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Significance

Forecasting how populations 
respond to climate change is an 
important challenge for natural 
resource managers. Forecasting 
approaches range from machine 
learning that is agnostic about 
underlying biological 
mechanisms to process-based 
models that incorporate 
mechanisms but are often 
complex and tailored toward 
specific species. Here we blend 
these approaches by constraining 
empirical dynamic modeling , a 
machine learning approach, with 
the metabolic theory of ecology 
(MTE). Focusing on short-lived 
ectotherms with high-frequency 
sampling, the conditions under 
which our methodology is likely 
to be most effective, we obtained 
improved forecasts for most time 
series. This lends support to the 
MTE as a general predictive 
theory and provides a new tool 
with which to forecast 
abundances in environments 
with seasonal and/or interannual 
temperature change.
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Forecasting the response of ecological systems to environmental change is a critical 
challenge for sustainable management. The metabolic theory of ecology (MTE) posits 
scaling of biological rates with temperature, but it has had limited application to 
population dynamic forecasting. Here we use the temperature dependence of the 
MTE to constrain empirical dynamic modeling (EDM), an equation-free nonlinear 
machine learning approach for forecasting. By rescaling time with temperature and 
modeling dynamics on a “metabolic time step,” our method (MTE-EDM) improved 
forecast accuracy in 18 of 19 empirical ectotherm time series (by 19% on average), 
with the largest gains in more seasonal environments. MTE-EDM assumes that 
temperature affects only the rate, rather than the form, of population dynamics, 
and that interacting species have approximately similar temperature dependence. 
A review of laboratory studies suggests these assumptions are reasonable, at least 
approximately, though not for all ecological systems. Our approach highlights how 
to combine modern data-driven forecasting techniques with ecological theory and 
mechanistic understanding to predict the response of complex ecosystems to tem-
perature variability and trends.

population dynamics | thermal biology | empirical dynamic modeling | physical–biological interactions

Forecasting the dynamics of ecosystems is a major challenge (1, 2), yet critical for the 
effective management of natural resources (3). More powerful methods, the increasing 
scale and resolution of ecological datasets, and advances in ecological theory can improve 
our ability to accurately forecast ecological systems, especially over the short term relevant 
for environmental decision-making (1). However, the complexity of natural ecosystems 
and the influence of numerous environmental drivers still pose a significant challenge to 
ecosystem forecasting, particularly in the face of ongoing environmental change (2).

Data-driven techniques such as machine learning have revolutionized forecasts of 
dynamical systems (4). However, a major drawback of these techniques is their limited 
ability to extrapolate to new conditions, as purely data-driven techniques perform poorly 
outside the historic envelope of variation (5). In contrast, mechanistic models can deal 
with changing conditions because they rely on mechanism, rather than past behavior, 
to extrapolate to previously unobserved conditions (6). Combining data-driven tech-
niques with process-based models that obey mechanistic constraints could lead to better 
predictions of ecosystem dynamics. Blended models combine artificial intelligence and 
machine learning (e.g., deep neural networks) with process-based models to represent 
complex, integrated systems with many components and biophysical constraints (7). 
Thus, blended modeling approaches improve extrapolation by restricting data-driven 
predictions to those that follow physical laws (7). The potential for blending data-driven 
and process-based forecasting has been recognized across various fields, including earth 
system science and medicine (8, 9), suggesting applications of this growing research 
area for ecology.

Empirical dynamic modeling (EDM) is a data-driven machine learning technique that 
has shown great promise in forecasting the dynamics of complex ecosystems (10, 11). The 
foundation of EDM is Takens’ embedding theorem which states that lags of a single time 
series can reconstruct the dynamics of the complex, multidimensional system from which 
that series originated (12). Predictions are made by following nearby states (in delay 
coordinate space) forward in time, assuming that the past behavior of nearby states will 
reflect the future behavior of the system. EDM has been used successfully in many eco-
logical applications where mechanistic models were lacking (11, 13, 14), and sometimes 
can even outperform forecasts made by fitting the “correct” underlying mechanistic model 
(13). However, the fact that EDM does not require mechanism may also be a weakness—
physical laws do not constrain its predictions, potentially resulting in implausible ecological 
states. Blending the EDM approach with first principles and biophysical constraints could 
improve forecasts.
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For biological systems, temperature stands out as a major driver 
of processes such as enzymatic reactions, growth, reproduction, 
body size, and the pace of life, resulting in well-described patterns 
such as latitudinal and altitudinal diversity gradients (15, 16). 
Seasonal temperature fluctuations can be large, and due to climate 
change, global temperatures are expected to rise and show increased 
variability within and across regions over the coming century  
(17, 18). Shifting temperatures are already influencing the popu-
lation dynamics of a wide range of taxa (19, 20), including pest 
species (21) and harmful algae (22); however, our ability to forecast 
the population-dynamic consequences of increasing temperatures 
across a wide range of organisms is still in its infancy.

