
UC Santa Barbara
UC Santa Barbara Electronic Theses and Dissertations

Title
Understanding and Estimating Uncertainties and Risks in Architecture Design: from
Analytical Analysis to Detailed Simulation

Permalink
https://escholarship.org/uc/item/56t458kk

Author
Cui, Weilong

Publication Date
2019

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/56t458kk
https://escholarship.org
http://www.cdlib.org/

University of California
Santa Barbara

Understanding and Estimating Uncertainties and Risks in
Architecture Design: from Analytical Analysis to Detailed

Simulation

A dissertation submitted in partial satisfaction
of the requirements for the degree

Doctor of Philosophy
in

Computer Science

by

Weilong Cui

Committee in charge:

Professor Timothy Sherwood, Chair
Professor Frederic T. Chong, University of Chicago
Professor Rich Wolski
Professor Yuan Xie

September 2019

The Dissertation of Weilong Cui is approved.

Professor Frederic T. Chong, University of Chicago

Professor Rich Wolski

Professor Yuan Xie

Professor Timothy Sherwood, Committee Chair

August 2019

Understanding and Estimating Uncertainties and Risks in Architecture Design: from

Analytical Analysis to Detailed Simulation

Copyright c© 2019

by

Weilong Cui

iii

To Mom, Dad and my loving wife, Yan Tang.

iv

Acknowledgements

I’ll try to make this in one page.

I am eternally grateful to Pro�cfessor Tim Sherwood. He is a one-of-a-kind advisor to me.

His broad vision, knowledge and unconditional support encourage me to take risk (literally)

as I explore directions for research. His graduate-student-like coding passion and totally-not-

graduate-student-like writing standard influence me so much over the years and will be kept as

a role-model in the many years to come. His complete lack of micromanagement skills makes

my phd journey so surprisingly enjoyable and fruitful that I only stressed out like once or twice

(by myself, not because of him) in 5 years. He is also much more than an advisor to me. His

incredible friendliness and infectious humor make a second home out of a distant place and a

foreign culture for me. Especially, his thoughtful and caring personality keeps my wife and I

from being geologically separated.

I am also grateful to my entire doctoral committee. I am so honored to have you be there

throughout the journey. I am thankful to Professor Fred Chong for picking me out of the

pile of phd applicants 5 years ago and the great support when I first came to this country. I

am thankful to Professor Rich Wolski for his unparalleled enthusiasm and insights about our

field which inspire me many many times and for the best operating system lectures ever. I

am thankful to Professor Yuan Xie for his kind encouragement, generous support and most

valuable advice every time I am challenged with a major career choice.

In the end, I would also like to thank all my colleagues and collaborators, Prof. Zheng

Zhang, Dr. Georgios Michelogiannakis, Dr. Dilip Vasudevan, Zichang He, Dr. Chunfeng

Cui, Dr. Lunkai Zhang, and my dearest lab-mates and friends, George Tzimpragos, Deeksha

Dangwal, Joseph mcMahan, Alvin Oliver Glova and Dr. Nestan Tsiskaridze, for your hard

work, help and inspiration behind this thesis.

v

Curriculum Vitæ
Weilong Cui

EDUCATION

2019 Ph.D. in Computer Science (Expected), University of California, Santa
Barbara

2014 M.S. in Computer Science, Peking University
2011 B.S. in Computer Science, Peking University
2011 B.E. in Economics (double major), Peking University

RESEARCH EXPERIENCE

• ArchLab UC Santa Barbara
PhD student, advisor: Tim Sherwood Oct.2014 - Present
Thesis: ”Understanding and Estimating Uncertainties and Risks in Architecture Design:
from Analytical Analysis to Detailed Simulation”.

Cross-domain architecture analysis with risk assessment.
Programming language support for analytic modeling.
Simulation techniques to support scalable UQ in architecture.
Information leakage quantification of SRAM cells.

• Computer Architecure Group Lawrence Berkeley National Labs
Visiting researcher, host: George Michelogiannakis July.2018 - Present

Quantifying uncertainty in detailed simulations.
Sensitivity analysis of CMP design.

• CMRR UC San Diego
Visiting student, advisor: Vitaliy Lomakin Sept.2013 - Nov.2013

Parallelization of micro-magnetic simulation and FFT kernels on GPUs.

• Parallel Algorithm Research Group Peking University
MS student, advisor: Yifeng Chen Sept.2011 - Jul.2014

Fine-grained parallel memory architecture.
Parallelization of graph algorithms (MST, kd-tree, etc).

• National Research Center for Software Engineering Peking University
Research intern, mentor: Yu Huang Mar.2010 - Dec.2011

Design/implementation of internal workflow management system.

AWARDS

vi

• 2019 Outstanding Publication Award. UC Santa Barbara

ACADEMIC ACTIVITIES

• Reviewer for ACM Transactions on Architecture and Code Optimization (TACO).

• Reviewer for Elsevier Journal on Microelectronics.

• Reviewer for Springer Journal on Hardware and System Security.

TEACHING/MENTORING EXPERIENCE

• Mentoring Undergrad Research UC Santa Barbara
Mentor to Yu Tao Fall 2018

Task design, 1:1 discussion and hands-on programming sessions.

• CS 254: Computer Architecture UC Santa Barbara
Teaching assistant Spring 2016

TA, assignments

• CS 154: Computer Architecture UC Santa Barbara
Teaching assistant Spring 2015

Lead TA, programming assignments.

• CS 64: Computer Organization UC Santa Barbara
Teaching assistant Winter 2014

Lead TA, lab sessions.

• CS 64: Computer Organization UC Santa Barbara
Teaching assistant Fall 2014

TA, Lab sessions.

INDUSTRY EXPERIENCE

• Performance and Simulation Team Google, Mountain View, CA
SWE intern, mentor: Slava Malyugin June.2016 - Sept.2016

Post-assembly optimization of Android application for ARM in-order CPUs.

• Platform Team Google, Madison, WI
SWE intern, mentors: Dan Gibson and Christopher Alfeld June.2015 - Sept.2015

Benchmarking High-performance networking protocol in datacenters.

PUBLICATIONS
vii

• Zichang He, Weilong Cui, Chunfeng Cui, Timothy Sherwood, and Zheng Zhang. Ef-
ficient Uncertainty Modeling for System Design via Mixed Integer Programming Pro-
ceedings the International Conference On Computer Aided Design. (ICCAD) November
2019. Westminster, CO.

• Deeksha Dangwal, Weilong Cui, Joseph McMahan and Timothy Sherwood. Safer Pro-
gram Behavior Sharing Through Trace Wringing to appear in Proceedings of the Con-
ference on Architectural Support for Programming Languages and Operating Systems
(ASPLOS), April 2019, Providence, RI.

• Weilong Cui, Yongshan Ding, Deeksha Dangwal, Adam Holmes, Joseph McMahan, Ali
JavadiAbhari, George Tzimpragos, Frederic T. Chong and Timothy Sherwood. ”Charm:
A Language for Closed-form High-level Architecture Modeling” in Proceedings of the
International Symposium of Computer Architecture (ISCA) June 2018. Los Angeles,
CA.

• Weilong Cui and Timothy Sherwood. ”Architectural Risk” in IEEE Micro: Micro’s Top
Picks from Computer Architecture Conferences, January-February 2018.

• Weilong Cui and Timothy Sherwood. ”Estimating and Understanding Architectural Risk”
in Proceedings of the International Symposium on Microarchitecture (Micro) October
2017 Boston, MA.

• Joseph McMahan, Weilong Cui, Liang Xia, Jeff Heckey, Frederic T. Chong and Tim-
othy Sherwood. ”Challenging On-Chip SRAM Security with Boot-State Statistics” in
IEEE International Symposium on Hardware Oriented Security and Trust (HOST), (short
paper) May 2017 Washington D.C.

• Sidi Fu, Weilong Cui, Matthew Hu, Ruinan Chang, Michael J. Donahue, Vitaliy Lo-
makin. ”Finite-Difference Micromagnetic Solvers With the Object-Oriented Micromag-
netic Framework on Graphics Processing Units” in IEEE Transactions on Magnetics, vol.
52, no. 4, pp. 1-9, April 2016.

TALKS

• ”Charm: A Language for Closed-form High-level Architectural Modeling”, ISCA, 2018,
Los Angeles, CA

• ”Estimating and Understanding Architectural Risk with Analytic Models”, MICRO, 2017,
Boston, MA.

• ”Parallel Memory Access with Fine-grained Transaction Management”, Google, 2015,
Madison, WI.

viii

Abstract

Understanding and Estimating Uncertainties and Risks in Architecture Design: from

Analytical Analysis to Detailed Simulation

by

Weilong Cui

Computer architecture is always changing. Now, more than ever, we see deeper vertical in-

tegration with domain-specific software, faster emergence of paradigm shifting computing de-

vices and memory technologies, and unprecedented security and privacy vulnerabilities. These

changes all present opportunities for innovations in architecture design, and along with them,

uncertainties we have to deal with carefully. An uncertainty-aware approach is essential when

we design computer architectures and systems for the future, as variations in technology alone

has been demonstrated to have the potential of eliminating the performance gain of an entire

CMOS generation. To navigate the new dark waters exposed by changes in fabrication, de-

sign constraints, and programming models, a clear understanding and rigorous quantification

of uncertainties in architecture designs, as well as the risks that come along, is a critical first

step.

To achieve such a goal in a tremendous space of designs, from the smallest embedded sys-

tem to the largest warehouse-scale computing infrastructure, from the most well-characterized

CMOS technology node to novel devices at the edge of our understanding, we need new sys-

tematic supports across the design stack from high level analytical analysis when evaluating

design decisions in the early stage to cycle-accurate detailed simulations when projecting ac-

tual system performance.

This thesis establishes a route to build a new uncertainty and risk aware architecture design

process. We first demonstrate how even a very high level definition and understanding of such

ix

concepts of uncertainties and risks can expose a new trade-off space between average-case per-

formance and the amount of uncertainty/risk a design is exposed to. The framework is then

generalized and we design a new modeling language that systematically support such analysis

through a combination of symbolic execution, graph transformation and compiler optimiza-

tions, followed by demonstration of the applicability and benefits of such a modeling language

as a foundation to build high quality analysis with closed-form models. We then take the explo-

ration down to the most common practice of architecture studies: cycle-accurate simulations.

There a new way of quantifying uncertainty and risk while keeping the computational taxing

at bay is proposed through the adaptation of generalized polynomial-chaos theories to build

accurate surrogate models.

Finally, we peak into the future and envision what needs to be researched before quantifying

uncertainties and risks become an essential and well-supported practice of architecture design

in this new golden era.

x

Contents

Curriculum Vitae vi

Abstract ix

1 Introduction 1
1.1 Uncertainties and Risks in Architecture Design - Where We Are 2
1.2 Thesis Statement . 5
1.3 Uncertainty Quantification of An Architecture Design - Methods and Challenges 6
1.4 Thesis Contributions . 8
1.5 Thesis Outline . 9
1.6 Permissions and Attributions . 10

2 Estimating and Understanding Uncertainty and Architectural Risk at A High
Level 11
2.1 Uncertainty and Risk in Architecture Design 12
2.2 Related Work . 16
2.3 An Evaluation Framework with Analytical Models 17
2.4 Exploring The Design Space under Uncertainties and Risk 27
2.5 Chapter Summary . 42

3 Supporting Analytical Modeling in Architecture Designs 44
3.1 Understanding Pain Points of Ad-hoc Analysis 45
3.2 Related Work . 55
3.3 Supporting Analytical Modeling from A PL Perspective 56
3.4 Extensions to Core Charm . 67
3.5 Case Studies with Charm . 70
3.6 Chapter Summary . 84

4 Accurate and Efficient Uncertainty and Risk Quantification with Detailed Simu-
lation 86
4.1 Unique Challenges with Simulators . 87

xi

4.2 Related Work . 91
4.3 A Cross-layer Scalable Analysis Framework with Surrogate Models 94
4.4 An Analysis of Uncertainties in A Chip-multiprocessor Architecture 104
4.5 Chapter Summary . 112

5 Conclusions 113
5.1 Future Work . 114

Bibliography 117

xii

Chapter 1

Introduction

The deep vertical integration of domain-specific software and hardware (e.g., [1]), the emerg-

ing paradigm-shifting computing devices and memory technologies (e.g., [2,3]), as well as the

recently revealed security and privacy vulnerabilities (e.g., [4, 5]) all present opportunities for

innovative architecture designs. However, this dramatic shift in the computing landscape also

means that it is, more than ever, wrought with uncertainties.

Like in many other disciplines of science and engineering, uncertainty, as well as the risk

it brings along, poses a serious threat to suffocate an entire new generation of technologies

if not dealt with properly [6]. However, unlike other mature disciplines, these aspects of a

system design, i.e., how uncertainty propagates and impacts system-level performance, often

sneak under the radar of computer architects. Architects tend to focus on quantifying and

optimizing performance metrics such as IPC, throughput, and power efficiency but generally

fail to consider how exposed to uncertainty and risk a class of designs might be.

A clear understanding and rigorous quantification of uncertainties and risks in architecture

design is critical to navigate the new dark waters exposed by changes in fabrication, design con-

straints, and programming models. Instead of leaving the problem to later design cycle such

as logic and physical design, computer architects with the knowledge of much higher-level

1

Introduction Chapter 1

system specs and constraints compared to circuit designers and much lower-level hardware

understandings compared to application developers, have the unique opportunity to take un-

certainties into consideration much earlier in the design cycle to understand their impacts and

deal with the risks that come along proactively and effectively.

In order to quantitatively understand and deal with uncertainty and the risk it creates, both

new concepts and new tools are required to answer challenging new questions including: how

can we discern the uncertainties that will impact system behavior or performance from all

that is unknown to us in design time; how can we define a measurable metric that reflects

the potential loss from uncertainties; what is an uncertainty-aware analysis approach that is

applicable to computer architecture design flow; and eventually what new understandings and

system design guidance can we get from a quantitative uncertainty analysis?

1.1 Uncertainties and Risks in Architecture Design - Where

We Are

Computer architecture has always been governed by a combination of physical laws, hu-

man creativity, and economic realities. The decision to invest the engineering hours, the design

and test infrastructure, and the initial fabrication costs into a new design is never taken lightly.

However, the lack of a clear forecast for both new technologies and new application domains

means that this investment involves significant uncertainties. An example is the process vari-

ation in the CMOS manufacturing process. From the addition or deletion of a few impurity

atoms known as random dopent fluctuation to the temperature and humidity differences in the

ambient environment, transistors are not born equal; they come with slightly different geome-

tries and electrical properties, and when billions of such small differences add up, a system-

scale behavior change can emerge [7]. These variations or uncertainties are not limited to the

2

Introduction Chapter 1

hardware. Randomness across the software stack from OS scheduling to diversified and un-

seen workloads/inputs also plays an important role in determining the actual performance of a

system in the field.

Figure 1.1 shows a high-level view of a typical ASIC design flow. It usually starts from

an application-level analysis of the target workloads. The analysis results inform later system

design of what type of architecture to consider. The architecture design process includes high-

level decision-making (e.g., deciding what type of system to design) defining high-level system

constraints, evaluating IPs for their applicability, and estimating performance through system

modeling. Once a design candidate is chosen, it goes into the hardware design and verification

process.

Most existing work characterizes and evaluates uncertainties after a design has been taped-

out. Some uncertainty such as process variation (PV) is well-studied for mature technologies

like CMOS [8]. Whether it’s die-to-die (D2D) or within-die (WID), most work focus on charac-

terizing a certain uncertainty source, e.g., process/supply voltage/temperature (PVT) variation

for transistors [9], frequency variation for chips [10]. The variation in workloads for popular

benchmark suits from different aspects are also well-studied [11–13]. Even the randomness in

scheduling for multi-threaded workloads is examined [14, 15]. However, seldom do computer

architects consider a quantified uncertainty analysis essential in early design time nor do we

have a clear understanding of, nor an easy way to characterize, how these uncertainties would

interact at the architecture level and impact system performance. Such a quantitative approach

to study how exposed to risks our designs are, especially early in the design cycle when this

information is most needed to guide high-level design decisions (e.g., what type of cores to

integrate on a CMP) is mostly missing, only appear sometimes in an ad-hoc manner [16].

As architecture design orchestrates hardware and software, it is the place where difference

types of uncertainties interact. Starting in Chapter 2, we identify the most important uncer-

tainty sources and propose a taxonomy to help scoping such analysis on uncertainties in an

3

Introduction Chapter 1

Application Profiling/
Characterization/Analysis

Architecture Design

Logic Design

Physical Design

Start

Verification

Tape-out

Testing

Typical Chip/ASIC Design Flow

HW

SW

Refinement

Inform

A natural place to investigate:
• How different uncertainties interact?
• What’s their impact over system

performance?
• Will they change optimal design decisions?
• ...

Figure 1.1: A high-level view of an uncertainty-aware chip design flow. Most existing works
only investigate uncertainty after tape-out and reflect on the impact of uncertainty on designs
very late in the design cycle. We argue that uncertainty quantification should be carried out
in early architecture design stage.

4

Introduction Chapter 1

architecture design space. In order to evaluate and analyze the uncertainty-induced risk, we

need to identify what risk means in the context of computer system design and how it is mea-

sured such that the trade-offs between performance and risk can be explored quantitatively.

As we explore in Chapter 2, even with fairly simple assumptions and conservative constraints,

these new trade-offs can lead to surprising findings.

1.2 Thesis Statement

In this thesis, we make the following statement through experimentation and case studies

with real-life multi-core processor architectures:

In a design space of ever-increasing complexity and uncertainty, it is possible to accu-

rately quantify and analyze the propagated uncertainties through both high-level analyt-

ical models and detailed simulations to gain new understandings of the scaling trends and

trade-offs between uncertainty, risk, and other aspects of the system. Such analysis can

also be supported in a systematic and scalable way through adaptation of programming

language design principles and applied surrogate modeling methods, respectively.

To support the above statement, we start with exploring a well-studied analytical model

from the new perspectives of uncertainty and risk to discover interesting new trade-offs. We

then propose a custom-designed modeling language to systematically support such studies be-

fore we move on to utilize advanced mathematical methods and the most well-trusted architec-

ture simulators to build an analysis framework to estimate and manage uncertainties and risks

with both high efficiency and good accuracy. The end goal of this thesis is to find new ways to

guide future designs towards being more robust to the impacts of uncertainty than performance-

only-optimal designs while still maintaining very strong performance in the common case.

5

Introduction Chapter 1

1.3 Uncertainty Quantification of An Architecture Design -

Methods and Challenges

In order to quantitatively study uncertainties and risk, we need some type of a system model

to efficiently explore the vast system design space with both properties from hardware devices

and characteristics from application workloads.

In this thesis, we argue that the system modeling and quantitative uncertainty and risk

analysis should be carried out in early design cycles. As we will demonstrate in this work, the

information we acquire from such analysis may justify or nullify important design assumptions

and decisions (e.g., what type of memory technology to use) and hence, if deployed late in the

design cycle, may result in a waste of engineering resources on designs that won’t meet the end

goal of the system, or too “risky” (we will discuss what this means in Chapter 2) after all.

Naturally, a good choice for architecture modeling is a cycle-accurate simulator. In fact,

software simulators/emulators (e.g., gem5 [17]) are the most commonly used tools for com-

puter architects to explore and evaluate their designs early in the design cycle. By simulating

what hardware does functionally with accurate timing constraints, simulators faithfully capture

how real systems behave and achieve good accuracy and offer good extensibility to cover most

commonly seen types of technologies and architecture.

Although careful application of detailed simulation can accurately estimate the potential

of a specific architecture design, it is far from being efficient enough to cover the vast design

space when uncertainty is taken into consideration without innovative ways to accelerate such

a process.

Another type of modeling commonly used when exploring higher level questions are ana-

lytic models, especially closed-form ones (e.g., the well-known Hill-Marty model [18]). Through

simplification and approximation, these models are orders of magnitude more efficient to eval-

uate compared to simulators at the cost of accuracy and the level of details being captured by

6

Introduction Chapter 1

Coverage

Accuracy Efficiency

Coverage

Accuracy Efficiency

High-level
Models

Simulation

Figure 1.2: Comparison of analytical models and simulators at a high level.

the model. Figure 1.2 depicts the key differences between simulation and high-level models.

Although not as accurate, closed-form models are still extremely useful to evaluate early de-

sign choices in relative terms and to explore fundamental trade-offs in the design space. For

example, “given some target cooling budget, how much more performance can I get out of

an ASIC versus an FGPA for this application given my ASIC will be 2 tech nodes behind the

FPGA?”

The explosion of domain-targeted computing solutions means that more and more people

are being asked to answer these questions and with some understanding of the confidence in

those answers. While any Ph.D. in Computer Architecture should be able to answer such ques-

tions, when you break them down, they require a combination of a surprisingly complex set

of assumptions. How do tech node and performance relate? What is the relationship between

energy use and performance? ASIC and FPGA performance? Dynamic and leakage power?

Temperature and leakage? Any result computed from these relationships will rely on the spe-

cific relationships chosen, on those relationships being accurate in the range of evaluation, on

a sufficient number of assumptions being made to produce an answer (either implicitly or ex-

plicitly), and finally on that the end result be executable to the degree necessary to explore a

7

Introduction Chapter 1

set of options (such as for a varying parameter e.g., total cooling budget).

Both closed-form analytical models and cycle-accurate simulators are essential to enable

informed design decisions under the influence of uncertainties and risk. In this thesis, we

identify the pain points of drawbacks of both methods and explore new ways of enabling and

supporting efficient and scalable analysis frameworks for both types of models in Chapter 3

and Chapter 4 respectively.

1.4 Thesis Contributions

We make the following contributions in this thesis:

• In Chapter 2, we propose a new taxonomy to categorize different uncertainty sources in

system design and, for the first time, formally define a general risk metric that captures

the impacts of uncertainties in terms of system performance. With the introduction of

architectural risk, we enable further analysis of uncertainties and their impacts on system

designs be carried out in a quantifiable and easily understandable way.

• In Chapter 2, we, for the first time, demonstrate that a high-level analysis with closed-

form models can reveal the new trade-off space between risk and performance even under

conservative and simplified assumptions. We identify several interesting (some counter-

intuitive) design guidelines for the core selection problem of a chip-multiprocessor de-

sign under the influence of uncertainties and risks.

• In Chapter 3, we, for the first time, design a declarative modelling language that is tai-

lored to support high-level architecture performance reasoning through adaptation of

programming language and compiler techniques. Charm, our proposed language, pro-

vides a new systematic way to express closed-form architecture models and high-level

analysis in a clear, flexible, and optimized manner. More importantly, it enables collab-

8

Introduction Chapter 1

oration between application developers, computer architects and hardware designers to

proactively reason about properties of their work by building collectively a set of accu-

rate and useful models via a common abstraction layer.

• In Chapter 4, we, for the first time, tackle the problem of quantifying uncertainty with

detailed simulations by appling the theories of generalized polynomial chaos (gPC) to

efficiently build surrogate models such that the computational taxing is kept at bay when

the design space explodes with uncertainty. This innovative method enables large-scale,

accurate and trusted performance analysis under uncertainty on the most widely used

infrastructure for computer architects.

1.5 Thesis Outline

Chapter 1 discusses the idea of uncertainties and risk in the settings of computer architec-

ture research and describes the status quo of both analytical architecture modeling and detailed

simulations. Chapter 2 motivates the work and demonstrates the new knowledge and design

guidance from a quantification of uncertainties and risks for the core selection problem in a

multi-core processor at a high level. Chapter 3 generalizes the idea and framework in Chap-

ter 2 and proposes a modeling language design that systematically support high level analyt-

ical analysis with uncertainties and risks, followed by Chapter 4 which takes the question of

estimating and understanding uncertainties and risks in the most widely adopted settings of

architecture study with detailed simulators and proposes a new way of accurately quantifying

uncertainties and risks while incurring minimum computational cost.

9

Introduction Chapter 1

1.6 Permissions and Attributions

1. The content of Chapter 2 is the result of a collaboration with Timothy Sherwood, and

has previously appeared in Proceedings of the 50th Annual IEEE/ACM International

Symposium on Microarchitecture [19]. It is reproduced here with the permission of

ACM 1 and IEEE 2.

2. The content of Chapter 3 is the result of a collaboration with Yongshan Ding, Deeksha

Dangwal, Adam Holmes, Joseph McMahan, Ali Javadi-Abhari, and Georgios Tzimpra-

gos, Frederic T. Chong and Timothy Sherwood, and has previously appeared in 2018

ACM/IEEE 45th Annual International Symposium on Computer Architecture (ISCA) [20].

It is reproduced here with the permission of ACM and IEEE.

3. The content of Chapter 4 is the result of a collaboration with Zichang He, Alvin Oliver

Glova, Georgios Tzimpragos, George Michelogiannakis, Dilip P. Vasudevan, Zheng

Zhang and Timothy Sherwood. Part of the content has previously appeared in 2019

IEEE/ACM 38th International Conference On Computer Aided Design (ICCAD) [21].

It is reproduced here with permission from IEEE/ACM and all co-authors.

1https://authors.acm.org/main.html
2https://www.ieee.org/content/dam/ieee-org/ieee/web/org/pubs/permissions_faq.pdf

10

https://authors.acm.org/main.html
https://www.ieee.org/content/dam/ieee-org/ieee/web/org/pubs/permissions_faq.pdf

Chapter 2

Estimating and Understanding

Uncertainty and Architectural Risk at A

High Level

In this chapter, we explore what uncertainties are and what risk means in the context of com-

puter architecture design. We draw from other domains such as economics and financial anal-

ysis and define our own risk metric, architectural risk, to describe risk that is directly related

to the performance of a computer system. We explain how it is conceived, how it is defined

mathematically, as well as what the definition and metric means when put in a new intellectual

analysis framework where uncertainty quantification is integrated with high level design space

exploration.

With metrics and concepts defined and explained, we perform a case study at a high level

in a chip-multiprocessor (CMP) setting to demonstrate that even with extremely simple and

conservative assumptions, this new aspect of uncertainty and risk at the system level still reveals

interesting and surprising new findings and trade-offs. The complexity of how uncertainties

interact in an architecture design requires a dedicated quantitative analysis, rather than a simple

11

Estimating and Understanding Uncertainty and Architectural Risk at A High Level Chapter 2

“back-of-the-envelope” calculation many may believe, to fully reveal its impact.

2.1 Uncertainty and Risk in Architecture Design

Uncertainty and risk are commonly used terms in many fields including economic and fi-

nancial analytics, but it is important to be clear about their meaning here. In general, risk is

a function of the impact of uncertainty on the return of the system. In economics, uncertainty

refers to uncertain events occurring in reality. Uncertain events may include hikes in the price

for raw materials, emergence of a serious competitor on the market, the loss of key personnel,

and so on. Each event has some impact on the system (e.g. loss of sales, failure to recover

payment). These impacts are then typically unified, by some function, to a common metric.

Decisions are then made with an understanding of the risk in conjunction with expected out-

come. These trade-offs can lead to the development of entirely new financial instruments.

Kaplan and Garrick provide a quantitative definition of risk [22] in the form of a “set of

triplets” in Equation 2.1.

R = {〈si, pi, xi〉} (2.1)

The above definition is essentially a listing of all the uncertain events (si) considered, the

probability (pi) of such an event occurring and the cost (xi) or consequence each event may

lead to.

In computer architecture our default metric is performance (or some combination of per-

formance and energy). We typically talk about the expected performance of a design without

discussing the tail of the distribution of performance. Risk here maps one-to-one with the eco-

nomic notion of risk in Equation 2.1: we have uncertainty in what we know; those uncertainties

manifest as changes in the performance of the system; the impact of those changes can then be

12

Estimating and Understanding Uncertainty and Architectural Risk at A High Level Chapter 2

System
Model

Projection
Uncertainty

Risk
Function

Architectural
Risk

Process
Uncertainty

Design
Uncertainty

Propagated
Uncertainty

Reference
Performance

Figure 2.1: Relationship between uncertainty and architectural risk.

quantified as risk. Figure 2.1 captures this idea graphically.

For example, in Amdahl’s Law, the “return” is the speedup over performance of unit core.

The inputs are f , which is the parallelizable portion of the program, and s, which is the speedup

obtained from the parallelization. When considering uncertainty in this case, the “uncertain

events” can be unexpected values in f and s. The probability of these unexpected events can

be modeled by some underlying distribution. The cost in terms of performance variations

associated with the unexpected input values can be depicted as some cost function1 C.

