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Abstract

An effective vaccine is urgently required to curb the HIV-1 epidemic. We have previously described an approach to model the
fitness landscape of several HIV-1 proteins, and have validated the results against experimental and clinical data. The fitness
landscape may be used to identify mutation patterns harmful to virus viability, and consequently inform the design of
immunogens that can target such regions for immunological control. Here we apply such an analysis and complementary
experiments to HIV-1 Nef, a multifunctional protein which plays a key role in HIV-1 pathogenesis. We measured Nef-driven
replication capacities as well as Nef-mediated CD4 and HLA-I down-modulation capacities of thirty-two different Nef mutants,
and tested model predictions against these results. Furthermore, we evaluated the models using 448 patient-derived
Nef sequences for which several Nef activities were previously measured. Model predictions correlated significantly with
Nef-driven replication and CD4 down-modulation capacities, but not HLA-I down-modulation capacities, of the various Nef
mutants. Similarly, in our analysis of patient-derived Nef sequences, CD4 down-modulation capacity correlated the most
significantly with model predictions, suggesting that of the tested Nef functions, this is the most important in vivo. Overall,
our results highlight how the fitness landscape inferred from patient-derived sequences captures, at least in part, the in vivo
functional effects of mutations to Nef. However, the correlation between predictions of the fitness landscape and measured
parameters of Nef function is not as accurate as the correlation observed in past studies for other proteins. This may be
because of the additional complexity associated with inferring the cost of mutations on the diverse functions of Nef.
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1. Introduction

Despite extensive research efforts, a vaccine or a cure for HIV-1
remains elusive. One of the major hurdles in vaccine design and
development is eliciting a human immune response that is
not evaded by the highly diverse and mutable HIV-1 (Kwong,
Mascola, and Nabel 2012). Because HIV-1 fitness plays a signifi-
cant role in disease progression (Deacon et al. 1995; Qui~nones-
Mateu et al. 2000; Song et al. 2012), continuous immune
pressure on the wild-type virus favouring the outgrowth of es-
cape variants with diminished fitness is a suggested vaccine
strategy (Allen and Altfeld 2008; Chopera et al. 2011a). Although
promising, this strategy poses a challenge because HIV-1 devel-
ops compensatory mutations that can restore its reduced
fitness (Brockman et al. 2007; Crawford et al. 2007; Chopera
et al. 2011a). Thus, mutations cannot be considered in isolation
when assessing fitness consequences.

Our group has developed, and tested, computational models
that aim to predict viral fitness based on the amino acid
sequence and thereby quantify the relative fitness of strains con-
taining different mutation patterns (Ferguson et al. 2013; Mann
et al. 2014a; Barton et al. 2016b; Butler et al. 2016; Louie et al.
2018). These models may be used to identify deleterious muta-
tional couplings with the end goal of potentially restricting viable
escape of HIV-1 with vaccine immunogens that maximise sites
that are harmful to HIV-1 when mutated in combination. We
have previously applied this modelling approach to the HIV-1
Gag protein and validated the model by measuring the replica-
tion capacities of HIV-1 strains with various Gag mutation combi-
nations in vitro (Ferguson et al. 2013; Mann et al. 2014a). It has
also been successfully applied to study drug resistance mutations
in HIV-1 protease (Butler et al. 2016), and to predict the process of
escape in individual patients from T cell-mediated host immune
pressure on diverse HIV proteins (Barton et al. 2016b).

Here we report a fitness landscape model of the HIV-1 Nef
protein. Nef plays an important role in HIV-1 pathogenesis as
well as host immune evasion (Kestler et al. 1991; Collins et al.
1998; Foster and Garcia 2008) making it an attractive vaccine tar-
get. Although Nef was included in the unsuccessful STEP
trial, there is currently little evidence for or against its inclusion
in vaccine strategies (Buchbinder et al. 2008). In this study, we
evaluated and compared the accuracy of models of varying
complexities in predicting the fitness consequences of muta-
tions in HIV-1 Nef. In order to do so, we performed in vitro
measurements of the Nef-driven replication capacities as well
as Nef-mediated CD4 and HLA-I down-modulation capacities
of thirty-two mutants, which were selected based on their
predicted values of fitness derived from in silico models.
Nef-mediated CD4 and HLA-I down-modulation capacities of
the selected mutants were measured in addition to replicative
fitness since these are key activities of the Nef protein that may
influence pathogenesis (Iafrate et al. 2000; Swigut et al. 2004;
Mann et al. 2014b). While CD4 down-modulation enhances viral
replication through promoting the release of infectious viral
particles (Ross, Oran, and Cullen 1999; Greenway et al. 2003),
HLA-I down-modulation is not expected to directly influence
HIV replication in vitro yet may still play a significant role in
HIV-1 pathogenesis through enhancing immune evasion (Foster
and Garcia 2008). Furthermore, we extended the testing of the
model to patient-derived sequences of Nef, 298 subtype C Nef
sequences (Mann et al. 2014b) and 150 subtype B Nef sequences
(Mwimanzi et al. 2013a,b; Mahiti et al. 2015; Toyoda et al. 2015;
Mahiti et al. 2016), for which several Nef functions were previ-
ously measured. For the subtype B Nef sequences, in addition to

CD4 and HLA-I down-modulation, five other Nef activities were
measured, namely down-modulation of CXCR4 and CCR5, upre-
gulation of CD74, enhancement of virion infectivity, and en-
hancement of viral replication, allowing investigation of which
Nef activities align most strongly with model predictions.

2. Materials and methods
2.1 Ising and Potts model inference

In order to infer the Ising and Potts models, we downloaded mul-
tiple sequence alignments (MSAs) of 11,354 HIV-1 Nef subtype B
sequences and 6,469 subtype C sequences, obtained from 3,300
and 1,656 unique individuals, respectively, from the Los Alamos
National Laboratory HIV Sequence Database (www.hiv.lanl.gov).
We then processed the sequence data and employed the selective
cluster expansion method (Cocco and Monasson 2011, 2012;
Barton et al. 2016a) to infer Ising and Potts models that capture
the pattern of correlated mutations observed in the sequence
data, as previously described (Barton et al. 2016b); for complete-
ness, methods for processing sequence data and information
about the model inference are summarised in the Supplementary
Material. Separate models are inferred for subtypes B and C data.
In this model, the estimated prevalence P(z) of an HIV sequence z,
represented as a vector of amino acids, is given by

P zð Þ ¼ exp �EðzÞð Þ
Q

; E zð Þ ¼ �
XN

i¼1

hi zið Þ �
XN�1

i¼1

XN

j¼iþ1

Jij zi; zjð Þ : (1)

Here N¼ 206 is the length of the protein, and the zi represent
the amino acids present at each residue i. The parameters hi(zi)
and Jij(zi, zj), referred to as fields and couplings, are chosen so
that the model reproduces the observed single- and double-
mutant frequencies. Note that the values of E, referred to as en-
ergy, in Equation (1) are inversely related to prevalence, such
that sequences with high E values have low prevalence, and
vice versa. In past work, based on HIV biology, its evolutionary
history and physics-based models, we have argued that, for
HIV, the order of the prevalence of circulating strains is statisti-
cally similar to its fitness (i.e. ability to propagate infection)
(Butler et al. 2016; Chakraborty 2017; Chakraborty and Barton
2017). This is in part due to HIV’s status as a chronic infection,
its high mutation and recombination rates, and the great diver-
sity of largely ineffective immune responses against it.

We considered models that account for the diversity of amino
acids at each residue (Potts models) with a wide range of com-
plexities, as measured by the entropy threshold ST, for selecting
how many amino acids to include explicitly in the model at each
residue. The possible values of the entropy threshold range from
ST¼ 0 (the Ising model), where only the consensus amino acid at
each residue is explicitly modelled and all other amino acids are
treated as the same ‘mutant’ type, to ST¼ 1, where all observed
amino acids are modelled explicitly. Here we inferred models
with ST¼ 0, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, and 0.9. Overall
agreement between the E values for all models was excellent
(Supplementary Fig. S1). We use models trained on sequence
data from the same HIV-1 subtype as in the experiment for the
comparisons with experimental measurements reported below.

