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Abstract
New mathematical models are developed and corresponding boundary value problems are analytically and numeri-
cally solved for Darcian flows in earth (rock)–filled dams, which have a vertical impermeable barrier on the
downstream slope. For saturated flow, a 2-D potential model considers a free boundary problem to Laplace’s
equation with a traveling-wave phreatic line generated by a linear drawup of a water level in the dam reservoir.
The barrier re-directs seepage from purely horizontal (a seepage face outlet) to purely vertical (a no-flow boundary).
An alternative model is also used for a hydraulic approximation of a 3-D steady flow when the barrier is only a
partial obstruction to seepage. The Poisson equation is solved with respect to Strack’s potential, which predicts the
position of the phreatic surface and hydraulic gradient in the dam body. Simulations with HYDRUS, a FEM-code
for solving Richards’ PDE, i.e., saturated-unsaturated flows without free boundaries, are carried out for both 2-D and
3-D regimes in rectangular and hexagonal domains. The Barenblatt and Kalashnikov closed-form analytical solutions
in non-capillarity soils are compared with the HYDRUS results. Analytical and numerical solutions match well when
soil capillarity is minor. The found distributions of the Darcian velocity, the pore pressure, and total hydraulic heads
in the vicinity of the barrier corroborate serious concerns about a high risk to the structural stability of the dam due
to seepage. The modeling results are related to a “forensic” review of the recent collapse of the spillway of the
Oroville Dam, CA, USA.
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1 Introduction

Barriers and other impermeable or low-permeable entities,
naturally occurring or engineered inside porous massifs, sig-
nificantly alter the incident seepage flows [1]. In geotechnical
engineering of earth dams, several types of barriers are de-
signed for reducing seepage: clay cores, sheet pilings, cut-
off-walls, among others. A motivating example for this paper
is the Oroville Dam (California) crisis of 2017. On the eve of
this crisis, Yakimov and Kacimov [2] accentuated the neces-
sity to study a potentially dangerous phenomenon of seepage
across cutoff-walls in porous foundations of dams. In this type
of Darcian flow, invisible but insidious hydraulic gradients
across the barrier can cause its mechanical suffusion and de-
terioration of counter-seepage functions. In February 2017,
the main spillway of the Oroville Dam failed. Figure 1 shows
a photo, where points F1 and F2 will be explained later, and d
is half-width of the spillway chute.

The Oroville Dam proper is an engineered earthen dam that
forms a reservoir known as Lake Oroville behind it. The crisis
involved the need to release water from the reservoir during a
period of rising water levels and significant precipitation (see
[3, 4]). The initial releases were directed to the main concrete-
lined spillway constructed adjacent to the dam proper along
the top of a bounding geologic formation. Part one of the crisis
involved the appearance of a crater in the concrete spillway
during the discharge, the subsequent uplifting of a part of the
concrete slab, and the exposure of the geologic materials un-
derneath to significant erosion from high velocity flows. Part
two of the crisis involved a redirection of releases to a second,
unlined emergency spillway adjacent to the main spillway,
across the same body of poor geologic materials, which led
to additional significant erosion there. Although the cause of
the erosion in both cases was triggered by the flows occurring
across the top surface of this formation, its cause (in both
cases) was largely attributed to an improper understanding
of how the (natural) geologic materials within the formation
(including, presumably, resident saturation levels) would

behave under spillway use. It is key to note that the failed
geologic materials were not part of the engineered dam proper
and that their intrinsic integrity under conditions of main spill-
way use had been previously questioned.

The event spurred a surge of debates in the media, concerns
of NGOs/public, comments by academics (e.g., Bea [5–7]),
and official “forensic” investigations (see e.g. [3]), which in-
volved professional geotechnical engineers, professional soci-
eties, and federal/state authorities (i.e., US Army Corps of
Engineers (USACoE), The Association of State Dam Safety
Officials, U.S. Society on Dams, Canadian Dam Association,
Federal Energy Regulatory Commission, California
Department ofWater Resources, among others). For example,
Bea et al. [8], Cobos-Roa and Bea [9], and Steedman and
Sharp [10], among others, reviewed the failure of the New
Orleans levees and pinpointed the importance of seepage ero-
sion. Bea [5, 6], investigating a similar failure in 2017, raised a
question: did a sudden rise of the reservoir level of the
Oroville dam induce seepage in the part of the dam embank-
ment close to it spillway and were these major factors that
have contributed to its collapse?

As after any catastrophe of this kind, the spotlight is on the
durability of hydraulic structures, especially “old” ones. The
inventory of USACoE includes almost 90,000 of dams in the
USA. NRC [11] identified 74,119 earth (rock)-filled dams in
the National Inventory of Dams (NID) [67] (USACoE [68])
and 22,500 km of levees in the National Levee Database;
according to NRC, about 56% of dams in NID will be older
than 50 years by 2020. Seepage-triggered failures of “new”
dams also generate a number of studies on the internal erosion
of earth-rock fillings of embankments (see, for example, [12,
13]).

Allegedly anticipated effects of global warming suggest
that structures will be subjected more often to extreme hydro-
logic events, which are characterized by intermittent droughts
and torrential rains of ever-increasing amplitudes (Vahedifard
et al., [14], Vano et al. [15]). For example, Lake Oroville
(behind the Oroville dam) was in the center of public attention
for several years during the most recent drought in California.
The dried-out banks and the bed of the lake and the embank-
ment itself were shown in the media as an illustration of “cli-
mate change,” just before the February-17 deluge.

Reservoirs like Lake Oroville are operated to achieve two,
often conflicting goals: (1) storage of water for use in the dry
summer months and (2) flood prevention through the mainte-
nance of an open storage volume, which often requires con-
trolled releases even when not needed for water supply. Thus,
operationally, water levels are typically kept lower in antici-
pation of an upcoming rainy season. The effects of climatic
swings that are now being experienced suggest that the strat-
egy for this kind of dual-use operation must be reevaluated.
These swings from very dry to flooded conditions of earth-
works exacerbate the natural aging of dams, many of which
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Fig. 1 Photo of a collapsed spillway of the Oroville dam
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were designed decades ago for hydrologically relatively less
variable regimes of operations. Now, old earth (rock)-filled
dams confront the following phenomena:

& rapid drawdowns and drawups of the water level in the
dam reservoir (lake) and tailwater accompanied by fluctu-
ations in the water content of dams’ filling from dry, des-
iccated conditions to wet high pore-pressure ones,

& infiltration into the dam’s body and riverbanks caused by
torrential rains,

& surge waves and currents released through the dams’ cul-
verts and over the spillways, among others.

Seepage-induced/facilitated erosion of soil in earth
(rock)-filled dams depends on dimensions of the em-
bankment, its zonation (texture of the soil), and
reservoir-tailwater levels. For example, piping, suffu-
sion, and heaving (uplift) of the dam soil and parts of
the constructed structure are controlled by seepage char-
acteristics, mostly the hydraulic gradients and pore pres-
sure [3, 16–18]. The criteria of stability against erosion
are commonly developed and tested in simple column
experiments, i.e., in well-controlled 1-D saturated seep-
age flow fields (see, for example, [12, 19–23]). Since
seepage in real dams is transient, involves free and
moving boundaries [24] of phreatic surfaces, and unsat-
urated zones above them, seepage flow (hydraulic gra-
dients and pore pressures) needs to be characterized
using mathematically complex 2-D or 3-D fields.

