 =

(
θ

2π
+

4πi

g2
YM

)

i

= α(ei), (5.2.7)

52 The fact that it preserves at least N = 1 supersymmetry is clear for a holomorphic B-field,

since the variation of the superpotential W =
∫
H ∧ Ω with respect to variations of Ω vanishes if

H is holomorphic.
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which agrees with the classical values in the gauge theory.
In summary, we can engineer the N = 1 theory obtained from the extended

N = 2 theory by the addition of a superpotential W (Φ) with N D5 branes
wrapping the S2 in the Calabi-Yau (5.2.6), with background flux H0. In the
next section, we will study the closed-string dual of this theory.

5.3. The Closed String Dual

The open-string theory on the D5 branes has a dual description in terms of
pure geometry with fluxes. The gauge theory on the D5 branes which wrap the
IP1’s develops a mass gap as it confines in the IR. The confinement of the open-
string degrees of freedom can be thought of as leading to the disappearance of
the D5 branes themselves. This has a beautiful geometric realization [18] which
we review presently.

In flowing to the IR, the D5 branes deform the geometry around them so
that the P1’s they wrap get filled in, and the S3’s surrounding the branes get
finite sizes. This is a conifold transition for each minimal S2, after which the
geometry is deformed from (5.2.6) to

uv = y2 −W ′(x)2 + fn−1(x), (5.3.1)

where fn−1(x) is a polynomial in x of degree n − 1. This has n coefficients
which govern the sizes of the n resulting S3’s.

In addition, there is H-flux generated in the dual geometry,

H = HRR +
i

gs
HNS.

Before the transition, the S3’s were contractible and had RR fluxes through
them due to the enclosed brane charge. After the transition, they are no longer
contractible, but the fluxes must remain. In other words we expect the disap-
pearance of the branes to induce (log-)normalizable RR flux, localized near the
branes’ previous locations, which we denote by HRR. If we denote the S3 that
replaces the k’th S2 by Ak-cycles, then

∮

Ak

HRR = Nk. (5.3.2)

It is also natural to expect that there will be no HRR flux through the Bk-cycles,
as there were no branes to generate it. In other words

∫

Bk

HRR = 0. (5.3.3)

In addition to the induced flux HRR, we have a background flux H0 due
to the variation of the background B0 field, which was present even when there
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were no branes, and which we denote by H0 = dB0. Thus we expect the total
flux after the transition to be given by

H = HRR + dB0.

Note that before the transition, there are no compact three-cycles, and so there
is no compact flux associated with dB0. It is then natural to postulate that
after the transition, dB0 will have no net flux through any of the compact three-
cycles. Moreover, far from the branes, we expect B0 to be given by its value
before the transition. For the non-compact three-cycles in the dual geometry,
denoted by Bk, we can then explicitly evaluate the periods of H0,

∫

Bk

H0 =

∫

Bk

dB0 =

∮

S2
Λ0

B0 = B(Λ0). (5.3.4)

Because these cycles are non-compact, the integral is regulated by the intro-
duction of a long distance cutoff Λ0 in the geometry. As usual, we identify this
scale with the UV cutoff in the gauge theory.

To summarize, the total flux H = HRR + dB0 after the transition should
be determined by the following facts: HRR is (log-)normalizable, with only
nonzero Ak periods (given by Nk), and far from the branes, B0 is given by its
background value (5.2.4), i.e.,

dB0 ∼ dα(x) =

n−1∑

k=1

ktkx
k−1.

The fact that the deformed background flux is given by an exact form dB0

emphasizes the fact that it is cohomologically trivial and has no nonzero periods
around compact three-cycles.

The striking aspect of the duality is that in the dual geometry, the gaugino
superpotential Weff becomes purely classical. We will turn to its computation
in the next subsection.

5.3.1. The effective superpotential

The effective superpotential is classical in the dual geometry and is gener-
ated by fluxes,

Weff =

∫

CY

(HRR +H0) ∧ Ω,

where Ω is a holomorphic three-form on the Calabi-Yau,

Ω =
dx ∧ dy ∧ dz

z
.

This has a simpler description as an integral over the Riemann surface Σ which
is obtained from (5.3.1) by setting the u, v = 0:

0 = y2 −W ′(x)2 + fn−1(x). (5.3.5)
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The Riemann surface Σ is a double cover of the complex x-plane, branched
over n cuts. The three-cycles Ak and Bk of Calabi-Yau threefold descend to
one-cycles on the Riemann surface Σ, with Ak cycles running around the cuts
and Bk cycles running from the branch points to the cutoff (see figure 5.2).
In addition, HRR descends to a one-form on Σ with periods (5.3.2), (5.3.3).
Moreover, Ω descends to a one form on Σ, given by

ydx,

where y solves (5.3.5). The effective superpotential then reduces to an integral
over the Riemann surface,

Weff =

∫

CY

(HRR +H0) ∧ Ω =

∫

Σ

(HRR + dB0) ∧ ydx. (5.3.6)

The one-form HRR is defined by its periods

∮

Ai

HRR = Ni,

∫

Bi

HRR = 0,

and the asymptotic behavior of B0 is determined by

dB0(x) ∼ ±dα(x),

where ± correspond to the values of the one-form on the top and bottom sheets
of Σ.

Fig. 5.2. The Calabi-Yau threefold (5.3.1) projects to the x-plane by setting u =

v = 0. This can be described as a multi-cut Riemann surface Σ, where the nontrivial

three-cycles of the Calabi-Yau reduce to one-cycles as drawn.

The evaluation of the superpotential is now straightforward. Using the
Riemann bilinear identities, we can evaluate the first term,

∫

Σ

HRR ∧ ydx =
n∑

k=1

∮

Ak

HRR

∫

Bk

ydx−
∮

Ak

ydx

∫

Bk

HRR =
n∑

k=1

Nk ∂F0

∂Sk
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where ∮

Ak

ydx = Sk,

∫

Bk

ydx =
∂F0

∂Sk
,

and F0 is the genus 0 prepotential of the Calabi-Yau. The background contri-
bution to the superpotential is also straightforward to evaluate, since there are
no internal periods for the flux,

∫

Σ

dB0 ∧ ydx =

∮

P

B0(x) ydx ∼ ±
n∑

k=1

∮

Ak

α(x)ydx,

where the last equality follows from the fact that B0(x) = α(x) for large x by
Cauchy’s theorem (since the cycle around P is homologous to the sum of all
the Ak-cycles).

Thus, the full effective superpotential is

Weff =
n∑

k=1

Nk
∂

∂Sk
F0 +

∮

Ak

α(x)ydx. (5.3.7)

This expression is in line with our intuition from the open-string description.
Namely, to the leading order we have

∮

Ak

α(x)ydx ∼ α(ek)Sk + . . .

where the omitted terms are higher order in Si. To this approximation, the
superpotential is given by

Weff ∼
∑

k

α(ek)Sk +Nk
∂F0

∂Sk
+ . . .

Note that the first term above comes from the classical superpotential of the
gauge theory, since the Ai-cycle periods Si in the geometry are identified with
glueball superfields in the gauge theory. The coefficient of Si in the effective
superpotential is the microscopic gauge coupling of the U(Ni) gauge group
factor in the low energy effective field theory. This is precisely equal to the
B-field on the S2 wrapped by the branes (5.2.7).

However, this cannot be the whole story. After the deformation, the lo-
cation of the IP1 is no longer well defined, as the IP1 at the point x = ek has
disappeared and been replaced by an S3 which is a branch cut on the x-plane.
The geometry has been deformed around the branes and the two sheets of the
Riemann surface connect through a smooth throat. We need to specify where
the gauge coupling is to be evaluated, and since the point in the x-plane has
been replaced by a throat, the most natural guess is that we smear the B-field
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over the cuts. This is precisely what (5.3.7) does! In the appendix, we pro-
vide more details for the derivation of (5.3.7) based on the use of the Riemann
bilinear identities.

In the next section, we will show that the same effective superpotential
follows from a direct gauge theory computation. Moreover, we will relate the
gauge theory computation to an effective matrix model. We will also give a
more explicit expression for Weff ,

Weff =

n−1∑

k=0

tk
∂

∂ak
F0 +Nk

∂

∂Sk
F0, (5.3.8)

which arises from the following nontrivial identity that we prove in section 5
using the formulation of the topological string in terms of matrix models [58]:

∮

P

α(x)ydx =
n−1∑

k=0

tk
∂

∂ak
F0.

Equations (5.3.7) and (5.3.8) agree with the results of [109,111].
The form of the superpotential (5.3.8) suggests a dual role played by

(ak, Sk) and (tk, Nk) – indeed it suggests a formulation in terms of fluxes [17]
(see also [113,96]). We can think of the fluxes Nk as turning on auxiliary fields
for the Sk superfields in the N = 2 effective theory, where Sk is the lowest
component of the superfield,

Sk → Sk + · · ·+ 2iNkθ2θ2 + · · ·

The N = 1 superpotential arises by the integration over half of the chiral N = 2
superspace ∫

d4θF0(Sk) =

∫
d2θNk

∂F0

∂Sk
+ . . .

Similarly, we can view the background parameters ak as scalar components of
non-normalizable superfields, and the tk as the corresponding fluxes leading to
vevs for their associated auxiliary fields,

ak → ak + · · ·+ 2itkθ2θ2 + · · ·

Thus the full superpotential can be obtained from theN = 2 formulation simply
by giving vevs (tk, Nk) to the auxiliary fields of (ak, Sk).

5.3.2. Extrema of the superpotential

With the closed-string dual of our gauge theory identified, we turn to the
extremization of the flux superpotential. We wish to solve

∂Weff

∂Sk
=

∫

Σ

(HRR +H0) ∧
∂

∂Sk
ydx = 0. (5.3.9)
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From (5.3.8) this can be written as

n−1∑

i=0

ti ηik =
n∑

i=1

Ni τik (5.3.10)

where η is an n× n matrix,

ηik =
∂2F0

∂ai∂Sk
(5.3.11)

and τik is the usual period matrix,

τik =
∂2F0

∂Si∂Sk
. (5.3.12)

Note that for a fixed choice of Higgs branch, specified by Ni, the number
of parameters specifying the choice of B0(x) and the number of parameters
determining the normalizable deformations of the geometry, given by fn−1(x),
are both equal to n. Therefore we would expect to generically have a one-to-one
map. This allows us to invert the problem. Instead of asking how B0 determines
fn−1, i.e.,

B0 → fn−1,

we can instead ask for which choice of B0(x) we obtain a given deformed ge-
ometry, fn−1(x), i.e.,

B0 ← fn−1.

In this formulation, the extremization problem has a simple solution. We choose
a set of complex structure moduli for the Riemann surface,

y2 =
(
W ′(x; a)

)2 − fn−1(x; a, S),

by picking values for the Si (or equivalently for the coefficients of fn−1). This
completely determines the matrices τij and ηij through (5.3.11) and (5.3.12).
The equations (5.3.9), (5.3.10) can then be thought of as n linear equations for
the n coupling constants {ti}n−1

i=0 , thus determining B0(x).
The equations (5.3.9) determine the explicit form of the flux HRR + H0

on the solution. Recall that, off-shell, HRR + H0 was defined by its compact
periods, ∮

Ai

HRR +H0 = Ni

∫

Bi

HRR +H0 = α(Λ0), (5.3.13)

and asymptotic behavior for large x,

HRR +H0(x) ∼ ±dB(x).

The equations of motions (5.3.9) then imply that the one-form HRR + H0 is
holomorphic on the punctured Riemann surface Σ− {P,Q}, and given by

HRR +H0 =
n∑

k=1

Nk
∂

∂Sk
ydx−

n−1∑

k=0

tk
∂

∂ak
ydx. (5.3.14)
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Above, P and Q correspond to points at infinity of the top and the bottom
sheet of the Riemann surface, and

∂

∂Sk
ydx

are linear combinations of the n− 1 holomorphic differentials on Σ,

xkdx

y
, k = 0, . . . n− 2,

together with xn−1dx/y, which has a pole at infinity.
To derive this, we note that (5.3.9) implies that HRR +H0 is orthogonal to

the complete set of holomorphic differentials in the interior. This implies that
HRR + H0 is holomorphic away from the punctures. We can also show that
(5.3.14) has the correct periods and asymptotic behavior. Consider the periods
of ωi = ∂

∂Si
ydx, ∮

Ak

ωi = δki ,

∫

Bk

ωi = τik (5.3.15)

and the periods of ρi = ∂
∂ai

ydx,

∮

Ak

ρi = 0,

∫

Bk

ρi = ηik + Λi0. (5.3.16)

The reason for the Λi0 term in (5.3.16) is that ∂F0

∂Si
is the Bi-period with bound-

ary term subtracted. The Ak periods also match – this is because the ∂
∂ak

derivative is taken at fixed Sk, per definition. Using these periods and (5.3.10),
we immediately see that (5.3.14) has the correct periods (5.3.13). It is also clear
that the large x behavior is dominated by ρi and this yields dα(x) for the large
x behavior of HRR +H0 as required.

5.4. Gauge Theory Derivation

In this section we will sketch the derivation of the effective glueball su-
perpotential directly in the gauge theory language, and show that this exactly
reproduces the results of the string theoretic derivation. In [57] the effective su-
perpotential for the glueball superfields was computed by explicitly integrating
out the chiral superfield Φ. This is possible as long as we are only interested in
the chiral

∫
d2θ terms in the effective action. In the absence of the deformation

(5.1.6), computation of the relevant gauge theory Feynman graphs with Φ run-
ning around loops directly translates into the computation of planar diagrams
in a certain auxiliary matrix integral. We will see that this is the case even
after the deformation, albeit with a novel deformation of the relevant matrix
integral.
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Let us review the results of [57]. For simplicity, consider the vacuum where
the U(N) gauge symmetry is unbroken. The propagators for Φ can be written
in the Schwinger parameterization as

∫
dsi exp[−si(p2

i +Wαπα +m)],

where si are the Schwinger times, pi are the bosonic momenta, and πα the
fermionic momenta. The mass parameter m is given by m = W ′′(φ0). These
propagators have the property that each Φ loop brings down two insertions of
the glueball superfield Wα. Using the chiral ring relation

{Wα,Wβ} ∼ 0, (5.4.1)

only those operators of the form

Sk = (TrWαWα)k

are nontrivial as F-terms. In particular, there must be at most two insertions
of Wα per index loop. This implies that only planar Φ-diagrams contribute to
the superpotential – nonplanar graphs have fewer index loops than momentum
loops.

The integration over bosonic and fermionic loop momenta in a planar dia-
gram with h holes gives a constant factor,

NhSh−1, (5.4.2)

independent of the details of the diagram. The planar graphs have one more
index loop (hole) than momentum loop, and there is one insertion of S per
momentum loop,with h choices of which index loop goes unoccupied. At the
same time, the index summation for the unoccupied loop leads to the factor of
N .

