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In the "Type-II" regime, mHiggs ~ mgauge, the finite-temperature phase transi­

tion in spontaneously-broken gauge theories (including the standard model) must 

be studied using a renormalization group treatment. Previous studies within the 

(4 - f)-expansion suggest a 1st-order transition in this regime. We use analogies 

with experimentally accessible phase transitions in liquid crystals, and theoretical 

investigations of superconductor phase transitions to argue that, in this range, the 

critical behavior of a large class of gauge-Higgs-fermion systems changes from 1st 

to 2nd-order as a function of Higgs mass. We identify a set of models which, within 

the (2 + f)-expansion, possess fixed points that can describe this 2nd-order behav­

ior. As usual, a definitive demonstration that the claimed critical behavior occurs 

(and a reliable estimate of mHiggs at the tricritical point) will probably require 

numerical simulations. 
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There has been much recent interest in the physics of the finite-temperature 

electroweak phase transition (EWPT) [1]. The motivation behind this considerable 

body of work, is the realization that the observed baryon-number asymmetry of 

the universe might be generated at time of the EWPT, through the anomaly in the 

conservation laws for the baryon and lepton number currents. In relation to this, it 

is a pleasant fact that classic studies of the nature of the phase transition in coupled 

gauge-scalar systems indicate that they are 1st-order [2,3,4]. Therefore one of the 

primary conditions for a net generation of baryon number, namely that thermal 

equilibrium is not maintained, arises naturally in the case of the standard model 

due to the supercooling of the false-vacuum phase and its later decay. In this letter 

we will reconsider the question of the order of the phase transition in a large class 

of coupled gauge-scalar-fermion systems (including a version of the two-doublet 

standard model) in the "Type-II" regime (roughly speaking mHiggs ~ mgauge). We 

will show that for large enough scalar masses there is reason to believe that the 

transition changes over from 1st to 2nd-order, passing through a tricritical point 

at some value of the ratio of Higgs to gauge boson masses. 

For Higgs masses in the range we consider our conclusions probably do not 

directly impinge on the question of weak scale baryogenesis, since (at least in 

many simple extensions of the standard model) even if the transition were 1st­

order, the value of the scalar expectation value just after the completion of the 

phase transition is such that the baryon number asymmetry is "washed out" [1]. 

Nevertheless, the mass of the Higgs in our world might well turn out to be in the 

Type-II regime, and it is an interesting theoretical question as to the nature of the 

transition in that case. The analysis might also have some practical importance 

in non-minimal extensions of the standard model and for other phase transitions, 

although the we caution the reader that the critical scalar mass is both model 

dependent and difficult to estimate. 

We start with a review of the current state of knowledge concerning the order 

of the phase transition in gauge-Higgs systems from the perspective of Refs. [2] 

and [4]. Consider an abelian gauge field Bp. coupled to a complex scalar field </J, 

3 



with action 

s = J d4
r (_~F2 + IDp<p12 - m21<p12 - ~1<p14) , (1) 

where Dp = 81' - ieBp. The study of the finite-temperature critical behaviour of 

this theory proceeds by considering the action in Euclidean space with periodized 

time of length f3 = I/T. The fourier modes of the (periodic) fields <p and B are then 

labelled by a continuous three-dimensional momentum k and an integer n E Z, 

where Wn = 27rn/f3 now appears in place of kO. For a weakly coupled theory (the 

only case considered in this letter), and near the transition temperature, 1/ f3 ,..., 1'/9 

(or p/ VX if it is smaller) is then parametrically large compared to the typical mass 

scale j.t of the theory, and may be used as an expansion parameter to isolate the 

n = 0 mode [4]. This is achieved by integrating out the n =f:. 0 modes to obtain an 

effective three-dimensional theory of the n = 0 mode alone. Even though near the 

transition effective masses are vanishing, no IR problems arise in this procedure 

since the n i: 0 propagators are cutoff by effective "masses" Wn = 27rn / f3 =J. O~ 

For the simple case of Eq. (1) this leads to an effective three-dimensional theory 

for the n = 0 modes of <p and B of the general form 

(2) 

where in general all coupling constants have suppressed temperature dependencies. 

