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Leveraging Routine Surveillance to Measure, Map, and Monitor Malaria Burden in 

Uganda 

Adrienne Epstein 

Abstract 

Malaria is one of the leading causes of morbidity and mortality in sub-Saharan Africa, causing 

over 200 million cases and 405,000 deaths in 2017 (1). The World Health Organization states 

that quality malaria surveillance is essential to target regions and populations at highest risk, 

accurately measure changes in disease burden, and evaluate the impact of interventions (2). 

Surveillance data can also be used to produce meaningful indicators of malaria burden in order to 

identify determinants of disease and produce high resolution maps of risk (3, 4). This is essential 

because malaria transmission is heterogenous across space and time (5). Despite the critical need 

for high quality data, malaria surveillance is particularly poor in high burden countries (1).  

 

The ideal indicator for estimating malaria morbidity in high transmission areas is case incidence, 

which is defined as the number of cases of malaria per unit time divided by the population at risk 

(3, 6, 7). The approach currently employed by most countries in sub-Saharan Africa to estimate 

malaria incidence involves cartographic methods that link parasite prevalence to incidence rates 

(8, 9). This method has several weaknesses. It relies on cross-sectional surveys that are costly, 

time-consuming, and infrequently performed. In addition, its accuracy is limited because the 

relationship between prevalence and incidence is variable and non-linear, particularly in high 

transmission settings. An alternative method of estimating incidence that is more direct, 

inexpensive, and comprehensive is the use of data reported through routine health management 

information systems (HMIS). Unfortunately, this is challenging because HMIS data are typically 
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not available at an individual patient level and lack information on where patients come from. 

Cases of malaria detected by the HMIS often lack laboratory confirmation. Furthermore, 

quantifying the denominator for incidence using these data is ambiguous because catchment 

areas around health facilities are not well defined.  

 

The overall goals of this dissertation are to leverage surveillance data routinely collected at 

public health facilities in Uganda to improve measurement of malaria burden and to accurately 

capture changes in malaria burden across space and time. This dissertation is organized into three 

chapters. The first chapter used enhanced HMIS data to estimate care-seeking populations 

around health facilities and, with these estimates, to generate measures of malaria incidence over 

time. These estimates were then compared to “gold standard” measures of incidence measured 

concurrently in cohorts. Through developing this new method to generate catchment area 

populations, we found that our estimates of incidence accurately captured gold standard 

incidence and its dynamics over time. The second chapter aimed to map malaria incidence across 

Uganda using this new measure of incidence captured through enhanced HMIS data. Using 

spatio-temporal modeling, we generated predictions of malaria incidence in 2019-2020 at the 

parish-level in Uganda. The model performed well, particularly in areas where sentinel 

surveillance sites were more densely located across space. The findings from this analysis 

suggest that routinely collected health facility data could be used for risk mapping purposes. The 

third chapter used enhanced HMIS data to evaluate the impact of indoor residual spraying (IRS) 

in Uganda. We used data from 5 districts that received over 7 years of sustained IRS and 

compared monthly malaria burden to a baseline pre-IRS period. Our findings suggest that 

malaria burden declined 85% in the 4th and 5th year of sustained IRS, but increased in the 6th and 
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7th years. The timing of the increase in burden coincided with a switch in IRS active ingredient to 

a new chemical, clothianidin. These findings are an important call for more research aimed at 

studying the real world effectiveness of IRS with clothianidin. 

 

Taken together, these chapters underscore the potential for routinely collected health facility 

surveillance data to answer important scientific questions and to inform policy.  
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Chapter 1: Estimating malaria incidence from routine health facility-based surveillance 

data in Uganda 

 

Adrienne Epstein, Jane Frances Namuganga, Emmanuel Victor Kamya, Joaniter I. Nankabirwa, 

Samir Bhatt, Isabel Rodriguez-Barraquer, Sarah G. Staedke, Moses R. Kamya, Grant Dorsey, 

Bryan Greenhouse 

 

Abstract 

Background 

Accurate measures of malaria incidence are essential to track progress and target high-risk 

populations. While health management information system (HMIS) data provide counts of 

malaria cases, quantifying the denominator for incidence using these data is challenging because 

catchment areas and care-seeking behaviours are not well defined. This study’s aim was to 

estimate malaria incidence using HMIS data by adjusting the population denominator accounting 

for travel time to the health facility. 

Methods 

Outpatient data from two public health facilities in Uganda (Kihihi and Nagongera) over a 3-year 

period (2011-2014) were used to model the relationship between travel time from patient village 

of residence (available for each individual) to the facility and the relative probability of 

attendance using Poisson generalized additive models. Outputs from the model were used to 

generate a weighted population denominator for each health facility and estimate malaria 

incidence. Among children aged 6 months to 11 years, monthly HMIS-derived incidence 

estimates, with and without population denominators weighted by probability of attendance, 
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were compared with gold standard measures of malaria incidence measured in prospective 

cohorts.  

Results 

A total of 48,898 outpatient visits were recorded across the two sites over the study period. 

HMIS incidence correlated with cohort incidence over time at both study sites (correlation in 

Kihihi=0.64, p <0.001; correlation in Nagongera=0.34, p=0.045). HMIS incidence measures with 

denominators unweighted by probability of attendance underestimated cohort incidence 

aggregated over the 3 years in Kihihi (0.5 cases per person-year (PPY) vs 1.7 cases PPY) and 

Nagongera (0.3 cases PPY vs 3.0 cases PPY). HMIS incidence measures with denominators 

weighted by probability of attendance were closer to cohort incidence, but remained 

underestimates (1.1 cases PPY in Kihihi and 1.4 cases PPY in Nagongera). 

Conclusions 

Although malaria incidence measured using HMIS underestimated incidence measured in 

cohorts, even when adjusting for probability of attendance, HMIS surveillance data are a 

promising and scalable source for tracking relative changes in malaria incidence over time, 

particularly when the population denominator can be estimated by incorporating information on 

village of residence.  
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Introduction 

Malaria surveillance is widely recognized as an essential intervention to target regions and 

populations at high risk, accurately measure changes in disease burden, and evaluate the impact 

of interventions [1]. In many high burden settings, surveillance is conducted through passive 

case detection at health facilities as part of the routine health management information system 

(HMIS). There are several strengths in conducting HMIS-based surveillance: data provide direct 

measures of morbidity, are collected continuously over time, and cover a broad geographic range 

(10). However, these data are often hindered by reporting delays and gaps, poor data quality, 

health seeking behavior, and lack of laboratory-confirmed diagnostics (11, 12). For this reason, 

measures of malaria morbidity assessed with HMIS data tend to largely underestimate true 

burden (1, 11, 13-15). 

 

An additional challenge with the utility of HMIS surveillance data is in translating case counts 

into meaningful metrics of malaria burden. A common HMIS-derived metric is the test positivity 

rate (TPR), defined as the proportion of individuals who test positive for malaria per 100 

individuals tested. The TPR has several inherent limitations: it is prone to bias due to the 

incidence of non-malarial illnesses, has a non-linear relationship with malaria incidence, and 

cannot be translated into absolute estimates of incidence (7, 16-18). The most useful metric of 

malaria morbidity is malaria incidence, defined as the number of cases of malaria per unit time 

divided by the size of the population at risk (3, 7). The major challenge of translating HMIS data 

into accurate measures of malaria incidence is quantifying the denominator, because catchment 

areas around health facilities are not well defined. Previous efforts to quantify this denominator 

have relied on representative cross-sectional surveys with information on household care-seeking 
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(19, 20), an additional source of information that is costly to collect and requires population-level 

representativeness.  

 

The aim of this study was to estimate malaria incidence over time, without the need for 

independent survey data on care seeking, using enhanced HMIS data. This study leveraged high 

quality, individual-level HMIS surveillance data, including information on village of residence 

for patients presenting to two Uganda Malaria Surveillance Programme (UMSP) Malaria 

Reference Centres (MRCs) over 3 years from 2011 to 2014. The relationship between travel time 

and outpatient attendance was modelled to generate a weighted population denominator for each 

MRC and estimate incidence over time. HMIS-derived incidence estimates where then compared 

to gold standard measures of malaria incidence measured prospectively in cohort studies 

conducted in sub-counties surrounding MRCs. 

 

Methods 

Study sites 

This analysis used data from health facility-based malaria surveillance systems in two Ugandan 

sub-counties: Kihihi sub-county, Kanungu district and Nagongera sub-county, Tororo district. 

Both sub-counties are rural; at the time of the study, Kihihi exhibited moderate transmission 

intensity (annual entomological inoculation rate [aEIR] 2011-2013 = 32.0) and Nagongera high 

transmission intensity (aEIR = 310) (21). Both regions experienced two annual peaks in malaria 

burden following the rainy seasons. 
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From 2012-2014, the government of Uganda carried out a universal distribution of free long-

lasting insecticide-treated nets (LLINs) with the goal of achieving one net per two people in each 

household. Nagongera sub-county received nets in November 2013 and Kihihi sub-county 

received nets in June 2014. 

 

Health facility-based data 

Enhanced malaria surveillance was established via the Uganda Malaria Surveillance Program 

(UMSP) MRCs in 2006, as previously described (22). UMSP conducts sentinel surveillance in 

70 level III and IV public outpatient facilities in Uganda, including Kihihi Health Centre IV and 

Nagongera Health Centre IV. At each MRC, individual-level outpatient department records are 

entered into an electronic MS Access (Microsoft Corporation, Redmond, WA) database for all 

individuals presenting to the outpatient departments of the health facilities using a standardized 

format. Data collected includes patient demographics (age, gender, and village of residence), 

results of laboratory tests (rapid diagnostic test or microscopy), diagnoses given, and treatments 

prescribed. UMSP provides laboratory support and quality control training to ensure high quality 

diagnostic testing. Data are sent to the UMSP data centre and cleaned before transfer to Stata 

(Stata Corp, College Station, TX) for analysis. This analysis uses 3 years of health-facility based 

surveillance data from the two MRCs (September 2011-August 2014). These months were 

selected given the low level of missingness (<30%) for village of residence. This analysis was 

restricted to patients aged 6 months through 10 years to make them comparable to cohort data 

described below. 
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Cohort data 

Dynamic cohort studies were conducted in children aged 6 months through 10 years from 100 

households randomly selected from the two study sub-counties, as previously reported (21). In 

summary, eligible children from selected households were followed from August 2011 through 

June 2017. At enrollment, parents/guardians provided written informed consent and received an 

LLIN. Cohort participants received free medical care at designated study clinics located at the 

same MRCs where UMSP data were being collected; parents/guardians were encouraged to 

bring their children to the clinic any time they were ill. Children who presented with a fever 

(tympanic temperature ≥ 38.0°C) or history of fever in the previous 24 hours had a thick blood 

smear performed. If the blood smear was positive by microscopy, the child was diagnosed with 

malaria and provided treatment. Episodes of uncomplicated malaria were treated with 

artemether-lumefantrine; complicated or recurrent malaria occurring within 14 days of prior 

therapy was treated with quinine. 

 

Measures 

Malaria Suspected. Health-facility based surveillance recorded all outpatients as “malaria 

suspected” or “malaria not suspected.” Malaria suspected was defined as patients who a) 

underwent a laboratory test for malaria (microscopy or rapid diagnostic test); or b) were given a 

clinical diagnosis of malaria in the absence of laboratory testing. Any record that did not meet 

these criteria was considered “malaria not suspected.” 

 

Malaria Cases. At MRCs, malaria cases were defined as patients with laboratory-confirmed 

malaria diagnoses (by microscopy or rapid diagnostic test).  
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Gold Standard Incidence. Malaria incidence measured through dynamic cohorts was considered 

the gold standard. Incidence was defined as the number of new episodes of malaria divided by 

the total person time observed. New episodes of malaria were defined as any episode of malaria 

not preceeded by another episode in the prior 14 days. A secondary definition using a parasite 

threshold of 2000 parasites/µL was also applied as a sensitivity analysis. 

 

Statistical analysis 

Travel Time Estimation. Villages located within Kihihi and Nagongera sub-counties were 

mapped during cross-sectional enumeration surveys conducted in 2009-2010 (21). These village 

shapefiles were linked to unique identifiers of villages found in the UMSP database. Villages of 

residence for all outpatients living within the MRC subcounty were identified and mapped. 

  

Travel times were calculated using Malaria Atlas Project’s friction surface 2015 raster file 

obtained through Google Earth Engine, available at 1-kilometer resolution (23). The authors of 

this friction surface combined datasets on roads, railways, water bodies, slope and elevation, 

landcover, and borders to calculate a nominal overall speed of travel across each pixel, in units of 

minutes of travel time per metre. Travel times represent Uganda-specific mean travel times 

associated with the road types in the pixel, or, in pixels where no roads are present, walking 

times. The malariaAtlas R package was used to calculate the mean travel time from each 

outpatient’s village to the MRC of interest, in addition to the travel times to all nearest level III 

and IV health facilities (24). Travel times were defined as the minimum travel time between two 

points. 
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Care-seeking model. Observations were restricted to those residing in villages whose nearest 

level III or IV health facility was the MRC of interest, assuming that individuals attend their 

nearest health facility. These villages were defined as the MRC’s “catchment area” (19). Since 

not all individuals seek care when ill, and this care-seeking behavior is driven in part by distance 

to the health facility, this analysis sought to account for this distance-specific care-seeking rather 

than using the raw population of the catchment area as a denominator for incidence. The 

probability of seeking care at the MRC was expected to decay as function of travel time to the 

facility. Relative village-level care-seeking probabilities were modelled and estimated as a 

function of travel time to the facility from each village within the catchment area. These 

probabilities were then used to down-weight village populations when estimating incidence. For 

example, if care-seeking from a particular village was estimated to be 80%, the population 

seeking care from that village was estimated to be 80% of the total population.  