The rest of the computation, namely combinatorial factors, contributions of
vertices, and an additional factor of 1/mh−1 from the propagators, is captured
by a zero-dimensional, auxiliary holomorphic matrix theory with path integral

ZM =
1

Vol (U(M))

∫
dΦ exp(−TrW (Φ)/gtop), (5.4.3)

where Φ is an M×M matrix, and W (Φ) is the same superpotential as in (5.1.5).
The coefficient

F0,h

of (5.4.2) is computed by summing over the planar graphs of ZM with h holes
and extracting the coefficient of Mhgh−2

top . In other words, by rewriting the sum

F0(S) =
∑

h

F0,hS
h
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where
ZM ∼ exp(−F0/g

2
top).

In the semiclassical approximation, the effective superpotential of the unde-
formed theory is simply

Weff = t0S +N∂SF0(S).

In the full answer, F0 contains a 1
2S

2 logS piece which, in the matrix model,
comes from the volume of the gauge group in (5.4.3).

5.4.1. The deformed matrix model

Now consider the gauge theory with the more general tree-level superpo-
tential (5.1.6) (for a special form of the superpotential, this theory was studied
in [111]). In this case, the propagators of the theory are unchanged, but there
are now additional vertices coming from the first term in (5.1.6). What is the
effect of this? Clearly, it is still only the planar graphs that can contribute to the
amplitude, since nonplanar graphs still have too few index loops to absorb the
W̧α insertions. This, together with (5.4.1), implies that the extra vertices from
Tr[α(Φ)WαWα] can only be brought down once for each planar graph, where
they are inserted on the sole index loop that would have otherwise been unoc-
cupied. The prescription for extracting the contributions of these new graphs
from the matrix model is now clear. Consider the deformed matrix model

ZM =
1

Vol(U(M))

∫
dΦ exp(−TrW (Φ)/gtop + Tr Λα(Φ)/gtop), (5.4.4)

where the matrix Λ stands for WαWα insertions that do not come from the
propagators. Summing over planar graphs, the matrix integral now has the
form

ZM ∼ exp(−F0/g
2
top −TrΛG0/gtop + . . .)

where the omitted terms contain higher powers of traces of Λ that will not play
any role. The effective superpotential, including the contribution of the new
vertices from Tr[α(Φ)WαWα], is now

Weff = SG0(S) +N∂SF0(S).

Note that it is manifest in the matrix model that the effective superpotential is
invariant under the addition to α(Φ) of terms the form ΦkW ′(Φ), as mentioned
in section 2. These terms can be removed by a shift in Φ

Φ→ Φ + ΛΦk,

and as such they do not affect the matrix integral.
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It is easy to generalize this to vacua of the gauge theory where the gauge
group is broken as in (5.1.9). The superpotential in these vacua is computed by
the same matrix model, but where one now considers the perturbative expansion
about the more general vacuum, where the gauge symmetry of the matrix model
is broken to

∏n
k=1 U(Mk) [60]. The contributions of insertions of

Tr[α(Φk)Wα,kWα
k ]

are now captured by deforming the matrix model to

ZM =
1∏

k Vol(U(Mk))

∫ ∏

k

dΦk . . . exp

(
− 1

gtop

∑

k

(TrW (Φk) + TrΛk α(Φk))

)

where the omitted terms . . . are gauge fixing terms [60] corresponding to
the choice for Φ to be block diagonal, and breaking the gauge symmetry to∏
k U(Mk). Summing over the planar graphs returns

ZM ∼ exp

(
−F0/g

2
top −

∑

k

TrΛk G0,k/gtop − . . .
)

where F0 and G0,k are functions of the matrix model ’t Hooft couplings gtopMk.
These are identified with the glueballs Si in the physical theory. The effective
superpotential is now given by

Weff =
∑

k

SkG0,k +Nk∂Sk
F0,

and all that remains is to compute the new terms in G0,k.

5.4.2. Matrix model computation

Now let us compute the relevant correction from the matrix model. Since
we are only interested in the planar graphs linear in TrΛk, the contribution of
interest can be extracted from the special case where we choose

Λk = λk1Mk×Mk

The matrix model partition function then becomes

ZM =

∫
. . . exp

(
−
∑

k

λkTrα(Φk)/gtop

)
∼ exp

(
−F0/g

2
top −

∑

k

MkλkG0,k/gtop

)

which implies
G0,k = 〈Tr[α(Φk)]〉/Mk,
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where the expectation value is evaluated in the planar limit of the
∏
k U(Mk)

vacuum of the undeformed matrix model. These can be computed using well
known large M matrix model saddle point techniques [19,59]. The answer can
be formulated in terms of a Riemann surface,

y2 − (W ′(x)2) + fn−1(x) = 0,

with a one-form ydx, where the coefficients of fn−1 are chosen so that

Mkgtop =

∮

Ak

ydx.

Namely, the result is that

〈Trα(Φk)〉 =
1

gtop

∮

Ak

α(x)ydx.

Since the glueballs Sk are identified with Mkgtop in the matrix model, we can
write the corresponding contribution to the effective superpotential

δWeff =
∑

k

Sk G0,k

simply as

δWeff =
∑

k

∮

Ak

α(x)ydx.

A look back at (5.3.7) shows that this agrees with the result of our string
theoretic analysis. Moreover, this is consistent with the results of [108] for the
expectation values of the corresponding chiral ring elements.

In the next subsection, we will use matrix model technology to derive the
identity (5.3.8) for expressing δWeff , as a function of Sk.

5.4.3. Evaluation of δWeff

To begin with, note that δWeff can be rewritten as

δWeff =
∑

k

Sk〈Trα(Φk)〉
Mk

= gtop
∑

k

〈Trα(Φk)〉 = gtop〈Trα(Φ)〉

where the trace is over the M ×M matrix Φ.53 The expectation value is now
straightforward to compute. The problem amounts to the computation of

〈TrΦk〉, k = 0, . . . n− 1

53 This leads to the same expression (5.3.7) for the large M average using y(x) = W ′(x) +

gtop〈 1
x−Φ

〉, and the fact that the sum over the Ak-cycles is homologous to the cycle around

infinity in x-plane.
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in the matrix model. Recall that

W (Φ) =

n+1∑

k=0

akΦ
k,

which implies that, for k = 0, . . . , n− 1

〈TrΦk〉 = −gtop
ZM

∂ZM
∂ak

with ZM as defined in (5.4.3). In particular, since

ZM ∼ exp

(
− 1

g2
top

F0(S, a)

)
,

it follows that

〈TrΦk〉 = 1

gtop

∂F0

∂ak
.

Thus we have derived (5.3.8),

δWeff =

n−1∑

k=0

tk
∂F0

∂ak
.

5.5. The N = 2 Gauge Theory

5.5.1. Extended Seiberg-Witten theory

With the results of the previous section in hand, we are now in position to
recover the solution to the extended N = 2 theory with classical prepotential

F(Φ) =
∑

k=0

tk
(k + 1)(k + 2)

TrΦk+2. (5.5.1)

The analysis of this section closely mirrors the approach taken in [101], and the
results also follow from [109].

To begin with, consider a special case of the N = 1 theories studied in
the previous section. We deform the extended U(N) N = 2 theory (5.5.1) to
N = 1 by the addition of a degree N + 1 superpotential,

W (Φ) =
N+1∑

k=0

akx
k (5.5.2)

with

W ′(Φ) = g
N∏

k=1

(x− ek). (5.5.3)
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In particular, we now study a generic vacuum on the Coulomb branch of the
theory, where the gauge symmetry is broken as

U(N)→ U(1)N .

This is important, because if we now take the limit of vanishing superpotential
(5.5.2) while keeping the expectation value of the adjoint fixed,

g → 0, ek = const,

we expect to recover the N = 2 vacuum at the same point in moduli space. As
discussed in section 3, this corresponds in string theory language to reverting to
studying N D5 branes on the IP1 in the A1 ALE space, but with a holomorphi-
cally varying B-field turned on. The nontrivial B-field background corresponds
in the low energy theory on the branes to turning on the higher dimensional
terms in the classical prepotential (5.5.1).

We found in section 4 that the critical point of this theory corresponds to
a Riemann surface

y2 = (W ′(x; a))2 − fN−1(x;S, a) (5.5.4)

where the N parameters tk in (5.5.1) are determined in terms of the complex
structure moduli Si of (5.5.4) by extremizing the superpotential (5.3.9). More-
over, at the critical point, the net flux HRR + H0 is given by a holomorphic
one-form on the Riemann surface (5.5.4),

HRR +H0 =
N∑

k=1

∂

∂Sk
ydx−

N−2∑

k=0

tk
∂

∂ak
ydx, (5.5.5)

with periods

∮

Ai

HRR +H0 = 1

∫

Bi

HRR +H0 = α(Λ0)

∮

P

x−k(HRR +H0) = ktk, k = 1, . . .N − 2.

It turns out that all of the holomorphic information about the N = 2 theory in
the infrared can be recovered from calculations in the N = 1 theory, just as in
[101]. To observe this, we note that if we extract an overall factor of g from y

in (5.5.4) and use new g-independent functions W̃ ≡ 1
gW and f̃N−1 ≡ 1

g2 fN−1,
then

y = g

√
W̃ (x)2 + f̃N−1(x),
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and the periods of y have a trivial g-dependence. In particular,

1

g
Si,

1

g

∂F0

∂Si
,

are independent of g. Consequently, the period matrix

τij =
∂2F0

∂Si∂Sj
=

∂

∂(Si/g)

(
1

g

∂F0

∂Sj

)

is independent of g. This fact can be made more manifest by considering the
geometry in question,

y2

g2
= W̃ (x)2 + f̃N−1(x).

It is clear that the variation of g can just be absorbed into a rescaling of the
coordinate y.

It is also crucial that in the process of sending g → 0, the values of tk for
which the Riemann surface in question satisfies the equations of motion remain
fixed. The superpotential

W̧eff =

∫

Σ

(HRR +H0) ∧ ydx

is simply proportional to g, and hence its critical points are g-independent.
Lastly, we note that the Seiberg-Witten one-form on the Riemann surface

can be recovered from the N = 1 analysis as well. First note that the H-flux
HRR +H0 at the critical point of the superpotential is given by a g-independent
holomorphic one-form (5.5.5). Just as in [101], it follows that the Seiberg-
Witten one-form on the Riemann surface is given by

λSW = x(HRR +H0) (5.5.6)

which we can read off from the N = 1 theory. This can be seen as follows.
Periods of λSW compute the masses of dyons in the N = 2 theory. However,
these dyons can be identified with D3 branes wrapping Lagrangian three-cycles
in the Calabi-Yau, or one-cycles on the Riemann surface, and their mass can
be derived from string theory to be given by periods of the one-form (5.5.6).

In summary, we can obtain the full N = 2 curve and the Seiberg-Witten
one-form λSW that capture the low energy dynamics of the extended N = 2
theory (5.5.1). These results are consistent with those obtained recently in [117]
using very different techniques. There, the authors formulate the solution of
the N = 2 theory in terms of a hyperelliptic curve of genus N − 1

y2 =
N∏

i=1

(x− ai,+)(x− ai,−), (5.5.7)

– 143 –



and a holomorphic one-form dΦ with the properties that

∮

Ai

dΦ = 1

∫

Bi

dΦ = 0

∮

P

x−kdΦ = ktk, k = 1, . . . , N − 2

and which is related to the Seiberg-Witten one-form by

λSW = xdΦ.

Comparing with our results, it is clear that dΦ should be identified with HRR +
H0.

The agreement is almost complete, apart from two points. First, our
Seiberg-Witten curve (5.5.4) is not a generic genus N hyperelliptic curve like
(5.5.7), but rather is one where all the dependence on the parameters tk is in
the polynomial fN−1(x) of degree N −1. More precisely, note that the defining
equation of the hyperelliptic curve has 2N parameters and generally all such
parameters appear. However, half the parameters correspond to the choice of
the point on the Coulomb branch ei, while the other half define the quantum
deformation which depends on the choice of the α(x). In our formulation, there
is a natural way to separate how these parameters appear in the defining equa-
tion of the Seiberg-Witten curve. Secondly, there is an apparent discrepancy in
that in the current solution, the Bi periods of HRR +H0 do not all vanish, but
are instead equal to α(Λ0). It is possible that in the definition of the Bk inte-
grals (5.5.1) of [117], there is a hidden subtraction of the value of the integral
at infinity, which would account for the vanishing Bk periods and resolve this
discrepancy.

5.6. Duality and Supersymmetry Breaking

In this section we study the phase structure of the N = 1 models under
consideration. We find that there is a region in the parameter space where
supersymmetry is broken. This leads to a novel and calculable mechanism
for breaking supersymmetry. Even though this method for supersymmetry
breaking is motivated by string theoretic considerations, we will see that it can
also be phrased entirely in terms of the underlying N = 1 supersymmetric
gauge theory.

The organization of this section is as follows. We first discuss some general
features of the phase structure for these theories, and point out a region where
classical considerations are not sufficient to provide a reasonable picture. We
next turn to focus on the meaning of this new phase and show how string
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dualities can shed light on its meaning. Furthermore, we show that, generically,
supersymmetry is spontaneously broken in the new phase. We propose UV dual
field theory descriptions for some of these phases which turn out to be N = 1
supersymmetric gauge theories with supersymmetry broken softly by nonzero
expectation values for the auxiliary components of spurion superfields.

5.6.1. Parameter space with g2
YM < 0

Consider the N = 1 supersymmetric U(N) gauge theory studied in the
previous sections, with adjoint field Φ together with superpotential W (Φ), and
gauge kinetic term in Lagrangian is captured by α(Φ) as below

∫
d4xd2θ Tr [α(Φ)WαWα] .

As already discussed, the classical vacua correspond to all the ways of dis-
tributing the eigenvalues of φ among the critical points of W ′(φ) = 0. For
concreteness, let

W ′(Φ) = g
n∏

i=1

(Φ− ei),

and consider the classical vacuum with Ni eigenvalues of Φ equal to ei. For
generic superpotential, Φ will be massive, and at sufficiently low energies the
light degrees of freedom describe pure N = 1 supersymmetric Yang-Mills theory
with gauge symmetry

∏
i U(Ni). The coupling constant of each of the U(Ni)

in the UV is given by
αi = α(ei).

As long as the gauge coupling for each factor of the gauge group is positive, i.e.,

Im[αi] =
4π

(gYM)2i
> 0 (5.6.1)

for all i with Ni 6= 0, we expect a supersymmetric theory in the IR to which
the analysis of the previous section applies. This suggests the question: What
is the meaning of the phase where (5.6.1) is not satisfied for some i? It is to
this question which we now turn our attention.

One may be inclined to consider such cases as pathological, as one is not
able to give a meaning to such a theory in the UV. However, we also know from
various examples that the appearance of a negative g2

YM is often the smoking
gun for the existence of a dual description. Thus all we can conclude is that
when Im[α(ei)] do not have the correct sign, the original UV picture is not
appropriate, and we should look for an alternative description.