The metabolic theory of ecology (MTE) is one of the few mech-
anistic ecological theories emerging from biophysical first princi-
ples (15). The MTE posits that biological rates, such as resting 
metabolic rate or growth rates, allometrically scale with body mass 
(with an exponent of ¾) and for ectotherms, increase with tem-
perature according to the Boltzmann factor (also known as the 
Arrhenius equation) e−E∕kT  (where E is the activation energy and 
corresponds to a value of 0.65, k is Boltzmann’s constant and T 
is temperature in Kelvin) (15). Endotherms, which can maintain 
a relatively constant body temperature, are not expected to show 
this same scaling of rates with environmental temperature. The 
effects of body size and temperature on individuals subsequently 
scale up to determine population-level properties (e.g., intrinsic 
rate of growth, carrying capacity, rate of extinction, or mortality) 
(15, 23, 24), and ecosystem properties like net ecosystem respira-
tion (25). The MTE has outstandingly synthesized patterns across 
a wide range of scales from cell division to individual metabolism 
to macro-ecology (15, 24, 26). However, most predictions of the 
MTE are for static, steady-state conditions.

The ability of the MTE to scale to higher-level processes sug-
gests the theory could help forecast how temperature changes will 
affect population, community, and ecosystem dynamics. Indeed, 
models using the MTE have elucidated how population dynamic 
parameters scale with temperature (e.g., intrinsic rate of increase, 
carrying capacity, rate of extinction) (23, 24, 27, 28). The MTE 
has also successfully predicted within-host parasite dynamics across 
constant temperature environments (28). However, such detailed 
information on the temperature dependence of multiple vital rates 
is unavailable for most taxa, severely limiting our ability to forecast 
population dynamics under changing temperature conditions 
using mechanistic population models.

Here we blend EDM (a data-driven forecasting method) with 
the temperature dependence of the MTE to forecast population 
dynamics of a range of taxa under natural temperature fluctua-
tions. Our predictive hybrid framework rescales time according 
to the MTE to achieve a constant “metabolic” time step: when 
temperatures are high, the metabolic time step encompasses less 
calendar time; when temperatures are low, it encompasses more 
calendar time (Fig. 1 A and B). Since empirically estimated acti-
vation energies deviate from the “universal” average value of 0.65 
(29), the activation energy used for this rescaling can either be 
specified or estimated from the data. In keeping with ecosystem 
applications of the MTE (e.g., refs. 30 and 31), we assume that 
the effect of temperature is separable (see Methods for a more 
precise definition) from other influences on population dynam-
ics. That is, temperature affects the overall rate of dynamics, not 
their form. Strictly speaking, this requires that all interacting 
species have similar thermal responses. Lack of separability could 
result from large variation in temperature dependence among 
interacting species and/or among different vital rates within a 
species. As an example, in a cyclic predator–prey system with 
separable temperature dependence, only the period of oscilla-
tions would change with temperature. As a counterexample, any 
system where a change in temperature causes a shift from oscil-
latory to equilibrium dynamics (e.g., ref. 32) would lack sepa-
rability. However, when thermal responses are similar across the 
observed range of temperatures, though not identical, we expect 
EDM with MTE temperature dependence to improve prediction 
relative to standard EDM, despite the lack of strict separability. 
If, in contrast, the separability assumption is strongly violated, 
the method will not work, which will be apparent in the lack of 
improvement. We examined the reasonableness of the separabil-
ity assumption using existing laboratory data and tested the 
robustness of the method to variation in temperature depend-
ence using simulations.

Using a collection of empirical field time series, we compared 
the EDM Simplex projection algorithm using a fixed calendar 
time step (33) to Simplex projection using a metabolic time 
step. For the metabolic time step models, we used either the 
universal temperature dependence of 0.65 (the UTD model), 
temperature dependence estimated from the data (the MTE-
EDM model), or for three species for which we could obtain 
data, temperature dependence based on empirical thermal per-
formance curves (the TPC model). For comparison, we also fit 
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Fig. 1. Conceptual diagrams illustrating principles behind MTE-EDM and the rescaling of time with temperature. The example in A and B depicts a seasonal 
system. (A) Calendar time and metabolic time proceed at different rates depending on temperature (light blue indicates low temperatures, red high temperatures). 
(B) Abundance dynamics will proceed faster at higher temperatures, but have the same underlying dynamics when using a metabolic time step. A constant 
metabolic time step can be achieved using a dynamic calendar time step based on temperature. (C) Under the assumptions of MTE-EDM, population cycle 
period should decrease with increasing temperature. Consistent with this assumption, empirically measured cycle periods in constant-temperature laboratory 
experiments scale with temperature.
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a calendar time step model with temperature as a covariate, 
which is a common alternative approach for incorporating 
temperature into EDM (34, 35).

