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Abstract

Compactness theorems on hyperkähler 4-manifolds

by

Hongyi Liu

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor Song Sun, Chair

Hyperkähler manifolds are one of the simplest examples of Einstein manifolds. They are
Ricci-flat Riemannian manifolds with special holonomy. In dimension 4, hyperkähler 4-
manifolds can be purely be describled by a triple of symplectic 2-forms that satisfy the
pointwise orthonormal condition with respect to the wedge product.

In this dissertation, we proved the compactness of a set of hyperkähler 4-manifolds with
boundary under Cheeger-Gromov topology, where we assume only geometric control on the
boundary and topological conditions. We showed that our proof can be extended to Einstein
4-manifolds with boundary by assuming only additional topological conditions.

Furthermore, we discuss about the period map for K3 surfaces in a differential geometric
setting. We gave a simple proof for the surjectivity of the period map, without invoking
Yau’s theorem on the Calabi conjecture and any algebraic geometry. The key is to show
when a sequence of hyperkähler metrics has bounded period in some sense, then the sequence
have a convergent subsequence under Cheeger-Gromov topology.
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Chapter 1

Introduction

A Riemannian metric g on a 4-manifold is called hyperkähler if its holonomy groupHol(g)
is contained in Sp(1) = SU(2). A closed hyperkähler 4-manifold is diffeomorphic to either
a torus or the K3 manifold, and the moduli space of all hyperkähler metrics are described
by Torelli theorems. There have been extensive recent studies on the Gromov-Hausdorff
compactification of these moduli spaces, see for example [41, 46].

Hyperkähler metrics in dimension 4 are the simplest models for Riemannian metrics with
special holonomy. Little general existence theory is developed for the latter in dimensions
greater than 4, except for Calabi-Yau manifolds. Recently Donaldson [19] proposes to study
special holonomy metrics on manifolds with boundary and set up suitable elliptic bound-
ary value problems. To make further progress in this direction, it is clear that we need a
compactness theory.

In this dissertation, we study the boundary value problem for hyperkähler 4-manifolds,
which serves as the first step towards Donaldson’s program. We follow the general set-up by
Fine-Lotay-Singer [24] in terms of hyperkähler triples. A hyperkähler triple on an oriented
smooth 4-manifold X is a triple of symplectic forms ω = (ω1, ω2, ω3) satisfying the following
pointwise condition

ωi ∧ ωj =
1

3
δij(ω

2
1 + ω2

2 + ω2
3).

It is well-known that a hyperkähler triple ω uniquely determines a compatible hyperkähler
metric gω such that for each i, ω2

i = 2dvolgω and ωi is parallel with respect to the Levi-Civita
connection. Conversely, given a hyperkähler metric g on X, one can choose an orientation
and find a compatible hyperkähler triple ω, which is unique up to a constant O(3) rotation.

Now let X be a compact oriented smooth 4-manifold with boundary ∂X. Note ∂X has
an induced orientation defined by contracting a volume form of X with an outward vector
field. If ω is a hyperkähler triple on X, then its restriction to ∂X is a closed framing γ on
∂X. The following is a natural filling problem, proposed by [24].

Question 1.0.1. Given a closed framing γ on ∂X, does there exist a hyperkähler triple ω
on X extending γ?
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Notice a framing γ defines a Riemannian metric gγ on ∂X as follows: first, there exists a
unique dual coframe η = (η1, η2, η3) such that γi =

1
2
δijkηj ∧ ηk and such that η1 ∧ η2 ∧ η3 is

compatible with the orientation of ∂X; then the Riemannian metric gγ is defined by setting
η to be orthonormal. When there is no ambiguity, we always use η to denote the dual
coframe of γ defined in this way and denote the Hodge star operator of the Riemannian
metric by ∗γ = ∗η. It is well-known that if ω is a hyperkähler triple, then gω|∂X = gγ ; more
importantly Bryant [10] observed that the second fundamental form of ∂X is determined
intrinsically by γ via the matrix ∗η(ηi ∧ dηj). In particular, the mean curvature Hγ is given
by one half of the trace of this matrix, i.e., Hγ = 1

2
∗η (η ∧ dηT ).