2.2 Analysis of mutant Nef sequences

2.2.1 Mutation selection
To evaluate and compare the ability of the Ising and the Potts
models to predict the fitness consequences of mutations in
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HIV-1 Nef, several mutations and mutation combinations were
selected for testing based on their computed values of E. The
models assign a value of E to each viral strain, which is pre-
dicted to be inversely related to the replicative fitness of the
strain (Berg, Willmann, and Lässig 2004; Sella and Hirsh 2005;
Ferguson et al. 2013; Mann et al. 2014a). Mutants were selected
subjectively so that they covered the full range of E values. We
included mutations in known functional motifs involved in CD4
and HLA-I down-modulation for comparison to what has been
documented in literature. We also included HLA-associated
mutations (which are likely to be cytotoxic T lymphocyte [CTL]
escape mutations and are identified by statistical association
with HLA alleles; Carlson et al. 2008) or known CTL escape
mutations that covered a range of E values, since it would be de-
sirable to identify CTL escape mutations with functional costs.
Different amino acid mutations at the same codon with differ-
ential E values were also chosen to test the ability of Potts mod-
els to distinguish between different substitutions at the same
codon. All mutations and their E values computed by the Ising
and Potts models are summarised in Table 1.

2.2.2 Site-directed mutagenesis
The mutations listed in Table 1 were introduced using the
QuikChange II XL Site-Directed Mutagenesis kit (Stratagene, La
Jolla, CA, USA) into the consensus B nef sequence (2004 consen-
sus sequence available from the Los Alamos National
Laboratory HIV Sequence Database [LANL]), which was first
cloned into a TOPO vector (Invitrogen, Carlsbad, CA, USA). The
procedure involved the generation of mutants through poly-
merase chain reaction (PCR) amplification of the desired tem-
plate with custom designed mutagenic primers. The mutant
plasmid was then transformed into XL10-Gold ultracompetent
cells and sequencing was performed to confirm the presence of
the correct mutation in nef-containing colonies. Following suc-
cessful introduction of mutations, the mutant nef sequences
were cloned into an HIV-1 NL4-3 plasmid. Briefly, an SF2 nef
NL4-3 plasmid (containing NcoI and NotI restriction sites flank-
ing SF2 nef), which was previously prepared (Fackler et al. 2006;
Ueno et al. 2008), was digested with NcoI and NotI enzymes and
the resulting nef-deleted NL4-3 plasmid was gel purified. PCR
was performed to amplify the mutant nef sequences using for-
ward and reverse primers containing the NcoI and NotI restric-
tion sites, respectively. PCR products were digested with NcoI
and NotI enzymes and then ligated to the digested nef-deleted
NL4-3 plasmid using T4 ligase. The ligation mixture was trans-
formed into XL10-Gold ultracompetent cells. Plasmids were
then purified using a Qiagen maxiprep kit and sequenced to ver-
ify the correct mutant sequence.

2.2.3 Generation of mutant viruses in reporter cell lines and
measurement of their replication capacities following virus
infection of primary cells
Mutant viruses were generated from the mutant nef NL4-3 plas-
mids as previously described (Wright et al. 2012). Briefly, this
was carried out by electroporating 4 million green fluorescent
protein (GFP)-reporter CEM-GXR T cells (described in Brockman
et al. 2006; and obtained from Prof. Mark Brockman from Simon
Fraser University) with 10 lg mutant plasmid. This resulted in
production of mutant virus from the cells transfected with mu-
tant plasmids. The percentage infected cells (GFP-positive cells)
was monitored by flow cytometry and mutant viruses were har-
vested at 30 per cent infection. Replication capacities of the mu-
tant viruses were measured in peripheral blood mononuclear
cells (PBMCs) from two different HIV-1 negative donors as

previously described (Ueno et al. 2008). Briefly, 1 million PBMCs
were infected with mutant viruses at 7.5 ng p24 (pre-determined
by p24 ELISA using the Retro-trek HIV-1 p24 Antigen ELISA 2.0
kit [ZeptoMetrix corporation, New York, NY, USA]), and were
equally divided into four wells (200 ml each) of a ninety-six-well
plate. On Day 3 of incubation, 100 ml supernatant was removed
and PBMCs were stimulated with 100 ml of 10 mg/ml phytohae-
magglutinin, and thereafter every 3 days 100 ml supernatant was
removed and replaced with medium containing 20 U/ml
interleukin-2. p24 concentration on Day 12 of incubation, at
which point the viruses had detectable replication but had not
yet surpassed peak replication, was used as the measure of rep-
lication capacity. The replication capacities of the mutant vi-
ruses were expressed as the mean of quadruplicate
assessments in each donor and normalised to that of the LANL
consensus B Nef-NL4-3 wild-type virus.

2.2.4 CD4 and HLA-I down-modulation assay using mutant Nef
sequences cloned into pSELECT plasmid
Nef-mediated CD4 and HLA-I down-modulation assays were
performed as previously described in a GXR cell line which
expresses high levels of CD4 and HLA-A*02 (Brockman et al.
2006) (obtained from Prof. Mark Brockman of Simon Fraser
University). Briefly, the mutant nef sequences were cloned, as
previously described (Mann et al. 2013), into a zeocin-resistant
GFP-expressing plasmid (pSELECT) as this allowed detection by
flow cytometry of cells transfected with Nef clones. GXR cells
(600,000) were transfected by electroporation with the Nef
clones (8mg). Following a 20-h incubation, the cells were stained
with fluorochrome-conjugated antibodies which bind to CD4
(APC-labelled anti-CD4 antibody, BD Biosciences, San Jose, CA,
USA) and HLA-A*02 (PE-labelled HLA-A*02 antibody, BD
Biosciences) molecules to allow for measurement of these mol-
ecules by flow cytometry. The down-modulation capacities of
the mutant Nef clones were indicated by median fluorescence
intensity of CD4 or HLA-A*02 expression in GFP-positive cells
relative to that of the positive (SF2 pSELECT) and negative (DNef
pSELECT) controls. This value was then normalised to that of
the LANL consensus B Nef which was included in every assay.
Assays were performed in duplicate and the results averaged.

2.2.5 Correlation analysis for Nef mutants
The relationship between the predicted fitness costs of the mu-
tant viruses (expressed as E values) and the measured replica-
tion capacities of the mutant viruses was evaluated using
Spearman’s rank correlation. The relationship between the
E values and the measured Nef-mediated CD4 and HLA-I down-
modulation capacities was similarly evaluated. A significance
level of P< 5� 10�2 was used for all statistical analyses. E values
were not corrected for the influence of phylogeny.

2.3 Analysis of patient-derived Nef sequences

2.3.1 Functional analysis of patient-derived Nef sequences
The testing of the relationship between model energies and Nef
function was extended to previously published patient-derived
Nef sequences of subtype C (n¼ 298) (Mann et al. 2014b) and
subtype B (n¼ 150) (Mwimanzi et al. 2013a,b; Mahiti et al. 2015,
2016; Toyoda et al. 2015), with each sequence obtained from a
different patient. The subtype C Nef sequences were derived
from southern Africa and comprised 107 sequences from re-
cently infected individuals and 191 sequences from chronically
infected individuals. CD4 and HLA-I down-modulation activities
were previously measured, using Nef sequences cloned into
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pSELECT plasmid as described above, for those Nef sequences
(Mann et al. 2014b). The subtype B Nef sequences were derived
from Boston, NY, and Berlin, Germany, and comprised ninety-
one sequences from chronically infected individuals (forty-five
of whom were elite controllers) and fifty-nine sequences from

acute infection. Down-modulation of HLA-I, CD4, CXCR4,
and CCR5, upregulation of CD74, enhancement of virion infec-
tivity, and enhancement of viral replication was previously
measured for these subtype B Nef sequences, as previously de-
scribed (Mwimanzi et al. 2013a,b; Mahiti et al. 2015, 2016;

Table 1. Energies, predicted by the Ising and Potts models, of the selected mutants.