Results

We first tested whether the temperature separability assumption 
is reasonable using data from published laboratory experiments 
measuring population dynamics across a gradient of constant tem-
peratures. The pace of population dynamics, measured by log cycle 
period, displayed temperature scaling consistent with the MTE 
in three species (Fig. 1C and SI Appendix, Fig. S1 and Table S1). 
The scaling exponent for the rotifer Brachionus calyciflorus was 
0.57 (95% CI: 0.22 to 0.93, R2 = 0.83) (36), and exponents for 
the predator–prey pair Didinium nasutum and Paramecium cau-
datum were 0.68 (95% CI: 0.39 to 0.97, R2 = 0.95) and 0.67 
(95% CI: 0.37 to 0.97, R2 = 0.91), respectively (37). However, 
we did not find the expected scaling relationship in two additional 
studies: a Tetrahymena pyriformis-Pseudomonas fluorescens preda-
tor–prey system (38) and the moth Plodia interpunctella (39). In 
the latter studies, temperature likely drove those systems across 
bifurcations that qualitatively changed their dynamics instead of 
only influencing the rate of change. Thus, while it is clear that not 
all systems meet the assumptions of MTE-EDM, for systems that 
do, we would expect the method to produce forecasting improve-
ments in environments with temperature variation.

As a proof of concept, we simulated a chaotic three-species food 
chain (40) under two temperature change scenarios: a linear tem-
perature increase (SI Appendix, Fig. S2A), and a more realistic 
scenario with seasonal temperature variation (26 °C), a long-term 
trend (~1.5 °C over 10 y), and stochasticity (Fig. 2A). In both 
scenarios, Simplex that does not account for temperature change 
results in poor predictive performance (R2 < 0.2), even as the 
embedding dimension (number of lags used) was increased 
(Fig. 2C and SI Appendix, Fig. S1C). MTE-EDM greatly improved 
performance over Simplex (R2 > 0.8, Fig. 2C and SI Appendix, 
Fig. S2C), and the use of the dynamic time step improved the 
resolution of the reconstructed underlying attractor, which was 
otherwise distorted by temperature-dependent dynamics (Fig. 2 
D and E and SI Appendix, Fig. S1 D and E). These simulations 
also demonstrate the effectiveness of MTE-EDM when temper-
ature is nonstationary and shows directional trends.

To explore the sensitivity of MTE-EDM to variation in 
species-specific responses to temperature, we ran additional mul-
tispecies simulations with variable numbers of interacting ecto- 
and endotherms, for which the ectotherms had variable activation 
energies (SI Appendix, Figs. S3 and S4). Although MTE-EDM is 
applied to data from a single species, the estimated activation 
energy integrates the temperature dependence of all closely inter-
acting species, and variation in temperature dependence among 
species makes the population dynamics nonseparable from tem-
perature. Results show that in ectotherm-dominated systems, 
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MTE-EDM is robust to variation in activation energy, recovering 
the correct mean activation energy in the presence of considerable 
variation among species. MTE-EDM frequently outperformed 
Simplex, particularly as the mean activation energy increased and 
variability in the activation energy among species decreased. The 
exception, not surprisingly, was when most community members 
were endotherms, in which case the mean activation energy esti-
mate was biased low, and performance did not improve notably 
over Simplex. Thus, the method is robust to modest violations of 
the assumption of strict separability.

We next evaluated whether MTE-EDM improves prediction 
in field populations exposed to natural temperature fluctuations. 
We assembled a database of 22 time series from eight locations 
(five aquatic, three terrestrial) spanning a range of taxa (e.g., phy-
toplankton, crustaceans, moths, rodents; Table 1 and SI Appendix, 
Table. S2). Sampling intervals ranged from half-weekly to 
monthly, and mean temperatures ranged from 9.8 to 26.7 °C. 
Absolute forecasting skill for both Simplex and MTE-EDM was 
high across time series, with R2 values ranging from 0.22 to 0.85 
(mean: 0.60) for Simplex and 0.39 to 0.88 (mean: 0.67) for 
MTE-EDM (Table 1). For 18 of 19 ectotherm time series, MTE-
EDM outperformed Simplex, increasing forecast skill of these 
18 series by 20% on average (19% across all series, Fig. 3A). 
Likelihood ratio tests indicated that this improvement was sta-
tistically significant in 17 of 19 cases. In terms of R2 values, 
MTE-EDM outperformed UTD in all cases, and UTD outper-
formed Simplex in only 8 of 19 cases. Using temperature as a 

covariate outperformed Simplex in 14 cases, but outperformed 
MTE-EDM in only three cases. Estimated activation energies 
from MTE-EDM were within the range of values estimated in 
other studies (29) and did not approach the parameter bounds 
(Fig. 3C and SI Appendix, Fig. S5). As expected, MTE-EDM 
resulted in little forecast improvements for three endotherm time 
series (0.8% on average, Fig. 3A). The estimated activation ener-
gies for the endotherm series were close to 0, and the use of UTD 
decreased performance.

