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Genetic and immunologic 
features of recurrent stage I lung 
adenocarcinoma
Johannes R. Kratz1,2,3,4*, Jack Z. Li1,2,3, Jessica Tsui4,5,6, Jen C. Lee1,2,3, Vivianne W. Ding1,2,3, 
Arjun A. Rao4,5,6, Michael J. Mann1,2,3, Vincent Chan4,5,6,7, Alexis J. Combes4,5,6, 
Matthew F. Krummel4,5 & David M. Jablons1,2,3

Although surgery for early-stage lung cancer offers the best chance of cure, recurrence still occurs 
between 30 and 50% of the time. Why patients frequently recur after complete resection of early-
stage lung cancer remains unclear. Using a large cohort of stage I lung adenocarcinoma patients, 
distinct genetic, genomic, epigenetic, and immunologic profiles of recurrent tumors were analyzed 
using a novel recurrence classifier. To characterize the tumor immune microenvironment of recurrent 
stage I tumors, unique tumor-infiltrating immune population markers were identified using single 
cell RNA-seq on a separate cohort of patients undergoing stage I lung adenocarcinoma resection 
and applied to a large study cohort using digital cytometry. Recurrent stage I lung adenocarcinomas 
demonstrated higher mutation and lower methylation burden than non-recurrent tumors, as well as 
widespread activation of known cancer and cell cycle pathways. Simultaneously, recurrent tumors 
displayed downregulation of immune response pathways including antigen presentation and Th1/
Th2 activation. Recurrent tumors were depleted in adaptive immune populations, and depletion 
of adaptive immune populations and low cytolytic activity were prognostic of stage I recurrence. 
Genomic instability and impaired adaptive immune responses are key features of stage I lung 
adenocarcinoma immunosurveillance escape and recurrence after surgery.

Over 1.8 million people are diagnosed with lung cancer worldwide annually, resulting in 1.6 million deaths each 
 year1. Although early detection has been shown to improve survival in other cancers, early detection of lung 
cancer is not enough. Even after complete surgical resection, early-stage lung cancers recur up to 30–50% of the 
time within 5  years2, causing a staggering number of deaths worldwide. Despite these overwhelming recurrence 
rates, the current standard of care for most patients who undergo surgery for early-stage lung cancer is “observa-
tion”. Chemotherapy after surgery does not improve survival for the majority of these  patients3.

To predict which patients may recur after surgery, clinicians have traditionally grouped patients using the 
TNM (Tumor, Node, Metastasis) staging  system4. Multiple groups, however, have identified molecular signatures 
that more accurately predict recurrence and mortality beyond conventional TNM  staging5–13. These signatures 
are based on a variety of genetic, genomic, and epigenetic biomarkers prognostic of recurrence. Despite an 
improved ability to predict who may recur based on these biomarkers, the biology of why these patients recur 
after surgery is less well understood. While multiple studies have described the genetic, genomic, and epigenetic 
alterations in tumor vs. normal  tissue14,15, only a handful of groups have investigated the biology of early-stage 
lung cancer  recurrence16,17. These studies have primarily focused on mutation profiles associated with recurrence 
by utilizing targeted NGS panels of known cancer  mutations16,17. A more comprehensive account of the genomic 
and epigenetic features of recurrence, however, has not been described.

The relationship between the tumor immune microenvironment and early-stage lung cancer recurrence after 
surgery also remains poorly understood. Advances in cancer immunotherapy have highlighted the importance 
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of the immune system in keeping tumor progression and metastasis in check. Several cancer-immune landscapes 
have been described: 1. inflamed or “hot” tumors, infiltrated by exhausted and ineffective immune cells, 2. 
immune-desert or “cold” tumors, which lack appropriate T-cell activation and priming, and 3. immune-excluded 
tumors, in which vascular or stromal barriers prevent immune  infiltration18. Precisely defining the cancer-
immune landscape of recurrent early-stage lung cancer has important clinical implications. Multiple studies, for 
example, have demonstrated that checkpoint inhibitors are primarily effective in “hot” tumor landscapes with a 
large number of infiltrating but dormant T-cells18. In fact, the presence of alternative “cold” and “excluded” tumor 
landscapes may explain why a durable clinical response to checkpoint inhibitors is seen in only approximately 
20% of  patients18. To address this, several groups have assessed the prognostic significance of tumor infiltrating 
leukocytes in lung adenocarcinomas using immunohistochemistry with a pre-defined set of immune cell surface 
markers and  cytokines19,20 or by using computational immune profiling  techniques21,22. These groups, however, 
have only assessed small focused panels of immune cell  types19,20 or used pre-defined sets of immune cell markers 
not derived from tumor infiltrating leukocytes to perform computational  profiling21,22. More comprehensive and 
specific descriptions of the tumor immune microenvironment characteristic of early recurrence after surgery are 
still needed to guide our current immunotherapy treatments and reveal novel immunotherapy targets.

This study investigates the molecular and immunologic features of early recurrence in stage I lung adenocar-
cinoma using a large cohort of patients with complete genomic, genetic, epigenetic, and clinical profiles. Unique 
early-stage lung adenocarcinoma immune population profiles developed using single cell RNA-seq profiling of 
freshly resected stage I lung adenocarcinomas allows for comprehensive characterization of immune populations 
in this cohort. Our analysis reveals distinct genetic, genomic, epigenetic, and immunologic differences between 
recurrent and non-recurrent early-stage lung adenocarcinomas and identifies several novel biomarkers and 
therapeutic targets associated with early recurrence.