The geotechnical mitigation (forestalling) of seepage
erosion is achieved via the construction of toe, chimney,
blanket drains, and drainage galleries/tunnels inside the
dam body and in the downstream berm, relief wells (ver-
tical and horizontal), cutoff walls, sheet piling, grout cur-
tains, cushioning of key embankment components by
graded filter envelopes and geotextile wrapping, among
others [25–35]. Some dam components (such as spillways)
are added to the embankment long after the original de-
sign/construction, and therefore their impact on seepage in
the dam may not be properly incorporated into the local/
overall analysis of the structure’s stability, as Troyanowski
[36] assessed and warned for dams’ spillways.

The overall post-crisis opinion is that the collapse of the
spillway was triggered by high-velocity overland flows occur-
ring overexposed and un-engineered geologic surfaces. In this
paper, we address a different factor: seepage near an imper-
meable barrier on the downstream slope of an earth dam that
concurs with what France et al. [3] stated: “A detailed study of
the seepage flow under the slab would be necessary in this
case to determine the uplift pressure distribution.”

The configuration of the Oroville Dam crisis is somewhat
different than the idealized components of the problem ad-
dressed in this paper; in particular, we assumed the following:

& The dam body is a rectangular parallelepiped that makes
possible conjugation of analytical and finite-element
modeling.

& We ignore the herringbone drains under the slabs of the
spillway [3].

& The spillway is a vertical rather than a tilted barrier.
& The barrier is impermeable to both seepage from the soil

to the atmosphere and for leaks from the surface water into
the soil subjacent to the spillway slabs; in other words, we
do not study a coupled surface-subsurface flow which
may have contributed to the crisis [3].

& Soil is homogeneous and isotropic.
& The lake stage in our models is also simplified as com-

pared with the prototype dam.

France et al. [3] pointed out that no detailed analysis of
seepage (in the report, called “groundwater flow”) has been
done by their forensic team. The main questions relevant to
seepage are:

a) Can transient seepage with a phreatic surface, which prop-
agates in a “pre-dried” embankment body, be a plausible
cause of the collapse of an earthwork?

b) Can new analytical and numerical models of “global-
scale” seepage through earth dams add better insights to
what the classics [37, 38] posed as potential threats to
dam stability?

c) How to connect these large (dam) scale seepage models to
what is tested in column experiments with “core samples”
of the embankment porous materials, subject to high and
variable gradients (see, for example, [39])?

d) Can relatively fast external hydrological/hydraulic
drivers, such as a rapid rise of the reservoir level or inten-
sive rain, induce singular (ruinous) consequences via rel-
atively slow seepage flows within the components of a
porous dam?

2 Conceptualization of the flow problem

In our analysis, we consider Darcian, isothermic, single-phase,
and incompressible water flow in a rigid porous skeleton (soil
or rock-filling); saturated hydraulic conductivity k [m/s] and
the van Genuchten–Mualem (VGM) soil hydraulic character-
istics [40] are constant.

A physical 3-D domain is symmetric with respect to the
barrier axis (Fig. 2a) and we study the right half of it. A system
of Cartesian coordinates x1x2y is centered at point A1. An
impermeable horizontal rectangle A1A2D3D1 bounds the flow
domain from below. The barrier is assumed to be an imper-
meable vertical rectangle D1F1F2D2 placed on a vertical soil
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slope D1F1F3D3 that is an idealization of a spillway chute in
Fig. 1.

We introduce the total hydraulic head h(t, x1, x2, y)=p(t, x1,
x2, y)+y, where p is the pressure head. The reservoir water
level H(t) is rising such that the vertical face A1B1B2B3A2

(the dam reservoir boundary) is under a time-variable condi-
tion in terms of h. The tailwater level H0 is constant and,
correspondingly, the total head h over the rectangle
D2C2C3D3 is constant both in time and space. Through the
horizontal rectangle E1E2F3F1 (y=c in Fig. 2a) which repre-
sents the ground surface (a dam crest), rain recharges the water
table.

The 3-D phreatic surface B1B2B3J3J2C1 (sketched in Fig.
2a) is affected by the barrier and outcrops at the tailwater
vertical slope with a seepage face J3C3C2J2. A vertical cross-
section x2=b in Fig. 2a depicts a phreatic line B3J3, with out-
flow through a seepage face segment C3J3 and a constant head
segment D3C3. Another phreatic line, B1J1 is shown in a ver-
tical cross-section x2=0 (Fig. 2a) In this cross-section, the
segment C1D1 is an impermeable wall and line of symmetry,
i.e., the horizontal components of the Darcian velocity vector
vanish there.

In 3-D, the rectangle D2J2J3D3 in Fig. 2a is a vent for
outseeping water. The adjacent saturated soil is routinely
viewed as a zone of the potential risk of seepage-induced
erosion. However, despite Troyanowski’s [36] warning, soil
adjacent to the impermeable surface D1F1F2D2 (i.e., the
under-chute soil) is seldom scrutinized for stability.

The trace of the 3-D phreatic surface B1B2B3J3J2C1 in the
vertical plane x1=a is shown in Fig. 2b as curve C1J2J3. The
phreatic surface rises due to two drivers: the rise of the reser-
voir level H(t) and accretion from the vadose zone. This cre-
ates the following threats to dam stability:

& A high pore pressure on the soil side of the barrier
D1F1F2D2 creates a force perpendicular to this surface that
can cause uplift-heaving of the concrete blocks and their
jacking. Even small seepage-induced displacements of the
blocks can be exacerbated by supercritical surface flow
(shown in Fig. 1a) on the “external” (with respect to the
porous medium) surface of the barrier.

& High vertical upward-oriented hydraulic gradients in the
vicinity of point C1 in Fig. 2b can cause dislodging and
translocation of soil particles, especially, of the fine soil
fraction under the spillway blocks; that reduces the block-
soil grip.

& High lateral (in the x2-direction) seepage gradients due to a
phreatic mound due to the high variation of the elevation
of the points on the curve C1J2J3 in Fig. 2b can cause
suffusion of soil under the barrier, as well as piping in
the open (seepage face) zone of the tailwater. Clearly,
without a barrier (concrete spillway) C1J2J3 in Fig. 2b
has a much milder slope and less threat of lateral
suffusion.

Various analytical and numerical models have been used
for studies of seepage in dam bodies (e.g., [41–53]). Belowwe
follow the recommendation of Alvi [54] and use various
mathematical models for determining 2-D and 3-D functions
h and p, as well as hydraulic gradients within the dam.

In Section 3, we use the Dupuit-Forchheimer (DF) approx-
imation and present a new analytical solution to the problem
of a steady saturated flow occluded by the barrier (Fig. 2a). In
Section 4, we revisit and further develop the Kacimov and
Yakimov [55] analytical solution to a 2-D transient problem
of a potential saturated flow with a phreatic surface rising in a
capillarity-free soil. A vertical barrier occludes this rise. We
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solve a moving boundary value problem (BVP) and calculate
build-up of the seepage-induced pore pressure and hydraulic
gradients. These analytical results are compared with
HYDRUS [56] simulations for a saturated-unsaturated flow
in soil with capillarity. There are nomoving or free boundaries
in HYDRUS. In Section 4, the HYDRUS model is used to
simulate flow in a rectangular domain representing the dam’s
vertical cross-sections close to the plane x2=0 (Fig. 2a). The
phreatic line in HYDRUS is a zero-pressure isobar, which
moves with the family of all other isobars.