There is one temperature dependence, however, that must be kept - that of the 

effective mass term a = a'(T-To) since it's vanishing at the temperature To drives 

(in mean field or Landau theory, and ignoring the gauge field) a second order 

transition and leads to IR divergences once we take into account fluctuations. (As 

we see in a moment this is only the "transition temperature" for a second order 

phase transition - we will have to modify our statements slightly in the first order 

case.) 

* It is simple to include fermions in this discussion. Their antiperiodicity in the time direction 
implies that Wn = (2n+ 1)11"/ {3 and thus fermions do not possess zero modes which participate 
in the three-dimensional effective action (although they cali, of course, affect the numerical 
values of its effective coupling constants). 
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The effect of the gauge field on the transition can be qualitatively understood by 

formally integrating out the gauge field to define a free energy (or finite temperature 

effective action) F( </>, T) depending only on </>. Since the three dimensional action 

Eq. (2) is quadratic in B we can evaluate (B2}tjJ near To by the equipartition 

theorem, leading to 

(3) 

where MB(</» oc 1</>1 is the </> dependent mass of the gauge boson. Regulating 

and renormalizing the integral in Eq. (3) we end up with the finite contribution 

(B2)q, oc -To 1</>1· We can then substitute this back into the free energy (2) to 

discover that a term proportional to 1</>1 3 with a negative sign has been generated 

in F( </>, T) [2]. This, within the framework of mean field theory,· inevitably leads 

to a 1st-order transition. However, when fluctuations in </> are also considered 

complications arise. 

Define Tc to be the temperature at which the symmetric "false" phase at (</» = 

o is degenerate with the unsymmetric "true" phase at (</» :j:. O. Below Tc the false 

phase is at best metastable. Define T* < Tc to be the temperature at which the 

false phase first becomes mechanically unstable (rather than metastable).t In other 

words T* is defined by cf2V((</» = 0, T*)/d(</>}2 = 0 - the point of vanishing of 

the scalar mass around the false phase. To leading order T* is equal to To above. 

Because of the IR divergences that occur in the loop expansion evaluation of the 

partition function at T* there is (for a given size of the effective scalar couplings in 

F( </>, T), and in less than four spatial dimensions) a range of temperatures around 

T* for which the loop expansion inevitably fails. This range temperatures is known 

as the Ginzburg region [6]. 

t T. is the "spinodal point" at which the false phase can first evolve into the true phase by 
small amplitude, long wavelength fluctuations rather than by the better known (to particle 
physicists) process of critical bubble nucleation. Parenthetically, the correctly defined effec­
tive potential for the false phase should possess an imaginary part in perturbation theory 
for low momentum fluctuations corresponding to this decay process [5]. This seems not to 
be widely appreciated. 
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This is not just an academic concern in the case of first order transitions if 

Tc is within the Ginzburg region surrounding T •. Generally speaking, this is the 

case in the "Type-II" parameter range roughly given by mscalar ~ mgauge. For 

instance, an application of the Ginzburg criterion to the analogue of F( ¢>, T) for 

the standard model shows that Tc is within the Ginzburg region for mHiggs ~ 100 

GeV (fairly independent of the top quark mass)~ In this situation the standard 

effective potential formalism fails to give any reliable information, and the only 

known way to proceed in the study of the critical behavior is the Wilson-Fisher 

renormalization group (RG) [7,8]. 

In the Type-II regime consider the coupled RG equations (within a (4 - f)­

expansion) for ¢> and B in a slight generalization of the model (1) -- specifically the 

case of N complex scalar fields. The RG equations are: 

(4) 

for the abelian gauge coupling, and 

dA 2 N + 4 2 3 4 3 2 
ds = f3>.(e ,A,f) = d- 41\"2 A - 81\"2 e + 41\"2e A, (5) 

for the quartic scalar self-coupling. For convenience we have taken s to increase 

iIi the IR. We are interested, of course, in the case f = 1 if we are to describe 

the critical behaviour of our model in the physical number of spatial dimensions. 