Generically54, for an arbitrary choice of W (Φ) and α(Φ), Imα(ei) will
not have the same sign for all the critical points, and thus some vacua will

54 Generic in the sense of generic functions α(x) and W (x). From a field theory perspective, it

is natural for the nonrenormalizable operators in α(Φ) to be suppressed by large mass scales, in

which case the phenomenon discussed in this section will be unusual.
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have gauge group factors with g2
YM < 0. We have a practical way to analyze

the IR theory in these vacua directly from the field theory approach. We can
start with parameters such that the UV theory makes sense, and then com-
pute the effective IR action in terms of the glueball superfields, as discussed in
the previous sections. We then change the parameters so that the UV theory
would formally develop a negative value of g2

YM for some of the gauge group
factors. However, the effective IR theory still makes sense when we do this,
so we can simply study the IR action, without worrying about the dual UV
description. As we will show, in the IR theory this change of parameters leads
to supersymmetry-breaking.

We are thus naturally led to ask: What is the corresponding UV theory
in such cases? When only some of the gauge couplings are negative, we will
argue that supersymmetry is broken, but we will not have a full field theory
description in the UV. However, if they are all negative, we can formulate a
complete UV field theory description for which supersymmetry is manifestly
broken. In all cases, the UV description provided by string theory exists, and
we will argue that it involves both branes and antibranes.

In the general, these theories have two sources of supersymmetry breaking.
One, which comes from any of the gauge factors with negative Imα(ei), cor-
responds to giving a nonzero vev to spurion auxiliary fields. The other effect
comes from the fact that when both signs of Imα(ei) are present, the interac-
tion between the gauge group factors are not supersymmetric, as each factor
tries to preserve a different supersymmetry.

We first study the situation of the first kind – all Imα(ei) negative – where
the internal dynamics of the gauge theory softly break supersymmetry. For this
case, we quantify the supersymmetry-breaking effect in terms of a dimensionless
parameter which measures fractional mass splittings in the supermultiplets.
Moreover, we motivate and provide strong evidence for the existence of a dual
non-supersymmetric UV theory. We motivate this from field theory as well as
describing its natural explanation in the context of string theory.

We then move to the multi-sign case and show that when some Imα(ei)
have different signs, there is an additional effect which breaks supersymmetry.
Essentially, this arises from each factor of the gauge group trying to preserve
a different half of a background N = 2 supersymmetry, and charged bifunda-
mental matter communicates supersymmetry breaking. For this case, we only
have a stringy dual description in the UV.

5.6.2. Negative gauge couplings and duality

We now discuss, from both string theory and field theory perspectives,
how a gauge coupling squared becoming negative can be sensibly understood
in terms of the dual description. The simple example which we review, where
both the original and the dual theories are supersymmetric, has already been
studied in [4].

Consider N D5 branes on the resolved conifold geometry with a single IP1.
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As in section 3, we can view this geometry as obtained by fibering an A1 ALE
singularity over the x-plane as

uv = y2 −W ′(x)2 (5.6.2)

where

W (x) =
1

2
mx2. (5.6.3)

We turn on a constant B-field through the S2 at the tip of the ALE space,

α =
θ

2π
+

4πi

g2
YM

=

∫

S2
x

(
BRR +

i

gs
BNS

)
.

In the language of section 2, this means that the gauge coupling is independent
of φ. More generally, the effective gauge coupling of the 4d U(N) theory is
given by 4π/g2

YM =
√
r2 +B2

NS/gs, where r is the physical volume of the IP1.
This is usually written in terms of single complex variable t, the complexified
Kähler class, given by t = BNS + ir, as 4π/g2

YM = |t|/gs. In the present chapter
we have permanently set r = 0, so t = BNS.

N

N

Φ

Fig. 5.3. By changing the B-field, an S2 undergoes a flop, and N branes on the

S2 become N antibranes on the flopped S2. If the B-field is constant on x-plane,

then the antibrane system preserves an N = 1 supersymmetry opposite to that of the

brane system. If the B-field varies holomorphically, then the B-field and antibranes

preserve orthogonal N = 1 supersymmetries, leading to a stable N = 0 vacuum.

Now consider the same geometry, but with the complexified Kähler class
varied so that it undergoes a flop (see figure 5.3), corresponding to t→ −t. We
now get a new IP1. Moreover, the charge of the wrapped D5 branes on this
flopped IP1 is opposite to what it was before the flop. Therefore, in order to
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conserve D5 brane charge across the flop, we will end up with anti-D5 branes
on the new IP1. In the case of constant B-field, we again obtain a U(N) gauge
theory with N = 1 supersymmetry at low energies. However, the N = 1
supersymmetry that the theory preserves after the flop has to be orthogonal to
the original one, since branes and antibranes preserve different supersymmetries.

This stringy duality is directly manifested in field theory. It turns out, as
we now review, that this situation has a simple and elegant realization in terms
of the glueball superfields which emerge as the IR degrees of freedom. Consider
first the situation before the flop. In the IR, we have a deformed conifold ge-
ometry where S, the modulus of the deformation, is identified with the glueball
superfield, S = TrWαWα. The Veneziano-Yankielowicz superpotential, which
can be derived in either the field theory or the dual string theory, is given by

W(S) = −αS +N∂SF0 = −αS +
1

2πi
NS

(
log

(
S

mΛ2
0

)
− 1

)
.

As was already reviewed in previous sections, in the gravitational dual picture,
the two terms above correspond to flux contributions to the superpotential.
One should note that this effective description is only valid for field values
where |S/m| ≪ |Λ2

0|.
Extremizing W with respect to S gives

∂SW = 0→ SN = (mΛ2
0)
Nexp (2πiα) . (5.6.4)

As long as the bare UV gauge coupling satisfies

Im[α] =
4π

g2
YM

(4.1.14)0,

this is an acceptable solution in the sense that S is within the allowed region of
field space. Note that in addition to the chiral superfield, the theory in the IR
still has a U(1) vector multiplet, because only the SU(N) ⊂ U(N) is confined.
In the string theory construct, the extra U(1) is identified with the reduction
of the four-form IIB gauge potential on the deformed S3. In other words, this
theory describes a massive chiral multiplet consisting of S and its fermionic
partner ψ, as well as a massless photon A and its partner λ,

(S, ψ), (A, λ). (5.6.5)

Together these would form an N = 2 chiral multiplet before the supersymmetry
is broken to N = 1 by fluxes.

Now consider the same theory, but in the limit where

Im(α)≪ 0,

which would have corresponded to 1/g2
YM ≪ 0. Then the above solution (5.6.4)

is not valid anymore, since |S/m|(4.1.14)|Λ2
0| lies outside the regime of validity of
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the effective theory. Thus the original supersymmetry is broken, since we cannot
set ∂SW to zero. Even so, as was shown in [4], there are still physical vacua
which minimize an effective scalar potential Veff . Moreover, the theory in these
minima is exactly the same as one would expect for the IR limit of an N = 1
supersymmetric U(N) theory, with a positive squared gauge coupling. In fact,
a new supersymmetry does re-emerge! It turns out that ψ becomes the massless
goldstino of the original supersymmetry which is broken, whereas λ picks up a
mass and becomes the superpartner of S under the new supersymmetry, giving
realigned supermultiplets

(S, λ), (A,ψ). (5.6.6)

This beautifully reflects the physics of the string theory construction. After the
flop, the D5 branes are replaced by anti-D5 branes, which still give rise to a
U(N) gauge theory with N = 1 supersymmetry, albeit a different supersym-
metry than the original one, explaining the above realignment.

Let us review in more detail how the flop is manifested in the IR field
theory of [4]. When Im(α)≪ 0, we must look for critical points of the physical
potential

Veff = gSS |∂SW|2. (5.6.7)

At leading order, the theory spontaneously breaks an underlying N = 2 su-
persymmetry, so the tree-level Kähler metric should be determined by special
geometry. While we do not expect this to be an exact statement, we never-
theless make the assumption for the remainder of this section that the Kähler
metric is that of the N = 2 theory55. Thus the action for the IR dual is given
by ∫

d4xd2θd2θΛ−4
[
Si∂iF0 − c.c.

]
+

[∫
d4xd2θW (Si) + c.c.

]
(5.6.8)

where Λ4 gets identified with M4
string in the string context. This leads to the

Kähler metric
GSS = Im(τ) · Λ−4,

where

τ(S) = ∂2
SF0 =

1

2πi
log

(
S

mΛ2
0

)
.

The effective potential can then be made explicit,

Veff =
2i

(τ − τ) |α−Nτ |
2,

and the critical points, ∂SVeff = 0, are located at the solutions to

2i

(τ − τ)2 ∂
3
SF0 (α−Nτ) (α−Nτ) = 0.

55 See [46] for a discussion of stringy corrections to the Kähler metric.
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This can be satisfied through either

α−Nτ = 0 or α−Nτ = 0. (5.6.9)

The first solution preserves the manifest N = 1 supersymmetry, and corre-
sponds to the solution of ∂SW = 0. The second solution does not preserve
the original supersymmetry as ∂SW 6= 0. Only one of these two solutions is
valid at a given point in parameter space if S is to be within the field theory cut-
off of |S| ≪ |mΛ2

0|. For Im(α) > 0 the first solution is physical, and this is the
supersymmetric solution we discussed above. However, for Im(α) = 1/g2

YM < 0,
it is the second solution which is physical, and we obtain

SN = (mΛ0
2)N exp (2πiα) . (5.6.10)

This solution looks very much like the solution (5.6.4) for the original U(N)
confining theory, except that α → α. This is what one would expect if we
were discussing the theory of N antibranes on the flopped geometry. In fact, as
discussed in detail in [4] one can show that this theory is indeed supersymmetric,
with supermultiplets aligned as in (5.6.6).

5.6.3. Supersymmetry breaking by background fluxes

Now consider the same geometry as in the previous subsection, but with
a holomorphically varying B-field introduced. If we wrap branes on the coni-
fold, this gives rise to the supersymmetric theories considered in sections 3-4.
However, in the case of antibranes, we will see that supersymmetry is in fact
broken. This is due to the fact that, while branes preserve the same half of
the background N = 2 supersymmetry as the B-field, antibranes preserve an
opposite half.

As in the previous section, we will consider branes and antibranes on the
conifold geometry (5.6.2) with superpotential given by (5.6.3), but now with
the holomorphically varying B-field given by56

B(Φ) = t0 + t2Φ
2. (5.6.11)

We will study this from the perspective of the IR effective field theory of the
glueball superfield S. Because of the underlying N = 2 structure of this theory,
we will have a good description regardless of whether it is branes or antibranes
which are present. In the next subsection, we will provide UV field theories
describing both situations.

The superpotential in the dual geometry is given by (5.3.7), which we
repeat here for convenience

W(S) = −
∮

A

B(x)ydx+N
∂F0

∂S
. (5.6.12)

56 We could have also added a term linear in Φ, but this has no effect due to the symmetry of

the problem.
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An explicit computation in the geometry yields an exact expression for the first
term, ∮

A

B(x)ydx = t0S + t2
S2

m
.

The scalar potential is again given by (5.6.7) with the same metric and prepo-
tential F0, but now with superpotential (5.6.12). There are two vacua which
extremize the potential, ∂SVeff = 0,

−
(
t0 + 2t2

S

m

)
+Nτ = 0,

−
(
t0 + 2t2

S

m

)
+Nτ + 4πi(τ − τ)t2

S

m
= 0.

(5.6.13)

The first solution satisfies ∂W = 0. This has solutions in the case where branes
are present, with

Im[α](4.1.14)0.

Here α is defined as α = t0 + 2t2
S
m
, and large positive values of Im[α] give

|S/m| ≪ |Λ2
0| within the allowed region. This vacuum is manifestly supersym-

metric, and we have studied it in sections 3-4.
We can instead study antibranes by allowing the geometry to undergo a

flop, so
Im[α]≪ 0.

Then the supersymmetric solution is unphysical, and we instead study solu-
tions to the second equation in (5.6.13). We already know that the manifest
supersymmetry is entirely broken in this vacuum, because ∂W 6= 0. Moreover
the fact that the second equation in (5.6.13) is not holomorphic in S suggests
that no accidental supersymmetry emerges here, unlike the cases in previous
subsection and [4]. We can directly observe the fact that supersymmetry is
broken in this vacuum by computing the tree-level masses of the bosons and
fermions in the theory, and showing that there is a nonzero mass splitting.

From the N = 1 Lagrangian, we can read off the fermion masses,

Λ−4mψ =
1

2i (Imτ)
2

1

2πiS

(
t0 +Nτ + 2t2

S

m

)
+

1

Imτ

2t2
m

Λ−4mλ =
1

2i (Imτ)
2

1

2πiS

(
t0 +Nτ + 2t2

S

m

)
,

while the bosonic masses are given by

Λ−4m2
b,± =

1

Imτ

(
∂∂Veff ± |∂∂Veff |

)
.

Evaluating the masses in the brane vacuum, we see that λ is massless and acts
as a partner of the gauge field A, while ψ is a superpartner to S. In other
words, supersymmetry pairs up the bosons and fermions as in (5.6.5).
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Evaluating the masses in the antibrane vacuum, ψ becomes the massless
goldstino. However, there is no longer a bose/fermi degeneracy like where the
background B-field was constant. Instead,

m2
b,± = |mλ|2 ± 4πΛ4|mλ∂α|. (5.6.14)

This mass splitting shows quite explicitly that all supersymmetries are broken in
this vacuum. We can capture the strength of this breaking with a dimensionless
quantity,

ǫ =
∆m2

b

m2
b

∼ 2πΛ4

∣∣∣∣
2t2/m

mλ

∣∣∣∣ ∼
t2S

m

log |S|
N

.

We can get a heuristic understanding of this measure of supersymmetry
breaking as follows. The reason supersymmetry is broken in this phase is that
B-field varies in a way incompatible with the normalizable fluxes/branes. Thus
its variation over the cut in the IR geometry is a natural way to quantify
supersymmetry breaking. More precisely, we expect that measuring

ǫ = ∆B

across the cut should give a quantification of the supersymmetry breaking by
a dimensionless number. Evaluating this explicitly yields ǫ = t2S/m, which is
in rough agreement (up to a factor of order log |S|/N) with the dimensionless
quantity coming from the mass splittings.

5.6.4. A susy/non-susy duality

Motivated by the considerations of the previous example, we now formulate
a duality between two field theories – one which is manifestly supersymmetric,
and the other in which supersymmetry is broken softly by spurions. Consider
an N = 1 supersymmetric U(N) gauge theory with an adjoint field Φ and
superpotential terms

∫
d2θ1 Tr [B(Φ)WαWα +W (Φ)] (5.6.15)

where, as before,

B(Φ) =
n−1∑

k=0

tkΦ
k, W (Φ) =

n+1∑

k=0

akΦ
k.

Consider a choice of parameters (ak, tk) such that

ImB(ek) < 0 (5.6.16)

for all ek with W ′(ek) = 0. Then this theory is not sensible in this regime
as it has no unitary vacuum. However, we propose that this theory is dual to
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another U(N) gauge theory already studied in [114], with an adjoint field Φ̃
and superpotential term

∫
d2θ2 Tr[t0W̃αW̃α + W̃ (Φ̃)] (5.6.17)

where

W̃ (Φ̃) =
n+1∑

k=1

(ak + 2itkθ2θ2)Φ̃
k.

Note that since the auxiliary field in the spurion supermultiplets have vevs tk,
this theory breaks supersymmetry. Also, the fermionic parts of the superspaces
for these two actions are not related in any way. Indeed, they are orthogonal
subspaces of an underlying N = 2 superspace. This is indicated by the first
theory being formulated in terms of coordinates θα1 , and the second in terms of
θα2 – two different N = 1 superspaces.