Definition. In this thesis, we define architectural risk in Equation 2.2 and 2.3.

Re = C(Pe, P̂), Pe < P̂ (2.2)

ArchR =

∑
e∈E1×E2×...×En

Re

‖E1 × E2 × ... × En‖
(2.3)

Equation 2.2 captures the architectural risk under the impact of some unexpected event e.

P̂ is the reference performance (or expected/target performance of the design). If the reference

performance is always guaranteed to be achieved, there is defined to be no risk. Pe is the real

1The term “risk function” is used interchangeably with “cost function”.

13

Estimating and Understanding Uncertainty and Architectural Risk at A High Level Chapter 2

system performance under the impact of an uncertain event e. C is the cost function and is

usually subjective to the observer of the system, e.g., system designer or project manager. One

might be interested in the probability of any unexpected event happening and thus defining a

step risk function; Another might be interested in some certain events and their impacts and

thus defining a piece-wise risk function; A third may be only interested in the monetary loss due

to performance difference (e.g., less performant chips may be binned and sold at lower prices)

and thus defining a mapping between performance and dollars. Equation 2.3 aggregates the

risk captured by Equation 2.2 and takes the average across all possible event combinations,

where E1 through En are the sets of unexpected events for each type i of uncertainty. The

performance P in the definition is not limited to execution time but is a broad term and can be

any metric, including power and energy consumption, depending on what the system model is

trying to evaluate.

There might be other ways of defining architectural risk over the set of uncertain events,

e.g., a max function instead of taking the average like in Equation 2.3, but we follow the

economic risk definition and use arithmetic mean here as a way to capture the average impact

of uncertainty on a batch of system products in the context of architecture design.

To facilitate a general intellectual framework of analysis, without a particular system type

of interest like Guevara et. al. [16], we propose that computer architectures are exposed to

three major sources of uncertainties: projection uncertainty, process uncertainty, and design

uncertainty; most of which can be tracked at different levels of the system stack.

Projection uncertainty comes from assumptions one has to make about the future. At

the application level, a system design may target a specific set of applications, but those target

applications may shift or change based on our understanding of the problem or new optimiza-

tion techniques. We often implicitly estimate future workload behavior with measurements

of existing workloads. At the device level, systems may target underlying technologies still

working their way out of the research labs. The performance of these future technologies is

14

Estimating and Understanding Uncertainty and Architectural Risk at A High Level Chapter 2

predicted by their physical models and there is usually some degree of uncertainty on how well

they perform.

Process uncertainty comes from the manufacturing process itself. While semiconductor

manufacturing is an incredibly precise process, when the probability of any fault is integrated

over billions of transistors we are left with a distribution of devices. Some will work exceed-

ingly well, others will underperform, while still others will fail to work at all. However, unlike

projection uncertainty, under process uncertainty each chip is a new “roll of the dice”.

Design uncertainty comes from the hardware design process itself. Components (e.g.

cores and accelerators) with unresolved critical errors or introducing significant security vul-

nerabilities may be prevented (through a variety of means) from being accessible in an initial

roll outs of a product. This class of uncertainty is a growing concern in the more heterogeneous

and accelerator-dominated architectural design regime we are now faced with, and mechanisms

for “partitioning out” features is an increasingly common practice.

Note that there is a philosophical distinction between the uncertainties we discussed above

(leading to architectural risk) and the inaccuracy of an analytic model or simulator of a real

system. It is possible to reduce the measurement inaccuracy with better modeling, more com-

prehensive workloads, increasingly detailed simulation, etc. — but in the end measurement

inaccuracy could be eliminated given enough resources. However, even if one had infinite

resources, the uncertainties we proposed above will still exist. It is much harder (or even

impossible) to remove such uncertainties without a fundamentally new understanding of the

future2. From a more practical standpoint, measurement error and the techniques one may use

to reduce it [23–25], might either be grouped in with projection error or stand alone as a fourth

category. However, we do not explore that trade-off in our work.

Importantly, as we will show later in Section 2.4, it does not take many of the above inter-

acting forms of uncertainty to make the complexity of such interactions impossible to intuit.

2This is the difference between what many refer as “aleatoric” and “epistemic” uncertainty.

15

Estimating and Understanding Uncertainty and Architectural Risk at A High Level Chapter 2

2.2 Related Work

2.2.1 Modeling and Design Space Exploration

Analytical models, especially closed-form analytical models, have been long used in early

stage for architecture design space exploration. Probably the best known is Hill and Marty’s ex-

tended Amdahl’s Law for multi-core scenarios [18]. Altaf and Wood apply a similar analytical

modeling to estimate performance of system with accelerators [26]. Esmaeilzadeh et. al. ex-

plore the power limit on mutli-core scaling using an extension of Hill and Marty’s model [27].

Recently, Hill and Reddi explore mobile SoC design space with roofline models [28]. This line

of analytical research has also led to many other works [29–32] focusing on different aspects

of the system under different assumptions/simplifications.

In addition to analytical models built purely from a high-level inspection of the system,

there is also a class of research using empirical modeling which exploits statistical and ma-

chine learning techniques to examine uncertainty for the purpose of inferring a better system

model [23, 25, 33–43]. Many of these techniques begin with parametrized models and then

statistically fit the parameters. Alameldeen and Wood in particular examine the variability in

multi-threaded workloads [15] and, by injecting random errors into the detailed simulator, de-

velop a method to account for this type of uncertainty in simulation. Most of the these works

address the problem of discovering good models and/or focus on minimizing statistical errors

from those models. Rather than proposing a new model, or reducing errors introduced by

existing ones, we instead argue for a design and modeling approach that embraces extrinsic

uncertainties and provides tools for making good decisions in the face of the associated risks.

Although we examine primarily an extension to the Hill and Marty model, our analysis and

framework can also be used with more detailed or complicated models as long as they can be

expressed in, or approximated by, an interacting set of closed form equations.

16

Estimating and Understanding Uncertainty and Architectural Risk at A High Level Chapter 2

2.2.2 Economical Thinking and Computer Architecture

This paper is certainly not the first to be inspired by economic thinking as applied to Com-

puter Architecture. Bornholt et. al. deal with application-visible uncertain data at the pro-

gramming language and runtime level [44]. Guevara et. al. combine market mechanism and

resource allocation techniques to explore datacenter architectures [45]. Zahedi and Lee use

game theory to study how to better allocate hardware resource in a cloud environment [46].

Fan et. al. also use game theory to handle power management in datacenters [47]. Guevara

et. al. tackle the problem of runtime variation in datacenters and propose strategies to mitigate

the risk of not meeting performance target [16]. These and other papers concentrate on the ap-

plication of economic reasoning to better allocate resources in the face of competing interests,

rather than examining the cost of extrinsic uncertainty on the high level design. Combining

these lines of work would be an interesting area for future exploration.

2.3 An Evaluation Framework with Analytical Models

To demonstrate how these concepts and risk metric and help discover new insights in early

stage of an architecture design, we apply the following general process mirrored from financial

analytic processes: 1). pick an example architecture, 2). model it, 3). capture source uncer-

tainties, 4). inject and propagate uncertainties through the system model, and 5). evaluate the

architectural risk that it is exposed to.

2.3.1 An Example System Under Analysis

While there are many times that architects make analytic estimates of system performance,

one of the most well studied is the heterogeneous core selection problem of Hill and Marty [18]

as described succinctly in Table 2.1. Under this model one chooses the best performing core

17

Estimating and Understanding Uncertainty and Architectural Risk at A High Level Chapter 2

design to execute the serial code (Equation 2.7) and uses the aggregated performance of all

cores to execute the parallel code (Equation 2.8). Pollack’s Rule [48] is used to model core

performance as a function of resources consumed (Equation 2.10). Designs are bounded by

the total area/resource available on chip (Equation 2.11). In addition to these classic assump-

tions, we also take communication overhead among different cores into account, denoted as c

in Equation 2.5, which is some fraction of the sequential workload. The amount of commu-

nication overhead is proportional to the total number of cores on chip (Equation 2.9). This

overhead is extensively studied in [49] and can be setup/tear down time for the parallel compu-

tation, synchronization during parallel execution, or any other overhead introduced along with

parallelization.

Although real processor design is far more complicated, we show that even this simple

model is significantly confounded by the introduction of uncertainty. Uncertainty in the inputs,

even here, results in surprising outcomes (as detailed more in Section 2.4) and demonstrates

the importance of new techniques to support this reasoning more rigorously. Our framework

is by no means limited to these sets of equations only but can be applied to evaluations of

different architectures including accelerators [26], different optimization objectives like power

efficiency [29], or linked to more detailed simulators [33, 41]. As more parameters are added

and more complex models are required this should make our proposed approach strictly more

valuable and intuition even less reliable.

2.3.2 Uncertainties in our Example System

There are a total of five types of uncertainties that might be considered under the above

model of a system. Uncertainties in target application behavior impact f and c (a future appli-

cation running on the system might have a different level of parallelism and/or a different unit

communication overhead than the benchmarks used to measure the system performance during

18

Estimating and Understanding Uncertainty and Architectural Risk at A High Level Chapter 2

Table 2.1: Closed form model of performance.

S peedup =
1

Tsequential + Tparallel
(2.4)

Tsequential =
1 − f + c × Ncore

Pserial
(2.5)

Tparallel =
f

Pparallel
(2.6)

Pserial = max{Pcorei | Ncorei > 0} (2.7)

Pparallel =
∑

i∈core types

Ncorei × Pcorei (2.8)

Ncore =
∑

i∈core types

Ncorei (2.9)

Pcorei =
√

Acorei (2.10)

Atotal =
∑

i∈core types

Ncorei × Acorei (2.11)

design). Uncertainties in process/manufacturing can affect both Pcorei (different core instances

may end up with varying performance properties due to intra-die variation) and Ncorei (due to

fabrication defects impacting yield). Uncertainties in design may also have an effect on Pcorei

in that, upon a design bug or failure, cores of that design might not work at all.

Each of these uncertainties is a complex thing to understand. For a technique to be use-

ful it must not be highly sensitive to the assumptions about the distributions governing these

unknowns. Often times we may have only a few tens of data points from which we can infer

an underlying distribution. Later, in Section 2.3.3 we will describe exactly how this can be

done in an automated way using a reversal of the classic power transform, but to evaluate the

effectiveness of this approach we need hidden reference models to serve as a ground truth.

Pulling from the extensive literature on variation, yield, and program behavior, Table 4.2

summaries the hidden “ground truth”. Our technique will attempt to capture the important

aspects of these analytically from a few samples and no knowledge of the equations them-

selves. For Ncorei , i.e. the number of cores that are actually working, from its physical defini-

19

Estimating and Understanding Uncertainty and Architectural Risk at A High Level Chapter 2

Table 2.2: Hidden uncertainty models.

f ∼
Binomial(M, p)

M
(2.12)

c ∼
Binomial(M, p)

M
(2.13)

Ncorei ∼ Binomial(M, yieldcorei) (2.14)
Pcorei ∼ Bernoulli(p) × LogNormal(µ, σ) (2.15)

yieldcorei = (1 +
d × Acorei

α
)−α (2.16)

tion, we model it by a binomial distribution ranging [0,N]. N is the designed number of corei

but each with only some probability of functioning properly taking after chip yield rate [50]

(Equation 2.14, 2.16). Pcorei is modelled by the product of a LogNormal distribution ranging

(0,∞] and a Bernoulli distribution with probability p of taking value 1 (Equation 2.15). We

model core performance in such a way that it is exposed to two types of uncertainty: design

uncertainty and fabrication uncertainty. Although design uncertainties can result in many con-

sequences from degradation of performance to reduction of reliability and so on [51], we only

consider severe design bugs that will lead to complete post-silicon failure of the component

here. This type of uncertainty naturally follows a Bernoulli distribution by its definition, i.e.

the component is either working or not. The probability of failure is set based on reported

statistics [52]. Fabrication process uncertainty is modeled by the LogNormal part of the dis-

tribution. When the design works, the actual performance of each core also varies as a result

of the fabrication process, leaving a Gaussian-like distribution on the positive domain [53–55].

For the LogNormal part, the location µ and scale σ is computed such that the mean perfor-

mance follows Pollack’s Rule (Equation 2.10) and the variance meets our desired level in ex-

periments. For f and c, we use a normalized binomial distribution to model their uncertainties

(Equation 2.12, 2.13). This distribution fits well to the characterizing data for the PARSEC

benchmarks [56]. Their range is bound to be [0, 1], while p is set to the mean value. M, which

20

Estimating and Understanding Uncertainty and Architectural Risk at A High Level Chapter 2

is needed to construct the Binomial distribution, is computed to satisfy the level of variance we

desire in simulation.

At a high level our technique requires two inputs. First, an executable architecture model

under analysis (that relates a set of mutually dependent parameters capturing constraints and

dependent variables to optimize). Second, a set of data points drawn from the distribution

whose uncertainty you wish to consider (e.g. a set of points relating core resources and perfor-

mance). If we can pull a few points from the distributions governing these models and then,

without any knowledge of the model itself (just the values of the specific samples drawn from

it), construct a new model that has close to the same optimization utility as the ground truth, it

gives us confidence that this will be useful when applied to a specific set of trade secret data

by a manufacturer3. If the architecture model can be described as a set of mutually depen-

dent closed-form functions and the uncertainty in distributional representations (e.g. a large set

of samples or sampling functions), our tool can symbolically combine and partially solve the

closed-form equations. From this form, it can then inject and propagate uncertainty through to

the final responsive metrics so that risk can be calculated. First, however, we need a way to

extract (or approximate) such distributional representations of architecture uncertainty from a

few initial samples.

2.3.3 Architecture Uncertainty Model Extraction

Such approximation is done by a two-phase method shown in Figure 2.2. We first test if

the data set can be transformed to normality through the Box-Cox testing [57] in Step 1 . If it

cannot pass the test (a rare case in practice), we apply Kernel Density Estimation (KDE) meth-

ods [58] directly to the data set. These methods find a best-fit non-parametric distribution in

3Of course with arbitrarily complex “ground truth” such a trick is impossible. In the most general case this
problem reduces to one of function inversion, which we know from cryptography can be hard, but luckily the
distributions that typically govern the physical and program properties an architect would actually care about are
ones that we find are highly amenable to this technique.

21

Estimating and Understanding Uncertainty and Architectural Risk at A High Level Chapter 2

1 Box-Cox Test
Distributional
Description

2
If no:
KDE

To Back-end

3
If yes: Box-Cox
Transformation

Confidence
> .95?

Truncated Gaussian
Distribution

4
Gaussian

Fitting 5 Bootstrapping

SamplesSamples

Samples
Transformed

Samples

Samples
New

Samples

5
Back

Transformation

Figure 2.2: Uncertainty modeling.

Step 2 and use its sampling function to facilitate uncertainty propagation. Otherwise, we trans-

form the data set to normality using Box-Cox transformation in Step 3 , re-sample (bootstrap-

ping) from the Gaussian distribution in the transformed domain in Step 4 , and back-transform

the samples to the original domain. Finally we reconstruct the distribution in original domain

in Step 5 to approximate the hidden ground truth. Although not as accurate as the best-fit non-

parametric KDE, such bootstrapping method enables us to hand tune the desired uncertainty

level in each variable and hence be able to explore the trend as input uncertainties scale. We

use the bootstrapping method in our experiment to study the scaling behavior and to examine

the accuracy of such approximation, but in practice, a non-parametric distribution is at most

times sufficient to facilitate accurate uncertainty analysis.

Figure 2.3 gives an example of the bootstrapping process. Figure 2.3a shows the histogram

generated from initial samples (the samples are taken from a log normal distribution). Fig-

ure 2.3b shows the histogram after transformation and the fitted Gaussian distribution in the

22

Estimating and Understanding Uncertainty and Architectural Risk at A High Level Chapter 2

Box-Cox
Transform

a) Initial samples. b) Transformed samples and

fitted gaussian.

c) Bootstrapped

distribution.

Back
Transform

Figure 2.3: An example bootstrapping process.

transformed domain. If the initial samples can pass box-cox test, we are guaranteed to find

a Gaussian distribution that fits the transformed samples. Figure 2.3c shows the bootstrapped

distribution after back transformation to the original domain laid on top of the original samples.

The output of this uncertainty modeling phase is a set of uncertain variables along with

their distributional descriptions to facilitate uncertainty injection and propagation.

2.3.4 Model Transformation and Execution

In Figure 2.4, we present an overview with a simple example of how the front-end modeling

and symbolic execution works.

The first step 1 is system modeling which builds mutually dependent equations described

in Section 2.3.1. The framework then performs the following operations. 2 Each variable

including uncertain ones is then treated as a symbolic entity and the plain string-formatted

equations are passed to symbolic execution [59]. The result is a set of algebraic equivalent

equations with each symbol sitting on the left-hand side in one equation. We break the solving

into steps and only resolve variables that are not uncertain, and any uncertain variable on the

right-hand side in the equations is kept unresolved in its original form. This is to support un-

certainty injection and propagation later. 3 The partially solved equations are then converted

23

Estimating and Understanding Uncertainty and Architectural Risk at A High Level Chapter 2

System

1
System

Modeling
2

Partial
Symbolic
Solving

3 Lamdification

Note that
uncertain variable
z is not resolved

but y is.

To Back-end

Figure 2.4: System modeling and symbolic execution.

24

Estimating and Understanding Uncertainty and Architectural Risk at A High Level Chapter 2

into callable lambda functions. We also enforce a fixed argument ordering in the lamdification

process.

At the end of this process we have a set of callable functions that are provided to the back-

end for numerical computation.

2.3.5 Uncertainty Injection and Propagation

Figure 2.5 shows the back-end uncertainty injection and propagation process.

Given the set of functions and uncertain variables, the framework back-end then proceeds

with the following steps. 1 Each uncertain variable gets evaluated first as long as there are no

uncertain variables in the right-hand side of their solutions. The values of certain inputs, like c

and x in this case, should be provided by the system designer. 2 The framework then generates

distributions for all the uncertain variables. Based on their descriptions, the distribution can be

generated alone or together with the evaluated value. In this example, the distribution of Z takes

the evaluated value z0 as its mean. 3 All uncertain variables appear in the argument list of the

lambda functions are then replaced by the corresponding distributions. At the completion of

this stage we have injected the desired uncertainties into the solved system model. 4 Each

function containing distributions or random variables in the argument list is then evaluated

by Latin-hypercube Monte Carlo simulation N times [60]. The result of the Monte Carlo

simulation is a set of values for each responsive variable in the system. 5 We then re-construct

a distribution from the set of values for each responsive variable. At this point, the uncertainties

in the inputs are propagated into the distribution properties of the responsive variables. There

are systematic errors associated with the Monte Carlo simulation but, in our experiments, we

keep N sufficiently large (we use N = 10, 000) to keep the errors negligible. 6 Finally, we

calculate risk based on the distribution of the responsive variable and the risk function provided.

25

Estimating and Understanding Uncertainty and Architectural Risk at A High Level Chapter 2

1
Partial

Evaluation

2
Distribution
Generation

Z:

z:
Z: Distribution

Description+

3 Substitution

4
Monte Carlo
Simulation

5
Distribution

Reconstruction

P:

From this point on, Z is no
longer a floating point

number but a distribution.

From
Uncertainty

Modeling

6
Risk

Calculation

C: Risk Function+

Risk Estimation for
Responsive P

From System
Modeling

Figure 2.5: Back-end uncertainty injection and propagation.

26

Estimating and Understanding Uncertainty and Architectural Risk at A High Level Chapter 2

2.4 Exploring The Design Space under Uncertainties and Risk

Building from the framework and ground truth models discussed above, we now carry out

an analysis on the classic Hill and Marty core selection design problem and demonstrate how

performance and risk interrelate and can even be co-managed. The design question is essen-

tially: what cores and how many of them should we put on a CMP in the face of uncertainties?

We bound the design space to populate by constraining the total chip size (or resources) to be

256 units and consider the full spectrum of designs (rather than just one big-core coupled with

many tiny cores). Specifically we ask the following questions which will be answered by a

series of implications we draw from our experiment results:

• How does uncertainty manifest and interact in the system?

• How sensitive is CMP performance in the face of uncertainty?

• Is the conventional risk-oblivious design optimal in terms of architectural risk? Further-

more, is it still optimal even in terms of expected performance?

• When is there a trade-off space between architectural risk and expected performance?

What does the trade-off space look like?

• What configuration/design is favored when one considers risk?

After exploring the design space with ground truth distributions, we show that our approx-

imation method still leads to optimal or near-optimal designs from only a handful of samples.

Such partial information about the underlying uncertainty distributions is often the case in early

modeling and design cycles. While we primarily consider architectural risk in the form of per-

formance, we further demonstrate the use of this analysis in evaluating monetary risk function

using both ground truth distributions and the approximations.

27

Estimating and Understanding Uncertainty and Architectural Risk at A High Level Chapter 2

2.4.1 Uncertainty Manifestation

Experiment Setup. In order to answer the question of how uncertainty manifests in the

output, we inject a total of five types of uncertainties into the four input variables of our model.

The uncertainties we inject are application characteristics uncertainties in f and c, process

variation in Pcorei and Ncorei as well as design uncertainty in Pcorei .

Table 2.3: Injected uncertainties.

Input Certain Value
Uncertain Value

Mean Std

f f̂ f̂ σ · (1 − f̂)

c ĉ ĉ σ · ĉ

Pcorei P̂i P̂i σ · P̂i

Fabric Ncorei ∼ Binomial(N̂corei , yieldcorei)

Design Pcorei ∼ Bernoulli(σ · γ) × Pcorei

Table 2.3 describes how much uncertainty we inject. With σ = 0, the inputs are certain

values (f̂ , ĉ, P̂corei and N̂corei), the resulting performance is the conventional “certain” result

without propagated uncertainty. With σ > 0, f is centered on f̂ with a standard deviation of

σ · (1 − f̂), such that the standard deviation of f is kept small enough that f only varies at the

least significant digit of f̂ and does not completely change the application to another category

(again, we are being conservative here and a larger uncertainty will make the risk even more

important). Similarly, c is centered on ĉ but with a standard deviation ofσ·ĉ as c in itself is very

close to 0. As for core performance Pcorei , the performance uncertainty is centered around P̂corei

and the standard deviation is set to be σ · P̂corei . There are two special types of uncertainty that

are not centered around the corresponding certain values. The fabrication uncertainty is added

when we consider that each core has a probability of failure (not functioning properly). We

keep yield rate for each type of core evaluated constant throughout the computation. Table 2.4

28

Estimating and Understanding Uncertainty and Architectural Risk at A High Level Chapter 2

Sym Cores + HPLC Asym Cores + LPLC Hetero Cores + LPHC

Normalized Performance Normalized Performance Normalized Performance
0.0 0.4 0.8 1.2 0.0 0.4 0.8 1.2 0.0 0.4 0.8 1.2

Figure 2.6: Performance distribution under uncertainties. “Sym Cores” stands for a configu-
ration of 32x8 (32 small cores of size 8), “Asym Cores” stands for a configuration of 1x128
+ 16x8 (one large core of size 128 and 16 small cores of size 8), and “Hetero Cores” stands
for a full heterogeneous configuration of 2x8 + 1x16 + 1x32 + 1x64 + 1x128.

lists the yield rates computed using Poisson chip yield model [61]. Note that yield rate is not

dependent on σ but only on core size. Design uncertainty is modeled by a Bernoulli with

probability σ · γ, and we set the intrinsic probability γ based on an estimation of existing

data [52].

Table 2.4: Yield rates.

core size 8 16 32 64 128

yield 98% 96% 92% 85% 75%

We hand-tune the injected uncertainty level σ from 0 to 1 for four different categories of

applications and three different architecture designs. The four applications are characterized

by different values of parallelizable portion f̂ and unit communication overhead ĉ. We call

f̂ = 0.999 high parallelism (HP) and f̂ = 0.9 low parallelism (LP). We refer to ĉ = 0.001

as low communication cost (LC) and ĉ = 0.01 as high communication cost (HC). To see

the impact we consider three example designs which are symmetric (32x8) and asymmetric

(1x128 + 16x8) designs from Hill and Marty’s setting as well as an extended full heterogeneous

architecture in which 5 types of cores are present.

29

Estimating and Understanding Uncertainty and Architectural Risk at A High Level Chapter 2

HPLC HPHC

Sym

Cores

Asym

Cores

Hetero

Cores

LPLC LPHC

design onlyf only c only perf only fab only all

Input Input
0.0 0.2 0.4 0.6 0.8 1.0

Input
0.0 0.2 0.4 0.6 0.8 1.0

Input
0.0 0.2 0.4 0.6 0.8 1.0

N
o

rm
al

iz
ed

 P
er

fo
rm

an
ce

N
o
rm

al
iz

ed
 P

er
fo

rm
an

ce
N

o
rm

al
iz

ed
 P

er
fo

rm
an

ce 1.3

1.2

1.1

1.0

0.9

0.8

0.7

N
o

rm
al

iz
ed

 P
er

fo
rm

an
ce 1.3

1.2

1.1

1.0

0.9

0.8

0.7

0.0 0.2 0.4 0.6 0.8 1.0

1.3

1.2

1.1

1.0

0.9

0.8

0.7

Figure 2.7: Uncertainty manifestation on output performance. Legend indicates which type of
uncertainty is under consideration, and expected performance is normalized to risk-unaware
performance.

30

Estimating and Understanding Uncertainty and Architectural Risk at A High Level Chapter 2

Sym Cores + HPLC Asym Cores + HPHC

Symmetric Cores

Hetero Cores + LPHC

design onlyf only c only perf only fab only all

Input

0.0 0.2 0.4 0.6 0.8 1.0

Input

0.0 0.2 0.4 0.6 0.8 1.0

Input

0.0 0.2 0.4 0.6 0.8 1.0

O
u
tp

u
t

2.0

1.5

1.0

0.5

0.0

Figure 2.8: Example uncertainty manifestation on output uncertainty. Legend indicates which
type of uncertainty is under consideration and standard deviation is normalized to risk-u-
naware performance.

Results and Discussion. In Figure 2.6, we show examples on the resulting performance

distribution. The mean of the performance distribution should be the expected performance

under uncertainties and its standard deviation (or variance) measures how much each chip

differs from one another in terms of performance. The shape of the distribution also matters in

that it relates to how much architectural risk a design is exposed to. Based on our architectural

risk definition in Section 2.1, given a reference performance (or performance goal), risk is

essentially a weighted area under the curve to the left of the performance goal. Looking at the

figure, an important observation is that the resulting performance distribution is very irregular

even with our simple and regular input distributions.

In Figure 2.7, we present how the expected performance under the impact of input un-

certainties behaves as σ increases. In most cases, input uncertainties lead to worse expected

performance compared to its “certain” version, while in some cases, a strong uncertainty, espe-

cially on f and c, can lead to better expected performance because of the asymmetric impact f

and c have on performance. For example, in the asymmetric architecture with an application of

f̂ = 0.9 and ĉ = 0.001, an f = 0.9+0.1 will raise the performance from 36.38 to 37.93 (an 1.55

increase) while an f = 0.9 − 0.1 lowers performance to 34.96 (an 1.42 decrease). In another

31

Estimating and Understanding Uncertainty and Architectural Risk at A High Level Chapter 2

word, given the same deviation from f̂ , the impact of a higher f is greater than the impact

of a lower f , resulting in a better expected performance. From an architectural point of view,

this asymmetric impact results from the fact that asymmetric design often fits applications with

more inherent parallelism better.

If we compare the performance across different applications for the symmetric design, we

can see that when f gets smaller (uncertainty on f gets larger) and c unchanged, the impact of

uncertainty on f becomes dominant (compare the first and third figure on the first row), while

when c gets larger (uncertainty on c grows) and f unchanged, the impact of uncertainty on

c becomes dominant (compare the third and fourth figure on the first row). This observation

holds for all three designs and meets our expectation that the uncertainty on the dominating

characteristic of the application has a greater impact on the output.

If we instead pick an application and compare across all three designs, we can tell that the

performance “boost” brought by the asymmetry on f and c diminishes as the chip becomes

more heterogeneous. The same example math of f = 0.9 + 0.1 and f = 0.9 − 0.1 suffices

to show that the asymmetry is barely observable in the very heterogeneous design. In another

word, the more heterogeneous the chip is, the less sensitive to application uncertainty it is.

