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Memory precision and age 
differentially predict the use 
of decision‑making strategies 
across the lifespan
Sharon M. Noh 1*, Umesh K. Singla 2,3, Ilana J. Bennett 4 & Aaron M. Bornstein 1,5*

Memory function declines in normal aging, in a relatively continuous fashion following middle‑age. 
The effect of aging on decision‑making is less well‑understood, with seemingly conflicting results 
on both the nature and direction of these age effects. One route for clarifying these mixed findings 
is to understand how age‑related differences in memory affect decisions. Recent work has proposed 
memory sampling as a specific computational role for memory in decision‑making, alongside well‑
studied mechanisms of reinforcement learning (RL). Here, we tested the hypothesis that age‑
related declines in episodic memory alter memory sampling. Participants (total N = 361; ages 18–77) 
performed one of two variants of a standard reward‑guided decision experiment with additional trial‑
unique mnemonic content and a separately‑administered task for assessing memory precision. When 
we fit participants’ choices with a hybrid computational model implementing both memory‑based and 
RL‑driven valuation side‑by‑side, we found that memory precision tracked the contribution of memory 
sampling to choice. At the same time, age corresponded to decreasing influence of RL and increasing 
perseveration. A second experiment confirmed these results and further revealed that memory 
precision tracked the specificity of memories selected for sampling. Together, these findings suggest 
that differences in decision‑making across the lifespan may be related to memory function, and that 
interventions which aim to improve the former may benefit from targeting the latter.

It is widely accepted that memory, at least that for individual experiences, declines with  age1,2. The results on 
decision-making, however, are more mixed. While some studies identify a decrease in the ability of older indi-
viduals (and/or those experiencing cognitive decline) to engage in multi-step  planning3–5—a function which, like 
episodic memory, is critically linked to an intact hippocampal  formation6—others report that older individuals 
have spared, and sometimes improved, decision-making abilities, such as in a resistance to sunk  costs7. Still others 
have identified increases in choice randomness with  age8, which at first blush seems incompatible with reports 
of increasing perseveration—repetition of the same choice irrespective of learned  values9–11. The field has yet to 
settle on a unifying explanation for these seemingly disparate phenomena.

One route to a synthesis may be via understanding the role of memory in decisions. A number of findings have 
shown that memories for individual experiences can bias decision-making even in repeated selection tasks, where 
individuals gain extensive experience with the probabilistic outcomes of choice  options12,13. The role of memory 
in decisions via sampling (i.e. the selective retrieval of memories of similar past choices during decision-making, 
to estimate the value of one action or  another14,15) has been shown to capture the influence of recent rewarding 
experiences on  choice16, while also serving an adaptive role in decisions when familiarity with an environment 
is low or uncertainty about the structure of the environment is  high17. To illustrate the difference between these 
routes to value estimation, consider choosing between two restaurants: One, an old favorite that you have been 
to many times; the other, a brand-new shop of a well-known type—e.g. a slice pizza stand. For the former, you 
can rely on your repeated experiences to estimate the value of dining there tonight. For the latter, you must draw 
on memories of similar experiences, and extrapolate from there. When evaluating repeated choice options, 
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and assuming that recent memories are more likely to be retrieved, these two approaches give similar results 
on average, but can diverge, especially when the content of memory contains more than just recent experience.

Building on the findings that each system contributes to behavior, work has begun to examine what factors 
influence the relative use of one or the other. A recent study in young adults observed that the relative uncertainty 
of values estimated using memory sampling and reinforcement learning indexed how strongly choices depend on 
each system on a given  trial18. In other words, when one system had more variable estimates of option values on 
a given trial, it had less influence on choice. This finding concords with theoretical frameworks in which multiple 
learning systems contribute to behavior in proportion to the relative precision of their estimates of upcoming 
 stimuli19–22. An open question is whether this mixture of decision processes is altered across the lifespan, perhaps 
as a result of relative declines in the fidelity of memory representations or neural circuits communicating between 
valuation systems and action selection  regions23–26.

Therefore, the precision of memory representations may play a critical role in its influence on choice. A link 
between memory precision and memory-guided decision-making may be crucial to understanding age-related 
differences in choice patterns. This is because a key aspect of memory that declines with aging is the ability to 
pattern separate, or represent similar mnemonic stimuli with sufficiently distinct, non-overlapping memory 
 traces5,27–30. Individuals with impaired pattern separation may encode experiences in a manner that leads to 
impaired retrieval, perhaps due to the relative imprecision of these representations. Pattern separation is used 
to store unique memories of even highly similar information without interference, and age-related reductions 
in pattern separation result in less precise, lower-fidelity memory in older adults.

Here, we examined whether a behavioral measure of pattern separation—mnemonic discrimination ability in 
the Mnemonic Similarity Task (MST;27)—indexed the contribution of memory sampling to behavior in a repeated 
choice task where outcomes were linked with trial-unique  memoranda16,31. A lifespan sample of individuals (ages 
18–77; total N = 361) performed a series of choices between three options, each of which had steadily varying 
probabilities of paying reward. After selecting an option, they were then asked to encode a trial-unique object 
photograph in concert with one of six scene images. Their ultimate reward in the task depended both on their 
ability to identify and track the winningest choice option, and also on their ability to later successfully recall the 
object and scene pair that was associated with a randomly-selected subset of the choice outcomes. Critically, the 
experiment included a second phase during which individuals were presented with memory probes that inciden-
tally reminded them of past choices. These probes have previously been shown to influence subsequent choice 
via intrusions of value representations linked to the reminded  trials16,31 and associated  contexts31 in younger 
adults. It is important to note that this effect of incidental reminder probes on choice is not adaptive—individu-
als would do best to attend only to recent rewards, and not the values reminded by the probes. Therefore, this 
aspect of the task serves as a strong test of the hypothesis that action selection incorporates value information 
from recent memory, independent of or alongside continual reinforcement learning-based  approaches17,21,32. To 
date, memory sampling has not been studied in older adults.