In Section 5, we consider the early stage of the deluge
when the earthwork is dry, and the drawup in the reservoir
generates a saturated “tongue,” which propagates inside of
the dam. We consider a monotonic and non-monotonic
reservoir hydrograph. The former is modeled using the
Barenblatt analytical solution ([57]; referred to as PK-
77) for capillarity-free soil on an impermeable foundation.
For the latter, after a rapid rise of the reservoir level up to
a peak stage, a relatively slow drawdown takes place (this
is the actual situation in the Oroville lake when after
February 2017 the reservoir level receded). We recur to
the DF approximation and consider a transient nonlinear
Boussinesq equation. Unlike in Section 3, we assume that
the dam bed is a “leaky boundary”, i.e., that it is made of
a thin claylike stratum (aquitard shown as ALA1D1DL in
Fig. 2a), which transmits water down from the dam body.
The Kalashnikov [58] analytical solution predicts that the
saturated zone in a vertical cross-section is a right trian-
gle, whose hypotenuse (a moving phreatic surface) tilts
with an initially increasing and then decreasing slope.

The HYDRUS simulations are compared with the
Kalashnikov solution at a time when the dynamics of pore
water is controlled by the rise of the water level in the reservoir
rather than the capillarity of the dam body and substratum.
HYDRUS results are also compared with Barentblatt’s solu-
tion, which is an exact one for both the Boussinesq equation
and the 2-D potential model with a nonlinear phreatic surface
boundary condition. HYDRUS reconstructs a perfectly pris-
matic saturated “tongue,”which propagates from the reservoir
into the dam at a constant rate of drawup.

In Section 6, we use HYDRUS to simulate a 3-D tran-
sient saturated-unsaturated flow in the entire box shown
in Fig. 2a. These results (in the limit of constant H in Fig.
2a) are compared with the analytical solution in Section 6.

3 Analytical solution for vertically averaged
steady flow impeded by a strip-barrier

In this Section, we neglect capillarity and flow transiency. We
assume that the dam reservoir level is constant, i.e.,
H(t)=H1=const. We also adopt the DF approximation (see
PK-77, [1]) that eliminates the vertical coordinate y in

Fig. 2a, i.e., the total head h(x1,x2) in the saturated zone coin-
cides with the height hs(x1,x2) of a steady phreatic surface
above the horizontal impermeable base A1A2D3D1. The im-
pact of rain and the vadose zone on the saturated DF flow is
accounted for through the recharge rate N=const>0 [m/s],
which is space- and time-independent over the rectangle
E1E2F3F1 (Fig. 3a). The analytical model below describes
how DF flow “winds” (horizontally) around the impermeable
barrier D1F1F2D2. Fig. 3a represents a planar view.

The water table position hs(x1, x2) and the discharge vector

F
!

S x1; x2ð Þ obey the following BVP in terms of Strack’s po-
tential (see, for example, [1, 59]):

FS
�! ¼ ∇Φ;
∇2Φ x1; x2ð Þ ¼ −N

Φ 0; x2ð Þ ¼ Φ1 ¼ k
H1

2−H0
2

2
¼ const for 0≤x2≤b; i:e:along A1A2;

Φ a; x2ð Þ ¼ 0 for d≤x2≤b; i:e:along D2D3;
∂Φ
∂x2

x1; bð Þ ¼ 0 for 0≤x1≤a i:e:along A2D3;

∂Φ
∂x2

x1; 0ð Þ ¼ 0 for 0≤x1≤a i:e:alongA1D1;

∂Φ
∂x1

x2; að Þ ¼ 0 for 0≤x2≤d i:e:along D1D2

ð1Þ

where Φ x1; x2ð Þ ¼ k h2s−H
2
0

2 [m3/s] is the discharge potential,
∇ and ∇2are the gradient and Laplacian 2-D (i.e., in the plane

x1,x2) operators. The vector FS
�!

has components Fx1 and Fx2

along the corresponding axes (see Fig. 3a).
We decouple the solution to the BVP (1) in the following

manner:

Φ ¼ ΦP þ ΦL ð2Þ

where the first term satisfies the BVP for the Poisson equa-
tion:

∇2ΦP x1; x2ð Þ ¼ −N
ΦP 0; x2ð Þ ¼ Φ1 for 0≤x2≤b; i:e:along A1A2;
ΦP 0; x2ð Þ ¼ 0 for 0≤x2≤b; i:e:along D1D3;
∂ΦP

∂x2
x1; 0ð Þ ¼ ∂ΦP

∂x2
x1; bð Þ ¼ 0 for 0≤x1≤a; i:e:along A2D3andA1D1

ð3Þ

The solution to the BVP (3) is trivial in 1-D:

ΦP x1ð Þ ¼ −N
x21
2
þ Na

2
−
Φ1

a

� �
x1 þ Φ1 ð4Þ

From eq. (4), it follows:

∂ΦP

∂x1
¼ −Nx1 þ Na

2
−
Φ1

a
ð5Þ

The second term on the right-hand side (RHS) of eq. (2) is a
harmonic function which satisfies the following BVP:
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∇2ΦL x1; x2ð Þ ¼ 0
ΦL 0; x2ð Þ ¼ 0 for 0≤x2≤b; i:e:along A1A2

ΦL 0; x2ð Þ ¼ 0 for d≤x2≤b; i:e:along D2D3;

∂ΦL

∂x2
x1; 0ð Þ ¼ ∂ΦL

∂x2
x1; bð Þ ¼ 0 for 0≤x1≤a; i:e:along A2D3andA1D1

∂ΦL

∂x1
a; x2ð Þ ¼ −

∂ΦP

∂x1
a; x2ð Þ ¼ Na

2
þ Φ1

a
¼ u0 for d≤x2≤b; i:e:along D1D2

ð6Þ

The last boundary condition for ∂ΦL
∂x1 a; x2ð Þ in eq. (6) fol-

lows from eq. (5). For ΦL, eq. (6) thus states a mixed BVP
(see the details of this type of BVPs in PK-77). We use the
hodograph method to solve this BVP. Namely, we consider
ΦLas a potential of a fictitious pseudo-flow with a velocity

V f
�! ¼ ∇ΦL, a vector having a horizontal component uf and
a vertical component vf. Then the complex function Vf=uf-
ivf=dWL/dz is holomorphic in the complex plane z=x1+ix2
(the corresponding domain Gz is shown in Fig. 3b). The
function WL =ΦL + iΨLis a complex potential of the pseudo-
flow. ΨL is a stream function of the pseudo-flow. It is harmon-
ic and conjugated with ΦL via the Cauchy-Riemann condi-
tions. The mirrored hodograph domain is a right angle GVf,
which is shown in Fig. 3c, u0 is a given (see eq. 6) positive
constant. We note that the point G1 in GVf is a stagnation
point of the fictitious flow; the real flow, which is quantified
by the full Strack potential Φ, has D1 as a stagnation point
(compare Fig. 3a, b). The separatrix G1G2 divides the
pseudo-flow into a part, which feeds D1D2 by the segment
D2D3, from one emanated from A1A2. The complex potential
domain, GWL, corresponding to Gz, is depicted in Fig. 3d.
GWL has a horizontal cut A2G1D3 along which ΨL =Ql that
is the pseudo-flow rate from A1A2 into D1G2. The total
pseudo-flow rate into D1D2 is Q. The pseudo-flow rate from
D2D3 into D2G2 is Qr=Q-Ql. It is noteworthy that the scalars

Q, Ql, and Qr are to be found. Both the real flow in Fig. 3a
and fictitious flow in Fig. 3b have a singularity at point D2

where both the Strack discharge vector FS
�!

a; dð Þ and the

fictitious velocity V f
�!

a; dð Þ blow up.
We introduce an auxiliary variable ζ = ξ + iηand map

conformally the half-plane Gξ: ξ>0 (Fig. 3e) onto Gz by the
Shwartz-Christoffel function:

z ¼ ic1∫
ζ
−1=λ

dτffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−λ2τ2
� �

1−τ2ð Þ
q ð7Þ

where the branch of the root is fixed in such a manner that
the root is positive at ζ = ξ, η = 0, − 1 < ξ < 1. The mapping
constant is determined from the given width of Gz , z(-1)=a,
c1=a/K’, where K’ is the complete elliptic integral of the first

kind with the modulus
ffiffiffiffiffiffiffiffiffiffi
1−λ2

p
. We know the height of Gz in

Fig. 3b. Therefore, the relation z(1)=a+ib in eq. (7) gives:

b
a
¼ 2K

K 0 ð8Þ

where K is the complete elliptic integral of the first kind with
the modulus λ. From eq. (8) we find the value of λ by the
FindRoot and EllipticK routines of Wolfram’s [60]
Mathematica.