Another observation begins to surface in this comparison study. The overall impact of un-

certainty on core performance Pcorei behaves differently for chips of different heterogeneity and

heterogeneous chips are generally more sensitive to architectural uncertainties. In the symmet-

ric case, all cores are of the same size and the uncertainty in the performance of each core

cancels out one another, leaving the result performance unchanged. While in the asymmetric

case, the collection of the small cores still behave in such a way, but when the big core has

a degraded performance, it has a much larger impact on performance that cannot be offset by

the other smaller cores. In the very heterogeneous design, however, the collective behavior

of the cores contributes to a better expected performance. This explains why the impact of

architecture uncertainty grows when the architecture design becomes more heterogeneous.

32

Estimating and Understanding Uncertainty and Architectural Risk at A High Level Chapter 2

Figure 2.8 gives three examples of the uncertainty in the output of the model as the input

uncertainties vary. In general, uncertainty in performance grows as the input σ increases. This

follows our intuition that the more uncertain the input is, the more uncertain the output should

be. Most of the input uncertainties propagate through the model sub-linearly, indicating some

tolerance for uncertainty the model exhibits. We also compare across the designs for the same

application, and find out that the more heterogeneous the chip is, the more uncertainty-tolerant

it is.

A counter-intuitive fact is that the composite uncertainty in the output is not simply an ac-

cumulation of all the input uncertainties. In fact, the uncertainties are not even additive. To

better demonstrate this behavior, we conduct a series of experiments by removing one type of

uncertainty at a time. In Figure 2.9, we use the asymmetric design as an example to show that

the output uncertainty sometimes rises when there is less uncertainty in some of the inputs.

This happens because uncertainty has two possible effects on the output performance: it may

contribute to a better performance or it may lead to a worse performance. And different com-

ponents of the system (different inputs) respond to uncertainty with different magnitudes, as

well as directions (better or worse). When combined, different uncertain inputs may enhance

each other, leaving performance shifted more from the expected value, while in other situations

they may attenuate each other reducing shifts in performance.

In summary, regarding how uncertainties propagate and how sensitive CMPs to these input

uncertainties, we have the following implications.

Implication 1. Uncertainties propagate through the model with non-intuitive interaction,

the resulting performance distribution is beyond what a simple “back-of-the-envelope” estima-

tion can reveal.

Implication 2. The more heterogeneous the chip is, the less sensitive its expected perfor-

mance to application uncertainty, but the more sensitive its expected performance to architec-

ture uncertainty.

33

Estimating and Understanding Uncertainty and Architectural Risk at A High Level Chapter 2

HPLC LPHC

no designno f no c no perf no fab all

Input

0.0 0.2 0.4 0.6 0.8 1.0

2.0

1.5

1.0

0.5

0.0

Input

0.0 0.2 0.4 0.6 0.8 1.0

O
u
tp

u
t

Figure 2.9: Non-accumulative output uncertainty for asymmetric architecture. Legend indi-
cates which type of uncertainty is excluded and all means all types of uncertainty are consid-
ered.

Implication 3. The more heterogeneous the chip is, the more tolerant/robust its perfor-

mance is to input uncertainties.

2.4.2 Impact on Design

Given the complexity of propagated uncertainties in the three designs above, we now ex-

pand our search space and explore how uncertainty and risk may impact design decisions in

the uncertainty wrought design space.

Experiment Setup. The injected uncertainties are identical to the setups in Section 2.4.1.

We exhaustively enumerate all valid design options. Each valid design option is a configuration

taking up 256 on-chip resource units (a total size of 256) with a combination of different cores,

each of which having a size of power of two ranging from 8 to 256 (e.g. a valid design can

be 32 cores of size 8, 1 core of size 256 or 16 cores of size 8 plus 1 core of size 128). Some

combination does not consume all the on-chip resources, and in those cases, we group all

34

Estimating and Understanding Uncertainty and Architectural Risk at A High Level Chapter 2

resource left into one additional core (e.g. 8 cores of size 8 plus one core of size 192 is also

valid). We also use a quadratic risk function in this exploration. In other words risk is the sum

square of the performance loss below some reference due to uncertainty for all eventualities.

The idea is that performance well below expectation is much worse than performance just

below expectation (similar to minimizing sum square error).

Results and Discussion. We present results considering both architecture uncertainties

(process uncertainty and design uncertainty) and application uncertainties (uncertainty in f and

c) in Figure 2.10. The conventional performance-optimizing uncertainty-oblivious design is at

most times not the optimal choice not only in terms of risk but also, very counter-intuitively,

even in terms of expected performance. If we take a look at the architecture uncertainties

(σ arch on the y-axis) and application uncertainties (σ app on the x-axis) respectively, we

can tell that architecture uncertainties usually impose a larger impact on design decisions. In

all four types of applications, the optimal design shifting along the y-axis occurs even when

there is only 20% uncertainty or less. Meanwhile, the application uncertainties shift the best

design at a slower pace. If we consider application uncertainty alone (with a fixed architecture

uncertainty), we can see that the application uncertainties shift the risk-optimal design easily

but the performance optimality shifts only when application uncertainty is abundant. In one

case where parallelism is high and communication overhead is low, application uncertainty

does not shift the performance optimal design at all even at a level of 100% of the mean.

An example trade-off space with LPHC application between performance-optimal design

and risk-optimal design is shown in Figure 2.11. To help readability and understanding, we do

not include all curves at every input uncertainty level in Figure 2.11a, but the trends of other

curves are very similar to the examples we show in the figure. We can tell that the amount of

input uncertainties shifts the possible outcomes of all designs in the performance-risk space

and determines how the trade-off space look like. In most cases, there exists a trade-off space

between the performance-optimal design and the risk-optimal design. Taking the curve marked

35

Estimating and Understanding Uncertainty and Architectural Risk at A High Level Chapter 2

HPHC

Opt Perf_Opt

Sub_Opt + Trade-off

Sub_Opt

Opt Perf_Opt

Sub_Opt

Sub_Opt + Trade-off

0.0 0.2 0.4 0.6 0.8 1.0

1.0

0.8

0.6

0.4

0.2

0.0

LPHC

HPLC

Opt Perf_Opt

Sub_Opt + Trade-off

Opt

Sub_Opt + Trade-off

Perf_Opt

Sub_Opt

0.0 0.2 0.4 0.6 0.8 1.0

1.0

0.8

0.6

0.4

0.2

0.0

LPLC

1.0

0.8

0.6

0.4

0.2

0.0

Figure 2.10: Impact on design of application uncertainties and architecture uncertainties.
σ app is the uncertainties in f and c and σ arch is the uncertainties in Pcorei and Ncorei .
“Opt” means conventional design is optimal in both expected performance and risk. “Perf
Opt Only” means conventional design is only optimal in terms of expected performance.
“Sub-opt” means conventional design is strictly sub-optimal in both expected performance
and risk. “Sub-opt + Tradeoff” means not only conventional design is sub-optimal, there is
also a trade-off space between performance-optimal design and risk-optimal design.

36

Estimating and Understanding Uncertainty and Architectural Risk at A High Level Chapter 2

a) Pareto curves at eifferent uncertainty level. b) Zoom-in Pareto curve and non-Pareto points. c) Zoom-in performance distribution.

Normalized Performance

Normalized Performance0.8 0.9 1.0 1.1 1.2

1.0

0.8

0.6

0.4

0.2

0.0

Normalized Performance

N
o

rm
al

iz
ed

 R
is

k

Normalized Performance Normalized Performance

0.0 1.0 2.0 3.0 4.0

0.89 0.90 0.91

C
o

u
n

t
C

o
u

n
t

N
o

rm
al

iz
ed

 R
is

k

1.3

1.2

1.1

1.0

0.9

0.8

0.7

0.6

0.0 1.0 2.0 3.0 4.0

Figure 2.11: Example trade-off space between performance-optimal design and risk-optimal
design. Each point in the space is a performance distribution of a certain design (core-selec-
tion) at some input uncertainty level (denoted as a tuple of (σ app, σ arch)) with the LPHC
application. Performance is normalized to that of the conventional case (risk-oblivious per-
formance-optimal design). Risk is normalized to that of the performance-optimal design at
each input uncertainty level.

in Figure 2.11a as an example, one can mitigate almost 60% of risk at the cost of less than 3%

performance. Figure 2.11b zooms in on the example curve and shows both the Pareto-optimal

designs as well as the non-optimal designs with relatively strong expected performance (within

89% of the best expected performance) in the space. Figure 2.11c further zooms in on the

two representative designs on the Pareto curve. We can see that having a more “concentrated”

distribution around the performance goal helps bring down the architectural risk of the lower

design, while the upper design has a wider distribution leaving a larger risk but better expected

performance.

In summary, regarding how conventional design performs in the uncertainty wrought design

space, we have the following implications.

Implication 4. Conventional architectural risk-oblivious design is at most times not the

architectural risk optimal design when there’s only moderate amount of input uncertainties.

Conventional design is also oftentimes not even optimal in terms of expected performance,

i.e. there is another core-configuration that yields better expected performance in the face of

37

Estimating and Understanding Uncertainty and Architectural Risk at A High Level Chapter 2

uncertainty.

Implication 5. Architecture uncertainties usually have a larger impact on design optimality

while application uncertainties have a relatively smaller impact.

Implication 6. At most times there exists a trade-off space between performance-optimal

design and risk-optimal design, and one can mitigate a good amount of risk at the cost of a

relatively small performance degradation.

Next we explore what exactly the optimal core configurations are and what configurations

are generally preferred in terms of both expected performance and architectural risk using re-

sults with LPHC as an example. Figure 2.12a gives the performance-optimal core configuration

distributions in our search space. If we consider application uncertainty σ app alone, when

it gets larger, the histograms tend to grow towards the left edge and concentrate on a few se-

lections. This “concentrating” trend means that more asymmetric configurations are generally

favored when there is more application uncertainty. This trend results from the asymmetric

impact we discussed in Section 2.4.1. A large core is needed to compensate the performance

loss due to a lower f or higher c while the herd of small cores are better performing than a

distribution of heterogeneous cores for parallel execution. However, when σ arch gets larger,

i.e. there are more architecture uncertainties involved, we can see that the histograms tend to

spread out across different core sizes. This “spreading” trend indicates that less asymmetric

configurations are preferred when there is more architecture uncertainty. This is due to the fact

that mid-sized cores are chosen because the performances of cores have variations and a mid-

sized core can step in during serial execution to compensate the performance loss due to a less

performant large core. Another reason is that multiple cores of each type are chosen to fight the

intra-die process variation, leading to fewer core types on chip because of total area/resource

constraint. These two counter-directional trends are the main reasons that the design space is

very irregular and complicated.

Similarly in Figure 2.12b, we show the optimal core configuration for architectural risk

38

Estimating and Understanding Uncertainty and Architectural Risk at A High Level Chapter 2

a) Expected performance optimal designs b) Architectural risk optimal designs

Figure 2.12: Core configurations of optimal designs for LPHC. Each design is represented
in a histogram of core distribution. Each bar in the histogram corresponds to the count for
each type of core of which the size ranging 8, 16, 32, 64, 128, and 256 from left to right .
σ app and σ arch both range from 0 to 1. Note that all designs are bounded by the same area
constraint and the y-axis of each histogram is not normalized to better show the ratio between
different types of cores.

optimal designs. Comparing with Figure 2.12a, we can tell that in most cases a “spread-out” or

more symmetric configuration is needed to minimize architectural risk. However, the general

trend when uncertainty grows is a blend of such “spreading” and those in Figure 2.12a and is

very irregular and extremely hard, if not impossible, to intuit.

To sum up, regarding what configuration/design is in general more favorable, we have the

following implications.

Implication 7. More symmetric configurations tend to minimize architectural risk while

more asymmetric configurations tend to maximize expected performance in the face of uncer-

tainties.

Implication 8. As application uncertainty gets larger, more asymmetric configurations

are preferred, while as architecture uncertainty gets larger, more symmetric configurations are

favored.

39

Estimating and Understanding Uncertainty and Architectural Risk at A High Level Chapter 2

HPLC HPHC LPLC LPHC

0.60.2 0.4 0.8 1.0X X

P
er

fo
rm

a
n
ce

 D
e
v
ia

ti
o
n
 (

%
)

R
is

k
 D

ev
ia

ti
o
n
 (

%
)

Sample Size k

20 50 100 1000 10000

0.20

0.15

0.10

0.05

0.00

Sample Size k

20 50 100 1000 10000

Sample Size k

20 50 100 1000 10000

Sample Size k

20 50 100 1000 10000

0.20

0.15

0.10

0.05

0.00

P
er

fo
rm

an
ce

D
ev

ia
ti

o
n
 (

%
)

Figure 2.13: Quality of approximation. Different curves are averages taken for input un-
certainties (both σ app and σ arch) less than a given threshold marked by corresponding
legend.

2.4.3 Approximating Uncertainty and Risk

In this section, we explore, when there is no a prior knowledge of the hidden ground truth

distributions of the input uncertainties but merely a few samples drawn from them, how our

approximation method performs.

Experiment Setup. We take only k samples from each of the distributional input uncer-

tainties listed in Table 4.2. We then apply our bootstrapping method discussed in Section 2.3.3

on these samples to acquire approximations to the true uncertainty distributions. We then again

conduct an exhaustive search through the design space using settings in Section 2.4.2 with the

approximate uncertainties.

Results and Discussion. Figure 2.13 presents the approximation quality. Aside from some

numerical fluctuations, the general trend is clearly showing that we can bound the error in terms

of both expected performance and risk within 5% with 50 samples or even fewer. When the

sample size exceeds 100, the quality of approximation is very stable and the approximation is

very close to the hidden ground truth. We will further show the approximation quality with a

40

Estimating and Understanding Uncertainty and Architectural Risk at A High Level Chapter 2

Risk-oblivious

(Avg. Perf: 0.95, ArchR: 348.53)

Risk-aware

(Avg. Perf: 1.00, ArchR: 293.64)

$100

$
2

0
0

$
3

0
0

$
6

0
0 $1000

$100

$
2

0
0

$
3

0
0

$
6

0
0 $1000

Approximate Risk-aware

(Avg. Perf: 0.99, ArchR: 301.38)

$100

$
2

0
0

$
3

0
0

$
6
0
0 $1000

Normalized Performance

0.0 0.6 0.8 1.0 2.0

Normalized Performance Normalized Performance

0.0 0.6 0.8 1.0 2.0 0.0 0.6 0.8 1.0 2.0

Figure 2.14: Binning of design results under uncertainties. A price binning based on Table 2.5
is laid on top of the performance distribution derived from each design with LPHC application
at an input uncertainty of σ app = σ arch = 0.2. These designs correspond to the point in
Figure 2.10 LPHC at coordinate (0.2, 0.2).

concrete example in Section 2.4.4.

2.4.4 From Architectural Risk to Financial Risk

Now that we understand the impact of uncertainty and risk on core selection, we take a

step back and re-examine the meaning of our risk function. The quadratic risk function used in

above experiments may seem a little abstract when it comes to interpreting the meaning of its

absolute value. One may ask the question of: what is the cost in dollars if a sub-optimal design

is chosen in the face of uncertainty?

To answer this type of question, a different risk function which ties performance to a con-

crete dollar value in the market is needed. Here we show an example using a simple monetary

mapping for normalized chip performance. Table 2.5 lists the relationship of normalized per-

formance and dollars estimated from a publicly available CPU price list [62].

Table 2.5: Correlation between Normalized Chip Performance and Market Value.

Perf ¡ 0.6 [0.6, 0.8) [0.8, 0.9) [0.9, 1.0) ≥ 1.0

$ 100 200 300 600 1000

41

Estimating and Understanding Uncertainty and Architectural Risk at A High Level Chapter 2

The risk function is defined in Equation 2.17 to reveal risk in terms of dollar cost due to per-

formance uncertainty. We consider all input uncertainties at σ = 0.2 with LPHC as an example

and derive the performance distribution of a risk-unaware optimal design, a risk-aware optimal

design with hidden ground truth, and an approximate risk-aware optimal design with sample

size k = 50 in Figure 2.14. Based on our definition in Section 2.1, the architectural risk of the

conventional design is $348.53 which means $348.53 per chip on average lost (compared to

the price of a chip at performance 1.0) due to uncertainty with an average case performance of

0.95. For risk-aware optimal design with hidden ground truth, the architecture risk is $293.64

with an average performance of 1.00. For the approximated risk-aware optimal design, the

architectural risk is $301.38 with an expected performance of 0.99. At this point, for this spe-

cific setting, we can answer that $47.15 per chip can be saved with even better expected chip

performance using an approximate uncertainty analysis.

C(Pe, P̂) = $(P̂) − $(Pe) (2.17)

2.5 Chapter Summary

We are living in interesting times for computer architecture — both from above by the ap-

plications, and below by the technology, we find ourselves pressed between many new uncer-

tainties. While developing new computer system has always involved a risk of failing to meet

performance goals, the new magnitude of these uncertainties may now lead to either overly

conservative design practices on one hand, or “fragile” designs on the other. The degree to

which uncertainty actually changes the expected performance of a design (and thus the nature

of what an “optimal” design really is) is not something that has been discussed much in prior

work. In this chapter we show that it is possible to define, model, and quantify architectural

42

Estimating and Understanding Uncertainty and Architectural Risk at A High Level Chapter 2

risk.

Luckily the ideas of risk and risk-management are well understood in economics and by

drawing upon this expertise, we are able to describe a new analytic framework for high-level

risk-aware architectural analysis. We show that ignoring the degree to which parameters are

unknown, even under fairly simple and conservative performance modeling assumptions, can

lead to designs with radically different risk profiles. While there is always a design that maxi-

mizes expected performance, we show in this chapter that, even absent the confounding factors

of cost, energy, thermal constraints, etc., the “optimal” design may only be a point in the risk-

performance trade-off space.

43

Chapter 3

Supporting Analytical Modeling in

Architecture Designs

We have shown an example high-level architecture analysis in Chapter 2, yet such an analy-

sis in reality is most likely an ad-hoc practice less structured than the approach we take. The

process described in Chapter 2, although more organized than just a set of python scripts or

spreadsheets, is still far from being systematic enough that it is easy to use and build upon.

Here, we start from reviewing the pain points of engineering such analysis in practice. These

pitfalls and drawbacks motivate us to propose a more structured and systematic way of man-

aging these high-level architecture models and analysis in this Chapter. We describe Charm,

a closed-form high-level architecture modeling language. Through a complete example code,

we discuss the principles that Charm is designed upon and how it addresses the pain points

with ad-hoc methods. We then elaborate how the language, as well as the interpretation pro-

cess, are designed and implemented. Finally, we perform three case studies to demonstrate the

capabilities and benefits of performing such high-level analysis with Charm.

44

Supporting Analytical Modeling in Architecture Designs Chapter 3

3.1 Understanding Pain Points of Ad-hoc Analysis

To understand Charm it is useful to have a running example. In this section, we present an

implementation of the model and analysis from a well-cited study of dark silicon scaling [63].

After a brief review of the models, we show the complete code in Charm performing the same

analysis of symmetric topology with ITRS technology scaling predictions. As we extend this

model to cover more analysis provided in [63], it leads to a discussion of the potential issues

with less structured approaches and highlights some of the features of the language that help

architects avoid these pitfalls.

3.1.1 A Brief Review of the Dark Silicon Model

To forecast the degree to which dark silicon will become prevelent on CMPs under process

scaling, Esmaeilzadeh et al. first construct three models: a device model (DevM), a core model

(CorM) and a CMP model (CmpM). DevM is the technology scaling model relating tech node

to frequency scaling factor and power scaling factor. It is a composite model combining a

scaling prediction with a simple dynamic power model (P = αCV2
dd f). CorM is the model

relating core performance, core power, and core area. It is empirically deduced by fitting

real processor data points. CmpM has two flavors which are essentially very different models:

CmpMU and CmpMR. CmpMU is an extension of the Hill-Marty CMP model [64] and CmpMR

is a mechanistic model [65].

A composition of the three models is then used to drive the design space exploration. The

authors combine DevM and CorM to look at CorM for different tech node and combine DevM,

CorM, and CmpM to iterate over a collections of topologies, scaling predictions and core

configurations. They then plot the scaling curves for the dynamic topology/CmpMR with both

ITRS and a conservative scaling [66].

45

Supporting Analytical Modeling in Architecture Designs Chapter 3

3.1.2 A Complete Charm Code Example

Listing 3.1 gives the complete code in Charm DSL to run the design space exploration with

ITRS predictions on the symmetric topology (we later extend the analysis to other topologies

and predictions in Section 3.5.1). At a high level, we can see that the code is split into three

major components: type definition (Line 3-81), model specification (Line 11-56) and analysis

declaration (Line 59-66).

Specifically, we first define commonly used domains as Charm types on the architectural

quantities we care about (Line 3-8). For example, the parallelism parameter in the model has

a physical meaning of the proportion of the algorithm that can be parallelized and it naturally

falls between [0, 1]. We thus define a type Fraction to encapsulate this domain constraint.

While this is a simple example, more complex constraints are possible.

We then formally specify the three models (DevM, CorM, CmpM) to evaluate (Line 11-

56). Taking the ExtendedPollacksRule model (Line 34-41) as an example, it declares upfront

all the architectural quantities that are involved in the model (e.g., ref core area which is the

core size at the reference technology node), their types (e.g., ref core area is a real number

on the positive domain) and the relationships between the architectural quantities, e.g., area =

0.0152per f 2 +0.0265per f +7.4393 (the constants come directly from the original dark silicon

paper [63]).

Once the models are defined, it is straightforward to declare the analysis in Charm (Line

59-66). One simply selects the given models in the study, supplies the inputs and specifies the

target metrics to explore. For example, in this case, we select ITRS, ExtendedPollacksRule and

SymmetricAmdahl models (Line 59), provide values such as the area (Line 60) and power (Line

61) constraints, and finally tell Charm what quantities we care to explore, in this case speedup,

dark silicon ratio and core num (Line 66).
1Line numbers in Section 3.1.2 all refer to Listing 3.1 and Listing 3.2 unless otherwise specified.

46

Supporting Analytical Modeling in Architecture Designs Chapter 3

O
p

ti
m

al
 C

o
re

 C
o

u
n

t

D
ar

k
 S

il
ic

o
n

 R
at

io

Tech node Tech node

Figure 3.1: Upper-bound ITRS scaling with symmetric topology.

3.1.3 Unstructured High-level Architecture Modeling Pitfalls

Building and executing an architectural model with an unstructured approach (e.g., in a

spreadsheet or some general purpose scripting language) is clearly possible2, but the lack of a

common abstraction introduces some issues as one tries to scale the analysis. Each additional

interacting component is a set of new opportunities to make an uncaught mistake.

The degree to which these mistakes end up in the final model (and the amount of effort

required to make sure it is mistake-free) is a function of the degree of composability, reusability,

consistency and completeness checking supported by the tool. It is easiest to see this if we talk

specifically again about the code of our example dark silicon analysis.

We first note that, although clearly defined conceptually, the three models needed are each

of a different form: DevM is essentially a table of different scaling factors, CorM is an empir-

ical set of points and a regression curve and CmpM is in the form of mathematical equations

relating a set of high-level architectural quantities. Furthermore, even if they were of the same

form, they are not “functions” but rather a set of mathematical relationships. The distinction is

quite important. With traditional lvalue / rvalue style assignments (common to both functions

2With all the potential issues, unstructured methods in architectural modeling may not be as correct as one
tends to believe [67, 68].

47

Supporting Analytical Modeling in Architecture Designs Chapter 3

1 # Type definitions.

2 # A real number greater than 0.

3 typedef R+ : Real r

4 r > 0

5

6 # A real number between [0, 1].

7 typedef Fraction : Real f

8 0 < = f, f < = 1

9

10 # Simple Fit of the ITRS Scaling (DevM).

11 define ITRS:

12 ref_tech_node : R+ as ref_t

13 ref_core_performance : R+ as ref_perf

14 ref_core_power : R+ as ref_power

15 ref_core_area : R+ as ref_area

16 tech_node : R+ as t

17 core_performance : R+ as perf

18 core_power : R+ as power

19 core_area : R+ as area

20 perf_scaling_factor : R+ as a

21 power_scaling_factor : R+ as b

22 ref_t = 45

23 perf = a * ref_perf

24 power = b * ref_power

25 area / t**2 = ref_area / ref_t**2

26 a = piecewise((1., t=45), (1.09, t=32),

27 (2.38, t=22), (3.21, t=16),

28 (4.17, t=11), (3.85, t=8))

29 b = piecewise((1., t=45), (0.66, t=32),

30 (0.54, t=22), (0.38, t=16),

31 (0.25, t=11), (0.12, t=8))

32

33 # Pollock’s Rule Extended with Power (CorM).

34 define ExtendedPollacksRule:

35 ref_core_performance : R+ as perf

36 ref_core_area : R+ as area

37 ref_core_power : R+ as power

38 area = 0.0152*perf**2 + 0.0265*perf + 7.4393

39 power = 0.0002*perf**3 + 0.0009*perf**2

40 + 0.3859*perf - 0.0301

41 perf < 50

42

Listing 3.1: Dark silicon analysis on symmetric topology with ITRS scaling (continue in Listing 3.2).

48

Supporting Analytical Modeling in Architecture Designs Chapter 3

43 # Amdahl’s Law under Symmetric Multicore (CmpM_U).

44 define SymmetricAmdahl:

45 speedup : R+ as sp

46 core_performance : R+ as perf

47 core_area : R+ as a

48 core_power : R+ as power

49 core_num : R+ as N

50 chip_area : R+ as A

51 thermal_design_power : R+ as TDP

52 fraction_parallelism : Fraction as F

53 dark_silicon_ratio : Fraction as R

54 sp = 1 / ((1 - F) / perf + F / (perf * N))

55 N = min(floor(A / a), floor(TDP / power))

56 R * A = A - N * a

57

58 # Assumptions are now explicit and composable.

59 given ITRS, ExtendedPollacksRule , SymmetricAmdahl

60 assume chip_area = 111.0

61 assume thermal_design_power = 125.0

62 assume fraction_parallelism = [0.999, 0.99, 0.97,

63 0.95, 0.9, 0.8, 0.5]

64 assume tech_node = [45, 32, 22, 16, 11, 8]

65 assume ref_core_performance = linspace(0, 50, 0.05)

66 explore speedup, dark_silicon_ratio , core_num

Listing 3.2: Dark silicon analysis on symmetric topology with ITRS scaling (continued).

49

Supporting Analytical Modeling in Architecture Designs Chapter 3

and spreadsheets) you end up with four issues:

Composition: It is hard to link the models’ I/O together or even check if the models can be

connected properly at all. Architectural models usually are connected to each other through

some common system parameters or physical quantities. In this example, to do the dark silicon

analysis, one needs to take scaling factors from tables in DevM, pass them as inputs to CorM,

apply the values and re-fits the curve for different tech node, after which one then has to sample

from the two Pareto curves in CorM and supply the samples to CmpMU for final evaluation.

This chain of data movement and dependency is not explicitly exposed by the models, and it

takes some effort to understand how these models link together. This issue of mismatched form

is even more acute when one wishes to switch out the CmpM core model with the CmpMR

core model because CmpMR takes a completely different set of inputs. With unstructured

methods, one has to explicitly program these connections typically by function call chains.

With Charm, one simply specifies all variables upfront within each model, and as long as the

full variable names are consistent, Charm “wires up” the models through these channelling

I/O variables. Perhaps most importantly, Charm throws an error when the models cannot be

properly linked. For example, if one forgets to provide values for technology node (Line 64),

Charm will complain that too many variables are free, or if the scaling model is about transistor

rather than processor core, as long as the variables are properly named (e.g., one does not name

transistor performance as core performance), Charm will capture this mismatch and warn that

the models cannot be connected.

Restructuring and Reorientation: The models cannot be evaluated in a flexible way. Even

though the model is a relationship between quantities, in spreadsheets or scripting languages

one has to implement the evaluation as functions with fixed arguments. In this example, one

typically codes up to evaluate the speedup from given value of core performance. If the control

quantity is changed to another, say core area, one has to fix the code. An even worse, and

50

Supporting Analytical Modeling in Architecture Designs Chapter 3

probably more interesting, case is when the control becomes the one under investigation, i.e.,

the input/output of the functions are reversed. In our example here, it happens when one wishes

to explore the core count constraint given a target dark silicon ratio. There is no easy way for ad

hoc methods to deal with this kind of flexibility but to completely reprogram. While in Charm,

models are interpreted as a set of mutually dependent relationships without a fixed direction,

and Charm runtime will generate the needed functions based on the provided controls and the

quantities to explore.