Results
Recurrence score. In order to incorporate time-to-recurrence data, a score that predicts the risk of recur-
rence for each patient in the TCGA lung adenocarcinoma was developed. This recurrence score relates each 
patient’s gene expression profile to both recurrence as well as time-to-recurrence. Elastic net penalization using 
cross-validation yielded a parsimonious set of genes associated with recurrence in 500 patients with stage I-IV 
lung adenocarcinoma in the TCGA cohort (Supplementary Table S1). Weighting and combining the expres-
sion of these risk classifier genes by coefficients assigned by elastic net penalization (Supplementary Table S1) 
resulted in a recurrence score for each patient in the TCGA lung adenocarcinoma cohort. Higher recurrence 
scores were directly proportional to the probability of recurrence within 5 years of diagnosis (Fig. 1A). Grouping 
patients into cohorts by recurrence score quartile in the stage I-IV TCGA lung adenocarcinoma cohort resulted 
in significantly different recurrence rates by Kaplan–Meier analysis (5-year Freedom From Recurrence (FFR) of 
68.9%, 39.5%, 34.8%, 25.0% for low-, low-intermediate, intermediate-high, and high-risk groups respectively, 
P < 0.0001). The TCGA lung adenocarcinoma cohort includes patients who presented with nodal and distant 
organ spread. In order to study the biology of recurrence in patients not known to have disease spread, we 
limited further analysis to stage I patients only. Grouping stage I lung adenocarcinoma patients into cohorts 
by recurrence score quartile identified a high-risk cohort with 57.6% incidence of recurrence within 2 years of 
surgical resection as opposed 3.1% in the low-risk cohort (Fig. 1B, 2-year FFR 96.9%, 84.5%, 69.6%, 42.4% for 
low-, low-intermediate, intermediate-high, and high-risk groups respectively, P < 0.0001). By univariate analysis, 
recurrence risk category and stage were statistically significant predictors of recurrence (Table  1). Adjusting 
for age, smoking history, and stage, only recurrence risk category (HR 2.09, 95% CI 1.54–2.84, P < 0.0001) and 
female sex (HR 0.67, 95% CI 0.49–0.92, P = 0.012) were significant predictors of recurrence by multivariate 
analysis (Table 1).

Conventionally, TNM stage is used to predict risk of recurrence. In order to compare risk predictions using 
our risk categorization method vs. TNM stage in this cohort, we performed time-dependent area under the 
receiver operating characteristic curve (AUROC) analysis (Supplementary Fig. S1A). The recurrence score bet-
ter predicted risk of recurrence versus stage alone, increasing the time-dependent AUROC to 0.714 from 0.584 
(P < 0.0001).

Genetic alterations. The median tumor mutation burden observed in the TCGA stage I lung adenocarci-
noma cohort was 3.52 mutations per megabase. When assessing tumor mutation burden by recurrence risk cat-
egory in this cohort, a positive association between tumor mutation burden and risk of recurrence was observed 
(median tumor mutations per MB of 1.62, 3.15, 4.66, and 5.48 in recurrent low-, low-intermediate, intermediate-
high, and high-risk tumor phenotypes respectively [P < 0.0001], Fig. 2A). TP53 was most frequently mutated 
in the stage I cohort; 47% of samples had a TP53 mutation (Fig. 2B). Other frequently mutated genes included 
TTN, MUC16, CSMD3, RYR2, LRP1B, ZFHX4, USH2A, KRAS, and FLG (Fig. 2B). 23 genes were mutated sig-
nificantly more frequently in high- vs. low-risk stage I tumors, including TP53, TTN, SLC8A1, AHNAK, KCNU1, 
COLA5A2, COL22A1, PKHD1L1, SMARCA4, and ZFHX4 (Table 2). Canonical lung cancer driver  mutations23 
were also assessed. Although KRAS mutations were observed more frequently in high-risk tumors (30% vs. 19% 
in low-risk tumors, adjusted P = 0.31) and EGFR mutations were observed more frequently in low-risk tumors 
(18% vs. 4% in high-risk tumors, adjusted P = 0.13), these differences were not statistically significant. In fact, 
no significant differences in canonical lung cancer driver mutations were observed between low- and high-risk 
tumors (Fig. 2C). Similar to tumor mutation burden, copy number alterations were significantly increased in 
recurrence high- vs. low-risk tumors (median relative CNA of 1075 vs. 1462 in low- vs. high-risk categories 
respectively [P < 0.0001], Fig. 2D). Although copy number alterations and mutations did not show any predilec-
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Figure 1.  Recurrence score is prognostic of recurrence in the TCGA lung adenocarcinoma cohort. 
Recurrence score is directly proportional to probability of recurrence at 5 years within the entire TCGA lung 
adenocarcinoma cohort (A) and is prognostic of recurrence when stage I patients are divided into cohorts by 
recurrence score quartile (B).

Table 1.  Cox proportional hazards models for 5-year freedom from recurrence. Univariate and multivariate 
cox proportional hazards modeling of the association between recurrence, recurrence risk category, and 
clinicopathologic factors is shown. Significant values are in bold. *Compared to low risk category. § < 5, 6–20, 
21–40, > 40 pack-years. **Stage IA v. IB.

Univariate analysis Multivariate analysis

HR 95% CI Wald test P value HR 95% CI Wald test P value

Risk category* 2.01 1.59–2.52  < 0.001 2.09 1.54–2.84  < 0.001

Age > 65 0.92 0.58–1.46 0.731 1.01 0.58–1.75 0.976

Smoking  history§ 1.20 0.86–1.68 0.292 0.99 0.70–1.38 0.937

Female sex 0.97 0.61–1.55 0.914 0.67 0.49–0.92 0.012

Stage** 1.61 1.01–2.56 0.045 1.28 0.72–2.29 0.402
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Figure 2.  Genetic alterations in recurrent lung adenocarcinomas. Increasing risk of recurrence is associated 
with increasing tumor mutation burden (A). An oncoplot of the most frequently mutated genes in the stage I 
lung adenocarcinoma cohort is shown in (B). Canonical driver mutations are present in stage I tumors but do 
not occur more frequently in recurrent tumors (C). Copy number alterations occur more frequently in tumors 
with increasing risk of recurrence (D). Although copy number alterations and mutations are evenly distributed 
through the genome in recurrence high-risk tumors (E), high-risk (F) versus low-risk (G) tumors show different 
genome-wide copy number alteration patterns. ***P < 0.0001.
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tion for a particular chromosome in high-risk tumors (Fig. 2E), different patterns of copy number alterations 
were observed between low- and high-risk tumors across the genome (Fig. 2F and G).

Transcriptome analysis. Comparing transcriptomes of recurrence high vs. low-risk tumors, 10,398 genes 
were differentially expressed (adjusted P value < 0.05). Filtering these genes by an absolute log fold-change > 0.6 
and adjusted P value < 0.0001, we identified a total of 4150 top differentially regulated genes (2544 downregu-
lated and 1606 upregulated genes, Supplementary Fig. S2A). Heatmap clustering of these top differentially regu-
lated genes resulted in clear separation between high- and low-risk tumors across four different gene clusters 
(P < 0.0001, Fig. 3A). Stage (P = 0.0003) and smoking history (P = 0.0163) also showed separation by heatmap 
clustering. In contrast, age and sex were not significantly correlated with these gene clusters (Fig. 3A).