Mutanta Ising
E (ST¼ 0)b

Potts E
(ST¼ 0.9)b

Required for down-modulation of HLA-association/known CTL escapec

17K19K 6.45 7.54 HLA and to a lesser extent CD4 (Schaefer
et al. 2008)

21Ed 0.89 2.57
21Kd 0.89 1.55
28E 0.22 0.51 C*08:02
33A 0.72 0.65 A*68:01; 33V is a known escape mutant

(Goonetilleke et al. 2009)
43L 1.67 1.89 43V with C*03
33A43L 2.02 2.11 Pair of HLA-associated mutations
57Gd 4.63 6.25 CD4 (Grzesiek et al. 1996; Mangasarian

et al. 1999; Geyer, Fackler, and Peterlin
2001)

57Rd 4.63 5.53 CD4 (Grzesiek et al. 1996; Mangasarian
et al. 1999; Geyer, Fackler, and Peterlin
2001)

57R58P 7.44 8.32 CD4 (Grzesiek et al. 1996; Mangasarian
et al. 1999; Geyer, Fackler, and Peterlin
2001)

71K 1.63 1.81 C*07:02; 71T with B*07:02; 71T and 71R are known
escape mutants (Ueno et al. 2007; Mwimanzi
et al. 2011; Liu et al. 2013)

72L75L 11.75 12.77 HLA (Mangasarian et al. 1999; Foster
et al. 2011)

76V 3.51 3.65 B*81; C*18:01; 76V, 76T, 76I are known escape
mutants (Leslie et al. 2006)

71K76V 5.14 5.47 Pair of HLA-associated mutations
80Nd 3.58 4.30 B*07:02
76V80N 7.10 7.95 Pair of HLA-associated mutations
80Dd 3.58 4.37 B*35:01; C*07:02
88G 3.99 4.32 Known escape mutant (Chopera et al. 2011b)
43L88G 5.63 6.17 Pair of HLA-associated mutations
102Hd 0.31 0.60 B*44:03; C*08
28E102Hd 0.61 1.17 Pair of HLA-associated mutations
102Wd 0.31 1.85
28E102Wd 0.61 2.41
123G 6.05 6.84 HLA and CD4 (Geyer, Fackler, and

Peterlin 2001; Foster et al. 2011)
133T �0.11 0.47 B*35:01; 133I with B*38:01 and B*57
135F 1.15 1.20 A*23:01; A*24. A known escape mutant (Fujiwara

et al. 2008)
133T135F 0.64 1.20 Pair of HLA-associated mutations
143Y 2.93 2.90 A*23:01
135F143Y 4.16 4.18 Pair of HLA-associated mutations
188H 1.34 2.40 A*31:01; 188R with B*58:01; 188S with A*30:01;

188N is a known escape mutant (Goonetilleke
et al. 2009)

192R 1.45 1.74 192K with A*74. A known escape mutant (Kemal
et al. 2008)

188H192R 2.40 3.82 Pair of HLA-associated mutations

aAll mutants chosen represent the most common mutation at the corresponding residue with the exception of the additional mutations chosen to test the ability of

the Potts model to distinguish between different amino acids at the same codon.
bThe energies were computed for the mutations in the consensus B sequence background, where the sequence differences (A15T, T51N, C163S, Q170L, and K178R)

from the multiple sequence alignment (MSA) consensus sequence were considered as additional mutations.
cLists of HLA-associated polymorphisms in Nef were derived from Carlson et al. (2012, 2014). Mutations which are known CTL escape are referenced.
dMutations chosen to test the ability of the Potts model to distinguish between different amino acids at the same codon.
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Toyoda et al. 2015). Briefly, HLA-I down-modulation, upregula-
tion of CD74, virion infectivity, and viral replication capacity
were measured using NL4-3 recombinant viruses encoding the
patient-derived subtype B Nef sequences (Mwimanzi et al.
2013a,b; Mahiti et al. 2015, 2016). The Nef sequences were first
cloned into a nef-deleted NL4-3 plasmid, as described earlier for
the Nef mutant viruses, and then the recombinant viruses were
generated by the transfection of HEK-293T cells followed by har-
vest of culture supernatants 48 h later (Mwimanzi et al. 2013b).
HLA-I down-modulation and CD74 upregulation were deter-
mined in a 721.221 cell line stably expressing HLA-A*24:02, by
infecting these cells with recombinant virus (300 ng p24) and
staining cells 48 h later with fluorescently labelled antibodies
for these molecules followed by flow cytometry (Mahiti et al.
2015). Nef-mediated enhancement of virion infectivity was
measured in TZM-bl cells by chemiluminescence detection fol-
lowing infection of these cells with recombinant virus (3 ng p24)
(Mwimanzi et al. 2013b). Nef-mediated enhancement of viral
replication was measured following infection of PBMCs with re-
combinant virus (Mwimanzi et al. 2013b), as described earlier
for the mutant Nef viruses. CD4, CXCR4, and CCR5 down-
modulation were measured by transfecting Nef clones (patient-
derived Nef sequences were cloned into the pIRES2-EGFP vector)
into TZM-bl cells and subsequently detecting expression of
these molecules by flow cytometry using fluorescently labelled
antibodies (Toyoda et al. 2015). Notably, the CD4 measurements
for the same subtype B Nef clones obtained in the TZM-bl cell
line concurred well (r¼ 0.9 and P< 0.0001) with those obtained
in a CEM T cell line (Mwimanzi et al. 2013a,b), as was used for
CD4 down-regulation measurements for the mutant Nef and
subtype C patient-derived Nef clones.

2.3.2 Correlation analysis for patient-derived Nef sequences
Past work has shown a close relationship between the value of
E in Equation (1) and fitness for a variety of HIV proteins
(Ferguson et al. 2013; Mann et al. 2014a; Barton et al. 2016b;
Louie et al. 2018). However, as mentioned above, contributions
to fitness are more difficult to experimentally assess for a multi-
functional protein such as Nef, especially since some of its func-
tions may only be important in vivo. Furthermore, the existence
of multiple functions that contribute to fitness makes compari-
sons between individual functional measurements and E more
challenging. This is because E, which is inferred from diverse
patient-derived sequences, is a proxy for in vivo fitness and con-
catenates the effects of mutations on the different Nef functions
(including the unknown weights of each function in vivo). For
example, consider a Nef protein that is unable to perform one
of its critical functions (e.g. CD4 down-modulation), but where
other, independent functions remain intact. In principle, be-
cause of this critical defect we would expect the E value of the
corresponding sequence to be high. This makes sense in the
context of the one function that is impaired, but not for the
other Nef functions, which may appear normal. In short, high
E values would lead us to expect low fitness and therefore
functional impairment, but it need not be true that all functions
are impaired in order for fitness to be affected. Thus, for a
multifunctional protein, univariate correlations between E and
individual functional measurements may not be strong even if
E is a good predictor of overall fitness.

Thus, in order to develop a more complete picture of the
potential contributions of different Nef functions to fitness, we
used Nef functional measurements to predict the E value of the
corresponding sequence with multiple linear regression.
Assuming that E values are a reasonable proxy for fitness

in vivo, this analysis would allow us to determine the extent to
which impairment of each of the functions measured here con-
tributes to fitness. In addition, we measured the correlation be-
tween each functional measurement and E as described above,
but bearing in mind that these individual measurements do not
reflect the complete picture.

3. Results
3.1 Analysis of mutant Nef sequences

3.1.1 Ising and Potts model predictions correlate with
replication capacities of mutant viruses
The replication capacities of the Nef mutants were determined
by infection of PBMCs followed by supernatant p24 ELISA mea-
surement, and were normalised to the wild-type virus (Table 2).
The experiments were performed in duplicate, using PBMCs
from two different donors, and the results were averaged (con-
cordance between replicates: Pearson r¼ 0.78, P¼ 3� 10�7;
Supplementary Fig. S2). E values for all models correlated signif-
icantly with the mutant replication capacities (Fig. 1A). The cor-
relation did not depend on model complexity, that is, ST

(Supplementary Fig. S3). Indeed, pairwise comparisons across
models suggest that all differences in correlations fall short of
the threshold of statistical significance (Supplementary Table
S1). In the subsequent analysis we therefore present only corre-
lations for the Potts model with ST¼ 0.9, which we have
employed in past work (Mann et al. 2014a; Barton et al. 2016b).
Results for models with other values of ST are similar in all
cases. Full results are included in the Supplementary Material.
Moreover, independent site forms of the model (i.e. those that
include only the terms hi(zi) in Equation (1)) display similar lev-
els of correlation (see Supplementary Fig. S4). This is somewhat
surprising and is in contrast with previous work on other HIV
proteins, which showed that models with couplings outper-
formed simple entropy (Ferguson et al. 2013; Mann et al. 2014a;
Barton et al. 2016b) or models without couplings (Louie et al.
2018) for diverse HIV proteins. Furthermore, couplings were
shown to make a more substantial effect on the dynamics of es-
cape (Barton et al. 2016b), compared to static metrics of fitness
measured in vitro. This is because of the high mutability and
replication rates of HIV, which allows the virus to sample rare
compensatory pathways dynamically. Such rare, coupled muta-
tions may be uncommon in our data outside of T cell epitopes,
which would contribute a small fraction to the energy overall.
Past studies of bacterial proteins have also found an advantage
to the inclusion of couplings for functional predictions (Figliuzzi
et al. 2016). One reason for this may be that the Nef sequences
in the patient-derived samples have mutations in few pairs of
sites with strong couplings, or that the cumulative effect of the
fields overwhelms the effects of couplings for sequences that
are more phylogenetically distant (see Supplementary Fig. S5).
Another may be that the multiple functions of Nef obscure the
effect of couplings when we compare with in vitro assays of one
function at a time.