Reasoning under Uncertainty: Architectural models usually involve some uncertainties [19],

such as how technology may scale over the next 10-15 years. It is natural for computer archi-

tects to first evaluate the model with some concrete values (e.g., the scaling factors in Line 26,

29) and then model the uncertain quantity as some distribution, e.g., Gaussian distribution, as

in our case studies in Section 3.5. It requires non-trivial programming effort with spreadsheets

and scripting languages to support uncertain random variables. Charm supports different forms

of input values such as scalars, vectors as well as distributions to ease architectural exploration.

Exploration: The analysis procedure is often coupled with the model definition. A common

practice for computer architects is to explore the design space by iterating over a set of design

options or different values for some system configuration knobs. With the high-level models,

architects usually write imperative instructions to iterate over specific variables, and when the

iterative variable changes to another, it quickly becomes tedious and error-prone to break and

reconstruct the many-fold nested for loops. Charm decouples the model specification (Line 11-

56) from the analysis procedure declaration (Line 59-66). Such iterations over input values are

declarative and transparent (as opposed to writing for loops imperatively) by simply providing

a list of values as inputs (Line 62, 64 and 65) in Charm.

Secondly, computer architectural quantities often have certain physical meanings. For ex-

ample, core performance typically cannot be negative. A potential issue with unstructured

51

Supporting Analytical Modeling in Architecture Designs Chapter 3

methods is that these boundaries are usually only programmed ad hoc in spreadsheets or script-

ing languages. A negative core performance may be totally mathematically valid and will lead

to meaningless misleading result if not captured in the unstructured implementation. This issue

is even more likely to occur in the following two cases.

Implicit Domain Constraints: Architectural models typically have their range of operation.

Aside from the physical constraints, implicit domain constraints also come from how the model

is built at first place. In the dark silicon example, the normalized performance of the real data

points that the authors used to generate the CorM is in the range of (0, 50). Even though one

can argue that a core with normalized performance of 100 generally follows that regression

but the result derived from that is much less accurate and trusted. This type of constraints are

at most times only implicitly conveyed through the model building process, where it leads to

a potential pitfall when the model is reused, especially when one only tries to interpret and

re-implement the model from natural language descriptions (like in a published paper). While

Charm encourages model builders to put in these implicit constraints explicitly as constraints

built in the model specifications, e.g., Line 41. Charm will automatically check to see if these

constraints are violated during evaluation.

Unbounded Distributions: Many architectural quantities follow normal distribution such as

core frequency due to process variability [53–55]. When using these types of unbounded distri-

butions, it sometimes violates the physical constraints of the quantity (frequency must be pos-

itive). In unstructured modeling, this check is completely ad hoc and, if overlooked, will lead

to meaningless results. With Charm, this issue is automatically handled by the type checker, as

long as one specifies a correct type for the quantity, e.g., frequency : R+.

Last but not least, the design space to cover is typically huge with high-level models. In the

dark silicon model, the authors explore a hundred core configurations for each combination of

a scaling trend in DevM and a CMP model from CmpMU or a workload with CmpMR. The

52

Supporting Analytical Modeling in Architecture Designs Chapter 3

models are often to be evaluated hundreds of thousands, if not millions, of times which will

take a non-trivial amount of time. It only becomes worse when one tries to evaluate models

with uncertainties [19]. Without a structured system, a quick spreadsheet or naive prototyping

will end up with unacceptable performance when the problem is scaled up and the burden of

optimization falls upon the model builders and others who wish to use existing models through

re-implementation. As we show in Section 3.5, with the invariant hoisting and memoization

techniques, Charm greatly speeds up the exploration without additional effort from the model

builders.

3.1.4 Benefits of Charm

Charm addresses all the above issues and serves as a unified layer for the representation,

execution, and optimization of closed-form high-level architecture models. Charm provides

a concise and natural abstraction to clearly express architectural relationships, automatically

check model consistency and easily declare analysis goals. Charm can also transparently search

the design space for optimal configurations utilizing state-of-the-art constraint solvers. Build-

ing and evaluating closed-form high-level architecture models using Charm has the following

major benefits:

Clarity through abstraction – Charm encapsulates a set of mutually dependent relationships

and supports flexible function generation. It enables representation of architecture models

in a mathematically consistent way and modulates high-level architecture models by packing

commonly used equations, constraints and assumptions in modules. These architectural “rules

of thumb” can then be easily composed, reused, and shared in a variety of modelling scenarios.

Flexibility through automation – Rather than treating the mathematical relations as functions,

like in traditional programming languages, Charm keeps the abstraction at the mathematical

level; hence, it is able to generate corresponding dataflow graph on-the-fly without requiring

53

Supporting Analytical Modeling in Architecture Designs Chapter 3

the user to re-write the model when the same model is used for different high level studies.

To further assist automatic design space exploration, we extend core Charm to transparently

transform the system model into an SMT instance, if it is under-determined (there are one or

more free variables in the model), and utilizes SMT solvers (i.e., z3 [69] in our implemen-

tation) to efficiently explore the design space through bounding the infinite search space and

approximation.

Safety through type-checking – Charm enables new static and run-time checking capabili-

ties on high-level architecture models by enforcing a type system. One example is that many

architecturally meaningful variables have inherent physical bounds that they must satisfy; oth-

erwise, although mathematically viable, the solution is not realistic. With the type system

built-in, Charm can dynamically check if all variables are within user-defined bounds to ensure

a meaningful modelling result. The type system also helps prune the design space based on the

bounds, without which a declarative analysis might end up wasting a huge amount of comput-

ing effort in less meaningful sub-spaces. Charm also incorporate physical unit as an optional

part of variable definition and will check and convert physical units dynamically.

Efficiency through optimization – Charm opens up new opportunities for compiler-level op-

timization when evaluating architecture models. Although high-level architecture models are

usually several orders of magnitude faster than detailed simulations, as the model gets compli-

cated or is applied many times to estimate a distribution, it can still take a non-trivial amount of

time to naively evaluate the set of equations in every iteration. By expressing these complicated

models in Charm, we are able to identify common intermediate results to hoist outside of the

main design option iteration and/or apply memoization on functions.

Finally, and perhaps most importantly to the community, Charm promotes collaboration

between application designers, computer architects, and hardware engineers because they can

now share and refine models using the same formal specification and a common set of abstrac-

54

Supporting Analytical Modeling in Architecture Designs Chapter 3

tions. For example, to reason about the energy consumption of an application on a platform,

with his/her own application model written in Charm, the application developer won’t have to

implement an energy model from scratch and can simply plug in an existing one written also

in Charm.

3.2 Related Work

There exist systems and languages that support structured analytical modeling. Model-

ica [70] supports multi-domain analytical modeling with an emphasis on object-oriented model

composition, but the connection of models need to be explicitly dictated and the design space

exploration requires user intervention. On the other hand, Charm is more restricted, and thus

it is able to automatically link models and generate exploration loops. Aspen [71] provides

a DSL to express applications along with an abstract machine organization in order to model

performance. Palm [72] utilizes source code annotation to build analytical models for target

applications. LSE [73] is a fully concurrent-structural modeling framework designed to max-

imize reusability of components. There are also many other works in the field of HPC for

automatically performing performance modelling [74–76]. Most of these languages and sys-

tems serve a different purpose of expressing the mapping between performance/power models

and specific detailed application/architecture and are not well-suited for high-level analytical

design space exploration. In contrast, Charm is tailored for structured yet flexible exploration

of the interactions between architectural variables as well as their ramifications at a high level.

There are also a few systems exploiting the power of symbolic execution for modeling [19,67],

but Charm provides more capabilities around formalizing, checking, and evaluating the mod-

els. There also exists a tool [77] of the same name CHARM (Chip-architecture Planning Tool)

that uses a knowledge-based scheme to ease high-level synthesis.

The internals of Charm resemble some of the data-flow centered programming languages

55

Supporting Analytical Modeling in Architecture Designs Chapter 3

var, rn, tn ∈ Name rel ∈ Relation
val ∈ Value

p ∈ Program :=
−→
td
−−−→
rde f −→a explore −−→var

td ∈ TypeDe f inition := typedef tn
−→
rel

rde f ∈ RuleDe f inition := define rn
−−−−→
rdecl

rdecl ∈ RuleDeclaration := var tn | rel

a ∈ AnalyzeS tatement := given −→rn | assume −−−→asmt
asmt ∈ Assignment := var = val

Figure 3.2: Abstract syntax of charm. A program is a sequence of type definitions, rule
definitions, analysis statements, and a list of variables to explore. Relations are atomic with
respect to the semantics; they use the syntax and semantics of the backend solver. They use
the standard arithmetic and comparison operators, and allow lists, tuples, and real numbers as
possible values.

in the field of incremental/reactive programming [78–82] but differ in that Charm is highly

restrictive. This restrictiveness means that Charm is more of a modeling language rather than a

programming language, i.e., Charm does not support general purpose structures like loops and

function calls but supports a malleability useful for exploration (e.g., reversing input/output

dependencies).

3.3 Supporting Analytical Modeling from A PL Perspective

Charm provides a simple domain specific modeling language to express both closed-form

models and the design space exploration dimensions. The DSL has an easy-to-use Python-like

syntax. In terms of mathematical expressiveness, Charm supports all common closed-form

algebra that computer architects often resort to, including linear algebra like polynomials and

simple non-linear algebra like exponentiation. Basic non-closed-form functions like summa-

tion and product are also supported. To enhance the design space exploration to uncertain do-

56

Supporting Analytical Modeling in Architecture Designs Chapter 3

C,D, E,Ω ∈ RelationS et Γ ∈ TypeEnvironment = Name→ RelationS et
Θ ∈ RuleEnvironment = Name→ RelationS et µ ∈ VariableMap = Name→ Value

C =

{
c | c ∈

−→
rel

}
typedef tn

−→
rel ⇓T (tn,C)

typedef

(Γ, rdecli) ⇓ Ci C =
⋃

Ci

i ∈ 1..|
−−−−→
rdecl|(

Γ,define rn
−−−−→
rdecl

)
⇓R (rn,C)

ruledef Γ (tn) = C
(Γ, var tn) ⇓ C [var/tn]

rd-var

(, rel) ⇓ {rel}
rd-rel

Ci = Θ (rni) C =
⋃

Ci i ∈ 0..|−→rn|(
Θ, given −→rn

)
⇓A C

given (
, assume −−−→asmt

)
⇓A

{
e | e ∈ −−−→asmt

} assume
Ext(x) = ∅

∨
Ext(y) = ∅

∨
Ext(x) = Ext(y),∀x, y ∈ vars(rel)

ω =
{
α(a) | a ∈

⋃
Ext(bi),∀bi ∈ vars(rel)

}
α(a) = rel

[
x.a/x,∀x ∈ vars(rel)

]
rel ⇓M ω

multi-instance

Γ(tni) = Ci where tdi ⇓T (tni,Ci) Θ(rn j) = D j where
(
Γ, rde f j

)
⇓R (rn j,D j)

Ω =
⋃

Ek where (Θ, ak) ⇓A Ek Ω′ =
⋃
{ω | rel ⇓M ω

∧
rel ∈ Ω} isConsistent (Ω′)

isFullyDetermined
(
Ω′,−−→var

)
µ = SOLVE

(
Ω′,−−→var

)
i ∈ 1..|

−→
td| j ∈ 1..|

−−−→
rde f | k ∈ 1..|−→a |

−→
td
−−−→
rde f −→a explore −−→var ⇓P µ

program

Figure 3.3: Operational semantics of Charm. Relations are here taken as atoms; they use the
semantics of the backend solver engine. An overhead arrow indicates a sequence of one or
more elements. C[x/y] indicates to substitute all instances of y in C with x. vars returns the
names of all variables used in the relation set, while Ext returns all extensions of a variable
(portion of the name appearing after a dot when multi-instanced). isConsistent ensures the
relation set is consistent. isFullyDetermined ensures the relation set is fully determined
with respect to −−→var. SOLVE is an instance of the backend solver; it returns a mapping of all
specified variables to values (real numbers, lists, and tuples). typedef takes a type definition
and returns a tuple with type name and relation set. ruledef takes a rule definition and the type
environment and returns a tuple with rule name and relation set. rd-var takes a type rule dec-
laration and the type environment and returns a relation set, where relations on the indicated
type now apply to the indicated variable. rd-rel takes a relation rule declaration and returns
the same relation in a set. given takes a given analyze statement and the rule definitions and
returns the relation set of the indicated rule. assume takes an assume analyze statement and
returns a relation set of all the declared equalities. multi-instance takes a relation and returns
a set of relations, where the original relation is duplicated once for each extension possessed
by its variables, with the names of the variables replaced by their extended version (as dis-
cussed in section 3.3.2). program takes a program and returns a map for the list of exploration
variables, mapping each to real numbers, lists, and tuples determined by the backend solver.

57

Supporting Analytical Modeling in Architecture Designs Chapter 3

mains, Charm also supports distributional values to be set and propagated through the models

transparently. Once written in Charm DSL, the interpreter is able to transform the mathemat-

ical relationships and constraints into a series of data-flow graphs for fast evaluation. A type

system is applied to make sure all architecturally meaningful quantities operate in the correct

domain. Charm also optimizes the design space exploration procedure using compiler tech-

niques to eliminate redundant computation. Figure 3.4 graphically shows the interpretation

process.

In this section, we first describe the abstractions Charm provides and formalize the syntax

and semantics of Charm DSL. We then articulate the internal design of the interpreter and how

type checking, definability checking, evaluation and optimization are done in Charm.

3.3.1 Language Abstractions

Charm provides a common layer with three key abstractions to address all the potential

issues in Section 3.1.3. In Charm DSL, five keywords are reserved to express three abstractions:

types, models and analysis.

Keyword typedef translates into the first abstraction: type. The type system is designed to

be simple but useful: each type is essentially a base type with constraints, e.g., R+ is defined

as a positive number of base type real in Listing 3.1 Line 3-4. There are only two base types,

Real and Integer standing for real numbers and integer numbers respectively. Internally, real

numbers are represented by float and integers by int.

The second key abstraction is model. Keyword define constructs a model. A model spec-

ification in Charm encapsulates the following two pieces of information in a high-level archi-

tecture model:

• A set of variables. Each variable has a universally unique and consistent full name. Each

variable also has a local short name (optional), as well as an explicitly declared type and

58

Supporting Analytical Modeling in Architecture Designs Chapter 3

ParsingCharm Source Code

Models Analysis

let ...

assume ...

explore ...
...

+

Type
Checking

Model
Linking

Dependency Graph

Eq1

a
b c

Eq2

d

Eq3

Function
Generation

Functional Graph

Fn3

Fn1

a

b
Fn2

c

e

e

d

Symbolic
Solving

Optimization

Optimized Functional Graph

Fn3

Fn1

a

b
Fn2

c
e

d
Evaluation

c

e

Constraint
Checking

Con1

Con1

Con1
LoopInvariant

Data
Structures

Interpreter

I+

R+

Rϵ[0, 1]

...

Types

+

5 * a = b / 2,

b * c = d + 1,

d ** 2 + a = 3 * e,
a + 4 * e > 0

Figure 3.4: Overview of Charm interpreter. The example system has 3 equations (Eq1, Eq2
and Eq3), 1 constraint (Con1) and 5 variables in which c is the iterative input. In this example,
we are tying to explore the relationship between e and c given a. The parser takes Charm
source code and breaks it into a set of types, a set of model definitions and a set of analysis
statements. Charm then links types, models and assignments in a dependency graph after they
go through the type checker. The graph then is fed to a function generator and a symbolic
solver to convert it into a functional graph. The optimizer finally takes the functional graph
and annotate it with hints for execution before it finally gets evaluated and checked against
model constraints.

59

Supporting Analytical Modeling in Architecture Designs Chapter 3

physical unit (optional, e.g., chip area : R+ in µm2). For instance, in Listing 3.1 line 35,

the short name is “perf ”, the type is “R+”, which means positive real number, and the

long name is “ref core performance”. Short names live only within the definition of a

model, while full names are exported to other models as well as to the analysis logic.

• A set of relations. In Charm, both equations and inequalities are considered relations .

Relations define mathematical relationships between variables using either their full or

short names (e.g., Listing 3.1 Lines 41, 54-56). Both linear and nonlinear systems are

present in architectural models that we care about. The general problem of determining

the definability of and solving such systems is theoretically hard and beyond the scope

of this work. Given the limitations and solving capabilities of existing back-end solvers,

some very complicated non-linear equations cannot be symbolically solved (e.g., Charm

will throw an error if one tries to solve for x in y = (a1/x)2x
). Fortunately though, we find

that most models computer architects care about are well within the limit. Equations can

also bind variables to constant quantities as assumptions defined in the model specifica-

tion (e.g., kBoltzmann = 8.6173303× 10−5). Relations can be value generative, if values

of all but one variable are given. A relation can also be non-value-generative, which

includes all inequalities and equations that have all their variables assigned a value.

Charm DSL accepts different mathematically equivalent forms of relations, so that different

modelers with different background expertise can write the math in the conventional way of

their own fields and use other models directly as they are without rewriting.

The Charm DSL is strongly typed. The model abstraction enforces explicit type declaration

to make sure there are not implicit assumptions about data types and domains across models.

Charm abstracts the common structure of an analysis with three keywords: given, assume

and explore.

Before computation, given statement selects the model in the analysis. If multiple models
60

Supporting Analytical Modeling in Architecture Designs Chapter 3

are selected, they are linked together automatically by the interpreter. Full names of variables

are used to connect each other across models.

Although in general, many algebra systems can be solved without additional inputs, for

computer architecture models, at most times, some control quantities need to be given (e.g.,

design options like core size and system configurations like cache associativity) in order to

solve for the quantities under investigation (e.g., speedup of a CMP). Keyword assume serves

such purpose by differentiating assignment equal signs from mathematical equal signs inside

model specification, i.e., assume statements are assignments much like in other programming

languages while equations in model specification are merely mathematical relationships which

do not imply a direction of data movement. Charm also constrains assume statements to be

assignment with constants, i.e., they can only be used to express external inputs to the model

rather than defining additional relations outside of the model specification.

Charm supports both scalar and vector value assignments, as well as random variable of

commonly used distributions, e.g., Gaussian Distribution.

Iteration is expressed in a Pythonic list-like syntax or functions that generates a list, e.g.,

linspace, and assigned to some input variable just like a normal assume statement (e.g., List-

ing 3.1 Line 65). Charm handles iteration naturally by selecting combinations of all iterative

input values non-repeatedly from their Cartesian space in a Gray code fashion. Two special

cases are: a), if two or more input variables are dependent, they can be expressed like Python

tuple assignment, e.g., assume (tech node, f req scaling f actor) = [(45, 1.), (32, 1.09)] and b),

if a variable is indexed, it can be expressed using special “list” notation after its variable name,

e.g., assume L[] = [1, 2], which means L[0] = 1 and L[1] = 2. These notations become handy

when we write the quantum models with Charm in Section 3.5.2.

Finally, an analysis is completed by specifying which quantities to solve for symbolically

and evaluate using explore. Charm exploits a data-flow centric approach and builds a directed

acyclic functional graph internally to propagate given values through linked models to the final

61

Supporting Analytical Modeling in Architecture Designs Chapter 3

responsive variables architects wish to explore.

Figure 3.2 gives the abstract syntax of Charm and Figure 3.3 formalizes the semantics.

3.3.2 Language Internals

In order to evaluate the models and optimize the evaluation logic, Charm uses two data-

flow graph structures internally to represent and transform the computation. In this section, we

first define the core graph data structures and then describe how we can perform type checking,

function generation, evaluation and optimization with these graph structure.

Dependency Graph. A dependency graph is a bipartite graph G =< Vvar,Vrel, E >, where:

• Vvar is the variable node set in which every variable in the selected models is a vertex.

• Vrel is the relation node set and Vrel = Veq ∪Vcon, where Veq is the set of vertices in which

every equation in the selected models is a vertex; Vcon is the set of vertices in which every

constraint in the selected models is a vertex.

• E is the set of edges and there exists an edge between vertices in Vvar and Vrel if and only

if the variable name appears in the relation.

Functional Graph. A functional graph is a directed acyclic dependency graph D in which:

• Every node in Vvar has at most 1 incoming edge, i.e., its in-degree being 0 or 1.

• Every node in Veq has at most 1 outgoing edge, i.e., its out-degree being 0 or 1.

• Every node in Vcon has no outgoing edge, i.e., its out-degree being 0.

Dependency graph building and static type checking. To build the dependency graph from

the models, Charm performs a single scan over all relations in the models. It assigns a variable

node to every variables with a unique full name (including variables automatically generated by

62

Supporting Analytical Modeling in Architecture Designs Chapter 3

multi-instancing) and an equation/constraint node to every equation/constraint. When creating

relation node, Charm creates an edge between the equation/constraint node to a variable node

if the variable is used in the equation/constraint. Finally, Charm scans the analysis statements

and marks variable nodes being assigned as input nodes.

Charm performs simple type checking both statically when building the dependency graph

after parsing and dynamically when checking constraints at runtime. Static type checking is

done by tracking the variable names and types when building the dependency graph. Each

variable must be declared with an explicitly defined type. If a variable name is used by two or

more relations, we check that their defined types are identical (both base type and constraints

associated). Charm aborts execution and issues an error message for inconsistent types.

Relation Multi-instancing. When building a dependency graph, different variables some-

times follow the same mathematical relationships. An example is core per f ormance.big and

core per f ormance.small defined in Listing 3.3 Line 5-6. Both of them follow equation in

Listing 3.1 Line 23 when plugged in for evaluation. We discuss their physical meanings later

in Section 3.5.1, but they are essentially two variables following the same mathematical re-

lationship. We refer this behavior as “relation multi-instancing” and use the dot notation (a

variable name and a name extension concatenated by dot, e.g., core area.big) to invoke multi-

instancing. Charm internally creates variable nodes and relation nodes for multiple instances

with different name extensions. Figure 3.5 shows how these nodes in the dependency graph are

created. The model is ill-defined if Charm fails to find extended input variables with consistent

name extensions or discovers inconsistent name extension sets for different variables trying to

invoke multi-instancing.

Functional graph building and function generation. After building the dependency graph G,

the function converter tries to convert G into a functional graph F. If it can convert successfully,

there is a viable solution when all equations or sets of equations can be solved and lambdified

63

Supporting Analytical Modeling in Architecture Designs Chapter 3

a.

Eq3

Eq1

a

b
Eq2

c

b.2

b.1

d.1

Eq1.1
Eq2

c

b.2

b.1

d.2

Eq1.2

Eq3.1

Eq1.1

a.1

Eq2

c

d.1

b.2

b.1

Eq3.2

a.2

Eq1.2

b.

Eq3

Eq1

a

Eq2

c

b.2

b.1

b.2

b.1

d.2

e e

e

e

c.d.

a.1

a.2

Eq3.1

Eq3.2

d.2

d.1

d.2

d.1

Figure 3.5: Relation multi-instancing when generating dependency graph. a) The initial graph
has extended names (b.1, b.2). b) Charm finds and splits the corresponding base name node. c)
Charm propagates the multi-instancing, i.e., all nodes connected to the base name node (b) are
also split. Then Charm merges names with same extension together. d) The multi-instancing
ends with checking input nodes for identical name extensions and removing edges between
non-consistent name extensions. In this case, it ends when the split process reaches d and e,
successfully finds d.1 and d.2 which are extended names with consistent name extension set
({.1, .2} in this example) and removes the edges between (d.1, Eq3.2) and (d.2, Eq3.1).

64

Supporting Analytical Modeling in Architecture Designs Chapter 3

by the back-end symbolic solver, and therefore the models can be evaluated by Charm.

The function converter backtracks through G in a DFS manner and tries to label all the

edges with a direction without introducing a conflict. A conflict occurs when an equation

node has more than one outgoing edges or when an inequality node has any outgoing edge

or when a variable node (excluding input nodes) does not have exact one incoming edge. If

there is a successful labeling of all edges, Charm uses Sympy [59] as the back-end solver to

convert all equations and constraints (all inequalities and equation nodes with an out-degree

of 0 are considered as constraints at this point) into callable functions with inputs being the

variables directly pointing to the equation/constraint and output being the variable pointed at

by the equation node. As part of type checking, each variable node is also associated with

the constraint from its type. These type constraints are also lambdified and evaluated during

evaluation. The search space for conversion is in practice greatly reduced by the following

heuristics:

• All edges with one node being input node have fixed direction (from the input node).

• All edges with one node being a dangling variable node (variable node that has only one

edge) have fixed direction (to the variable node).

• All edges with one node being a constraint have fixed direction (to the constraint node).

Cycle elimination. A functional graph F must be acyclic in order to evaluate. However, when

there are codependent equations, they form cycles. In case of a cycle, all equation nodes in the

cycle must be solved altogether. We pass the equations in a cycle to the solver at once and then

replace the cycle with pairs of function node and variable node, where each pair is a mapping

between all inputs to the cycle (a dummy input node is created if there are no inputs from

other parts of the graph to the cycle) and one variable node inside the cycle. Each function

node generated by the cycle has one variable along the cycle as its output and all functions

65

Supporting Analytical Modeling in Architecture Designs Chapter 3

a.

Eq3

Eq1

a

b Eq2 c

d

b.

ef

Con1

a

b

d

e

f

c

Con1

Fn_a

Fn_b

Fn_d

Figure 3.6: Cycle elimination when generating functional graph. Equations in a cycle are
solved at once and are replaced with three functions, each of which generates a different
variable value.

generated by the cycle are from the same set of equations, only with different variables as

output. Figure 3.6 shows an example of cycle elimination in F.

Computational constraints. A special computational constraint is applied when building a

functional graph: some mathematical operators are not reversible or have infinite solutions,

such as
∑

and
∏

, some are computationally hard for the solver, like solving x in y = (a1/x)2x
.

For the non-reversible equation, its direction is fixed, i.e. its edges have fixed direction not

subject to the function converter.

Evaluation and constraint checking. Once we have a viable functional graph F, a feasible

solution is to derive from all input nodes and propagate the given values by traversing F. Each

following function/constraint node is transformed using higher-order functions to “remember”

propagated partial values before all inputs are ready and it can be evaluated.

Optimization. Oftentimes architects explore the relationship between two variables by iter-

ating over different input values. One simple yet effective optimization is invariant hoisting.

66

Supporting Analytical Modeling in Architecture Designs Chapter 3

With the functional graph structure, it is straightforward to optimize for invariant in Charm.

From each iterative variable node, Charm simply traverse from that node, then all nodes that

cannot be reached from the iterative input nodes are invariant to iteration over that input. In the

simple illustrative example in Figure 3.4, c is iterative and a, b, Fn1 are invariant because there

are not paths from c to them.

Each function node also caches a mapping table between inputs and its output. Such mem-

oization optimizes away unnecessary re-computation over same set of input values.

3.4 Extensions to Core Charm

The core Charm we described in Section 3.3.2 provides a systematic way of managing

closed-form architecture models. Through the abstractions of core Charm, we already achieved

the many benefits including clarity, flexibility, safety and efficiency that we desired in Sec-

tion 3.1.4. However, the core language solves the model (i.e., derives quantities queried) only

when it is mathematically determined and solvable.

As the design shifts towards a landscape of less understood ASICs and beyond Moore

technologies, unlike traditional systems such as CPUs where architects have tens of years of

existing designs and experience to draw upon, we usually are faced with a large set of free

variables both at the architecture level (e.g., issue width, buffer sizes) and application level

(e.g., neural-network structure, tiling configuration), as well as a broad set of constraints (e.g.,

thermal limits, classification accuracy). The sheer number from the combinatorics of these

parameters imposes a significant computational challenge when searching for an optimal de-

sign. Sweeping the vast space, even in closed-form only, incurs high costs in both time and

resources.

To demonstrate the extensibility of Charm, we extend integrate Charm with z3 [69] to trans-

parently support such effort by transforming an under-specified model into an SMT instance.

67

Supporting Analytical Modeling in Architecture Designs Chapter 3

Parsing

Charm Source
Code

Models Analysis

given ...
assume ...

explore

+

Type Checking

Model
Linking

Dependency Graph

Eq1

a
b c

Eq2

d

Eq3

Dataflow
Generation

Function Graph

Fn3

Fn1

a

b

Fn2

c

e

e

d

Symbolic
Solving

Optimization

Optimized Function Graph

Fn3

Fn1

a

b

Fn2

c

e

d

Evaluation

c

e

Constraint
Checking

Con1

Con1

Con1
LoopInvariant

IO/Data
Structures

I+

R+

Rϵ[0, 1]

...