Recall that the RG equations derived in the f-expansion are only rigorously true 

in the limit f -+ O. Nevertheless, two decades of experience have shown that the 

stable fixed points identified within the expansion lead to a surprisingly accurate 

description of many second-order transitions at d = 3. 

:t There are many equivalent ways of expressing the "Ginzburg criterion." Probably the 
simplest in the field theory context isa direct comparison between the tree and I-loop three 
and four-point functions calculated from the free energy F( <P. T). 
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For N > 183 the equations (4) and (5) possess a stable fixed point with real 

couplings, leading to a prediction of a 2nd-order transition. For a lesser number 

of scalar fields the only physically a.ccessible fixed points (i.e. with non-complex 

values of the couplings) are the Gaussian and Heisenberg ones, both of which are 

unstable with respect to ~he charge. This lack of a stable fixed point and the 

associated runaway of the coupling e was interpreted in Ref. [2] as the sign of a 

(weakly) 1st-order transition even in the Type-II regime. Note that the size of the 

1st-order transition was predicted to be far too small to be experimentally detected. 

(The critical region in the high-Tc materials, IT - Tcl/Tc '" 10-2 , is large enough 

that experiments measuring the non-mean-field critical properties are feasible.) 

In an excellent paper, Ginsparg [4] pointed out that the critical behavior of a 

finite-temperature four-dimensional field theory could be described by an effective 

three-dimensional theory, as in Eq. (2). He also performed an extension of the 

work of Ref. [2] to a large class of non-abelian gauge-Higgs theories. The result 

is that, within the (4 - € )-expansion, theories with an asymptotically free gauge 

coupling constant (not necessarily the entire theory) have no stable fixed point of 

the coupled RG equations. This was interpreted as implying that these theories also 

all underwent 1st-order transitions in the Type-II regime. The physical intuition 

behind this result is that small, amplitude fluctuations of the scalar field give the 

gauge field a mass, in turn suppressing the gauge field fluctuations which had 

tended to disorder the scalar field. Therefore the system is unstable to a sudden 

jump in the amplitude of the scalar field. 

Unfortunately, the conclusions of Ref. [2] are known to be incorrect in this 

Type-II regime. It is possible to argue (again within the (4 - f)-expansion) that 

the critical properties of the smectic-A to nematic (SAN) phase transition in liquid 

crystals are isomorphic to that of the superconductor [9]~ Thus the prediction 

* Note that the free-energy describing this transition is of essentially the same form as the 
superconductor - the director field in the smectic-A phase playing the role of the vector 
potential. There are differences though - especially the spatially anisotropic nature of the 
smectic-A phase which makes comparison with critical theories delicate. 
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is that this phase transition should similarly be weakly 1st-order. The liquid­

crystal case differs from that of the superconductor in that the size of the latent 

heat was such that it could easily be detected. Experimentally, however, the SAN 

transition is observed to be second order with approximately XYexponents [10]. 

(The situation is complicated by the evidence of "anisotropic scaling.") 

Stimulated by these findings, the Type-II superconductor transition in three­

dimensions has been reconsidered [11]. By starting with a lattice model, and 

applying duality arguments, the partition function of the superconductor can be 

mapped onto that of a set of directed strings with repulsive contact interactions. 

With the aid of monte carlo simulations, this system was then studied and shown 

to lead to a 2nd-order transition with XV-model exponents (but with inverted 

asymmetry of the amplitudes of the singular terms with respect to temperature). 

Therefore a new fixed point of the RG equations must exist at f = 1 which we 

cannot see by analytically continuing away from d = 4. 

Indeed, as we will argue in detail below, fluctuations which drive the critical 

behaviour of a system 2nd-order get stronger as we approach two dimensions. 

As we approach four dimensions 1st-order behaviour is favored. Thus, roughly 

speaking, the most reliable predictions of expansions in (4 - f)-dimensions are that 

of 2nd-order transitions. The obvious consequence for non-abelian theories is that 

care must be taken in identifying the lack of a stable fixed-point in the expansion 

away from four-dimensions with a 1st-order transition. 

If the theories that we are considering possess a 2nd-order transition then there 

must exist a fixed point of the RG equations. If the (4 - f) expansion fails to find 

this fixed point, then how are we to proceed? 