Note that this is natural from the string theory perspective. In the regime
of parameters where (5.6.16) holds, one should describe the physics in terms of
the flopped geometry, and ask how the antibrane theory perceives the geometry.
Since the background B-field is holomorphic, it breaks supersymmetry. Indeed
the tension of the antibranes will vary as they change position in the x-plane
(and we do not expect a canceling term as would be the case for branes). We
thus expect the potential to depend on x through a term proportional to the
B-field,

Veff ∼ ImB(x). (5.6.18)

Indeed, the soft supersymmetry-breaking term in (5.6.17) gives precisely this
contribution when we identify the eigenvalues of Φ with positions in the x-plane.
Moreover, note that in going from (5.6.15) to (5.6.17) we have flipped the sign
of Im(t0) ∼ 1/g2

YM, which is consistent with the fact that (5.6.17) describes
the same physics from the antibrane perspective. As an aside, note that in this
section (unlike in much of the rest of the chapter), t0 and tk>0 enter on different
footings.

We now provide evidence for this duality. We will show that both theories
(5.6.15) and (5.6.17) have the same IR description in terms of glueball fields.
The effective superpotential for the supersymmetric theory we have already
discussed, and is given by

∫
d2θ1Weff (Si, ak) (5.6.19)

where

Weff =
∑

i

t0Si +
∑

k>0

tk
∂F0

∂ak
+
∑

i

Ni
∂F0

∂Si
.

The effective glueball theory for the non-supersymmetric theory, in which
auxiliary spurion fields have nonzero vevs, has been studied in [113,96,114].
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As shown in [114], turning on soft supersymmetry-breaking terms that give
spurionic F-terms to the ai in the UV theory has the expected effect in the IR
of simply giving spurionic F-terms to ak>0 in that theory,

∫
d2θ2W̃eff(Si, ak + 2itkθ2θ2) (5.6.20)

where

W̃eff = t0Si +
∑

i

Ni
∂F0

∂Si
.

We will see that the two effective glueball theories are in fact identical!
As we reviewed in section 4, one way to arrive at the effective IR theory is

via a dual gravity theory. Both theories (5.6.19) and (5.6.20) originate from the
same Calabi-Yau after the transition, and so have the same underlying N = 2
theory with prepotential F0(S, a) at low energies,57

Im
(∫

d2θ1d
2θ2 F0(Si, ak)

)
,

with appropriate fluxes or auxiliary spurion fields turned on. In fact, it was
shown in [25,22] that turning on fluxes is also equivalent to giving vevs to
auxiliary fields, so both (5.6.19) and (5.6.20) can be thought of as originating
from the N = 2 theory with prepotential F0(S, a), where auxiliary fields for
the glueball fields Si and the background fields ak are subsequently given vevs.
This breaks supersymmetry explicitly to N = 1 in the case of (5.6.19), and to
N = 0 in case of (5.6.20).

To be more precise, (5.6.19) can be obtained by shifting the auxiliary fields
of the N = 2 multiplets containing S and a according to

Si → Si + 2iNiθ2θ2, ak → ak + 2itkθ2θ2, k > 0,

and integrating over θ2. Meanwhile, (5.6.20) arises from instead shifting

Si → Si + 2iNiθ1θ1 ak → ak + 2itkθ2θ2, k > 0,

and integrating over θ1.
These two situations differ in how they shift the auxiliary fields F i11 and

F i22 = F
i

11 which lie in the N = 2 chiral multiplet containing Si,

Si = Si + . . .+ θ1θ1F
i
11 + θ2θ2F

i
22.

Shifts of fields alone cannot affect any aspect of the physics if the shift can
be undone by an allowed field redefinition. Indeed, the difference between the

57 More precisely, the Lagrangian also contains the N = 2 FI terms t0F
i
11 + t0F

i
22 where F i’s

are the auxiliary fields discussed in the text.
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shifts of (5.6.19) and (5.6.20) is an allowed auxiliary field redefinition, so these
theories are equivalent! Put another way, in integrating out the auxiliary fields,
we end up summing over all of their values, so any difference between the two
theories will disappear. Note that, if F i11 and F i22 were independently fluctuating
degrees of freedom, we could use this argument to say that both theories were
equivalent to the original N = 2 theory. They are not, however, since the
auxiliary field shifts we made cannot be undone by a field redefinition obeying

F i22 = F
i

11, which the fluctuating part of the auxiliary fields must satisfy.
To make this duality more explicit, we will show that both theories give

rise to the same IR effective potential, Veff (Si). For the supersymmetric theory
(5.6.19), the superpotential (5.6.15) is

Weff = tk
∂F0

∂ak
+Ni

∂F0

∂Si
,

which leads to an effective potential

Veff = Gij
(
Nkτki + t0 + tkηki

)
(Nrτrj + t0 + trηrj),

where in the summation tkηki, we have removed the m = 0 term and written it
explicitly. This will be convenient for the manipulations below, where we will
continue to use this summation convention. We can rewrite Veff grouped by
order in tk,

Veff = GijNkτkjNrτrj + Gij(t0 + tkηki)(t0 + trηrj)

+ GijNkτki(t0 + trηrj) + Gij(t0 + tkηki)Nrτrj.
(5.6.21)

Now we will show that the effective potential of the non-supersymmetric
theory (5.6.17) agrees with (5.6.19). The Lagrangian can be written in N = 1
superspace,

L = Im

(∫
d2θd2θSi

∂F0

∂Si

)
+ Im

(∫
d2θ

1

2

∂2F0

∂Si∂Sj
Wα,iWα

j

)

+

(∫
d2θW̃eff (S) + c.c.

)
,

(5.6.22)

and the superpotential of this non-supersymmetric theory is simply

W̃eff = t0Si +Ni
∂F0

∂Si
.

Let Fi be the auxiliary field in the Si superfield. Performing the d2θ integral for
the superpotential term (the last terms of (5.6.22)) and picking out the spurion

contribution (note that ∂2F0

∂Si∂ak
= ηik), gives

∫
d2θW̃eff(S) = (t0 +Niτij)Fj + 2iNiηiktk.
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The remaining terms come from the Kähler potential term (the first term of
(5.6.22)). This gives GijFiFj before spurion deformation, while the spurions
produce additional terms, giving a total contribution

Im

(∫
d2θd2θSi

∂F0

∂Si

)
= GijFiF j + Fiηiktk + F iηiktk + . . .

With the full F-term Lagrangian, it is now easy to check that integrating out
the auxiliary fields Fi, produces precisely the effective potential (5.6.21), which
arose from the supersymmetric theory (5.6.19).

We have seen that the tree-level effective potentials for the supersymmet-
ric theory (5.6.15) and the non-supersymmetric theory (5.6.17) agree exactly,
corroborating the proposed the duality between the two theories.

5.6.5. Multi-cut geometries and supersymmetry breaking

In the previous subsections we have focused on the case where all gauge
couplings have the same sign, positive or negative. We now shift to consider
the more general case in which both signs are present. For simplicity, we will
focus on the case where the superpotential has two critical points, with a brief
discussion of the generalization to an arbitrary number of critical points reserved
for the end of this subsection.

In particular, we now consider the UV theory where the superpotential
appearing in the geometry (5.6.2) is given by

W (Φ) = gTr

(
1

3
Φ3 −m2Φ

)

and the holomorphic variation of the B-field gives rise to an effective field-
dependent gauge coupling

α(Φ) = t0 + t1Φ.

The two critical points of the superpotential are given by Φ = ±m, at which
points the gauge coupling takes values

α± ≡ α(±m) = t0 ±mt1.

We wish to study the case where the imaginary parts of gauge couplings have
opposite signs (see figure 5.4). Without loss of generality, we then consider

Im(α−)≪ 0≪ Im(α+). (5.6.23)

We will consider the vacuum where the U(N) gauge group is broken to U(N1)×
U(N2) with Ni both nonzero. It is clear from the discussion in section 7.2 that
this theory is that of N1 branes wrapping the S2 at e1 and N2 antibranes
wrapping the flopped S2 at e2.
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There are now two sources of supersymmetry breaking present. First,
for the N2 antibranes (even if N1 = 0), supersymmetry is broken due to the
holomorphic variation of the B-field, as discussed in section 7.3. However,
this effect is secondary to that which arises from the fact that branes and
antibranes are both present and preserve disparate halves of the background
supersymmetry. This more dominant source of supersymmetry breaking was
studied in a slightly simpler context in [4,37,5].

N

N 1

2

N 2

1 2e e

Φ

Fig. 5.4. By changing the parameters of the B-field continuously, it can arranged for

only the second S2 to undergo a flop, with the N2 branes replaced by N2 antibranes

on the flopped S2 at e2. This configuration clearly breaks supersymmetry, as branes

and antibranes preserve orthogonal supersymmetries.

We now show that this stringy UV picture is borne out in the dual IR
theory. The superpotential for the closed-string dual geometry is given by
(5.3.8)

W(S1, S2) = t0(S1 + S2) + t1
∂F0

∂a1
+Nk

∂F0

∂Sk
.

In the large Ni limit, it is a sufficient approximation to work to 1-loop order in
the associated matrix model. For the geometry in question, the superpotential
then takes the form

W(S1, S2) = α+S1 + α−S2 +N1
∂F0

∂S1
+N2

∂F0

∂S2
,
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where a1 = −m2g and F0 was computed in [18],

∂S1
F0 ≈

1

2πi

(
−W (e1) + S1(log

S1

8gm3
− 1)− 2(S1 + S2) log(

Λ0

2m
)

)
,

∂S2
F0 ≈

1

2πi

(
−W (e2) + S2(log

S2

8gm3
− 1)− 2(S1 + S2) log(

Λ0

2m
)

)
.

(5.6.24)

Note that at this order, the effect of the varying B-field is just to change the
effective coupling constants in the superpotential from α0 to α±. As a result,
the only supersymmetry-breaking effects which appear are due to the presence
of antibranes.

This theory has no physical supersymmetric vacua, so in order to study its
low energy dynamics, we minimize the physical scalar potential,

Λ−4 Veff = Gij∂iW∂jW,

where again the Kähler metric is determined by N = 2 supersymmetry,

Gij = Im(τij) = Im

(
∂2F0

∂Si∂Sj

)
.

The critical points are given by solutions to

GiaGbjFabk
(
αi −N lτ li

)
(αj −Nrτrj) = 0.

At one-loop order in the matrix model, Fijk only has nonzero diagonal elements,
in which case the vacuum equations simplify. In particular, for the case at hand
they simplify to

N1τ11 = α+ −N2τ12,

N2τ22 = α− −N1τ12,

and using the expression for the Kähler metric arising from (5.6.24), we obtain
following explicit solutions

(S1)
N1 =

(
2gmΛ2

0

)N1
exp (2πiα+)

(
Λ2

0

4m2

)−N2

(−S2)
N2 =

(
2gmΛ2

0

)N2
exp (2πiα−)

(
Λ2

0

4m2

)−N1

.

In addition, we can compute the vacuum energy, and find it to be

Veff∗

Λ4
= 4N2|Imα−|+

4

π
N1N2 log

∣∣∣∣
Λ0

2m

∣∣∣∣ .
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The first term we identify as the brane tension due to antibranes on the flopped
P1, which agrees with (5.6.18), while the second term suggests a Coulomb
repulsion between brane stacks preserving opposite supersymmetries. A similar
expression for the potential energy between branes and antibranes can be found
in [4,37,5].

We can further study the masses of the bosonic and fermionic excitations
about the non-supersymmetric vacua. At the current order of approximation,
most of the expressions from [4] still hold. We obtain four distinct bosonic
masses, given by [4]

(m±,c)
2

=
(a2 + b2 + 2abcv)±

√
(a2 + b2 + 2abcv)2 − 4a2b2(1− v)2
2(1− v)2 (5.6.25)

where c = ±1,

a ≡ Λ4

∣∣∣∣
N1

2πS1Imτ11

∣∣∣∣ , b ≡ Λ4

∣∣∣∣
N2

2πS2Imτ22

∣∣∣∣

v ≡ (Imτ12)
2

Imτ11Imτ22
,

and Λ is a mass scale in the action (5.6.8). The tree-level fermionic masses can
also be computed from the off-shell N = 1 Lagrangian. As in [4], they are given
by58

mψi
=

(
a

1− v , 0
)
, mλi

=

(
0,

b

1− v

)
. (5.6.26)

The presence of two massless fermions can be thought of as representing
two goldstinos due to the breaking of off-shell N = 2 supersymmetry. Alter-
natively, this fermion spectrum can be viewed as the natural result of breaking
supersymmetry collectively with branes and antibranes. There is a light gaug-
ino localized on both the branes and the antibranes. However, since these
preserve different supersymmetries, we see the gauginos as arising one from the
gaugino sector and one from the sfermion sector with respect to a given N = 1
superspace.

For a generic choice of parameters, supersymmetry breaking is not small,
and there is no natural way to pair up bosons and fermions in order to write a
mass splitting as a measure of how badly supersymmetry is broken. However
from the mass formula we have given, it is clear that in the limit v → 0, the

58 Note that the relation [118]

∑

boson

m2 −
∑

fermion

m2 = Tr(−)Fm2 = 0

holds for our system, as well as for (5.6.14).
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spectrum becomes supersymmetric, and there does emerge a natural pairing of
bosonic and fermionic excitations. In this limit, v becomes a good dimensionless
measure of the mass splitting, and we can write it in terms of parameters
(Λ0, α±, m,Ni) as

v =
N1N2

(
log
∣∣ Λ0

2m

∣∣)2
(
π |Im(α+)|+ ∆N log

∣∣ Λ0

2m

∣∣) (π |Im(α−)| −∆N log
∣∣ Λ0

2m

∣∣) .

where ∆N = N1 −N2. For ∆N = 0, this further simplifies to

v =
N2
(
log
∣∣ Λ0

2m

∣∣)2

π2 (|Im(α+)|) (|Im(α−)|) .

This vanishes and supersymmetry is restored for large separation mt1(4.1.14)1,
corresponding to the extreme weak-coupling limit. One can also consider an-
other extreme where N1(4.1.14)N2. In this limit we again expect supersymme-
try to be restored. Indeed, in this limit v ∝ N2/N1, and so vanishes.

It should be noted that, unlike the case where all gauge couplings are neg-
ative and the background flux is small, in this case the dimensionless parameter
v does depend explicitly on the cutoff Λ0. This may be related to the fact that,
in this case, there is no field theory description in the UV. Namely, even though
we know that this system should be described by branes and antibranes, these
brane configurations do not admit a good field theory limit. Nevertheless the
arguments of the previous section can be used to show that below the scale
of gauge symmetry breaking, there is an effective field theory description in
terms of a

∏
i U(Ni) gauge theory which breaks supersymmetry and captures

the same IR physics. In this theory, the gauge group factors with positive
gauge couplings have an effective field dependent gauge coupling, while those
with negative gauge couplings have supersymmetry softly broken by spurions.
However, this is not a satisfactory description for the full dual UV theory.