 

The care-seeking model was restricted to outpatients for whom malaria was not suspected. This 

group was used because their probability of attendance should be minimally biased by 

heterogeneity in malaria incidence across villages. Because this population represents a range of 

diagnoses, spatial bias is expected to be minimal. By using this population to model care-

seeking, this analysis assumed that differences in care-seeking for outpatients not suspected of 

having malaria over space was driven solely by travel time to the health facility.  

 

For each MRC, non-linear Poisson generalized additive models (GAMs) were specified to 

estimate the relationship between mean travel time from village i to the MRC and the count of 
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outpatients not suspected of having malaria who visited the MRC from village i from September 

2011-2014. GAMs are a class of generalized linear models that allow for the relationship 

between the outcome and predictor to be estimated using smooth functions of the predictor 

variables (25). A non-parametric smooth function was applied to the travel time predictor, as the 

relationship between travel time to the facility and attendance was hypothesized to be non-linear. 

An offset for the logged population from village i derived from the High Resolution Settlement 

Layer (26) was included. To calculate relative village-level probabilities of attendance, predicted 

counts were estimated using the model described above holding the village population size 

constant. These counts were rescaled to relative probabilities by dividing the predictions by the 

predicted count in the village where the MRC is located. Calculating the relative probabilities in 

this way assumes that individuals living in the same village as the MRC have a probability of 

seeking care of 1.  

 

In order to evaluate the sensitivity of these findings to the aforementioned assumptions, models 

were re-specified restricting outpatients to the top 5 diagnoses (including malaria) to determine 

whether the relationship between travel time and attendance differed across indications. In 

addition, stratified analyses were performed based on age category (6 months to < 5 years, 5 

years to < 11 years) and gender. Models were also specified using straight-line distance from the 

centroid of the village of residence to the MRC as predictor and compared to results using travel 

time as predictor. 

 

Incidence Estimation. HMIS data were used to estimate malaria incidence in two ways. First, 

incidence was estimated by dividing malaria cases over the catchment area denominator 
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(including all villages for which the MRC is the closest health facility) without down-weighting 

for travel time, hereafter called unweighted catchment incidence. Second, malaria incidence was 

estimated by dividing malaria cases by a weighted denominator using the weights described 

above to adjust village-level populations, hereafter called weighted catchment incidence. All 

populations were set to grow at a fixed rate each month based on the World Bank’s estimate of 

population growth during the study window (0.29% monthly) (27). Both of these HMIS-derived 

measures were compared to metrics of gold standard (cohort) incidence by generating plots over 

time, calculating measures of pair-wise correlation by month, and comparing aggregated 

estimates of malaria incidence over the three year study window. This method assumes that 

relative treatment-seeking behaviour for non-malarial illness is the same as for malaria.   

 

Results 

Of the 118 villages mapped in Kihihi sub-county, 30 villages were included in the catchment 

area, totaling a population of 15,155 (Figure 1.1). Mean village-level travel times to the MRC 

ranged from 0 minutes to 40 minutes (mean 13 minutes). In Nagongera sub-county, 30 of 45 

villages were included in the catchment area, totaling a population of 32,226. Travel times to the 

MRC ranged from 1 to 21 minutes (mean 10 minutes).  

 

Health facility-based surveillance involved a total of 48,898 visits among children aged 6 months 

to 11 years over the 3-year observation period (Table 1.1). A total of 46.1% and 49.7% of these 

visits occurred among patients residing within the catchment areas of Kihihi and Nagongera, 

respectively. The proportion of outpatient visits from within the catchment areas suspected of 

having malaria was 88.9% and 88.7% in the two sub-counties, and over 98% of these individuals 
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underwent laboratory testing. The TPR within the catchment area was 50.0% in Kihihi and 

43.8% in Nagongera. For the cohort studies, a total of 686 children were observed over 1,628 

person-years over the 3-year observation period. A total of 3,778 episodes of malaria were 

diagnosed, with an average malaria incidence of 1.7 and 3.0 cases per person-year (PPY) at risk 

in Kihihi and Nagongera, respectively.  

 

 

The relationship between travel time and the predicted probability of attendance is presented in 

Figure 1.2, and as expected decreased with increasing travel time in both sites. In Kihihi, the 

probability of attendance dropped steadily, plateaued at approximately 10 minutes, then 

continued to drop, with a slight increase at the furthest village included in the catchment area. In 

Nagongera, the probability of attendance dropped steadily until approximately 10 minutes travel 

time, then flattened at close to 10%. The shape of these curves was substantively similar to 

curves resulting from models using straight-line distance as predictor (Appendix Figure 1.1). 

The relationship between travel time and attendance was consistent across age groups and sexes 

(Appendix Figure 1.2 and Appendix Figure 1.3). In Nagongera, these relationships were also 

consistent when stratifying by diagnosis. However, in Kihihi, the relationship between travel 

time and probability of attendance differed among those diagnosed with malaria, cough or cold, 

diarrhoea, and GI disorders, with a lower probability of attendance in the village where the 

health facility was located compared to villages with travel times around 10 minutes (Appendix 

Figure 1.4). Of note, the village where the MRC is located in Kihihi is urban and has a 

documented lower level of malaria transmission than surrounding villages (28). 
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The three incidence measures (weighted catchment incidence, unweighted catchment incidence, 

and cohort incidence) are plotted over time by age group in Figure 1.3. In most months across 

age groups and sites, both the weighted and unweighted catchment measures followed the same 

trajectory of cohort incidence. Weighted catchment incidence underestimated cohort incidence 

(with the exception of the first several months of observation in Kihihi), but less so than the 

unweighted measure. In Nagongera, weighted catchment incidence followed cohort incidence 

until the community-level LLIN distribution, when they diverged. When a parasite density of 

2000 parasites/µL was applied to incident cohort cases the results were similar, but cohort 

incidence fell closer to weighted catchment incidence (Appendix Figure 1.5). The pairwise 

correlation between cohort and catchment incidence (both weighted and unweighted) was higher 

in Kihihi (corr = 0.64, p < 0.001) than Nagongera (corr = 0.34, p = 0.045). However, when 

restricting to the period of time prior to the universal LLIN distribution, the correlation in 

Nagongera was higher (corr = 0.72, p < 0.001).  

 

Incidence estimates by age group and metric (cohort, weighted, and unweighted) aggregated over 

the 3-year observation period are presented in Table 1.2. These reflect the findings plotted in 

Figure 1.3, with the weighted incidence metric falling between cohort and unweighted 

incidence. To best understand bias in incidence estimates derived from enhanced HMIS data, 

weighted catchment incidence was compared to cohort incidence for each month, stratified by 

age (Figure 1.4). In Kihihi, health facility-based incidence initially overestimated cohort 

incidence (approximately 2-fold or 1 episode of malaria PPY), then underestimated incidence 

(approximately 50% or 2 episodes of malaria PPY, Figure 1.4). This trend in overestimation 

followed by underestimation was consistent across age groups. In Nagongera, weighted 
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catchment incidence consistently underestimated cohort incidence, particularly after community 

level LLIN distribution: during the final year of observation. Unlike Kihihi, different degrees of 

bias in estimation by age group were observed, with relative incidence in younger children 

consistently underestimated to a larger degree than older children. In absolute terms, however, 

the differences were very similar between age groups until after community level LLIN 

distribution where incidence was underestimated to a larger degree in older children.  

 

Discussion 

This study used routinely collected HMIS data to estimate malaria incidence longitudinally and 

validated these estimates by comparing them to gold standard measures in moderate and high 

burden settings. Findings suggest that temporal changes in HMIS-based measures correlated 

reasonably well with a gold standard measure of incidence over time. Weighted estimates, which 

leveraged information on village of residence and travel time to the health facility to account for 

differences in care-seeking behaviour, fell much closer to the gold standard incidence than 

unweighted estimates that incorrectly assumed all individuals in the assigned catchment areas 

had a uniform probability of attendance. However, even using weighted estimates, HMIS data 

produced estimates of malaria incidence that were consistently lower than estimates from cohort 

studies, suggesting that not all episodes of malaria were being captured through the HMIS 

system. Nevertheless, these findings contribute to a broader literature indicating that HMIS data, 

particularly when analysed accounting for care-seeking behaviour, have potential to provide a 

relatively inexpensive data source to estimate key metrics of malaria burden across space and 

over time (3, 21, 29). 
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Findings from this study indicate that as travel time to the facility increased, the probability of 

health facility attendance fell precipitously. This was especially true in Nagongera, where the 

probability of attendance decreased by 50% as the travel time increased by onlt 5 minutes. One 

potential explanation is that the friction surface’s resolution was too crude (1 km x 1 km) for 

village-level estimates. However, the steepness of these curves were also found when straight-

line distance was used as a predictor. Another possibility is that there may be private health 

facilities and pharmacies within the area competing for care-seeking; the location of these 

facilities were not considered when estimating the catchment area. 

 

Estimating malaria incidence from HMIS data has surveillance and programmatic benefits. A 

common measure derived from HMIS data is the TPR, which is often used as a proxy measure 

for measuring temporal trends in malaria incidence (3) and assessing the impact of control 

interventions (30, 31). However, the TPR is not informative about absolute case counts and, 

therefore, cannot be used for planning purposes (for example, when determining counts of anti-

malarial medications to send to facilities) nor for estimating cases averted by control 

interventions. This is because the TPR correlates poorly with malaria incidence, especially in 

particularly low and high transmission settings, and does not capture differences between 

facilities (17). Incidence, alternatively, is an absolute measure of burden in the population; using 

HMIS data to measure malaria incidence longitudinally, therefore, would allow trends in the 

absolute burden of disease to be tracked over time and across space. 

 

There are several potential reasons why HMIS-based measures consistently underestimated 

cohort incidence even after down-weighting the population denominator. First, the assumption 
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that care-seeking is 100% in the village where the facility is located may be incorrect; if care-

seeking is lower, true incidence is underestimated. Second, there are key differences between the 

populations that participated in the cohort studies and the broader population throughout the sub-

county. The cohorts represented a unique situation where barriers to care-seeking were removed 

through travel reimbursement, minimal waiting time and no hidden costs; therefore, health 

facility attendance was essentially universal. The underestimation of the weighted HMIS 

measure may therefore be explained by differences in care-seeking behaviour other than travel 

time, such as financial and time burdens or care-seeking at different facilities, such as lower level 

public facilities or private facilities. In Nagongera, this underestimation was more pronounced in 

older age groups. This may be due to differential care-seeking behaviours for caregivers of older 

children; this phenomenon (lower rates of care-seeking among caregivers of older children 

compared to children under 5) has been previously reported in Ethiopia and Malawi (32, 33).  

 

One potential reason is that older children have greater immunity to clinical malaria and 

therefore a higher threshold for seeking care. Another potential explanation is that older children 

in this high transmission setting commonly have asymptomatic parasitaemia. In the cohort 

setting, these children may be more likely to seek care if they had fever (for any reason) and, in 

the presence of asymptomatic parasitaemia, would be classified as clinical/symptomatic malaria. 

Thus, the cohort incidence may in fact overestimate incidence of malaria episodes in older 

children in high burden settings, which is consistent with the results from applying a parasite 

threshold of 2000 parasites/µL to the definition of cohort incidence. It is unclear why these 

findings – the observed differential underestimation of incidence by age – were not echoed in 
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Kihihi, though this could be related to the lower transmission in Kihihi compared with 

Nagongera. 

 

There was a divergence of HMIS and cohort incidence following the 2013 universal LLIN 

distribution in Nagongera. The 2013 distribution was the first universal LLIN distribution in 

Uganda. Evidence suggests that LLIN ownership and use was quite low before the distribution; 

the 2011 Uganda Demographic and Health Survey found that only 27% of households had at 

least one LLIN per two people (34). Participants in the cohort were given LLINs upon 

enrollment and, therefore, may have already experienced the individual and household-level 

benefits of LLIN utilization on malaria incidence; this divergence may be due to the broader 

population receiving LLINs later in the observation period and the likelihood of community-

level benefits of LLIN use. Previous work concluded that there was no significant change in 

malaria incidence among cohort participants following community-level LLIN distribution in 

Nagongera (35). These results suggest that the impact on community incidence may have been 

larger than previously indicated based on the cohort data alone.   

 

This study contributes to the literature by proposing a novel method to more accurately estimate 

malaria incidence from HMIS data using improved estimates of the population denominator. 

Previous work to estimate care-seeking probabilities to apply to incidence denominators has 

relied on representative, cross-sectional surveys that ask individuals about their care-seeking 

behaviour (19, 20, 36-38). These surveys are costly and are not conducted regularly, and the 

questions are often non-specific in that they do not ask respondents which health facility they 

attended. This study instead leveraged continuously available outpatient information on 
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geographic location of residence, information that is part of the standard outpatient registers at 

Ugandan health facilities. Estimating catchments using this information has utility beyond 

measuring incidence of malaria, such as assessing access to care in low-resource, high-burden 

settings (39), and assessing seasonal changes in health-seeking behaviour. If not already 

collected, health facility systems should consider adding geographic information to their routine 

data collection. In countries where these data are collected, Ministries of Health may consider an 

investment in training and support for health workers to ensure data completeness and accuracy; 

in recent years, UMSP has emphasized data completeness for geographic variables and brought 

missingness down to below 5% across all 70 sites. These data could then be linked to geocoded 

information on administrative units, data which are increasingly publicly available, allowing for 

georeferenced information on patients’ origins.  