Recurrence high-risk tumors were associated with overexpression of genes in cluster 2 (Fig. 3A). Pathway 
analysis of genes in this cluster revealed activation of numerous cancer-related pathways including kinetochore 
metaphase signaling, cell cycle control of chromosomal replication, role of BRCA1 in DNA damage response, 
mitotic roles of polo-like kinase, hereditary breast cancer signaling, role of CHK proteins in cell cycle checkpoint 
control, and estrogen-mediated S-phase entry pathways (Fig. 4A, Supplementary Table S2).

Simultaneously, recurrence high-risk tumors were associated with downregulation of genes in cluster 3 
(Fig. 3A). Genes in cluster 3 were significantly associated with immune response pathways including antigen 
presentation, Th1 and Th2 activation, B cell development, neuroinflammation signaling, PD-1 and PD-L1 can-
cer immunotherapy, and IL-4 signaling pathways (Fig. 4B, Supplementary Table S3). 16 out of 39 (41%) genes 
involved in antigen presentation were significantly downregulated in high-risk tumors (P < 0.0001) including 
CIITA, a master control regulator of class II MHC transcription (2.3 fold), numerous MHC class I and II genes 
including HLA-E (1.6 fold), HLA-DMA (2.7 fold), HLA-DOA (3.0 fold), HLA-DPA1 (2.5 fold), HLA-DQB2 (4.3 
fold), HLA-DRB5 (4.0 fold), and CD74, a class II MHC chaperone molecule (2.5 fold). Simultaneously, 32 out 
of 172 (18.6%) genes involved in Th1 and Th2 activation were significantly downregulated in high-risk tumors 
including the class II MHC genes above, CCR4 (2.7 fold), CD40LG (3.7 fold), IL24 (1.8 fold), IL33 (3.1 fold), 
IL12B (2.8 fold), IL6R (2.4 fold), TGF-β receptors 2 and 3 (1.5 and 2.3 fold respectively), PTDGR2 (3.4 fold), 
NFATC1 (1.5 fold), PIK3R1 (1.4 fold), and PRKCQ (2.4 fold).

Topology-based enrichment analysis is a third-generation pathway analysis technique that better relates 
gene expression patterns to biological pathways by taking the role, hierarchy, and expression direction of path-
way genes into  account24. Using topology-based enrichment analysis, 42 pathways are significantly perturbed 
in high- vs. low-risk tumors (pPERT < 0.05 and pGFdr < 0.05, Supplementary Table S4). Numerous cancer-
related pathways are activated in recurrence high-risk tumors including central carbon metabolism in cancer, 

Table 2.  Genes more frequently mutated in recurrence high- versus low-risk stage I lung adenocarcinomas. 
Twenty-three genes significantly more frequently mutated in recurrence high- versus low-risk tumors are 
shown.

Hugo symbol
# High risk mutated 
samples

# Low risk mutated 
samples P-value Odds ratio 95% upper CI 95% lower CI Adj P-value

TP53 46 16 0 6.866 16.123 3.059 0

TTN 39 12 0 6.286 15.403 2.722 0.001

SLC8A1 14 0 0 Inf Inf 3.92 0.021

AHNAK 13 0 0 Inf Inf 3.54 0.028

KCNU1 13 0 0 Inf Inf 3.54 0.028

COL5A2 15 1 0 18.728 810.111 2.713 0.031

COL22A1 12 0 0 Inf Inf 3.174 0.031

PKHD1L1 12 0 0 Inf Inf 3.174 0.031

SMARCA4 12 0 0 Inf Inf 3.174 0.031

ZFHX4 31 11 0 4.334 10.836 1.844 0.031

CSMD3 37 16 0 3.889 8.86 1.769 0.031

ADAMTS12 22 5 0 5.984 21.784 2.01 0.031

NRXN1 22 5 0 5.984 21.784 2.01 0.031

CACNA1E 16 2 0.001 10.046 94.084 2.204 0.031

FAT4 16 2 0.001 10.046 94.084 2.204 0.031

XIRP2 26 8 0.001 4.623 13.044 1.81 0.031

CDH18 11 0 0.001 Inf Inf 2.82 0.031

CTNND2 11 0 0.001 Inf Inf 2.82 0.031

DMXL1 11 0 0.001 Inf Inf 2.82 0.031

MAGI2 11 0 0.001 Inf Inf 2.82 0.031

SLC39A12 11 0 0.001 Inf Inf 2.82 0.031

MUC16 30 11 0.001 4.083 10.214 1.734 0.031

TCHH 13 1 0.001 15.644 682.961 2.218 0.049



6

Vol:.(1234567890)

Scientific Reports |        (2021) 11:23690  | https://doi.org/10.1038/s41598-021-02946-0

www.nature.com/scientificreports/

toll-like receptor signaling, and hedgehog signaling pathways. Simultaneously, cellular senescence, Ras signaling, 
and PPAR signaling pathways are inhibited in high-risk tumors. Multiple immune-related pathways are also 
perturbed in high-risk tumors. Human cytomegalovirus infection, bacterial invasion of epithelial cells, and 

Figure 3.  Transcriptomic analysis demonstrates distinct genomic and immunologic features of recurrent lung 
adenocarcinomas. Heatmap clustering of differentially regulated genes results in clear separation between high- 
and low-risk tumors across four different gene clusters (A). Differential methylation patterns are also associated 
with recurrent tumors; decreasing DNA methylation is observed in tumors with increasing risk of recurrence 
(B) while heatmap clustering of differentially methylated genes results in clear separation between high- and 
low-risk tumors across two different gene clusters (C). *P < 0.05.
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Figure 4.  Pathway analysis for differential gene expression heatmap clusters 2 and 3. The top 30 pathways 
involved in the differential expression of genes in heatmap cluster 2 and 3 are shown in (A) and (B) respectively. 
Ratio on the x-axis refers to the number of differentially regulated genes in the dataset relative to the total 
number of pathway genes. The size of each dot represents significance (− log10(P-value)); the color of each dot 
represents the Z-score. A positive Z-score indicates that the observed gene activity positively correlates with 
predicted pathway member up/down regulation patterns; a negative Z-score indicates anti-correlation.
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complement and coagulation cascades pathways are activated. In contrast, cytokine-cytokine receptor interac-
tion, human T-cell leukemia virus 1 infection, systemic lupus erythematosus, and intestinal immune network 
for IgA production pathways are inhibited in high-risk tumors (Supplementary Table S4).