Before concluding this section, let us briefly consider the generalization
of the previous discussion to the n-cut geometry. Here, the superpotential in
(5.6.2) is given by

W ′(Φ) = g
n∏

i=1

(Φ− ei).

Starting with D5 branes wrapped on n shrinking IP1’s at x = ei, we perform
a geometric transition and study the dual closed-string geometry with n finite
S3’s. The distance between critical points are

∆ij ≡ ei − ej .

From the period expansion of [18] we have following expressions in a semiclas-

– 160 –



sical regime

2πiτii =2πi
∂2F0

∂Si
2 ≈ log

(
S1

W ′′(ei)Λ
2
0

)
+O(S)

2πiτij =2πi
∂2F0

∂Si∂Sj
≈ − log

(
Λ2

0

∆2
ij

)
+O(S)

Generalizing the vacuum condition from the two cut geometry, the physical
minima of effective potential are then determined by

0 = −Re(αi) +
∑

j

Re(τ)ijNj ,

0 = −Im(αi) +
∑

j

Im(τ)ijNjδj

where δi ≡ sign [Imαi]. The expectation values of Si are expressed explicitly
below,

〈Si〉Ni =
(
W ′′(ei)Λ

2
0

)Ni

δiδj>0∏

j 6=i

(
Λ0

∆ij

)2Nj δiδk<0∏

k 6=i

(
Λ0

∆ik

)−2Nk

exp (2πiαi) , δi > 0

〈Si〉Ni =
(
W ′′(ei)Λ

2
0

)Ni

δiδj>0∏

j 6=i

(
Λ0

∆ij

)2Nj δiδk<0∏

k 6=i

(
Λ0

∆ik

)−2Nk

exp (2πiαi) , δi < 0.

The vacuum energy density formula is now given by

Veff∗

Λ4
= 2

∑

i

Ni(|Imαi| − Imαi) +



δi>0,δj<0∑

i,j

2

π
NiNj log

∣∣∣∣
Λ0

∆ij

∣∣∣∣


 , (5.6.27)

where the first term is the brane tension contribution from each flopped IP1

with negative g2
YM (matching with (5.6.18)), and the second term suggests that

opposite brane types interact to contribute a repulsive Coulomb potential energy
(as in the cases considered in [5])

5.6.6. Decay mechanism for non-supersymmetric systems

It is straightforward to see how the non-supersymmetric systems studied
in this section can decay. This is particularly clear in the UV picture. If
the gauge coupling constants are all negative, the branes want to sit at the
critical point which minimizes |ImB(ei)|, as this will give the smallest vacuum
energy according to (5.6.27). Thus we expect that in this case the system
will decay to one which is the U(N) theory of antibranes in a holomorphic B-
field background. This still breaks supersymmetry, but it is completely stable.
Considering that RR charge has to be conserved, no further decay is possible.
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If there are some critical points where ImB(ei) is positive, there is no unique
stable vacuum. Instead, there are as many as there are ways of distributing N
branes amongst the critical points x = ei where ImB(ei) > 0. Thus, we find
numerous supersymmetric vacua which could be the end point of the decay
process, each one minimizing the potential energy to zero. As in [4], these
decays can be reformulated in the closed-string dual in terms of Euclidean D5
brane instantons, which effectively transfer branes/flux from one cut to another.

Appendix 5.A. Computation of Weff

Here we provide more detail on the derivation of (5.3.7) using the Riemann
bilinear identity and its extension to a non-compact Riemann surface Σ. In
particular, we wish to compute the integral

∫

Σ

χ ∧ λ (5.A.1)

for closed one-forms χ and λ which are now allowed to have arbitrarily bad
divergences at infinity. We need to be extra careful due to this worse-than-
usual behavior at infinity. In particular, the contribution of the interior of
the Riemann surface will be exactly the same as the usual case, with the only
difference coming from a careful treatment of contributions coming from the
boundary at infinity.

P

Q

B

B

B

A A A

1

2

3

1 2 3

Fig. 5.5. A non-compact Riemann surface represented as a compact Riemann surface

Σ with two points P and Q at infinity removed.

We can represent the non-compact Riemann surface Σ as a compact Rie-
mann surface of genus n with two points representing the points at infinity on
the top and bottom sheet (labeled by P and Q, respectively) removed. The
derivation of the Riemann bilinear identity on the surface then goes through
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as usual, by cutting the Riemann surface open into a disk, except that we get
an additional contribution from the boundary piece connecting the points P
and Q (see figure 5.5). In particular, the contributions of the n − 1 compact
B-cycles Bi − Bi+1 and the dual n − 1 compact A-cycles are the usual ones.
The contribution from the boundary at infinity is given by

∮

P

fl +

∮

Q

fl −
∮

P

χ

∫ P

Q

l (5.A.2)

where χ = df and f is a function defined on the simply connected domain which
represents the cut-open surface Σ.59 Evaluating this for our case of interest,
with

λ = ydx

χ = HRR +H0,

(5.A.2) gives a contribution

∮

P

B(x)ydx−
∮

P

(HRR +H0)

∫ P

Q

ydx

where we have used the fact that
∮
P

= −
∮
Q

and that HRR +H0 ∼ dB(x) for

large x (and so at the contour around P ). Combining all contributions, the
superpotential can indeed be rewritten as

Weff =
n∑

i=1

∮

Ai

B(x)ydx−
n∑

i=1

Ni∂Si
F0.

59 Note that when f has at worst a logarithmic divergence at P and Q, and λ has at worst a

simple pole, then we can write

∮

P

fl+

∮

Q

fl =
(
f(P ) − f(Q)

)∮

P

l =

∫ P

Q

χ

∮

P

l

which returns the standard form for the integral (5.A.2). However, in the case where f has poles

at P and Q, the resulting equations are modified.
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Chapter 6

The Geometry of D-Brane Superpo-
tentials

Much of the progress in our understanding of topological string theory
on Calabi-Yau threefolds has been driven by its numerous intersections with
physical superstring theory. For a non-compact Calabi-Yau, input from string
dualities led to a computation of both open and closed topological string am-
plitudes to all orders in perturbation theory by means of the topological vertex
[119]. Recently, these results have been verified by mathematicians [120]. In a
lesser measure, progress has also been made with regard to topological string
amplitudes on compact Calabi-Yau manifolds. For example, closed topological
string amplitudes have been computed in perturbation theory up a very high
genus in [121].

For the open topological string on the quintic, the disk amplitude has
been computed for an involution brane in a ground-breaking paper by Walcher
[122]. In this case there are no massless open-string deformations, and the disk
amplitude depends on closed-string moduli alone. The results of [122] have
subsequently been verified by mathematicians in [123]. More such examples
were studied in [124,125,126], the results of which were formalized in [127]
within the framework of Griffiths’ normal functions [128].

Despite the successes of [122] and subsequent papers, a more general frame-
work is desirable. In particular, the topological string disk amplitude can de-
pend on massless open-string moduli – a situation which lies outside the scope
of [122,127]. Moreover the topological string on a disk computes the D-brane
superpotential. The superpotential, corresponding to the classical brane action
in topological string field theory, is naturally an off-shell quantity. For example,
the superpotential for a B-brane wrapping a curve is given by

W (C) =

∫

B(C)

Ω(3,0) (6.0.1)
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where C is any curve, not necessarily holomorphic, and B(C) is a three-chain
with C as its boundary. The critical points of (6.0.1) with respect to variations
of the brane embedding are holomorphic curves. Restricting to the critical
locus, one recovers the normal functions of [122,127].

A method for computing the off-shell superpotential (6.0.1) for “toric
branes”, first defined in [30], has been proposed in [129,130], following
[131,132,133], and extended to compact Calabi-Yaus in [134,135,136]. For these
branes, the superpotentials (as well as the open-string flat coordinates) are the
solutions to a system of “open/closed” Picard-Fuchs equations, which arise as
a consequence of “N = 1 special geometry”. For closed string periods, the
Picard-Fuchs equations can be read off from the associated gauged linear sigma
model (GLSM). The authors of [135] extend this formalism and associate an
auxiliary GLSM to the open/closed Picard-Fuchs system, thus treating open
and closed-string moduli at the same footing, and allowing systematic compu-
tation of superpotentials for a large class of branes.

While these results are remarkable, their physical underpinnings remain
somewhat mysterious. In formulating the Picard-Fuchs system, one must spec-
ify a divisor in the B-model geometry. This divisor is only a part of the combi-
natoric data which enters into the definition of the curve C as a toric brane. The
role of this divisor then requires some explanation. In addition, the appearance
of the auxiliary GLSM begs for a physical interpretation. Finally, the methods
of [122] extend beyond the class of toric D-branes, and so there should be some
appropriate generalization of the techniques of [129,130] which allows for the
treatment of these other cases.

In this chapter, we show that duality of the physical superstring explains
these remarkable results. Consider the theory obtained by wrapping a D3 brane
on a holomorphic two-cycle C in the compact threefold X3. The theory on the
brane hasN = (2, 2) supersymmetry in two dimensions, with the superpotential
(6.0.1) computed by the disk partition function of the topological B-model with
boundary on C. We will argue that the same superpotential is generated by a
modified brane configuration, with an additional D5 brane wrapping a divisor
D, and the D3 brane dissolved as world-volume flux. Note that this is not
a duality; the modified configuration only produces the same answers for a
certain subset of physical quantities. In particular, the moduli space for D is
not equivalent to the configuration space of the curve C. The superpotentials of
the two theories must agree only for those variations of C which are encoded in
variations of the moduli of the divisor. In fact, given X3 and C we argue that
the superpotential is the same for any configuration of D3, D5 and D7 branes
where the D3 charge brane ends up localized on C.

The superpotential is also the same for any other D-brane configuration
related by dimensional reduction/oxidation in R3,1. Fore example, the super-
potentials for a D3 brane and a D5 brane wrapping the curve C are the same.
Our choice is such that the D-branes have codimension two in R3,1. For D-
branes of lower codimension, only a subset of these models are consistent due
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to RR tadpoles. Tadpole cancellation in these cases requires the introduction
of ingredients, such as orientifold planes, that are extraneous to the problem at
hand.60 For higher codimension, the branes break more spacetime symmetries,
complicating the problem. For this reason, the superstring embedding we have
chosen is the most natural.

S-duality of type IIB string theory relates the D5 branes on D to NS5
branes, with the flux remaining invariant since it is generated by a dissolved
D3 brane. By further compactifying and T -dualizing one of the directions
transverse to both X3 and the NS5 branes, the branes are geometrized. The
resulting configuration is then type IIA on a non-compact Calabi-Yau fourfold
X4. The flux on the NS5 brane is T -dualized to RR four-form flux G4 on X4,
which generates a flux superpotential of the form,

W =

∫

X4

G4 ∧ Ω(4,0), (6.0.2)

where Ω(4,0) is the holomorphic four-form. Duality and the BPS nature of
the superpotential guarantee that the superpotential (6.0.2) is the same as
(6.0.1) as a function on appropriate moduli space. Moreover, since (6.0.2)
can be expressed in terms of closed-string periods of a Calabi-Yau fourfold,
it is guaranteed that the superpotential will satisfy a system of Picard-Fuchs
equations which also encode the appropriate flat coordinates. This explains the
appearance of the auxiliary toric data of Calabi-Yau fourfolds in [131,135]. Our
approach is more general, however, in principle allowing one to go beyond the
category of toric branes.

The formalism of [129,130,134,135,136], then, does not strictly reflect the
physics of B-branes wrapping curves, but rather that of B-branes wrapping
divisors D with non-trivial world-volume flux.61 In particular, to extract the
disk amplitude for a B-brane on C, one must specify not only the divisor, but the
first Chern class of the gauge bundle as well; on the Calabi-Yau fourfold, this
corresponds to the choice of the RR flux. However, the distinction is for most
purposes immaterial, as long as one is only interested in the superpotential.

The chapter is organized as follows. In section two, we discuss the relation
between D3 branes on C and D5 branes on divisors containing C. In particular,
we show that upon the introduction of the appropriate fluxes on the D5 branes,
the superpotentials for the two configurations agree. We then turn the chain of
dualities that relates the D-brane geometry in IIB to a IIA flux compactification
on a non-compact Calabi-Yau fourfold, which we give explicitly. We explain the

60 For example, D5 branes wrapping curves on a compact Calabi-Yau can be dissolved in the

D7 branes, after introducing an appropriate number of orientifold planes so that the net D-brane

charge vanishes, or by working in F-theory on a compact Calabi-Yau fourfold.
61 A different proposal for how to geometrize the D-brane superpotential by blowing up the

divisor D, resulting in a threefold with is not Ricci-flat, has been proposed recently in [137].
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role of mirror symmetry for Calabi-Yau threefolds and fourfolds in this context.
In section three, we present detailed computations for a number of examples,
which illustrate a variety of circumstances in which our prescription is of use.
Among other things, we show that we can reproduce earlier results of [138]
obtained from matrix factorizations. In an appendix, we discuss the relation of
the methods developed here to the toric geometry approach of [135].

6.1. B-Brane Superpotentials on Calabi-Yau Threefolds

Consider a D3 brane which wraps a curve C inside a Calabi-Yau threefold
X3. This gives, in the non-compact directions, a 1 + 1 dimensional theory with
N = (2, 2) supersymmetry. When C is genus zero, there are no bundle moduli
associated with the gauge fields on the D3 brane, and so any light degrees of
freedom will arise from variations of the D-brane embedding. The number of
massless chiral fields is equal to H0(C,NC), the number of holomorphic sections
of the normal bundle to the curve in X3, which encode infinitesimal, holomor-
phic deformations of the curve. On general grounds, the normal bundle splits
as NC = O(−1 +n)⊕O(−1−n). Since an O(k) bundle has k+1 holomorphic
sections, the number of massless deformations for the curve is n. For n = 1,
there is one massless adjoint chiral field. This does not imply that the curve has
finite holomorphic deformations – there may be obstructions at higher order.
Such an obstruction is encoded by a superpotential for the moduli [139]. This
superpotential is computed at string tree-level by the topological B-model, with
boundaries on C. Alternatively, this amplitude can be computed in terms of
the classical geometry of the brane configuration [30],

W (C) =

∫

B(C,C∗)

Ω(3,0), (6.1.1)

where Ω(3,0) is the holomorphic three-form on X3, and B(C, C∗) is a three-chain
with one boundary on C, and the other on a homologous, reference two-cycle
C∗.

In the generic case, the normal bundle to a curve is O(−1)⊕O(−1). This
corresponds to n = 0, and there are no massless fields on the brane. The B-
model disk amplitude then depends on the closed-string moduli alone, i.e., it
measures the superpotential (6.1.1) evaluated at its critical point with respect
to open-string variations. This scenario has been studied in [122]. The depen-
dence of the physical D-brane superpotential on massive brane deformations
can nevertheless be interesting and relevant to the low-energy effective theory
above a certain scale [139].