Seasonality was the dominant source of temperature variability 
in our field time series [trend: 0 to 2.8 °C year−1 (median 0.04); 
seasonal range: 1.4 to 24 °C (median 19)], as is typical of tem-
peratures throughout most of the world (41). Among ecto-
therms, the degree of improvement when using MTE-EDM was 
strongly related to the seasonality of the environment, with larger 
improvement in forecast skill in more variable environments 
(Fig. 3B). This is a sensible result: If there is little variation in 
temperature, there will also be little variation in the length of 
the metabolic time step, and thus the MTE-EDM model will 
be similar to Simplex.

Despite the MTE’s success in explaining large-scale biological 
patterns in relation to environmental temperature, physiologists 
have pointed out that the MTE’s monotonic increase of vital rates 
with temperature is unrealistic (29). Thermal performance curves 
(TPCs) are usually domed: Vital rates increase with temperature 
up to an optimum temperature and then decrease rapidly beyond 
the optimum (42). Organisms are typically exposed to a range of 

Table 1. Metadata for empirical datasets used in the study and leave-one-out R2 values for Simplex and MTE-EDM

Taxon Location Sampling interval
Time series 
length (n) R2 (Simplex) R2 (MTE-EDM)

Acartia hudsonica copepod Narragansett Bay weekly 767 0.63 0.88

Acartia tonsa copepod Narragansett Bay weekly 767 0.72 0.78

Phytoplankton Lake Greifensee monthly 388 0.57 0.57

Cyanobacteria Lake Greifensee monthly 388 0.58 0.61

Eukaryotes Lake Greifensee monthly 388 0.37 0.39

Bythotrephes 
longimanus

cladoceran Lake Geneva biweekly 1,038 0.85 0.86

Eudiaptomus gracilis copepod Lake Geneva biweekly 1,038 0.78 0.78

Kellicottia longispina rotifer Lake Geneva biweekly 1,038 0.83 0.84

Adoxophyes honmai moth Japan 5 d 2,754 0.54 0.62

Acartia sp., nauplii copepod Wadden Sea weekly 503 0.48 0.65

Acartia sp., 
copepodites

copepod Wadden Sea weekly 503 0.51 0.63

Harpacticoida copepod Wadden Sea weekly 503 0.66 0.68

Balanidae, nauplii barnacle Wadden Sea weekly 503 0.66 0.74

Spionida, 
metatrochophora

polychaete Wadden Sea weekly 503 0.36 0.50

Temora longicornis, 
nauplii

copepod Wadden Sea weekly 503 0.58 0.70

Anarsia lineatella moth Greece 3 d 322 0.22 0.51

Adoxophyes orana moth Greece 3 d 322 0.43 0.45

Grapholita moleasta moth Greece 3 d 322 0.60 0.70

Zooplankton Bermuda biweekly 600 0.49 0.50

Dipodomys merriami kangaroo rat Portal, Arizona monthly 312 0.80 0.80

Dipodomys ordii kangaroo rat Portal, Arizona monthly 312 0.80 0.80

Onychomys torridus mouse Portal, Arizona monthly 312 0.70 0.71
Data citations are in SI Appendix, Table S2.
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temperatures, including suboptimal temperatures, especially in 
seasonal environments (43). Our modeling framework can readily 
use a TPC instead of MTE temperature scaling to determine the 
length of the metabolic time step, which we expect to produce 
better results when the organism often experiences temperatures on 
the descending limb of the TPC. We obtained TPCs for the three 
species in our time series database for which curves were available 
and tested whether TPC-based models could improve forecasts. We 
found that forecasting skill was worse than MTE-EDM in all cases 
and worse than Simplex in two cases (Fig. 3A).

Discussion

Previous work on EDM has shown that unequally spaced lags can 
be optimal for modeling systems with multiple timescales (44) and 
that in “driven” systems, delays of the driver (in this case temper-
ature) included as additional predictors (covariates) can improve 
the forecast performance (45). However, Takens’ theorem (12) 
shows that adding lags of temperature to an EDM model also adds 

information from other variables that interact with temperature, 
making a mechanistic interpretation difficult. For instance, (35) 
found that the temperature dependence at lag 1 was unimodal or 
increasing (as expected for thermal performance) but was bowl-
shaped or decreasing at lag 2, possibly representing an indirect 
effect through predation or competition. Here we show that con-
straining EDM to obey a known mechanism outperforms the 
covariate approach in the majority of cases. Additionally, using a 
metabolic time step adds only one degree of freedom to the model, 
and permits model comparison to Simplex with a simple likelihood 
ratio. In contrast, the change in degrees of freedom that results 
from adding temperature as an additional coordinate in the non-
parametric Simplex model is difficult to determine a priori, ren-
dering a likelihood ratio test inappropriate for comparing this 
model. Our study is the first demonstration that separable, non-
autonomous dynamics can be embedded through a simple time 
scale change.

