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NAP: The Network Analysis Profiler, 
a web tool for easier topological analysis 
and comparison of medium-scale biological 
networks
Theodosios Theodosiou1†, Georgios Efstathiou1†, Nikolas Papanikolaou1, Nikos C. Kyrpides2, Pantelis G. Bagos3, 
Ioannis Iliopoulos1* and Georgios A. Pavlopoulos1,2*

Abstract 

Objective: Nowadays, due to the technological advances of high-throughput techniques, Systems Biology has seen 
a tremendous growth of data generation. With network analysis, looking at biological systems at a higher level in 
order to better understand a system, its topology and the relationships between its components is of a great impor-
tance. Gene expression, signal transduction, protein/chemical interactions, biomedical literature co-occurrences, 
are few of the examples captured in biological network representations where nodes represent certain bioentities 
and edges represent the connections between them. Today, many tools for network visualization and analysis are 
available. Nevertheless, most of them are standalone applications that often (i) burden users with computing and 
calculation time depending on the network’s size and (ii) focus on handling, editing and exploring a network interac-
tively. While such functionality is of great importance, limited efforts have been made towards the comparison of the 
topological analysis of multiple networks.

Results: Network Analysis Provider (NAP) is a comprehensive web tool to automate network profiling and intra/inter-
network topology comparison. It is designed to bridge the gap between network analysis, statistics, graph theory 
and partially visualization in a user-friendly way. It is freely available and aims to become a very appealing tool for 
the broader community. It hosts a great plethora of topological analysis methods such as node and edge rankings. 
Few of its powerful characteristics are: its ability to enable easy profile comparisons across multiple networks, find 
their intersection and provide users with simplified, high quality plots of any of the offered topological characteristics 
against any other within the same network. It is written in R and Shiny, it is based on the igraph library and it is able 
to handle medium-scale weighted/unweighted, directed/undirected and bipartite graphs. NAP is available at http://
bioinformatics.med.uoc.gr/NAP.
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Introduction
Metabolic reactions, signal transduction, gene expression, 
gene regulation, protein interactions and other biological 
concepts are often captured in network representations 
showing individual bioentities as nodes and their inter-
connections as edges. Each network is characterized by a 
different topology. In small-world networks for example, 
any node in the graph can be reached from any other node 
in a small number of steps. In scale-free networks, highly 
connected nodes can be identified as hubs. Networks with 
densely connected neighborhoods have high clustering 
coefficient and tend to form clusters. In social networks, 
the robustness is sensitive upon edges with high between-
ness centrality, necessary to bridge distant communities. 
Protein–protein interaction networks (PPIs) are captured 
as undirected connected graphs following a scale-free 
topology with hierarchical modularity [1, 2].

While existing visualizations often comply with topo-
logical network analysis [3–6], only few of them purely 
focus on topological analysis, comparison and edge/node 
ranking. Cytoscape’s [7] Network Analyzer [8] as well 
as Gephi [9], offer similar functionality but do not sup-
port direct comparison between topological features of 
multiple networks. ZoomOut [10] and Network Analy-
sis Toolkit (NEAT) [11] on the other hand are mostly 
focused on graph clustering. Stanford Network Analysis 
Platform (SNAP) [12] and igraph [13] offer a wide spec-
trum of functions and modules related to topological 
analysis but are offered as command line libraries, thus 
making them less accessible to non-experts.

To overcome these barriers, we offer NAP, a modest 
web application, dedicated to make network topological 
analysis and inter/intra-network topological comparison 
simpler and more appealing to the broader community.

Main text
The GUI
NAP comes with a self-explanatory web interface, organ-
ized in several tabs.

Upload file tab
It is dedicated to file uploading and network nam-
ing (Fig.  1a). Once one or more networks have been 
uploaded, three sub-tabs will appear. In the first sub-tab, 
users can see the network as a binary list in the form of 
searchable tables (Fig. 1b), in the second sub-tab a static 
visualization of the network and in the third sub-tab an 
interactive network visualization (Fig. 1c).

Topology tab
The second tab is dedicated to network topological analy-
sis. Once one or more networks are loaded, users can 
interactively choose between several topological features. 

While, here, users can explore one network at a time, in a 
second sub-tab users can automatically generate an inter-
network topological analysis plot in order to directly 
compare one or more networks. Examples of these cases 
can be depicted in Fig. 1d, e.

Ranking tab
This part is dedicated to node and edge ranking. Users 
can interactively choose between several node and edge 
topological features and sort the relevant nodes/edges 
accordingly. Moreover, users can plot the distribution of 
any topological feature of a network against any other 
and visualize it in a matrix-like plot. Examples are pre-
sented in Fig. 1f, g.