Epigenetic analysis. To investigate epigenetic features associated with recurrence, methylation differences 
between high- and low-risk tumors were analyzed. Increasing recurrence risk was associated with decreas-
ing DNA methylation across risk categories (median β-value of 0.462, 0.461, 0.454, and 0.450 for low-, low-
intermediate-, intermediate-high-, and high-risk categories respectively [P = 0.042 between low- and high-risk 
categories], Fig. 3B). A total of 1,514 genes were differentially methylated between high- and low-risk tumors 
(absolute log fold-change > 0.4 and adjusted P value < 0.05). Genes were more than three times as likely to be 
hypo- rather than hypermethylated in the high-risk cohort (1173 hypomethylated genes vs. 341 hypermethyl-
ated genes, Supplementary Fig. S2B). The top 10 differentially methylated genes were FOLR1, LEAP2, CRTAM, 
MIR1287, KIAA0513, GZMB, HTRA1, TMEM11, FAM49A, and SORCS3 (Supplementary Fig. S2C). Heatmap 
clustering of differentially methylated genes resulted in clear separation between high- and low-risk tumors 
across two different gene clusters (P < 0.0001, Fig. 3C). Stage (P = 0.0004) and smoking history (P = 0.0068) also 
showed separation by heatmap clustering. In contrast, age and sex were not significantly correlated with these 
differentially methylated gene clusters (Fig. 3C). Pathway analysis of differentially methylated genes identified 
significant involvement of immune-related pathways including antigen binding, processing, and presentation 
pathways by Gene Ontology (GO) analysis and allograft rejection by Molecular Signatures Database analysis 
(Supplementary Table S5).

Differential methylation analysis was also performed on a chromosome level, revealing 3461 differentially 
methylated regions (adjusted P < 0.0001). As differential methylation pathway analysis identified antigen pres-
entation pathways as significantly involved in high-risk tumors, chromosome 6 was examined for differentially 
methylated regions. High-risk tumors demonstrated heavy methylation in a specific region of chromosome 6 
(bp 32,410,873 to 33,041,697) containing class II MHC genes (Supplementary Fig. S3A).

Integrated transcriptome and methylation analysis demonstrated a total of 295 genes that were both hypo-
methylated and upregulated in high-risk patients including GPR115, KRT6A, KRT6B, KRT16, PPAPDC1A, 
PADI1, HMGA2, SLC2A1, CCL7 and CCL11 (Supplementary Fig. S3B). 771 genes were both hypermethylated 
and downregulated in high-risk patients including FOLR1, NR0B2, AGER, GPR116, CLDN18, CYP4B1, PGC, 
KIAA0408, and PIGR (Supplementary Fig. S3B). Integrated analysis using enhancer linking also identified mul-
tiple differentially methylated transcription factor promoter binding sites. The transcription factors CENPA, 
MYBL2, FOXM1, ARNTL2, SHOX2, GBX2, E2F2, E2F7, HMGA1, and SP6 were found to be upregulated and 
bind hypomethylated promoter sites (Supplementary Fig. S4A), whereas IRX5, NKX2-1, HLF, ZBTB18, ATOH8, 
PRDM16, IRX3, IRX2, ZNF491, and NR3C2 were found to be downregulated and bind hypermethylated pro-
moter sites in high- vs. low-risk tumors (Supplementary Fig. S4B).

Tumor immune microenvironment. Other groups have used murine- and blood-based immune popula-
tion gene profiles to characterize lung adenocarcinoma immune microenvironments with digital  cytometry21,22,25. 
In order to develop human tumor infiltrating leukocyte profiles specific to stage I lung adenocarcinomas, we per-
formed single-cell RNA-seq (scRNA-seq) analysis on freshly resected samples from six patients who underwent 
complete surgical resection of stage I tumors at UCSF. Twenty distinct immune cell populations were identified 
by scRNA-seq analysis including 10 adaptive immune populations (helper T-cells, cytotoxic T-cells, exhausted 
cytotoxic T-cells, δγ T-cells, naïve T-cells, regulatory T-cells, B cells, plasma cells, NKT cells, and NK cells) and 
10 innate immune populations (M1 macrophages, M2 macrophages, classical monocytes, intermediate mono-
cytes, non-classical monocytes, mast cells, conventional dendritic cells 1, conventional dendritic cells 2, plasma-
cytoid dendritic cells, and neutrophils) (Fig. 5A). These novel tumor infiltrating leukocyte profiles were used to 
calculate immune cell population densities from bulk RNA-seq data in the TCGA stage I lung adenocarcinoma 
population using digital cytometry.

Despite a positive association between neoantigen burden and recurrence risk (73, 141, 173, and 234 predicted 
neoantigens in low-, low-intermediate, intermediate-high, and high-risk cohorts respectively [P < 0.0001 between 
low- and high-risk cohorts], Fig. 5B), a negative correlation between total immune cell infiltration and recur-
rence was observed (median relative immune cell densities of 54.1, 49.3, 49.0, and 46.1 in low-, low-intermediate, 
intermediate-high, and high-risk cohorts respectively [P < 0.0001 between low- and high-risk cohorts], Fig. 5C). 
In addition to differences in total immune cell infiltration, UMAP analysis demonstrated clear differences in the 
composition of the tumor immune microenvironment between recurrence high- and low-risk stage I tumors. 
When clustered by immune population densities only, separation of high- and low-risk tumors into distinct 
groups was observed (Fig. 6A). Heatmap clustering of immune populations also resulted in clear separation 
between recurrence high- and low-risk tumors across two distinct immune cell clusters (P < 0.0001, Fig. 6B). 
Stage (P = 0.0009) and smoking history (P = 0.0188) also showed separation by heatmap clustering. In contrast, 
age and sex were not significantly correlated with these immune cell clusters (Fig. 6B). Recurrence high-risk 
tumors were depleted in adaptive immune populations including cytotoxic T-cells, NKT cells, helper T-cells, 
B-cells, δγ T-cells, plasma cells, and T regulatory cells (Fig. 6B). In contrast, they were enriched for naïve T-cells 
and exhausted cytotoxic T-cells (Fig. 6B). Stromal FOXP3/CD3 ratio has been reported to positively correlate 
with increased  recurrence19. In our cohort, however, regulatory T-cell/T-cell ratio was inversely correlated with 
risk of recurrence (Supplementary Fig. S5A and B).