We fit each participant’s series of choices with a computational model implementing both memory sampling 
and reinforcement learning, and measured the degree to which the values estimated by each process influenced 
the individual’s choice behavior. We then examined the relationship between their reliance on each process and 
their ability to discriminate similar objects during the MST, administered in a separate session. We predicted 
that, independent of age, the latter measure of mnemonic discrimination ability would index the average preci-
sion of an individual’s trial-level outcome memories in the choice task, and thus their use of memory sampling. 
We further predicted that age would negatively influence choice performance.

Consistent with theories of uncertainty-weighted arbitration between decision  systems19–21, which predict 
that decision systems with more precise estimates will have greater influence on choices, we found that higher 
memory precision predicted a greater influence of memory sampling-derived values on behavior, while not 
affecting an individual’s sensitivity to values learned by recent reinforcement. At the same time, age increased the 
appearance of “noisy” choices, reflected in a decreased reliance on reinforcement learning, while also increasing 
the influence of perseveration.

To further understand how memory precision altered the influence of memory content on decisions, we next 
performed a variant of the experiment in which individuals were presented with perceptually aliased contexts—
three matched pairs of scenes with similar visual content, but distinct choice-reward associations. We then tested 
whether individual memory precision corresponded to the influence on choice of the target context (the scene 
image associated with the memory probe) or the gist context (the target as well as its matched pair lure context, 
which had distinct choice-reward values). Consistent with the idea that uncertainty in memory representations 
is itself sample-based, rather than inherent to the representation, we found that lower memory precision was 
associated with a greater influence of gist-level memories.

Taken together, these findings support the idea that age-related declines in memory precision lead to changes 
in decision profiles, which can be decomposed with normatively-motivated process models. They further suggest 
that individuals who exhibit noisier choices with age may benefit from interventions that target the precision 
of their memory representations. Lastly, our results shed light on the fundamental mechanisms that guide the 
weighting of different decision strategies in individuals across the lifespan.

Methods
Experiments 1 and 2 were identical in procedure other than the background scene images (contexts) presented 
during the learning phase of the three-armed bandit task. As such, we have combined the method across both 
experiments and specified the differences across experiments where applicable.
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Participants
Participants across the lifespan were recruited online on Amazon Mechanical Turk via the CloudResearch inter-
face (N = 295, ages 19–77, mean(sd) age = 46.7(16.5), 144 Male, 149 Female, 1 Other, 1 Unknown) and in-person 
(N = 156, ages 18–45, mean(sd) age = 24.2(7.0), 56 Male, 97 Female, 1 Other). The majority of data collection 
occurred early in the COVID-19 pandemic, which limited our ability to collect in-person data, particularly 
those in older age groups. Though recent work has found that online older adult participants evince highly 
similar memory profiles to those collected in  person33, we instituted a multi-tiered quality control system to 
ensure commensurate data. Specifically, for online samples, we set eligibility filters through Amazon Mechani-
cal Turk such that only those who have completed at least 50 MTurk HiTs with over 95% approval rating were 
able to participate. All experimental procedures described hereafter were carried out in accordance with the 
guidelines of the University of California, Irvine and University of California, Riverside, Institutional Review 
Boards (IRBs). Ethical approval for these studies was obtained from the University of California, Irvine and 
University of California, Riverside IRBs, and informed consent was obtained from all the study participants 
according to disclosures approved by the University of California, Irvine and University of California, Riverside 
IRBs. Regardless of collection modality, all participant data underwent rigorous quality control by independent 
raters blind to the study hypotheses. Raters were instructed to identify individuals whose data indicated they 
were inattentive to the experiment or appeared to be automating responses for more than one quarter of the 
trials. Raters examined reaction times and response patterns for each participant and coded each participant as 
either 0—do not exclude, 1—consider excluding, or 2—definitely exclude. Raters also provided reasonings for 
exclusion. Some reasons for exclusion included: high frequency of no-response trials, unrealistically low or high 
reaction times (which may have been indicative of connectivity or computer issues or automated respondents—
e.g. bots or scripts), “button-mashing” (pressing the same button/choice for the majority of the experiment), or 
not sampling all three choices throughout the task (for instance, alternating between only two choice options 
for the majority of the task). Ratings from two independent raters were summed, and participants with scores 
greater than two were excluded. In other words, we excluded participants whom at least one rater identified as 
‘Definitely’ excluded (Score 2) and the other rater scored at least ‘Maybe’ excluded (Score 1 or 2). Of the 451 
participants originally recruited across both experiments, 83 participants were excluded on this basis.

We also excluded participants for whom the learning model did not fit better than chance (p(choose) = 1/3 
for all trials), as the parameters for these participants would not distinguish from a participant who made ran-
dom choices. An additional seven participants were excluded this way (all from Experiment 2), which left 361 
participants (across Experiments 1 and 2) for our analyses: 226 participants were retained in Experiment 1 (112 
online/114 in-person, 88 male/137 female/1 other, ages 18–77, mean (sd) age = 38.6 (18.8)), and 135 participants 
were retained in Experiment 2 (117 online/18 in-person, 66 male/68 female/1 other, ages 18–74, mean (sd) 
age = 40.6 (16.2)). Participants had to complete a brief tutorial and screener of the three-armed bandit task to be 
eligible for the full experiment. The screener consisted of an interactive tutorial of the task and practice trials of 
the learning phase to ensure participants understood the instructions and were paying attention to each trial. 
Individuals had two opportunities to complete the tutorial and 10 practice trials with a minimum 70% accuracy to 
continue on to the full experiment. Those who were ineligible to continue on to the main task were compensated 
$2 for the time spent on the tutorial. Participants received monetary compensation for their participation: $12 
for completing the experiment, and an additional bonus of up to $8 obtained throughout the task.