In practice, evaluating these chain integrals directly from first principles
is difficult. For the mirrors of non-compact, toric Calabi-Yau threefolds, the
computations are rendered tractable by the relative simplicity of the geometry.
This is not the case when the Calabi-Yau is compact, and so we will instead
explore an alternate approach.
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There are other brane configurations in string theory that give rise to the
same superpotential (6.1.1). For example, we may consider a D5 brane which
wraps a divisor D ⊂ X3. The divisor has h2,0(D) complex moduli. Each such
modulus corresponds to a massless chiral field on the D5 brane. This moduli
space is lifted when there is non-trivial flux on the D5 brane world-volume. In
particular, take the flux F to be Poincaré dual to a curve C ⊂ D,

F = PDD[ C ]. (6.1.2)

For a generic D5 brane embedding, supersymmetry will be broken by the flux.
A condition for unbroken supersymmetry is that the gauge bundle on the brane
be holomorphic,62

F (0,2) = 0. (6.1.3)

This condition is equivalent to the requirement that the curve C be holo-
morphic – the same requirement that is enforced at the critical points of (6.1.1).
In fact, it can be shown that the flux (6.1.2) generates precisely the super-
potential (6.1.1) for an appropriate subset of open-string deformations. The
superpotential due to the flux (6.1.2) can be written [141-145]

W (D) =

∫

Γ(D,D⋆)

F ∧Ω(3,0), (6.1.4)

where Γ is a five-chain which interpolates betweenD and a homologous reference
divisor D⋆ and F is the appropriate extension of the flux as a closed form onto
Γ (obtained by taking the Poincaré dual to B(C, C⋆)). By Poincaré duality, this
superpotential can be rewritten as

W (D) =

∫

B(C,C⋆)

Ω(3,0), (6.1.5)

which matches (6.1.1) for deformations which are common to the two brane
systems.

Alternatively, one could consider a D7 brane which wraps all of X3. The
superpotential for the brane is the holomorphic Chern-Simons functional,

W (X3) =

∫

X3

A ∧ ∂A ∧ Ω(3,0).

Consider now turning on world-volume flux, F ∧ F , which is Poincaré dual to
the curve C,

F ∧ F = PDX3
[ C ]. (6.1.6)

62 There is an additional supersymmetry constraint on J ∧ F , where J is the Kähler form on

the four-cycle [140]. This is interpreted in four dimensions as a D-term constraint, and so does

not affect the superpotential.
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It is easy to see [30] that the D7 brane superpotential is the same as (6.1.1).
Namely, locally, near C we can write

Ω(3,0) = dω

for a two form ω. Integrating by parts and using (6.1.6) we can write

W (X3) =

∫

C

ω,

which is the same, up to a constant as (6.1.1).
From the superstring perspective, the superpotentials (6.1.1), (6.1.4),

(6.1.6) are all identical since they have the same have the same origin – the
D3 brane charge that is supported on C. For example, world-volume flux on a
D5 brane of the type described above carries D3 brane charge due to a Wess-
Zumino coupling on the brane world-volume of the form

SWZ ∼
∫

D5

F ∧ C(4), (6.1.7)

where C(4) is the four-form RR potential. When F is as in (6.1.2), this reduces
to

SWZ ∼
∫

C×R1,1

C(4), (6.1.8)

so the D5 brane carries the charge of a D3 brane wrapping C. Similarly, turning
on (6.1.6) on the D7 brane, gives it a charge of a D3 brane supported on C.

6.1.1. String duality and Calabi-Yau fourfolds

The reformulation of the superpotential computation in terms of a D5 brane
wrapping a divisor is of great use due to a duality which relates the problem to
the classical geometry of Calabi-Yau fourfolds.

First, type IIB S-duality exchanges D5 branes and NS5 branes, leaving
D3 branes invariant. So, we could have equivalently obtained (6.1.4) as the
superpotential for an NS5 brane on the divisor D. Even though S-duality
exchanges strong and weak coupling, the superpotential remains invariant when
we compare the two theories at weak coupling. One way to see this is to
note that the supersymmetry constraints (6.1.3), which are reproduced by the
superpotential (6.1.4), are the same for both D5 and NS5 branes. Next, we
compactify and T -dualize on one direction of R3,1 transverse to the NS5 brane.
T -duality on this circle relates IIB to IIA and geometrizes the NS5 branes.
The resulting geometry preserves 1 + 1 dimensional Lorentz invariance and
N = (2, 2) supersymmetry, so it is a Calabi-Yau fourfold, which we denote
by X4. Since one of the two directions transverse to the NS5 brane remained
non-compact, the fourfold is non-compact as well.
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The fourfold X4 can be described explicitly as follows [94,146,147]. In X3,
to the divisor D is associated a line bundle LD over X3 and a section fD, such
that D is the zero-locus of the section,

fD(x) = 0. (6.1.9)

The Calabi-Yau X4 is a C⋆ fibration over X3 which degenerates over D, and
can be described globally as

uv = fD. (6.1.10)

Here u, v are sections of line bundles L1 and L2 over X3, where L1⊗L2 = LD.
The locus where u or v go to infinity is deleted, so the manifold is non-compact.
The fiber over a given point of X3 is a copy of C⋆ described by

uv = const.

This fiber has the topology of a cylinder, and is mirror to the R × S1 formed
by the two directions transverse to the NS5 brane and to X3. It degenerates to
uv = 0 over the divisor D that was wrapped by the NS5 brane.63

There are several immediate and important consequences of this correspon-
dence. First, the moduli of the divisor entering into the choice of section fD
become complex structure moduli of X4. The holomorphic three-form on X3

lifts to the holomorphic four-form on X4,

Ω(4,0) = Ω3,0 ∧ du/u.

The compact, Lagrangian four-cycles of X4 come in two different flavors. First,
every closed Lagrangian three-cycle lifts to a Lagrangian four-cycle when com-
bined with the S1 in the fiber. In addition, there are four-cycles which project
to three-chains in X3 with boundaries on D. The generic fiber over the chain
is still an S1, but the circle now degenerates over D, capping off a closed cycle
in X4. Note that this means that the Lagrangian T 4 fibration of X4 is related
to the Lagrangian T 3 fibration of X3 by simple inclusion of the S1 fiber.

These observations imply that the superpotential (6.1.1) can be repre-
sented, on the Calabi-Yau fourfold X4, as the period of Ω(4,0) over an appro-
priately chosen four-cycle L4(B) which is the S1 fibration over the three-chain
B(C, C⋆),

W =

∫

L4(B)

Ω(4,0). (6.1.11)

63 The correspondence between the open/closed-string geometry of the D3/NS5 brane system

on X3 and the geometry of X4 is related to the duality of IIB on Calabi-Yau orientifolds to

F-theory on Calabi-Yau fourfolds [144]. In the present case, X4 is a fibration over X3 with non-

compact fiber. The main simplification here is that, due to the low codimension of branes, there

are no tadpoles on X3 to begin with. Correspondingly, the dual fourfold is non-compact.
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Such a superpotential for the complex structure moduli can only be generated by
the presence of RR four-form flux G4 on X4. The flux generated superpotential
is [21]

Wflux =

∫

X4

G4 ∧ Ω(4,0). (6.1.12)

We now show that T -duality indeed implies that flux on the NS5 branes maps
to the four-form flux of just the right value that Wflux is equal to W in (6.1.11),
thus providing a check for the duality.

One way to study the superpotential generated by fluxes is to study the
corresponding BPS domain walls [21]. To begin with, the superpotential (6.1.1)
in IIB on X3 is generated by world-volume flux F on the D5 brane which is
supported on a curve C. Different vacua correspond to different curves Ci ⊂ D
which are homologous in X3, but distinct in D. If B(C1, C2) is the three-
chain that interpolates between two curves, the relevant domain wall is a D3
brane which wraps B(C1, C2), with boundaries on the D5 brane. Under S/T -
duality, the D3 brane domain wall becomes a D4 brane wrapping a special
Lagrangian four-cycle L4(B) in X4, obtained as the S1 fibration over B(C1, C2).
This domain wall interpolates between vacua where RR four-form flux shifts by
an amount Poincaré dual to L4(B),

G4 = PDX4
[L4(B)]. (6.1.13)

Inserting this in Wflux (6.1.12) we precisely recover (6.1.11).
Thus the problem of computing the open-string superpotential (6.1.1) is

rephrased as determining the periods of the holomorphic four-form on X4 which
control the flux superpotential (6.1.12). Before proceeding to the calculation of
such periods in explicit examples, however, we discuss the role played by mirror
symmetry for the Calabi-Yau fourfolds in these geometries.

6.1.2. T -duality and mirror symmetry for fourfolds

Mirror symmetry provides another piece of evidence for the proposed cor-
respondence. We recall in advance that mirror symmetry for Calabi-Yau n-folds
can be interpreted as Tn duality on Lagrangian Tn fibers [148].

To begin with, consider IIB on X3 with a D3 brane wrapping C before
adding D5 or NS5 branes. Mirror symmetry for Calabi-Yau threefolds is a T 3-
duality on the special Lagrangian T 3 fibers of X3. This maps X3 to its mirror
Y3, IIB to IIA, and D3 branes on C to D4 branes wrapping a Lagrangian three-
cycle L. Mirror symmetry for threefolds also exchanges the topological A- and
B-models, so the superpotential for the low-energy effective theory on the D4
branes is computed by the disk amplitude of the topological A-model. This
amplitude receives contributions from holomorphic maps of a worldsheet with
the topology of a disk into Y3, with boundaries on L. For b1(L) = n, there are n
non-contractible one-cycles in L, which are contractible in Y3 since b1(Y3) = 0.
The one-cycles can then be filled in to disks in Y3. Let u denote complexified
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Kähler volume of a minimal area disk, and t the closed-string Kähler modulus.
The at large radius in both closed and open-string moduli, the disk amplitude
has the form

W = P2(u, t) +
∑

n=1

∑

q,Q

Nq,Q
n2

e−n(qu+Qt) (6.1.14)

where (q, Q) denotes the relative homology class of the disk, the sum over n is
a sum over multi-covers and Nq,Q are integers. We have added a polynomial
quadratic in u to cover the case when the moduli are actually massive, i.e.,
the Lagrangian has the topology of an S3 and b1(L) = 0. There can still be
holomorphic disks ending on the brane, whose Kähler moduli u are expressible in
terms of the Kähler moduli t of the Calabi-Yau, corresponding to the extrema of
the quadratic part of the superpotential. An example of this in the non-compact
setting was given in [149].

Now consider adding NS5 branes on the divisor D to the IIB setup on X3.
If we perform a T 3-duality on the Lagrangian T 3 fibers now, the NS5 branes
will again be geometrized. This is because a T -duality on an odd number of
circles transverse to the NS5 branes geometrizes them. Here, the NS5 branes
wrap a divisor, so only one of the T -dualized circles is transverse to them.
The theory preserves the 1 + 1 dimensional Lorentz invariance and N = (2, 2)
supersymmetry, and so the dual geometry is again a Calabi-Yau fourfold. In
fact, this fourfold Y4 is nothing but the mirror of X4! To see this, note that
the T 4 fiber of X4 is an S1 fibration over the T 3 fiber of X3. The statement
then follows upon refining mirror symmetry on the fourfold as T 4-duality in two
steps: a T -duality relating X4 to NS5 branes on X3, followed by a T 3-duality
relating this to IIA on Y4.

So, after introducing an NS5 brane on the divisor D, the mirror of X3 is
no longer the Calabi-Yau threefold with Lagrangian D4 brane, but rather is a
Calabi-Yau fourfold with flux. However, we have argued in this note that the
physics of the superpotential must remain the same. We will now show how the
superpotential (6.1.14) is reproduced in the mirror. Mirror symmetry relates
complex structure moduli of X4 to Kähler moduli of Y4. A superpotential for
these Kähler moduli can be generated by 0−, 2−, 4−, 6− and 8−form fluxes
[21,150,151]. To determine the superpotential, we again follow the BPS domain
walls through the chain of dualities. In the context of IIB on X3 with NS5
branes on D, the domain walls were D3 branes wrapping special Lagrangian
three-chains B(C, C′) and ending on the NS5 branes. The T 3-duality that maps
to IIA on Y4 sends the D3 branes to D4 branes on a four-chain D4(B) that
interpolates between the Lagrangians L1 and L2 which are mirror to C1 and
C2. The RR flux that shifts across these is a four-form flux, Poincaré dual to
D4(B),

G4 = PDY4
[D4(B)]. (6.1.15)

This implies that the superpotential on Y4 is

Wflux =

∫

Y4

G4 ∧ k ∧ k, (6.1.16)

– 172 –



where k is the complexified Kähler form. In particular, inserting the jump in
the flux over the D4 brane domain wall (6.1.15), we precisely recover the BPS
tension of D4 brane on L4(B).

It is a remarkable fact, and a check of the duality chain proposed here,
that the flux superpotential (6.1.16) in the fourfold has, at large radius, the
integral expansion (6.1.14) [152,151]. For this, it is crucial that there are only
four-form fluxes turned on, which is exactly what is needed for the theory to be
dual to IIA on Calabi-Yau threefold Y3 with D4 branes wrapping a Lagrangian
three-cycle L.

Before we turn to examples, note that we have made no a-priori restriction
on D. In particular, the divisor D does not have to be a “toric” divisor. When
D is toric (and X3 a hypersurface in a toric variety), it is easy to see that the
Calabi-Yau fourfold (6.1.10) has the same complex structure as those in [135],
so our results are guaranteed to agree.

6.2. Examples

In this section, the observations of the previous sections are applied to a
number of brane configurations on families of Calabi-Yau threefolds. The first
examples will focus on D3 branes wrapping degree-one rational curves on the
quintic in the vicinity of the Fermat point. These brane configurations have
been studied in [138] using matrix factorization/worldsheet CFT methods, and
the results reported here will agree with those obtained previously. The second
set of examples draws from the class of “toric branes” near the large complex
structure point of the mirror quintic. These branes have previously been dis-
cussed in [135]. The present treatment will agree with those results, but will
provide a new interpretation for some of the methods involved in the calcula-
tions. Finally, we consider several examples of branes on complete intersection
Calabi-Yaus which were studied recently in [126].

In all of these examples, our approach will be results-oriented and will not
include an exhaustive analysis of the fourfold geometries involved. In particular,
we will not attempt to derive the complete set of Picard-Fuchs operators for the
fourfolds, and will instead settle for a set of differential operators which uniquely
determines the periods of interest given the desired leading-order behavior.
We will borrow the overall normalization of the superpotentials from results
elsewhere in the literature, leaving a careful intersection/monodromy analysis
for future study.

6.2.1. D-branes on the Fermat quintic

The starting point for this first set of examples is the Fermat quintic, given
by the hypersurface in IP4,

x5
1 + x5

2 + x5
3 + x5

4 + x5
5 = 0.
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There are continuous families of rational curves on this quintic, which we specify
by their parameterizations in terms of homogeneous coordinates (u, v) on a IP1

as
(x1, x2, x3, x4, x5) = (au, bu, cu, v,−ηv)

a5 + b5 + c5 = 0,
(6.2.1)

where η is a fifth root of unity. There are fifty such families, corresponding to
ten partitions of the xi into groups of two and three, and five values of η. For
later convenience, we denote these families thusly,

Σijkm (a, b, c) : (xi, xj , xk) = (au, bu, cu), η = e2πim/5. (6.2.2)

The coefficients (a, b, c) are only defined up to an overall scaling, so each family
is parameterized by a complex one-dimensional curve which is a hypersurface
in IP2. Each family of curves intersects another family at points where one of
the homogeneous coordinates vanishes.