Adaptive immune population density and activation was also prognostic of recurrence in our stage I lung 
adenocarcinoma cohort. To identify immune populations prognostic of recurrence, we utilized elastic net penal-
ized regression analysis to determine the relative contribution of each immune population to patient prognosis. 
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We observed that immune cells associated with humoral and cell-based adaptive immune responses including 
B-cells, mast cells, naïve T-cells, and exhausted cytotoxic T-cells were strongly associated with patient prognosis 
(Supplementary Table S6). Using the regression coefficients from this analysis, an immune profile classifier 
prognostic of recurrence was built. Patients with adaptive-rich, adaptive-neutral, adaptive-low, and adaptive-
depleted phenotypes had 24-month FFR of 91.7%, 79.6%, 67.8%, and 55.7% respectively (P < 0.0001, Fig. 6C). 
Cytolytic activity associated with robust adaptive immune responses was also prognostic of recurrence in our 
cohort. Granzyme A and perforin expression has been validated as a reliable indicator of functional cytotoxic 
T-cell and NK cell  activation26. High cytolytic activity was associated with a 24-month FFR of 77.9% versus 54.9% 
for patients with low cytolytic activity (P = 0.0004, Fig. 6D).

Figure 5.  Recurrent stage I lung adenocarcinomas display immune desert phenotypes. scRNA-seq analysis 
reveals twenty distinct immune cell populations in stage I lung adenocarcinomas (A). Despite increasing 
antigenicity (B), tumors with increasing risk of recurrence demonstrate decreasing immune cell infiltration (C).
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Discussion
Although recurrence in early-stage adenocarcinoma is common, the genetic and immunologic features of recur-
rence in lung cancer are not well described. One approach to describing these features is to treat recurrence as a 
binary event by grouping patients into cohorts of “recurred” vs “did not recur”. Recurrence, however, is a time-
to-event datapoint. Early recurrence is not the same biological event as late recurrence. In addition, patients 
who have not recurred may only be labeled as such as they have not been followed long enough to experience 
recurrence. Lastly, recurrence is notoriously difficult to track accurately in the real world as many patients are lost 
to follow-up after surgery and other treatments for early-stage  disease27. Using recurrence as a binary endpoint 
to group patients, therefore, is suboptimal to understand the biological features of recurrence. To address these 
concerns and incorporate time-to-recurrence data as an endpoint in this study, a recurrence score was developed 

Figure 6.  Recurrent stage I lung adenocarcinomas display adaptive immune cell depleted phenotypes. UMAP 
analysis reveals distinct tumor immune microenvironments between recurrence high- and low-risk tumors (A). 
Heatmap analysis demonstrates depletion of adaptive immune cell populations in recurrence high-risk tumors 
(B). Patients with adaptive-rich immune cell phenotypes have improved 24-month freedom from recurrence 
compared to tumors with adaptive-depleted phenotypes (C). High cytolytic activity score (CYT) is prognostic of 
decreased recurrence (D). ***P < 0.0001, **P < 0.001, *P < 0.05.
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which relates the patient’s probability of developing recurrence to the biological features of the tumor. This strat-
egy not only takes time-to-event data into account, but also lessens the impact of inaccurate clinical follow-up 
by simultaneously clustering the genomic profiles of these patients with their clinical endpoints. In the clinical 
setting, clustering patients by biological features related to time-to-event outcomes is a superior strategy that has 
been proven to add prognostic and predictive value in multiple  studies2,6–8,10,12,13,28. The novel recurrence score 
described here is predictive of recurrence in the TCGA lung adenocarcinoma cohort and allows for a detailed 
investigation of the biological features of early-stage recurrence.

Tumor mutation burden (TMB) has been shown to be predictive of immunotherapy response in prior studies 
but has not been reported to be associated with  recurrence29. In this study, early-stage lung adenocarcinomas 
with higher TMB had significantly higher rates of recurrence. Copy number alterations also occurred more 
frequently in recurrent tumors, signifying genomic instability as a hallmark of recurrence. TP53 was the most 
frequently mutated gene in the stage I cohort and was more frequently mutated in recurrent tumors in our study. 
MUC16 (CA-125) was also observed to be frequently mutated in recurrent tumors. MUC16 is overexpressed in 
several cancers including ovarian, pancreatic, breast, and lung, and has been shown to be associated with cancer 
progression and poor  prognosis30. SMARCA4, also frequently mutated in recurrent tumors in our study, has 
been previously shown to be associated with recurrence in lung  adenocarcinoma16,17. Mutations in SMARCA4 
can co-occur with KRAS, STK11, and KEAP1  mutations31 and are prognostic of poor overall survival, especially 
in patients with KRAS-mutant  tumors31. MUC16 and SMARCA4 are attractive therapeutic targets in patients at 
high-risk for recurrence after surgery for early-stage lung cancer and may warrant further investigation.

Other frequently mutated genes in our study included very large genes such as TTN (304,814 bases), CSMD3 
(1,214,572 bases), RYR2 (791,805 bases), and LRP1B (1,901,041 bases). The presence of mutations in these large 
genes suggests that many mutations in recurrent tumors are random rather than targeted or selected events. With 
respect to canonical lung cancer driver mutations, previous studies have failed to demonstrate strong correla-
tions between canonical lung cancer driver mutations and  recurrence16,17. This was also observed in our study 
where no canonical driver mutations were found to occur more frequently in recurrent tumors, suggesting that 
the biological processes of tumor initiation and propagation are distinct. These distinct processes suggest that 
our current therapies targeting these canonical driver mutations, while beneficial in late-stage disease, may not 
be able to be widely applied to prevent recurrence in early-stage lung cancer.

Transcriptomic analysis revealed discrete genomic and immunologic features associated with early-stage 
lung adenocarcinoma recurrence. As expected, a number of canonical cancer-related pathways involving cell 
cycle control, metaphase signaling, DNA damage response, mitosis, checkpoint control, and mismatch repair are 
strongly activated in recurrent tumors. These cancer pathways have previously been described as hallmarks of 
cancer progression and  metastasis32–35. Hypomethylation has also been shown in previous work to be associated 
with genome instability and cancer  progression36. We also observed decreasing methylation in recurrent tumor 
phenotypes, which may partly explain the mutational instability and active cell cycle progression observed in 
the pathways above. Overall, the activation of these pathways and decreasing levels of methylation support the 
notion of an active, unstable genome in recurrent stage I lung adenocarcinomas. The overexpressed genes in 
recurrent lung cancers described here represent attractive small molecule inhibitor targets.