 

This study has several limitations. First, the gold standard used in this study – malaria incidence 

measured in cohorts of children 6 months to 11 years of age – may not represent the true malaria 

incidence in the underlying community. Care-seeking patterns in the cohorts were in the setting 

of a research study and may not reflect real world behaviors. Second, absolute care-seeking 

probabilities were not possible to estimate with these data. This is because cross-sectional survey 

data on care-seeking behaviours in the villages around the MRCs are not available. Thus, the 

estimates of the denominator for incidence represent an improved upper bound compared to 

estimates without weighting, and the estimates of malaria incidence represent an improved lower 

bound. The inability to generate absolute probabilities poses challenges with comparing 

incidence between health facilities because care-seeking behaviours may differ across sites. 

However, treatment for malaria is free in Uganda and there is some evidence that care-seeking is 
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quite high: the 2018-2019 Malaria Indicator Survey found that 87% of caregivers sought 

treatment for children with fever in the 2 weeks preceding the survey (40); this figure may be 

higher in villages that are closest to the health facility. Thus, the assumption that care-seeking is 

close to 100% in the village where the health facility is located may be plausible. Finally, the 

High Resolution Settlement Layer, which combines satellite, census, and Facebook data to 

generate high resolution population estimates (26) for the population denominator undoubtedly 

contain uncertainty.  

 

Conclusions 

This study underscores the potential for HMIS data to estimate key metrics of malaria burden. 

Although cases captured at the health facility will likely continue to underestimate true burden, 

health facility metrics with estimation of population denominators accounting for care seeking 

may still allow for measurements of changes in burden over time. In practice, estimating 

catchment area denominators using down-weighting may be best applied in sentinel surveillance 

sites across high burden countries, due to the required methodological and time investments. 

Alternatively, instead of using a model to estimate care-seeking, health systems could aim to 

measure where people reside and catchment areas could be defined including patients living 

immediately around the health facility where care-seeking can be assumed to be essentially 

universal, notably in Uganda where public health care is free. This would require a modest 

investment in time and training of health professionals to include geographic information in the 

collection of patient demographics. With this information, HMIS data can be used to generate 

quality measures of malaria incidence that are relatively inexpensive, an essential tool for 

countries around the globe as they aim to achieve targets towards control and elimination.  
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Figure 1.1. Map Malaria Reference Centers and their catchment areas in Kihihi and 
Nagongera sub-counties. 
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Table 1.1. Summary statistics from health facility-based and cohort surveillance 
studies; September 2011-August 2014 
Data Source Metric Study Site 

Kihihi Nagongera 
Malaria Reference 
Centers  

Outpatient visits for children 
aged 6 months - < 11 years 

20,742 28,156 

Outpatient visits for children 
aged 6 months - < 11 years from 
catchment area (percent of total) 

9,555 (46.1%) 13,985 (49.7%) 

Malaria suspected from 
catchment area (percent of total 
from catchment area) 

8,497 (88.9%) 12,401 (88.7%) 

Diagnostic test performed 
(percent of malaria suspected 
from catchment area) 

8,493 (99.9%) 12,238 (98.7%) 

Tested positive for malaria in 
catchment area (percent of tested 
from catchment area) 

4,247 (50.0%) 5,358 (43.8%) 

Cohort Studies Number of children observed 353 333 
Person-years of observation 848 780 
Number of episodes of malaria 1,474 2,304 
Incidence of malaria (new 
episodes per person-year) 

1.7 3.0 
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Figure 1.2. Modeled relationship between travel time to the health facility and probability 
of attending the health facility (top) and map of village-level probabilities of attendance 
(bottom). 
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Figure 1.3. Incidence of malaria over the 3-year observation period measured in cohorts 
and using health facility-based surveillance. 
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Table 1.2. Malaria incidence PPY measured at surveillance sites from September 2011-August 
2014. 
 Kihihi Nagongera Nagongera (pre-November 

2013 LLIN distribution) 
 6 months to 

< 5 years 
5 years to < 
11 years 

6 months to 
< 5 years 

5 years to < 
11 years 

6 months to 
< 5 years 

5 years to < 
11 years 

Cohort 
incidence 

1.79 1.70 3.95 2.29 3.72 2.11 

HMIS 
Weighted 
incidence 

1.01 1.11 1.99 0.63 2.22 0.67 

HMIS 
Unweighted 
incidence 

0.50 0.55 0.43 0.12 0.50 0.13 
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Figure 1.4. Absolute and relative differences between weighted and cohort incidence. 
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Chapter 1 Appendix 

 

 
Appendix Figure 1.1. Modeled relationship between village centroid and the health facility 
and probability of attending the health facility. 
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Appendix Figure 1.2. Predicted probabilities and 95% confidence intervals of attending the 
health facility among patients not suspected of having malaria stratified by age. 
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Appendix Figure 1.3. Predicted probabilities and 95% confidence intervals of attending the 
health facility among patients not suspected of having malaria stratified by sex. 
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Appendix Figure 1.4. Predicted probabilities and 95% confidence intervals of attending the 
health facility among patients not suspected of having malaria stratified by the 5 most 
common diagnoses. 
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Appendix Figure 1.5. Incidence of malaria over the 3-year observation period measured in 
cohorts with additional parasite threshold definition and using health facility-based 
surveillance. 
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Chapter 2: Mapping malaria incidence using health facility surveillance data in Uganda 

 

Adrienne Epstein, Jane Frances Namuganga, Isaiah Nabende, Emmanuel Victor Kamya, Moses 

R. Kamya, Grant Dorsey, Samir Bhatt, Isabel Rodriguez-Barraquer, Bryan Greenhouse 

 

Abstract 

Background 

Maps of malaria risk are important tools for allocating resources and tracking progress. Most 

malaria risk mapping methods rely on cross-sectional surveys of parasite prevalence, but health 

facilities represent an underutilized and powerful source of data. This study’s aim was to 

measure, model, and map malaria incidence in Uganda using outpatient data from 74 health 

facilities in 2019-2020. 

Methods 

Using 24 months of individual-level outpatient data routinely collected from 74 health facilities 

across Uganda (n=445,648 laboratory-confirmed cases), monthly measures of malaria incidence 

were estimated for parishes around health facilities (n=310). A spatio-temporal generalized 

additive model with spatial autocorrelation modeled using Gaussian Markov Random Fields was 

developed to generalize these estimates to the rest of Uganda. The model was informed by 

environmental, sociodemographic, and intervention variables over the 24-month study period. 

Estimated malaria incidence and its uncertainty were mapped at the parish level across Uganda 

(n=7,569) and compared to other metrics of malaria burden used by the Ugandan Ministry of 

Health. 
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Results 

Over 4,659 parish-months of data, malaria incidence averaged 710 cases per 1,000 person-years 

(range 0 to 11,166), with substantial spatial and temporal variation. Maps resulting from spatio-

temporal models indicated high burden in the north and northeast of Uganda, with substantially 

lower incidence in the 14 districts receiving indoor residual spraying. District-level estimated 

malaria cases correlated with cases reported by the health management information system (corr 

= 0.61, p <0.0001), but was considerably higher (40,166,418 cases of malaria estimated across 

24 months compared to 27,707,794 cases reported in the same period), indicating the potential 

for underreporting of malaria cases by the health management information system. Modeling of 

counterfactual scenarios suggest that approximately 5 million cases were averted due to indoor 

residual spraying of insecticide across the 24-month period. 

Conclusions 

Outpatient information routinely collected by health management information systems can be a 

highly valuable source of data for measuring and mapping malaria burden with minor 

modifications to enhance routine reporting, including reporting data at the individual level and 

utilizing information on patients’ location of residence. National Malaria Control Programs may 

consider investing in robust surveillance systems embedded in public health facilities as a low-

cost, high benefit tool to identify vulnerable regions and track the impact of control 

interventions.  
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Introduction 

Understanding the spatial distribution of malaria burden is critical for identifying high 

transmission areas, evaluating local effectiveness of control efforts, and targeting future 

interventions to areas of greatest need (3, 41). However, most existing maps of malaria risk have 

inadequate operational utility for local decision making because they are low in resolution and 

rely on poor surveillance indicators such as parasite prevalence collected with limited geographic 

and temporal representativeness (19, 42-45). More advanced mapping techniques require an 

additional step of converting parasite prevalence to malaria incidence using mathematical 

modeling methods. While incidence is an improved indicator relative to parasite prevalence as it 

is a direct measure of burden, these models are difficult to reproduce, require advanced statistical 

skills, and rely on assumptions about the relationship between prevalence and incidence that may 

be wrong. Health management information system (HMIS) information collected routinely 

through the public health system represents an underutilized source of rich data that could be 

used for high-resolution risk maps of malaria incidence (15, 46). These data may have limitations 

including poor case ascertainment, inadequate reporting rates, reporting of only aggregate case 

data, and ambiguous population denominators around health facilities (19, 47, 48). However, 

they exhibit important strengths: they a provide direct measure of morbidity, are collected 

continuously over time, cover a broad geographic range, and are relatively inexpensive to collect 

(15, 46).   

 

One country that could benefit from high resolution maps of malaria burden is Uganda. Malaria 

remains one of the leading health problems of Uganda despite rigorous efforts to improve vector 

control and case management over the past several decades (41, 49). The burden of malaria is 
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heterogeneous across the country; in some areas, burden is low due to geographic and climate 

variation and in others due to the successful deployment of vector control measures such as 

indoor residual spraying (IRS) (50, 51). High resolution maps of malaria risk could be utilized by 

the country’s National Malaria Control Program (NMCP) to best target its resources: for 

example, at present, funding is only available to cover 14 of the 135 districts in the country with 

IRS. In addition, these maps could be used to evaluate the impact of interventions – a crucial step 

towards maximizing the limited resources available and allowing Uganda is to meet its targets 

established by the by the World Health Organization’s Global Technical Strategy for malaria, 

including reducing malaria incidence from 2015 by at least 90% by 2030 (52).  

 

In this analysis, we use enhanced health facility surveillance data to measure and map malaria 

incidence in Uganda in 2019-2020. First, we generated high resolution monthly estimates of 

malaria incidence at 74 health facility surveillance sites across the country by modeling 

catchment area populations around facilities. Second, we built a spatio-temporal prediction 

model for malaria incidence using sociodemographic, environmental, and intervention 

covariates. Third, we used this model to map malaria risk across Uganda and compare predicted 

estimates from our model to other measures used by the NMCP and to model counterfactual 

vector control intervention scenarios.   

 

Methods 

Enhanced Health Facility Data  

The Uganda Malaria Surveillance Program (UMSP) has been conducting enhanced malaria 

surveillance in level III and IV public outpatient facilities in Uganda, called Malaria Reference 
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Centers (MRCs), since 2006 (22).  At each MRC, individual-level data are entered into an 

electronic Microsoft Access database for all individuals presenting to the outpatient department 

using a standardized format. Information collected on outpatients includes demographics (sex, 

age, and village/parish of residence), results of laboratory tests (rapid diagnostic test or 

microscopy), diagnoses given, and treatments prescribed. UMSP provides laboratory support and 

quality control training to ensure high quality diagnostic testing, adherence to recommended case 

management, and data completeness. This analysis uses 2 years (24 months) of health-facility 

based surveillance data from 74 UMSP MRCs (Figure 2.1), from January 2019 through 

December 2020. This study window was selected to maximize the number of UMSP MRCs 

operating during the analytic period as 49 new UMSP sites were opened in 2019 and 2020. For 

information on the number of months each site contributed to the analysis, see Appendix Table 

2.1. 

 

Covariate Data  

A set of environmental and socio-demographic variables known to be associated with malaria 

burden (53) were considered as candidate predictors for model selection (Table 2.1).  Dynamic 

covariates including precipitation (54), daytime and nighttime land surface temperature (55), and 

enhanced vegetation index (EVI) (56), were aggregated to monthly measures. A series of lags (0, 

1, 2 and 3 months prior to the month of outcome data) were considered in models, given the 

potential for delayed impacts of environmental variables and malaria outcomes. MODIS 

products (temperature and EVI) underwent gap-filling using a random forest model to adjust for 

gaps due to cloud cover (code available at https://github.com/disarm-platform/gapfilling_rasters). 
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Static covariates include elevation measured through the Shuttle Radar Topography Mission 

(57), slope (58), population density (59), distance to major roads and to major waterways (59), 

the prevalence of improved housing (60), and the presence of nighttime lights (61). 

 

We also included district-level variables representing vector control interventions. These include 

a count of the number of months since the most recent long-lasting insecticide treated bednet 

(LLIN) distribution and a the number of months since the latest IRS campaign (by a binary 

indicator variable that takes the value of 1 if the site is in an IRS district or 0 of the site is in a 

non-IRS district).  