From eq. (7) the affix δ of point D2 in Gζ (Fig. 3e) is:

d ¼ a
K 0 ∫

δ
−1

dτffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−λ2τ2
� �

1−τ2ð Þ
q ð9Þ

Equation (9) is a nonlinear equation with respect to δ,
which we again solve by the FindRoot routine of Wolfram’s
Mathematica.

Next, we map conformally Gζ onto the quadrant GVf (Fig.
3b) by the Shwartz-Christoffel function:
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V f ¼ dWL

dz
¼ c2∫

ζ
−1 τ−δð Þ−3=2 τ þ 1ð Þ−1=2dτ þ u0

¼ −
2c2
1þ δð Þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ ζ
ζ−δ

s
þ u0 ð10Þ

where the branch of the root is selected positive along the
ξ−axis in Fig. 3e, in the interval ξ > δ (and therefore at ξ < −
1). The mapping constant c2 will be found later. Obviously, in
the interval −1 < ξ < δ, the root in eq. (10) is imaginary (see the
ray D1D2 in Fig. 3c). From eq. (10), the singularity at point D2

is Vf ∼ (ζ − δ)−1/2that can be expressed via ζ(z) from eq. (7).
Obviously, z(ζ)is regular at point D2.

We assume that point A1 is fiducial, i.e., at this pointWL = 0
(the complex potential is defined up to an arbitrary complex
constant, see PK-77). Then

WL ¼ ∫ζ−1=λ
dWL

dz
τð Þ dz

dτ
τð Þdτ ð11Þ

By using eqs. (10) and (7) in the integrand of eq. (11) we
get

WL ¼ u0z ζð Þ−i 2ac2
K 0 1þ δð Þ ∫

ζ

−1=λ

dτffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ−δð Þ 1−τð Þ 1−λ2τ2

� �q ð12Þ

Now we determine c2 from the condition at the point ξ = δ
where z=a+id and WL=iQ.

From the last line in eq. (6) we have a constant horizontal

pseudo-velocity∂ΦL
∂x1 ¼ u0 along D1D2 and therefore Q=u0*d.

Then, from eq. (12) we get

u0a ¼ 2ac2
K 0 1þ δð Þ ∫

δ

−1=λ

dτffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ−τð Þ 1−τð Þ 1−λ2τ2

� �q ð13Þ

From eq. (13) we immediately express c2 and put it back
into eq. (12) which becomes

WL ¼ u0z ζð Þ−i au0
I1

∫
ζ

−1=λ

dτffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ−δð Þ 1−τð Þ 1−λ2τ2

� �q ; I1

¼ ∫
δ

−1=λ

dτffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ−τð Þ 1−τð Þ 1−λ2τ2

� �q ð14Þ

We separate the real part in eq. (14) and get ΦL. Then, we
re-assemble eqs. (11) and (4) to get the final solution in terms
of Strack’s potential (2).

We introduce dimensionless variables by normalizing all
geometrical sizes to a and the Darcian velocity to k.

The parametric equation of the phreatic curve C1J2 (Fig.
2b) is:

hsw ξð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2

1−H
2
0

� �
1−

1

I1
Re ∫

ζ

−1=λ

dτffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ−δð Þ 1−τð Þ 1−λ2τ2

� �q
0
B@

1
CAþ H2

0

vuuuut ;

x2 ξð Þ ¼ K þ F arcsinξ;λð Þ
K 0 ; −1 < ξ < δ

ð15Þ
where F is the incomplete elliptic integral of the first kind.
Similarly, from (7) and (14) we get parametric equations of
B1C1 as hss(ξ), x1(ξ), − 1/λ < ξ < − 1.

Suffusion, piping, and lessivage are controlled by the vec-

tor of the hydraulic gradient (PK-77) J
!¼ V

!
=k. In the DF

model, while J
!

does not vary with y, it varies with x1 and x2 as
follows:

J
!¼ −∇hs x1; x2ð Þ ð16Þ

In eq. (16), J
!

has components Jx1 and Jx2 in the x1 and x2
directions, respectively. For example, from eq. (15) along the
barrier Jx1 = 0 and the component of the magnitude of Jx2 is:

J x2w ξð Þ ¼ d hsw ξð Þ½ �
dξ

d x2 ξð Þ½ �
dξ

� �−1
�����

�����; x2 ξð Þ

¼ K þ F arcsinξ;λð Þ
K 0 ; −1 < ξ < δ ð17Þ

In computations involving eqs. (15) and (17), we used the
Mathematica routines NIntegrate , EllipticF, and
ParametricPlot. Figure 4a, b, c shows hsw(x2), Jx2w(x2), and
hss(x1) for dimensionless parameters b=4, d=3/15, H1=102/
50, H1=2/50, and N=0 (see also Figs. 2a and 3a for the
corresponding points). The choice of these quantities is con-
nected to ones in numerical simulations of Section 6 below.
Figure 4a and b show a steep drop of the phreatic surface from
point C1 to J2 and extremely high gradients, especially, close
to the rim of the barrier, D2J2. These gradients well exceed the

safe limit of PK-77, which is j J!j ¼ 1.
For assessments of heaving (uplifting) of the barrier blocks,

we introduce a dimensionless (normalized to ρga, where ρ is
the density of water) integral pore pressure acting on the bar-
rier:

Pi ¼ ∫
d

0
∫

hs 1;x2ð Þ

0
hs 1; x2ð Þ−yð Þdydx2 ¼ ∫

d

0

hs 1; x2ð Þ½ �2
2

dx2

¼ ∫
δ

−1

hsw ξð Þ½ �2
2

dx2 ξð Þ
dξ

dξ ð18Þ

i.e., an integral of the pore pressure over a curvilinear tra-
pezium D1C1J2D2 (Fig. 2b). This trapezium is the “wetted
area” of the barrier, “submerged” under the phreatic surface.
The force (normalized to the specific weight of pore water and
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a) due to the hydrostatic pressure isFi = Pi/Ar, where Ar is the
“sub-phreatic” (wetted) area of D1C1J2D2. For the example
illustrated in Fig. 4, computations give Pi=0.14 and Fi=0.49.
Similarly, we can find the center of the seepage pressure exerted
on D1C1J2D2. If the barrier consists of blocks, then the seepage
force acting on a block, the point of its application, and the force
moments, which are needed for assessing the threat of jacking,
can be easily found by integrations similar to eq. (18).

4 Transient 2-D flow in a vertical plane,
for a constant-rate drawup

In this section, we consider a transient element of 3-D flow in
Fig. 2a, i.e., seepage in the vertical plane x2=0. Figure 5 a shows
the vertical cross-section x1A1y, in which we introduce Cartesian
coordinates XY with the origin at a moving point C1 where the
rising phreatic surface intersects the vertical barrier. Although
the real 3-D phreatic surface drops from C1 to the rim of the
barrier (point J2 in Fig. 2a), in this Section we assume that the
barrier half-width d is high enough so that we can assume flow
to be 2-D in the plane XY, i.e., close to the line D1C1 in Fig. 2a.