In contrast to the activation of numerous cancer-related pathways, a number of key immune response path-
ways are strongly downregulated in recurrent tumors. This suggests that the presence of a permissive tumor 
microenvironment is also an important cause of early-stage lung adenocarcinoma recurrence. In support of this, 
recurrent tumors display less overall immune cell infiltration despite having higher mutation and neoantigen 
burden than non-recurrent tumors, consistent with a “cold” tumor landscape. In addition, the top genes present 
in the downregulated transcriptome cluster of recurrent tumors play vital roles in antigen presentation and Th1 
and Th2 activation. Antigen presentation and Th1 and Th2 activation pathways are intimately associated with 
each other as antigen presentation by MHC molecules stimulates Th1 and Th2 differentiation and  activation37. 
Notably, epigenetic analysis of recurrent tumors demonstrates heavy methylation of antigen presentation pathway 
genes including a specific region of chromosome 6 containing numerous class II MHC genes, suggesting that 
hypermethylation is one mechanism of antigen presentation suppression. Epigenetic-targeted therapies have 
been effective in hematologic malignancies and solid tumor clinical  trials38. Further study of epigenetic-targeted 
therapies that activate these antigen presentation genes in early-stage lung cancers at high-risk for recurrence 
may be warranted.

Other groups have used two main strategies to profile the tumor immune microenvironment in early-stage 
lung adenocarcinoma: 1. immunohistochemistry that allows for direct measurements of a limited number of 
specific immune cell populations and 2. computational techniques that allow for more comprehensive but indi-
rect measurements of multiple immune cell populations. In the largest study of immune populations in stage 
I lung adenocarcinoma patients to date, Suzuki et al. investigated eight types of tumor-infiltrating leukocytes 
and five cytokines using  immunohistochemistry19. This group observed that stromal FoxP3/CD3 ratio, tumor 
IL-12Rβ2, and tumor IL-7R were associated with  recurrence19. Yan et al., in contrast, did not find a significant 
association between FoxP3-positive T regulatory cells and disease-free survival in their characterization of 
stage I-IV non-small cell lung cancer patients using  immunohistochemistry20. Although our data also do not 
support this positive association between T regulatory cells and recurrence, this lack of concordance may be 
due to the fact that neither our group nor Yan et al. distinguished between tumor nest or stromal T regulatory 
cell populations. Varn et al. used computational techniques to characterize CD4+ T-cell, CD8+ T-cell, naïve B 
cell, memory B cell, NK cell, and myeloid cell populations in lung  adenocarcinoma22. Murine immune cell gene 
expression profiles were used to develop consensus immune signatures for these six different immune popula-
tions. Consistent with our observations, they observed that low naïve B cell, low CD8+ T-cell populations, and 
high monocyte populations were associated with recurrence in stage I lung  adenocarcinomas22. Other groups 
have used blood-based immune profiles to comprehensively characterize infiltrating immune populations in 
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lung  adenocarcinoma21,25, however, the association between these immune populations and recurrence was not 
reported. To our knowledge, this study is the first to develop novel tumor infiltrating leukocyte profiles in stage 
I lung adenocarcinoma using scRNA-seq and apply these profiles to comprehensively characterize immune cell 
populations in a large cohort of patients with recurrent stage I adenocarcinoma.

Using this approach, we observed that the lack of sufficient antigen presentation and T-helper cell response in 
recurrent stage I tumors by transcriptomic analysis is supported by our analysis of specific infiltrating immune 
populations in recurrent vs. non-recurrent tumors. Although dendritic cell and macrophage populations are 
similar between recurrent and non-recurrent tumors, non-recurrent tumors are heavily infiltrated by B-cells 
while recurrent tumors are relatively lacking in these antigen-presenting cells. In addition, recurrent tumors 
exhibit relatively sparse populations of helper T-cells while displaying a high proportion of exhausted cytotoxic 
T-cells. These data suggest that recurrent tumors may evade immunosurveillance by active downregulation 
of antigen presentation to T-helper cells, resulting in an insufficient adaptive immune response. In support of 
this, we observed that adaptive-depleted tumors had significantly worse prognosis that adaptive-rich tumors, 
recurring five-times more frequently within two years of diagnosis. In addition, cytolytic activity associated with 
functional T-cell and NK cell activation in the setting of a robust adaptive immune response was also predic-
tive of recurrence. Stage I patients were twice as likely to recur if low cytolytic activity was measured in their 
tumors compared to patients with high cytolytic activity tumors. These data suggest that checkpoint inhibitors 
may not be maximally effective in preventing early-stage lung cancer recurrence as they are most effective in 
the presence of “hot” or inflamed tumor  microenvironments18. Novel immunotherapies designed to attract and 
activate adaptive immune populations in early-stage tumors at high-risk of recurrence may be necessary and 
warrant further investigation.

There are several limitations to this study. First, recurrence is a time-to-event datapoint and the use of the 
TCGA lung adenocarcinoma cohort does not allow for independent verification of patient follow-up data such 
as recurrence and time-to-recurrence. Although the creation of a recurrence score helps mitigate inaccurate 
outcomes reporting and inadequate patient follow-up in this setting, the accuracy of the recurrence score used 
in this study could be improved with independent validation of clinical outcomes data. Second, although the 
TCGA cohort is the largest-ever assembled lung adenocarcinoma patient cohort with full genetic, genomic and 
epigenetic analysis, only 268 stage I patients were fully analyzed in this study. It is likely that stronger biologi-
cal conclusions could be reached with a larger stage I lung adenocarcinoma patient cohort. Lastly, the use of 
computational techniques to quantify immune populations present in this large stage I lung adenocarcinoma 
cohort was necessary as direct measurements of immune cell densities were not available. Single-cell RNA-seq 
and spatial transcriptomics data will one day be available in large cohorts such as the one analyzed here and 
allow for direct measurements of immune cell infiltration, integrated immune cell transcriptome analysis, and 
differentiation between tumor and stromal immune cell populations.