Types

+

5 * a = b / 2,

b * c = d + 1,

d ^ 2 + a = 3 * e,
a + 4 * e > 0

No

Yes

SMT
Transfor-
mation

(declare-fun a () BV)
(declare-fun b () BV)

...
(declare-fun e () BV)
(assert (= a*5 b/2))

...
(assert (and (> y2 0) (< y2 5)))

...
(check-sat)
(get-model)

SMT Instance

Interpretation
Flow

Figure 3.7: Overview of extended Charm. Difference between the extended workflow here
and Figure 3.4 is the following: if the conversion from dependency graph to function graph
is unsuccessful, Charm transparently generates an SMT instance based on the variables and
relations in the model specification and calls out to the SMT solver to find a possible solution.

68

Supporting Analytical Modeling in Architecture Designs Chapter 3

Figure 3.7 demonstrates this extension in the core Charm workflow. With any (or all) of the

assumptions (Lines 60-65) taken away, Charm now automatically detects the free variables,

transforms the relationships into bounded SMT instances, and calls out to z3 to search for a

viable configuration (if there exists a satisfiable solution). Furthermore, Charm can also itera-

tively optimize the design by tightening constraints in the SMT instance (e.g., lower bound on

performance, upper bound on power) on-the-fly.

Transforming under-determined system into SMT problem. If the conversion from depen-

dency graph to function graph fails, i.e., the algorithm does not find a matching with a size

equal to the number of variables in R, Charm aggregates all relations and exports a quantifier-

free SMT instance to z3. It is well-known that some of the SMT theories are undecidable

but, fortunately, the theory of bit-vectors and floating-points is bounded and decidable. We

approximate each real variable in the model into a floating-point (fp) using the IEEE 754 en-

coding since most of time we do not need infinite precision (e.g., we typically do not need an

IPC to the 10th decimal), and each integer variable is approximated by a bit-vector (bv). The

transformation also bounds the search space by the number of bits we use. We set 32 bits as

default length because it achieves good balance between applicable range (most design config-

urations fit within the range) and synthesis speed. The computation is done in the fp domain

and we dynamically cast bv to/from fp values by rounding to the nearest even. We find in our

experiments that this approximation works well for a wide variety of architecture models.

Optimizing under-determined systems. In a complex system design space, sometimes a

manual search (even from a synthesized configuration) is not favorable as it can quickly become

tedious and inefficient if each iteration requires a combination of hundreds of parameters. With

the SMT solver, the optimization can be automatized by iteratively tightening/loosing bounds

of the system constraints, e.g., iteratively asking the question “is there a configuration that

has better performance?” or “is there a configuration that consumes less power/energy?”. To

69

Supporting Analytical Modeling in Architecture Designs Chapter 3

quantify how much better each iteration should be targeting, Charm allows users to specify a

step coefficient (e.g., speedup@0.1) to control the granularity of the search.

3.4.1 Existing Design Space Support with Constraint Solving

There exists a line of research which utilize constraint-solving to guide design space ex-

ploration. Mohanty [83] uses constraint solving as a first step to prune the entire design

space of embedded SoCs at a coarse granularity for later evaluation. CoBaSA [84] com-

piles the component-based software development design space and system constraints into

a pseudo-Boolean satisfiability problem to find feasible solutions with a large number of con-

straints. Haubelt et. al. [85] encode system synthesis problem into a SAT instance in or-

der to find a feasible binding between processes and resources. Regarding the use of SMT

solvers [86–89], a plethora of research work has explored task scheduling and resource man-

agement using an SMT solver including methods with high-level language or custom DSL as

the frontend [86, 89].

With Charm, we use SMT solver to explore the design space formed by analytic architec-

ture models. We utilize the theories of bit-vectors and floating-point numbers to bound the

infinite design space and approximate the architectural quantities. These SMT theories are

seamlessly integrated with core Charm and provides a systematic way to express such under-

determined exploration queries.

3.5 Case Studies with Charm

In this section, we demonstrate the application of both core Charm and its SMT extension

using three case studies. In the first case study, we demonstrate the benefits of Charm by

extending the dark silicon analysis with a different topology and a distribution of technology

scaling. We also compare the execution times with and without optimization.
70

Supporting Analytical Modeling in Architecture Designs Chapter 3

The second case study focuses more on the problem of modeling a critical resource in

fault-tolerant quantum computing and performs exploration with varying physical error rate.

Interestingly, when validating Charm results in the second case study, Charm helps find incon-

sistent model definition errors, which are silently propagated through by Mathematica [90] and

would have led to incorrect results.

The third case study demonstrates how extended Charm deals with under-specified system

models and assists design space exploration with the use of SMT solvers. We use a well-cited

analytic model for Convolutional Neural Networks (CNNs) [91] along with the roofline models

of a set of FPGA platforms to explore tiling configurations for different CNN architectures.

3.5.1 Dark Silicon and Beyond

Listing 3.3 highlights all the changes that we need to implement in Charm to model and

switch the DSE from symmetric topology to asymmetric. Note that in the asymmetric model,

“relation multi-instancing” comes in handy when expressing two co-existing types of core. To

switch the analysis, all we need to do is to change the models that are given (Listing 3.3 Line

22) and provide values for two types of core instead of one (Listing 3.3 Line 23-24). We also

write a new constraint (Listing 3.3 Line 20) to specify the fact that the big core should have

better performance than the small core.

It’s even simpler to switch from ITRS scaling predictions to the conservative predictions [66].

Listing 3.4 shows all the changes needed. Figure 3.8 plots the resulting scaling trends for the

asymmetric topology.

One interesting question one may ask is “what if the actual technology scaling is some-

where in between the two predictions?” We explore the design space with a distribution of

scaling factors. We use a Gaussian distribution for the scaling factor, the mean of which being

the average value between the two extremities and the standard deviation being the difference

71

Supporting Analytical Modeling in Architecture Designs Chapter 3

1 # Amdahl’s Law under Asymmetric Multicore (CmpM_U).

2 define AsymmetricAmdahl:

3 speedup : R+ as sp

4 # here we need two types of perf, area, power

5 core_performance.big : R+ as big_perf

6 core_performance.small : R+ as small_perf

7 core_area.big : R+ as big_a

8 core_area.small : R+ as small_a

9 core_power.big : R+ as big_power

10 core_power.small : R+ as small_power

11 core_num : R+ as N

12 chip_area : R+ as A

13 thermal_design_power : R+ as TDP

14 fraction_parallelism : Fraction as F

15 dark_silicon_ratio : Fraction as R

16 sp = 1 / ((1-F)/big_perf + F/(N*small_perf+big_perf))

17 N = min(floor((A - big_a)/small_a),

18 floor((TDP - big_power)/small_power))

19 R * A = A - (N * small_a + big_a)

20 big_perf >= small_perf

21

22 given ITRS, ExtendedPollacksRule , AsymmetricAmdahl

23 assume ref_core_performance.big=linspace(0,50,0.05)

24 assume ref_core_performance.small=linspace(0,50,0.05)

Listing 3.3: Asymmetric model and the changes in code.

1 # Conservative scaling model (DevM).

2 define ConservativeScaling:

3 ...

4 a = piecewise((1., t=45), (1.10, t=32),

5 (1.19, t=22), (1.25, t=16),

6 (1.30, t=11), (1.34, t=8))

7 b = piecewise((1., t=45), (0.71, t=32),

8 (0.52, t=22), (0.39, t=16),

9 (0.29, t=11), (0.22, t=8))

10

11 given ConservativeScaling , ExtendedPollacksRule , AsymmetricAmdahl

Listing 3.4: Conservative scaling and the changes in code.

72

Supporting Analytical Modeling in Architecture Designs Chapter 3

O
p
ti

m
al

 C
o
re

 C
o
u
n
t

S
p
ee

d
u
p

D
ar

k
 S

il
ic

o
n
 R

at
io

IT
R

S
C

o
n

se
rv

a
ti

ve
U

n
ce

rt
a
in

O
p
ti

m
al

 C
o
re

 C
o
u
n
t

S
p
ee

d
u
p

D
ar

k
 S

il
ic

o
n
 R

at
io

O
p
ti

m
al

 C
o
re

 C
o
u
n
t

S
p
ee

d
u
p

D
ar

k
 S

il
ic

o
n
 R

at
io

Figure 3.8: Upper-bound scaling with asymmetric topology with tech node on x-axis. Note
that the last figure of optimal core count has a linear-scale y-axis to better demonstrate the
variance. For clarity we only plot two regions in the uncertain scaling results, but the trends
for other f values are similar.

73

Supporting Analytical Modeling in Architecture Designs Chapter 3

1 # Distributional scaling model (DevM).

2 define DistScaling:

3 ...

4 a = piecewise((1.,t=45),(Gauss(1.095,0.005),t=32),

5 (Gauss(1.785,0.595),t=22),(Gauss(2.23,0.98),t=16),

6 (Gauss(2.735,1.435),t=11),(Gauss(2.595,1.255),t=8))

7 b = piecewise((1.,t=45),(Gauss(0.685,0.025),t=32),

8 (Gauss(0.53,0.01),t=22),(Gauss(0.385,0.005),t=16),

9 (Gauss(0.27,0.02),t=11),(Gauss(0.17,0.05),t=8))

10

11 given DistScaling , ExtendedPollacksRule , AsymmetricAmdahl

Listing 3.5: Uncertain scaling and the changes in code.

between the mean and the extremities. Listing 3.5 shows the necessary changes in Charm code.

It is important that although Gaussian distribution is not bounded, the scaling factors have a

bounded domain. The type checking in Charm makes sure that the scaling factors a and b

operate only in their defined domains (see Listing 3.1 Line 20-21), and the provided Gaussian

distribution is converted to a truncated Gaussian distribution with the same mean and stan-

dard deviation within Charm. From Figure 3.8, we can see that with the technology scaling,

the more parallel workload (with an f close to 1) shows more sensitivity towards technology

uncertainties while the more serial workload is less sensitive to the changes in the core per-

formance and power. Another probably even more interesting observation is that the optimal

core count of the most performant configuration becomes very uncertain once we hit 11nm and

beyond. The uncertainty grows sharply from 16nm to 11nm mainly because below 11nm, the

CMP is mainly area bounded, and since the area scaling is certain (Listing 3.1 Line 25), it

limits the amount of uncertainty that gets propagated to the optimal core count. Meanwhile,

when the tech node scales to 11nm and beyond, the CMP becomes power bounded and is

extremely sensitive to the power uncertainties propagated from the uncertainty of the power

scaling factor.

Figure 3.9 shows the actual functional graph generated by Charm. In terms of execution

performance, we compare Charm execution to an unoptimized baseline in which all computa-

74

Supporting Analytical Modeling in Architecture Designs Chapter 3

(20)

(23)

38'

15'
12

25'

16

(12)

7

39'

14'

25'

8

(19)

(15)

(17)

(11)

(13)

(24) 20

38'

15'

24'

39'

23' 23'

21'

14'

5 6

24'

9

10
(14)

(16)

(3)

26

29'

21'

29'

Figure 3.9: Functional graph generated by Charm for asymmetric dark silicon model. Node
labels correspond to line numbers in Charm source code. As we present the asymmetric
model code separately from the rest, plain numbers correspond to lines in Listing 3.1, and
numbers in parenthesis correspond to lines in Listing 3.3. Numbers with prime (e.g., 21’) are
cloned names/equations generated by Charm from the same line of code.

75

Supporting Analytical Modeling in Architecture Designs Chapter 3

tion is re-done per iteration (no invariant hoisting nor memoization). For ITRS or conservative

scaling with asymmetric topology (a design space of 150K design points), full-blown Charm

finishes on average within 120.5s, while the unoptimized implementation uses 159.5s (1.3X

speedup). For the uncertain scaling with a MC sample size of 200 (1̃ million design points),

optimized Charm uses 1562.5s, and it takes 5703.1s for the baseline implementation (3.6X

speedup) on a single Intel i7 core at 3.3GHz to finish.

3.5.2 Surface Code Error Corrected Quantum Application and Archi-

tecture Co-optimization

In this section, a high level model for the resource overhead for implementing magic state

distillation on surface code [92–94] is described and implemented within the Charm frame-

work, which is used to pinpoint nontrivial interactions between fundamental system parame-

ters.

For this study, we focus primarily on the Bravyi-Haah “3k + 8 → k” procedure [92] aug-

mented with the block-code protocol. By recursively stacking magic state distillation protocols

in a tree-like fashion, one can generate arbitrarily high-fidelity magic states, which is required

by a quantum program [94]. The space required by one round of Bravyi-Haah magic state

distillation is given by the number of physical qubits required to run the circuit. Using block

code, the procedure will consume (3k + 8)`−1(6k + 14)d2 physical qubits, where d is the surface

code distance we are using.

Adding more factory capacity K results in more output magic state capacity (higher ef-

fective rate). However this also adds more components to the factory that may fail. In fact,

a magic state factory has a yield rate proportional to the output capacity K that is caused by

uncertainty in the success probability of the underlying Bravyi-Haah protocol. This yield rate

76

Supporting Analytical Modeling in Architecture Designs Chapter 3

l = 2, K=50l = 1, K=1 l = 2, K=1 l = 1, K=50l = 1, K=1 l = 2, K=1 l = 1, K=50 l = 2, K=50

Figure 3.10: Factories designed with an implied low physical error rate only require concate-
nation up to ` = 1 level, while more pessimistic factories require ` = 2. While larger factories
with K = 50 consistently show lower mean space-time consumption, they also suffer from
large performance uncertainty when the assumed design error rate varies.

scales as:

Koutput = k` ×
∏̀
r=1

[
1 − (3k + 8)εr

]
(3.1)

where εr = (1 + 3k)2r−1ε2r

in , because each level of the process results in incrementally higher

fidelity (i.e., lower error rate).

Given a T gate request distribution D representing a program, the number of iterations

needed to distill is:

Tpeak∑
t=0

(
s ·
√

K′ +

√
t − sK′

2
· R

)
· Lcp · D[t], (3.2)

where s =
⌊

t
K′

⌋
, and R = 7d+15

24d` . All of these equations combine to form a high level space-

time estimate of the resources required to execute a quantum application on a machine with a

specified magic state distillation factory architecture.

Using Charm, we are able to analyze the underlying sensitivity of different magic state fac-

tory architectures to variations in the underlying error rate of the physical system. We examine

two different design cases, one where the factory is designed assuming a 10−3 error rate, and

one assuming a 10−5 error rate. Figure 3.10 illustrates that while the time-optimal factory does

show a lower expected space-time volume, it also shows significantly higher uncertainty and

spreads in performance values over the space-optimal factory. This design point clearly moti-

77

Supporting Analytical Modeling in Architecture Designs Chapter 3

vates that quantifying the uncertainty of a physical device is necessary to lead to risk-optimal

system designs that perform well on a given system.

Charm is able to discover and quantify this trend with minimum effort, and allows for a

quantitative analysis to be performed on these designs that will aid the construction of physical

systems. Additionally, implementing this high level performance model in Charm allows for

validation and more domain-specific error catching that previous implementations in Mathe-

matica has been unable to catch. Specifically, a previous implementation has an incorrect pa-

rameter passed into a distance calculation function that Mathematica allowed to flow through.

Charm is able to detect this error, warns that the models cannot be connected properly which

helped correct the results of the model.

3.5.3 Exploration of CNN Tiling on FPGAs

In this case study, we explore an under-determined system with Charm. To evaluate CNN

tiling on a set of Xilinx FPGA boards analytically, we take the analytical model from previous

work [91] and use it to demonstrate the SAT-based searching capabilities of Charm. We let

Charm automatically explore the configuration space for tiling and discover several new find-

ings in this parameter space. We first describe the model for CNNs and the FPGA boards we

are targeting. Then we ask the question: what is the optimal tiling configuration of a CNN

architecture to maximize performance on a specific FPGA board?

CNN and FPGA models

Roofline model is an intuitive tool used to visualize a design’s performance under the con-

straints of the platform’s peak performance and maximum bandwidth [95]. To enable simulta-

neous multi-platform exploration, we allow an overlapping of a variety of “rooflines”. More-

over, besides the compute and bandwidth ceilings defined by the platform’s specifications,

78

Supporting Analytical Modeling in Architecture Designs Chapter 3

Charm allows the user to set “floors”: the lowest acceptable performance and the computation-

to-communication ratio, which is directly related to the energy cost per operation.

For convolutional neural networks (CNNs), the convolution layers take up most of the com-

putation time [?]. Many methods for efficient implementations of these networks on hardware

have been proposed, building FPGA-accelerators being one of them. Zhang, et al. [91] build a

roofline model based on memory bandwidth and logic resources with tiling:

computational roof =
total # of operations
of execution cycles

≈
2 × R ×C × M × N × K × K
[
] M

Tm
× [

] N
TN
× R ×C × K × K

(3.3)

CTC ratio =
total # of operations

total external data access

=
2 × R ×C × M × N × K × K
αin × Bin + αwght + αout × Bout

(3.4)

where,

Bin = Tn(S Tr + K − S)(S Tc + K − S) (3.5)

Bwght = TmTnK2 (3.6)

Bout = TmTrTc (3.7)

0 < Bin + Bwght + Bout < BRAMcapacity (3.8)

αin = αweight =
M
Tm
×

N
Tn
×

R
Tr
×

C
Tc

(3.9)

αout =
M
Tm
×

R
Tr
×

C
Tc

(3.10)

Here, the tiling design space consists of tile dimensions Tr,Tc,Tm and Tn. These param-

79

Supporting Analytical Modeling in Architecture Designs Chapter 3

1 define xilinx_xc7vh870t_3:

2 computation : R+ as cmpt

3 computation_roof : R+ as roof

4 bandwidth : R+ as bw

5 bram_usage : R+

6 roof = 3734.0

7 cmpt <= roof

8 bw <= 420.0/8

9 bram_usage <= 50760.0 * 1000 * 1000/8

Listing 3.6: Hardware constraints from an FPGA board

eters are bounded by the corresponding dimensions of the NN structure. αin, αout, αwght and

Bin, Bout, Bwght denote the trip counts and buffer sizes for accesses to the input feature maps,

output feature maps, and the weights, respectively.

With the help of this analytic model, we can now explore the tiling configuration space

given any platform in the roofline space. An example FPGA board (xilinx xc7vh870t 3) in

Charm is presented in Listing 3.6. The full Charm code for the CNN model is listed in List-

ing 3.7.

Optimizing Design Under Constraints

Here, we try to find an optimal configuration, in terms of a) performance, b) bandwidth

requirement, and c) both performance and bandwidth requirement, by generating constraints

on-the-fly while exploring the design space.

We use the CNN model of AlexNet [?]. AlexNet consists of 5 convolution and 3 fully-

connected layers. For this experiment, we consider only the convolution part of this model.

We look for the optimal (Tm,Tn,Tr,Tc) configuration for the second layer of the CNN model

by dynamically adding lower-bound performance and/or upper-bound bandwidth constraints

to make the SMT solver find a better configuration iteratively.

Figure 3.11 presents the search result. We can tell that the lower-/upper- bound constraints

quickly guide the search to a more interesting area. By utilizing a state-of-the-art SMT solver,

80

Supporting Analytical Modeling in Architecture Designs Chapter 3

1 define CNN:

2 R : I+

3 C : I+

4 M : I+

5 N : I+

6 K : I+

7 T_m : I+

8 T_n : I+

9 computation : R+ as comp

10 comp = (2 * M * N) / (ceiling(M / T_m) *

11 ceiling(N / T_n))

12

13 a_in : R+

14 a_weight : R+

15 a_out : R+

16 B_in : I+

17 B_weight : I+

18 B_out : I+

19 T_r : I+

20 T_c : I+

21 S : I+

22 bram_usage : R+ as bram

23 computation_to_communication_ratio : R+ as ctc

24 bandwidth : R+ as bw

25 a_in = (M * N * R * C) / (T_m * T_n * T_r * T_c)

26 a_weight = a_in

27 a_out = (M * R * C) / (T_m * T_r * T_c)

28 B_in = T_n * (S * T_r + K - S) *

29 (S * T_c + K - S)

30 B_weight = T_m * T_n * K * K

31 B_out = T_m * T_r * T_c

32 bram = B_in + B_weight + B_out

33 bw = comp / ctc

34 ctc = (R * C * M * N * K * K) /

35 (a_in * B_in + a_weight * B_weight +

36 a_out * B_out)

37

38 T_m > 0

39 T_n > 0

40 T_r > 0

41 T_c > 0

42 T_m <= M

43 T_n <= N

44 T_r <= R

45 T_c <= C

Listing 3.7: CNN roofline model

81

Supporting Analytical Modeling in Architecture Designs Chapter 3

Computation to communication ratio

G
FL

O
P

S
Perf-optimal Configuration

(T_m=81. T_n=23, T_r=27, T_c=19)

Perf/BW-optimal Configuration
(T_m=124. T_n=15, T_r=26, T_c=27)

BW-optimal Configuration
(T_m=2. T_n=1, T_r=19, T_c=27)

Figure 3.11: Finding optimal tile configuration for the second convolution layer of AlexNet
under the roofline constraint when targeting xc7vh870t. “Perf-only” are the exploration tra-
jectory when we only optimize for performance while “Perf + BW” shows the trajectory
when we simultaneously optimize for both performance and the computation to communica-
tion overhead. In the first case, the SMT instance is iteratively bounded towards the upper
part of the graph, i.e., the subspace with higher performance, while the second case pushes
the search to the upper-right corner where designs have both better performance and a lower
requirement on bandwidth.

without additional effort from the model builder, Charm greatly reduces the time spent on

sweeping the design parameters. In the above evaluation, a brute force search over the space

(< Tm × Tn × Tr × Tc >, Line 38-45 in Listing 3.7) takes more than 5 hours to finish, while au-

tomatic exploration finds optimality in roughly 30 minutes, achieving more than 10x speedup.

We expect this speedup to only grow as the model gets more complicated with more than 4 pa-

rameters to search for. Figure 3.12 transforms the roofline space into a performance-bandwidth

space.

There are a few interesting observations from these two viewpoints of the space:

82

Supporting Analytical Modeling in Architecture Designs Chapter 3

G
FL

O
P

S

Bandwidth (GB/s)

Perf-optimal Configuration
(T_m=69. T_n=27, T_r=25, T_c=9)

Perf+BW Configuration
(T_m=116. T_n=4, T_r=27, T_c=26)

BW-optimal Configuration
(T_m=2. T_n=1, T_r=19, T_c=27)

Figure 3.12: Projecting the search results into the performance-bandwidth space.

83

Supporting Analytical Modeling in Architecture Designs Chapter 3

• From Figure 3.12, we can tell that performance does not have a clear linear correla-

tion with bandwidth, i.e., to achieve better performance, a balance between processing

resource and communication is more important rather than simply dumping logic tran-

sistors or using wide communication channels.

• The above said balance can be seen from the most performant few configurations. All

these configurations are “asymmetric” and retain some ratio between Tm and Tn, (a possi-

ble interpretation maps to the on-chip processing resource and the communication chan-

nel width). As this ratio deviates from the “balance”, performance degrades as we can

tell from the configuration of “BW only” and “Perf + BW”.

• From Figure 3.12 we can tell that this FPGA board is clearly bounded by its compu-

tation resources rather than communication bandwidth as designs within > 99% of the

computation roof consume less than half of the available bandwidth.

3.6 Chapter Summary

Complex and intricately interacting constraints around energy, temperature, performance,

cost, and fabrication create a web of relationships. As we move toward more heterogeneous

and accelerator-heavy techniques, our understanding of these relationships is more critical for

guiding the processes of design and evaluation than ever before. Already today we are see-

ing machine learning [96], cryptography [97], and other fields attempting to pull architectural

analysis into their own work – sometimes introducing serious bugs along the way. Architec-

ture is now a field that is expected to make scientific statements connecting nano-scale device

details to the largest warehouse scale computers and everything in between. Spanning these 11

orders of magnitude will require more complex analytic approaches to be used in tandem with

traditional simulation and prototyping tools that computer architects have long relied on.

84

Supporting Analytical Modeling in Architecture Designs Chapter 3

Charm provides domain specific language support for architecture modeling in a way that

leads to more flexible, scalable, shareable, and correct analytic models. While our language

already supports symbolic restructuring, memoization, hoisting (and several other optimiza-

tions), consistency checks, and the capability of automatic exploration, Charm is merely the

first step towards a more powerful and useful modeling language for computer architects. It is

easy to imagine other useful additions in the future, such as checks on the consistency of phys-

ical types (e.g., nJ versus pJ errors) or back-ends connecting models to non-linear optimizers.

Most importantly though, by giving the sets of mutually dependent architectural relationships

a common language, Charm along with the collection of established models have the potential

to enable more complete and precise specification, easier composition, more through checking,

and (most importantly) broader reuse and sharing of complex analytic models.

85

Chapter 4

Accurate and Efficient Uncertainty and

Risk Quantification with Detailed

Simulation

While Chapter 2 and 3 define and explore uncertainty-induced effects in architecture design,

i.e., architectural risk, through analytic high-level analysis, they are fundamentally limited by

the high abstraction level of the analytic model used. In later design cycles, without detailed

simulation results, we are still left unsure of how uncertainties in a real system design interact,

manifest, and impact performance.

In theory, one can always measure uncertainty and architectural risk via Monte Carlo ex-

periments with cycle-accurate simulators. However, a simple thought experiment will reveal

that these methods do not scale well because the total simulation cost will quickly grow beyond

measure with the introduction of even just a few tens of design parameters with a few hundreds

of samples each. Understanding the interactions between these design parameters is critical

to understanding the impact of uncertainty but the sheer size of the required search space and

the cost associated to acquire data from detailed simulation is tremendous. Gathering data

86

Accurate and Efficient Uncertainty and Risk Quantification with Detailed Simulation Chapter 4

and then interpolating them with various techniques (e.g. machine learning methods such as

spline regression [98]) is certainly possible but they still require a significant random sample

of the entire feature space to be simulated which translates to thousands of simulation runs to

build a reasonably accurate predictive model (even assuming the complex models already have

their hyperparameters well tuned). However when it comes to uncertainty and risk estimation,

the point-wise prediction accuracy is not necessarily needed if one can capture the statistical

characteristics (e.g., moments) of the resulting performance distribution.

In this chapter, we take on the task of investigating uncertainty and its impact on system

performance, i.e., architectural risk, in realistic architecture designs with detailed simulation.

Rather than random samples interpolated, we take an approach where observation of prior

knowledge informs samples. Under such a model each sample is carefully chosen which means

precious few are needed to build a reasonable architectural model. However, doing this in a way

that is robust to noise and does not introduce bias is no easy task. To tackle this challenge, we

exploit recent advances in the theory and practice of generalized Polynomial Chaos (gPC) [99,

100] to automatically build surrogate models, based on the prior assumption of how these

uncertain parameters are distributed, to replace detailed simulation of the system. By trading

off point-wise prediction accuracy, these generated models have easy-to-compute analytical

forms and accurately capture the distributional statistics of the population (e.g., mean value

and shape of distribution) which suffices in uncertainty and architectural risk estimation. We

show such models are useful in the study of the impact of voltage uncertainties in a real chip-

multiprocessor.

4.1 Unique Challenges with Simulators

When trying to quantify uncertainties and their impact on system performance with detailed

simulators, we are faced with three major challenges:

87

Accurate and Efficient Uncertainty and Risk Quantification with Detailed Simulation Chapter 4

The first challenge is how to properly handle the dependencies between different input pa-

rameters. For example, one can assume that under process variation, at the architecture level

both on-chip L1 and L2 caches have a non-standard latency value. These values can be drawn

from independent distributions if one wishes to study the scaling trends, but in a more realistic

setting, we have to consider the dependency between them to reflect the real effect of process

variation. In this setting, although we wish to study the architecture-level performance, we

have to dig down to lower levels to faithfully capture the relationship between these architec-

ture parameters (e.g., the aforementioned latency values).

The second challenge is that at the architecture level many parameters are inherently dis-

crete. Considering the above example of cache latency, although physically the cache response

time is a continuous value in the time domain, in digitized microprocessors it is quantized (or

binned) into number of cycles. A small disturbance in the access time might end up pushing the

latency in cycle count to another bin, causing a non-smooth performance function. Many ma-

chine learning methods (especially the ones relying on gradients to perform) may not suit well

without applying complicated approximations (if such approximation exists) or need a large

training set in such scenarios. Figure 4.1 shows an example of the non-smoothness caused by

architectural-level quantization.