Not all biological rates or organisms have the same temperature 
dependence (29, 46, 47), and allowing for variable activation 
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Fig. 3. (A) Change in forecast performance (as measured by change in leave-one-out prediction R2) for each model relative to the Simplex, for each empirical 
time series. Models used a metabolic time step based on either universal temperature dependence (UTD), optimized temperature dependence (MTE), or empirical 
thermal performance curves (TPC), or used a calendar time step with temperature as a covariate (Covariate). Only three series had TPC models. Mean ± SD for 
change in R2 across ectotherm series: UTD: −0.01 ± 0.06, MTE: 0.08 ± 0.08, Covariate: 0.01 ± 0.02. (B) Change in forecast performance (MTE vs. Simplex) vs. SD 
of temperature, excluding endotherms (3 rodent time series from Portal, Arizona). (C) Distribution of optimized activation energies from MTE-EDM. The vertical 
dashed line is the UTD value (0.65). The Simplex model (no temperature dependence) corresponds to an activation energy of 0. Exact activation energy values 
are given in SI Appendix, Fig. S5.
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energies improved performance over the universal value of 0.65. 
Surprisingly, MTE-EDM’s temperature scaling performed better 
than scaling using empirical TPCs, despite the known unimodal 
shape of thermal performance (48). This could be because most 
temperatures experienced by the focal species were below the 
TPC optimum. Additionally, different biological processes have 
different TPCs (29), and the particular one measured may or may 
not reflect the temperature dependency of the population dynam-
ics, which integrates across many biological processes and inter-
acting species (49). However, since only three species had TPCs, 
more applications are needed before we can draw any general 
conclusions about the performance of this method relative to 
MTE-EDM.

Of course, temperature is not the only factor affecting bio-
logical rates or population dynamics, which may explain why 
MTE-EDM did not always greatly improve forecast skill, even 
with ample temperature variation. Understanding whether there 
are general rules for how temperature scaling shifts when 
resources are limiting is an active area of research, and testing 
whether the patterns described in the literature can be used as 
constraints to improve forecasts would be a useful direction for 
future forecasting research. For example, ecological stoichiom-
etry posits that phosphorus content directly influences the 
growth rates of aquatic organisms (50). Ongoing efforts to 
expand the metabolic theory to include important constraints 
such as stoichiometry (e.g., refs. 50 and 51) could mean that 
additional adjustments to the metabolic time step may be pos-
sible [e.g., based on phosphorus availability (52)]. However, not 
all environmental factors influence biological rates in a known 
or universal way that is separable from other population dynam-
ics, as assumed in MTE-EDM, so there is not necessarily a 
straightforward way to integrate them into the metabolic time 
step. In these cases, environmental variables could be covariates 
rather than constraints or indirectly captured by the time lags. 
Coupling EDMs with physical models is another approach to 
incorporating mechanism that has been recently explored. For 
instance, EDM has recently been used in a hybrid modeling 
approach where data-driven predictions of the biogeochemical 
components of Lake Geneva were combined with a model of 
lake physics to predict future lake health (53). This yielded better 
forecast performance for dissolved oxygen concentration than 
the physical model. Blending data-driven methods with theory 
therefore provides new avenues to both improve forecasts and 
increase our understanding of relevant mechanisms.

When using MTE-EDM, practitioners must consider the 
timescale of the system they are modeling and the resolution of 
the population and temperature data available. First, MTE-
EDM needs samples taken frequently enough to be able to con-
struct uniform metabolic time steps. Sampling intervals that are 
too coarse limit our ability to do so. Second, MTE-EDM requires 
sufficient temperature variation on timescales relevant to the 
focal organism. For example, in all of our field time series, the 
focal organisms all had relatively short generation times, often 
less than the annual temperature cycle, resulting in temperature 
variation across generations. In contrast, population dynamics 
of species with generation times >>1 y should be relatively insen-
sitive to seasonal fluctuations in temperature because from one 
generation to the next, the mean temperature will be more or 
less the same. Long-lived species may be sensitive to interannual 
variation in temperature (including climate change), but since 
this variation is typically much less than seasonal temperature 
variation (e.g., ~2 °C over the past 100 y vs. 20 °C within a year), 
it may only be apparent over very long timescales. Hence, the 

effectiveness of MTE-EDM will depend on the generation time 
of the organism, the observed temperature range, and the avail-
ability of data. At present, we expect MTE-EDM to be most 
effective for ectotherms with short generation times (~1 y or 
less) and high-frequency sampling (at least monthly). That said, 
we note that the change of variables used here is generic—any 
driver with approximately separable effects on dynamics could 
be built into EDM in this way.