 
Estimation of Malaria Incidence Outcome 

To quantify malaria incidence at each MRC, catchment area population estimates were needed to 

serve as a denominator. To obtain these estimates, we modeled catchment area populations using 

a method previously described (62). In brief, we calculated village-level travel times to each 

MRC using Malaria Atlas Project’s friction surface 2015 raster file (23). Using information on 

each outpatient’s village of residence, we estimated a care-seeking model for the relationship 

between travel time and probability of attending the MRC using non-linear Poisson generalized 

additive models. This relationship was estimated among outpatients not suspected of having 

malaria because their probability of attendance is less likely to be directly correlated with malaria 

incidence across villages. This model implicitly assumed that differences in care-seeking for 

outpatients not suspected of having malaria over space was driven exclusively by travel time to 

the health facility and that the probability of seeking care among those living in the village where 

the MRC is located is 100%. With this care-seeking model, we generated probabilities of 

attending the health facility for villages around the MRC. These probabilities were then used to 
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down-weight village-level population estimates derived from the WorldPop Project (63) to 

generate catchment area populations. 

 

For spatio-temporal modeling, we aggregated monthly malaria incidence to the parish level 

(administrative level 6). Monthly incidence was defined as the count of laboratory-confirmed 

malaria cases from each parish within an MRC’s catchment divided by the down-weighted 

parish-level population estimate.  

 

Spatial Aggregation of Covariates 

To aggregate raster data to the parish-level, we weighted raster values using a two-step process. 

First, we generated village-level population-weighted covariate estimates by weighting raster 

values by human population estimates from WorldPop within each village, due to the fact that 

malaria transmission occurs in human-dominated areas (63). Second, we generated parish-level 

covariate estimates by applying an additional weight derived from the care seeking model 

described above. Hence, the covariate values in villages demonstrating a lower probability of 

attending the MRC within a given parish were assigned a smaller weight than in villages 

demonstrating higher probabilities of attendance within that same parish. 

 

Prior to model specification, all covariates were standardized to have a mean of 0 and a standard 

deviation of 1. For variables with a long-tailed distribution such as nighttime lights and distance 

from road, log transformation was performed prior to normalization. 
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Spatio-Temporal Generalized Additive Model 

The number of positive cases in parish v at month t (𝑌",$) was modeled via a negative binomial 

generalized additive regression model (GAM) with spatio-temporal smooths accounting for a 

spatial latent process varying with time (64). Parish-level population denominators derived from 

the care seeking model (𝑃𝑜𝑝𝑠𝑒𝑒𝑘",$) were included as an offset term in the incidence model. A 

non-linear temporal trend was included with a smoothing function on month, 𝑓(𝑡). Spatio-

temporal smooths were estimated using Gaussian Markov random fields (GMRF) 𝑓(𝑡, 𝑝𝑎𝑟𝑖𝑠ℎ), 

allowing smooths to differ flexibly over space (parish) and time. GMRF are used to account for 

spatio-temporal autocorrelation when spatial data are measured over discrete polygons (65). All 

environmental, socio-demographic, and intervention variables were modeled with restricted 

cubic splines in 𝑓(𝑖",$).  

𝑌",$~𝑁𝑒𝑔𝐵𝑖𝑛(𝐸[𝑌",$]) 

log(𝐸[𝑌",$]) = 𝛽= + 𝑓(𝑡) + 𝑓(𝑡, 𝑝𝑎𝑟𝑖𝑠ℎ) + 𝑓(𝑖",$) + 𝑜𝑓𝑓𝑠𝑒𝑡(logB𝑃𝑜𝑝𝑠𝑒𝑒𝑘",$C)	 

 

Covariate selection was conducted via a two-step process. First, collinearity among all candidate 

covariates was assessed by calculating variance inflation factors (VIF) using a linear model 

including all covariates. A stepwise selection of variables with VIF < 10 was then conducted, 

sequentially removing the variable with the highest VIF (if the VIF ≥ 10) until all VIF < 10. 

Second, during GAM specification, regularization was used to integrate model selection into the 

model fitting step by adding an extra penalty to each term. This was performed so that 

coefficients for covariates can be penalized to zero, meaning that splines can be kept minimal if 

the data do not support flexibility (64).  
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Using the final model, malaria incidence aggregated to the 2-year study window was predicted at 

the parish level for all parishes in Uganda (n=7,569). Parish-level estimated incidence was then 

mapped, in addition to upper and lower bounds of 95% confidence intervals and mean standard 

errors across the 24-month period.  

 

Model Validation 

Model validation was conducted through cross validation. Data were split into 10 folds based on 

200 km spatial blocks (see Appendix Figure 2.1 for spatial fold distribution). Validation was 

assessed by comparing the estimated log counts of cases to observed log counts graphically and 

spatially by calculating goodness-of-fit measures including root mean squared error, mean 

absolute error, and R-squared. 

 

Results 

Catchment Areas 

Across the 74 sites, catchment areas included between 1 and 8 parishes. The median catchment 

area population size was 8,054 individuals (IQR 4,451-14,048). Appendix Table 2.1 contains 

site-level information on the number of parishes included in each catchment area, in addition to 

the population estimate of each catchment area using estimates from Afripop and malaria 

incidence across the 24-month study period at each site. 

 

Distribution of Outcome and Predictor Variables 

Figure 2 shows the distribution of malaria incidence at the parish level over time. At the site 

level, malaria incidence averaged 741 cases per 1000 person-years over 24 months. There was 
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substantial variation in malaria incidence over the 24-month period between sites (Figure 2.2A), 

ranging from 4 cases per 1000 person-years to 4738 cases per 1000 person-years. At the parish 

level (Figure 2.2B), monthly malaria incidence averaged 710 cases per 1000 person-years (range 

0 to 11166 cases per 1000 person-years).  

 

Figure 2.2 also shows the distribution of dynamic and static variables at the parish level. 

Dynamic variables include precipitation, enhanced vegetation index (EVI), daytime temperature, 

and nighttime temperature. All dynamic variables demonstrated some degree of seasonality: 

January and February were generally hotter and dryer, with wetter and cooler months June 

through December. Static variables also demonstrated variability across parishes. A median of 

8.5% of households in each parish had improved housing (inter-quartile range [IQR] 6.8%-

10.7%). Parishes were a median of 1.14 kilometers from major roads (IQR 0.17-7.96) and 12.2 

kilometers from water (IQR 5.5-18.6). Parish-level population density had a median of 272 

persons per 100 meters (IQR 168-353). Median slope was 1.64 degrees (IQR 1.19-2.95) and 

median elevation was 1078.60 meters (IQR 1054.60-1134.40). Nighttime lights across parishes 

were rare (77.5% of parishes <0.00001 nW/cm2/sr, indicating near-zero nighttime light 

emittance). 

 

Model Fit and Validation 

Model fit statistics are shown in Appendix Figure 2.3. There were no violations of the 

assumption of normality for model residuals. The R-squared of the model across all parish-

months was 0.72. Results from blocked cross-validation are shown in Appendix Figure 2.4, 

comparing the R-squared of predictions in the full sample and in the cross-validated sample. In 
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parish-month predictions, the R-squared comparing the full to cross-validated predictions 

decreased from 0.72 to 0.39. On average, cases were overestimated by a factor of 1.47. When 

aggregating the predictions over 24 months to the parish level, the R-squared decreased from 

0.84 to 0.57; cases were overestimated by an average factor of 1.32. Maps of cross-validated 

results showing the relative difference between estimated and observed incidence aggregated 

over time are shown in Appendix Figure 2.5. 

 

Model Results 

To estimate the relationship between predictor variables and malaria incidence, we specified a 

spatio-temporal GAM with Gaussian Markov Random Field smooths to account for spatial 

autocorrelation. Smoothed relationships from the final spatio-temporal GAM are shown in 

Appendix Figure 2.2. The final model included precipitation and nighttime temperature at 0, 1, 

2 and 3 month lags, daytime temperature at 0 and 3 month lags, and EVI at 0, 1, and 3 month 

lags, selected by assessing collinearity and excluding variables with VIF > 10. Overall, malaria 

incidence increased over the 24-month study period as indicated by the monthly temporal 

smooth. EVI at 0 and 1 month lags were positively associated with incidence in this dataset, 

while EVI at a 3 month lag displayed a negative association. Overall, precipitation did not appear 

to be associated with incidence in this dataset. Sociodemographic covariates such as improved 

housing, distance from road, and distance from water, nighttime lights, and population density all 

demonstrated significant associations with incidence, as did elevation and slope. 

 

Figure 2.3 shows the parish-level map of malaria risk resulting from the spatio-temporal GAM. 

Estimated malaria incidence was generally highest in the north, except for an area in the 
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Northeast that was undergoing sustained IRS since 2014 (outlined in grey). Estimates had greater 

certainty (narrower confidence intervals) in areas with more MRCs, particularly in the north of 

the country. Estimates were less stable in the southeast, where only 2 MRCs were present. 

 

Comparison of estimates to other metrics of malaria burden 

A comparison of case counts reported by the Ugandan HMIS to modeled case counts at the 

district level in 2019 and 2020 is plotted and mapped in Figures 2.4A and 2.4C. In sum, the 

spatio-temporal GAM estimated 40,166,418 cases of malaria across 24 months; 27,707,794 cases 

were reported by the HMIS in the same period. The correlation between modeled and reported 

case counts for each district was 0.61 (p<0.0001). In the majority of districts, predicted case 

counts were higher than HMIS-reported counts (Figure 2.4C); however, in some areas, 

particularly in the Northwest of the country, HMIS cases were higher than modeled cases. 

 
 

We also compared district-level incidence in 2019 modeled by the Malaria Atlas Project (MAP) 

(by calculating the average mapped incidence within each district) to district-level incidence 

resulting from our model (Figure 4B and 4D). The correlation between these measures is 0.49 

(p<0.0001). Across most of the higher burden North and East of Uganda, our modeled incidence 

is higher than MAP incidence (Figure 4D). One key exception is the 14 districts undergoing IRS 

in the Northeast of the country, where MAP incidence was higher than our modeled incidence. In 

the lower burden Southwest of the country, our modeled incidence is lower than MAP incidence. 

In summary, our modeled incidence appears higher than MAP incidence in higher burden areas, 

and lower than MAP incidence in lower burden areas. 
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Counterfactual scenarios 

One potential use case for locally accurate risk maps of malaria incidence is the estimation of the 

impact of vector control interventions by modeling counterfactual scenarios. An example of this 

is shown in Figure 2.5, where we modeled malaria incidence in 2019-2020 in the 14 districts 

that have undergone sustained IRS since 2014. Figure 2.5A shows the predicted incidence under 

sustained IRS, while Figure 2.5B shows the predicted incidence under the counterfactual 

scenario of no IRS. The model suggests that approximately 5 million cases were averted across 

the 24-month period (1,046,402 cases in the IRS scenario, 6,310,209 cases in the non IRS 

scenario). The difference between the estimated counterfactual incidence and estimated 

incidence under IRS was greater in districts in the north, where transmission is higher. 

 
Discussion 

This study used routinely collected data from 74 health facilities to estimate, model, and map 

malaria incidence and its uncertainty in Uganda. Our findings indicate that individual-level, high 

quality patient data collected at a limited number of sentinel health facilities across a geographic 

area represent a potential avenue for generating high resolution maps of malaria risk with the 

potential for operational utility. While the maps we generated were less informative in areas 

distant from sentinel surveillance sites, estimates were stable in areas with a higher density of 

sites, particularly in the north and northeast of Uganda. These maps shed light on potential 

underreporting of cases from the HMIS and on the impact of IRS in districts receiving regular 

IRS campaigns. 

 

Over the past several years, the steady decline of malaria cases and deaths that has taken place 

since the 1990s has stalled, particularly in high burden countries like Uganda (41). Given this, in 
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combination with the heterogeneous nature of malaria transmission, NMCPs must have high 

quality information to maximize limited resources by targeting vector control approaches and 

evaluating their impact. Locally informed, contemporaneous maps of malaria risk represent a 

potential source of this information. At present, most malaria risk mapping is done using cross-

sectional surveys capturing parasite prevalence, such as Malaria Indicator Surveys or 

Demographic and Health Surveys. These surveys are conducted infrequently (typically, every 3-

5 years) and are limited in geographic scope. Furthermore, while parasite prevalence as a metric 

may be related to malaria burden, it has less programmatic relevance than more direct indicators 

such as malaria incidence (44). To compensate for this, methods to estimate incidence using 

cartographic tools linking parasite prevalence to incidence have been recently developed by the 

Malaria Atlas Project (8, 9). While these methods improve the operational utility of risk maps by 

converting prevalence to a more meaningful surveillance measure, they lack both accuracy and 

precision because the relationship between prevalence and incidence is poorly defined and 

inconsistent, especially in areas where transmission intensity is high (41). For this reason, a 

recent push by the World Health Organization’s High Burden to High Impact initiative has 

focused on leveraging HMIS for surveillance and risk mapping (41). However, this comes with 

its own challenges. First, quality surveillance requires accurate diagnosis, yet only 38% of febrile 

children brought for care at a public health facility received a diagnostic test in 2015-2019 (41). 

Second, once cases are identified, they must be reported through the HMIS, yet reporting rates 

vary significantly and cases are often reported in aggregate (41). Third, even under conditions of 

high quality HMIS data, translating raw case numbers into meaningful indicators of disease 

burden is challenging because catchment areas around health facilities are not well defined. 
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This study proposes potential solutions for each of these challenges. First, our dataset had high 

spatial and temporal resolution for much of Uganda, particularly in comparison with cross-

sectional surveys typically used for risk mapping purposes. We continuously collected incidence 

data from 310 parishes across the country over a period of 2 years. The most recent (2018-19) 

Malaria Indicator Survey in Uganda, in contrast, was a one-time survey conducted in 320 

clusters (40). Second, we leveraged a network of enhanced HMIS sentinel sites that addresses 

many of the issues associated with standard HMIS systems: data are at the individual patient 

level, diagnostic testing rates are high (in 2019-2020, 99.6% of patients suspected of having 

malaria were tested), and missingness of key variables is near-zero (0.12% missingness for age, 

0.07% for sex, and 4.25% missingness for village of residence in 2019-2020). Finally, using 

these data we translated individual-level case data to accurate measures of monthly malaria 

incidence by utilizing information on patients’ places of residence to estimate catchment area 

populations (62). Compared with modeling incidence as a function of parasite prevalence, this 

method is a more direct and relies on fewer assumptions. 