Thus, our data can test our ability to predict the fitness land-
scape of HIV, but significantly more data would be required to
test distinctions between the predictive capabilities of the dif-
ferent Potts models. Although good, the correlation between
replication capacity and E was lower for Nef than in previous
comparisons using Gag (Mann et al. 2014a) and Env (Louie et al.
2018) mutants, and the accuracy of estimates of viral evolution
in individual patients using our estimated fitness landscape for
other proteins (Barton et al. 2016b). This may be due to the
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complex behaviour of Nef in vivo, which is reflected in our fit-
ness landscape inferred from in vivo data, only part of which is
captured through in vitro assays of replication capacity.
Consistent with this hypothesis, as we describe below, our data
on CD4 down-modulation also correlates with predictions from
the fitness landscape.

3.1.2 Model predictions are significantly correlated with CD4
down-modulation but not with HLA-I down-modulation
capacities of mutant Nef sequences
GXR cells expressing high levels of HLA-A*02 were transfected
with the mutant Nef clones and cell surface expression of CD4
and HLA-A*02 in transfected cells was subsequently measured
by flow cytometry. The CD4 and HLA-I down-modulation capac-
ities of the mutant Nef clones are presented in Table 2.
Representative flow cytometry plots are illustrated in Fig. 2.

E values correlated significantly with the mutant CD4 down-
modulation capacities (Spearman q¼�0.48, P¼ 6� 10�3; Fig. 1B),
with little difference in correlation between model complexities
(Supplementary Fig. S3). Substantial reductions in CD4 down-
modulation are only observed at E values >5 (Fig. 3A). Further
analysis showed that Nef mutant sequences with impaired abil-
ity to down-modulate CD4 (<0.8) have significantly higher ener-
gies than those that are competent at CD4 down-modulation

(Mann–Whitney U¼ 7, P¼ 2� 10�3), consistent with the above
observation (Fig. 3A). There was no significant rank correlation
between E values and the mutant HLA-I down-modulation ca-
pacities (Spearman q¼�0.16, P¼ 4� 10�1) (Fig. 1C), though this
correlation is more difficult to evaluate due to the small number
of Nef mutant sequences with significantly impaired ability to
down-modulate HLA-I. Consistent with this, Nef mutant
sequences with impaired ability to down-modulate HLA-I have
higher energies than those that are competent, but near the
threshold of significance (Mann–Whitney U¼ 3, P¼ 0.04) (Fig. 3B).
As expected, CD4 down-modulation was correlated positively
with replication capacity (q¼ 0.58 and P¼ 7� 10�4; Fig. 3C) while
no strong correlation was observed between HLA-I down-modu-
lation and replication capacity (q¼ 0.12 and P¼ 5� 10�1; Fig. 3C).
However, due to the small sample of Nef mutant sequences with
impaired ability to down-modulate CD4 and/or HLA-I, it is diffi-
cult to compare their importance based on this data alone. We
explore this question in more detail in the analysis of a large
sample of patient-derived sequences, described below.

3.1.3 CD4 and HLA-I down-modulation abilities of Nef mutant
sequences are consistent with known functional motifs
Several of the Nef mutations tested here (17K19K, 57G, 57R,
57R58P, 72L75L, and 123G) were in functional motifs previously

Table 2. In vitro measurements of the replication capacities, CD4 down-modulation capacities and HLA-I down-modulation capacities of the
thirty-two selected mutants.

Mutant Ising E (ST¼0) Potts E (ST¼ 0.9) Replication capacitya CD4 down-modulationa HLA-I down-modulationa

17K19K 6.45 7.54 0.261 1.013 0.944
21E 0.89 2.57 1.464 1.017 0.977
21K 0.89 1.55 0.515 1.014 0.961
28Eb 0.22 0.51 0.851 0.991 0.977
33Ab 0.72 0.65 1.293 1.002 1.005
43Lb 1.67 1.89 0.694 0.972 1.038
33A43Lb 2.02 2.11 0.881 0.980 0.982
57G 4.63 6.25 0.009 0.138 1.003
57R 4.63 5.53 0.008 0.511 1.017
57R58P 7.44 8.32 0.001 0.220 1.026
71Kb 1.63 1.81 0.854 1.002 0.972
72L75L 11.75 12.77 0.075 0.653 0.540
76Vb 3.51 3.65 0.843 1.006 0.931
71K76Vb 5.14 5.47 1.065 1.026 0.937
80Nb 3.58 4.30 0.832 0.965 1.006
76V80Nb 7.10 7.95 0.531 0.966 0.868
80Db 3.58 4.37 0.186 0.900 0.966
88Gb 3.99 4.32 0.870 0.997 0.941
43L88Gb 5.63 6.17 0.916 0.947 0.964
102Hb 0.31 0.60 0.466 0.970 0.887
28E102Hb 0.61 1.17 1.394 No resultc No resultc

102W 0.31 1.85 0.754 1.008 0.804
28E102W 0.61 2.41 0.829 1.002 0.986
123G 6.05 6.84 0.064 0.287 0.320
133Tb �0.11 0.47 0.599 0.994 0.907
135Fb 1.15 1.20 1.143 1.003 0.974
133T135Fb 0.64 1.20 1.463 1.003 0.967
143Yb 2.93 2.90 0.941 0.978 0.990
135F143Yb 4.16 4.18 1.034 0.973 0.961
188Hb 1.34 2.40 0.689 0.989 0.970
192Rb 1.45 1.74 No resultc 1.008 0.985
188H192Rb 2.40 3.82 0.560 0.995 0.968

aReplication capacities, CD4 down-modulation capacities, and HLA-I down-modulation capacities are expressed relative to that of the wild-type LANL consensus B Nef.
bEscape or HLA-associated mutations (see Table 1 for further details).
cThese results were unobtainable due to unsuccessful cloning of mutants 192R into the NL4-3 plasmid and 28E102H into the pSELECT plasmid.
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described to be involved in either CD4 and/or HLA-I down-
regulation (Table 1). We observed that Nef mutants 57G, 57R,
57R58P, 72L75L, and 123G had impaired ability to down-
modulate CD4 (13.8–65.3% of wild-type levels). Accordingly,
these mutants, with the exception of 72L75L, were previously
noted in the literature to be important for CD4 down-

modulation activity (Table 1). Also consistent with the litera-
ture, mutants 57G, 57R, and 57R58P retained the ability to
down-modulate HLA (100–102% of wild-type levels) while CD4
down-modulation activity was lessened, and 123G was im-
paired for both CD4 and HLA down-modulation (28.7 and 32%,
respectively). Mutations (17K19K, 72L75L, and 123G) in motifs
previously shown to be required for HLA-I down-modulation
(Table 1) also showed reduced HLA down-modulation relative to
the wild-type virus (94.4, 54, and 32%, respectively), although for
mutant 17K19K, HLA-I down-modulation was not substantially
impaired. Therefore all mutations in the known functional
motifs, with the exception of 17K19K, had substantially im-
paired function. These mutations, including the 17K19K, are
predicted to have large values of E (E> 5, Table 1), consistent
with experimental data.

3.2 HLA-associated/escape mutants tested did not
significantly impair Nef function

A subset of HLA-associated mutations (likely cytotoxic T cell es-
cape mutants) or known escape mutants, as well as pairs of
these mutations, was selected that covered a range of E values
(Table 1) as identification of escape mutants/pairs with substan-
tial fitness costs would be useful for attenuation-based HIV vac-
cine design. Only one of the mutants in this category displayed
a marked reduction in replication capacity, namely 80D (18.6%
of wild-type levels), while the rest ranged from 46.6 to 146.3 per
cent of wild-type levels (median of 85.1%) (Table 2). Overall, CD4
and HLA down-modulation capacities of mutants in this
category were largely similar to wild-type (Table 2). The CD4
down-modulation capacities ranged from 90 to 102.6 per cent of
wild-type levels (median of 99.4%) and HLA down-modulation
capacities from 80.4 to 103.8 per cent of wild-type levels
(median of 96.8%). This is in contrast to our previous study test-
ing the models of the HIV-1 Gag fitness landscape where we
identified several pairs of HLA-associated mutations with high
E values that had substantial fitness costs i.e. viruses bearing
these mutations did not replicate in vitro (Mann et al. 2014a).
While there are HLA-associated mutations in Nef that reduce its
function (Ueno et al. 2008; Kuang et al. 2014; Shahid et al. 2015),
our results indicate that it is more difficult to identify escape
mutations with a substantial fitness cost in this highly variable
protein. Furthermore, considering that some of the HLA-
associated mutations we studied here were previously reported
to significantly impact Nef function (71K and 88G) (Mann et al.
2015; Naidoo et al. 2019) but had very moderate effects here in
the LANL consensus subtype B background, the fitness cost of
these mutations may be dependent on sequence background.
However, in these results we emphasise that we have tested
only a subset of HLA-associated mutations, not the comprehen-
sive list of all escape or HLA-associated mutations in Nef.