The presence of continuous families of rational curves is non-generic, and
perturbing the bulk complex structure will lift (some of) the families, leaving
only isolated curves. Such a perturbation should therefore generate a superpo-
tential for D3 branes which wrap these cycles. Such a scenario was explored in
[138], where worldsheet CFT techniques were used to compute the superpoten-
tial at leading order in such a bulk perturbation as an analytic function on the
open-string moduli space.

In order to compute the superpotential for one of these families of curves
using the methods of section two, a family of divisors must be chosen such
that each divisor is transverse to the family of curves, and each member of the
family of curves is subsumed by a single member of the family of divisors. In
particular, choosing divisors

D(φ) : x4 + φx5 = 0, (6.2.3)

the Picard-Fuchs equations for the associated fourfold will encode the superpo-
tential for any of the fifteen families Σi45m . For a given value of φ, this divisor
encompasses the curve with φ = −b/c, and so allows for a good parameteriza-
tion of the family away from the points at c = 0.64

Following [138], we further consider perturbations to the complex structure
of the threefold which are of the form

x5
1 + x5

2 + x5
3 + x5

4 + x5
5 + x3

1g(x3, x4, x5) (6.2.4)

where
g(x3, x4, x5) =

∑

p+q+r=2

gpqrx
p
3x
q
4x
r
5. (6.2.5)

64 By making the change of variables φ→ φ−1, one can equally well recover the physics in the

neighborhood of c = 0.
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For simplicity, we restrict to monomial perturbations – the case for more general
perturbations can be treated by the same methods. In particular, the following
two bulk perturbations will lead to qualitatively different physics on the D3
branes,

g1(x3, x4, x5) = ψ1 x4x5 g2(x3, x4, x5) = ψ2 x
2
4. (6.2.6)

The superpotential for the family of D3 branes is encoded in the periods
of a non-compact Calabi-Yau fourfold X4. The line bundles introduced in sec-
tion two to facilitate construction of the fourfold construction can be identified
simply as the bundles O(n)→ IP4 restricted to X3,

LD = O(1)→ IP5|X3
,

L1 = O(1)→ IP5|X3
,

L2 = O(0)→ IP5|X3
.

(6.2.7)

It follows that X4 is a complete intersection in IP6 × C given by

Q(ψi) = 0 P (φ) = x6x7 +D(φ) = 0, (6.2.8)

with the points (0 : 0 : 0 : 0 : 0 : x6 ; x7) deleted. The periods of Ω(4,0) for these
geometries can be computed using standard methods, as we now summarize.

For the first bulk perturbation g1(x3, x4, x5), the D3 brane moduli spaces
for the families Σ245

m , Σ345
m are lifted, with the only remaining holomorphic

curves in these families being located at the points in (6.2.1) where

b · c = 0. (6.2.9)

This leads to five distinct curves at b = 0 and another five at c = 0. The
divisors (6.2.3) provide a description of the configurations with b = 0. The
normal bundle to these curves is NΣ = O(−1) ⊕ O(−1), rendering the theory
on the D3 branes massive.

Picard-Fuchs operators65 for the fourfold (6.2.8) can be derived using the
residue representation for periods of the holomorphic four-form [128],

Πα(ψ, φ) =

∫

γ1×γ2×Γα

∆

Q(ψ1)P (φ)
, (6.2.10)

where γ1 × γ2 × Γα is a tubular neighborhood constructed about the desired
four-cycle,

∆ =

6∑

i=1

(−1)iwixidx1 ∧ . . . ∧ d̂xi ∧ . . . ∧ dx6 ∧ dx7,

65 In all examples, we use the scaling symmetries of the ambient projective space as an efficient

way to produce GKZ-type operators which are guaranteed to annihilate the compact periods of

the fourfold.
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and the wi are the scaling dimensions of the homogeneous coordinates. We
initially represent the hypersurface in terms of redundant parameters on the
fourfold moduli space,

Q(ai) =

5∑

i=1

aix
5
i + a0x

3
1x4x5 P (bi) = x6x7 + b4x4 + b5x5. (6.2.11)

where the algebraic coordinates on the moduli space can be given in terms of
these parameters by a rescaling of the xi,

ψ1 =
a0

a
3/5
1 a

1/5
4 a

1/5
5

, φ =
b5a

1/5
4

b4a
1/5
5

.

The periods expressed in terms of the redundant parameters,

Π̂α(ai, bi) =

∫

γ1×γ2×Γα

ω

Q(ai)P (bi)
, (6.2.12)

can be related to the physical periods (6.2.10) according to

Π̂α(ai, bi) =
1

(a1a2a3a4a5)1/5
Πα(ψ1, φ). (6.2.13)

It is easy to produce differential operators which annihilate the periods
Π̂α(ai, bi) because differentiation with respect to the ai, bi can be performed
under the integral. As such, we obtain the following operators,

L1 = ∂3
a1
∂a3

∂a4
− ∂5

a0
,

L2 = ∂5
b3
∂a5
− ∂5

b5
∂a3

.
(6.2.14)

These operators in turn are equivalent to relations on the periods written in
terms of the algebraic moduli,

LiΠα(ψ, φi) = 0,

where, after factorizing, the operators can be written as

L1 =

4∏

k=0,̂3

(θψ1
− k) + 3

(
ψ1

5

)5

(3θψ + 11)(3θψ + 1)×

(θψ + θφ + 1)(θψ − θφ + 1)

L2 = θφ(θφ − θψ1
− 1)− φ5θφ(θφ + θψ + 1).

(6.2.15)

with θz ≡ z∂z.
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Among the solutions to these Picard-Fuchs equations are four that depend
only on ψ, and which correspond to solutions which would have arisen in a
similar analysis of the periods of X3. In addition, there are four φ-dependent
solutions, from amongst which we identify two of interest,

t = φ
(
1 + 1

15φ
5 + 7

275φ
10 + 77

187500φ
5ψ5

1 + . . .
)
,

Π1 = φ2ψ1

(
1 + 8

35
φ5 + 3

25
φ10 + 36

15625
φ5ψ5

1 + . . .
)
.

(6.2.16)

The first of these defines the flat open-string coordinate. The second, by its
leading behavior, can be identified as the superpotential induced by D3 brane
flux in the class of Σ345

0 .
These results are in agreement with those of [138]. In particular, the term

in Π1 which is linear in ψ1 can be written in terms of a hypergeometric function
as

Π1 = (ψ1φ
2) 2F1

(
2
5 ,

4
5 ; 7

5 ;φ5
)

+ . . . . (6.2.17)

Up to the overall normalization, this exactly matches equation (3.14) of [138] for
this choice of bulk deformation. It is clear from this derivation, however, that
the physical basis for writing the superpotential is not in terms of φ, but rather
in terms of the flat coordinate t which represents an appropriate period of X4.
Moreover, the overall normalization of the superpotential should be adjusted
by the fundamental period of the fourfold as in conventional mirror symmetry
calculations. We note that the fundamental period, Π0(z) for these fourfolds
is identical to that for the related threefold – in particular, it is independent
of φ – and so the change in normalization doesn’t effect the superpotential at
leading order in the ψ1. However, for higher order corrections, it should be
the normalized result which would match any CFT computation such as those
performed in [138]. In light of these considerations, we display the physical
superpotential,

W(z, t) =
Π1(z, t)

Π0(z)
= t2z(1+

2

21
t5 +

17

31250
z5 +

2

99
t10+

68
46875t

5z5 + 38299
128906250000z

10 + . . .)

(6.2.18)

The second bulk perturbation also lifts the D3 brane moduli space for the
families Σ245

m and Σ345
m leaving only the holomorphic curves given by (6.2.1)

along with
b2 = 0. (6.2.19)

For each family, this leads to five solutions, each of degeneracy two, at b = 0.
Thus, D3 branes wrapping these curves find themselves at the critical point of
a higher-order superpotential. The normal bundle to each of these curves is
NΣ = O(1) ⊕ O(−3). However, only one of the holomorphic sections of the
normal bundle is encoded by the variation of φ for the divisor.66 As a result,

66 An analysis of the full moduli space of the divisor D would encode all holomorphic deforma-

tions of the curves.
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the following derivation produces the superpotential with respect to only one
of the massless deformations.

As before, the differential relations for Π̂α(ai, bi) can be determined,

L1 = ∂3
a1
∂2
a4
− ∂5

a0

L2 = ∂a3
∂5
b5 − ∂a5

∂3
b4 ,

(6.2.20)

where by rescaling the homogeneous coordinates the algebraic moduli for the
fourfold can be found in terms of the redundant parameters,

ψ2 =
a0

a
3/5
1 a

2/5
4

, φ =
b5a

1/5
4

b4a
1/5
5

.

The resulting Picard-Fuchs operators which annihilate the periods Πα(ψ2, φ2)
are (after factorizing) given by

L1 =
4∏

k=0,̂3

(θψ2
− k) + 3

(
ψ2

5

)5

(3θψ2
+ 11)(3θψ2

+ 1)×

(2θψ2
− θφ + 6)(2θψ2

− θφ + 1),

L2 = θφ(θφ − 2θψ2
− 1)− φ5θφ(θφ + 1).

(6.2.21)

There are four φ-independent solutions which are determined purely by the
geometry of the threefold, and four additional φ-dependent periods. Of these,
the relevant flat coordinate and superpotential are given by

t = φ
(
1 + 1

15
φ5 + 7

275
φ10 + . . .

)
,

Π2 = φ3ψ2

(
1 + 3

10φ
5 + 54

325φ
10 + . . .

)
.

(6.2.22)

It is worth noting that there is no solution which could correspond to a massive
superpotential for φ. The superpotential Π2 can be written at leading order in
ψ2 in hypergeometric form,

Π2 = (ψ2 φ
3) 2F1

(
3
5 ,

4
5 ; 8

5 ;φ5
)

+ . . . (6.2.23)

which agrees with equation (3.14) of [138]. The superpotential should again be
expressed in the physical normalization in terms of flat open and closed-string
coordinates, giving

W(z, t) =
Π2(t, z)

Π0(z)
= t3z

(
1+

1

10
t5 +

69

31250
z5 +

248

10725
t10−

24

78125
t5z5 +

98999

5371093750
z10 + . . .

) (6.2.24)
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6.2.2. Toric branes on the mirror quintic

A class of D-branes which has been well studied in the context of open-
string mirror symmetry are “toric branes,” first described in [30], to which we
defer for their description in terms of toric geometry. They were originally in-
troduced as non-compact brane geometries in local Calabi-Yau threefolds, but
more recently, progress has been made in understanding the extension to the
compact case [134,135]. We consider one of these examples from the perspective
of the dual fourfold, and reproduce the same Picard-Fuchs equations and super-
potentials which were derived in [135] based on a somewhat formal application
of toric geometry/GLSM techniques.

The bulk geometry is the one-parameter family of quintic hypersurfaces in
IP4 given by67

x5
1 + x5

2 + x5
3 + x5

4 + x5
5 + ψ x1x2x3x4x5 = 0.

The D3 brane geometries of interest are degree-two rational curves, with the
following parameterization,

(x1, x2, x3, x4, x5) = (u2, αu2, v2, βv2, (−αβψ)1/4uv),

where α5 = β5 = −1. These are rigid curves, so there are no massless open-
string moduli.

In [135], these branes were described in the framework of toric geometry
by identifying them as components of the intersection in the mirror quintic of
two of the following three toric divisors,

x5
1 + x5

2 = 0, x5
3 + x5

4 = 0, x5
5 + ψx1x2x3x4x5 = 0.

By choosing one of these as the physical divisor for our prescription, we expect
to reproduce the D3 brane superpotential with respect to certain massive open-
string deformations as well as the bulk modulus ψ. As opposed to the previous
examples, there are no privileged massive deformations that are singled out by
the brane geometry. Consequently, there is no preferred choice for the physical
divisor, and the off-shell superpotentials for the different branes will not match.
However, the on-shell value of the superpotential with respect to the open-
string degrees of freedom should be independent of the choice of divisor. Since
the first and second divisors are related by a permutation symmetry, we will
consider

D1(φ1) = x5
1 + φ1x

5
2, D2(φ2) = x5

5 + φ2x1x2x3x4x5, (6.2.25)

67 For our purposes, this can be either a one-dimensional slice of the complex structure moduli

space of the quintic, or the Z3
5 orbifold of these geometries which constitutes the mirror quintic.
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which contain information about the supersymmetric D3 branes at φ1 = 1 and
φ2 = ψ, respectively. The relevant line bundles for this configuration are68

L = O(5)→ IP4|X3
,

L1 = O(5)→ IP4|X3
,

L2 = O(0)→ IP4|X3
.

(6.2.26)

The dual fourfold is a complete intersection in the weighted projective space
IP5

111151 × C, with the points (0 : 0 : 0 : 0 : 0 : x6, ; x7) removed. The defining
equations are

Q(ψ) =
5∑

i=1

x5
i + ψx1x2x3x4x5 = 0, P (φi) = x6x7 +Di(φi) = 0. (6.2.27)

We now turn to the derivation and solution of the Picard-Fuchs equations for
these fourfolds.

For the first divisor, D1(φ1), we proceeding in a manner analogous to
the previous examples and find, after factorization, the following Picard-Fuchs
operators,69

L1 = θ4
z − θ2

zθ
2
φ1

+ z
4∏

k=1

(5θz + k),

L2 = θφ1
(θφ1

+ θz)− φ1 θφ1
(θφ1
− θz).

(6.2.28)

where we expand about the large complex structure point of the mirror quintic,
so have introduced z = ψ−5. The holomorphic curves in question are located
at φ1 = 1, and so we look for solutions to these equations expanded about that
point, as a function of φ̂ = φ1 − 1. There are precisely two solutions which are
functions of φ̂1 and finite at z = 0,

t = φ̂− 1
2
φ̂2 + 1

3
φ̂3(1− 60z)− 1

4
φ̂4(1− 120z) + . . .

Π1 =
√
z
(
1 + 5005

9 z + 52055003
75 z2 + 283649836041

245 z3 + 8908737478232449
3969 z4

+ 1
8 φ̂

2 − 1
8 φ̂

3 + 15
128 φ̂

4 + . . .
)
.

(6.2.29)

In addition, there are four solutions which comprise the usual set of closed-
string periods on the mirror quintic. After appropriately normalizing, these

68 Alternatively, one could choose Lu = O(a) and Lv = O(b) for any a+ b = 5. Such a choice

does not affect the present discussion.
69 These can be obtained most easily as the GKZ-operators associated with the charge vectors

which define the toric bulk/brane geometry, as in [135]. However, it is easy to see that the fourfold

introduced above gives rise to the same operators.
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are the open-string flat coordinate and superpotential, respectively. This leads
to the following expressions for the physically normalized superpotential as a
function of the flat open/closed-string coordinates,

Wphys(q, t) =Wclosed(q) + 15
8 q

1/2t2 (1− 265q + . . .) (6.2.30)

Where Wclosed is the on-shell superpotential as a function of the closed-string
moduli when the open-string coordinate is fixed at its critical point,

Wclosed(q) = 15q1/2 + 2300
3
q3/2 + 2720628

5
q5/2 + 23911921125

49
q7/2 + . . . (6.2.31)

This result precisely matches those of [122,135], which were obtained through
a variety of different methods.