Clustering tab
This tab is dedicated to network clustering. While NAP is 
not intended to be a network clustering application, MCL 
Markov Clustering is incorporated [14]. This way, user 
can cluster medium-sized networks (Fig. 1h).

Intersection
This tab is dedicated in calculating the intersection 
between any pair of selected networks. Results are shown 
as Venn diagrams and can an export function to down-
load the intersecting network is offered (Fig. 1i).

Input file
NAP supports loading of multiple weighted/unweighted, 
directed/undirected and bipartite graphs. Each network 
can be loaded as a two-column binary list of connections 
as a tab delimited text file. After uploading, users must 
manually give a name and define the type of each network. 
In addition, random networks of various sizes (100, 1000, 
10,000 nodes) and types (Barabási–Albert, Erdos–Renyi, 
Watts–Strogatz small-world and bipartite graphs) can be 
automatically generated and used as examples. Notably, 
NAP currently accepts networks of up to 50,000 edges.

For this article, we used two yeast protein–protein 
interaction (PPI) networks: Gavin 2006 [15] and Gavin 
2002 [16], the first consisting of 6531 edges and 1430 
vertices and the second consisting of 3210 edges and 
1352 vertices. For the first dataset, large-scale tandem 
affinity purification and mass spectrometry were used 
to characterize multiprotein complexes in Saccharomy-
ces cerevisiae whereas the second dataset shows the first 
genome-wide screen of complexes in Yeast.

Basic visualization
Nodes and edges can be presented as dynamic, easy to 
filter, excel-like tables, as well as static and dynamic 2D 
network visualizations. Tables are sortable by name and 
searchable using simple substring matching.
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Fig. 1 NAP’s web interface. a Users can upload several networks in the form of a list (pairwise connections) and subsequently name them. Users 
can also generate graphs of various sizes (50, 100, 1000, 10,000) based on the Barabási–Albert, Erdos–Renyi or Watts–Strogatz small-world model. 
Additionally, users can generate bipartite graphs of various sizes. b Network contents in the form of searchable and sortable tables. c-left Static 
network visualization. c-right Interactive Cytoscape.js network visualization. d Selection of topological features and their values. e Inter-network 
comparisons of topological features. f Node/edge ranking in the view of searchable tables. g Intra-network topological feature comparison in the 
form of a matrix. h Implementation of MCL clustering algorithm. i Intersection of any two chosen networks



Page 4 of 9Theodosiou et al. BMC Res Notes  (2017) 10:278 

Static visualization
While NAP is not designed to be a visualization tool, its 
2D static network visualization comes with a plethora of 
traditional layout algorithms (Random, Circle, Sphere, 
Fruchterman–Reingold, Reingold–Tilford, Kamada–
Kawai, Grid, Lgl and SVD). After a completed layout, 
nodes and their coordinates, along with their connec-
tions can be exported as simple text files and imported to 
other, more advanced visualization tools [3–6].

Dynamic visualization
NAP utilizes CytoscapeWeb/Cytoscape.js [17, 18]. to 
additionally provide a dynamic network visualization. 
Users can interactively zoom in/out, relocate the nodes 
and select them and choose between various edge/node 
colors and shapes and among very standard graph layouts.

We chose to provide both static and dynamic vis-
ualization at a basic level so that the user can get an 

at-a-glance view of the loaded network. Notably, NAP’s 
visualization cannot scale very well due to browser 
limitations but is fair for middle-sized networks. For 
higher quality visualization, graph editing, manipu-
lation and interactive network exploration, users 
are encouraged to use other available tools such as 
Cytoscape and Gephi. The input file format for NAP, 
Cytoscape and Gephi is the same (2 column tab delim-
ited file).

Topological features
NAP is able to calculate several topological features for 
a selected network taken from the igraph library. While 
in igraph’s manual pages one can find more detailed 
information about the calculations, most formulas and 
definitions are also explained in [19]. Table  1 summa-
rizes a simplified explanation of NAP’s aforementioned 
metrics.