Participants were recruited for two separate sessions to complete their two tasks (one of the choice tasks and 
the Mnemonic Similarity Task). During early phases of data collection, the order of recruitment for each task 
(choice task and MST) were counterbalanced in case there may be differences in retention as a function of which 
task was performed first. Our pilot data revealed that roughly 5 out of every 8 participants generally returned for 
a second session, regardless of which experiment was performed first. For participants who were recruited first 
through the choice experiment, participants who completed the entire experiment were invited back to com-
plete the Mnemonic Similarity Task (MST)27. For other participants, those recruited to complete the Mnemonic 
Similarity Task first and those who completed the MST were invited back to complete one of the three-armed 
bandit tasks. Ultimately, 130 participants from Experiment 1 (48 male/82 female/1 other, ages 18–77, mean (sd) 
age = 37.0 (20.5)) and 97 participants from Experiment 2 (45 male/52 female, ages 18–73, mean (sd) age = 40.3 
(16.7)) completed both the MST and three-armed bandit tasks. Participants received a fixed fee of between $3 
and $5 for their participation on the MST, depending on the experiment modality and date of data collection 
(during the course of data collection we adjusted our per-hour participant compensation to account for inflation).

To examine the possibility that there may be significant differences between our online and in-person partici-
pant samples influencing our main analyses, we examined the distribution of each model parameter of interest 
(ꞵsampler, ꞵTD, ꞵperservation) for comparable online and in-person participants (younger adults between the ages of 
18–40). For each parameter, we conducted an independent samples t-test to verify that the parameter distribution 
did not differ between online and in-person samples. All comparisons showed there was no significant difference 
in parameter distributions as a function of online or in-person data collection (p > 0.2 for all 3 t-tests), alleviating 
possible concerns that data collection source may be significantly influencing our variables of interest.

Three‑armed bandit task
Tutorial/practice
Participants first completed a practice tutorial screener to determine eligibility for the main task. Participants 
engaged in an interactive tutorial during which they practiced the various aspects of the task: (1) pressing keys 
corresponding to each card deck option of the three-armed bandit task in a “virtual casino”, (2) experiencing 
the probabilistic payoff structure of each option, (3) making choices and remembering the casino room in 
which various item rewards (“lottery tickets”) were received within the trial’s time window, and (4) practicing 
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the memory probe recognition trials in Phase 2. The instructions unfolded slowly in order to give participants 
adequate opportunities to familiarize themselves with all aspects of the task, and there was a final quiz. If par-
ticipants did not successfully complete the quiz with at least 70% accuracy, they were given the opportunity to 
repeat the tutorial and quiz. Those who failed a second time were ineligible to continue on to the main task.

The main task followed protocols outlined in the method section of previous work that used this three-armed 
bandit  task31. Additional information on the task can be found there.

Phase 1 (learning phase)
Participants completed 180 choice trials of a 3-armed bandit task that occurred across 6 different contexts (“casino 
rooms”; Fig. 1A). Participants were told they are playing a card game across 6 casino rooms and that they should 
try to maximize reward by picking one of three card decks that most often leads to reward. The context was 
presented as a background image on the screen, which changed every 30 trials. In Experiment 1, the contexts 
presented in Phase 1 consisted of 6 unique outdoor scenes (Fig. 1B, “Experiment 1”). In Experiment 2, there 
were 2 contexts for each of 3 outdoor scene categories (i.e., 2 beach, 2 mountain, 2 forest). One context from 
each category was sampled first (e.g., beach #1, forest #1, mountain #1) before sampling from the same-context 
foils (e.g., forest #2, mountain #2, beach #2). There was an additional constraint that two rooms from the same 
category (e.g., forest #1 and forest #2) were not assigned to adjacent contexts (i.e., context 3 and 4).

Participants were told that the deck that most often leads to reward can change over time, so the optimal 
strategy is to periodically sample all choices to ensure that they are picking the best deck. Critically, it was 
emphasized that the decks “and dealer” followed participants between rooms—this feature was emphasized by 
the actual payout probabilities, described below. Participants had up to 2.5 s to make their choice by using the 
“1”, “2”, or “3” key on their keyboard to select one of the three presented card decks. After making their choice, 
participants were shown the chosen deck in isolation for 0.5 s, followed by a trial unique object image for 2 s, 
followed by a $1 or $0 reward for 1.5 s (Fig. 1A). Each trial was tagged with a trial-unique object image to later 
be used as an item-memory probe and remind participants of rewards received on a given trial. Participants were 
told that the trial-unique objects are “lottery tickets” that they will have to recognize to receive their associated 
rewards later. Participants learn to follow which deck most frequently yields reward through trial-and-error, 
while simultaneously learning to associate the different contexts (casino rooms) with trial-unique items (lottery 
tickets) experienced across the 180 trials.

Phase 2 (probe phase)
During the probe phase, participants completed an additional 120 choice trials of the 3-armed bandit task. 
However, during this phase, no context or trial-unique item was presented in any of the trials (Fig. 1C). Instead, 
60 memory probe trials were pseudorandomly interspersed amongst the choice trials. During a memory probe 
trial, participants were shown an object from Phase 1 to serve as a reminder of its associated reward and context 
from the learning phase. Participants were instructed to continue to make choices in this “unfinished” room and 
follow the deck most frequently associated with reward. They were also instructed that they may occasionally be 
shown an object image and asked to recognize if it were one of the lottery tickets they collected from Phase 1. 
Participants had up to 3 s to determine if the object was previously seen. Each correctly identified lottery ticket 
added a small monetary bonus (+ $0.05), and each incorrectly identified ticket resulted in a small monetary 
deduction (−$0.05).