In conclusion, recurrence in early-stage lung adenocarcinoma is common despite complete surgical resec-
tion as the mainstay of therapy. Recurrent stage I lung adenocarcinomas display features of genomic and genetic 
instability including increased tumor mutation burden, neoantigen load, activation of numerous mitotic and 
cell cycle genes, and decreased genome-wide methylation burden. In parallel, impaired antigen presentation and 
Th1/Th2 responses appear to be central features of permissive tumor immune microenvironments in recurrent 
tumors and may be responsible for worse prognosis associated with adaptive-depleted tumors.

Methods
Patient cohorts. Tumor and normal samples from 500 patients with complete follow-up in the TCGA 
lung adenocarcinoma  cohort39 were included in this study (Supplementary Table S7). Indexed clinical data were 
downloaded from the Genomic Data Commons (GDC) portal (TCGAbiolinks v2.18.040). Clinical outcomes 
including survival and recurrence endpoints were obtained from the TCGA Clinical Data  Resource41.

To perform tumor immunoprofiling, additional tumor and adjacent normal tissue samples from six patients 
were characterized. Males and females between the ages of 18–75 who underwent complete surgical resection 
of pathologic stage I lung adenocarcinoma via lobectomy and mediastinal lymph node dissection at UCSF 
between 2019 and 2020 were included in this study. Patients who had higher stage disease, positive margins, no 
nodal dissection, or who underwent neoadjuvant therapy prior to resection were excluded from this study. All 
patients gave informed consent for sample collection. Samples were collected in accordance with UCSF ethical 
guidelines and regulations for the conduct of responsible research. The study was approved by the UCSF Insti-
tutional Review Board (IRB# 11-06107).

Recurrence score. Tumor and normal RNA-seq TOIL recompute  counts42 from the TCGA Pan-Cancer 
(PANCAN) cohort were downloaded from the UCSC Xena  browser43. Gene counts-per-million (CPM) for each 
tumor and normal sample were generated using edgeR (v3.32.1). To create a risk score associated with recur-
rence, a combination of L1- and L2-penalized Cox proportional hazards modeling (R package glmnet v4.1.1) 
was used with progression-free interval (PFI.1 in the TCGA Clinical Data  Resource41) as an endpoint. Using 
tenfold cross-validation, the amount of L1-penalization was increased until a parsimonious set of genes that 
maximized the concordance index was obtained (Supplementary Table S2). L2-penalization was simultaneously 
applied in order to reduce model overfitting as much as possible. A continuous recurrence score was generated 
for each tumor sample by summing the product of the CPM value and the cox proportional hazards model coef-
ficient for each model gene. Resultant predicted risk scores were divided at the 25th, 50th, and 75th percentiles 
to generate low-, low-intermediate-, intermediate-high, and high-risk groups.
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Power calculation. Power calculations using one-way analysis of variance and a two-tailed test were per-
formed. Dividing the entire patient cohort (n = 500) into quartiles yielded an 80% probability of detecting a 
difference of 14.8% and 90% probability of detecting a difference of 16.9% between recurrence risk groups. 
Dividing the stage I patient cohort (n = 268) into quartiles yielded an 80% probability of detecting a difference of 
20.3% and 90% probability of detecting a difference of 23.2% between recurrence risk groups.

Genomic alteration analysis. Mutation Annotation Format (MAF) files were downloaded from the 
Genomic Data Portal (R package  TCGAbiolinks40 (v2.18.0). The tumor mutation burden for each sample was 
assessed using the R package maftools (v2.7.10). Differentially mutated genes were detected by performing 
Fisher exact tests on all genes between recurrence low- and recurrence high-risk cohorts. To analyze copy num-
ber alterations in each patient tumor sample, sample level copy number alteration data were downloaded from 
the Broad GDAC Firehose pipeline (R package RTC GAT oolbox v2.20.0). Amplification data from this analysis 
and gene fusions identified using RNA-seq analysis from Hu et al.44 for each patient in our study cohort were 
added to the MAF files to generate combined oncoplots. To analyze genome-wide differences in copy number 
alterations across recurrence low- vs. high-risk cohorts, Affymetrix Genome-Wide Human SNP Array 6.0 data 
were downloaded from the GDC portal. Significant recurrent copy number alterations were identified using 
Genomic Analysis of Important Alterations (R package GAIA v2.34.0). Taking within-sample homogeneity into 
account, GAIA performs a conservative permutation test to extract the regions most likely involved in functional 
phenotype changes. Recurrent amplifications and deletions were identified for each recurrence risk cohort and 
annotated; genomic regions identified as significantly altered in copy number (adjusted P-value <  10−4) were 
represented on chromosome overview plots.

Transcriptome and methylation analysis. Differential gene expression between recurrence low- ver-
sus high-risk cohorts was performed with TOIL recompute counts (described above) using edgeR (R package 
v3.32.1), limma (R package 3.46.0), and  voom45. A heatmap of differential gene expression was produced using 
the ComplexHeatmap package in R (v2.6.2). Partitioning Around Medoids (PAM) (R package cluster v2.1.0) 
was used to partition genes into distinct genomic clusters. Clinical covariates including recurrence risk category, 
age, stage, gender, and smoking history were used to annotate the heatmap. Fisher exact tests were used to evalu-
ate for statistical significance between heatmap clusters and clinical covariates. Conventional pathway analysis 
on the top differentially expressed genes in each cluster was performed using IPA (Qiagen, Germantown, PA). 
Topological pathway analysis was performed on the top differentially expressed genes using the R package SPIA 
(v2.42.0).

For methylation analysis, Illumina Human Methylation 450 array data aligned to homo sapiens (human) 
genome assembly GRCh37 (hg19) was downloaded from the Genomic Data Portal (R package  TCGAbiolinks40 
(v2.18.0). Methylation data was annotated and filtered to remove unmapped probes, probes mapped to multiple 
places in the  genome46, and duplicate probes as previously  described47. Differential gene methylation between 
recurrence low- vs. high-risk cohorts was performed with M-values using edgeR (R package v3.32.1) and limma 
(R package 3.46.0). A heatmap of differential gene methylation was produced using the ComplexHeatmap pack-
age in R (v2.6.2). Partitioning Around Medoids (PAM) (R package cluster v2.1.0) was used to partition methyl-
ated genes into distinct genomic clusters. Clinical covariates including recurrence risk category, age, stage, gender, 
and smoking history were used to annotate the heatmap. Differentially methylated regions were defined and 
mapped to the chromosome as previously  described47. Conventional pathway analysis on the top differentially 
methylated genes was performed using GO, KEGG, and GSEA Molecular Signatures Database Hallmark Path-
ways as previously  described47. Upstream regulation of gene enhancers by transcription factors was analyzed by 
integration of annotated methylation and gene expression data using the ELMER R package (v2.14.0).