 

While this study focused on Uganda, this method has the potential to improve malaria 

surveillance at an operational level in malaria endemic settings globally. Because malaria 

incidence is measured directly, continuously, and locally at health facilities rather than relying on 

a complex mathematical model, barriers NMCP face to get relevant estimates are lower. 

Measures of incidence can then be combined with publicly available remotely sensed data in 

order to extrapolate these estimates to areas where sentinel sites are not present. The higher 

density of sentinel surveillance sites that are included, the fewer modeling assumptions would be 

needed because there would be fewer areas with sparse data and precision of incidence estimates 
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would be higher. Harnessing sentinel site data to generate maps of risk has the added operational 

benefit of high temporal resolution, meaning that NMCP can use these maps to track changes in 

burden over time and estimate the impact of control interventions by modeling counterfactual 

scenarios.  

 

This analysis is not without limitations. First, health facility data are limited to information 

recorded for patients that visit that health facility. While our incidence estimates do adjust for 

care-seeking as a function of distance to the facility, we do not adjust for probabilities of care-

seeking for reasons other than distance. However, if this were of interest, these data could be 

combined with survey data on care-seeking. For example, in the villages adjacent to a subset of 

MRCs, cross-sectional surveys were conducted in April 2021; these surveys found that 67% of 

survey participants with fevers in previous 2 weeks sought care at the MRC. Because these 

villages were very close to the MRC (and therefore travel time should be negligible), we could 

apply an additional assumption that our model captures only 67% of true cases in Uganda. This 

would further the gap between estimated cases and cases reported by the HMIS, suggesting that 

HMIS data may be substantially underestimating burden. Second, despite being inexpensive 

relative to cross-sectional surveys, sentinel surveillance systems do require some investment 

compared with standard HMIS data, including additional time and labor associated with 

inputting individual-level patient data to a digital database. Furthermore, an initial investment is 

needed to accurately record where patients reside and to link these areas of residence to places on 

a map. Third, we rely on modeling assumptions that may be incorrect. For example, we rely on 

data from 74 health facilities in combination with covariate information to extrapolate malaria 

burden to the rest of the country, meaning that in areas with lower density of MRCs, our 
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estimates had greater uncertainty. However, the relatively low cost of adding more sentinel 

surveillance sites could greatly diminish the potential inaccuracy of these modeling assumptions 

and vastly improve these maps across the entire country. 

 

Despite these limitations, this proposed method may be of interest to NMCPs given the benefits 

of measuring and mapping malaria incidence locally and contemporaneously. In order to 

establish a robust system to estimate and map malaria burden, local stakeholders could establish 

a network of high-quality HMIS surveillance sites. Although a larger number of sites would have 

greater operational benefit, local NMCPs may select the number and distribution of sites based 

on local need and factors influence decision making (for example, if vector control interventions 

are typically implemented at the district level, 1 site per district may suffice). At these sites, 

individual-level data on a few key indicators including demographics, place of residence, and 

malaria diagnostics – all of which are standard patient information in many public health 

facilities – could be collected. Using information on patient residence, population denominators 

accounting for care seeking may be estimated, or, alternatively and more simply, catchment areas 

could be defined including patients living immediately around the health facility where care-

seeking can be assumed to be maximal. With this information, enhanced HMIS surveillance data 

can be used to generate quality measures of malaria incidence that can then be extrapolated to 

other areas of the country through simple spatial smoothing or by combining this information 

with spatial covariates. This proposed methodology represents a “best of both worlds,” allowing 

for high-quality, local surveillance data to be collected and mapped contemporaneously at a low 

cost with minimal additional labor required. Risk maps generated using this method have the 
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potential to be an essential tool for high burden countries around the globe as they aim to achieve 

targets toward control and elimination. 
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Figure 2.1. Map of Malaria Reference Centers included in risk mapping analysis. 
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Table 2.1. Candidate covariates for spatio-temporal generalized additive model. 
Covariate Description  Temporal 

Status  
Source Available Resolution 

precip Cumulative monthly precipitation Monthly; 0, 
1, 2, 3 
month lags  

CHIRPS 0.05 decimal degrees 

lst_day Daytime land surface temperature Monthly; 0, 
1, 2, 3 
month lags 

MODIS derivative 1 kilometer 

lst_night Nighttime land surface temperature Monthly; 0, 
1, 2, 3 
month lags 

MODIS derivative 1 kilometer 

evi Enhanced vegetation index Monthly; 0, 
1, 2, 3 
month lags 

MODIS derivative 1 kilometer 

elevation Elevation as measured by the 
Shuttle Radar Topography Mission 
(SRTM) 

Static Shuttle Radar 
Topography Mission 

90 meter 

slope  Static WorldPop 100 meter 
pop_density Population density per grid-cell Static WorldPop 100 meter 
dist_road Distance to OpenStreetMap major 

roads (in km) 
Static WorldPop 100 meter 

dist_water Distance to OpenStreetMap major 
waterways (in km) 

Static WorldPop 100 meter 

housing  Prevalence of improved housing Static Malaria Atlas Project 1 kilometer 
nighttime_lights Index that measures the presence of 

nighttime lights from towns and 
cities 

Static VIIRS 500 meters 

irs Number of months since last IRS 
campaign*binary variable 
indicating IRS district   

Monthly Uganda NMCP District level 

llin Number of months since last LLIN 
distribution 

Monthly Uganda NMCP District level 
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Figure 2.2. Distribution of outcome (malaria incidence) (A) between sites and (B) over time 
and of dynamic predictor variables at the parish level for dynamic covariates (C-F) and 
static covariates (G-M). Lags of 0, 1, 2, and 3 months were considered for dynamic covariates. 
  



 51 

 
Figure 2.3. A) Parish-level estimated incidence per 1000 over the study window; B) mean 
standard error on the log scale and locations of Malaria Reference Centers; C) lower and 
D) upper bound of the 95% confidence interval. Districts receiving indoor residual spraying 
campaigns are outlined in grey in panels A, C, and D. 
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Figure 2.4. A) Comparison of district-level case counts reported by the Ugandan HMIS to 
estimated district-level case counts in thousand in 2019 and 2020; B) comparison of 
district-level average malaria incidence modeled by the Malaria Atlas Project to estimated 
district-level incidence in 2019; C) mapped district-level differences in case counts reported 
by the Ugandan HMIS to estimated district-level case counts in thousand in 2019 and 2020; 
D) mapped district-level differences in average malaria incidence modeled by the Malaria 
Atlas Project to estimated district-level incidence in 2019. The identity line in panels A and B 
is indicated in red and a lowess smooth is indicated in blue. 
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Figure 2.5. Predicted malaria incidence in 14 districts undergoing indoor residual spraying 
in 2019-2020 under A) true IRS conditions and B) counterfactual IRS conditions with no 
IRS. 
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Chapter 2 Appendix 

Appendix Table 2.1. Descriptive information on Malaria Reference Centers included in 
spatio-temporal model. 
District Site Number of 

months of 
data observed 

Number of 
parishes 
included in 
catchment area 

Population of 
catchment area 

Number of 
laboratory 
confirmed cases 
of malaria  

Malaria 
incidence (per 
1000) 

Agago Lira-Kato 13 3 1869 9594 4738 

Agago Patongo 24 3 7092 13476 950 

Alebtong Alebtong 23 6 8777 2001 119 

Amolatar Amolatar 24 7 12630 1892 75 

Amuria Asamuk 12 7 7727 7479 968 

Amuria Morungatuny 11 5 6860 4518 718 

Amuru Amuru 14 4 36831 2456 57 

Amuru Atiak 18 6 17474 15896 606 

Apac Aduku 24 5 16957 14240 420 

Apac Akokoro 10 2 1214 2597 2567 

Apac Teboke 11 5 20695 4837 255 

Arua Cilio 13 4 8390 3172 349 

Arua Opia 24 3 3615 14862 2056 

Bukedea Bukedea 4 4 1046 469 1345 

Bukedea Kolir 14 3 3530 2798 679 

Busia Busitema 10 4 10820 4650 516 

Busia Lumino 24 5 6058 12003 991 

Buyende Bugaya 11 4 4289 5780 1470 

Buyende Kidera 8 4 22835 5583 367 

Dokolo Dokolo 14 5 13874 5395 333 

Gomba Maddu 11 4 8184 865 115 

Gulu Awach 24 6 30035 24279 404 

Gulu Pabwo 10 2 5465 4247 933 

Hoima Butema 11 7 16330 947 63 

Hoima Kigorobya 24 8 23707 8857 187 

Jinja Budondo 11 3 4738 1729 398 

Jinja Butagaya 12 2 2887 1658 574 

Jinja Walukuba 12 2 3276 1314 401 

Kaabong Kalapata 11 5 4961 5681 1249 

Kaabong Lokolia 19 2 1027 3887 2390 

Kaliro Bumanya 10 5 16691 2678 193 

Kaliro Nawaikoke 10 4 2393 2728 1368 

Kanungu Kihihi 24 8 8180 5833 357 

Kapchorwa Kaserem 12 5 2250 146 65 

Kapelebyong Kapelebyong 14 1 4356 3445 678 

Kapelebyong Obalanga 12 7 18863 7990 424 

Kayunga Bbaale 24 6 6191 12602 1018 

Kayunga Kangulumira 10 5 14071 5468 466 

Kibaale Kibaale 10 8 8580 935 131 

Kibaale Kyebando 11 5 7243 3459 521 

Kiryandongo Diima 10 2 6268 5473 1048 

Kiryandongo Kigumba 11 3 4897 1612 359 

Kitgum Kitgum_Matidi 14 1 5125 4611 771 

Kitgum Namokora 24 4 13979 9056 324 

Koboko Ayipe 13 2 3594 4004 1028 
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District Site Number of 
months of 
data observed 

Number of 
parishes 
included in 
catchment area 

Population of 
catchment area 

Number of 
laboratory 
confirmed cases 
of malaria  

Malaria 
incidence (per 
1000) 

Koboko Lobule 24 6 8731 23164 1327 

Kole Aboke 11 2 5318 4483 920 

Kole Bala 6 5 13870 3691 532 

Kumi Kamaca 10 4 38648 10679 332 

Kumi Omatenga 13 5 9542 14714 1423 

Kwania Apwori 14 3 7930 9357 1011 

Kyegegwa Kakabara 12 5 21029 2448 116 

Kyegegwa Kyegegwa 11 4 16948 1215 78 

Lamwo Madi_Opei 10 4 11089 7077 766 

Lamwo Padibe 24 5 6278 13895 1107 

Luuka Ikumbya 12 4 5453 6690 1227 

Luuka Kiyunga 10 3 15049 4667 372 

Masindi Bwijanga 10 3 10430 884 102 

Masindi Kyatiri 10 1 1537 234 183 

Mayuge Buwaiswa 12 5 11905 5261 442 

Mayuge Kigandolo 11 6 21561 4013 203 

Moyo Lefori 4 2 3381 1386 1230 

Moyo Metu 4 4 6281 1706 815 

Mubende Kasambya 24 1 1113 945 425 

Mubende Kiyuni 11 2 5045 1481 320 

Nwoya Alero 9 3 9135 4207 614 

Nwoya Koch Goma 17 4 16481 19822 849 

Omoro Bobi 11 3 3832 7228 2058 

Omoro Lalogi 24 5 15326 19431 634 

Otuke Orum 24 2 210 309 736 

Oyam Anyeke 24 4 14943 11046 370 

Oyam Otwal 14 6 3989 7523 1617 

Rukiga Kamwezi 11 6 11892 48 4 

Tororo Nagongera 24 7 13906 842 30 
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Appendix Figure 2.1: Map of spatial blocks of 200km for cross validation. 
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Appendix Figure 2.2. Smoothed relationships between covariates and outcome. 
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Appendix Figure 2.3: Model diagnostics from generalized additive model. 
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Appendix Figure 2.4. Results of cross validation. 
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Appendix Figure 2.5. Mapped results of cross validation. 
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Chapter 3: Resurgence of malaria burden in five districts in Uganda despite sustained 

indoor residual spraying and repeated long lasting insecticidal net distributions 

 
Adrienne Epstein, Catherine Maiteki-Ssebuguzi, Jane F. Namuganga, Joaniter I. Nankabirwa, 

Samuel Gonahasa, Jimmy Opigo, Sarah G. Staedke, Josephat Shililu, Michael Okia, Asaph 

Muhanguzi, Mame Niang, Damian Rutazaana, Emmanuel Arinaitwe, Kassahun Belay, Moses R. 

Kamya, Samir Bhatt, Isabel Rodriquez-Barraquer, Bryan Greenhouse, Martin J. Donnelly, Grant 

Dorsey 

Abstract 

Background 

Five years of sustained indoor residual spraying of insecticide (IRS) from 2014 to 2019, first 

using a carbamate followed by an organophosphate, was associated with a marked reduction in 

the burden of malaria in five districts of Uganda. We assessed malaria burden over an additional 

18 months, corresponding to a change in IRS formulations using clothianidin with and without 

deltamethrin. 