4.1 Analytical similarity solution for phreatic flow
impeded by a vertical barrier

The water level in the dam reservoir rises with time t [days] at
a constant rate R [m/day]. We assume that this rise continues
for a sufficiently long time such that the phreatic line B1C1

propagates in a porous slab of a width a as a traveling wave,
i.e., without any change in its shape (see details of the corre-
sponding similarity solution in [55]). This regime is realized if
the impermeable bed A1A2D3D1 is far beneath B1C1, i.e., H(t)
in Fig. 2a is high enough. Correspondingly, the base A1D1 is

not even shown in Fig. 5a. Then, we can ignore A1A2D3D1

and study flow in a half-strip AB1C1, where A is an “infinity
point.”A rising curve B1C1 caps the domainGz in Fig. 5a. The
difference in elevations of points B1 and C1, the depth, tr, of
this advancing “trough” on the phreatic line is a part of the
solution.

Similarly to Section 2, the stability of C1A against seepage-
induced erosion is controlled by the distribution of the pore
pressure head p(X,Y,t) and the Darcian velocity

V
!¼ −k∇h X ; Y ; tð Þ, especially, in the vicinity of Y=0, i.e.,
close to the point C1 in Fig. 5a. In the following text, we work
in a system of coordinates, which translates upwards with a
speed R.

In the analytical solution below, we neglect accretion on the
phreatic surface and capillarity of the soil, i.e., assume a piston
type rise (or imbibition, see [61]) of B1C1. This means that the
soil beneath this line is saturated and above it is dry, with an
instantaneous saturation occurring when B1C1 passes through
this point. The porosity of the soil is 휃s and the irreducible
moisture content is 휃r (in the analytic solutions below we
assume 휃r=0).

Due to symmetry, we can mirror the physical strip GZ about
the C1Y axis that results in an “image reservoir” on the right of
the barrier (Fig. 5a). Point Bm is a mirror image of point B1. We
introduce a complex physical coordinate Z=X+iY. The complex
coordinates of points B1 and Bm are ∓a + i tr, correspondingly.

Similarly to Kacimov and Yakimov [55], we introduce a
complex potential w = ϕ + iψ,ϕ = − kh and a function Vc=dw/
dZ, which is complex-conjugated with the complexified
Darcian velocity V=u+iv, i.e., Vc=u-iv where u and v are,
correspondingly, the X and Y components of the Darcian ve-

locity vector V
!
. The domain GVc is a circular digon (a lune-

shaped polygon) shown in Fig. 5b. The curve BmC1B1 is an

Fig. 4 a The phreatic curve C1J2
for dimensionless parameters
b=4, d=3/15, H1=102/50, H1=2/
50,N=0. b The hydraulic gradient
along the barrier for
dimensionless parameters b=4,
d=3/15, H1=102/50, H1=2/50,
N=0. c The phreatic curve B1C1

for dimensionless parameters
b=4, d=3/15, H1=102/50, H1=2/
50, N=0
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arc of a circle of a radius (k + θsR)/2, centered at a point i ⋅ (k
− θsR)/2and at an angle πγ with the u-axis. Darcian velocities
at points B1 and C1 are horizontal and vertical with magni-
tudes uB1 and vC1, respectively. We select point A as fiducial,
i.e., wA=0. Then, the complex potential domain Gw, shown in
Fig. 5c, is a digon with an angle πv between the phreatic
surface and the coordinate axis.

We introduce dimensionless variables (z∗, X∗, Y∗, h∗, tr∗)-
= ( z , X , Y, h , t r ) /a , V*; u*B1; v

*
C1

� � ¼ V ; uB1; vC1ð Þ=k;
w*;ϕ*;ψ*� � ¼ w;ϕ;ψð Þ= k*að Þ, and R ∗ = qsR/k. For the sa-
ke of brevity, we drop the superscript “*”. Kacimov and
Yakimov [55] obtained the shape of B1C1 and found that

uB1 ¼
ffiffiffi
R

p
; vC1 = R; cot πνð Þ ¼ ffiffiffi

R
p

; γ = 1 − 2 ⋅ ν (see also
the phreatic surfaces in Fig. 5a of [55]). We note that if R>1
then the center of the circle B1C1Bm in the Vc-plane is below
the uc -axis and γ>1/2 (Fig. 5b, dashed line).

Kacimov and Yakimov [55] introduced an auxiliary vari-
able z = x + i × h and considered a reference half-plane Gζ,
−∞ < ξ < ∞ , η > 0, ζ = ξ + iη (Fig.4.1d) onto which Gz has
beenmapped by the function, which is obtained by integration
of the following function:

Ξ ζð Þ ¼ dZ
dζ

¼ i
π

eνπi

1þ ζð Þν ⋅ 1−ζð Þ1−ν −
e−νπi

1þ ζð Þ1−ν ⋅ 1−ζð Þν
" #

ð19Þ

Now, we use the PK-77 method for determination of the
function Ω ζð Þ ¼ dw

dζ , where w(ζ) is the complex potential as a

function of ζ:

Ω ζð Þ ¼ i⋅
ffiffiffi
R

p

π
enpi

1þ ζð Þν ⋅ 1−ζð Þ1−ν þ
e−npi

1þ ζð Þ1−ν ⋅ 1−ζð Þν
" #

ð20Þ

Consequently, for Vc ¼ dw
dZ ¼ Ω

Z from eqs. (19)-(20), we
obtain:

Vc ζð Þ ¼
ffiffiffi
R

p 1þ ζð Þγ ⋅eνπi þ 1−ζð Þγ ⋅e−νπi
1þ ζð Þγ ⋅eνπi− 1−ζð Þγ ⋅e−νπi ð21Þ

Then, integration of eqs. (19)-(20) yields:

tr ¼ Im ∫10Ξ τð Þdτ
	 


¼ 1

i
∫10Ξ τð Þdτ þ 1

Y ηð Þ ¼ Im ∫i⋅η0 Ξ τð Þdτ
	 


¼ 1

i
∫i⋅η0 Ξ τð Þdτ ; 0≤η < ∞; 0≥Y > −∞

h ηð Þ ¼ −tr þ ∫i⋅η0 Ω τð Þdτ ; 0≤η < ∞; −tr < h < 0
v ηð Þ ¼ i⋅Vc i⋅ηð Þ 0≤η < ∞; R < vy < 0

ð22Þ

From eq. (22), the distribution of the pore pressure along
AC1 is obtained as a parametric equation:

Y ¼ Y ηð Þ; p ηð Þ ¼ h ηð Þ−Y ηð Þ þ tr; 0≤η < ∞ ð23Þ

Similarly, the distribution of the velocity along AC1 is de-
termined from eq. (22) by the parametric equation:

Y ¼ Y ηð Þ; v ¼ v ηð Þ; 0≤η < ∞ ð24Þ

Figure 6 presents computations based on eqs. (22)-(24),
which we carried out in Wolfram’s Mathematica for three
dimensionless drawup rates, R=4, 1, and 0.25. The corre-
sponding curves 1v-3v are the Darcian vertically-oriented ve-
locities v(-Y) along C1A in Fig. 5a; the curves 1h-3h show the
vertical distribution of the total hydraulic head h(-Y) along the
barrier and the curve 1p is the distribution of the pore pressure
for R=4. These results illustrate that at dimensionless depths of
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Y ∼ − 3, water close to the barrier is almost stagnant, the total
head is almost the same as in the reservoir, and the pore pres-
sure is almost hydrostatic. However, closer to the rising phre-
atic surface (point C1 in Fig. 5a), the hydraulic gradients are
high, i.e., in this zone the soil adjacent to the barrier is tempo-
rary, when the traveling phreatic line B1C1 passes through,
susceptible to erosion.