There are some previous works on Question 1.0.1. Bryant [10] studied the local “thick-
ening” problem and obtained both positive and negative results. It was shown that any real
analytic closed framing on a closed oriented 3-manifold Y can be extended to a hyperkähler
triple on Y × (−ϵ, ϵ) for some ϵ > 0, and the extension is essentially unique. On the other
hand, there exists a smooth closed framing on an open ball B3 ⊂ R3 that cannot be ex-
tended to a hyperkähler triple on B3 × (−ϵ, ϵ) for any ϵ > 0. Fine-Lotay-Singer[24] studied
the local deformation theory for Question 1.0.1 and showed that the boundary framings must
deform in certain directions. Roughly speaking, let X = B4 for simplicity, suppose ω is a
hyperkähler triple such that ∂X has positive mean curvature, and ω′ is a nearby hyperkähler
triple, then after moduling out diffeomorphisms of ∂X, the dual coframe of ω′|∂X must be
a small pertubation of that of ω|∂X in the direction of negative frenquency of the boundary
Dirac operator defined by gω|∂X .

Our main result is the following closedness result for Question 1.0.1 :

Theorem 1.0.2. Let X be a compact oriented smooth 4-manifold with boundary, such that
there does not exist C ∈ H2(X,Z) with self intersection C2 = −2. Let ωi be a sequence of
smooth hyperkähler triples on X. Suppose ωi|∂X converges in Cheeger-Gromov sense to a
closed framing γ on ∂X such that Hγ > 0, then there exists a smooth hyperkähler triple ω
on X with ω|∂X = γ and ωi converges in Cheeger-Gromov sense to ω on X.

Here, a sequence of pairs of smooth covariant tensors (T 1
i , · · · , Tm

i ) on a compact man-
ifold M with empty or nonempty boundary is said to converge in Cheeger-Gromov sense
to (T 1, · · · , Tm) on M , if there exist diffeomorphisms fi : M → M such that f ∗

i T
1
i →

T 1, · · · , f ∗
i T

m
i → Tm smoothly on M .

The proof of Theorem 1.0.2 includes two parts: the compactness and uniqueness. The
former is the main story of this dissertation, and the latter is a consequence of [9] or [5]
on unique continuation of Einstein metrics with prescribed boundary metric and second
fundamental form. It is worth noting that for the compactness part, no general Riemannian
convergence theory can be applied directly. The difficulty here is that we only have data on
the boundary, and a priori we do not know anything near the boundary or in the interior.
Specifically, we worry about the following three bad geometric behaviours: curvature blow-
up, volume collapsing and boundary touching. These things are entangled, making it difficult
to rule out any of them. However, we are able to separate these bad behaviours and rule
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them out. We will also give examples to demonstrate that the assumptions in Theorem 1.0.2
are essential, see Remark 4.2.4 and 4.2.5.

Such C in the assumption of Theorem 1.0.2 is usually called a “−2 curve” in X. It
appears in Kronheimer’s classification of hyperkähler ALE spaces [36, 37]. By analyzing the
formation of hyperkähler ALE spaces as bubble limits of volume-noncollapsed hyperkähler
4-manifolds, one can slightly weaken the “no −2 curve” condition. Let us start with the
definition of “enhancement”. Following [19, 22], an enhancement of a closed framing γ on
∂X is an equivalent class in the set of triples of closed 2-forms on X extending γ, and the
equivalence relation is defined by θ ∼ θ + da for some triple of smooth 1-forms a on X
vanishing on ∂X. From the de Rham cohomology exact sequence of the pair (X, ∂X),

H2(X, ∂X) → H2(X) → H2(∂X) → H1(X, ∂X),

we know γ has at least one enhancement if and only if each γi lies in the kernel of H2(∂X) →
H1(X, ∂X), and we know the set of all enhancements of γ is an affine space overH2(X, ∂X)⊗
R3. Let γ̂ be an enhancement of γ. Now given a 2-cycle Σ ∈ H2(X,Z) and θ ∈ γ̂,

∫
Σ
θ is

independent of the choice of θ and we denote this invariant by cγ̂,Σ ∈ R3.
The proof of Theorem 1.0.2 easily adapts to

Theorem 1.0.3. Let X be a compact oriented smooth 4-manifold with boundary. Let ωi be
a sequence of smooth hyperkähler triples on X, and γ̂i be the enhancement of γi = ωi|∂X
where ωi lie in. Let a > 0 be a positive number. Suppose for any C ∈ H2(X,Z) with self
intersection C2 = −2, |cγ̂i,C | ≥ a and ωi|∂X converges in Cheeger-Gromov sense to a closed
framing γ on ∂X such that Hγ > 0. Then there exists a smooth hyperkähler triple ω on X
with ω|∂X = γ, and ωi converges in Cheeger-Gromov sense to ω on X.