3.2.1 Functional measurements of different amino acids at the
same codon are in mixed agreement with E values predicted by
the Potts model
We explored whether the fitness outcome of different muta-
tions at the same codon could be distinguished by Potts models.
We tested the effect of different mutations at codons 21, 57, 80,
102 and codon combination 28/102 on Nef-driven replication ca-
pacity as well as Nef-mediated CD4 and HLA-I down-modula-
tion ability (Table 2), and evaluated the consistency of results
with the values of E (Tables 1 and 2) computed from Potts mod-
els where different mutant amino acids at these sites are mod-
elled explicitly. These mutations were chosen as they

A

B

C

Figure 1. E values are negatively correlated with in vitro functional capacity of

mutant viruses. Error bars in all panels denote the range of values obtained

from experimental replicates. (A) Spearman rank correlation between replica-

tion capacities (RC) of mutant viruses and Potts model E values (ST¼ 0.9). RC of

the mutant viruses is normalised relative to the wild-type virus. (B) Spearman

rank correlation between CD4 down-modulation capability and E values. (C)

Spearman rank correlation between HLA down-modulation capability and E val-

ues. The correlation between HLA down-modulation capability and E values is

weak, but few mutant Nef sequences display significant impairment of HLA

down-modulation.
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represented examples of the most distinct Potts model E values
for different pairs of amino acids at the same codon.

Mutants 57G and 57R both have similar, and very small, rep-
lication capacities, but the ability of 57G to down-modulate CD4
is substantially lower than for 57R. In agreement with this dis-
parity, the Potts model assigns a higher E cost for the 57G muta-
tion. Potts model predictions also successfully capture
differences in fitness for 80D and 80N. Consistent with the
higher E of 80D compared to 80N, the replication capacity of 80D
is substantially lower than that of 80N. Next, we find that 102H
has lower replication capacity than 102W, though the difference
is not large compared to the variance in replication capacity

measurements between experimental replicates. However, the
HLA-I down-modulation ability of 102W is lower than that of
102H, and is in fact the third smallest among all Nef clones tested
here. The Potts model predicts a higher fitness cost for 102W
than for 102H, which is consistent with the HLA down-
modulation data, but inconsistent with experimental replication
capacities. The Potts model predicts higher fitness costs for
28E102W than for 28E102H, and in line with this the replication
capacity of 28E102W was significantly lower than 28E102H.
Finally, mutant 21E displays much higher replication capacity
than 21K, with comparable CD4 and HLA-I down-modulation ca-
pabilities. However, the Potts model E cost of 21E is larger than

Figure 2. Representation of the flow cytometric measurements of Nef-mediated CD4 and HLA-I down-modulation. Graphs show the HLA-A*02 and CD4 cell surface ex-

pression on the Y-axis and green fluorescent protein (GFP) expression is indicated on the X-axis of graphs. GFP-positive cells represent cells successfully transfected

with the Nef clones. HLA-A*02 and CD4 cell surface expression was measured in GFP-positive cells. (A, B) The HLA-A*02 (A) and CD4 (B) down-modulation ability of the

negative control (DNef) is shown. The negative control represents 0 per cent down-modulation ability. (C, D) The HLA-A*02 (C) and CD4 (D) down-modulation ability of

the positive control (SF2 Nef) is shown. The positive control represents 100 per cent down-modulation ability. (E, F) Graphs depict intermediate HLA down-modulation

capacity (E) and CD4 down-modulation capacity by mutant 72L75L (F).
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21K, and thus this difference is not correctly predicted by the
model.

In summary, in three out of five instances the Potts model
predictions were consistent with fitness/functional differences
of different amino acid variants at the same codon. In one of
the remaining two cases (102H versus 102W), the fitness/func-
tional difference between the different amino acid variants is
ambiguous, and for the other the model prediction is incorrect.
In the case of 102H versus 102W, it is possible that the model
captures a stronger influence of attenuated HLA-I down-modu-
lation on in vivo fitness.

3.3 Analysis of patient-derived Nef sequences: CD4
down-regulation has the strongest connection with E
values

Following our initial analysis of thirty-two closely-related Nef
mutants, where each of the mutant sequences differed by only
one or two amino acids from each other and a maximum of
seven amino acids from the MSA, we next explored whether the
model energies were also significantly related to the function of
patient-derived Nef sequences which were considerably differ-
ent from the constructed sequences and each other.
Comparison between distant sequences is more challenging in
part due to the influence of phylogeny, which affects prevalence
(i.e. sequences closer to consensus are disproportionately likely
to be observed). Prior work suggests that phylogeny particularly
influences the inferred hi shown in Equation (1) (Shekhar et al.
2013). The effects of these biases on relative E values are antici-
pated to be small for closely-related sequences such as the col-
lection of Nef mutants described above. However, for patient-
derived Nef sequences that can differ by tens of mutations,
phylogeny-induced shifts in the E values may make dominant
contributions to the energy.

Using 298 subtype C Nef sequences (Mann et al. 2014b),
as for the mutant Nef sequences, we observed a statistically
significant correlation between the model energies and CD4
down-modulation activities of these patient-derived sequences
(q¼�0.22, P¼ 1.5� 10�4) (Fig. 4A), although this was a weaker
correlation than that observed with the mutant sequences.
Interestingly, we found a weaker correlation between the model
energies and HLA-I down-modulation ability that was not
consistently statistically significant (q¼�0.13, P¼ 2.7� 10�2)
(Fig. 4B). A limitation of the analyses presented for the mutant
Nef sequences and subtype C Nef sequences is that only two to
three Nef activities were measured, albeit ones suggested to
significantly influence clinical outcome (Iafrate et al. 2000;
Swigut et al. 2004; Mwimanzi et al. 2012; Mann et al. 2014b),
while Nef displays a multitude of activities that may influence
pathogenesis.

However, a more comprehensive functional analysis was
previously performed on 150 subtype B patient-derived Nef
sequences, for which 7 different Nef activities were analysed
(Mwimanzi et al. 2013a,b; Mahiti et al. 2015, 2016; Toyoda et al.
2015). Here we focussed in particular on the subset of ninety-
one sequences for which all seven Nef functional measure-
ments were performed. First we measured the relationship
between E and each Nef function individually (Fig. 5). We found
that E was most significantly negatively correlated with CD4
down-modulation (q¼�0.30, P¼ 4.1� 10�3), followed by CCR5
down-modulation (q¼�0.18, P¼ 8.8� 10�2) and CXCR4 down-
modulation (q¼�0.13, P¼ 2.1� 10�1).

However, as detailed in Section 2, such individual compari-
sons can be misleading because, assuming that E is a good
proxy for fitness, a defect in one important Nef function may
lead us to infer a high E for the corresponding sequence even
though other Nef functions remain intact. We thus employed
multiple linear regression to gain insight into the overall

A C

B

Figure 3. Relationships between in vitro Nef-mediated CD4 and HLA-I down-modulation capacities of mutant Nef clones and E values. (A) We find that viruses with im-

paired CD4 down-modulation capacities (<80% of reference) have significantly higher E values. (B) Viruses with impaired HLA-I down-modulation capacities also have

higher E values, but this correlation falls below the threshold of significance. Nef-mediated CD4 and HLA-I down-modulation capacities of the mutant Nef clones were

normalised to that of the wild-type LANL consensus B Nef. Here we show comparisons with Ising model (ST¼0) energies, which are consistent with results for more

complex models (see Supplementary Fig. S3E and F). (C) Pairwise comparisons between replication capacity, CD4 down-modulation, and HLA-I down-modulation are

shown, together with Spearman correlations. Note that all viruses with substantially impaired ability to down-modulate CD4 or HLA also have low replication

capacities.
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relationship between E and Nef function, using Nef functional
measurements to estimate the E. This also allows us to roughly
quantify how much each Nef function contributes to in vivo fit-
ness: although E is only an estimate it represents the totality of
Nef function, and our goal was to determine which of the com-
ponents measured would align more closely (and therefore
likely contribute most) to the sum of Nef function. Here we nor-
malised values across functional measurements by converting
them to z-scores. Using multiple linear regression, we
found that overall these seven Nef functions could explain
approximately 25 per cent of the variance in energies (R2¼ 0.26,
adjusted R2¼ 0.19, P¼ 6.2� 10�4; see Table 3). CD4 down-
modulation had the largest and most significant association
with E, suggesting that this function of Nef is particularly
important in vivo. We find similar results using quantile regres-
sion, a form of linear regression that aims to minimise total
absolute residuals, thereby being more robust to outliers (see
Supplementary Table S2).