Tumor immunoprofiling. Freshly resected tumor or adjacent normal lung tissue was thoroughly chopped 
with surgical scissors and transferred to GentleMACS C Tubes (Miltenyi Biotec) containing 20 µL/mL Liberase 
TL (5 mg/ml, Roche) and 50 U/ml DNAse I (Roche) in Leibovitz’s L-15 per 0.3 g tissue. GentleMACS C Tubes 
were then installed onto the GentleMACS Octo Dissociator (Miltenyi Biotec) and incubated for 45 min accord-
ing to the manufacturer’s instructions. Samples were quenched with 15 mL of sort buffer (PBS/2% FCS/2 mM 
EDTA), filtered through 100 um filters and spun down. Red blood cell lysis was performed with 175 mM ammo-
nium chloride if needed.

Cells were subsequently incubated with with Zombie Aqua Fixable Viability Dye (Thermo), washed with 
sort buffer, and incubated with Human FcX (BioLegend) to prevent non-specific antibody binding. Following 
FcX incubation, cells were washed with sort buffer and incubated with cell surface antibodies mix diluted in the 
BV stain buffer (BD Biosciences) following manufacturer instructions for 30 min on ice in the dark. Live cells 
were sorted from these single cell suspensions on a BD FACSAria Fusion. After sorting, cells were pelleted and 
resuspended at 1 ×  103 cells/ml in 0.04% BSA/PBS and loaded onto the Chromium Controller (10x Genomics). 
Samples were processed for single-cell encapsulation and cDNA library generation using the Chromium Single 
Cell 3’ v3 Reagent Kits (10x Genomics). In order to duplex tumor and normal cells, cell hashing was performed 
using TotalSeq-A antibodies (BioLegend) according to manufacturer instructions. Libraries were subsequently 
sequenced on an Illumina HiSeq 4000 (Illumina).

Sequences from scRNA-seq were processed with Cellranger (10x Genomics) and read into the Seurat R 
package. The filtered count matrices were normalized and variance stabilized using negative binomial regression 
via the scTransform  method48. Mitochondrial content, ribosomal content, and cell cycle state were regressed 
from the normalized data. Datasets from twelve samples (six tumor and six normal) were integrated using the 
anchoring method described by Stuart et al.49. The integrated matrix underwent dimensionality reduction using 
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Principal Component Analyses (PCA); the first 40 principal coordinates were subjected to non-linear dimen-
sionality reduction using Uniform Manifold Approximation and Projection (UMAP). Clusters of cells sharing 
similar transcriptomic profiles were identified using the Louvain algorithm with a clustering resolution of 0.8. 
Differentially expressed genes for each cluster were identified using the Wilcox test in Seurat and top cluster 
genes (log fold change > 0.4) were used to identify cell clusters.

Measurements of immune cell population densities was performed using the digital cytometry method 
described by Newman et al.50. This method utilizes single-cell reference profiles to calculate cell type frequencies 
from bulk transcriptome data. 10,000 labeled cells from the scRNA-seq experiments above were used to create a 
single cell reference matrix. Cell fractions were imputed from RNA-seq data from the entire TCGA lung adeno-
carcinoma cohort in absolute mode with quantile normalization disabled. To cluster tumors by their immune 
profiles, a combination of L1- and L2-penalized Cox proportional hazards modeling (R package glmnet v4.1.1) 
was used as described above with immune cell population densities as predictors and recurrence as an endpoint. 
Using tenfold cross-validation, unbiased increase in the amount of L1-penalization resulted in a parsimonious 
set of immune cell population densities predictive of recurrence. Neutrophils were excluded from this analysis 
due to their overwhelming abundance relative to other immune populations. An immune profile score was 
generated for each tumor sample by summing the product of density values for each immune cell population in 
the model by cox proportional hazards model coefficients. This immune profile score was enriched for immune 
populations associated with humoral and cellular adaptive immune responses (Supplementary Table S7). Patients 
were clustered into adaptive-depleted, adaptive-low, adaptive-neutral, and adaptive-rich cohorts by separating 
immune profile scores at the 25th, 50th, and 75th percentiles. Transcript levels of granzyme A (GZMA) and per-
forin (PRF1) have previously been reported to be reliable measures of local immune cytolytic activity in TCGA 
 tumors26. Following previously validated  methods26, cytolytic activity (CYT) in this study was calculated as the 
geometric mean of the CPM values of GZMA and PRF1 for each sample in our cohort. Patients were grouped into 
low- and high-cytolytic activity groups using a survival cutpoint determined by the R package survminer (v0.4.9).

Statistical analysis. The primary endpoint in this study was recurrence (PFI.1 in the TCGA Clinical Data 
 Resource41). The primary predictors evaluated were recurrence risk score, recurrence risk category, age, sex, 
smoking history, and stage. These predictors were correlated with recurrence using univariate and multivariate 
Cox proportional hazards modeling. Wald tests were performed to evaluate for statistical significance in Cox 
proportional hazards modeling. Stratified Kaplan–Meier analysis using a right-censored dataset and the log-
rank test for trend were used to evaluate the correlation between primary predictors and the primary endpoint. 
Time-dependent Area Under the Receiver Operating Characteristic curve (AUROC) was calculated using the 
survcomp (v1.4.0) package in R. Differences in AUROCs were tested by multivariate Cox proportional hazards 
modeling, integrated AUROCs were compared by Wilcoxon rank sum test. For all statistical tests, a pre-specified 
two-sided α of 0.05 was considered significant. Adjusted P-values are reported for all analyses involving multiple 
comparisons. Analyses were conducted using the programming languages R (v4.0.3 for Macintosh), STATA/SE 
(v15.1, StataCorp, College Station, TX) and Prism (v9.1.0, GraphPad Software, San Diego, CA).

Data availability
The Cancer Genome Atlas (TCGA) datasets analyzed during the current study are publicly available for download 
from the National Cancer Institute Genomic Data Commons Data Portal (https:// portal. gdc. cancer. gov). The 
single-cell RNA-seq datasets generated and analyzed during the current study are available from the correspond-
ing author on reasonable request.
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