The third challenge comes from one well-known drawback of cycle-level simulation, that

it runs orders-of-magnitude slower compared to native execution. A few seconds in native

execution requires hours or days to simulate.

The general case total simulation cost (time-wise) can be expressed in Equation (4.1).

Total T ime Cost =
(# runs × Time per Run)

Parallelism
(4.1)

In most cases, one has limited parallelism (resources). Hence, to reduce the total time cost

88

Accurate and Efficient Uncertainty and Risk Quantification with Detailed Simulation Chapter 4

Threshold Voltage (v)

Ex
ec

u
ti

o
n

 T
im

e
(s

)

0.4 0.45 0.5 0.55 0.6

1.9

1.8

1.7

1.6

1.5

Figure 4.1: Non-smoothness due to architectural-level quantization. The execution time takes
big ’dives’ when the cycle latency moves from cycle N to cycle N + 1.

one has to utilize faster simulation techniques, reduce the number of total runs (i.e., reduce

the coverage of the design space), or do both [101]. These techniques usually select a subset

of instructions to simulate (via statistical sampling) to reduce time spent per run or reduce

the number of programs/architectures/configurations evaluated (e.g., benchmark subsetting) to

limit number of runs in total. All these techniques can be employed in our framework, but they

do not directly address the new added dimensions from different uncertainties and are thus

orthogonal to our method.

When uncertainty is under investigation, the number of simulation runs grows dramatically

by an additional multiplier of # samples. Sampling is used to capture the uncertain behavior

of an uncertain input parameter. Taking one uncertainty as an example, the clock frequency of

processor cores, to accurately estimate how it propagates and affects performance of the sys-

tem, hundreds, even thousands, of samples are typically required in a Monte-Carlo experiment

design to reconstruct a smooth distribution that approximates the ground truth closely. If one

89

Accurate and Efficient Uncertainty and Risk Quantification with Detailed Simulation Chapter 4

wishes to study the convolution of multiple uncertainty sources to understand how they inter-

act, the number of simulation increases exponentially with the number of uncertain variables

and the number of samples when combinations of input variables are to be simulated. In terms

of machine learning methods including regressions, it usually requires a training set that scales

with the feature space which grows exponentially with the dimension of the input uncertainties.

When it already requires hundreds or thousands of simulation to build the model without un-

certainty [98,102,103], building such a model with uncertainty in the picture quickly becomes

intractable.

All the above challenges hinder the investigation of uncertainty and architectural risk if not

dealt with properly. We propose a general and scalable analysis framework exploiting multiple

simulators at different levels and the advancement in the theories and practices of generalized

Polynomial Chaos (gPC) expansion in Section 4.3 to overcome these challenges and enable

efficient and accurate exploration. In particular, we make the following contributions:

Identifying the challenges in estimation of uncertainty/risk at the detailed simulation

level. To the best of our knowledge, this work is the first to tackle the problem of estimating

and analyzing uncertainties and architectural risks with a trusted, detailed simulator. We reveal

the unique challenges of such a task including the need for analyzing dependencies among

parameters, propagating uncertainties across different layers/simulators, the non-smoothness

brought by this cross-layer analysis and the significant computational challenge for accurately

capturing the statistical properties of propagated uncertainties and architectural risk.

Proposing a general framework to propagate uncertainties across different simulation

levels. To properly model and propagate uncertainties across different abstraction levels, we

combine both device- and architecture-level simulators to faithfully study how uncertainties at

low level can impact system performance.

Enabling large-scale detailed exploration with small data. To address the mind-boggling

90

Accurate and Efficient Uncertainty and Risk Quantification with Detailed Simulation Chapter 4

computational need to accurately estimate propagated uncertainties and architectural risk, we

exploit the advance in both the theories and practices of generalized Polynomial Chaos (gPC) to

efficiently build surrogate models with only a handful of simulation data. By utilizing the prior

knowledge of how uncertainties are distributed, these surrogates provide accurate statistical

estimations at the cost of losing point-wise predictability. As far as we know, we are the first

to employ such a method to build surrogate models for architectural studies.

Quantifying the uncertainty and architectural risk of a realistic CMP system. Using our

framework and the highly efficient model building methods, we explore a realistic CMP de-

sign under uncertainty through detailed simulations. To the best of our knowledge, this is the

first thorough quantitative study of uncertainty and architectural risk of a realistic system at

the cycle-accurate level. We find interesting new insights including which uncertainty source

contributes more to the output performance variation and that, surprisingly, in some cases, re-

ducing input uncertainty actually does not reduce the architectural risk the system is exposed

to.

4.2 Related Work

4.2.1 Uncertainty Quantification and Sensitivity Analysis in Architecture

Design

Uncertainty Quantification (UQ) has been an established process in many fields (e.g., fi-

nance, climate, biology, physics, circuit design) to identify and study uncertainties in the output

of a model with regards to input uncertainties [104–108]. In terms of computer architecture

and system design, Most of the existing work has been studying and quantifying individual

uncertainty at different levels for different components in a system. Among this line of work,

Borkar et. al. [9] identify and quantify the PVT variations and their impact on clock frequency

91

Accurate and Efficient Uncertainty and Risk Quantification with Detailed Simulation Chapter 4

of a microprocessor. Bhardwaj and Vrudhula [109] study and quantify the impact of process

variation on leakage at the circuit level. Zhang et. al. [110] quantify the uncertainty in leakage

power consumption in a CMP under process variation. Wong et. al. [111] use analytic models

to quantify the uncertainty in delay and power of FPGA devices under process variation. Das et.

al. [112] quantify latency uncertainty in different micro-architectural units and propose cache

mechanisms to improve batch performance under process variations. Yan et. al. [113] propose

CoreRank to characterize and manage dynamic performance uncertainty introduced by silicon

aging and degradation. Ozdemir et. al. [114] propose yield-aware architectural mechanisms

for data cache to combat lower yield rate due to process variation. Liang et. al. [115] design

a new 3T1D cache architecture to mitigate and mask process variation in caches. Regarding

an all-around view of uncertainty propagation in system designs, Cui and Sherwood [19] use

analytic models and Monte Carlo simulations to study the scaling trends and trade-offs of un-

certainties in a CMP using a high-level analytic model. In this work, we, for the first time,

enable and perform a thorough uncertainty quantification with detailed simulations.

Sensitivity Analysis (SA) is also widely adopted in many scientific fields for understand-

ing model behaviors (i.e., impacts of uncertainty in the model inputs to the uncertainty in the

model outputs) [116–118]. However, thorough sensitivity analysis is seldom applied in com-

puter architecture and system design to the best of our knowledge. Fornaciari et. al. [119]

applies derivative-based local sensitivity methods to guide analytic design space search for

embedded systems. De Vogeleer et. al. [120] uses one-at-a-time sensitivity analysis to study

the Energy/Frequency Convexity Rule with an analytic model for microprocessors. Zhu and

Wong [121] apply sensitivity analysis on an analytic queueing model of a superscalar processor

to study the relative importance of several micro-architecture configurations to performance.

Arora et. al. [122] applies Plackett and Burman designs to search the complex design space of

a multi-core processor. Their proposed method measures the impact of each parameter on the

performance of the system instead of the variation of the performance. In this work, we take a

92

Accurate and Efficient Uncertainty and Risk Quantification with Detailed Simulation Chapter 4

new perspective to provide a global sensitivity study for a CMP with a detailed simulator (as

opposed to high-level analytic models) to capture the necessary architectural insights regarding

how parameter uncertainties impact uncertainties of the performance of the system.

4.2.2 Surrogate Modeling in Architecture Simulations

A surrogate model is often used in place of slow simulators in many architecture stud-

ies. There are several kinds of popular surrogate models, including kriging methods (Gaussian

process modeling) [123], artificial neural network (ANN) [102, 124], support vector machine

(SVM) [125], linear (quadratic) response surface models [126], stochastic reduced-order mod-

els [127]. However, gPC-based method has rarely been used in architecture simulation. Gener-

ally speaking, a gPC model can achieve high prediction accuracy using only a small number of

samples if the output function is smooth enough [128]. In our case, although the performance

function is not entirely smooth, we find that the gPC model can still estimate the distribu-

tions with reasonably high accuracy. Zhang et. al. [129, 130] adopt the gPC-based model to

do hierarchical uncertainty quantification for circuit analysis. Recently, gPC has improved to

handle electronic systems with correlated or high-dimensional uncertain variables [131, 132].

Compared to gPC, other methods require a much larger number of samples to provide a good

estimation.

Another whole class of research stapled as statistical simulations [43,133] are also used for

fast design space exploration. Oskin et. al. introduces a hybrid statistical/functional simulation

methodology called ”HLS” [43]. By profiling the statistical characteristics of applications, the

”HLS” simulator symbolically executes a synthetic code sample to capture the performance of

the architecture under study. Lee and Brooks use statistical inference and optimization to study

efficiency trends for adaptive architectures [40]. Most of these works also focus on a different

question of reducing systematic errors and achieve fast simulation speed and high design space

93

Accurate and Efficient Uncertainty and Risk Quantification with Detailed Simulation Chapter 4

coverage, at the cost of accuracy. These methods, however, still require a relatively large

amount of simulation work in order to build a useful surrogate model compared to our method.

In this work, we apply gPC method to build a highly efficient surrogate model with a very

small number of samples. We also combine the stochastic testing method [134] to further

reduce the number of samples to simulate.

4.3 A Cross-layer Scalable Analysis Framework with Surro-

gate Models

In this section, we propose a general framework that can efficiently and accurately estimate,

propagate and evaluate uncertainties and architectural risk with a combination of detailed-

simulators and gPC-enabled surrogate models. The key idea is rigorously picking samples

based on the input uncertainty distribution to maximize the information coverage of the basis

functions. We first briefly describe the overall workflow of our method followed by an elabo-

ration of what and how generalized Polynomial Chaos (gPC) techniques can be used to build

surrogate architecture models.

4.3.1 Modeling Workflow

Figure 4.2 visualizes the workflow of our analysis framework at a high level.

The input space to the experiment is described through a set of distribution specifications

(for variables with uncertainties, i.e., they are random variables) and a set of fixed system

configurations (for variables without uncertainties, i.e., they have fixed values). We first do a

manual pass of refinement to identify/tease out uncertainties at different levels and distinguish

dependent parameters from independent ones (e.g., cache latency is dependent on supply volt-

age and technology node). These independent distributions are then fed to the gPC workflow

94

Accurate and Efficient Uncertainty and Risk Quantification with Detailed Simulation Chapter 4

described in Section 4.3.2 to generate a small set of sample points. We then automatically gen-

erate a set of device-level and architecture-level configurations from the training set and feed

to the cycle-accurate simulator. The simulations are done from bottom up. When device-level

simulation is finished, we rewrite the architecture-level configurations with the needed values

from the device-level simulation results. Once we have the architecture-level results, we can

extract the wanted statistics (e.g., simulation seconds and total processor energy consumption)

and feed them back to the untrained model from gPC to determine the coefficients. The result

of this final step is a fully trained surrogate model ready for use. In our analysis in Section 4.4,

we use the model for uncertainty and risk quantification by running thousands of randomly

generated input through the gPC model and we also extract sensitivity indices (e.g., Sobol‘s

Indices [135]) directly from the built gPC model to estimate global sensitivity of each input

variables as well as their higher-order interactions.

To validate the gPC model, we compare its predictions with the results from Monte-Carlo

simulations. For that, we generate a large set of samples using Latin hypercube sampling [136]

and feed them all to the cycle-accurate simulator. Then we feed the same sample set to the

trained gPC models and validate the results of predictions and the statistics gathered from

simulator instances. We present the validation results in Section 4.3.3.

4.3.2 Building Surrogates with gPC

To address the computational challenge brought by the input uncertainties, we employ an

efficient spectral method, generalized Polynomial Chaos (gPC), to sample the vast input space

in a much smarter way and to build surrogate models for each specific input space described

by a set of distribution specifications (mean, standard deviation as well as lower and upper

bounds) with merely a handful of training simulations required. We describe the theoretical

background of gPC method at a high level, followed by a detailed elaboration of the steps to

95

Accurate and Efficient Uncertainty and Risk Quantification with Detailed Simulation Chapter 4

A
p

p
lic

at
io

n
-

la
ye

r
A

p
p

lic
at

io
n

-
la

ye
r

A
rc

h
it

ec
tu

re
-

la
ye

r
A

rc
h

it
ec

tu
re

-
la

ye
r

D
ev

ic
e-

la
ye

r
D

ev
ic

e-
la

ye
r

A
rc

h
it

ec
tu

re
Sp

ec
if

ic
at

io
n

A
rc

h
it

ec
tu

re
-l

ev
el

In
d

ep
en

d
en

t
U

n
ce

rt
ai

n
ty

A
p

p
lic

at
io

n
-l

ev
el

In
d

ep
en

d
en

t
U

n
ce

rt
ai

n
ty

U
n

ce
rt

ai
n

ty
Sp

ec
if

ic
at

io
n

D
ev

ic
e-

le
ve

l
In

d
ep

en
d

en
t

U
n

ce
rt

ai
n

ty

Sp
e

ci
fi

ca
ti

o
n

Refinement

A
rc

h
it

e
ct

u
re

-l
ev

el
D

ev
ic

e
-d

ep
e

n
d

en
t

C
o

n
fi

gs

gP
C

 S
am

p
lin

g
Si

m
u

la
ti

o
n

M
o

d
e

lli
n

g

1
1

2
2

3
3

(
,

)

(
,

)

(
,

)

y
f

A
x

y
f

A
x

y
f

A
x

= = =

To
 U

n
ce

rt
ai

n
ty

Es

ti
m

at
io

n
/R

is
k

C
al

cu
la

ti
o

n

1
2

4
5

D
ev

ic
e

-l
ev

el

Si
m

u
la

to
r

Th
re

e-
te

rm

R
ec

u
rr

e
n

ce

(T
TR

)

In
p

u
t

D
is

tr
ib

u
ti

o
n

s

Ei
ge

n
va

lu
e

D
ec

o
m

p
o

si
ti

o
n

G
au

ss
ia

n

Q
u

ad
ra

tu
re

 P
o

in
ts

an

d
 W

ei
gh

ts

St
o

ch
as

ti
c

Te
st

in
g

Tr
ai

n
in

g
Se

t
(s

am
p

le

p
o

in
ts

)

C
o

n
fi

gu
ra

ti
o

n
 G

e
n

e
ra

ti
o

n
3

D
e

vi
ce

-l
e

ve
l

C
o

n
fi

gs

TT
R

 C
o

ef
fi

ci
en

t
M

at
ri

x

C
o

n
fi

g
G

en
er

at
o

r

A
rc

h
it

e
ct

u
re

-
le

ve
l C

o
n

fi
gs

D
ev

ic
e

-l
ev

el
 S

im
u

la
to

r
D

ev
ic

e
-l

ev
el

 S
im

u
la

to
r

A
rc

h
it

ec
tu

re
-l

ev
el

Si

m
u

la
to

r

C
o

n
fi

g
R

ew
ri

te
r

Tr
ai

n
in

g
La

b
e

ls
So

lv
in

g
gP

C

C
o

ef
fi

ci
en

ts

gP
C

 S
u

rr
o

ga
te

s

B
as

ic

Fu
n

ct
io

n
s

Fi
gu

re
4.

2:
H

ig
h-

le
ve

lo
ve

rv
ie

w
of

ou
r

an
al

ys
is

fr
am

ew
or

k.
W

e
ta

ke
th

e
pr

io
r

un
ce

rt
ai

nt
y

sp
ec

ifi
ca

tio
n

an
d

ge
ne

ra
te

di
st

ri
bu

-
tio

ns
th

at
ca

pt
ur

e
ea

ch
in

de
pe

nd
en

ts
ou

rc
e

of
un

ce
rt

ai
nt

y.
T

he
se

di
st

ri
bu

tio
ns

ar
e

th
en

fe
d

to
th

e
gP

C
w

or
kfl

ow
w

hi
ch

ge
ne

ra
te

s
a

se
to

f
pa

ra
m

et
ri

ze
d

ba
si

c
fu

nc
tio

ns
an

d
a

se
to

f
tr

ai
ni

ng
sa

m
pl

es
.

W
e

th
en

ge
ne

ra
te

a
se

to
f

co
nfi

gu
ra

tio
ns

w
ith

va
lu

es
fr

om
th

e
tr

ai
ni

ng
se

ta
nd

fe
ed

th
em

to
de

ta
ile

d
si

m
ul

at
or

s.
Fi

na
lly

,w
e

ta
ke

th
e

si
m

ul
at

ed
st

at
s

an
d

pa
ss

th
em

al
on

g
w

ith
th

e
ba

si
c

fu
nc

tio
ns

to
bu

ild
th

e
gP

C
m

od
el

s
w

hi
ch

w
ill

se
rv

e
as

effi
ci

en
ta

nd
ac

cu
ra

te
su

rr
og

at
es

fo
rl

at
er

ex
pl

or
at

io
n.

96

Accurate and Efficient Uncertainty and Risk Quantification with Detailed Simulation Chapter 4

sample and build the model.

In this paper, gPC methodology is adopted as a surrogate model. The gPC model [128,137],

which is an extension of the polynomial chaos (PC) to non-Gaussian cases, has become one of

the most popular methods in uncertainty quantification [138, 139]. Let ~x be a d dimensional

vector of stochastic variables, a gPC model is an approximation to the original function y
(
~x
)

as a weighted summation of a finite set of orthogonal basis functions in Equation (4.2):

y
(
~x
)

=

K∑
k=1

ckHk
(
~x
)
, (4.2)

where Hk
(
~x
)

is the k-th basis functions, ck is the corresponding coefficient. K is the total

number of the basis function, which is usually set as K =


p + d

p

 =
(p+d)!

p!d! in a popular

total degree scheme [137], where p is called the order of gPC expansion. There are three

major steps to build a gPC model: constructing basis functions, generating training samples

and determining gPC coefficients.

Basis function construction: given a one-dimension uncertain variable with a probability

density function of ρ (x), in order to obtain Hi (x) a set of orthogonal polynomials πi are first

constructed via a three-term recurrence (TTR) relation shown in Equation (4.3) [140]:

πi+1 (x) = (x − αi) πi (x) − βi (x) πi−1 (x) , i = 0, 1, . . . , n

π−1 (x) = 0, π0 (x) = 1,

, (4.3)

97

Accurate and Efficient Uncertainty and Risk Quantification with Detailed Simulation Chapter 4

where

αi =
E[xπ2

i (x)]
E[π2

i (x)] , βi+1 =
E[π2

i+1(x)]
E[π2

i (x)] , i = 0, 1, . . . , n (4.4)

and βi = 1. Then the orthogonal polynomials can be obtained via normalizing the obtained

n + 1 basis functions with Equation (4.5):

Hi (x) =
πi(x)

√
β0β1···βi

, i = 0, 1, . . . , n. (4.5)

Notice that the obtained basis function is univariate. However, generating multivariate basis

functions is trivial: we can use choose one univariate basis function for each uncertain variable,

then their product generates a multivariate basis function [129].

Training set generation: In this paper, we use a stochastic testing (ST) method [134] to

generate the training set in order to determine the coefficients later. With the ST method, a

total number of (p + 1)d Gaussian quadrature points are generated first as the candidate points

by applying the Gaussian quadrature rule (GQR). GQR approximates the definite integral of

a function as a weighted sum of function value of specific points (i.e., Gaussian quadrature

points). Given a specific density function ρ (x), Gaussian quadrature points x j and their weights

w j are fixed. With the basis of TTR relation [Equation (4.3)], we first generate a TTR coefficient

matrix, which is a symmetric tridiagonal matrix defined in Equation (4.6):

98

Accurate and Efficient Uncertainty and Risk Quantification with Detailed Simulation Chapter 4

J =



α0
√
β1

√
β1 α1

. . .

. . .
. . .

. . .

. . . αn−1
√
βn

√
βn αn



. (4.6)

With eigenvalue decomposition, denoted as J = UΣUT , we can easily calculate quadrature

points and weights: x j is the j-th diagonal element of Σ, and its corresponding weight w j

is u2
1, j [140]. Similarly, we can also easily extend the univariate GQR to multidimensional

cases [141] to obtain multidimensional Gaussian quadrature points.

Then a set of K (K � (p + 1)d) sample points, called ST points, are selected from the ob-

tained candidate quadrature points as a training set of the gPC model. The ST method selects K

samples based on two criteria: (1) it chooses important samples with large quadrature weights;

(2) it seeks for new sample points which can extend the vector space of basis functions [134].

Figure 4.3 shows an example of the selected ST points in our experiments in Section 4.4.

gPC coefficient determination: upon getting the training labels from the simulation, we solve

for the coefficients through a set of deterministic equations (4.7):

99

Accurate and Efficient Uncertainty and Risk Quantification with Detailed Simulation Chapter 4

Vth Vdd

ST points
MC points
ST points
MC points

0.4 0.45 0.5 0.55 0.6 1.05 1.10 1.15 1.20 1.25 1.30 1.35 1.40

C
o

u
n

t

Figure 4.3: ST points picked by the GQR among the population of 100 randomly selected
Monte-Carlo points for both Vth and Vdd. These ST points are reasonably distributed to cover
the entire input space.



y
(
~x1

)
=

K∑
k=1

ckHk
(
~x1

)
y
(
~x2

)
=

K∑
k=1

ckHk
(
~x2

)
...

y
(
~xK

)
=

K∑
k=1

ckHk
(
~xK

)
(4.7)

4.3.3 Validation of gPC Models

Here, we present the validation results of the order-3 gPC model we used in Section 4.4

at one specific input uncertainty level (10%) and technology node (40nm) against 100 Monte-

Carlo data points to demonstrate the accuracy of such surrogate models. We also compare

the gPC estimator with a few other popular regression techniques including linear regressor,

support vector regressor (SVR) and gaussian process regressor (GPR).

100

Accurate and Efficient Uncertainty and Risk Quantification with Detailed Simulation Chapter 4

MC

gPC

Backprop Bodytrack

MAE: 7.52% RSME: 9.39%
Δµ: 3.10% Δσ: 18.39%
D(Jensen-Shannon): 0.37

Fluidanimate Myocyte x264

MAE: 7.87% RSME: 9.94%
Δµ: 2.84% Δσ: 13.87%
D(Jensen-Shannon): 0.31

MAE: 13.25% RSME: 18.16%
Δµ: 3.73% Δσ: 18.95%
D(Jensen-Shannon): 0.51

MAE: 12.30% RSME: 16.92%
Δµ: 2.44% Δσ: 18.95%
D(Jensen-Shannon): 0.49

MAE: 8.17% RSME: 10.39%
Δµ: 3.16% Δσ: 13.67%
D(Jensen-Shannon): 0.40

GPR
(RBF

Kernel)

MC

Linear
Regressor

MC

SVR
(Poly)

MC

MAE: 7.21% RSME: 8.36%
Δµ: 1.49% Δσ: 10.76%
D(Jensen-Shannon): 0.45

MAE: 13.93% RSME: 20.19%
Δµ: 6.42% Δσ: 82.76%
D(Jensen-Shannon): 0.53

MAE: 7.98% RSME: 9.63%
Δµ: 4.33% Δσ: 72.71%
D(Jensen-Shannon): 0.48

MAE: 7.93% RSME: 9.19%
Δµ: 1.37% Δσ: 3.18%
D(Jensen-Shannon): 0.46

MAE: 19.95% RSME: 31.48%
Δµ: 12.68% Δσ: 144.33%

D(Jensen-Shannon): 0.57

MAE: 19.95% RSME: 31.48%
Δµ: 4.38% Δσ: 100.00%

D(Jensen-Shannon): 0.57

MAE: 12.09% RSME: 14.99%
Δµ: 2.94% Δσ: 23.53%
D(Jensen-Shannon): 0.62

MAE: 183.3% RSME: 355.5%
Δµ: 144.86% Δσ: 2078.37%

D(Jensen-Shannon): 0.68

MAE: 13.28% RSME: 16.47%
Δµ:6.93% Δσ: 100.00%

D(Jensen-Shannon): 0.79

MAE: 9.08% RSME: 11.23%
Δµ: 1.99% Δσ: 23.38%
D(Jensen-Shannon): 0.38

MAE: 112.4% RSME: 244.96%
Δµ: 77.97% Δσ: 1825.91%

D(Jensen-Shannon): 0.61

MAE: 9.69% RSME: 11.37%
Δµ: 3.52% Δσ: 70.77%
D(Jensen-Shannon): 0.48

MAE: 8.05% RSME: 9.33%
Δµ: 1.44% Δσ: 5.83%
D(Jensen-Shannon): 0.44

MAE: 14.46% RSME: 21.04%
Δµ: 5.87% Δσ: 81.04%
D(Jensen-Shannon): 0.67

MAE: 14.46% RSME: 21.04%
Δµ: 0.84% Δσ: 90.14%
D(Jensen-Shannon): 0.52

GEO-MEAN

MAE: 9.53%
RSME: 12.44%

Δµ: 3.02%

Δσ: 16.58%
D(Jensen-Shannon): 0.41

MAE: 8.72%
RSME: 10.38%

Δµ: 1.77%

Δσ: 10.19%
D(Jensen-Shannon): 0.46

MAE: 38.33%
RSME: 65.05%

Δµ: 22.20%

Δσ: 325.85%
D(Jensen-Shannon): 0.61

MAE: 12.43%
RSME: 16.42%

Δµ: 3.30%

Δσ: 85.76%
D(Jensen-Shannon): 0.56

Figure 4.4: Validation of surrogate models with a gPC order of 3 with 10% uncertainty in Vth

and Vdd at 40nm technology. The top set shows the comparison of histograms and statistics
of gPC model predictions and the ground truth Monte-Carlo results (MC). The second set
shows that of linear regressor and MC. The third set has gaussian process regressor (with
GBF kernel) and MC, while the last set compares support vector regressor (with polynomial
kernel) and MC. All the regression techniques are trained using the same number of samples
as the gPC training set but evenly picked from the input space.

101

Accurate and Efficient Uncertainty and Risk Quantification with Detailed Simulation Chapter 4

MC

gPC

Backprop Bodytrack

MAE: 7.52% RSME: 9.39%
Δµ: 3.10% Δσ: 18.39%
D(Jensen-Shannon): 0.37

Fluidanimate Myocyte x264

MAE: 7.87% RSME: 9.94%
Δµ: 2.84% Δσ: 13.87%
D(Jensen-Shannon): 0.31

MAE: 13.25% RSME: 18.16%
Δµ: 3.73% Δσ: 18.95%
D(Jensen-Shannon): 0.51

MAE: 12.30% RSME: 16.92%
Δµ: 2.44% Δσ: 18.95%
D(Jensen-Shannon): 0.49

MAE: 8.17% RSME: 10.39%
Δµ: 3.16% Δσ: 13.67%
D(Jensen-Shannon): 0.40

GPR
(RBF

Kernel)

MC

Linear
Regressor

MC

SVR
(Poly)

MC

MAE: 6.72% RSME: 7.78%
Δµ: 0.00% Δσ: 36.58%
D(Jensen-Shannon): 0.45

MAE: 4.37% RSME: 5.75%
Δµ: 0.00% Δσ: 19.43%
D(Jensen-Shannon): 0.40

MAE: 6.83% RSME: 7.87%
Δµ: 0.00% Δσ: 44.25%
D(Jensen-Shannon): 0.40

MAE: 7.23% RSME: 8.31%
Δµ: 0.00% Δσ: 35.64%
D(Jensen-Shannon): 0.48

MAE: 4.68% RSME: 6.12%
Δµ: 0.00% Δσ: 18.82%
D(Jensen-Shannon): 0.36

MAE: 9.28% RSME: 10.90%
Δµ: 0.01% Δσ: 100.00%

D(Jensen-Shannon): 0.36

MAE: 10.25% RSME: 13.53%
Δµ: 0.00% Δσ: 57.46%
D(Jensen-Shannon): 0.55

MAE: 9.28% RSME: 12.68%
Δµ: 0.00% Δσ: 47.53%
D(Jensen-Shannon): 0.39

MAE: 15.61% RSME: 18.43%
Δµ:11.25% Δσ: 93.87%

D(Jensen-Shannon): 0.64

MAE: 8.54% RSME: 10.46%
Δµ: 0.00% Δσ: 48.00%
D(Jensen-Shannon): 0.45

MAE: 7.33% RSME: 8.89%
Δµ: 0.00% Δσ: 32.42%
D(Jensen-Shannon): 0.44

MAE: 8.79% RSME: 10.57%
Δµ: 1.29% Δσ: 56.12%
D(Jensen-Shannon): 0.44

MAE: 7.39% RSME: 8.51%
Δµ: 0.00% Δσ: 36.29%
D(Jensen-Shannon): 0.45

MAE: 4.81% RSME: 6.31%
Δµ: 0.00% Δσ: 19.43%
D(Jensen-Shannon): 0.42

MAE: 7.71% RSME: 8.93%
Δµ: 0.01% Δσ: 58.19%
D(Jensen-Shannon): 0.42

GEO-MEAN

MAE: 9.53%
 RSME: 12.44%

Δµ: 3.02%

Δσ: 16.58%
D(Jensen-Shannon): 0.41

MAE: 7.93%
 RSME: 9.51%

Δµ: 0.00%

Δσ: 41.99%
D(Jensen-Shannon): 0.47

MAE: 5.82%
 RSME: 7.58%

Δµ: 0.00%

Δσ: 25.58%
D(Jensen-Shannon): 0.40

MAE: 9.23%
 RSME: 10.83%

Δµ: 0.00%

Δσ: 67.06%
D(Jensen-Shannon): 0.44

Figure 4.5: Comparing gPC estimators and theoretical limits of linear regressor, support vec-
tor regressor and gaussian process regressor. gPC models are still trained with merely 10
samples while all other regressors are trained with the exact test set, i.e., 100 Monte-Carlo
samples, which should work in their favorite and serve as an upper bound of how well these
regressors can perform on this test set.