Reward structure
In Phase 1 and 2, each card deck followed a probabilistic reward structure that changed throughout the task 
(Fig. 1B). Each deck was assigned to initial payout probabilities ( π , the odds the deck would return a $10 reward, 
rather than $0) of 60%, 30%, or 10% randomly, without replacement. These payout probabilities then slowly 
drifted across trials (t) within each context according to a decaying Gaussian random walk with reflecting bounds 
at 5% and 95% that was centered at the target probability ( θi ) assigned to each deck (i)31:

Parameters were set as follows: � (stickiness) was 0.6, ν (diffusion noise) was a zero-mean Gaussian with 
SD 8. To confirm to participants that the decks “carried with them” across rooms, the stickiness parameter was 
temporarily set to 0.95 for the first three trials of each room.

The key feature of the payoff structure was as follows: the target payout probabilities θi were reassigned after 
the first 10 trials within a given context and persisted for 30 trials before resetting again. Critically, item probes 
were selected only from these first ten trials, resulting in the memory probes having a reward distribution 
that is dissociable from the reward distribution of the context within which the item was presented. For both 
experiments, four payoff time series were pre-generated according to this procedure and randomly assigned to 
participants in the task. In Experiment 2, there was an additional constraint that the reward distribution for one 
context (e.g., forest #1) was distinct from its same-category foil (e.g., forest #2), thereby allowing us to determine 
if evoked memory content from memory probes in Phase 2 is consistent with memory for 1) the target context, 
2) the same-category lure, or 3) a gist representation of the category (target + lure).

Analysis of choice behavior
Regression analysis.
Our initial analysis of interest examined how reminder probes—and the trials and contexts they referred to—
affected choices in Phase 2. Following our previously employed  procedure31, we constructed a three-part logistic 

(1)πi,t+1 = �πi,t + (1− �)θi + ν
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regression model, with each part corresponding to one of the three card decks. For each deck and each trial, we 
modeled: for all trials, the identity of the deck chosen on the previous trial (DI: 1 for the given deck, 0 for others) 
and the recent rewards up to three steps back (DR: 1 if the given deck was chosen and rewarded on trial t − k, 

Figure 1.  Three-armed restless bandit task. Across two experiments, participants performed a three-choice 
decision-making task with uncertain reward contingencies and trial-unique memoranda. Task was adapted 
from Bornstein and Norman (2017)31. (A) Learning phase. Participants first performed 180 choice trials, split 
into six consecutive “casino rooms.” Each “room” lasted for 30 trials and consisted of three differently-colored 
card decks on a green background at the top of the screen, and a scene image at the bottom of the screen. The 
scene remained on screen for all 30 trials of each room. After selecting a card deck, the top card was turned 
over to reveal a trial-unique item photograph. Then, a reward amount—either a picture of a US $10 bill, or 
a phase-scrambled version of the same, the latter indicating a $0 reward for that trial. Participants were told 
to treat each trial as equally important, and that their total payout would depend on the choice made on one 
randomly-selected trial. They were also told that the decks and “dealer” would follow them through each room 
of the casino. (B) Reward structure. Each card deck had a different, steadily-varying, probability of paying out 
a reward. Decks were initialized to 60%, 30%, and 10% randomly for each participant—these payouts then 
varied across trials according to a gaussian random walk tending towards one of those three probabilities as 
its center. After trial 10 in each room, the centers were rotated such that the new highest-paying deck was 
different from the previously highest-paying deck. The payout rankings continued uninterrupted into the next 
room, reinforced by the payout of the highest deck being set to 100% for the first three trials of that room. 
Though payout order did not change between rooms, context images did. In Experiment 1, each room had a 
highly distinct image as a background. In Experiment 2, two rooms were perceptually aliased, with background 
images that were highly visually similar (i.e. two forests, two beaches, two mountains). Critically, the payouts 
for the aliased rooms were opposed to each other—the highest paying deck in the first room of each kind was 
different from the highest paying deck in the second. (C) Memory probe phase. Participants were told that the 
remaining 120 trials would be performed in an “unfinished” room of the casino, which had no background 
image. The payouts continued to drift slowly and rotate every 30 trials, however there were no further room 
boundaries. Here, choices no longer resulted in an item image—only a reward outcome. Interspersed among the 
120 choice trials were 60 memory probe trials, 50 of which presented an image previously observed, and 10 of 
which presented a novel image. The key measure of interest was the degree to which participant choices on trials 
following the memory probe were biased towards choices made in the room brought to mind by the probed 
image.
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k = 1..3, 0 otherwise); for trials immediately following the memory probes, the deck identity (EI: 1 if the same 
deck as probed, 0 otherwise), the deck-specific value received (ER: 1 if the same deck and rewarded, 0 otherwise) 
on the individual trial reminded by a memory probe, and the average reward of the probed deck, across the 
reminded context room (EC; Eq. 2).

This quantity, evoked context reward (ECC,i) reflects the expected value of samples of this deck i from the 
reminded room context C. The total regression model was thus:

where Ci,t, the dependent variable, reflects whether deck i was chosen on trial t (1 or 0).
The resulting design matrix thus had seven columns, and 360 rows—one for each deck and choice trial com-

bination. For the second experiment, a second analysis was run which included an eighth column representing 
the “gist-level” evoked context reward computed across the trials from the combined target evoked context and 
its paired lure context room. This regressor was orthogonalized against the target context regressor using Gram-
Schmidt orthonormalization as implemented by the SPM8 function spm_orth34. The coefficients produced by 
all regressions were tested against zero across the population by two-tailed t-test.