4.2 HYDRUS solution in a rectangle with an impeding
vertical barrier

For comparisons, in this Subsection, we return to dimensional
quantities and use HYDRUS [56] to simulate a transient 2-D
saturated-unsaturated flow in a rectangular domain with a ver-
tical barrier, similar to C1A in Fig. 5a. We consider drawup for
0<t<7 days with a rate of R =50 cm/day. Below we use the
HYDRUS notations and coordinates (XH, ZH) with the origin
of coordinates at point A1 (Fig. 2a). The rectangle A1E1F1D1

of sizes a=100 cm and c=450 cm in XH and ZH directions,
respectively, is shown in Fig. 7.

First, we selected loam as the dam material, for which we
retrieved the physical properties from the HYDRUS Soil
Catalogue, i.e., k=25 cm/day, 휃s=0.43, 휃r=0.078, and the
Vedernikov and Bouwer [40] constants 훼=0.036 cm-1 and

n=1.56. In the analytical solution, the corresponding dimen-
sionless drawup rate is 0.71.

The transport domain was discretized into finite ele-
ments with the following parameters and/or statistics: a
targeted size of finite elements of 2.5 cm, 11,771 nodes,
440 1-D and 23,100 2-D finite elements. We assumed
that prior to the reservoir filling and a seepage event (at
t=0) the whole rectangle was dry with an initial pressure
head of pd=-10,000 cm. The boundary conditions were
selected as follows. No flow was assumed along the
three sides of the rectangle, A1D1, D1F1, and F1E1.
Along the “expanding” boundary segment A1B1, water
level in the reservoir rises and a time-variable boundary
condition with a linear increase of the pressure head
p(0, Z, t) with time for Z varying from point A1

(fixed) to point B1 (moving) was specified. In other
words, the total head h along A1B1 was constant at
any fixed time instance and was increasing linearly as
a function of time. The “shrinking” vertical segment
B1E1 was assumed to be impermeable because the pres-
sure head there was negative. This boundary condition
is consistent with one in the analytical model of
Vedernikov and Bouwer [63].

Figures 7 a, b, c, d, and e show colored plots of p(X, Z, t) for
time instances t=1, 2, 3, 4, and 7 days. The similarity regime,
examined in the analytical solution (Fig. 5), is indeed
established after about 3 days. From Fig. 7a and a boundary
line chart p(X, 0, 1) generated by HYDRUS we obtain that at
t=1 day the tip, WB, of the phreatic surface is at the locus
XWn=76 cm. The isotachs V=const are shown in Figs. 7f–g
at time t=7 days. These isolines demarcate a “tongue” of high
hydraulic gradients (their magnitude exceeds 2 near point B1)
close to the reservoir boundary. It is geotechnically worrisome
that, for example, at t=7 days (Fig. 7f), a zone of gradients of
magnitude higher than 0.1 extends more than 100 cm beneath
the phreatic surface. Fig. 7g shows the contour lines of hori-
zontal components, u, of the Darcian velocity vector plotted at
t=7 days. The magnitude of velocity at point C1 is VC1≈16 cm/
day. The analytical solution from Subsection 4.1 gives the
corresponding value of VC1 =21.5 cm/day when 휃s=0.43 is
used in the definition of the linear average velocity and VC1

=17.6 cm/day when the porosity is replaced by an “effective”
value,휃e=s -휃r =0.43-0.078, i.e., VC1=e*R. The depth of the
trough (Fig. 5a) obtained by HYDRUS is tr≈39 cm as com-
pared with those obtained by the analytical solution, viz. tr =

Fig. 6 Darcian velocities v (curves 1v-3v are for dimensionless drawup
rates R=4, 1, 0.25, respectively), the total hydraulic head h (curves 1h-3h
are for R=4, 1, 0.25, respectively) and the pore pressure p (for R=4) along
AC1 in Fig. 5a

�Fig. 7 The results of the HYDRUS computations for a constant rate of
drawup in a rectangle made of loam (k=25 cm/day, 휃s=0.43, 휃r=0.078,
훼=0.036 cm-1, and n=1.56; R=50 cm/day, the initial pressure head pd=-
10000 cm) (a-g) and sand (k=0.495 cm/min, 휃s=0.43, 휃r=0.045,
훼=0.145 cm-1 and n=2.68; R=25 cm/min, the initial pressure head pd=-
100 cm) (h-i). The pressure heads are displayed in (a-e) and (h); water
fluxes in (f), (g), and (i).
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49.72 cmand tr = 42.19 cm, depending on whether 휃s or 휃e

is used in the definition of velocity.

4.3 The Barenblatt’s analytical solution versus
HYDRUS simulations for the “saturated tongue”
without a barrier impedance

The difference between the analytical and HYDRUS results is
reduced when the two models physically converge, i.e., when
the impact of soil’s capillarity is minimized. In this subsection,
we consider the same dam geometry as in Fig. 7a-g, but with
the dammaterial being sand (휃s=0.43,휃r=0.045, and the van
Genuchten [40] constants훼=0.145 cm-1 and n=2.68, k=0.495
cm/min). In this case, capillarity plays a relatively minor role
in the Richards equation. We assume that the reservoir level
rises with a rate of R =25 cm/min, the initial pressure head in
the rectangle is pd=-100 cm (this is very dry for sand).

Barenblatt (see PK-77 for full details) obtained another
analytical similarity solution for the problem of a “linear
drawup” of the reservoir water level with the propagation of
a wetting front into a dry dam without capillarity at relatively
small values of t, when the “saturated tongue” does not reach
the confining (right) barrier (D1F1 in Fig. 2a) at the other end
of the domain. In Barenblatt’s solution, the dimensional

Darcian velocity, ua ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
k R θs

p
, is purely horizontal and con-

stant in the entire flow domain. The time-expanding saturated
domain is exactly a right triangle, the hypotenuse of which is a
“tilted” phreatic surface with a constant slope. The locus of the
front, i.e., the intersection of the phreatic line with the imper-
meable base of the dam (D1A1 in Fig. 2a) is

XWa tð Þ ¼ t
ffiffiffiffiffiffiffiffiffiffiffiffiffi
k R=θs

p
. It is noteworthy that Barenblatt’s

“expanding triangle” is an exact solution to both the Laplace
equation in a potential transient 2-D flow model and to the
Boussinesq 1-D equation, which is based on the DF
approximation.

HYDRUS isobars and isotachs for the selected exam-
ple are shown in Fig. 7h and i, respectively. The position
of the front after 10 min of flooding is XWn≈56 cm (Fig.
7h) according to HYDRUS, and Xwa=53.9 cm and
59.6 cm according to the Barenblatt analytical solution,
depending on the choice of porosity or “effective” poros-
ity, respectively. At the same time, the magnitude of ve-
locity, although not exactly constant, in the bulk of the
rectangular trough is un ≈ 2 cm/min according to the nu-
merical solution (Fig. 7i) and ua=2.3 cm/min and 2.1 cm/
min according to the Barenblatt analytical solution, de-
pending on whether θsor θe is used, respectively. These
comparisons cross-verify that the phreatic surface model
based on the analytical solution and the numerical solu-
tion of the Richards equation provide similar results. This
substantiates a combined utilization of HYDRUS and an-
alytical models.

5 Transient 2-D flow, drawup-drawdown
hydrograph

A typical hydrograph (see, for example, Fig. 8), especially for
recharge dams in Oman [64], is a one peak curve, which rapidly
rises from a zero-level (the so-called “dry dams” which have
empty reservoirs prior to flash floods) and relatively slowly re-
cedes. Under these type of hydrological drivers, the stability of
the dam’s soil requires a special examination [65]. The whole
porous body of the dam, rather than a soil column, should be
tested under rising-receding hydraulic gradients and pore pres-
sures. In this Section, we extend the analysis from Section 4, i.e.,
we compare an analytical solution with HYDRUS simulations
for a single-maximum hydrograph and a two-layered flow
domain.