Although MTE-EDM improved forecasts in the series we 
analyzed and our simulations indicated that MTE-EDM is 
robust to modest variation in activation energy among interact-
ing ectotherms, it is worth noting conditions under which MTE-
EDM will not improve forecasts. MTE-EDM will not improve 
forecasts when there is little variation in temperature, or when 
most interacting species are insensitive to temperature (e.g., 
endotherms). Less obviously, MTE-EDM is not expected to 
work when the separability assumption is strongly violated (e.g., 
where vital rates within and across species have sufficiently dif-
ferent effects over the observed range of temperatures). In par-
ticular, it will not improve forecasts when the lack of separability 
results in temperature driven shifts in structural stability, as 
occurs in some models (30, 51), experimental systems (36), and 
field systems [e.g., tea tortrix moth (52)]. The prevalence of such 
temperature-driven bifurcations in natural systems under current 
climate conditions is an open question. On the other hand, in 
cases where the temperature does vary, a failure of MTE-EDM 
to improve performance over Simplex suggests that either the 
system is temperature-independent (activation energy near 0) or 
that nonseparability is present. So, although we do not expect 
the MTE-EDM approach to be useful in all systems, its failure 
suggests alternative hypotheses that are worth exploring.

Although we did not see this in our data and have insufficient 
sample size to draw any general conclusions, we suspect MTE-EDM 
might work better on aggregated time series, since species-specific 
temperature dependencies may average out. Aggregation has also 
been shown to lead to higher forecast accuracy with EDM (54).

EDM—and other data-driven approaches—are powerful tools 
for making predictions and gaining insights into complex systems. 
Their power comes from their generality—we do not need to know 
how a system works for them to be useful. However, one of the 
strengths of mechanistic model building is that known mecha-
nisms and auxiliary data (not time series) are readily incorporated. 
Several previous studies have noted the importance of bringing 
together empirical and mechanistic approaches (8, 55–57). Our 
approach is a novel addition to this growing toolbox. For systems 
that meet the assumptions of the method, it offers a new way to 
account for temperature variability and nonstationarity both now 
and in a future increasingly influenced by climate change.

Materials and Methods

Time Delay Embedding. Time delay embedding refers to the reconstruction of 
system dynamics using time lags of one or more variables from that system. For 
a generic, autonomous dynamical system of dimension S,

	 [1]dxi ∕dt = fi (x1, . . . , xS ),

that converges to an attractor with dimension d < S , Takens proved that the lag 
vectors Xi (t) = {xi (t), xi (t − �), . . . , xi (t − E�)} are sufficient to embed the 
attractor, where � is a time delay and E + 1 is the embedding dimension (12). 
For the remainder, we do this for each time series independently and drop the 
subscript i  to simplify the notation. The practical upshot of Takens’ theorem is 
that we can model the next state, x(t) , as,
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[2]x(t) = F (x(t − �), . . . , x(t − E�)),

where one of several function approximation schemes can be used to estimate 
the delay embedding map, F , from time series data. The simplest such scheme is 
the nearest neighbor approach, referred to in ecology as the Simplex projection 
algorithm (33, 58). To make a prediction for x(t) , Simplex uses the averages of 
the E + 1 nearest neighbors of {x(t − �), . . . , x(t − E�)} . Although there have 
been many elaborations on this approach, Simplex makes the fewest assump-
tions and has the fewest tunable parameters. As such, it is a natural benchmark 
for generalization.

Rescaling Time with Temperature (Metabolic Embedding). The MTE posits 
that the effect of temperature ( T  ) on metabolism structures fecundity and mortal-
ity rates, and hence species interactions. Within ectotherms, the activation energy 
is highly conserved. Under these assumptions, the population dynamics of the 
i  th species are given approximately by,

	 [3]dxi ∕dt = fi (x1, . . . , xS , T ) ≈ fi (x1, . . . , xS )h(T ),

where h(T ) is the average temperature dependence and fi describes the effects of 
all other state variables. This approximation assumes the population and temper-
ature dynamics are separable, such that temperature primarily affects the overall 
rate of change, and that all species approximately adhere to the same universal 
temperature dependence. This is clearly not exactly true for most real systems 
and we evaluate the consequence of deviations using simulations.

System [3] falls under the skew-product embedding theorems of Stark (45), 
which would expand the delay coordinate space to include lags of temperature in 
a nonparametric way. This is the justification for using temperature as an additional 
coordinate (covariate) in the Simplex model. However, including temperature in 
this way does not explicitly take advantage of the known functional dependence on 
temperature, i.e., h(T ) = e−E0∕kT where k = 8.617 × 10−5eV ∕K is Boltzmann’s 
constant, T  is temperature in degrees Kelvin, and E0 is the activation energy.