Table 1 NAP’s supported topological features and their explanation

Topological feature Simplified explanation

Number of edges Shows the number of edges in the network. Moderate network of several thousand connections are very acceptable

Number of nodes Shows the number of nodes in the network. There is no limitation on the number of nodes

Diameter Shows the length of the longest geodesic. The diameter is calculated by using a breadth-first search like method. The 
graph-theoretic or geodesic distance between two points is defined as the length of the shortest path between them

Radius The eccentricity of a vertex is its shortest path distance from the farthest other node in the graph. The smallest eccen-
tricity in a graph is called its radius. The eccentricity of a vertex is calculated by measuring the shortest distance from 
(or to) the vertex, to (or from) all vertices in the graph, and taking the maximum

Density The density of a graph is the ratio of the number of edges and the number of possible edges

Number of edges Shows the number of edges in the network. If the has more than 10,000 edges it will take into account the first 10,000

Average path length The average number of steps needed to go from a node to any other

Clustering coefficient A metric to show if the network has the tendency to form clusters

Modularity This function calculates how modular is a given division of a graph into subgraphs

Number of self-loops How many nodes are connected to themselves

Average eccentricity The eccentricity of a vertex is its shortest path distance from the farthest other node in the graph

Average eigenvector centrality It is a measure of the influence of a node in a network

Assortativity degree The assortativity coefficient is positive is similar vertices (based on some external property) tend to connect to each, 
and negative otherwise

Is directed acyclic graph It returns True (1) or False (0)

Is directed It returns True (1) or False (0) depending whether the edges are directed or not

Is bipartite It returns True (1) or False (0) depending whether the graph is bipartite or not

Is chordal It returns True (1) or False (0). A graph is chordal (or triangulated) if each of its cycles of four or more nodes has a chord, 
which is an edge joining two nodes that are not adjacent in the cycle. An equivalent definition is that any chordless 
cycles have at most three nodes

Average number of neighbors How many neighbors each node of the network has on average

Centralization betweenness It is an indicator of a node’s centrality in a network. It is equal to the number of shortest paths from all vertices to all 
others that pass through that node. Betweenness centrality quantifies the number of times a node acts as a bridge 
along the shortest path between two other nodes

Centralization closeness It measures the speed with which randomly walking messages reach a vertex from elsewhere in the graph

Centralization degree It is defined as the number of links incident upon a node

Graph mincut It calculates the minimum st-cut between two vertices in a graph The minimum st-cut between source and target is 
the minimum total weight of edges needed to remove to eliminate all paths from source to target

Motifs-3 Use of igraph to searches a graph for motifs of size 3

Motifs-4 Use of igraph to searches a graph for motifs of size 4
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Fig. 2 Direct comparison of the topological features of two yeast protein–protein interaction datasets. a Gavin 2002 dataset [16] consists of 3210 
edges and 1352 vertices, whereas Gavin 2006 [15] consists of 6531 edges and 1430 vertices. b Comparison of the networks’ clustering coefficient, 
density, closeness, betweenness and degree
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Inter‑network topological feature comparison
Selected topological features of a single network can be 
visualized as a multi-column bar chart. This way, a user 
can for example, see the average closeness centrality, the 
average clustering coefficient and the average shortest 
path length of the whole graph as numerical values or as 
a bar chart. Notably, the chart is dynamic and gets auto-
matically updated upon a selection set of features. When 
users want to directly compare one or more networks, a 
combined bar chart with adjusted colors indicating the 
selected networks, can capture the average topological 
features of all selected networks next to each other.

For example, a straight comparison of the aforemen-
tioned yeast protein–protein interaction datasets is pre-
sented in Fig. 2. While both networks significantly vary in 
the number of edges, as shown in Fig. 2a, and despite the 
fact that they have similar density, they have significantly 
different clustering coefficient as shown in Fig.  2b. This 
way Gavin 2006 dataset tends to form tighter clusters 
compared to Gavin 2002.

Intra‑network topological feature comparison
Users can select one network at a time and see the distri-
bution of each topological metric. Figure 3a, b for exam-
ple show the degree distribution for Gavin’s 200 and 2002 
PPI network respectively.

In addition, users have the ability to generate a distri-
bution plot showing any topological feature against any 
other within a selected network. A high-resolution 2D 
scatterplot is generated on the fly, displaying the distri-
bution of a chosen topological parameter in a histogram-
like view. Should the user desire to explore more than 
one topological parameter at a time, NAP gives the user 
the opportunity to generate on-the-fly advanced plots by 
pairwise comparing any topological feature of a network 
against any other feature within the same network. This 
matrix-like plot showing pairwise correlations of any 
combination between the selected topological features 
is not limited to the number of features to be plotted. 
The upper triangular part of the plot shows the numeri-
cal correlation between any pair of topological features 
whereas the lower-triangular part of the matrix the scat-
terplot of one feature against another. The diagonal shows 
the topological feature which corresponds to that column 
and row. Like before, two all-against-all plots comparing 
the degree, the clustering coefficient, the closeness and 
the betweenness centrality of Gavin 2002 and 2006 PPI 
datasets are shown in Fig. 3c, d respectively.

Notably, figures can be downloaded as jpeg from the 
browser while scatter plot coordinates can now be down-
loaded as CSV files and visualized by external applica-
tions like Excel or STATA.