Methods 

Our objectives were: 1) to estimate the impact of IRS on monthly malaria case counts at five 

health facilities over a 6·5 year period, and 2) to compare monthly case counts at five facilities 

receiving IRS to ten facilities in neighboring districts not receiving IRS. For both objectives, we 

specified mixed effects negative binomial regression models with random intercepts for health 

facility adjusting for rainfall, season, care-seeking, and test type. 

Results 

Following the implementation of IRS, cases were 84% lower in years 4-5 (adjusted incidence 

rate ratio [aIRR]=0.16, 95% CI 0.13-0.20), 43% lower in year 6 (aIRR=0.57, 95% CI 0.45-0.72), 
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and 25% higher in the first 6 months of year 7 (aIRR=1.25, 95% CI 0.93-1.69) compared to pre-

IRS levels. Cases were 69% lower in IRS sites than non-IRS sites in year 6 (aIRR=0.31, 95% CI 

0.19-0.51) but 20% higher in the first 6 months of year 7 (aIRR=1.20, 95% CI 0.2-2·00).  

Conclusions 

We observed a resurgence in malaria to pre-IRS levels despite sustained IRS. The timing of the 

resurgence corresponded to a change of active ingredient used in IRS. Future work is needed to 

determine causality.  

  



 63 

Introduction 

Major gains have been made in reducing the burden of malaria in sub-Saharan Africa over the 

past two decades, resulting in a 44% decline in malaria deaths between 2000 in 2019 (9, 41). 

However, progress has slowed in recent years, particularly in highest burden countries (41). 

Much of the decline in malaria burden has been attributed to vector control interventions, 

including long-lasting insecticidal nets (LLINs) and indoor residual spraying of insecticide 

(IRS). Scale-up of LLINs coverage has occurred rapidly, with the proportion of households in 

sub-Saharan Africa with at least one LLIN increasing from 5% in 2000 to 68% in 2019 (41). 

Conversely, the percent of at-risk populations receiving IRS has been much lower and even 

declined from 5% in 2010 to 2% in 2019 (41). Challenges to the scale-up of IRS coverage 

include high cost, complex implementation logistics, and community acceptance (66). 

Furthermore, evidence from controlled trials is mixed on the added benefit of implementing IRS 

in communities where LLIN coverage is high (67). 

 

Uganda is illustrative of high burden countries where progress in reducing malaria burden has 

slowed in recent years (41). The Ugandan Ministry of Health has made a strong commitment to 

ensuring high LLIN coverage, delivering LLINS through 3 universal coverage campaigns (UCC) 

taking place in 2013-2014, 2017-2018, and 2020-21. These campaigns have been successful: in 

2018-2019, 83% of households reported owning at least one LLIN, the highest coverage globally 

(40). IRS was reintroduced into Uganda in 2006 for the first time since the 1960s and coverage 

of IRS to date has been much lower than LLINs. From 2007 to 2014, IRS was implemented in 10 

districts in Northern Uganda before being moved to 14 historically high burden districts in 

North-Eastern Uganda in 2014. The IRS campaign in the northeast initially deployed a 



 64 

carbamate insecticide before changing to an organophosphate for the third, fourth, and fifth 

years. In this part of the country, IRS has been considered highly successful: in the first 3 years 

of sustained IRS campaigns, malaria cases at sentinel surveillance sites in 5 of these districts fell 

by 50%, and in the fourth and fifth years, by 85% compared to pre-IRS levels (50).  

 

In this study, we use data from a network of health facility-based malaria surveillance sites to 

examine the impact of sustained IRS in the 5 districts mentioned above. This study has two 

objectives. First (Objective 1), we extend our prior analysis to evaluate the malaria burden in 5 

districts receiving IRS in the 6th and 7th years of sustained IRS (January 2020 through July 2021) 

relative to a baseline period before IRS was initiated. This extended evaluation period coincided 

with a shift in insecticide formulations from the organophosphate pirimiphos-methyl (Actellic 

300CS®) to products containing the active ingredient clothianidin alone (Sumishield®) or 

combined with deltamethrin (Fludora® Fusion WP-SB), the beginning of the COVID-19 

pandemic, and another LLIN universal coverage campaign (2020-2021). Second (Objective 2), 

we compare temporal changes in malaria burden from January 2020 through July 2021 at the 5 

sites receiving sustained IRS to 10 sites in neighboring districts that have not received IRS 

recently.   

 

Methods 

Study sites and vector control interventions  

This study utilized enhanced health facility surveillance data from 15 health facilities in Uganda: 

5 located in districts that have received repeated rounds of IRS since December 2014 and 10 in 

neighboring districts that have never received IRS (6 sites) or where IRS was discontinued in 
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2017 (4 sites, Figure 3.1). These facilities are part of a surveillance network called the Uganda 

Malaria Surveillance Program (UMSP). National LLIN universal coverage campaigns were 

conducted in 2013-2014, 2017-2018, and 2020-2021, where LLINs were distributed free-of-

charge by the Uganda Ministry of Health targeting 1 LLIN for every two household residents 

throughout the entire country (following WHO recommendations). During the most recent 

campaign (2020-2021), the Ministry of Health distributed conventional LLINs containing 

pyrethroid in addition to two types of “next generation” LLINs due to concerns of pyrethroid 

resistance: one containing deltamethrin and piperonyl butoxide (Permanet® 3.0) and one 

containing alpha-cypermethrin and pyriproxyfen (Royal Guard®). Among the sentinel sites 

included in this study, the 5 sites in IRS districts were in sub-counties that received conventional 

pyrethroid nets and the 10 sites in neighboring districts were in sub-counties that received “next 

generation” nets (5 received Permanet® 3.0 nets and 5 received Royal Guard® nets). 

 

In the 5 study districts where IRS was first implemented in late 2014, the insecticide formulation 

initially consisted of a carbamate (bendiocarb) with rounds repeated approximately every 6 

months until 2016 when the active ingredient was changed to the organophosphate pirimiphos-

methyl (Actellic 300CS®) administered annually until 2019. In 2019, one study district (Dokolo) 

received a single round of IRS with Sumishield® 50WG, a new IRS product containing 

clothianidin. In 2020, all IRS districts began receiving IRS with Fludora® Fusion WP-SB, a new 

IRS insecticide containing a mixture of clothianidin and deltamethrin. Changes of IRS 

insecticides were made in accordance with the Ugandan Ministry of Health’s insecticide 

resistance management plan which, in line with WHO recommendations, requires changing IRS 

formulations every three years to preempt the development of resistance (68, 69). In two study 
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districts (Otuke and Alebtong), IRS was discontinued in 2021 due to lack of funding. For a 

complete timeline of all IRS campaigns, including insecticides and coverage, see Appendix 

Table 3.1. 

 

Health-facility based surveillance  

A network of enhanced malaria surveillance sites embedded in public health facilities was 

established by UMSP in 2006, as previously described (22). In brief, UMSP currently operates 

Malaria Reference Centers (MRCs) – at 70 level III/IV public health facilities across Uganda. 

Level III and IV health facilities are parish and sub-county level facilities, respectively, and 

provide diagnostic testing and treatment free of charge to populations of 20,000 to 100,000 

people per facility. Data are collected at the individual level for all outpatients attending MRCs 

using outpatient registers (HMIS 002) and entered monthly into a database by on-site data entry 

officers. Information collected includes sociodemographic data (age, sex, and village of 

residence), whether malaria was suspected, results of laboratory testing for malaria (rapid 

diagnostic test [RDT] or microscopy), diagnoses (laboratory-confirmed and clinical), and 

treatments prescribed. UMSP places emphasis on high quality data, ensuring minimal 

missingness on key variables including age and place of residence, and providing training and 

materials to maximize diagnostic testing among patients suspected of having malaria. For 

Objective 1 (to evaluate the malaria burden in 5 districts receiving IRS in the 6th and 7th years of 

sustained use), we utilized data from 5 MRCs from districts with sustained rounds of IRS since 

2014. These MRCs were selected because they had been active UMSP sites for at least 6 months 

prior to the initiation of IRS. To compare changes in malaria burden from January 2020 through 

July 2021 at sites receiving sustained IRS to sites in neighboring districts that have not received 
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IRS recently, we used data from 10 additional MRCs. These sites were selected because they 

were in districts that neighbor the 5 IRS sites and have been active UMSP sites since at least 

January 2020. Four of these sites were in 2 districts that received IRS in the past; however, IRS 

was stopped in 2017. The impact of these previous IRS campaigns was no longer evident during 

the study period (50). 

 

Measures 

For Objective 1, the exposure was specified as an indicator variable representing each month 

since IRS was initiated. In separate models, a categorical variable, representing months 1-36 

(years 1, 2, and 3), 37-60 (years 4 and 5), 61-72 (year 6), and 73-78 (the first 6 months of year 7) 

of sustained IRS was included as the primary exposure variable. The baseline period was defined 

as the 12 months before IRS was implemented in 2014; if a site had less than 12 months of 

baseline data available, we included the maximum amount of time available. 

 

For Objective 2, the exposure was specified as a binary variable representing whether a site was 

an IRS site or a non-IRS site. This variable was then interacted with an indicator variable 

representing time (an indicator representing month/year and, in a separate model, a categorical 

variable representing January 2020-December 2020 and January 2021-July 2021). 

 

For both objectives, the primary outcome was the monthly count of laboratory-confirmed 

malaria cases at each MRC. To correct for monthly testing rates, we adjusted this count by 

multiplying the number of individuals with suspected malaria but not tested each month by the 

test positivity rate (TPR) (the number who tested positive divided by the total number tested) in 
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that month. We then added the result to the number of laboratory-confirmed positive cases in that 

month. As a sensitivity analysis, we re-specified the models including only laboratory-confirmed 

case counts as the outcome. 

 

We adjusted for time-varying variables that impact malaria burden and malaria case detection at 

the health facility. This includes precipitation (54) which was modeled non-linearly using 

restricted cubic splines. Lags of 0, 1, 2, and 3 months were considered for precipitation; the 

appropriate lag was selected by running univariable regressions with each lag and selecting that 

which demonstrated the lowest Akaike’s information criterion (AIC). We also included indicator 

variables for month of the year (to adjust for season), the proportion of tests that were RDT 

(vs. microscopy) in that month, and the number of individuals who attended the health facility 

but were not suspected of having malaria in that month (to adjust for potential changes in care-

seeking behaviors, particularly during the COVID-19 lockdown in Uganda). 

 

Statistical analysis 

For Objective 1, we specified mixed effects negative binomial regression models with random 

intercepts for health facility. Coefficients for the exposure variable were exponentiated to 

represent the incidence rate ratio (IRR) comparing the incidence of malaria in the month of 

interest relative to the baseline pre-IRS period. These models test the null hypothesis of no 

difference of changes in IRS burden after the initiation of IRS compared to before the initiation 

of IRS, adjusting for seasonal effects and time-varying changes in diagnostic testing and care 

seeking. 
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For Objective 2, models were specified as mixed effects negative binomial regression models 

with random intercepts for health facility. Coefficients for the exposure variable combined with 

the interaction term were exponentiated to represent the incidence rate ratio (IRR) comparing the 

burden of malaria IRS sites versus non-IRS sites over a given period of time. These models test 

the null hypothesis of no difference between malaria burden at IRS sites compared to non-IRS 

sites, adjusting for seasonal effects and time-varying changes in diagnostic testing and care 

seeking. 

 

Results 

Study Objective 1 

Across the 5 sites receiving sustained IRS, a total of 740,226 outpatient visits were recorded 

from the baseline period covering up to 12 months before IRS started through July 2021 (Table 

3.1). During the baseline period, average monthly cases adjusted for testing ranged from 278-657 

and TPR ranged from 25.2%-67.0%. By years 4 and 5 (months 37 to 60) of sustained IRS these 

metrics had decreased to 30-90 and 8.5%-26.3%, respectively. However, in year 6 and the first 

half of year 7 (months 61 to 78) of sustained IRS, average monthly cases adjusted for testing 

increased to a range of 129-544 and TPR ranged from 18.7%-49.0%. Figure 3.2 shows plots of 

laboratory-confirmed malaria cases and vector control interventions over time across the 5 sites. 

Each of these sites demonstrate similar patterns of a decline in malaria cases after the initiation 

of IRS with seasonal peaks during the first three years of IRS (through 2017), a substantial 

decline in burden in years four and five of sustained IRS (through 2019), and an increase in 

burden in years 6 and 7 of sustained IRS (2020-2021) equal to or higher than burden in the 

baseline period before IRS was implemented.    
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Monthly adjusted IRRs and 95% confidence intervals (CI) for the 5 sites combined are presented 

in Figure 3.3. These results show there was an initial 52% reduction in malaria burden in months 

1 through 36 of sustained IRS (adjusted IRR = 0.48, 95% CI 0.40-0.58), followed by an 84% 

reduction in burden in months 37 through 60 of sustained IRS (adjusted IRR = 0.16, 95% CI 

0.13-0.20). In months 61 through 72, malaria burden was 43% lower than the baseline period 

before IRS was implemented (adjusted IRR = 0.57, 95% CI 0.45-0.72). During months 73 

through 78 after the initiation of IRS, malaria burden was 25% higher than the pre-IRS period, 

although we could not rule out a null or negative association (adjusted IRR = 1.25, 95% CI 0.93-

1.69). These results were consistent when including only laboratory-confirmed cases unadjusted 

for testing rate as the model outcome (Appendix Figure 3.1) and when repeating the analysis 

leaving out the 2 sites that halted IRS campaigns in 2021 (Orum and Alebtong) (Appendix 

Figure 3.2). 