Here, we make use of both the separability implied by Eq. 3 and the fact that 
h(T ) is known, to introduce a metabolic time, � , which renders the dynamics 
autonomous. Specifically, if d�∕dt = h(T ) , then dxi ∕d� = fi (x1, . . . , xS ) , elim-
inating the need for skew-product embedding. Integrating over a fixed � -step, 
we obtain a discrete � model,

xi,n = Fi (xi,n−1, . . . , xS,n−1),

where xi,n = xi (tn) and the times tn are defined implicitly by ∫ tn
0
h(T ) = n� . From 

here, Takens theorem allows us to re-cast the dynamics as,

xn = F̃ (xn−1, xn−2, . . . , xn−E )

where we have again dropped the subscript i  to simplify the notation though we 
remind the reader that the inputs to F̃ are lags of a single-state variable.

If data were available in continuous time, we would construct delay vectors for 
each x(tn) such that ∫ tn

tn−j
h(T )dt = j� exactly. In practice, however, data are availa-

ble on a discrete time step so some approximation is necessary. For simplicity, we 
find the sampling times tn−j such that 

∑tn
tn−j

h(Ti )Δt is as close to j� as possible. 
Given the collection of metabolic delay vectors, we use the same nearest-neighbor 
averaging to approximate 

∼

F  that we used for the Simplex algorithm.
Although E0 = 0. 65 has been referred to as “universal temperature depend-

ence” (UTD) (15), subsequent meta-analyses (29) found substantial variability in 
E0 across species and traits. For MTE-EDM, we, therefore, estimate E0 by computing 
the log likelihood on a grid of 50 values of E0 from 0 to 2 and a maximum embed-
ding dimension of 15. In keeping with other EDM studies that minimize squared 
prediction errors, a Gaussian likelihood was used. Note that UTD ( E0 = 0. 65 ) and 
Simplex ( E0 = 0 ) are special cases of MTE-EDM, so that twice the log likelihood 
ratio is expected to follow a chi-square distribution with one degree of freedom. 
It is less clear how the degrees of freedom change when using temperature as an 
additional coordinate, so significance levels for a likelihood ratio test would be 
approximate in this case. Although MTE-EDM is applied to data for a single species, 
it is important to recognize that the estimated E0 represents an average for the 
species with which it closely interacts, rather than a species-specific metabolic rate.

Simulated Data. As a proof of concept, we simulated a chaotic three-species food 
chain (40) in which the vital rates depend on temperature as in Eq. 3. Specifically, 
we used,

dx

dt
= h(T )

[

x(1 − x) − axy

(1 + bx)

]

,

dy

dt
= h(T )

[

axy

(1 + bx)
−

cyz

(1 + dy) − my

]

,

dz

dt
= h(T )

[

cyz

(1 + dy) − �z

]

,

where a = 5.0, b = 3.0, c = 0.1, d = 2.0,m = 0.4,� = 0.01 and the initial 
conditions were x(0) = 0.8, y(0) = 0.1, z(0) = 9.0 . The system was integrated 
using a 4th order Runge-Kutta scheme on a weekly time step for 500 wk. To pro-
vide interesting test cases, we simulated a temperature trend, T (t) = 0.052t − 8 , 
and a more realistic scenario with seasonal temperature variation, a long-term 
trend, and stochasticity, T (t) = 5 + 13sin(2�t ∕55) + 0.003t + 2.6∈(t) where 
∈(t) ∼ N(0, 1) is white noise. The linear increase of 0.003 °C wk−1 results in a 
net increase of 1.5 °C over the ~10-y simulation.

To understand the effect of variable activation energies within a community, 
we also simulated 10 y of weekly data using the food chain model described 
above, but with h(T ) allowed to vary among species—violating the assumption 
of strict system-level separability. We considered four scenarios: 1) two ecto-
therms, 2) three ectotherms, 3) two ectotherms and one endotherm, and 4) one 
ectotherm and two endotherms. For each ectotherm, we generated random 
activation energies drawn from a Gaussian distribution with different means 
(0.20, 0.32, 0.65, 1.20) representing most of the typically observed range 
crossed with three levels of variability (SD: 0, 0.1, 0.2). Note that the interval 
0.2 to 1.2 was originally proposed for variation in activation energy (26) and 
provided good bounds for within-species variation in lifespan (59), while 0.32 
and 0.65 are typical values for photosynthesis and ectotherm metabolism, 
respectively.

For each of the four scenarios, four mean activation energies, and three SDs, 
we ran 50 replicates from random initial conditions for a total of 2,400 simulated 
datasets. For each dataset, we used the MTE-EDM approach to estimate the activa-
tion energy and used likelihood ratio tests to assess the probability that MTE-EDM 
would be significantly better than Simplex.

Analysis of Empirical Data.
Cycle period in laboratory experiments. To examine the impact of temper-
ature on population cycle period, we searched the literature for laboratory 
experiments reporting population dynamics at different constant tempera-
tures. This search yielded four studies: a rotifer (B. calyciflorus) population 
(36), a ciliate (Didinium-Paramecium) predator-prey system (37), a moth  
(P. interpunctella) (39), and a ciliate-bacteria (T. pyriformis-P. fluorescens) 
predator–prey system (38). Raw data were obtained from supplementary 
materials or, if necessary, directly from figures using WebPlotDigitizer (60).