Computational model
The hybrid model consisted of a participant-specific mixture of two value-estimation processes, each drawing on 
previous experience in different  ways16,31. The first process, reinforcement learning, is an incremental, error-driven 
updating process which learns an expected value, Vt,RL(x) for each card deck, x, at each timepoint t (Eq. 4;35). 
This process had one free parameter, the learning rate ( αRL) , which was fit to each participant individually, and 
captured the degree to which the expected value was updated by the difference between the reward received for 
the choice made on that trial (Rt(x)) and the value to be expected on the basis of previous experience (VRL,t(x)):

Choice values were initialized to zero, and were not updated for options not chosen on a trial.
The second process, memory sampling, estimated values on the basis of a single “sample” drawn from past 

experiences with each choice option. The probability of a particular past experience serving as the value was 
proportional to how recently in the past it was selected, with recency weighted according to the decay parameter 
( αsample):

For the model-fitting procedure, the value was computed as the expectation-weighted average value across 
all combinations of possible samples for each choice  option16.

These values were transformed into action probabilities Pt(x) via a softmax action-selection function, with 
separate inverse temperature parameters ( βsample ,βRL) reflecting how sensitive action selection is to the value 
differences estimated by that process, for that participant. A third parameter ( βp) reflected the influence of per-
severation, or “stickiness” of recent choices, independent of the estimated action values.

The resulting temperature parameters were treated as the variables of interest for our analyses below.
Models were fit using maximum a-posteriori estimation via unconstrained optimization (MATLAB function 

fminunc). Parameters were input to the optimizer as unbounded real numbers, and then logistic-transformed 
within the likelihood function to appropriate bounds: αsample ,αRL ∼ [0, 1];βsample ,βRL ∼ [0, 20];βp ∼ [−3, 3] . 
Randomly-sampled starting points were selected for each run of the optimizer until the minimum observed 
value did not change for five consecutive runs.

The following weakly informative priors, truncated within the ranges specified above, were used in the 
final likelihood calculation: αsample ,αRL ∼ Beta(1.1, 1.1);βsample ,βRL ∼ Normal(0, 10)T[0, 20];βp ∼ Normal
(0, 10)T[−3, 3]..

Mnemonic similarity task
Participants were invited to return to complete the Mnemonic Similarity  Task27 in a separate session (Fig. 2). The 
Mnemonic Similarity Task was used as an individual difference measure of memory precision for each partici-
pant, which we reasoned would play a role in the degree to which participants would be influenced by evoked 
memories following probe trials in the second phase of the choice task. In the study phase, participants view 128 
object images in an incidental encoding task in which participants are tasked with judging whether each image 
is an indoor or outdoor object. In a surprise recognition test, participants are shown 192 object images, with 
one-third consisting of exact repetitions of the same object that was shown during study (Fig. 2B, “repetition”), 
one-third consisting of perceptually similar objects (Fig. 2B, “lure”), and one-third consisting of objects that 
were never shown during the study phase (Fig. 2B, “foil”). Participants are asked to judge whether each object is 

(2)ECC,i
=

# of choices of i resulting in $10− # of choices of i resulting in $0

# of times i chosen in C

(3)Ci,t ≈ βDIiDIi,t−1 +
∑3

k=1
βDRiDRi,t−k + βEIi EIi,t−1 + βERiERi,t−1 + βECiECi,t−1

(4)VRL,t(x) = VRL,t−1(x)+ αRL[Rt(x)− VRL,t−1(x)]

(5)P(Vsample(x) == Ri) = αsample(1− αsample)
t−i

(6)Pt(choosex) =
exp[βpI(xt == xt−1)+ β

sample
Vsample,t(x)+ βRLVRL,t(x)]

exp[
∑3

x=1βpI(xt == xt−1)+ βsampleVsample,t(xt)+ βRLVRL,t(xt)]
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old, similar, or new relative to what was shown during the study phase. A lure discrimination index (LDI) was 
computed for each participant using the following formula: LDI = p(“similar”|Lure) − p(“similar”|Foil). The LDI 
is widely used to measure individual and age-related differences in mnemonic discrimination, with higher scores 
being associated with better memory  precision27,28,36–39.

Parameter correlations
The critical test of our hypotheses involved correlations between parameters extracted from computational 
model fits, described above, and external measures of interest (age, LDI). Because the hypothesized relationship 
between model parameters and these measures is ordinal, and because the variables exhibit “ties”, we report 
the rank-based Kendall’s τb correlation  statistic40. Comparisons between correlations (i.e. across experiment 
populations) were assessed by z-test after first converting to the corresponding linear R value using the mapping 
R = sin(0.5 ∗ π ∗ τ)41.

To determine the specificity of LDI ~ parameter relationship, correlations were also examined after regress-
ing out the linear relationship with age. This computation was performed by first estimating the residuals of the 
regression model X ~ β*age, and performing the corresponding correlation against the resulting values.

Results
Experiment 1
The influence of memory intrusions on choice is observable across the lifespan. Following the preceding study 
which examined behavior in this task in young adults (Fig. 131), our measure of interest was performance 
on choice trials following recognition memory probes. Previous research using this decision-making task 
has shown that memory probes result in intrusive recollection of past choices such that evoked item memory 
content and evoked context memory content have separable contributions to subsequent choice behaviors, 
independently of recently received  rewards31. Our initial question of interest was whether this general pattern 
of findings was replicable in our lifespan sample of participants. Following previous work, we ran a multiple 
regression to model the contributions of each of our variables of interest on choice behavior. As previously 
observed in young  adults16,31, there was a significant influence of both the reminded trial and reminded con-
text on choices following the memory probe, while controlling for the influence of recent rewards (Fig. 3A; 
item : t(226) = 2.09, p = 0.038; ctx : t(226) = 2.32, p = 0.021).