 
 
Study Objective 2 

Across the 15 sites over a 19 month period (January 2020 through July 2021) included in the 

analysis for Objective 2, 1,368,587 outpatient visits were recorded (Table 3.2). From January 

2020 through December 2020, average monthly cases at IRS sites ranged from 64-594 and TPR 

ranged from 10.9%-51.0%. From January 2021 through July 2021, these figures increased to 

235-745 and 27.2%-61.3%, respectively. Average monthly cases increased in 4 of the 5 sites 

from January 2020 through December 2020 to January 2021 through July 2021, with the 

exception of Dokolo (the first site to switch to IRS with a clothianidin-based formulation in 

2019), which already experienced a large increase in monthly malaria cases by January 2020. 
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In sites that have not received IRS recently, average monthly cases from January 2020 through 

December 2020 ranged from 518-1,068 and TPR from 47.5%-71.1%. These figures decreased to 

216-775 and 29.5%-51.5%, respectively, from January 2021 through July 2021. Figure 3.4 

shows plots of laboratory-confirmed malaria cases and the timing of the recent LLIN distribution 

across the 10 non-IRS sites from January 2020 through July 2021. These figures indicate a 

substantial increase in cases the first year of observation for some sites, but a general downward 

trend in cases across the 10 sites over the 19 month study period for Objective 2. 

 

Figure 3.5 shows the mean number of cases across the 5 IRS sites and the 10 sites that have not 

received IRS recently from January 2020 to July 2021 (corresponding to months 60 through 78 

of IRS for the 5 sites where IRS was initiated and sustained). This figure shows an increase in 

cases at IRS sites, particularly in the latter half of the observation window, while cases at non-

IRS sites trended downward over the same time period. Figure 3.5 also shows the adjusted IRR 

comparing cases at IRS sites to sites that have not received IRS recently. These findings indicate 

that from January 2020 to November 2020, cases were significantly lower in IRS sites compared 

to non-IRS sites. From December 2020 onward, the IRR crossed 1, indicating that cases at IRS 

sites were higher than non-IRS sites, although we could not rule out a null or negative 

association in these months. These results show that cases were 69% lower in IRS sites than non-

IRS sites from January 2020 through December 2020 (adjusted IRR = 0.31, 95% CI 0.19-0.51) 

and 20% higher from January through July 2021 (adjusted IRR = 1.20, 95% CI 0.72-2·00). 

Results were consistent when including only laboratory-confirmed cases unadjusted for testing 

as the outcome (Appendix Figure 3.3). 
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Discussion 

We utilized enhanced health facility surveillance data from 5 sites in East and Northeast Uganda 

that have undergone sustained IRS since 2014 to evaluate the impact of repeated IRS campaigns 

in their 6th and 7th years. Our findings point to a resurgence in the burden of malaria at these 5 

health facilities, despite sustained IRS and repeated LLIN universal coverage campaigns 

conducted every 3 years. In the final six months of observation (months 61-78 of sustained IRS), 

malaria burden reached similar levels, and in some instances higher levels, from the period 

before IRS was initiated in late 2014. We did not observe corresponding increases in burden at 

10 surveillance sites in neighboring non-IRS districts that, unlike IRS districts, received “next 

generation” LLINs over the study period. These findings suggest that in the setting of universal 

coverage with conventional pyrethroid-only LLINs, the marked benefit of adding sustained IRS 

over the first five years had been lost over the subsequent 18 months.  

 

This study underscores the importance of high quality routine surveillance to monitor the impact 

of population level malaria control interventions using clinically relevant indicators such as 

symptomatic cases diagnosed at health facilities. The assessment of vector control interventions 

often focuses on entomologic outcomes such as mosquito mortality in controlled settings. This is 

understandable, given that measuring the impact of control interventions on clinical burden in 

“real world” settings is difficult. Nevertheless, the findings from this analysis underscore the 

need for robust epidemiologic surveillance systems to document the impact of vector control 

interventions on population health as they are applied. 
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Routine surveillance in areas undergoing IRS is particularly necessary because published studies 

from controlled trials on the added value of IRS in areas with high LLIN coverage has produced 

mixed results. A recent Cochrane review reported that adding IRS using a “pyrethroid-like” 

insecticide to LLINs did not provide any benefits, while adding IRS with a “non-pyrethroid-like” 

insecticide produced mixed results (67). It is of note that none of the trials that evaluated the 

impact of adding IRS with a “non-pyrethroid-like” insecticide assessed outcomes beyond two 

years. More recently, observational studies evaluating the effectiveness of pirimiphos-methyl 

(Actellic 300CS®) in “real world” settings have documented impressive impacts of IRS in Mali 

(70, 71), Ghana (72), Zambia (73), Kenya (74), and Uganda (50). This analysis contributes to 

observational data on the impacts of sustained IRS beyond 6 years, in the context of the COVID-

19 pandemic and a switch to products containing the active ingredient clothianidin. 

 

There are several potential factors that may be driving the increase in malaria burden in districts 

receiving IRS. First, the timing of the increase corresponds to a shift in active ingredient from 

pirimiphos-methyl to clothianidin-based formulations (primarily Fludora® Fusion, a 

combination of clothianidin and deltamethrin). This change may have led to a loss of the additive 

effect of dual interventions (combining pirimiphos-methyl to pyrethroid LLINs), which would be 

particularly detrimental as wide-spread pyrethroid resistance has been described in Uganda (75-

77). Given that IRS districts received conventional pyrethroid LLINs in the 2020-2021 UCC 

campaign, pyrethroid resistance may also explain why burden increased at IRS sites despite the 

campaign. Conversely, the 10 sites in neighboring districts where increases in burden were not 

observed received “next generation” nets designed for areas with wide-spread pyrethroid 

resistance. Of note, the one site (Dokolo) that received a single round of IRS with clothianidin-
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based Sumishield® 50WG in 2019 (before the shift to Fludora® Fusion WP-SB across all sites 

in 2020) experienced an increase in burden immediately following the round of Sumishield® 

50WG. Increases were not documented at other sites until the initiation of Fludora® Fusion WP-

SB in 2020. This is added evidence for the change in active ingredient contributing to the 

observed resurgence of malaria. To date, studies on the effectiveness of clothianidin alone 

(Sumishield®) (78-82) and clothianidin with deltamethrin (Fludora® Fusion WP-SB) (78, 83-

85) are limited to susceptibility studies focused on entomological outcomes, both in lab and in 

experimental huts. These studies document that clothianidin-based products succeed at killing 

mosquitoes, but none have evaluated clinically relevant outcomes in “real world” settings. 

 

A second potential contributor to the observed resurgence of malaria at sites receiving IRS is the 

COVID-19 pandemic. An important concern has been the potential for delayed or inadequate 

implementation of vector control measures due to the pandemic (86, 87). In Uganda, the UCC 

LLIN distribution was delayed by 5 months but successfully distributed over 28 million nets, 

achieving over 90% coverage. Given the delay in the UCC was country-wide, we do not believe 

an increase in burden resulting from delayed net distribution would be observed strictly in IRS 

sites as was the case in this study. The implementation of IRS campaigns did not appear 

impacted by the COVID-19 pandemic; annual campaigns in 2020 and 2021 were not delayed and 

coverage remained high (>90%, see Appendix Table 3.1). We cannot rule out the potential for 

undocumented differences in implementation (for example, if spray operators spent less time in 

homes due to fear of acquiring COVID-19) that may have contributed to the observed 

resurgence. The pandemic may also have impacted patient behavior; for example, patients may 

have delayed seeking care for malarial illness which could have led to increased transmission. 
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However, because sites that have not recently received IRS did not observe an increase in 

transmission, this explanation is less tenable. 

 

Another potential explanation is a shift in mosquito species composition or mosquito behavior to 

outdoor biting, circumventing vector control interventions that target indoor biting mosquitoes 

(88). This, however, would be unlikely to have occurred rapidly and simultaneously at all IRS 

sites at a pace that would explain the resurgence observed in this study. In addition, this would 

not explain the observation that the resurgence was observed only in the IRS sites and not in the 

non-IRS sites that only received LLINs, as a shift to outdoor biting would have a negative impact 

on both IRS and LLINs. Similarly, a shift in the predominant species from Anopheles gambiae 

and Anopheles funestus to Anopheles arabiensis may have led to a change from predominately 

indoor to outdoor biting (89). Recent data demonstrate that Anopheles gambiae and Anopheles 

funestus remain the primary vectors in Uganda (77), but other work has documented the near 

collapse of Anopheles gambiae and Anopheles funestus in areas with an LLIN distribution and 

repeated IRS campaigns (89). 

 

This study is not without limitations. First, we used an observational study design, with measures 

of impact based on comparisons made before-and-after the implementation of IRS and 

comparisons of IRS and non-IRS districts. While cluster randomized controlled trials remain the 

gold standard design for estimating the impact of IRS, withholding IRS may be unethical, given 

what is known about its beneficial impacts, particularly in Uganda (50). Similarly, comparisons 

of IRS sites and sites that have not recently received IRS are strictly descriptive, given that 

districts receiving IRS and not receiving IRS are not exchangeable. Second, while we 



 76 

hypothesize potential mechanisms that may explain the observed resurgence in malaria burden in 

IRS sites, we cannot rule potential secular trends or other unmeasured contributing factors. 

However, overall secular trends are an unlikely cause given the contemporaneous decline in 

malaria burden at nearby non-IRS sites. Third, the outcome for this analysis is limited to case 

counts of laboratory-confirmed malaria captured at health facilities. We do not have additional 

data on other metrics of transmission intensity, including entomologic measures, nor on malaria 

mortality. 

 

Despite these limitations, this analysis has important policy implications. First, the Ministry of 

Health should be prepared to make timely changes in malaria control interventions based on on-

going surveillance. For example, in IRS districts, policy makers may consider prioritizing the use 

of newer generation LLINs containing PBO which have been shown to be more effective than 

traditional pyrethroid treated LLINs in Uganda (90). Future changes to the IRS active ingredient 

should be made based on on-going surveillance and should be in line with Uganda’s resistance 

management strategy. Consideration should also be made to key logistical factors including cost, 

procurement, and community acceptability. The unprecedented increase in malaria burden in 

areas where incidence had declined by 85% underscores the need to remain vigilant. Indeed, two 

of the five IRS districts included in this analysis stopped receiving IRS altogether in 2021, 

underscoring the challenge of maintaining gains in the face of inadequate resources and the need 

for rational exit strategies when IRS cannot be sustained. Finally, maintaining high quality, 

continuous surveillance systems to assess the impact of population level malaria control 

interventions remains essential in order to generate timely, actionable data.  
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Figure 3.1. Map of Uganda showing study sites. 
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Table 3.1. Summary statistics from health-facility based surveillance sites for study 
objective 3 

MRC (District) Time period Total outpatient 
visits, n 

Suspected 
malaria cases, n 

(% of 
outpatient 

visits) 

Tested for 
malaria, n (% 
of suspected 

malaria cases) 

RDT 
performed 

(versus 
microscopy), n 
(% of tested) 

Confirmed 
malaria cases, n 

(% of tested 
[TPR]) 

Confirmed 
malaria cases 
adjusted for 

testing 

Mean monthly 
malaria cases 
adjusted for 

testing 

Nagongera 
HCIV (Tororo) 

Baseline (12 
months pre-

IRS) 
20,828 13,251 (63.6) 13,096 (98.8) 760 (5.8) 3,298 (25.2) 3,337 278 

Months 1 
through 36 of 

IRS 
63,289 23,315 (38.4) 24,084 (99.0) 9,615 (40.0) 4,004 (16.6) 4,042 112 

Months 37 
through 60 of 

IRS 
35,745 12,616 (35.2) 12,608 (99.9) 3,798 (30.1) 1,067 (8.5) 1,067 30 

Months 61 
through 78 of 

IRS 
32,158 12,449 (38.7) 12,445 (99.9) 10,452 (84.0) 2,328 (18.7) 2,328 129 

Amolatar 
HCIV 

(Amolatar) 

Baseline (12 
months pre-

IRS) 
19,552 8,547 (43.7) 6,512 (76.2) 5,923 (91.0) 3,701 (56.8) 4,845 404 

Months 1 
through 36 of 

IRS 
55,570 18,118 (32.6) 15,082 (83.2) 13,440 (89.1) 3,924 (26.0) 4,956 138 

Months 37 
through 60 of 

IRS 
35,231 7,038 (20.0) 7,034 (99.9) 6,279 (89.3) 908 (12.9) 1,088 30 

Months 61 
through 78 of 

IRS 
29,133 10,936 (37.5) 10,906 (99.7) 8,967 (82.2) 5,848 (45.2) 5,866 326 

Dokolo HCIV 
(Dokolo) 

Baseline (12 
months pre-

IRS) 
25,570 12,854 (50.3) 8,875 (69.0) 8,212 (92.5) 5,211 (58.7) 7,889 657 

Months 1 
through 36 of 

IRS 
78,969 30,846 (39.1) 29,476 (95.6) 27006 (91.6) 7,734 (26.2) 8,266 230 

Months 37 
through 60 of 

IRS 
52,550 16,361 (31.1) 16,273 (99.5) 15,997 (98.3) 2,524 (15.6) 3,243 90 

Months 61 
through 78 of 

IRS 
47,484 20,253 (42.7) 20,215 (99.8) 17,975 (88.9) 9,766 (48.3) 9,784 544 

Orum HCIV 
(Otuke) 