We used spectral analysis to assess the periodicity for each abundance 
time series. To compute the power spectrum, we used penalized (ridge) 
regression onto sine and cosine basis functions with frequencies 2�s∕N , 
where s = 2, 3, . . . , N∕2 and N is the time series length (thus, the longest 
period considered was 0.5N , and the shortest was two time steps). Time series 
were rescaled to mean 0 and unit variance prior to analysis, and the penalty 
was set to 0.01. Power at each frequency was calculated from the sine and 
cosine coefficients. The frequency (cycle period) with the highest power was 
then selected. For (38), we performed analyses on the average abundance at 
each time point and excluded replicate A for T. pyriformis because the density 
was 0 throughout the time series. For ref.  37, visual inspection of the time 
series showed that Didinium and Paramecium each went through one cycle 
before going extinct. Thus, we computed cycle period as the length of time to 
extinction. The Didinium population at 17 °C did not finish its cycle (i.e., it did 
not go extinct) during the experiment, so was excluded.

We performed ordinary least squares regression to assess the relationship 
between natural log-transformed cycle period and inverse absolute temperature, 
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i.e., 1∕kT  , where k is Boltzmann’s constant. The slope of this relationship corre-
sponds to the activation energy.

Natural population dynamics. To evaluate the MTE temperature effect on natu-
ral populations, we assembled a database of time series from 22 short-lived spe-
cies from terrestrial and aquatic environments (Table 1 and SI Appendix, Table S2). 
We chose to focus on species with subannual sampling intervals and short gener-
ation times in order to encompass seasonal variation in temperature and ensure 
sufficient data to reconstruct dynamics. Most time series were species level, 
although four time series represented species aggregates (e.g., phytoplankton).  
Sampling intervals ranged from 3 d to 1 mo, and sampling time ranged from 
2 to 40 y. Temperature data were either recorded during sample collection or 
obtained from nearby sources (SI Appendix, Table S2). If a database contained 
multiple species, for our proof-of-concept purposes, we analyzed the 5 to 6 most 
abundant species with the longest continuous records. We also excluded series 
if the Simplex algorithm had prediction R2 less than 0.2.

Each abundance time series was square-root–transformed and standardized 
to zero mean and unit SD prior to analysis. Since the sampling interval was some-
what variable for many of the time series, series were interpolated to the shortest 
constant interval (3 d, weekly, biweekly, or monthly) that was most consistent with 
the original sampling scheme using a Gaussian process regression with a cyclic 
prior mean with Fourier modes at 2s y where s = −2, −1, 0, 1, 2, 3. Temperature 
data were interpolated similarly, but were not square-root–transformed.

For each time series, we fit two calendar time step models (standard Simplex, 
temperature as a covariate), and two metabolic time step models (UTD, MTE-EDM). 
For the calendar time step models, we selected the pair of embedding dimension 
and time delay, � , that maximized forecast accuracy: We evaluated embedding 
dimensions ranging from 1 to 5, and time delays ranging from 1 to 12 steps, 
where the step size was set by the original sampling scheme. For the metabolic 
time step models, we selected the embedding dimension that maximized forecast 
accuracy, fixing the metabolic delay, � , to the average metabolism over the same 
time step. That is, if the time series was sampled weekly, for a total of N weeks, 
we set � =

1

N

∑

i

e−E0∕kTi . Forecast accuracy was measured using leave-one-out 

prediction R2, excluding the time point before and after, which was also used as 

our measure of forecast performance. While alternative cross-validation schemes 
or performance measures may give different results in terms of absolute forecast 
skill, the relative performance of the different models should be the same.

To evaluate the effect of thermal performance curve (TPC) shape on metabolic 
embedding, we obtained empirical TPCs for two copepod species (Acartia tonsa, 
Acartia hudsonica) and the tea tortrix moth (Adoxophyes honmai). TPCs for the 
copepods were obtained by fitting a Sharpe–Schoolfield model (61) to egg pro-
duction data for each copepod species (62). For Adoxophyes honmai, we fit the 
same model to laboratory data for lifetime production of hatching eggs, calculated 
from data for age-specific survival, fecundity, and egg hatchability (63). TPCs were 
unavailable for the other species for which we had time series.

Data, Materials, and Software Availability. No new data were used. Laboratory 
data sources are cited in the main text; field data sources are listed in SI Appendix, 
Table S2. The laboratory time series, interpolated field time series, and all code 
required to reproduce the analyses are available at  https://doi.org/10.5281/
zenodo.7682553 (64). The datasets used for Lake Geneva are © OLA-IS, AnaEE-
France, INRAE of Thonon-les-Bains, CIPEL, citation in SI Appendix, Table S2.
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