Previous work has documented a decline in memory specificity with  age42. Such an effect could dampen the 
intrusive influence of retrieved values on decisions. On the other hand, other work has shown that memory’s effect 
on value-guided choice reflects an elaborated retrieval process, and so the presence of memory-biased choice 
would itself necessitate the retrieval of specific  information43. Therefore, we examined whether memory effects 
were modulated by either chronological age or cognitive decline, the latter indexed by the Lure Discrimination 
Index (LDI) computed on performance during the separately-administered Mnemonic Similarity Task (Fig. 2). 
The LDI, which measures the participants’ selective accuracy in identifying similar lures, is widely used as a behav-
ioral measure of the specificity of encoded memories, and is known to decrease with age and more specifically 
with the onset of age-related cognitive  decline28. Intriguingly, and consistent with the idea that value itself is the 
specific memory content of interest in this  task43, we found that neither age nor LDI modulated the effect of item 
or context-based intrusions ( age ∗ item : rτ (225) = −0.039, p = 0.391LDI ∗ item : rτ (128) = −0.925, p = 0.355 ; 
age ∗ ctx : rτ (225) = 0.050, p = 0.271; LDI ∗ ctx : rτ (128) = −0.583, p = 0.560).

Figure 2.  Mnemonic similarity task. (A) Participants view a sequence of objects during an incidental encoding 
phase in which participants classify each object as an indoor or outdoor object. (B) In a surprise discrimination 
test, participants view a series of objects and are asked to determine whether each object is “old,” “new,” or 
“similar” relative to the items that were shown during the encoding phase. (C) Correlation between age and lure 
discrimination scores (LDI) for each experiment. Shaded bands indicate 95% confidence intervals around the 
trendline.
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Memory sampling and RL are separately modulated by memory precision and age
Having observed that memory intrusions were consistent across the lifespan and the range of memory preci-
sion scores, we next examined factors that guided the use of behavioral strategies to perform the choice task. 
To answer this question, we fit to choice behavior a hybrid computational model implementing two distinct 
approaches to value-based decision-making. The key measure of interest in this model is the degree to which an 
individual’s choices reflect values estimated by memory sampling15,16 and also values estimated using standard 
temporal-difference reinforcement  learning44. Models were fit to choices in the first six rooms of the “casino”, 
absent the influence of memory probes. The result of this model fitting is that the reliance on each strategy 
is reflected in the inverse softmax temperature parameters that best describe each participant’s behavior as a 
function of the values estimated by each process. Overall, we found that most subjects exhibited a near-equal 
mixture of TD and memory sampling, but that TD was a greater contributor to behavior across the population 
( t(225) = −3.43, p < .001 ; Fig. 3B). Consistent with the hypothesis that the use of memory-based decision 
strategies is guided by the relative uncertainty of memory  representations12,19–21, we found that, at a subject-
level, increased memory precision (as measured by LDI) predicted the use of a memory sampling strategy 
( rτ (128) = .22, p < .001 ); this effect remained even when regressing out age ( rτ (128) = .13, p = .03 ). Notably, 
LDI did not predict the use of the reinforcement learning strategy ( LDI ∗ βTD : rτ (128) = .01, p = .9 ), but, 
consistent with previous work suggesting increased choice noise and perseveration with  age45, we found that 
age predicted less reliance on reinforcement learning ( rτ (128) = −.11, p = .019 ; Fig. 4A), as well as a greater 
influence of perseveration ( rτ (128) = .11, p = .017 ; Fig. 4B).

Experiment 2
Age‑related memory decline predicts the intrusion of gist, rather than specific‑context memories on choice
Experiment 1 demonstrated that the effect of memory intrusions on choice was not a function of age or memory 
specificity, but that both factors contributed to the relative influence of decision strategies on choice. We thus 
conducted a follow-up experiment examining whether a more fine-grained distinction, about the content of 
intrusive memories, might be revealed by a direct test of memory specificity. Specifically, motivated by previous 
research suggesting that age-related memory decline is associated with a greater reliance on ‘gist’ representations, 
rather than specific  memories46–49, we examined whether the content of probe-triggered memories was more 
‘gist’-like in individuals with lower memory precision. In our previous study using this  task31, we found that 
neuroimaging measures of specific-scene reinstatement on each trial–which indicated the degree to which an 
individual reinstated alternative, rather than target, contexts on that trial–modulated the value that guided sub-
sequent choice. This finding is consistent with the idea that samples are drawn from the context reinstated at the 
time of each decision. Therefore, we reasoned that making the distinction between scene contexts more difficult 
might lead individuals with lower memory precision to sample, at least partly, from the alternate, ‘lure’ room.

In Experiment 2, individuals again performed a three-armed restless bandit task across six distinct room 
“contexts.” However, in this experiment the contexts were split into perceptually aliased pairs—two scene images 
each of mountains, beaches, or forests (Fig. 1B). Critically, we controlled the payoff probabilities such that the 
best-performing card deck in the first room of a given type was not the best-performing in the second room. This 
allowed us to distinguish the effect of specific-context intrusions (e.g. ‘this particular beach’) versus intrusions 
based on a more ‘gist’-like representation (e.g. ‘beaches’). We first analyzed whether, consistent with Experiment 

Figure 3.  Influence of recent reinforcement and memory on choices. (A) Recent reinforcement and reminded 
memories both influence choices. Boxplots of logistic regression beta estimates (log relative choice odds) 
quantifying the contributions of reinforcement learning (recent reward history) and memory content (specific 
item memory vs. context memory) on subsequent choices following memory probes in Phase 2. In both 
Experiments, we observed a significant and consistent influence of both recent rewards and memory probes 
on subsequent choices (experiment 1: yellow; experiment 2: blue). (B) Subjects exhibit a mixture of memory 
sampling and temporal-difference reinforcement learning strategies. Across participants, the relative use of 
temporal-difference reinforcement learning and memory sampling varied. The bulk of subjects exhibited a near-
equal mixture of the two, but overall recent reinforcement was a greater influence on choices (Experiment 1, 
yellow: t(225) = −3.43, p < .001 ; Experiment 2, blue: t(134) = −3.75, p < .001).