Baseline (11 
months pre-

IRS) 
16,120 9,324 (57.8) 8,929 (95.8) 3,990 (44.7) 5,974 (66.9) 6,236 566 

Months 1 
through 36 of 

IRS 
42632 26,642 (62.5) 25,583 (96.0) 11008 (43.0) 13,619 (53.2) 14,207 394 

Months 37 
through 60 of 

IRS 
23,424 11,064 (47.2) 11,064 (100.0) 8,717 (78.9) 2,911 (26.3) 3,072 85 

Months 61 
through 78 of 

IRS 
17,374 11,015 (63.4) 11,015 (100.0) 8,287 (75.2) 5,393 (49.0) 5,393 300 

Alebtong 
HCIV 

(Alebtong) 

Baseline (8 
months pre-

IRS) 
15,359 6,694 (43.6) 4,789 (71.5) 4,620 (96.5) 3,209 (67.0) 4,317 540 

Months 1 
through 36 of 

IRS 
62,161 30,226 (48.6) 25,863 (85.6) 22,373 (86.5) 10,452 (40.4) 12,251 340 

Months 37 
through 60 of 

IRS 
33,201 11,091 (33.4) 10,810 (97.5) 10,399 (96.2) 1,638 (15.1) 1,745 48 

Months 61 
through 78 of 

IRS 
32,782 17,434 (53.2) 17,434 (100.0) 14,251 (81.7) 7,884 (45.2) 7,884 438 
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Figure 3.2. Malaria case counts and vector control interventions over time at 5 IRS sites. 
The study baseline period (pre-IRS) is indicated in grey. 
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Figure 3.3. Adjusted IRR from multilevel negative binomial model comparing the period 
after IRS was initiated to the period before IRS was initiated. Vertical bars represent the 95% 
CI around adjusted IRR. Effect estimates in grey are published previously. 
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Table 3.2. Summary statistics from health-facility based surveillance sites for study 
objective 2 

MRC (District) Time period Total outpatient 
visits, n 

Suspected 
malaria cases, n 

(% of 
outpatient 

visits) 

Tested for 
malaria, n (% 
of suspected 

malaria cases) 

RDT 
performed 

(versus 
microscopy), n 
(% of tested) 

Confirmed 
malaria cases, n 

(% of tested 
[TPR]) 

Confirmed 
malaria cases 
adjusted for 

testing 

Mean monthly 
malaria cases 
adjusted for 

testing 

IRS SITES 

Nagongera 
HCIV (Tororo) 

January 2020-
December 2020 20,079 7,033 (35.0) 7,031 (99.9) 5,706 (81.2) 767 (10.9) 767 64 

January 2021-
July 2021 14,101 6,039 (42.8) 6,037 (99.9) 5,030 (83.3) 1,648 (27.2) 1,648 235 

Amolatar 
HCIV 

(Amolatar) 

January 2020-
December 2020 18,995 6,360 (33.5) 6,349 (99.8) 5,198 (81.9) 2,965 (46.7) 2,969 247 

January 2021-
July 2021 11,851 5,036 (42.5) 5,015 (99.5) 4,206 (83.9) 3,072 (61.3) 3,087 441 

Dokolo HCIV 
(Dokolo) 

January 2020-
December 2020 32,042 13,984 (43.6) 13,947 (99.7) 12,842 (92.1) 7,110 (51.0) 7,130 594 

January 2021-
July 2021 18,245 7,588 (41.6) 7,577 (99.9) 6,421 (84.7) 3,398 (44.8) 3,402 486 

Orum HCIV 
(Otuke) 

January 2020-
December 2020 11,161 6,807 (61.0) 6,807 (100.0) 5,672 (83.3) 2,925 (43.0) 2,925 244 

January 2021-
July 2021 7,237 4,772 (65.9) 4,772 (100.0) 3,126 (65.5) 2,678 (56.1) 2,678 383 

Alebtong 
HCIV 

(Alebtong) 

January 2020-
December 2020 19,027 8,877 (46.7) 8,877 (100.0) 7,763 (87.5) 2,797 (31.5) 2,797 233 

January 2021-
July 2021 14,932 9,069 (60.7) 9,069 (100.0) 6,981 (77.0) 5,214 (57.4) 5,214 745 

NON-IRS SITES 

Aduku HCIV 
(Kwania) 

January 2020-
December 2020 26,537 19,136 (72.1) 19,133 (99.9) 12,770 (66.7) 12,818 (67.0) 12,821 1,068 

January 2021-
July 2021 16,004 10,542 (65.9) 10,535 (99.9) 6,298 (59.8) 5,422 (51.5) 5,426 775 

Patongo HCIII 
(Agago) 

January 2020-
December 2020 21,138 18,076 (85.6) 18,071 (99.9) 17,417 (96.4) 11,911 (65.9) 11,914 993 

January 2021-
July 2021 8,327 6,564 (78.9) 6,564 (100.0) 5,835 (88.9) 2,613 (39.8) 2,613 373 

Bbaale HCIV 
(Kayunga) 

January 2020-
December 2020 25,382 15,691 (61.8) 15,591 (99.4) 11,856 (76.0) 7,401 (47.5) 7,450 621 

January 2021-
July 2021 11,476 6,664 (58.1) 6,640 (99.6) 5,004 (75.4) 2,202 (33.1) 2,210 316 

Lumino HCIII 
(Busia) 

January 2020-
December 2020 21,885 17,783 (81.2) 17,783 (100.0) 16,094 (90.5) 10,409 (58.5) 10,409 867 

January 2021-
July 2021 11,034 8,551 (77.4) 8,551 (100.0) 7,189 (84.1) 4,212 (49.3) 4,212 602 

Apwori HCIII 
(Kwania) 

January 2020-
December 2020 14,759 13,783 (93.4) 13,781 (99.9) 12,189 (88.5) 9,164 (66.5) 9,166 764 

January 2021-
July 2021 6,843 5,921 (86.5) 5,921 (100.0) 5,877 (99.3) 2,061 (34.8) 2,061 294 

Lira-Kato 
HCIII (Agago) 

January 2020-
December 2020 20,059 17,825 (88.9) 17,814 (99.9) 17,801 (99.9) 12,670 (71.1) 12,679 1057 

January 2021-
July 2021 8,753 6,796 (77.6) 6,795 (99.9) 5,921 (87.1) 3,491 (51.4) 3,491 499 

Morungatuny 
HCIII (Amuria) 

January 2020-
December 2020 15,053 13,964 (92.7) 13,964(100.0) 13,940 (99.8) 7,698 (55.1) 7,698 642 

January 2021-
July 2021 7,427 7,288 (98.1) 7,288(100.0) 7,287 (99.9) 2,162 (29.7) 2,162 309 

Asamuk HCIII 
(Amuria) 

January 2020-
December 2020 20,504 18,065 (88.1) 18,045 (99.9) 17,633 (97.7) 10,728 (59.5) 10,742 895 

 January 2021-
July 2021 12,505 11,129 (89.0) 11,129(100.0) 11,098 (99.7) 3,804 (34.8) 3,804 543 

Kapelebyong 
HCIV 

(Kapelebyong) 

January 2020-
December 2020 16,975 10,720 (63.2) 10,711 (99.9) 10,652 (99.5) 6,215 (58.0) 6,219 518 

 January 2021-
July 2021 10,287 5,111 (49.7) 5,111(100.0) 5,108 (99.9) 1,510 (29.5) 1,510 216 
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Obalanga 
HCIII 

(Kapelebyong) 

January 2020-
December 2020 17,438 15,855 (90.9) 15,852 (99.9) 12,833 (81.0) 9,917 (62.6) 9,919 827 

 January 2021-
July 2021 8,419 7,863 (93.4) 7,863(100.0) 6,963 (88.6) 3,286 (41.7) 3,286 469 
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Figure 3.4. Malaria case counts and vector control interventions over time at 10 sites that 
have not received IRS recently. 
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Figure 3.5. Mean case counts in 5 IRS sites and 5 non-IRS sites from January 2020 through 
July 2021 (left) and adjusted IRR comparing IRS sites to non-IRS sites over the study 
period. Shaded areas represent standard deviations. Vertical bars represent the 95% CI around 
adjusted IRR. 
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Chapter 3 Appendix 

Appendix Table 3.1. Timing and formulation IRS campaigns. 
MRC District 

Details of 
IRS 

campaign 

1st round  2nd round  3rd round   4th   round 5th round  6th round   7th round  8th round  9th round 

(Coverage) (Coverage) (Coverage) (Coverage) (Coverage) (Coverage) (Coverage) (Coverage) (Coverage) 

Nagongera 
HCIV Tororo 

Date 08-Dec-14 
to 19-Feb-

15 

08-Jun-15 
to 12-Jul-

15 

02-Nov-15 
to 12-Dec-

15 

12-Jun-16 
to 9-Jul-16 

17-July-17 
to 19-Aug-

17 

11-Jun-18 
to 27-7-18 

18-Mar-19 
to 15-Apr-

19 

2-Mar-20 
to 28-Mar-

2020 

1-Mar-20 
to 26-Mar-

2021 
Formulation 

Bendiocarb Bendiocarb Bendiocarb Actelic Actellic Actellic Actellic 
Fludora 
Fusion 

WP-SB* 

Fludora 
Fusion 
WP-SB 

Coverage Not 
available (94.60%) (96.30%) (93.0%) (94.90%) (95.80%) (92.10%) (93.20%) (99.4%) 

Amolatar 
HCIV Amolatar 

Date 08-Dec-14 
to 19-Feb-

15 

08-Jun-15 
to 12-Jul-

15 

12-Oct-15 
to 07-Nov-

15 

24-Oct-16 
to 19-Nov-

16 

2-May-17 
to 6-June-

17 

9-Apr-18 
to 12-May-

18 

27-May-19 
to 27-June-

19 

25-May-
2020 to 20-
Jun-2020 

26 April to 
20 May 

2021 
Formulation 

Bendiocarb Bendiocarb Bendiocarb Bendiocarb Actellic Actellic Actellic 
Fludora 
Fusion 

WP-SB† 

Fludora 
Fusion 
WP-SB 

Coverage Not 
available (96.10%) (91.40%) (94.1%) (95.80%) (96.10%) (94.20%) (96.20%) (91.5% ) 

Dokolo 
HCIV Dokolo 

Date 08-Dec-14 
to 19-Feb-

15 

08-Jun-15 
to 12-Jul-

15 

12-Oct-15 
to 07-Nov-

15 

18-Apr-16 
to 9-Jul-16 

2-May-17 
to 6-June-

17 

9-Apr-18 
to 12-May-

18 

27-May-19 
to 27-June-

19 

25-May-
2020 to 20-
Jun-2020 

26 April to 
25 May 

2021 
Formulation 

Bendiocarb Bendiocarb Bendiocarb Actellic Actellic Actellic Sumishield 
50W 

Fludora 
Fusion 

WP-SB† 

Fludora 
Fusion 
WP-SB 

Coverage Not 
available (88.70%) (92.10%) (94.80%) (97.60%) (94.30%) (95.20%) (94.60%) (91.0% ) 

Orum 
HCIV Otuke 

Date 08-Dec-14 
to 19-Feb-

15 

08-Jun-15 
to 12-Jul-

15 

02-Nov-15 
to 12-Dec-

15 

18-Apr-16 
to 9-Jul-16 

17-July-17 
to 19-Aug-

17 

11-Jun-18 
to 27-7-18 

27-May-19 
to 27-June-

19 

25-May-
2020 to 20-
Jun-2020 

 

Formulation 
Bendiocarb Bendiocarb Bendiocarb Actellic Actellic Actellic Actellic 

Fludora 
Fusion 

WP-SB† 
 

Coverage Not 
available (96.60%) (94.80%) (97.60%) (96.70%) (98.40%) (98.80%) (96.50%)  

Alebtong 
HCIV Alebtong 

Date 08-Dec-14 
to 19-Feb-

15 

08-Jun-15 
to 12-Jul-

15 

12-Oct-15 
to 07-Nov-

15 

24-Oct-16 
to 19-Nov-

16 

2-May-17 
to 6-June-

17 

9-Apr-18 
to 12-May-

18 

27-May-19 
to 27-June-

19 

25-May-
2020 to 20-
Jun-2020 

 

Formulation 
Bendiocarb Bendiocarb Bendiocarb Bendiocarb Actellic Actellic Actellic 

Fludora 
Fusion 

WP-SB† 
 

Coverage Not 
available (96.90%) (95.40%) (97.50%) (98.30%) (90.90%) (95.00%) (95.50%)  

*2% of households received Actellic 
 
†2% of households received Sumishield 50W 
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Appendix Figure 3.1. Adjusted IRR from multilevel negative binomial model comparing 
the period after IRS was initiated to the period before IRS was initiated with unadjusted 
case counts as model outcome. Vertical bars represent the 95% CI around adjusted IRR. Effect 
estimates in grey are published previously. 
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Appendix Figure 3.2. Adjusted IRR from multilevel negative binomial model comparing 
the period after IRS was initiated to the period before IRS was initiated leaving out 2 sites 
that stopped IRS in 2021 (Orum and Alebtong). Vertical bars represent the 95% CI around 
adjusted IRR. Effect estimates in grey are published previously. 
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Appendix Figure 3.3. Adjusted IRR comparing IRS sites to non-IRS sites over the study 
period with unadjusted case counts as model outcome. Vertical bars represent the 95% CI 
around adjusted IRR.  
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