102

Accurate and Efficient Uncertainty and Risk Quantification with Detailed Simulation Chapter 4

Figure 4.4 presents the validation results along with comparisons against a few popular

regression techniques one might use to build such a surrogate model. As we can tell from

the histograms, with as few as 10 samples in this case, gPC surrogates accurately capture the

position, scale and even shape of the ground truth distributions, which is crucial when we

estimate propagated uncertainties and calculate architectural risk later. For all other regressors,

it appears that they cannot closely estimate the ground truth, at least not with a training set as

small as 10 samples (for 10 reasonably distributed samples, with random samples, the statistics

are far too unstable to serve as an estimator). If we look at the geometric means of the statistics,

we notice that, as expected, the gPC surrogates don’t show the best point-wise predictions, as

captured by mean absolute error (MAE) and root mean squared error (RMSE), but they mostly

accurately provide a stable estimator for the moments (mean value captured by ∆µ and standard

deviation captured by ∆σ) as well as the shape of the distribution (having the lowest Jensen-

Shannon distance between the predicted histograms and the ground truth).

In light of the bad performance of the other regressors with 10 samples, we perform an-

other comparison between gPC models (with 10 samples) and the theoretic limits of the other

regressors trained and tested on the same set (100 Monte-Carlo samples). Figure 4.5 presents

the results. As we can tell from the statistics, all regressors have better point-wise prediction

power as expected. Interestingly, except for GPR which has an on-par performance with gPC

model in terms of capturing the higher-order moments (standard deviation in this case) and

the shape of the distribution, both linear regressor and SVR still have a worse estimation of

the distribution itself. When estimating architectural risk, accurately capturing the distribution

itself (not only just the mean value) is absolutely critical as the risk is directly computed from

the distribution.

103

Accurate and Efficient Uncertainty and Risk Quantification with Detailed Simulation Chapter 4

4.4 An Analysis of Uncertainties in A Chip-multiprocessor

Architecture

In this section, we apply our framework to study the impact of uncertainties from low-level

voltage parameters to chip-multiprocessor performance at the architecture level. We first list

in detail all our configurations and assumptions. We then validate the surrogates by comparing

a variety of metrics against that of the Monte-Carlo experiment results along side three other

popular regression methods typically used to build predictive models from a data set. Lastly,

we use these models to study the behavior of uncertainties and architectural risks in the system

when the input uncertainty level changes.

The System Under Study

Here we first clearly scope our study in this section by defining the system under investiga-

tion and the uncertainty models we use in evaluation.

Architecture and Configuration. We investigate a homogeneous CMP similar to the baseline

system used in the NX3T system [142]. Figure 4.6 shows the architecture of the system.

Table 4.1 lists all configurations that are fixed in the architecture, i.e., we will not injecting

any uncertainty in these configurations. Changing these knobs are interesting if one is particu-

larly looking at a different design options. But here, we distinguish design configurability from

uncertainties. Scaling our analysis to include different design options is trivial but it will make

interpreting the results more complicated.

The architecture we choose is a design that has been studied extensively. Therefore, it is

interesting to see if even with this mature design we can still discover new understandings with

uncertainty and architectural risk in the picture.

Uncertainty Parameters and Models. There are many parameters that are susceptible to any

104

Accurate and Efficient Uncertainty and Risk Quantification with Detailed Simulation Chapter 4

Core Core Core Core

Core Core Core Core

L1 L1 L1 L1

L1 L1 L1 L1

L2

MC

DRAM

Figure 4.6: The system architecture of interest and the components that are affected by un-
certainties in our case study. Each 8 cores share an L2 cache. We consider uncertainties
propagated from the device level to each of the 64 cores, latency of L1 caches and latency of
L2 caches.

one of, or a combination of, projection, process and design uncertainties. For simplicity and

to limit the complexity of interpreting the results, we only consider the two most prominent

and important uncertainty sources in this work: the variations in threshold voltage and supply

voltage. Uncertainty in supply voltage could come from process variation while that in thresh-

old voltage can be from both process variation and projection uncertainty. Due to limitations

of simulation infrastructures, we also only consider die-to-die (D2D) process variation in our

case study here. Table 4.2 lists the the uncertainty model (distribution) we use.

For both Vth and Vdd, we model them with truncated Gaussian distribution after existing

105

Accurate and Efficient Uncertainty and Risk Quantification with Detailed Simulation Chapter 4

Table 4.1: Fixed system configurations.

Component Configuration Notes

cores 64 8-issue, in-order, Alpha ISA

L1 I-cache 32KB, 2-way private per core, 64B linesize

L1 D-cache 64KB, 2-way private per core, 64B linesize

L2 cache 4MB, 8-way
shared per 8 cores,

no prefetcher, 64B linesize

On-chip XBar 8B-wide coherent, snooping protocol

DRAM DDR3-1600

Table 4.2: Uncertainty models for Vth and Vdd.

Vth ∼ Truncated Gaussian(µ, σ, 0) (4.8)
Vdd ∼ Truncated Gaussian(µ, σ, α) (4.9)
Vth < Vdd (4.10)

106

Accurate and Efficient Uncertainty and Risk Quantification with Detailed Simulation Chapter 4

work [10]. The mean values µ in Table 4.2 comes from the nominal threshold voltage and

supply voltage at the chosen technology node from the ITRS roadmap. The lower bound of

supply voltage is limited by what CACTI allows, i.e., we do not consider near-threshold voltage

in this study. We control the level of uncertainty injected by assigning different values for the

standard deviation, σ. The standard deviation is always interpreted as a percentage of the mean

value of the corresponding distribution.

Simulation Setup

We use gem5 [17] to model the system architecture. To propagate uncertainties in volt-

ages to the architecture level, we generate a series of configurations with different voltage

values and feed them to CACTI [143], which computes the access time of each component we

consider. Using the same set of voltages, we also derive the clock frequency of the die with

Equation (4.11) [144].

CK =
1
F
∝

Vdd

(Vdd − Vth)1.3 (4.11)

After we derive the clock frequency, i.e., cycle time for the core, we then quantize the cache

latency into cycle delays by dividing the access time by the clock cycle time.

We use a collection of 5 workloads from PARSEC [145] and Rodinia [146] benchmark

suites to include some application level variations in terms of memory access patterns and

different workload balance among the cores. All our experiments in Section 4.4.1 and Sec-

tion 4.4.2 consist of 4 different input uncertainty levels, from a conservative setting of 10%

(less than already observed [147]) to a more radical speculation of 50%, at 3 different technol-

ogy nodes (22nm, 40nm and 65nm).

107

Accurate and Efficient Uncertainty and Risk Quantification with Detailed Simulation Chapter 4

4.4.1 Exploring Architectural Risk at Different Input Uncertainty Levels

In this section, we generate 1000 Monte-Carlo points from the input distributions for each

experiment and feed them to the surrogate models to explore the propagated uncertainties and

architectural risk when the input uncertainty level changes and when we shift between different

technology nodes.

Figure 4.7 shows the average-case performance (i.e., mean value) and the propagated

amount of uncertainty in performance (execution time). Note that the average-case perfor-

mance is normalized to the nominal value, i.e., the case when there’s no uncertainty at all and

both Vth and Vdd are at their nominal values. The propagated uncertainty is measured in abso-

lute execution time (seconds) so that it is consistent with the scale of the input uncertainties.

The general trend at each technology node when the system is exposed to more uncertainty

matches our expectation that the propagated uncertainty grows and the average-case perfor-

mance lowers. What’s interesting is that the propagated uncertainty grows sub-linearly as the

input uncertainty increases for older technology nodes (40nm and 65nm) even though the un-

certainty at these nodes have larger variations in terms of absolute voltage values than that of

22nm. This suggests that such a CMP in newer technologies is more sensitive, or has less tol-

erance, to input voltage uncertainties. In an actual design, if one cannot eliminate uncertainty

entirely, for older technologies it is probably enough just to confine the uncertainty in a certain

range (50% in this case) without the need to trim it down to a very small amount (say 10%). In

other words, fighting uncertainties with valuable engineering resources might have diminish-

ing returns at these technology nodes. However, for 22nm, the propagated uncertainty grows

super-linearly, and limiting the amount of uncertainty that goes into the system becomes more

important.

In terms of the architectural risk the system is exposed to, we evaluate two risk functions

in this experiment: a quadratic risk function that penalizes chips with low performance and

108

Accurate and Efficient Uncertainty and Risk Quantification with Detailed Simulation Chapter 4
A

ve
ra

ge
-c

as
e

P
er

fo
rm

an
ce

Injected Uncertainty Level

P
ro

p
a

ga
te

d
U

nc
er

ta
in

ty

22nm 40nm 65nm

Figure 4.7: Average-case performance and propagated uncertainty with increasing uncertainty
levels at different technology nodes. Average-case performance is the mean value of the
performance distribution of the CMP while the propagated uncertainty level is captured by
the standard deviation of the performance distribution.

a dollar risk function that maps the performance to binned processor sales price (based on an

Intel CPU price list similar to [19]). Figure 4.8 shows the amount of architectural risk when we

run different workloads at different uncertainty levels. One interesting observation here is that

different risk functions behave very differently under uncertainties: the quadratic risk grows as

the input uncertainty grows (pretty much follows the propagated uncertainty level) while the

dollar risk is more complicated and random. Although the general trend for each technology

node is that it still grows with the input uncertainty level, when we compare the amount of

risk across different tech nodes, it does not show any clear trend. This makes quantifying

architectural risk with our method more valuable since this information will help designers and

managers decide whether to devote scarce engineering resources to eliminating uncertainties

at all. For example, if the dollar value of a batch of chips is the sole concern then 50% input

uncertainty actually does not do much worse than only 10% input uncertainty.

109

Accurate and Efficient Uncertainty and Risk Quantification with Detailed Simulation Chapter 4
Q

u
a

d
ra

ti
c

R
is

k

Injected Uncertainty Level

D
o

lla
r

R
is

k

2R a P b P c=  +  +

$(1.0) $(_)
chips

R perf chip perf= = −

22nm 40nm 65nm

Figure 4.8: Two types of architectural risk with increasing uncertainty levels at different tech-
nology nodes. Quadratic risk puts more weight on the higher-order performance loss (a ¿ b),
while dollar risk is the amount of dollars lost due to chips under-performing using a mapping
function between execution time and sales price.

σ = 10%

22nm

σ = 20% σ = 30% σ = 50%

40nm

65nm

Figure 4.9: Proportion of total sensitivity of Vth and Vdd. The total sensitivity index captures
the contribution to the output variance (uncertainty) from all terms that contains a certain
parameter including the interaction terms with other input parameteres.

110

Accurate and Efficient Uncertainty and Risk Quantification with Detailed Simulation Chapter 4

4.4.2 Global Sensitivity Analysis

In this section, we demonstrate another big advantage of using gPC-based surrogates: the

analytical form of the built model allows direct computation of several interesting statistics. We

specifically look at the global sensitivity of performance against the input uncertain parameters

which can shed some light on the question of “which parameter causes more uncertainty in the

output performance?” We can compute Sobol’s indices [148], both main (Mi) and total (Ti),

where i is a specific parameter we care about, using Equation (4.12) directly from the model in

the form of Equation (4.2).

Mi =

∑
S k=i

c2
k

VAR(y)
, Ti =

∑
i∈S k

c2
k

VAR(y)
, (4.12)

where S k = {uncertain parameters in Hk}.

Figure 4.9 plots the total sensitivity indices for the two input voltage parameters. We can

tell from the figure that in most cases, no matter how much uncertainty is there in the inputs,

Vdd contributes the most to the output uncertainty. This calls for active power management

of an architecture in order to mitigate the performance hit introduced by process variations

in the power supply circuit. Another interesting observation based from the figure is that, at

22nm, there’s a clear trend of increasing uncertainty contribution from Vth. This suggests that

upon designing new systems, or systems with newer technologies, an accurate projection of the

threshold voltage and a precise estimation of the process variation in the device itself becomes

more important. Once taped out, the uncertainty map of the threshold voltage can become the

limiting factor if one tries to reduce uncertainties or risks in the final silicon chips.

111

Accurate and Efficient Uncertainty and Risk Quantification with Detailed Simulation Chapter 4

4.5 Chapter Summary

In this chapter, we demonstrate an accurate and efficient way of quantifying and thus under-

standing uncertainties through surrogate models trained with detailed simulation results. We

address the computational challenge with the power of generalized Polynomial Chaos expan-

sions. With only a handful of data, we are able to build accurate and fast analytical surrogates

that allow us to explore the manifestation and interaction of uncertainties and estimate the risks

that they incur. With a mature CMP architecture, we acquire interesting new findings through

such a study. The new capability of accurately and efficiently estimating uncertainties and

risks, as well as a fully automated evaluation workflow and tool chain which we deem as a

valuable future work, will become an important trick up in our sleeves. With that we believe

computer architects will soon be able to reason about uncertainties and design systems that is

more stable in the face of unknowns, more trusted with different performance constraints and

more efficient when conservative margins are replaced with tailored designs.

112

Chapter 5

Conclusions

Computer architecture is entering a new era with a bounty of opportunity for innovation via

emerging technologies. However, along with those opportunities are uncertainties which, if

not dealt with carefully, might undermine all of our hard work. Between applications and the

underlying physical circuits computer architects are in the best place to understand how those

uncertainties will manifest at the system level. From this understanding we can take a more

active approaches to combat the potential issues brought by them.

In this thesis, we thoroughly investigate how we should define and quantify different un-

certainties in early system design process. In Chapter 2, we present a discussion of what

uncertainties an architecture design is exposed to, how we can mathematically describe uncer-

tainties and define their impacts, as well as a demonstration of the type of analysis we wish to

perform and the new discoveries we are able to acquire from such an analysis.

This type of analysis essentially opens the door to a new architecture research space cen-

tered around three basic questions: a) how can architectural choices strike an effectively bal-

ance between performance, resource utilization (energy or area), and risk? b) how can one

introduce new micro-architectural support, new computer organizations, and hardware design

tools to change the risk-performance trade-off space in fundamentally new ways? and c) how

113

Conclusions Chapter 5

can we work together as a community to properly leverage the best thinking on each of these

individual risk factors to create a cohesive understanding. While (a) and (b) are already a close

parallel to other computer architecture work, (c) will require both new methods and coordina-

tion.

We take first steps in Chapter 3 and Chapter 4 proposing systematic ways to support such

analysis and promote collaboration in early design time, for closed-form analytical models and

detailed simulations respectively.

In Chapter 3, we start from the pain points when performing analytical analysis in an ad-hoc

fashion and argue that a more systematic way is needed to support and scale such analysis. We

take a programming language inspired approach by designing a custom modeling language to

address the various issues with ad-hoc modeling. Through three case studies, we demonstrate

how using Charm provides a variety of benefits.

In Chapter 4, we demonstrate an accurate and efficient way of quantifying and thus under-

standing uncertainties through surrogate models trained with detailed simulation results. We

address the computational challenge with the power of generalized Polynomial Chaos (gPC)

expansions. With only a handful of data, we are able to build accurate and fast analytical sur-

rogates that allow us to explore the manifestation and interaction of uncertainties and estimate

the risks that they incur. With a mature CMP architecture, we acquire interesting new findings

through such a study.

5.1 Future Work

Looking forward, the convolution of uncertainties from all over the places in application,

technology and system organization imposes a great challenge when we try to design better

systems for the future. We believe the intersection of architecture, circuit design, algorithms,

programming languages, formal methods and statistics is the right place to inspect, study, and

114

Conclusions Chapter 5

understand the interactions and impacts of all these uncertainties and to think about what can

we do about them. Especially now that we are moving towards less explored design spaces like

accelerators, 3D architectures, and even quantum computers, a joint analysis of all the above

domains should be more widely adopted in the system design process in the future, as opposed

to today when it is more of an ad-hoc practice (e.g., a “back of the envelope” estimation). As

we demonstrated in this thesis, a joint analysis of risk assessment and performance through

statistical sampling and simulation reveals new insights about how robust the performance of

a design is in the face of uncertainties. This joint analysis (along with the need for a properly

designed tool chain to support it) opens up unique and exciting research opportunities to bring

concepts, techniques and constraints from all related domains together to enable new analysis,

inspire new insights and develop new tools.

From this thesis, we see two future directions towards the realization of above said future

design process: 1). to systematically support exporting and evaluating uncertainties across

different levels (e.g., analytic models, functional simulation and RTL simulation), and 2). to

innovate new methods, algorithms and architectures to mitigate and even exploit the influences

of uncertainties across the software-hardware stack. It is unclear, and thus worth research-

ing, that if either incorporating hardware mechanisms to transparently hide uncertainties from

software (guard-banding being one example of this flavor) or exposing uncertainties to soft-

ware (uncertain〈T 〉 [149] as an example of this type of solution) is the right way to mitigate

uncertainties.

To Systematically Export and Evaluate Uncertainties Across Different Levels

The combination of programming language techniques and architectural analysis, like Charm,

provides an unique opportunity to bridge high-level uncertainty analysis with lower-level de-

tailed simulations. One way of automating this process is to formally express the input struc-

tures of commonly used architecture simulators (e.g., gem5) and extend Charm to automati-

cally synthesis simulator instance which meets high-level uncertainty description and is ready

115

to execute by generating required input signals based on the high-level study result and the

formal specifications of the needed inputs. Conversely, from bottom-up, through building an

analytic model library for commonly used design patterns (similar to McPAT), it is also inter-

esting to examine how to automatically compose an analytic model in Charm from a detailed

design (e.g., in RTL or HLS languages) to assist design space exploration and cross-validation

of the design (e.g., whether the uncertainty range checks with the high level description). With

the abstraction of Charm and other possible extensions (e.g., integrating with HLS languages),

experts from different domains can talk within the same intellectual framework to reason about

architectures. With the help of the tool chain that comes along, this analysis procedure will

also be easily accessible and sharable.

To Mitigate and Exploit Uncertainties across the SW/HW Stack

Ultimately it is worthwhile to rethink how we should build our microprocessors, memories

and systems with a rigorous understanding of uncertainty in mind. It is promising to both

leverage the existing techniques, most of which deal with one certain type of uncertainty, to

propose new solutions with a stronger statistical guarantee, and also innovate new architectural

tweaks and designs (e.g., utilize the fact that multiple uncertainties might cancel each other to

a certain degree) to mitigate the impact and still maintain a strong average-case performance.

Further along, it will be very interested to investigate and build connections between uncertainty-

aware system design with other domains of inherent variability, including approximate com-

puting techniques (since approximation is likely to bring uncertainty to the system as a side-

effect and conversely is tolerant to a certain amount of uncertainty) and security of a system

(one example is the uncertain nature of SRAM may leak secret through start-up time statistical

characterization [150]).

116

Bibliography

[1] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa, S. Bates,
S. Bhatia, N. Boden, A. Borchers, et. al., In-datacenter performance analysis of a
tensor processing unit, in 2017 ACM/IEEE 44th Annual International Symposium on
Computer Architecture (ISCA), pp. 1–12, IEEE, 2017.

[2] A. Madhavan, T. Sherwood, and D. Strukov, Race logic: A hardware acceleration for
dynamic programming algorithms, in Proceeding of the 41st Annual International
Symposium on Computer Architecuture, ISCA ’14, (Piscataway, NJ, USA),
pp. 517–528, IEEE Press, 2014.

[3] D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, The missing memristor
found, Nature 453 (May 01, 2008) 80–3. Copyright - Copyright Nature Publishing
Group May 1, 2008; Last updated - 2014-03-19; CODEN - NATUAS.

[4] P. Kocher, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp, S. Mangard,
T. Prescher, M. Schwarz, and Y. Yarom, Spectre attacks: Exploiting speculative
execution, arXiv preprint arXiv:1801.01203 (2018).

[5] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, S. Mangard, P. Kocher,
D. Genkin, Y. Yarom, and M. Hamburg, Meltdown, arXiv preprint arXiv:1801.01207
(2018).

[6] M. Miranda, The threat of semiconductor variability, in IEEE Spectrum, June, 2012.

[7] K. Agarwal and S. Nassif, Characterizing process variation in nanometer cmos, in
Proceedings of the 44th Annual Design Automation Conference, DAC ’07, (New York,
NY, USA), pp. 396–399, ACM, 2007.

[8] S. Mittal, A survey of architectural techniques for managing process variation, ACM
Comput. Surv. 48 (Feb., 2016) 54:1–54:29.

[9] S. Borkar, T. Karnik, S. Narendra, J. Tschanz, A. Keshavarzi, and V. De, Parameter
variations and impact on circuits and microarchitecture, in Proceedings of the 40th
Annual Design Automation Conference, DAC ’03, (New York, NY, USA),
pp. 338–342, ACM, 2003.

117

[10] S. R. Sarangi, B. Greskamp, R. Teodorescu, J. Nakano, A. Tiwari, and J. Torrellas,
Varius: A model of process variation and resulting timing errors for microarchitects,
IEEE Transactions on Semiconductor Manufacturing 21 (Feb, 2008) 3–13.

[11] C. Bienia, S. Kumar, J. P. Singh, and K. Li, The parsec benchmark suite:
Characterization and architectural implications, in Proceedings of the 17th
International Conference on Parallel Architectures and Compilation Techniques,
October, 2008.

[12] A. Limaye and T. Adegbija, A workload characterization of the spec cpu2017
benchmark suite, in 2018 IEEE International Symposium on Performance Analysis of
Systems and Software (ISPASS), pp. 149–158, April, 2018.

[13] A. Jaleel, Memory characterization of workloads using instrumentation-driven
simulation, Web Copy: http://www. glue. umd. edu/ajaleel/workload (2010).

[14] A. R. Alameldeen and D. A. Wood, Addressing workload variability in architectural
simulations, IEEE Micro 23 (Nov, 2003) 94–98.

[15] A. R. Alameldeen and D. A. Wood, Variability in architectural simulations of
multi-threaded workloads, in The Ninth International Symposium on High-Performance
Computer Architecture, 2003. HPCA-9 2003. Proceedings., pp. 7–18, Feb, 2003.

[16] M. Guevara, B. Lubin, and B. C. Lee, Strategies for anticipating risk in heterogeneous
system design, in 2014 IEEE 20th International Symposium on High Performance
Computer Architecture (HPCA), pp. 154–164, Feb, 2014.

[17] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu, J. Hestness,
D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell, M. Shoaib, N. Vaish, M. D.
Hill, and D. A. Wood, The gem5 simulator, SIGARCH Comput. Archit. News 39 (Aug.,
2011) 1–7.

[18] M. D. Hill and M. R. Marty, Amdahl’s law in the multicore era, Computer 41 (July,
2008) 33–38.

[19] W. Cui and T. Sherwood, Estimating and understanding architectural risk, in
Proceedings of the 50th Annual IEEE/ACM International Symposium on
Microarchitecture, MICRO-50 ’17, 2017.

[20] W. Cui, Y. Ding, D. Dangwal, A. Holmes, J. McMahan, A. Javadi-Abhari,
G. Tzimpragos, F. Chong, and T. Sherwood, Charm: A language for closed-form
high-level architecture modeling, in 2018 ACM/IEEE 45th Annual International
Symposium on Computer Architecture (ISCA), pp. 152–165, June, 2018.

[21] Z. He, W. Cui, C. Cui, T. Sherwood, and Z. Zhang, Efficient uncertainty modeling for
system design via mixed integer programming, in Proc. Intl. Conf. Computer-Aided
Design, Nov, pp. 0278–0070, 2019.

118

[22] S. Kaplan and B. J. Garrick, On the quantitative definition of risk, Risk Analysis 1
(1981), no. 1 11–27.

[23] B. C. Lee and D. M. Brooks, Accurate and efficient regression modeling for
microarchitectural performance and power prediction, in Proceedings of the 12th
International Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS XII, (New York, NY, USA), pp. 185–194, ACM, 2006.

[24] T. Sherwood, E. Perelman, G. Hamerly, S. Sair, and B. Calder, Discovering and
exploiting program phases, IEEE Micro 23 (Nov, 2003) 84–93.

[25] C. Dubach, T. Jones, and M. O’Boyle, Microarchitectural design space exploration
using an architecture-centric approach, in Proceedings of the 40th Annual IEEE/ACM
International Symposium on Microarchitecture, MICRO 40, (Washington, DC, USA),
pp. 262–271, IEEE Computer Society, 2007.

[26] M. S. B. Altaf and D. A. Wood, Logca: A high-level performance model for hardware
accelerators, in Proceedings of the 44th Annual International Symposium on Computer
Architecture, ISCA ’17, (New York, NY, USA), pp. 375–388, ACM, 2017.

[27] H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam, and D. Burger, Dark
silicon and the end of multicore scaling, in Proceedings of the 38th Annual
International Symposium on Computer Architecture, ISCA ’11, (New York, NY, USA),
pp. 365–376, ACM, 2011.

[28] M. Hill and V. Janapa Reddi, Gables: A roofline model for mobile socs, in 2019 IEEE
International Symposium on High Performance Computer Architecture (HPCA),
pp. 317–330, Feb, 2019.

[29] D. H. Woo, D. H. Woo, D. H. Woo, D. H. Woo, H. H. S. Lee, H. H. S. Lee, H. H. S.
Lee, and H. H. S. Lee, Extending amdahl’s law for energy-efficient computing in the
many-core era, Computer 41 (Dec, 2008) 24–31.

[30] X.-H. Sun and Y. Chen, Reevaluating amdahl’s law in the multicore era, Journal of
Parallel and Distributed Computing 70 (2010), no. 2 183 – 188.

[31] E. S. Chung, P. A. Milder, J. C. Hoe, and K. Mai, Single-chip heterogeneous
computing: Does the future include custom logic, fpgas, and gpgpus?, in Proceedings
of the 2010 43rd Annual IEEE/ACM International Symposium on Microarchitecture,
MICRO ’43, (Washington, DC, USA), pp. 225–236, IEEE Computer Society, 2010.

[32] J. L. Gustafson, Reevaluating amdahl’s law, Commun. ACM 31 (May, 1988) 532–533.

[33] D. Brooks, V. Tiwari, and M. Martonosi, Wattch: A framework for architectural-level
power analysis and optimizations, in Proceedings of the 27th Annual International
Symposium on Computer Architecture, ISCA ’00, (New York, NY, USA), pp. 83–94,
ACM, 2000.

119

[34] A. Hartstein and T. R. Puzak, The optimum pipeline depth for a microprocessor, in
Proceedings of the 29th Annual International Symposium on Computer Architecture,
ISCA ’02, (Washington, DC, USA), pp. 7–13, IEEE Computer Society, 2002.

[35] B. Lee and D. Brooks, Statistically rigorous regression modeling for the
microprocessor design space, in ISCA-33: Workshop on Modeling, Benchmarking, and
Simulation, 2006.