To be specific, what can we say about the critical properties of the follow­

ing three-dimensional Lagrangian describing N complex p-vectors coupled to an 

SU(p) x U(I) gauge-theory? 
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where Dp = 8p. - ieBp. - igAp., with A and B the SU(p) and U(1) gauge fields 

respectively (G and F are the associated field strengths). Here a,b = 1, ... ,N, 

repeated indices are summed, and ¢. <p denotes the inner product among p-vectors. 

An extra SU (N) global symmetry has been imposed on the scalar sector so that 

tractable RG equations result. This is an obvious generalization of the standard­

model! 

Consider the apparently unrelated gauged non-linear u-model in two dimen­

sions [13], defined by the action 

with the additional constraint 4>:<Pj = hij. Here i,j = 1, ... ,p and a,b = 1, ... ,N, 

so that this u-model is that of the complex grassmann manifold U(N)jU(p) x 

U(N - p). Note that in the action Eq. (7), we have already integrated out a U(p) 

gauge field that originally appeared in covariant derivatives of <p. This leads to 

the second term in Eq. (7). (The elimination of the gauge field is exact, since, by 

definition, it possesses no kinetic term.) The beta-function for the single coupling 

t of this model (t is a dimensionless parameter proportional to the temperature) 

up to three-loops and in (2 + f)-dimensions is [13]: 

(8) 

This theory is, of course, asymptotically free in the coupling t at d = 2 (we have 

again defined s to increase in the IR). In the language of statistical-mechanics, this 

translates in the statement that we have an IR-unstable fixed point at a critical 

t In the SU(2) x U(1) two-doublet case (p = 2, N = 2), Eq. (6) corresponds to ..\ + i = "\3, 
1= ->'4/2, >'1 = >'2 = >'5 = >'6 = 0 and 4>'3V2 = m2 with vr = v~ = v2

, in the notation of 
[12] (before finite-T effects are taken into account). Here the zero-temperature mass term 
is _m2¢: . cPa. 
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temperature te = € - 2€2(p(N - p) + l)/N + O(€3), resulting in a 2nd-order tran­

sition! The correlation length exponent v (defined by e(t) '" It - tel-II) is simply 

related to (3ti 

which in the large N limit reduces to 

(10) 

(It is also simple to calculate other exponents after applying the well known scaling 

laws [8] to v and the anomalous dimension of the operator -r . ¢} - (p/N)8ab [13].) 

Returning to the action Eq. (6) we may also consider its beta-functions, but 

in (4 - f)-dimensions. Standard calculations show that they are Eq. (4) with the 

replacement N -+ pN supplemented by {3g = €g2 + ~ (~ - ~), and some rather 

complicated expressions for {3>.. and (3"( [14]. These equations have a stable fixed 

point in the large N limit (at finite p) with an associated set of critical exponents. 

For instance the exponent v is given by 

(11) 

We may also study the RG equations for the action (6) directly within the l/N 

expansion [8] and for arbitrary dimension 2 < d < 4. For instance we now find [15] 

= _1_ (1 2(J2 - d)sin(d7r/2)r(d -l)P) 
v d _ 2 + 7rNr2(d/2) . (12) 

Along with the other exponents this can be expanded near both four and two dimen­

sions: for € = (4 - d) we recover Eq. (11), while for € = (d - 2) we obtain Eq. (10) 

t Recall that with respect to temperature a fixed point describing a 2nd-order transition is 
unstable, since dilation of the coordinates decreases the effective correlation length, and 
therefore, increases the reduced temperature IT - Tel/Te. 
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[15]. Similar relations hold between the values of the other critical exponents cal­

culated (where they are well defined), in the large N limit, for, respectively, the 

a-model near two dimensions, and the original SU(p) x U(I) gauge theory near 

four dimensions. The interpretation of these relations we wish to emphasize is that, 

in the large-N limit, both the (4 - f) and (2 + f)-expansions are in fact describing 

the same fixed point, albeit from differing perspectives. 