4. Discussion

In this study we inferred computational models of the HIV-1
Nef fitness landscape and firstly evaluated the models by
testing predictions against in vitro measurements of Nef-driven
replication capacities as well as the Nef-mediated CD4 and
HLA-I down-modulation capacities of thirty-two different Nef
mutants. We observed that predictions from models of varying
complexities correlated significantly with Nef-driven replication
capacities and CD4 down-modulation capacities, but not HLA-I
down-modulation capacities, of the various Nef mutants: muta-
tions with higher values of E tended to show lower Nef-driven
replication as well as costs to CD4 down-modulation capacity.
However, these correlations were weaker than those previously
observed between comparisons of fitness landscape-based
predictions for other HIV proteins and in vitro and clinical data
(Ferguson et al. 2013; Mann et al. 2014a; Barton et al. 2016b;
Butler et al. 2016; Louie et al. 2018). For example, correlations of

r¼�0.81 (Ferguson et al. 2013) and r¼�0.83 (Mann et al. 2014a)
were previously observed between measured HIV Gag-driven
replication capacity and E and similar results (r¼�0.74) were
also found for HIV Env in recent work (Louie et al. 2018). This
difference may be due in part to the more complex way in
which Nef contributes to HIV-1 fitness in vivo (Foster and Garcia
2008), which is challenging to comprehensively measure
through in vitro tests. It is important to note that, because our
fitness model is constructed from sequences derived from
patients, it reflects a concatenation of multiple Nef functions
(Foster and Garcia 2008). This presents a challenge in using our
approach to predict which specific Nef functions of a particular
sequence might be impaired because selection for multiple
functions contributes to the distribution of sequences that are
observed in clinical data. Furthermore these pressures on the
different functions of Nef may fluctuate during disease progres-
sion (Carl et al. 2001; Lewis et al. 2008). Our model also neglects
intergenic epistasis, which could be one additional source
of variance especially for the widely-diverged natural Nef
sequences which were cloned into the same viral background
for experimental measurements. Prior work has estimated that
intergenic epistasis is small for HIV (Hinkley et al. 2011), but we
cannot rule out its influence. It is also true that our inferred fit-
ness landscape can only be expected to be correct in a statistical
way, not necessarily precise for every case. Consistent with
this, the experimental data presented here are significantly
correlated with model predictions, indicating that the models
were able to predict fitness costs in the Nef protein better
than chance. Importantly, we observed that the functional ex-
perimental outcomes for mutations within known functional
motifs involved in Nef-mediated CD4 and/or HLA-I down-mod-
ulation were consistent with what was previously documented
in the literature, supporting the validity of our functional
measurements.

Furthermore, we extended our evaluation of the models to
patient-derived sequences of Nef, 298 subtype C Nef sequences
(for which CD4 and HLA-I down-modulation capacities were

A

B

Figure 4. Relationships between in vitro Nef-mediated CD4 and HLA-I down-modulation capacities of natural subtype C Nef sequences and E values. (A) Energy values

both Ising and Potts model energies are significantly negatively correlated with CD4 down-modulation. Note that energies shown here are derived from models trained

on subtype C sequence data. (B) Correlation between energies and HLA-I down-modulation capacities are weaker than for CD4 down-modulation.
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measured) (Mann et al. 2014b) and 150 subtype B Nef sequences
(for which 7 different Nef activities were measured) (Mwimanzi
et al. 2013a,b; Mahiti et al. 2015, 2016; Toyoda et al. 2015), which
were far apart in sequence space from each other and the MSA
from which the landscape was inferred. Nevertheless, we still
observed a significant inverse correlation between CD4 down-
modulation capacity of these patient-derived Nef sequences
and model energies. The subtype B patient-derived Nef sequen-
ces represented a more comprehensive analysis of Nef function.

In combination, the seven Nef activities significantly correlated
with the model, although only CD4 down-modulation, followed
by CXCR4/CCR5 down-modulation (at borderline significance),
correlated individually, and CD4 down-modulation capacity
contributed the most to the correlation in the multiple linear re-
gression. Thus, in all analyses of mutant and patient-derived
Nef sequences, CD4 down-modulation emerged as the Nef ac-
tivity most strongly aligned with model predictions, suggesting
that this Nef activity is the strongest determinant (out of the
Nef activities measured here) of the in vivo effect of Nef,
although we cannot rule out that other Nef activities not
measured here, known or unknown, may be equally or more
important. In support of this, in previous work when a Nef motif
essential for CD4 down-modulation was disrupted (yet HLA
down-modulation function was intact) simian immunodefi-
ciency virus replication was greatly reduced (Iafrate et al. 2000),
and studies in the humanised mouse model indicated that CD4
down-modulation plus one or more unknown Nef activities
contribute the most strongly to Nef’s pathogenic effect (Watkins
et al. 2013).

It should be noted that there were some differences between
the results of the mutant and patient-derived Nef analyses. For
example, in the mutant analysis, HLA down-modulation capac-
ity did not correlate significantly with the model energies; how-
ever, in the analysis of the subtype C patient-derived Nef
sequences, it did, although not consistently for all model com-
plexities. This discrepancy may be partly due to the fact that
only two of the mutants displayed substantially reduced HLA-I
down-modulation capacity, while there was a greater spread of
values for this parameter in the patient-derived Nef sequences,
which limited our ability to accurately assess correlations be-
tween HLA-I down-modulation and other measurements in the
mutant group. The overall correlation values with individual
functional measurements are also modest, and thus larger sam-
ple sizes are needed to observe them reliably.

The Potts model is expected to be more reliable than the
Ising model in predicting the fitness costs of mutations in
highly mutable proteins such as Nef since the Potts model has
residue-specific resolution. The Ising model does not consider
the identity of the mutant amino acid but rather uses a binary
approximation (all mutant amino acids are denoted as one and
the wild-type amino acid is denoted as zero) which we expected
may not be sufficient for highly variable proteins. However,
while the E values of all models correlated significantly with
replication capacity and CD4 down-modulation of the mutant
Nef sequences, differences between the models could not be
determined in a statistically significant way (Supplementary
Table S1). We also observed that the values of E assigned by the
Potts model to different mutations at the same codon correctly
reflected the functional/fitness consequences of these muta-
tions in three out of five cases studied, was ambiguous in one
case, and incorrect in one case.

In aggregate, we observe that the performance of the Ising
and Potts models is similar. The surprising success of the Ising
model may be because, in most cases, the most common muta-
tion at a particular codon was tested. The binary approximation
of the Ising model is expected to be more representative of the
most common mutations rather than rare ones (Mann et al.
2014a). The difference between the expected and experimental
outcomes might also be due in part to the inclusion of less well-
sampled and thus noisier mutation information, in particular
for the most complex models (ST> 0.8, where performance more
clearly degrades). Essentially, while considering multiple amino
acids provides more information about the sequence

Figure 5. Relationships between in vitro Nef functional measurements of natural

subtype B Nef sequences and E values. Potts model energies are independently

associated with a number of Nef functional measurements for natural subtype B

sequences. In order to compare different functional measurements versus ener-

gies on roughly equal terms, all functional measurements were converted to z-

scores (i.e. the plotted values represent individual functional measurements mi-

nus the mean, divided by the standard deviation). The association is strongest

for CD4 down-modulation (see Section 3 for details).
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distribution, the negative effect of additional noise may poten-
tially outweigh the gain in information. While our data may po-
tentially caution against overly complex models, more extensive
tests will be required in order to thoroughly test the association
between model complexity and predictions of viral function.