5.1 Kalashnikov’s analytical solution

We consider a vertical cross-section, a rectangle A1E1F1D1 (Fig.
9a) made of a homogeneous material with the hydraulic conduc-
tivity k and porosity 휃s. However, unlike as in Section 4, a
porous rectangle A1E1F1D1 is underlain by a layer A1D1DLAL,
a low-permeable medium, an “aquitard” of the conductivity
k1<<k (Figs. 2a and 9a). The thickness f of this layer is small,
and the pressure head p along ALDL is zero. In the analytical
solution, we introduce a Cartesian coordinate system xy with the
origin A1. Both porous rectangles (Fig. 9a) are initially (t<0) dry.
After t=0, the left face of the domain, A1E1, is assigned the
pressure head boundary condition corresponding to the reservoir
level hp(t), varying as a one-maximum function shown in Fig. 8.
A saturation “tongue” propagates into A1E1F1D1. In terms of the
DFmodel, the thickness hB(t,x) of the “tongue”A1UWB (Fig. 9a)
obeys the following BVP to the Boussinesq equation:
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Fig. 8 Kalashnikov’s one-peak hydrograph

Fig. 9 The Kalashnikov’s straight-line phreatic surface evolving in a
vertical cross-section of a two-layered soil displayed together with the
HYDRUS FE mesh and boundary conditions (a), the HYDRUS-
computed isobars at t=40 (b) and t=140 min (c), and the HYDRUS-
computed isotachs at t=100 min (d)
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θs
∂hB
∂t

¼ ∂
∂x

khB
∂hB
∂x

� �
−k1

hB
f
; q t; xð Þ ¼ −khB

∂hB
∂x

; 0 < x < xWB tð Þ
hB t; 0ð Þ ¼ hp tð Þ; hB 0; xð Þ ¼ 0

ð25Þ

where q is the seepage flow rate through a vertical cross-
section x and xwB(t) is the locus of the wetting front, point WB,
where q=0. Flow is quasi-horizontal and quantified by the first
term on the RHS of eq. (25) and indicated by a yellow arrow
in Fig. 9a. Leakage through the aquitard is quasi-vertical and
described by the second term on the RHS of eq. (25). The
corresponding leakage flow rate ql(t,x) is indicated by a red
arrow in Fig. 9a. Equation (25) ignores capillarity and hyster-
esis: at any point x and at any time t as the phreatic surface hB
rises or drops, the pore water immediately fills or abandons
the corresponding interstitial space.

Kalashnikov [58] reported a simple (and well-forgotten by
geotechnical engineers) explicit analytical solution to the non-
linear degenerate parabolic PDE (25) for a special one-peak
hydrograph:

hp τð Þ ¼ 4hpmaxexp −τ½ � 1−exp −τ½ �ð Þ ð26Þ

where hpmax is the maximum of the reservoir level and휏=t k/
s is a dimensionless time. Kacimov [62] used this solution for
assessing a potential impact of the reservoir on a subsurface
structure (e.g., a waste repository or a missile silo). Now, we
revisit Kalashnikov’s solution to compare it with the
HYDRUS simulations.

We introduce the following dimensionless variables: hBd =
hB/hpmax, xd = x/hpmax, fd = f/hpmax, td = tk/(θshpmax), and kr =
k1/k, and drop the subscript “d”. The solution to the problem
(25)-(26) is a phreatic surface:

hB t; xð Þ ¼ 4exp −tkr= f½ � 1−exp −tkr= f½ �ð Þ−2exp −tkr= f½ �
ffiffiffiffiffiffiffiffiffiffi
kr= f

p
x;

0 < x < xWB ¼ 2exp −tkr= f½ �
ffiffiffiffiffiffiffiffiffiffi
f =kr

p
; 0 < t < ∞

ð27Þ

i.e., a segment of a straight line. The slope of this line is
always negative, i.e., pore water in the dam is devoured by
leakage. There is no seepage back to the reservoir and there-
fore no threat of suffusion along A1U (Fig. 9a). Obviously, the
aquitard zone adjacent to the A1AL line, where the vertical
hydraulic gradient varies according to hB(t,0)/f, is most sus-
ceptible to translocation of fine particulates from the porous
medium of the dam body into the “aquitard.”

From Eq. (27), the peak of the hydrograph hpmax=1 is
attained at t=f/kr*log(2); the maximum instantaneous flow rate

of seepage from the reservoir into the dam qmax t; 0ð Þ ¼ 32=2

7
ffiffiffiffiffiffiffiffiffiffi
kr= f

p
is attained at t=f/kr*log(3/2); the maximum volume

of pore water stored in the dam Vmax(t) =max[휃sh(t,0)xwB(t)/
2]=16θs=27*

ffiffiffiffiffiffiffiffiffiffi
f =kr

p
is attained at t=f/kr*log(3); the maximum

propagation width of the wetting front into the dam xWBmax

=2
ffiffiffiffiffiffiffiffiffiffi
f =kr

p
is asymptotically attained at t = ∞ .

5.2 HYDRUS 2D simulations

For comparisons with the analytical solution (27), the trans-
port domain simulated by HYDRUS is a large sand-made
rectangle A1E1F1DL (0<XH<350 cm, 0<ZH<250 cm; the
dam body) and the origin of the spatial coordinates is point
AL (Fig. 9a). The thin rectangle A1D1DLAL (an “aquitard”
consisting of a VGM loam) is 5 cm thick. Hysteresis in the
soil-water retention function is neglected in both rectangles.
Simulations were carried out for 500 min. A time-variable
pressure head boundary condition (26) with hpmax=100 cm is
approximated using a linear interpolation between points at
each 10 min (i.e., we used 50 linear interpolation lines to
approximate the hydrograph in Fig. 8). Parameters of the FE
discretization are as follows: 40x40 layers, 1,681 nodes, 160
1-D elements, and 3,200 2-D elements (Fig. 9a). Figs. 9bc
show the isobars around the phreatic surface p=0 at
t=40 min and t=140 min, respectively (the hydrograph peak
is at t= 89 min). The colored map of isotachs is shown in Fig.
9d at t=100 min. Up to about t=200 min, the HYDRUS phre-
atic surface and the Kalashnikov solution (27) match well.
After that, capillarity of the soil in the rectangles prevails,
and the numerical and analytical solutions diverge.

6 3-D saturated-unsaturated flow simulated
by HYDRUS

In this Section, we consider a 3-D transient saturated-
unsaturated flow in a rectangular loam-made parallelepiped
of sizes a*b*c (Fig. 2a), where a=50 m, b=200 m, c=110 m,
and d=15m. The real dams (see, for example, Fig. 1-49 for the
Oroville Dam in [66]) are zoned, with a core, sloping shoul-
ders, drains, and other elements, which have spatially varying
and contrasting soil properties. The initial conditions for total
pressure heads and/or water contents, which reflect transient
conditions of infiltration (determined by rainfall) and reservoir
stage variations, may be rather complex. Therefore, a homo-
geneous flow domain (Fig. 2a) and simple initial and bound-
ary conditions adopted in our HYDRUS-3D [56] simulations
given below serve as a simple qualitative analysis and as an
asymptotic (at large t) comparison with the analytical solution
described in Section 3.

We count the total head from the dam base y=0. We
assume the following initial conditions: at t=0 the total head
h=H0=2 m in the parallelepiped 0<x1<a, 0<x2<b, 0<y<H0

(hydrostatic conditions, i.e., no seepage at t<0). Above this
“thin” parallelepiped, which is at an initial “background”
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full saturation, the dam’s loam is at negative hydrostatic
pressure heads.