What about the nature of the phase transition in the system (6) for small 

N? Define the continuous function deN) as the number of (spatial) dimensions 

at which, for a given N, the transition switches over from 1st to 2nd-order (d(N) 

is clearly model-dependent). The curve deN) in (N,d)-space is then a line of 

singularities through which it is impossible to analytically continue (see Fig. 1). 

The results of the (4-f)-expansion tell us that at some critical value N c , deN) drops 

infinitesimally below four dimensions (considering N as a continuous parameter 

which we decrease away from large values). The important point is then the 

following: If we assume the existence of a fixed point at d = 3, even below Nc, . 

then as we smoothly change N from just above, to just below Nc , we expect, by 

continuity, that the properties of the fixed point at d = 3 do not greatly alter. So if 

we have a description of the fixed point that is smooth through Nc, then this should 

give an at least qualitatively correct description of its properties into the region 

N < Nc• But the RG analysis of the system Eq. (7) within the (2 + f)-expansion 

is exactly such a description! 

We therefore propose that the IR behavior of the SU(p) x U(I) gauge model in 

three dimensions and for N < Nc is described by the gauged non-linear a-model of 

Eq. (7). In particular the correlation exponent v of the SU(p) x U(I) gauge theory 

in three spatial dimensions is approximated by the expression Eq. (9) at f = 1. 

Furthermore, using the Josephson scaling law a = 2 - dv [8] we may extract a 

prediction for the specific heat exponent a. For the interesting case of N = p = 2 

this gives v = 2/3 and a = O. It it also possible to extract other exponents from 

the formulae of Ref. [13], although we will not do so here. We note that in cases 

where both (4 - f) and (2 + f) expansions predict 2nd-order phase transitions, the 
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expansion away from two dimensions is generally less quantitatively reliable, and 

quite sophisticated techniques are required to extract accurate exponent values at 

d = 3. Thus Eq. (9) and the associated value of a should be taken as a rough guide 

only. We also caution the reader that we have assumed d( N) is a monotonically 

decreasing function of N (as N is decreased), and that d(N) ;:::: 3 for values of 

(N,p) as low as (2,2). Although we have the analogies with the superconducting 

and liquid-crystal systems to support these assumptions it is possible to be misled, 

so that numerical simulations are really required to settle the issue definitively. 

These simulations would also enable us to find the value of the ratio of Higgs to 

gauge boson masses at the tricritical point, at which the system switches over from 

1st to second order behavior. For the interesting case of small N, this ratio is likely 

to be hard to extract analytically. 

To better understand the physics behind the arguments of the preceeding para­

graphs it is useful to consider a simpler, purely scalar, system [18,19]. Let <I> be an 

n-component complex scalar field with three-dimensional free-energy given by 

(13) 

Consider the limit in which b - 00 with a/2b fixed. In this limit the value of the 

field <I> becomes very well localized around its vacuum expectation value {I<I>12} = 
a/2b. However, the (n - 1) Goldstone modes are free to fluctuate, and dominate 

the IR behavior. Indeed, formally integrating out the "amplitude fluctuations" in 

this limit we arrive at the free-energy of the non-linear O( n) sigma-model, 

(14) 

with the constraint 1<1>12 = a/2b. In this free-energy only the "phase fluctuations" 

appear, and the associated system is known to undergo a 2nd-order transition near 

d = 2 [17]. Note that for a fixed amplitude of ¢, the addition of a cubic term to 

(13) (so that a 1st-order transition is naively predicted for this model), has, almost 
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by definition, no effect - we still arrive at Eq. (14), with its 2nd-order transition. 

Of course, for any finite b, we cannot just throwaway the amplitude fluctuations 

- the correct procedure is to consider the RG flow of the couplings of the (higher­

dimension) operators that now appear in the action (14) when the amplitude of </> 

is allowed to fluctuate. A very important result of this procedure for our discussion 

is that, near two-dimensions, all these higher-dimension operators are irrelevant (in 

the Wilson-Fisher sense) [18,19] and so do not affect the order of the transition. (To 

our knowledge, no explicit proof of the analogous statement for gauged non-linear 

sigma-models has been presented. Nevertheless we expect that similar statements 

continue to hold [16].) One way to think about such phase-fluctuation-driven 

phase transitions is that near d = 2 the true transition temperature is driven well 

below its mean-field value TJmf) (recall that Tc ex f. [17]), so that the effective 

mass term of the amplitude fluctuations, a ex (TJmf) - T), is actually quite large , .. 

at the transition. Further note that generally speaking, the effect of these phase­

fluctuations increases as we move to more complex non-abelian systems. This gives 

us some reason to hope that the analogies to superconductor and liquid-crystal 

systems (which are, of course, abelian) may not be misleading. 