Our study has additional limitations. Firstly, only the down-
modulation of HLA-A*02 was measured for the mutant Nef
sequences and the subtype C patient-derived sequences (while
HLA-A*24:02 was measured for the subtype B patient-derived
sequences). However, in a previous study Nef-mediated
HLA-A*02 down-modulation was highly correlated with HLA-
B*07 down-modulation (Spearman q¼ 0.89, P< 1� 10�4) (Mann
et al. 2013). Additionally, HLA down-modulation occurs through
a sequence shared by the cytoplasmic tail of HLA-A and HLA-B
molecules (Le Gall et al. 1998). Therefore, the ability of Nef to
down-modulate HLA-A and HLA-B molecules may be generally
represented by its ability to down-modulate HLA-A*02.
However, it is possible that the ability of Nef to down-modulate
HLA may differ depending on the HLA allele (Mahiti et al. 2016)
and therefore it may be worthwhile to measure down-
modulation of different HLA alleles. The second limitation was
that even though Nef is involved in many cellular functions
(Foster et al. 2011), we focussed only on replication capacity,
CD4 down-modulation, and HLA-I down-modulation for the
mutant Nef sequences. Using in vitro assays that only measure
limited known functions of the multifunctional Nef protein, for
which there may be yet unknown important functions, is a sig-
nificant limitation for our study. However, while the functions
we measured through our in vitro assays do not represent a
comprehensive list, it was shown that they are important in vivo
and do influence clinical outcome (Iafrate et al. 2000; Swigut
et al. 2004; Mwimanzi et al. 2012; Mann et al. 2014b).
Furthermore, this limitation was somewhat mitigated by our
analysis of 150 subtype B patient-derived Nef sequences for
which 7 different Nef activities were measured. Lastly, we uti-
lised PBMCs, since the presence of Nef is not essential for viral
replication in many immortalised T cell lines (Lundquist et al.
2002), but PBMCs are highly variable between donors (Brockman
et al. 2006). Nevertheless, we measured Nef-driven replication
capacities using two different donors in this study and the
measurements of the two donors were in good agreement.
Variance between replication capacity measurements in differ-
ent donors does limit fine distinctions between replication ca-
pacities, however.

In conclusion, the experimental data was in significant
agreement with predictions of the fitness consequences of
mutations in the Nef protein, and with continuing validation
efforts (Ferguson et al. 2013; Mann et al. 2014a; Barton et al.
2016b; Butler et al. 2016; Chakraborty 2017; Chakraborty and
Barton 2017), these models can be used to direct immunogen
design in a manner similar to that outlined for the Gag protein
(Ferguson et al. 2013).
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Berg, J., Willmann, S., and Lässig, M. (2004) ‘Adaptive Evolution
of Transcription Factor Binding Sites’, BMC Evolutionary Biology,
4: 42.

Brockman, M. A. et al. (2006) ‘Use of a Novel GFP Reporter Cell
Line to Examine Replication Capacity of CXCR4- and
CCR5-Tropic HIV-1 by Flow Cytometry’, Journal of Virological
Methods, 131: 134–42.

et al. (2007) ‘Escape and Compensation from Early
HLA-B57-Mediated Cytotoxic T-Lymphocyte Pressure on
Human Immunodeficiency Virus Type 1 Gag Alter Capsid
Interactions with Cyclophilin A’, Journal of Virology, 81:
12608–18.

Buchbinder, S. P. et al. (2008) ‘Efficacy Assessment of a
Cell-Mediated Immunity HIV-1 Vaccine (the Step Study): A
Double-Blind, Randomised, Placebo-Controlled,
Test-of-Concept Trial’, The Lancet, 372: 1881–93.

Butler, T. C. et al. (2016) ‘Identification of Drug Resistance
Mutations in HIV from Constraints on Natural Evolution’,
Physical Review. E, 93: 022412.

Carl, S. et al. (2001) ‘Modulation of Different Human
Immunodeficiency Virus Type 1 Nef Functions during
Progression to AIDS’, Journal of Virology, 75: 3657–65.

Carlson, J. M. et al. (2008) ‘Phylogenetic Dependency Networks:
Inferring Patterns of CTL Escape and Codon Covariation in
HIV-1 Gag’, PLoS Computational Biology, 4: e1000225.

et al. (2012) ‘Widespread Impact of HLA Restriction on
Immune Control and Escape Pathways of HIV-1’, Journal of
Virology, 86: 5230–43.

et al. (2014) ‘HIV Transmission. Selection Bias at the
Heterosexual HIV-1 Transmission Bottleneck’, Science (New
York, N.Y.), 345: 1254031.

Chakraborty, A. K. (2017) ‘A Perspective on the Role of
Computational Models in Immunology’, Annual Review of
Immunology, 35: 403–39.

, and Barton, J. P. (2017) ‘Rational Design of Vaccine Targets
and Strategies for HIV: A Crossroad of Statistical Physics,
Biology, and Medicine’, Reports on Progress in Physics, 80: 032601.

Chopera, D. R. et al. (2011a) ‘Immune-Mediated Attenuation of
HIV-1’, Future Virology, 6: 917–28.

et al. (2011b) ‘Virological and Immunological Factors
Associated with HIV-1 Differential Disease Progression in
HLA-B 58:01-Positive Individuals’, Journal of Virology, 85:
7070–80.

Cocco, S., and Monasson, R. (2011) ‘Adaptive Cluster Expansion
for Inferring Boltzmann Machines with Noisy Data’, Physical
Review Letters, 106: 90601.

, and (2012) ‘Adaptive Cluster Expansion for the
Inverse Ising Problem: Convergence, Algorithm, and Tests’,
Journal of Statistical Physics, 147: 252–314.

Collins, K. L. et al. (1998) ‘HIV-1 Nef Protein Protects Infected
Primary Cells against Killing by Cytotoxic T Lymphocytes’,
Nature, 391: 397–401.

Crawford, H. et al. (2007) ‘Compensatory Mutation Partially
Restores Fitness and Delays Reversion of Escape Mutation
within the Immunodominant HLA-B*5703-Restricted Gag
Epitope in Chronic Human Immunodeficiency Virus Type 1
Infection’, Journal of Virology, 81: 8346–51.

Deacon, N. J. et al. (1995) ‘Genomic Structure of an Attenuated
Quasi Species of HIV-1 from a Blood Transfusion Donor and
Recipients’, Science (New York, N.Y.), 270: 988–91.

Fackler, O. T. et al. (2006) ‘Functional Characterization of HIV-1
Nef Mutants in the Context of Viral Infection’, Virology, 351:
322–39.

Ferguson, A. L. et al. (2013) ‘Translating HIV Sequences into
Quantitative Fitness Landscapes Predicts Viral Vulnerabilities
for Rational Immunogen Design’, Immunity, 38: 606–17.

Figliuzzi, M. et al. (2016) ‘Coevolutionary Landscape Inference
and the Context-Dependence of Mutations in Beta-Lactamase
TEM-1’, Molecular Biology and Evolution, 33: 268–80.

Foster, J. L., and Garcia, J. V. (2008) ‘HIV-1 Nef: At the Crossroads’,
Retrovirology, 5: 84.

et al. (2011) ‘Mechanisms of HIV-1 Nef Function and
Intracellular Signaling’, Journal of Neuroimmune Pharmacology :
The Official Journal of the Society on Neuroimmune Pharmacology, 6:
230–46.

Fujiwara, M. et al. (2008) ‘Different Abilities of Escape
Mutant-Specific Cytotoxic T Cells to Suppress Replication of
Escape Mutant and Wild-Type Human Immunodeficiency
Virus Type 1 in New Hosts’, Journal of Virology, 82: 138–47.

Geyer, M., Fackler, O. T., and Peterlin, B. M. (2001)
‘Structure–Function Relationships in HIV-1 Nef’, EMBO Reports,
2: 580–5.

Goonetilleke, N. et al. (2009) ‘The First T Cell Response to
Transmitted/Founder Virus Contributes to the Control of
Acute Viremia in HIV-1 Infection’, The Journal of Experimental
Medicine, 206: 1253–72.

Greenway, A. L. et al. (2003) ‘HIV-1 Nef Control of Cell Signalling
Molecules: Multiple Strategies to Promote Virus Replication’,
Journal of Biosciences, 28: 323–35.

Grzesiek, S. et al. (1996) ‘The CD4 Determinant for
Downregulation by HIV-1 Nef Directly Binds to Nef. Mapping
of the Nef Binding Surface by NMR’, Biochemistry, 35:
10256–61.