We assume the following boundary conditions (see Fig.
2a):

1. The rectangles A1E1F1D1 (the plane of symmetry, the
front face of the flow domain), A1A2D3D1 (the dam base),
A2B3F3D3 (the back face of the flow domain) and
D1F1F2D2 (the vertical barrier, a shaded area in Fig. 2a)
are no-flow boundaries.

2. The rectangle D2C2C3D3 (the lower right face of the flow
domain) remains at a constant total head h=H0 =2 m (a
static tailwater level) at all times.

3. The rectangle C2F2F3C3 (the upper right face of the flow
domain) is a potential seepage face, which transmits water
to the atmosphere from the 3-D flow domain (an actual
seepage face) when the pore pressure on its outflow side
becomes positive and is impermeable otherwise.

4. The “expanding” rectangle A1A2B3B1 (the lower left face
of the flow domain) is the surface of a contact between the
rising and (eventually) static reservoir water level. We
assume that the total head initially varies linearly:

h ¼ H0 þ R*t at 0 < t < Trise ð28Þ

where R*=1 m/day is the rate of the reservoir water level
rise and Trise=100 days is the duration of the rise. At t>Trise,
the water level in the reservoir remains constant and therefore
the boundary condition along a stabilized rectangle A1A2

B3B1 is h=102 m at t>100 days.

5. The rectangle B1E1E2B3 (the middle left face of the flow
domain), which “shrinks” at 0<t<Trise is impermeable.

6. The rectangle E1E2F3F1 (the upper face of the flow do-
main) is a no-flow zone.

HYDRUS [56] simulates saturated-unsaturated flow
governed by Richards’ equation in the 3-D transport domain,
which is discretized into finite elements of triangular prisms.
We used default HYDRUS parameters, such as iteration
criteria, time-step controls, the VGM soil hydraulic functions,
the built-in Soil Catalogue [67], etc.

We selected the “3-D simple” domain type with the follow-
ing dimensions: 50x200x110 m in the XH, YH, and ZH
Cartesian coordinates of HYDRUS (Fig. 10a), with the origin
at point A1 (see also Fig. 2a where the corresponding
coordinates were x1, x2, and y). Triangular prisms were select-
ed for the FE discretization of the parallelepiped with 41, 27,
and 87 layers in the XH, YH, and ZH directions, respectively.
The total number of nodes was 96,309, and the finite element
mesh involved 132, 2,080, and 178,880 1-D, 2-D, and 3-D
elements, respectively. Seven observation points were placed

at characteristic locations of the parallelepiped for monitoring
the dynamics of flow parameters.

We assumed the following initial (t=0 d) conditions: the
total head (counted from the ZH=0 plane in Fig. 10a) was
H0=2 m in the entire transport domain (0<XH<50 m,
0<YH<200 m, 0<ZH<110 m) (i.e., hydrostatic conditions, with
no seepage at t<0). The transport domain is thus initially fully
saturated for ZH<2 m and has negative hydrostatic pressure
heads for ZH>2m. The simulation was carried out for 0<t<365
days.We recall that the boundary condition along the reservoir
face XH=0 was time variable. A snapshot of t=365 days was
selected for visualization of the results.

We assumed that the dam is made of a homogeneous, iso-
tropic, incompressible loam with the following van
Genuchten soil hydraulic parameters selected from the
HYDRUS Soil Catalogue: the saturated hydraulic conductiv-
ity k1=0.25 m/day, porosity of 0.43, the irreducible volumetric
water content of 0.078, and the van Genuchten parameters of
the soil water retention curve 훼 = 3.6 1/m and n=1.56. We
assumed no rainfall on the ground surface ZH=110 m and no
root water uptake from the dam soil.

Simulations corroborate our concerns about the seepage-
induced threat to the dam’s stability. For example, Fig. 10g
shows that along the major area of the seepage face the mag-
nitude of the hydraulic gradient exceeds 1. Moreover, close to
the edge of the barrier (the vertical line XH=50 m, YH=15 m)
extremely high gradients (exceeding 10) are apparent, similar-
ly as obtained by the analytical solution given in Fig. 4b.

7 Concluding remarks

Factors around (actual and potential) failure of dams’
spillways can be assessed with both analytic and numeri-
cal tools, and the paper presented what we learn from that
analysis. Our objective was to use computer algebra and a
FEM model to study the fields of the hydraulic gradients
(or Darcian velocities), total hydraulic heads, and pore
pressures within a porous dam body, in particular, in the
locus of static and transient phreatic surfaces. We devel-
oped new analytical solutions, revisited the old ones, and
surveyed the methods as they pertain to the problems of
seepage in earth dams. We used and cross-compared the
results of computations in:

& analytical models for quasi 3-D steady DF flow, potential
transient 2-D phreatic surface seepage governed by
Laplace’s equation in a dam body resting on an imperme-
able substratum;

& an analytical model for 1-D Boussinesq flow over a leaky
bottom;

& a numerical FEM model for saturated-unsaturated flows
governed by Richards’ equation.
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The numerical and analytical solutions presented in our
paper, generally speaking, match well. They indicate that
under selected initial and boundary conditions, the dam
soil adjacent to an impermeable barrier is indeed under a
high risk of erosion due to seepage. As parametric inputs
to our models, we assumed simple flow geometries (rect-
angles and box-shaped domains) and soil homogeneity
with respect to the saturated hydraulic conductivity and
VGM capillary constants. The real dam body went
through a decade-long consolidation-differential

settlement that in terms of our models would have result-
ed in the heterogeneity of k, θs, θr, and VGM parameters,
the anisotropy of k, and perhaps, hysteresis (not only in
water retention curves but perhaps also in relative perme-
ability functions). Consequently, more realistic geometries
(for example, a truncated prism as the dam body, i.e., a
trapezium rather than a rectangle in a vertical cross-sec-
tion) and heterogeneity of soil (rock) filling can be
modeled in the future by HYDRUS. For this extended
modeling, as well as for validation of both analytical

Fig. 10 The 3-D HYDRUS transport domain with finite element
discretization (a), the distribution of the pressure head p at t=100 d (b),
the positive pressure heads at t=365 d at the shell of the transport domain
(c), isobaric contours around the phreatic surface displayed on the shell of
the transport domain at the left (YH=0) and back (XH=0) planes (d) and

right (YH=200 m) and front (XH=50 m) planes (e), contours of volumetric
water contents in the capillary fringe above the phreatic surface at the
front plane (XH=50 m) at t=365 d (f), isotachs at the front plane (XH=50
m) at t=365 d (g), and isobars, isotachs, and velocity vectors in the cross-
sectional plane (ZH=2 m) at t=365 d (h)
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and numerical solutions (and for falsification of Hegel’s
skepticism about historical lessons), in the application to
the particular case of the Oroville Dam, the following
information would be beneficial:

& systematic (regular) historic records from piezometers/
moisture content data loggers with interpolated dynamic
fields of 3-D transient pressure heads in the interior of the
dam;

& several infiltration tests on the dam slopes and crest for the
assessment of hydraulic properties of the soil surface and,
consequently, the prediction of accretion to the phreatic
surface during rainfall events and of evapotranspiration
during dry spells;

& several geophysical surveys (e.g., by OhmMapper, gravi-
meters, sap flow meters used for the plants emerging on
the downstream slope of the dam) with transects parallel
and perpendicular to the dam crest for proxy-data on the
moisture content/pore pressure distributions, plant roots’
topology, and position of the phreatic surface in the dam
body, the following phenomena.

The modeling-data acquisition/processing program for the
Oroville dam can serve as a prototype for many other
monitoring-maintenance programs applied to hydraulic infra-
structure in the USA, and many other countries.
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