We can heuristically include gauge fields A in this discussion by adding to 

Eq. (13) a gauge kinetic term g-2 F2, and changing derivatives to covariant deriva­

tives. Now, if in addition to considering fixed amplitude </>-fields, we also take the 

formal limit 9 -+ 00, then we can integrate out A leading to an action of the form 

Eq. (7). Despite the brutal nature of these manipulations, the large-N expansion 

and analogies presented above, indicate that the resulting theory may give a good 

description of the (static) far- IR behavior of the original theory in three dimen­

sions. This procedure also generalizes to models other than the SU(p) x U(l) gauge 

system considered above. 

A similar situation occurs for the q-state Potts model for q = 3,4 [20]. For q > 3 

such models possess a cubic invariant and Landau theory predicts a 1st-order phase 

transition. Recall that the lower-critical dimension for systems with a discrete 

symmetry is d = 1, so that as we approach d = 1 from above, fluctuations drive 
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the transition temperature to zero. Studies of the RG in (1 + f)-dimensions show 

that all Potts models possess a 2nd-order transition near d = 1. The interesting 

point is that it is rigorously known that the three-state Potts model is 2nd-order 

upto d = 2 (the four-state Potts model also has a continuous transition at d = 2, 

although the situation is more complicated due to the merging of the critical and 

tricritical fixed points). This is despite the fact that a (6 - f)-expansion (analogous 

to the (4 - f)-expansion we considered previously) finds no stable fixed point. 

The interpretation is again that "phase" fluctuations have suppressed amplitude 

fluctuations. Our proposal for the critical behaviour of the gauged systems is 

that they are similarly "phase-fluctuation-driven" 2nd-order transitions, but now 

in three dimensions. 

We wish to emphasize that many models other than the SU(p) x U(l) example 

of Eq. (6) may be analyzed in the framework described above, and that this analysis 

leads to similar results. (Of particular interest are the O(p) gauge theories - and 

related non-linear sigma models - discussed in Refs. [13] and [15].) Namely, within 

a (2 + f)-dimensional renormalization-group analysis, and in the Type-II regime, 

2nd-order transitions are predicted. Work is in progress concerning these theories, 

as well as predictions for the additional critical exponents, and an analysis of the 

RG flows of the higher-dimension operators, of the SU(p) x U(I) systems [16]. 

Finally, we mention that it might be possible to extend our predictions of the 

critical behavior of the SU(p) x U(I) systems all the way down to p = 2 and N = 1 

- the minimal standard model. Although, for these values, the action Eq. (7) no 

longer makes sense, the critical exponents (considered as analytic functions of N 

and p) might still be qualitatively correct. This is similar to considerations made in 

the study of Anderson localization [21], and O-component spins applied to random 

walks [8]. It is also possible that our results have some relevance to the difficulties 

encountered in the study of the EWPT in the Type-I regime [1]. For instance, 

the proximity of a 2nd-order phase transition could result in an anomalously weak 

1st-order transition in this regime. 
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FIGURE CAPTIONS 

1) The character of the critical behavior of the SU(p) x U(1) gauge theory 

coupled to N p-vectors, in d-dimensions, changes from 1st to 2nd-order as 

we cross the curve d(N). Expansions in f = (4 - d) inevitably break down as 

d(N) is approached. The 2nd-order transitions occuring along the hatched 

line at d = 3, are only accessible via (2 + f)-expansions away from the gauged 

non-linear sigma-model formulated in two-dimensions. 

Nc __ --d=4· 

---d=3 

2nd-order 

-------------------------------d=2 

Figure 1 