Hinkley, T. et al. (2011) ‘A Systems Analysis of Mutational Effects
in HIV-1 Protease and Reverse Transcriptase’, Nature Genetics,
43: 487–9.

Iafrate, A. J. et al. (2000) ‘Disrupting Surfaces of Nef Required for
Downregulation of CD4 and for Enhancement of Virion
Infectivity Attenuates Simian Immunodeficiency Virus
Replication In Vivo’, Journal of Virology, 74: 9836–44.

Kemal, K. S. et al. (2008) ‘Transition from Long-Term
Nonprogression to HIV-1 Disease Associated with Escape from
Cellular Immune Control’, Journal of Acquired Immune Deficiency
Syndromes (1999), 48: 119–26.

Kestler, H. W. et al. (1991) ‘Importance of the Nef Gene for
Maintenance of High Virus Loads and for Development of
AIDS’, Cell, 65: 651–62.

Kuang, X. T. et al. (2014) ‘Impaired Nef Function Is Associated
with Early Control of HIV-1 Viremia’, Journal of Virology, 88:
10200–13.

Kwong, P. D., Mascola, J. R., and Nabel, G. J. (2012) ‘The Changing
Face of HIV Vaccine Research’, Journal of the International Aids
Society, 15: 17407.

Le Gall, S. et al. (1998) ‘Nef Interacts with the l Subunit of
Clathrin Adaptor Complexes and Reveals a Cryptic Sorting
Signal in MHC I Molecules’, Immunity, 8: 483–95.

Leslie, A. et al. (2006) ‘Differential Selection Pressure Exerted on
HIV by CTL Targeting Identical Epitopes but Restricted by
Distinct HLA Alleles from the Same HLA Supertype’, Journal of
Immunology (Baltimore, Md.: 1950), 177: 4699–708.

Lewis, M. J. et al. (2008) ‘Functional Adaptation of Nef to the
Immune Milieu of HIV-1 Infection in Vivo’, Journal of
Immunology (Baltimore, Md.: 1950), 180: 4075–81.

J. P. Barton et al. | 13



Liu, M. K. et al. (2013) ‘Vertical T Cell Immunodominance and
Epitope Entropy Determine HIV-1 Escape’, The Journal of Clinical
Investigation, 123: 380–93.

Louie, R. H. Y. et al. (2018) ‘Fitness Landscape of the Human
Immunodeficiency Virus Envelope Protein That Is Targeted by
Antibodies’, Proceedings of the National Academy of Sciences of the
United States of America, 115: E564–73.

Lundquist, C. A. et al. (2002) ‘Nef-Mediated Downregulation of
CD4 Enhances Human Immunodeficiency Virus Type 1
Replication in Primary T Lymphocytes’, Journal of Virology, 76:
4625–33.

Mahiti, M. et al. (2015) ‘Dynamic Range of Nef-Mediated Evasion
of HLA Class II-Restricted Immune Responses in Early HIV-1
Infection’, Biochemical and Biophysical Research Communications,
463: 248–54.

et al. (2016) ‘Relative Resistance of HLA-B to
Downregulation by Naturally Occurring HIV-1 Nef Sequences’,
mBio, 7: e01516-15.

Mangasarian, A. et al. (1999) ‘Nef-Induced CD4 and Major
Histocompatibility Complex Class I (MHC-I) Down-Regulation
Are Governed by Distinct Determinants: N-Terminal Alpha
Helix and Proline Repeat of Nef Selectively Regulate MHC-I
Trafficking’, Journal of Virology, 73: 1964–73.

Mann, J. K. et al. (2013) ‘Ability of HIV-1 Nef to Downregulate CD4
and HLA Class I Differs among Viral Subtypes’, Retrovirology,
10: 100.

et al. (2014a) ‘The Fitness Landscape of HIV-1 Gag:
Advanced Modeling Approaches and Validation of Model
Predictions by In Vitro Testing’, PLoS Computational Biology, 10:
e1003776.

et al. (2014b) ‘Nef-Mediated Down-Regulation of CD4 and
HLA Class I in HIV-1 Subtype C Infection: Association with
Disease Progression and Influence of Immune Pressure’,
Virology, 468: 214–25.

et al. (2015) ‘Genetic Determinants of Nef-Mediated CD4
and HLA Class I Down-Regulation Differences between HIV-1
Subtypes B and C’, Virology Journal, 12: 200.

Mwimanzi, P. et al. (2011) ‘Effects of Naturally-Arising HIV
Nef Mutations on Cytotoxic T Lymphocyte Recognition and
Nef’s Functionality in Primary Macrophages’, Retrovirology, 8: 50.

Mwimanzi, P. et al. (2012) ‘Human Leukocyte Antigen (HLA)
Class I Down-Regulation by Human Immunodeficiency Virus
Type 1 Negative Factor (HIV-1 Nef): What Might We Learn from
Natural Sequence Variants?’, Viruses, 4: 1711–30.

et al. (2013a) ‘Dynamic Range of Nef Functions in Chronic
HIV-1 Infection’, Virology, 439: 74–80.

et al. (2013b) ‘Attenuation of Multiple Nef Functions in
HIV-1 Elite Controllers’, Retrovirology, 10: 1.

Naidoo, L. et al. (2019) ‘Nef-Mediated Inhibition of NFAT follow-
ing TCR Stimulation Differs between HIV-1 Subtypes’, Virology,
531: 192–202.

Qui~nones-Mateu, M. E. et al. (2000) ‘A Dual Infection/
Competition Assay Shows a Correlation between Ex Vivo
Human Immunodeficiency Virus Type 1 Fitness and Disease
Progression’, Journal of Virology, 74: 9222–33.

Ross, T. M., Oran, A. E., and Cullen, B. R. (1999) ‘Inhibition of HIV-1
Progeny Virion Release by Cell-Surface CD4 Is Relieved by
Expression of the Viral Nef Protein’, Current Biology, 9: 613–21.

Schaefer, M. R. et al. (2008) ‘HIV-1 Nef Targets MHC-I and CD4 for
Degradation via a Final Common b-COP–Dependent Pathway
in T Cells’, PLoS Pathogens, 4: e1000131.

Sella, G., and Hirsh, A. E. (2005) ‘The Application of Statistical
Physics to Evolutionary Biology’, Proceedings of the National
Academy of Sciences of the United States of America, 102: 9541–6.

Shahid, A. et al. (2015) ‘Consequences of HLA-B*13-Associated
Escape Mutations on HIV-1 Replication and Nef Function’,
Journal of Virology, 89: 11557–71.

Shekhar, K. et al. (2013) ‘Spin Models Inferred from Patient Data
Faithfully Describe HIV Fitness Landscapes and Enable
Rational Vaccine Design’, Physical Review E, 88: 062705.

Song, H. et al. (2012) ‘Impact of Immune Escape Mutations on
HIV-1 Fitness in the Context of the Cognate
Transmitted/Founder Genome’, Retrovirology, 9: 89.

Swigut, T. et al. (2004) ‘Impact of Nef-Mediated Downregulation
of Major Histocompatibility Complex Class I on Immune
Response to Simian Immunodeficiency Virus’, Journal of
Virology, 78: 13335–44.

Toyoda, M. et al. (2015) ‘Differential Ability of Primary HIV-1 Nef
Isolates to Downregulate HIV-1 Entry Receptors’, Journal of
Virology, 89: 9639–52.

Ueno, T. et al. (2007) ‘Altering Effects of Antigenic Variations in
HIV-1 on Antiviral Effectiveness of HIV-Specific CTLs’, Journal
of Immunology 178: 5513–23.

et al. (2008) ‘CTL-Mediated Selective Pressure Influences
Dynamic Evolution and Pathogenic Functions of HIV-1 Nef’,
The Journal of Immunology, 180: 1107–16.

Watkins, R. L. et al. (2013) ‘In Vivo Analysis of Highly Conserved
Nef Activities in HIV-1 Replication and Pathogenesis’,
Retrovirology, 10: 125.

Wright, J. K. et al. (2012) ‘Impact of HLA-B*81-Associated
Mutations in HIV-1 Gag on Viral Replication Capacity’, Journal
of Virology, 86: 3193–9.

14 | Virus Evolution, 2019, Vol. 5, No. 2


	vez029-TF1
	vez029-TF2
	vez029-TF3
	vez029-TF4
	vez029-TF5
	vez029-TF6
	vez029-TF7