9

Vol.:(0123456789)

Scientific Reports |        (2023) 13:17014  | https://doi.org/10.1038/s41598-023-44107-5

www.nature.com/scientificreports/

1 and previous observations, behavior was significantly modulated by reinstated target context intrusions, 
across the lifespan. Indeed, across the population, participants showed an effect of context-memory intrusions 
( t(133) = 2.81, p = 0.006 ). We next examined whether age or LDI correlated with the influence of the target 
context relative to its same-category lure (the other image of the same type (‘beaches’)). As expected, includ-
ing the (orthogonalized, see Methods) lure context reward in the regression competed with variance for the 
target context, reducing the effect of the former (Fig. 5A), suggesting that, across the population, participants 
relied on a mixture of both target and lure context representations (i.e., a ‘gist’ category level representation of 
the context). We then examined the relative reliance on one (target context) versus the other (lure context), at 
a participant level, as a function of age and LDI (Fig. 5B). Consistent with the idea that age-related cognitive 
decline in memory precision alters decision-relevant representations, we found that the influence of the target 
context on choice was correlated with LDI score ( LDI ∗ Target − Lure : rτ (95) = 0.148, p = 0.0329) , but not age 

Figure 4.  Memory precision and age differentially modulate the influence of experience on decisions. 
Both Lure Discrimination Index and Age separately tracked individuals’ use of distinct experience-derived 
choice influences. (A) Memory sampling increases with memory precision. Consistent with theoretical 
and empirical findings that uncertainty is a critical factor in the weight of decision strategies, increased 
memory precision was associated with an increase in the use of the memory sampling strategy in choice: 
rτ (225) = .228, p < .001 . (B) Choices are less sensitive to reinforcement learning with age. Consistent with 
previous findings that choice noise increases with age, participants exhibited less influence of Reinforcement 
Learning-derived values with age. rτ (359) = −.087, p = .015 . (C) Perseveration increases across the 
lifespan. Consistent with previous findings, participants exhibited a greater tendency towards perseverative 
responding with age. rτ (359) = .101, p = .0048 . All correlations plotted for each experiment individually 
(Experiment 1: yellow, Experiment 2: blue, shaded bands represent 95%CI around the trendline), and 
statistics reported for the combined sample. Correlations were not different between experiment samples 
( LDI ∗ βsampler : z = −0.21, p = .417;Age ∗ βTD : z = −0.704, p = .241;Age ∗ βpersev : z = 0.446, p = .328).

Figure 5.  Experiment 2: two kinds of reminded context influence choices. (A) Specific and gist context memory 
compete for influence on choice. Boxplots of logistic regression beta estimates measuring the contributions 
of reinforcement learning (recent reward history) and memory content (specific item memory, evoked target 
context memory, and evoked lure context memory) on subsequent choices following memory probes in Phase 
2. Target and Lure contexts compete for variance in this analysis, reducing the effect of context observed in 
Fig. 3 (blue). (B) Memory precision tracks the influence of specific and Lure context memory. Across subjects, 
individual estimates of memory precision (LDI) predict a greater influence of memory intrusions for the target 
reminded context relative to its same-category lure ( rτ (95) = .148, p = .0329).
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( Age ∗ Target − Lure : rτ (95) = 0.070, p = 0.317 ; difference between correlations: z = 0.854, p = 0.197 ); the 
relationship between LDI and target context influence held even after controlling for age ( rτ (95) = .144, p = .038).

Strategy use
 Again, participants placed greater weight on the temporal-difference learning strategy than the memory sam-
pling strategy ( t(134) = −3.75, p < .001 ; Fig. 3B), and memory precision, but not age, predicted the use of the 
memory sampling strategy ( LDI ∗ βsampler : rτ (95) = .238, p < .001; age ∗ βsampler : rτ (133) = −.027, p = .641;

z = 3.149, p = .001 ). In this smaller sample, neither the correlation between age and TD strategy ( Age ∗ βTD :

rτ (133) = −.0582, p = .321 ; Fig. 4B, blue) nor between age and perseveration ( Age ∗ βpersev : rτ (133) = .0766,

p = .192 ; Fig. 4C, blue) was statistically significant. Further, the differences between these correlations and those 
observed in Experiment 1 were not themselves significant ( Age ∗ βTD : z = −0.704, p = .241;Age ∗ βpersev :
z = 0.446, p = .328)50. Combining across experiments, both effects of age on strategy use were statistically sig-
nificant ( Age ∗ βTD : rτ (359) = −.087, p = .015;Age ∗ βpersev : rτ (359) = .101, p = .0048 ; Fig. 4B, C).

Discussion
Individuals across the lifespan are often called on to make value-based decisions under uncertainty that have 
important consequences for themselves and others. However, despite extensive characterization of age-related 
differences in decision-making capacities, little is known about the mechanisms by which these arise. Here, we 
examined the hypothesis that age-related differences in decisions may be linked to age-related differences in 
memory, which have been studied for longer and are better understood at a mechanistic level.