[36] E. Ïpek, S. A. McKee, R. Caruana, B. R. de Supinski, and M. Schulz, Efficiently
exploring architectural design spaces via predictive modeling, in Proceedings of the
12th International Conference on Architectural Support for Programming Languages
and Operating Systems, ASPLOS XII, (New York, NY, USA), pp. 195–206, ACM,
2006.

[37] B. C. Lee, D. M. Brooks, B. R. de Supinski, M. Schulz, K. Singh, and S. A. McKee,
Methods of inference and learning for performance modeling of parallel applications,
in Proceedings of the 12th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, PPoPP ’07, (New York, NY, USA), pp. 249–258, ACM, 2007.

[38] B. C. Lee and D. M. Brooks, Illustrative design space studies with microarchitectural
regression models, in 2007 IEEE 13th International Symposium on High Performance
Computer Architecture, pp. 340–351, Feb, 2007.

[39] B. C. Lee, J. Collins, H. Wang, and D. Brooks, Cpr: Composable performance
regression for scalable multiprocessor models, in Proceedings of the 41st Annual
IEEE/ACM International Symposium on Microarchitecture, MICRO 41, (Washington,
DC, USA), pp. 270–281, IEEE Computer Society, 2008.

[40] B. C. Lee and D. Brooks, Efficiency trends and limits from comprehensive
microarchitectural adaptivity, in Proceedings of the 13th International Conference on
Architectural Support for Programming Languages and Operating Systems, ASPLOS
XIII, (New York, NY, USA), pp. 36–47, ACM, 2008.

[41] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and N. P. Jouppi, Mcpat:
An integrated power, area, and timing modeling framework for multicore and manycore
architectures, in 2009 42nd Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), pp. 469–480, Dec, 2009.

[42] O. Azizi, A. Mahesri, B. C. Lee, S. J. Patel, and M. Horowitz, Energy-performance
tradeoffs in processor architecture and circuit design: A marginal cost analysis, in
Proceedings of the 37th Annual International Symposium on Computer Architecture,
ISCA ’10, (New York, NY, USA), pp. 26–36, ACM, 2010.

[43] M. Oskin, F. T. Chong, and M. Farrens, Hls: Combining statistical and symbolic
simulation to guide microprocessor designs, in Proceedings of the 27th Annual

120

International Symposium on Computer Architecture, ISCA ’00, (New York, NY, USA),
pp. 71–82, ACM, 2000.

[44] J. Bornholt, T. Mytkowicz, and K. S. McKinley, Uncertain¡t¿: A first-order type for
uncertain data, in Proceedings of the 19th International Conference on Architectural
Support for Programming Languages and Operating Systems, ASPLOS ’14, (New
York, NY, USA), pp. 51–66, ACM, 2014.

[45] M. Guevara, B. Lubin, and B. C. Lee, Navigating heterogeneous processors with
market mechanisms, in 2013 IEEE 19th International Symposium on High Performance
Computer Architecture (HPCA), pp. 95–106, Feb, 2013.

[46] S. M. Zahedi and B. C. Lee, Ref: Resource elasticity fairness with sharing incentives
for multiprocessors, in Proceedings of the 19th International Conference on
Architectural Support for Programming Languages and Operating Systems, ASPLOS
’14, (New York, NY, USA), pp. 145–160, ACM, 2014.

[47] S. Fan, S. M. Zahedi, and B. C. Lee, The computational sprinting game, in Proceedings
of the Twenty-First International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS ’16, (New York, NY,
USA), pp. 561–575, ACM, 2016.

[48] S. Borkar, Thousand core chips: A technology perspective, in Proceedings of the 44th
Annual Design Automation Conference, DAC ’07, (New York, NY, USA),
pp. 746–749, ACM, 2007.

[49] L. Yavits, A. Morad, and R. Ginosar, The effect of communication and synchronization
on amdahl’s law in multicore systems, Parallel Computing 40 (2014), no. 1 1 – 16.

[50] J. A. Cunningham, The use and evaluation of yield models in integrated circuit
manufacturing, IEEE Transactions on Semiconductor Manufacturing 3 (May, 1990)
60–71.

[51] K. Constantinides, O. Mutlu, and T. Austin, Online design bug detection: Rtl analysis,
flexible mechanisms, and evaluation, in 2008 41st IEEE/ACM International Symposium
on Microarchitecture, pp. 282–293, Nov, 2008.

[52] H. D. Foster, Trends in functional verification: A 2014 industry study, in 2015 52nd
ACM/EDAC/IEEE Design Automation Conference (DAC), pp. 1–6, June, 2015.

[53] S. R. Sarangi, B. Greskamp, R. Teodorescu, J. Nakano, A. Tiwari, and J. Torrellas,
Varius: A model of process variation and resulting timing errors for microarchitects,
IEEE Transactions on Semiconductor Manufacturing 21 (Feb, 2008) 3–13.

[54] X. Liang and D. Brooks, Mitigating the impact of process variations on processor
register files and execution units, in 2006 39th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO’06), pp. 504–514, Dec, 2006.

121

[55] A. Rahimi, L. Benini, and R. K. Gupta, Variability mitigation in nanometer cmos
integrated systems: A survey of techniques from circuits to software, Proceedings of the
IEEE 104 (July, 2016) 1410–1448.

[56] M. Bhadauria, V. M. Weaver, and S. A. McKee, Understanding parsec performance on
contemporary cmps, in 2009 IEEE International Symposium on Workload
Characterization (IISWC), pp. 98–107, Oct, 2009.

[57] G. E. P. Box and D. R. Cox, An analysis of transformations, Journal of the Royal
Statistical Society. Series B (Methodological) 26 (1964), no. 2 211–252.

[58] D. W. Scott, Kernel Density Estimators, pp. 125–193. John Wiley Sons, Inc., 2008.

[59] SymPy Development Team, SymPy: Python library for symbolic mathematics, 2016.

[60] A. Lee, Real-time latin-hypercube-sampling-based Monte Carlo Error Propagation,
2014.

[61] I. Koren and Z. Koren, Defect tolerance in vlsi circuits: techniques and yield analysis,
Proceedings of the IEEE 86 (Sep, 1998) 1819–1838.

[62] Intel, “Intel processor pricing.” https://www.intc.com/investor-relations/
investor-education-and-news/cpu-price-list, 2017. Accessed: 2017-04-03.

[63] H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam, and D. Burger, Dark
silicon and the end of multicore scaling, in Proceedings of the 38th Annual
International Symposium on Computer Architecture, ISCA ’11, (New York, NY, USA),
pp. 365–376, ACM, 2011.

[64] M. D. Hill and M. R. Marty, Amdahl’s law in the multicore era, Computer 41 (July,
2008) 33–38.

[65] Z. Guz, E. Bolotin, I. Keidar, A. Kolodny, A. Mendelson, and U. C. Weiser, Many-core
vs. many-thread machines: Stay away from the valley, IEEE Computer Architecture
Letters 8 (Jan, 2009) 25–28.

[66] S. Borkar, The exascale challenge, in Proceedings of 2010 International Symposium on
VLSI Design, Automation and Test, pp. 2–3, April, 2010.

[67] T. Antoniu, P. A. Steckler, S. Krishnamurthi, E. Neuwirth, and M. Felleisen, Validating
the unit correctness of spreadsheet programs, in Proceedings of the 26th International
Conference on Software Engineering, ICSE ’04, (Washington, DC, USA),
pp. 439–448, IEEE Computer Society, 2004.

[68] S. G. Powell, K. R. Baker, and B. Lawson, A critical review of the literature on
spreadsheet errors, Decis. Support Syst. 46 (Dec., 2008) 128–138.

122

https://www.intc.com/investor-relations/investor-education-and-news/cpu-price-list
https://www.intc.com/investor-relations/investor-education-and-news/cpu-price-list

[69] L. De Moura and N. Bjørner, Z3: An efficient smt solver, in Proceedings of the Theory
and Practice of Software, 14th International Conference on Tools and Algorithms for
the Construction and Analysis of Systems, TACAS’08/ETAPS’08, (Berlin, Heidelberg),
pp. 337–340, Springer-Verlag, 2008.

[70] H. Elmqvist, S. Mattsson, H. Elmqvist, and D. Ab, An introduction to the physical
modeling language modelica, in Proc. 9th European Simulation Sympossium ESS97,
SCS Int, pp. 110–114, 1997.

[71] K. L. Spafford and J. S. Vetter, Aspen: A domain specific language for performance
modeling, in Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis, SC ’12, (Los Alamitos, CA, USA),
pp. 84:1–84:11, IEEE Computer Society Press, 2012.

[72] N. R. Tallent and A. Hoisie, Palm: Easing the burden of analytical performance
modeling, in Proceedings of the 28th ACM International Conference on
Supercomputing, ICS ’14, (New York, NY, USA), pp. 221–230, ACM, 2014.

[73] M. Vachharajani, N. Vachharajani, D. A. Penry, J. A. Blome, S. Malik, and D. I.
August, The liberty simulation environment: A deliberate approach to high-level
system modeling, ACM Trans. Comput. Syst. 24 (Aug., 2006) 211–249.

[74] D. Unat, C. Chan, W. Zhang, S. Williams, J. Bachan, J. Bell, and J. Shalf, Exasat: An
exascale co-design tool for performance modeling, Int. J. High Perform. Comput. Appl.
29 (May, 2015) 209–232.

[75] S. R. Alam and J. S. Vetter, A framework to develop symbolic performance models of
parallel applications, in Proceedings of the 20th International Conference on Parallel
and Distributed Processing, IPDPS’06, (Washington, DC, USA), pp. 320–320, IEEE
Computer Society, 2006.

[76] S. R. Alam and J. S. Vetter, Hierarchical model validation of symbolic performance
models of scientific kernels, in European Conference on Parallel Processing,
pp. 65–77, Springer, 2006.

[77] K. H. Temme, Charm: a synthesis tool for high-level chip-architecture planning, in
1989 Proceedings of the IEEE Custom Integrated Circuits Conference, pp. 4.2/1–4.2/4,
May, 1989.

[78] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud, The synchronous data flow
programming language lustre, Proceedings of the IEEE 79 (Sep, 1991) 1305–1320.

[79] L. Mandel and M. Pouzet, Reactiveml: A reactive extension to ml, in Proceedings of the
7th ACM SIGPLAN International Conference on Principles and Practice of
Declarative Programming, PPDP ’05, (New York, NY, USA), pp. 82–93, ACM, 2005.

123

[80] M. A. Hammer, U. A. Acar, and Y. Chen, Ceal: A c-based language for self-adjusting
computation, in Proceedings of the 30th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’09, (New York, NY, USA), pp. 25–37,
ACM, 2009.

[81] T. Szabó, S. Erdweg, and M. Voelter, Inca: A dsl for the definition of incremental
program analyses, in Proceedings of the 31st IEEE/ACM International Conference on
Automated Software Engineering, ASE 2016, (New York, NY, USA), pp. 320–331,
ACM, 2016.

[82] P. LeGuernic, T. Gautier, M. L. Borgne, and C. L. Maire, Programming real-time
applications with signal, Proceedings of the IEEE 79 (Sep, 1991) 1321–1336.

[83] S. Mohanty, V. K. Prasanna, S. Neema, and J. Davis, Rapid design space exploration of
heterogeneous embedded systems using symbolic search and multi-granular
simulation, in Proceedings of the Joint Conference on Languages, Compilers and Tools
for Embedded Systems: Software and Compilers for Embedded Systems,
LCTES/SCOPES ’02, (New York, NY, USA), pp. 18–27, ACM, 2002.

[84] P. Manolios, D. Vroon, and G. Subramanian, Automating component-based system
assembly, in Proceedings of the 2007 International Symposium on Software Testing
and Analysis, ISSTA ’07, (New York, NY, USA), pp. 61–72, ACM, 2007.

[85] C. Haubelt, J. Teich, R. Feldmann, and B. Monien, Sat-based techniques in system
synthesis, in Proceedings of the Conference on Design, Automation and Test in Europe
- Volume 1, DATE ’03, (Washington, DC, USA), pp. 11168–, IEEE Computer Society,
2003.

[86] S. Peter and T. Givargis, Component-based synthesis of embedded systems using
satisfiability modulo theories, ACM Trans. Des. Autom. Electron. Syst. 20 (Sept., 2015)
49:1–49:27.

[87] F. Reimann, M. Glaß, C. Haubelt, M. Eberl, and J. Teich, Improving platform-based
system synthesis by satisfiability modulo theories solving, in Proceedings of the Eighth
IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and System
Synthesis, CODES/ISSS ’10, (New York, NY, USA), pp. 135–144, ACM, 2010.

[88] W. Liu, Z. Gu, J. Xu, X. Wu, and Y. Ye, Satisfiability modulo graph theory for task
mapping and scheduling on multiprocessor systems, IEEE Transactions on Parallel and
Distributed Systems 22 (Aug, 2011) 1382–1389.

[89] T. E. Sheard, Painless programming combining reduction and search: Design
principles for embedding decision procedures in high-level languages, in Proceedings
of the 17th ACM SIGPLAN International Conference on Functional Programming,
ICFP ’12, (New York, NY, USA), pp. 89–102, ACM, 2012.

124

[90] W. R. Inc., “Mathematica, Version 11.2.” Champaign, IL, 2017.

[91] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong, Optimizing fpga-based
accelerator design for deep convolutional neural networks, in Proceedings of the 2015
ACM/SIGDA International Symposium on Field-Programmable Gate Arrays,
pp. 161–170, ACM, 2015.

[92] S. Bravyi and J. Haah, Magic-state distillation with low overhead, Physical Review A
86 (2012), no. 5 052329.

[93] A. G. Fowler, S. J. Devitt, and C. Jones, Surface code implementation of block code
state distillation, Scientific Reports 3 (jun, 2013) 1939.

[94] J. O’Gorman and E. T. Campbell, Quantum computation with realistic magic-state
factories, Physical Review A 95 (2017), no. 3 032338.

[95] S. Williams, A. Waterman, and D. Patterson, Roofline: An insightful visual
performance model for multicore architectures, Commun. ACM 52 (Apr., 2009) 65–76.

[96] M. Courbariaux, Y. Bengio, and J.-P. David, Binaryconnect: Training deep neural
networks with binary weights during propagations, in Advances in Neural Information
Processing Systems, pp. 3123–3131, 2015.

[97] J. Alwen and J. Blocki, Efficiently computing data-independent memory-hard
functions, in Annual Cryptology Conference, pp. 241–271, Springer, 2016.

[98] B. C. Lee and D. M. Brooks, Accurate and efficient regression modeling for
microarchitectural performance and power prediction, in Proceedings of the 12th
International Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS XII, (New York, NY, USA), pp. 185–194, ACM, 2006.

[99] D. Xiu and G. E. Karniadakis, The wiener–askey polynomial chaos for stochastic
differential equations, SIAM journal on scientific computing 24 (2002), no. 2 619–644.

[100] D. Xiu and G. E. Karniadakis, Modeling uncertainty in flow simulations via generalized
polynomial chaos, Journal of computational physics 187 (2003), no. 1 137–167.

[101] Q. Guo, T. Chen, Y. Chen, and F. Franchetti, Accelerating architectural simulation via
statistical techniques: A survey, IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems 35 (March, 2016) 433–446.

[102] E. Ïpek, S. A. McKee, R. Caruana, B. R. de Supinski, and M. Schulz, Efficiently
exploring architectural design spaces via predictive modeling, in Proceedings of the
12th International Conference on Architectural Support for Programming Languages
and Operating Systems, ASPLOS XII, (New York, NY, USA), pp. 195–206, ACM,
2006.

125

[103] P. J. Joseph, , and M. J. Thazhuthaveetil, Construction and use of linear regression
models for processor performance analysis, in The Twelfth International Symposium on
High-Performance Computer Architecture, 2006., pp. 99–108, Feb, 2006.

[104] J. Chen, M. D. Flood, and R. B. Sowers, Measuring the unmeasurable: an application
of uncertainty quantification to treasury bond portfolios, Quantitative Finance 17
(2017), no. 10 1491–1507, [https://doi.org/10.1080/14697688.2017.1296176].

[105] Y. Qian, C. Jackson, F. Giorgi, B. Booth, Q. Duan, C. Forest, D. Higdon, Z. J. Hou, and
G. Huerta, Uncertainty quantification in climate modeling and projection, Bulletin of
the American Meteorological Society 97 (2016), no. 5 821–824,
[https://doi.org/10.1175/BAMS-D-15-00297.1].

[106] S. Marino, I. B. Hogue, C. J. Ray, and D. E. Kirschner, A methodology for performing
global uncertainty and sensitivity analysis in systems biology, Journal of Theoretical
Biology 254 (2008), no. 1 178 – 196.

[107] H. N. Najm, Uncertainty quantification and polynomial chaos techniques in
computational fluid dynamics, Annual Review of Fluid Mechanics 41 (2009), no. 1
35–52, [https://doi.org/10.1146/annurev.fluid.010908.165248].

[108] Z. Zhang, X. Yang, I. V. Oseledets, G. E. Karniadakis, and L. Daniel, Enabling
high-dimensional hierarchical uncertainty quantification by anova and tensor-train
decomposition, IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems 34 (Jan, 2015) 63–76.

[109] S. Bhardwaj and S. B. K. Vrudhula, Leakage minimization of nano-scale circuits in the
presence of systematic and random variations, in Proceedings of the 42Nd Annual
Design Automation Conference, DAC ’05, (New York, NY, USA), pp. 541–546, ACM,
2005.

[110] L. Zhang, L. S. Bai, R. P. Dick, L. Shang, and R. Joseph, Process variation
characterization of chip-level multiprocessors, in Proceedings of the 46th Annual
Design Automation Conference, DAC ’09, (New York, NY, USA), pp. 694–697, ACM,
2009.

[111] H.-Y. Wong, L. Cheng, Y. Lin, and L. He, Fpga device and architecture evaluation
considering process variations, in Proceedings of the 2005 IEEE/ACM International
Conference on Computer-aided Design, ICCAD ’05, (Washington, DC, USA),
pp. 19–24, IEEE Computer Society, 2005.

[112] A. Das, S. Ozdemir, G. Memik, J. Zambreno, and A. Choudhary, Mitigating the effects
of process variations: Architectural approaches for improving batch performance, in
Workshop on Architectural Support for Gigascale Integration (ASGI), San Diego, CA,
2007.

126

http://xxx.lanl.gov/abs/https://doi.org/10.1080/14697688.2017.1296176
http://xxx.lanl.gov/abs/https://doi.org/10.1175/BAMS-D-15-00297.1
http://xxx.lanl.gov/abs/https://doi.org/10.1146/annurev.fluid.010908.165248

[113] G. Yan, F. Sun, H. Li, and X. Li, Corerank: Redeeming amp;x201c;sick silicon
amp;x201d; by dynamically quantifying core-level healthy condition, IEEE
Transactions on Computers 65 (March, 2016) 716–729.

[114] S. Ozdemir, D. Sinha, G. Memik, J. Adams, and H. Zhou, Yield-aware cache
architectures, in 2006 39th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO’06), pp. 15–25, Dec, 2006.

[115] X. Liang, R. Canal, G. Wei, and D. Brooks, Process variation tolerant 3t1d-based
cache architectures, in 40th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO 2007), pp. 15–26, Dec, 2007.

[116] R. L. Iman and J. C. Helton, An investigation of uncertainty and sensitivity analysis
techniques for computer models, Risk Analysis 8 no. 1 71–90,
[https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1539-6924.1988.tb01155.x].

[117] A. Saltelli, Sensitivity analysis for importance assessment, Risk Analysis 22 no. 3
579–590, [https://onlinelibrary.wiley.com/doi/pdf/10.1111/0272-4332.00040].

[118] Q. C. Curran, D. Allaire, and K. E. Willcox, Sensitivity analysis methods for mitigating
uncertainty in engineering system design, Systems Engineering 21 no. 3 191–209,
[https://onlinelibrary.wiley.com/doi/pdf/10.1002/sys.21422].

[119] W. Fornaciari, D. Sciuto, C. Silvano, and V. Zaccaria, A sensitivity-based design space
exploration methodology for embedded systems, Design Automation for Embedded
Systems 7 (Sep, 2002) 7–33.

[120] K. De Vogeleer, G. Memmi, and P. Jouvelot, Parameter sensitivity analysis of the
energy/frequency convexity rule for application processors, Sustainable Computing:
Informatics and Systems 15 (2017) 16–27.

[121] Y. Zhu and W. Wong, Sensitivity analysis of a superscalar processor model, in Seventh
Asia-Pacific Computer Systems Architectures Conference (ACSAC2002) (F. Lai and
J. Morris, eds.), vol. 6 of CRPIT, (Melbourne, Australia), pp. 109–118, ACS, 2002.

[122] M. Arora, F. Wang, B. Rychlik, and D. M. Tullsen, Efficient system design using the
statistical analysis of architectural bottlenecks methodology, in Embedded Computer
Systems (SAMOS), 2012 International Conference on, pp. 217–226, IEEE, 2012.

[123] B. Liu, Q. Zhang, and G. G. Gielen, A gaussian process surrogate model assisted
evolutionary algorithm for medium scale expensive optimization problems, IEEE
Transactions on Evolutionary Computation 18 (2014), no. 2 180–192.

[124] J. Eason and S. Cremaschi, Adaptive sequential sampling for surrogate model
generation with artificial neural networks, Computers & Chemical Engineering 68
(2014) 220–232.

127

http://xxx.lanl.gov/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1539-6924.1988.tb01155.x
http://xxx.lanl.gov/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/0272-4332.00040
http://xxx.lanl.gov/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/sys.21422

[125] F. Girosi, An equivalence between sparse approximation and support vector machines,
Neural computation 10 (1998), no. 6 1455–1480.

[126] X. Li, J. Le, P. Gopalakrishnan, and L. T. Pileggi, Asymptotic probability extraction for
nonnormal performance distributions, IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems 26 (2007), no. 1 16–37.

[127] M. Frangos, Y. Marzouk, K. Willcox, and B. van Bloemen Waanders, Surrogate and
reduced-order modeling: A comparison of approaches for large-scale statistical inverse
problems, Large-Scale Inverse Problems and Quantification of Uncertainty 123–149.

[128] D. Xiu, Numerical methods for stochastic computations: a spectral method approach.
Princeton university press, 2010.

[129] Z. Zhang, I. A. M. Elfadel, and L. Daniel, Uncertainty quantification for integrated
circuits: Stochastic spectral methods, in Computer-Aided Design (ICCAD), 2013
IEEE/ACM International Conference on, pp. 803–810, IEEE, 2013.

[130] Z. Zhang, T. A. El-Moselhy, I. M. Elfadel, and L. Daniel, Calculation of generalized
polynomial-chaos basis functions and gauss quadrature rules in hierarchical
uncertainty quantification, IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems 33 (2014), no. 5 728–740.

[131] Z. Zhang, T.-W. Weng, and L. Daniel, Big-data tensor recovery for high-dimensional
uncertainty quantification of process variations, IEEE Transactions on Components,
Packaging and Manufacturing Technology 7 (2017), no. 5 687–697.

[132] C. Cui and Z. Zhang, Stochastic collocation with non-gaussian correlated process
variations: Theory, algorithms and applications, IEEE Transactions on Components,
Packaging and Manufacturing Technology (2018).

[133] Q. Guo, T. Chen, Y. Chen, and F. Franchetti, Accelerating architectural simulation via
statistical techniques: A survey, IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems 35 (2016), no. 3 433–446.

[134] Z. Zhang, T. A. El-Moselhy, I. M. Elfadel, and L. Daniel, Stochastic testing method for
transistor-level uncertainty quantification based on generalized polynomial chaos,
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 32
(2013), no. 10 1533–1545.

[135] I. M. Sobol, Global sensitivity indices for nonlinear mathematical models and their
monte carlo estimates, Mathematics and computers in simulation 55 (2001), no. 1-3
271–280.

[136] J. C. Helton and F. J. Davis, Latin hypercube sampling and the propagation of
uncertainty in analyses of complex systems, Reliability Engineering & System Safety 81
(2003), no. 1 23–69.

128

[137] D. Xiu, Fast numerical methods for stochastic computations: a review,
Communications in computational physics 5 (2009), no. 2-4 242–272.

[138] C. Cui and Z. Zhang, Uncertainty quantification of electronic and photonic ics with
non-gaussian correlated process variations, in Proceedings of the International
Conference on Computer-Aided Design, p. 97, ACM, 2018.

[139] H. Wu, Y. Zhou, S. Dong, and Y. Song, Probabilistic load flow based on generalized
polynomial chaos, IEEE Trans. Power Syst 32 (2017), no. 1 820–821.

[140] G. H. Golub and J. H. Welsch, Calculation of gauss quadrature rules, Mathematics of
computation 23 (1969), no. 106 221–230.

[141] D. Xiu and J. S. Hesthaven, High-order collocation methods for differential equations
with random inputs, SIAM Journal on Scientific Computing 27 (2005), no. 3
1118–1139.

[142] M. M. Sabry Aly, M. Gao, G. Hills, C. Lee, G. Pitner, M. M. Shulaker, T. F. Wu,
M. Asheghi, J. Bokor, F. Franchetti, K. E. Goodson, C. Kozyrakis, I. Markov,
K. Olukotun, L. Pileggi, E. Pop, J. Rabaey, C. R, H. . P. Wong, and S. Mitra,
Energy-efficient abundant-data computing: The n3xt 1,000x, Computer 48 (Dec, 2015)
24–33.

[143] S. Li, K. Chen, J. H. Ahn, J. B. Brockman, and N. P. Jouppi, Cacti-p: Architecture-level
modeling for sram-based structures with advanced leakage reduction techniques, in
Proceedings of the International Conference on Computer-Aided Design, ICCAD ’11,
(Piscataway, NJ, USA), pp. 694–701, IEEE Press, 2011.

[144] B. Zhai, D. Blaauw, D. Sylvester, D. Sylvester, and K. Flautner, Theoretical and
practical limits of dynamic voltage scaling, in Proceedings of the 41st Annual Design
Automation Conference, DAC ’04, (New York, NY, USA), pp. 868–873, ACM, 2004.

[145] C. Bienia, Benchmarking Modern Multiprocessors. PhD thesis, Princeton University,
January, 2011.

[146] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S. Lee, and K. Skadron, Rodinia:
A benchmark suite for heterogeneous computing, in 2009 IEEE International
Symposium on Workload Characterization (IISWC), pp. 44–54, Oct, 2009.

[147] T. N. Miller, R. Thomas, and R. Teodorescu, Mitigating the effects of process variation
in ultra-low voltage chip multiprocessors using dual supply voltages and half-speed
units, IEEE Computer Architecture Letters 11 (July, 2012) 45–48.

[148] I. M. Sobolá, Global sensitivity indices for nonlinear mathematical models and their
monte carlo estimates, Math. Comput. Simul. 55 (Feb., 2001) 271–280.

129

[149] J. Bornholt, T. Mytkowicz, and K. S. McKinley, Uncertain<t>: A first-order
type for uncertain data, in Proceedings of the 19th International Conference on
Architectural Support for Programming Languages and Operating Systems, ASPLOS
’14, (New York, NY, USA), pp. 51–66, ACM, 2014.

[150] J. McMahan, W. Cui, L. Xia, J. Heckey, F. T. Chong, and T. Sherwood, Challenging
on-chip sram security with boot-state statistics, in 2017 IEEE International Symposium
on Hardware Oriented Security and Trust (HOST), pp. 101–105, May, 2017.

130

	Curriculum Vitae
	Abstract
	Introduction
	Uncertainties and Risks in Architecture Design - Where We Are
	Thesis Statement
	Uncertainty Quantification of An Architecture Design - Methods and Challenges
	Thesis Contributions
	Thesis Outline
	Permissions and Attributions

	Estimating and Understanding Uncertainty and Architectural Risk at A High Level
	Uncertainty and Risk in Architecture Design
	Related Work
	An Evaluation Framework with Analytical Models
	Exploring The Design Space under Uncertainties and Risk
	Chapter Summary

	Supporting Analytical Modeling in Architecture Designs
	Understanding Pain Points of Ad-hoc Analysis
	Related Work
	Supporting Analytical Modeling from A PL Perspective
	Extensions to Core Charm
	Case Studies with Charm
	Chapter Summary

	Accurate and Efficient Uncertainty and Risk Quantification with Detailed Simulation
	Unique Challenges with Simulators
	Related Work
	A Cross-layer Scalable Analysis Framework with Surrogate Models
	An Analysis of Uncertainties in A Chip-multiprocessor Architecture
	Chapter Summary

	Conclusions
	Future Work

	Bibliography