We now turn to the second divisor, D2(φ2). This is precisely the divisor
which was studied in [135], and we reproduce the results here for completeness.
Following [135], we choose to work in terms of algebraic variables

z1 = −φ−1
2 ψ−4, z2 = −φ2ψ

−1,

with respect to which the Picard-Fuchs operators are given by

L1 = θ5
1 − θ4

1θ2 − z1
4∏

k=1

(4θ1 + θ2 + k)(θ1 − θ2),

L2 = θ2
1 − θ1θ2 − z2(4θ1 + θ2 + 1)(θ1 − θ2),

L′
1 = θ2θ

4
1 + z1z2

5∏

k=1

(4θ1 + θ2 + k).

(6.2.32)

The expected critical point is at z2 = −1, z1 = ψ−5. To find a good expansion
for the solutions to the Picard-Fuchs equations, we introduce coordinates

u = z
−1/4
1 (1 + z2), v = z

−1/4
1 ,

as a function of which the superpotential can be found in a power-series expan-
sion,

Π2 =
1

8
u2 + 15v2 +

5

48
u3v−15

2
uv3 +

1

46080
u6 +

35

384
u4v2−

15

8
u2v4 +

25025

3
v6 + . . .

(6.2.33)

It can be verified that this superpotential has a critical point with respect to
the open-string variation at u = 0, as predicted by the geometry. Moreover,
by setting the open-string deformation to zero, normalizing, and expressing
the result in terms of the flat closed-string coordinate, the derived on-shell
superpotential matches the results of [122],

W = 15q1/2 + 2300
3 q3/2 + 2720628

5 q5/2 + 23911921125
49 q7/2 . . . (6.2.34)

This matches the results obtained above using the first divisor (6.2.31), although
the physical theories on the different NS5 branes are inequivalent.
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6.2.3. IP5[3, 3]

Our next example is a one-parameter complete intersection Calabi-Yau,
studied recently in [126]. The geometry is mirror to the intersection of two
cubics in IP5, and can be described as the quotient70

X3 = {W1 = 0,W2 = 0}/G

Where the W1 and W2 are the most general cubic polynomials invariant under
the appropriate discrete symmetry group G = Z2

3 × Z9,

W1 =
x3

1

3
+
x3

2

3
+
x3

3

3
− ψx4x5x5

W2 =
x3

4

3
+
x3

5

3
+
x3

6

3
− ψx1x2x3

The curves studied in [126] are determined by the intersection of two hyperplane
divisors in X3,

D1 = {x1 + x2 = 0}, D2 = {x4 + x5 = 0}.

This intersection is reducible, being comprised of one line and two degree four
curves, the rational parameterizations of which can be found in [126].

We introduce a fivebrane on the divisor D1, which we embed in the one-
parameter family of divisors,

D1(φ) = x1 + φx2 (6.2.35)

The line bundles for this configuration are then

LD = O(1)→ IP5|X3
,

L1 = O(1)→ IP5|X3
,

L2 = O(0)→ IP5|X3
,

(6.2.36)

and the dual fourfold is a complete intersection

W1(ψ) = 0, W2(ψ) = 0, P (φ) = x6x7 +D1(φ) = 0, (6.2.37)

in IP6 × C with the points (0 : 0 : 0 : 0 : 0 : 0 : x7 ; x8) removed. Picard-Fuchs
operators can be derived in the usual way, leading to

L1 = (θ4
z − θ2

w)θ2
z − 9z(3θz + 2)2(3θz + 1)2,

L2 = θw(θz + θw) + wθw(θz − θw),
(6.2.38)

70 As in the examples on the mirror quintic, one can equally well consider this to be a special

case of the larger A-mode geometry, IP5[3, 3].
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where we’ve introduced local variables z = (3ψ)−6, w = φ3. The holomorphic
curves in question are located at φ = 1, so we find solutions expanded about
the point ŵ = w− 1 = 0. There are two ŵ-dependent solutions which are finite
at z = 0,

t = ŵ − 1
2 ŵ

2 + 1
3 ŵ

3 − 1
4 ŵ

4 − 6zŵ3 + 1
5 ŵ

5 + 9zŵ4 + . . .

Π = Πclosed(z) +
√
zŵ2( 1

8
− 1

8
ŵ + 15

128
ŵ2 − 1225

384
zŵ2 − 7

64
ŵ3 + . . .)

(6.2.39)

Where Πclosed is the part of the superpotential which depends only on the
closed-string moduli, i.e., the on-shell part that is accessible to the methods of
[126].

Πclosed =
√
z
(
1 + 1225

9 z + 1002001
25 z2 + 19200813489

1225 z3 + 28214528710225
3969 z4

)
. (6.2.40)

These periods are the flat open-string coordinate and superpotential, respec-
tively. Again, the periods should be normalized by the fundamental period of
X3 and expressed in terms of the flat coordinates. The resulting superpotential
is

W(q, t) =Wcl + q1/2t2
(

9

4
− 243

2
q − 10935

4
q2 +

3

64
t2 + . . .

)
(6.2.41)

where, Wcl is the on-shell superpotential obtained by setting t→ 0,

Wcl(q) = 18q1/2+182q3/2 +
787968

25
q5/2+

323202744

49
q7/2 +

15141625184

9
q7/2 + . . .

(6.2.42)

This matches equation (2.37) of [126].

6.2.4. IP5
112112[4, 4]

As our final example, we consider another one-parameter complete intersec-
tion Calabi-Yau from [126]. This time, the A-model geometry is the intersection
of two degree-four hypersurfaces in the weighted projective space IP5

112112. The
mirror geometry is given by the quotient

X3 = {W1 = 0,W2 = 0}/G

Where the W1 and W2 are the most general degree-four polynomials invariant
under the appropriate discrete symmetry group G = Z2

2 × Z16,

W1 =
x4

1

4
+
x4

2

4
+
x2

3

2
− ψx4x5x5,

W2 =
x4

4

4
+
x4

5

4
+
x2

6

2
− x1x2x3.
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The curves in question are contained in the intersection inX3 of the two divisors

D1 = {x2
1 + α1

√
2x3 = 0}, D2 = {x2

2 + α2

√
2x6 = 0}.

where αi = ±i. The intersection consists of one line and three degree-five
curves.

We introduce a fivebrane on the divisor D1, which is embedded into the
one-parameter family of divisors given by

D(φ) = x2
1 + φx3. (6.2.43)

The line bundles for this configuration can be chosen as

LD = O(2)→ IP5|X3
,

L1 = O(1)→ IP5|X3
,

L2 = O(1)→ IP5|X3
,

(6.2.44)

and the dual fourfold is a complete intersection

W1(ψ) = 0, W2(ψ) = 0, P (φ) = x6x7 +D(φ) = 0, (6.2.45)

in IP8
11211211 with the points (0 : 0 : 0 : 0 : 0 : 0 : x7 : x8) removed. Picard-Fuchs

operators can be derived in the usual way, leading to

L1 = (θz + θw)(2θz − θw − 1)(2θz − θw)θ2
z−

16z(4θz + 3)2(4θz + 2)(4θz + 1)2,

L2 = (θz + θw)θw −
1

2
w(2θz − θw)θw,

(6.2.46)

where we’ve introduced local variables z = (8ψ)−4, w = φ2. The holomorphic
curves in question are located at φ = ±i

√
2, so we look for solutions expanded

about the point ŵ = w+1 = 0. Amongst the ŵ-dependent solutions, we identify
the periods which correspond to open-string superpotentials,

Π1 = z1/3(1 + 8281
16 z + 38130625

49 z2 + 80263989481
49 z3 + 1

36 ŵ
2 + 1

81 ŵ
3 + . . .),

Π2 = z2/3(1 + 559504
625 z + 15557323441

10000 z2 + 10590422929849
3025 z3 + 1

162 ŵ
3 + . . .).

(6.2.47)

Along with the closed-string periods, we can compute the on-shell superpoten-
tial in terms of closed-string flat coordinates, finding

W(q) = 24q1/3 + 150q2/3 +
2571

2
q4/3+

417024

25
q5/3+

45420672

49
q7/3 +

131074059

8
q8/3 + . . .

Again, we’ve chosen the linear combination of solutions to match the results of
[126].

– 184 –



Appendix 6.A. Toric Methods

In this appendix, we demonstrate the equivalence of the fourfolds derived
by T-duality with those obtained using toric geometry/GLSM techniques in the
case of toric branes [135]. We will take one of the branes of section 3.2 as our
example. From the toric data which defines the brane geometry in question, the
methods of [153] allow for a derivation of the appropriate B-model geometry.

Recall that in the context of toric geometry, the quintic is described by the
charge vector of the associated GLSM,

Q1 = (−5, 1, 1, 1, 1, 1).

Moreover, a certain class of “toric branes” can also be encoded in a similar
charge vector [30]. In particular, for the charge vector

Q2 = (1,−1, 0, 0, 0, 0),

the mirror B-brane on the mirror quintic wraps the divisor

x5
1 + φx1x2x3x4x5 = 0.

The approach of [135,130,132] was to “enhance” these charge vectors to define
an auxiliary GLSM for the open/closed-string geometry as follows

Q′
1 = (−5, 1, 1, 1, 1, 1; 0, 0),

Q′
2 = (1,−1, 0, 0, 0, 0; 1,−1).

(6.A.1)

This toric data then defines a system of GKZ differential operators. Defining
coordinates on the complex structure moduli space for the B-model geometry
according to

za = (−)Q
′
a,0

7∏

i=0

a
Q′

a,i

i , (6.A.2)

the differential operators which annihilate the periods of the holomorphic four-
form are

ℓa0∏

k=1

(θa0
− k)

∏

ℓa
i
>0

ℓa−1∏

k=0

(θai
− k)− (−1)ℓ

a
0 za

−ℓa0∏

k=1

(θa0
− k)

∏

ℓa
i
<0

−ℓai −1∏

k=0

(θai
− k), (6.A.3)

where θai
=
∑
aQ

′
a,iθza

. It is straightforward to check that the operators
defined in this way match those obtained by our methods in section three.

Moreover, by applying the methods of [153], we can further derive the
B-model geometry which is defined by this toric data. Starting with the non-
compact toric variety given by (6.A.1), the mirror Landau-Ginzburg theory has
twisted superpotential

W̃ =
2∑

a=1

Σa

(
7∑

i=0

Qa,iYi − ta
)

+
7∑

i=0

e−Yi . (6.A.4)
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The period integral which computes BPS masses in the related compact theory
is then given by71

Π =

∫
dΣ1dΣ2

( 7∏

i=0

dYi

) (
5Σ1 −Σ2

)
exp

(
−W̃

)
, (6.A.5)

where the term (5Σ1 − Σ2) has been inserted to render the theory (partially)
compact. Manipulation of this period integral leads to a representation of the
related B-model Calabi-Yau geometry as a hypersurface as follows:

Π =

=

∫
dΣ1dΣ2

( 7∏

i=0

dYi

) ∂

∂Y0
exp

(
−

2∑

a=1

Σa

( 7∑

i=0

Qa,iYi − ta
))

exp

(
−

7∑

i=0

e−Yi

)
,

=

∫
dΣ1dΣ2

( 7∏

i=0

dYi

)
e−Y0 exp

(
−

2∑

a=1

Σa

( 7∑

i=0

Qa,iYi − ta
))

exp

(
−

7∑

i=0

e−Yi

)
,

=

∫ ( 7∏

i=0

dYi

)
e−Y0δ

( 7∑

i=0

Q1,iYi − t1
)
δ
( 7∑

i=0

Q2,iYi − t2
)

exp

(
−

7∑

i=0

e−Yi

)
.

(6.A.6)
At this point, there are two sets of manipulations which lead to different,

but equivalent, representations of the B-model geometry. In order to make
contact with the results of section three, one may make the following change of
variables,

e−Y0 = P

e−Yi = e−t1/5P
z5
1

x1x2x3x4x5
i = 1, . . . , 5

e−Y6 = Z,

(6.A.7)

the first delta function is satisfied automatically. This change of variables is
only one-to-one after dividing out by aC⋆ × Z3

5 action under which (6.A.7) is
invariant. Evaluating the second delta function to fix Y7 as well, the periods
become,

Π =

∫ ( 5∏

i=1

dxi

)dZ
Z

δ
(
G(xi)

)
exp

(
Z
(
1 + e−t2−t1/5

x5
1

x1x2x3x4x5

))
(6.A.8)

where
G(xi) = x5

1 + x5
2 + x5

3 + x5
4 + x5

5 + ψx1x2x3x4x5, (6.A.9)

71 In all manipulations, we suppress the explicit contours of integration, which are period-

dependent.
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and ψ = exp
(
t1/5

)
. Introducing new fields ũ and ṽ and inserting the identity

in the form,

1 = Z

∫
dũ dṽ eũZṽ,

(6.A.8) becomes

Π =

∫ ( 5∏

i=1

dxi

)
du dv δ

(
G(xi)

)
δ

(
ũṽ + 1 + φ

x5
1

x1x2x3x4x5

)
. (6.A.10)

A final coordinate redefinition,

u = x1x2x3x4x5ũ

v = ṽ,
(6.A.11)

leads to an expression which describes periods of the holomorphic four-form on
a non-compact Calabi-Yau fourfold,

Π =

∫ ( 5∏

i=1

dxi
)
du dv δ

(
G(xi;ψ)

)
δ
(
P(xi; u, v;φ)

)
, (6.A.12)

where
P(φ) = uv + x5

1 + φx1x2x3x4x5, (6.A.13)

and φ = exp
(
t2+t1/5

)
. This precisely matches the fourfold which was obtained

by T-duality considerations in section three.
Alternatively, starting with (6.A.6), we can introduce variables as follows,

e−Y0 = P

e−Yi = e−t1/5P
x5

1

x1x2x3x4x5
i = 1, . . . , 5

e−Y6 = P
ez

x1x2x3x4x5
.

(6.A.14)

Again, the first delta function is satisfied automatically, while the second delta
function can be enforced to fix Y7 in terms of the other variables. The resulting
periods are of the form

Π =

∫ ( 5∏

i=1

dxi

)
dz dP exp

(
P H(ψ, φ)

)
, (6.A.15)

where

H = x5
1 + x5

2 + x5
3 + x5

4 + x5
5 + ψx1x2x3x4x5 + ew(x5

1 + φx1x2x3x4x5) (6.A.16)

with ψ and φ defined above. These periods are then given by integrals of the
holomorphic four-form on the Calabi-Yau fourfold defined by H = 0. This
formulation makes manifest the structure of the fourfold as a fibration of a
Calabi-Yau threefold over a cylinder, as in [131,154,155].

A similar analysis to these can be carried out for the other toric examples.
However, the derivation in terms of T-duality is more general, since it also
applies to cases which cannot be described within the “toric brane” framework.
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