We specifically focused on the role of memory sampling, a process of retrieving memories of previous 
choice instances during decision deliberation that has been shown to affect neural signals and behavioral 
 outcomes13,15,16,31,51, even during tasks for which it is maladaptive to rely on episodic  memories16,31,52,53. We used 
a previously-validated task that, in younger adults, identified separable influences on choice of values associated 
with item and context memory, the latter corresponding with neural markers of context reinstatement that linked 
it to specific retrieved experiences—even if those experiences were incorrectly  attributed31. In Experiment 1, we 
observed that a lifespan sample of participants replicated previous findings obtained in young adults. Further, we 
extended the previous findings by showing that memory precision—as measured by the separately-administered 
Mnemonic Similarity  Task27—modulated the influence of memory sampling, with greater precision leading 
to a greater effect of memory sampling on choice. In parallel, and in keeping with previous findings in similar 
repeated decision-making tasks, chronological age was associated with increasing noisiness of choices relative to 
values estimated using standard reinforcement learning, and a concurrent increase in perseverative responding. 
In Experiment 2, we delved further into the relationship between memory precision and choice, by identifying 
a role for memory precision in selecting which memories are sampled. Specifically, we designed a variant of the 
previous task in which sampled context memories could be identified as specific or ‘gist’-level (e.g. ‘beaches’ as 
opposed to ‘that one particular beach’), with each having distinct, opposing effects on choice. We found that 
lower memory precision was associated with a greater reliance on gist-based memory during memory sampling. 
This result concords with an extensive literature on older adults’ greater reliance on gist, rather than specific, 
 memories48, and connects it to a recently developed computational model of action selection to explain why 
some memories are sampled during decision deliberation, rather than  others22.

These findings suggest that age-related differences in decision-making result at least in part from interac-
tions between systems for memory-guided and reinforcement learning-based action selection. More specifically, 
they link age-related differences in specific memory functions, in particular pattern separation, to age-related 
alterations in value-based decision-making. The finding that older adults, broadly, may be less sensitive to values 
estimated using reinforcement learning suggests that this decline in sensitivity could be at least partly mitigated 
by a greater reliance on recency-weighted memory sampling, if memory precision is spared. Examining the 
interactive influence of these systems on choice across the lifespan is a promising topic for future research. 
For instance, these results suggest that interventions that aim to improve older adults’ sensitivity to value may 
profitably focus on improving access to, or encoding of, specific choice-related memories that may be of critical 
importance to future decisions.

Our results also bear on previous findings regarding the nature of mnemonic discrimination deficits in aging. 
There is some evidence that age effects on discrimination are amplified for objects compared to  scenes54,55. On 
the one hand, this suggests that our scene-based context manipulation in Experiment 2 was appropriate for par-
ticipants across the lifespan and may explain why age did not modulate the effect of context-based intrusions on 
choices. On the other hand, however, our use of a separate object-based discrimination task to assess memory 
precision may not capture the same pattern separation processes taxed by the context-specific value-based deci-
sion task. Future examinations of the influence of age and memory precision (LDI) may benefit from using scene, 
not just object, mnemonic discrimination tasks.

More broadly, the finding that memory precision guides decision strategy has implications for the study of 
the computational nature of goal-directed decision-making more  broadly56. For one, that memory sampling and 
RL appear to be independently modulated by memory precision and age supports suggestions that these systems 
may indeed be distinct approaches to action  selection17,32, with the former supporting both model-free16 as well 
as model-based6 choice. Second, the finding that memory precision indexes both the specificity of contexts 
for sampling and also the overall reliance on memory suggests that uncertainty is computed dynamically and 
adjusted for in response to the available momentary  evidence20–22, rather than cached as a controller-specific 
quantity dictating patterns of choice across  trials57. At a neural level, future studies could investigate whether the 
seemingly independent differences in RL-based and memory-based choice processes are related to differences 
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in fronto-striatal and medial temporal systems, respectively, extending prior work that typically examines these 
brain-behavior relationships separately for each neural  system58.

This study is not without its limitations: most of the limitations come from potential issues with online data 
collection. Because this project began during a global pandemic, a large majority of our data was collected online. 
As a result, our data was collected in a largely unsupervised fashion, and thus there is a risk that the data qual-
ity may not be as good as data collected through in-person means. We have taken several steps to remedy this 
such as: 1) setting eligibility filters to ensure that we had reliable online participants who have good experience 
participating in online studies and surveys, 2) comparing model parameter distributions between in-person 
and online samples for comparable groups, 3) manually inspecting data from all participants for quality using 
independent measures taken from raters who were blind to the hypotheses of the experiment, and 4) setting up 
detailed instructions and checks throughout the experiment to promote participant engagement (details provided 
in the Method section). Despite our best efforts, it is likely there are limitations that we have not considered or 
perfectly controlled for in our experiment. For example, we were unable to collect in-person data from older 
adults during the project period, largely due to increased health risks associated with bringing older adults to 
campus for in-person testing during the global pandemic. Thus, our older adult data exclusively came from online 
sources. In general, online older adult samples tend to perform better on several cognitive measures (e.g., verbal 
fluency, subjective memory, subjective health, etc.)59, which may result in weaker age-effects (specifically less 
evidence of age-related cognitive decline) and reduced potential for generalizability of our findings. However, 
in our study, we are still able to see significant age-related effects in the expected patterns (i.e., evidence of age-
related deficits in performance) across our variables and analyses of interest, such as age-related increases in 
perseveration, and age-related decline in sensitivity to reinforcement learning. We expect that these age-related 
effects would only get stronger in a more diverse sample. Furthermore, by incorporating an independent and 
more standardized measure of cognitive functioning such as the MST, we are able to capture unique individual 
differences in cognitive functioning that may also be influencing performance on our decision-making task. With 
that said, future studies using this task could aim to collect a more representative and heterogeneous older adult 
population, with age-related cognitive decline characterized using standard neuropsychological and physiological 
measures, to strengthen the generalizability of our findings.

In sum, the finding that memory and reinforcement learning each exhibit distinct patterns with age and 
age-related cognitive decline provides new insights into the computational basis of age-related differences in 
decision-making, and suggests several new avenues for further research that may yield interventions of impor-
tance for mitigating the harmful effects of cognitive aging on individuals and their communities.

Data availability
All de-identified data and the final versions of all MATLAB model and analysis code, as well as R scripts used 
to generate each data figure, will be made freely available at the UCI CCNL GitHub repository (https:// github. 
com/ ucicc nl) upon publication.
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