Fig. 3 Intra-network comparison of selected topological features within the Gavin 2002 yeast PPI dataset [16]. a The degree distribution for Gavin 
2002 dataset. b The degree distribution for Gavin 2006 dataset. c An all-against-all distribution matrix comparing the degree, the closeness, the 
betweenness and the clustering coefficient for Gavin 2002 PPI network. d An all-against-all distribution matrix comparing the degree, the closeness, 
the betweenness and the clustering coefficient for Gavin 2006 PPI network
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Node/edge ranking
Nodes and edges of a selected network (accessible as 
a drop-down menu) can be sorted according to a pre-
ferred topological feature and using dynamic easy-to-
filter excel-like tables. Nodes and edges can be sorted 
in both descending and ascending order. Figure  4a for 
example shows the proteins of Gavin 2006 PPI network 
sorted in descending order according to their degree. It 
is obvious that PWP2 (YCR057C) protein, a conserved 
90S pre-ribosomal component essential for proper endo-
nucleolytic cleavage of the 35 S rRNA precursor at A0, 
A1, and A2 sites is the protein with most connections. 
Similarly, Fig.  4b shows that the connection between 
SEC8 (YPR055W) and RPC17 (YJL011C) has the high-
est betweenness centrality, thus making a very impor-
tant connection as it acts as a bridge connecting different 
neighborhoods.

Clustering
While NAP is not a clustering visualization tool, MCL 
Markov clustering algorithm has been implemented 
(Fig. 1h). Users can select a network and adjust the infla-
tion value of MCL. A two-column searchable matrix will 
be generated showing the node name and the cluster 
each node belongs two. This way, users can easily find 
whether two nodes belong in the same cluster or not. 
This feature is recommended for small and medium-size 
networks and must be avoided for larger networks. For a 
deeper clustering analysis, users are encouraged to users 
command line tools or try the ClusterMaker Cytoscape 
plugin [20].

Intersection
Users can automatically find the intersection between 
any pair of selected networks. Once two networks have 

Fig. 4 Node and edge ranking. a Proteins of the Gavin 2006 PPI datasets are sorted according to their degree. PWP2 (YCR057C) protein has many 
neighbors and might behave as hub. b Interactions of the Gavin 2006 PPI datasets are sorted according to their betweenness centrality. Edge 
between SEC8 (YPR055W) and RPC17 (YJL011C) behaves as a bridge between communities
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been selected, two Venn diagrams will be generated 
showing the node and the edge overlap between the two 
selected networks. In order to visualize the intersecting 
part of the networks, users can download the network in 
a CVS format and import it to third-party applications 
such as Cytoscape or Gephi. Figure 5 shows an example 
of how to find the intersection between Gavin 2002 and 
Gavin 2006 PPI datasets.

Bipartite graphs
NAP is able to manage bipartite graphs. Given a bipartite 
graph, users can automatically extract its two monopar-
tite projections and analyze them separately. In a gene–
disease bipartite graph for example, one can generate a 
disease–disease network through common genes and 
vice versa, a gene–gene network through common 
diseases.

Implementation
NAP’s web interface is written in Shiny and back-end 
functions implemented in R. Topological features are cal-
culated with the use of igraph-R library [13] and plots are 
generated through R and plotly [21]. Static network visu-
alizations are offered by the d3 library whereas dynamic 

network visualization is provided by CytoscapeWeb/
Cytoscape.js [17, 18].

Discussion
Network Analysis Provider (NAP) is designed to comple-
ment existing state-of-the-art visualization and analysis 
tools. It emphasizes on topological network analysis and 
inter-/intra-network topological feature comparison. 
Overall, we believe that NAP can reach users beyond 
the broader network analysis community and aid non-
experts in analyzing their networks in a simplified and 
highly interactive way.

Limitations
NAP runs on a browser and therefore, it is not opti-
mized for large-scale networks. NAP’s future versions 
will include a much richer and optimized set of clustering 
algorithms [22], richer motif extraction algorithms, net-
work alignment methods such as Corbi [23] and GraphA-
lignment [24], more scalable visualization, user account 
profiles to store and load the networks, incorporation of 
Arena3D [25, 26] for 3D multilayered network visualiza-
tion and better handling of bipartite graphs taking into 
account their special topological properties.

Fig. 5 NAP’s functionality to find the intersection between ant pair of selected networks. a Gavin 2006 and 2002 PPI datasets visualized by 
Cytoscape 3.4.0 using the Prefuse layout. b NAP’s generated Venn diagrams showing the overlapping nodes and edges of the two networks. c NAP’s 
intersection export function and visualization with Cytoscape
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