It is worth noting that Question 1.0.1 is not an elliptic boundary value problem, observed
by [24]. This can also be seen from the uniqueness result of [9] or [5]: the restriction of ω
to any open boundary portion determines gω in the whole interior up to local isometries.
So, it is natural to consider larger class of closed triples of 2-forms on X in Question 1.0.1
to obtain an elliptic boundary value problem. In [19], Donaldson studied the deformation
theory of torsion-free G2 structures on compact oriented 7-manifolds with boundary and
set up an elliptic boundary value problem, which can be reduced to dimension 4(See [22]).
Hence, the “correct” class of triples in Question 1.0.1 should be those defining torsion free
G2 structures. Specifically, a triple of two forms ω = (ω1, ω2, ω3) on X is called torsion-free
hypersymplectic if the 3-form ϕ on X × T 3 defined by

ϕ = dt1 ∧ dt2 ∧ dt3 − ω1 ∧ dt1 − ω2 ∧ dt2 − ω3 ∧ dt3 (1.1)

is a torsion-free G2 structure. Locally, this is a weaker condition than being hyperkähler,
and there are examples in [22] or [25].

Similar to the hyperkähler case, a torsion-free hypersymplectic triple ω defines a Rie-
mannian metric gω and a positive definite SL(3,R)-valued function Q = (Qij) such that

ωi ∧ ωj = 2Qijdvolgω
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We denote Q′ the restriction of Q to ∂X. When there is ambiguity, we use notations Qω,
Q′

ω to denote their dependence on ω. One can show that the mean curvature of ∂X has an
explicit expression in terms of γ, Q′, and we denote this explicit expression by Hγ,Q′ . Note
that on ∂X, γ,Q′ are subject to the constraints dγ = 0, d(γ(Q′)−1) = 0.

We have the following analogue of Theorem 1.0.3:

Theorem 1.0.4. Let X be a compact oriented smooth 4-manifold with boundary. Let ωi be
a sequence of smooth torsion-free hypersymplectic triples on X, and γ̂i be the enhancement
of γi = ωi|∂X where ωi lie in. Let a > 0 be a positive number. Suppose for any C ∈ H2(X,Z)
with self intersection C2 = −2, |cγ̂i,C | ≥ a, and (γi,Q

′
i) converges in Cheeger-Gromov sense

to some pair (γ,Q′) on ∂X, such that γ is a framing, Q′ is positive definite and Hγ,Q′ > 0.
Then there exists a smooth torsion-free hypersymplectic triple ω on X with ω|∂X = γ,
Q′

ω = Q′, and ωi converges in Cheeger-Gromov sense to ω.

Note that Theorem 1.0.4 includes the previous two versions.
We also showed that our techniques to prove compactness results can be generalized to

Einstein manifolds, and we get the following:

Theorem 1.0.5. Let M be the set of pointed compact oriented Einstein 4-manifolds (M, g, p)
with boundary such that |Ric| ≤ 3, H2(M,Z) = H1(M,Z) = 0, ∂M is diffeomorphic to S3,

vol∂M(∂M) ≤ C, |S| ≤ C, |∇k
∂MRm∂M | ≤ C, |∇k+1

∂MH| ≤ C, inj∂M ≥ i0, H ≥ H0 > 0,∀k ≥ 0

d(p, ∂M) ≤ K.

Then M is precompact in pointed Cheeger-Gromov topology, and an element in ∂M is a
complete Einstein orbifold with smooth boundary.

Similar results have been obtained for conformally compact Einstein(CCE) 4-manifolds
in [11, 12], however, there they need a priori L2 bound for the Weyl curvature. Our result
only imposes geometric control on the boundary, and we face essentially different difficulties
from [11, 12].

In the last part of the dissertation, we considered the period map of K3 surface in a
differential geometric setting. A K3 surface is a simply connected complex surface with
vanishing first Chern class. Hence, they are simply connected oriented smooth 4-manifolds
with signature (3, 19). It is well-known that all complex K3 surfaces are diffeomorphic, and
their moduli space can be described by period maps.

There are a lot of studies on the moduli space of K3 surface, especially the Torelli
theorems. However, they invoke a lot of algebraic geometry, complex geometry and their
proofs are complicated. The motivation of our study is that our approach could possibly be
generalized to studying period maps in higher dimensions, or hypersymplectic 4-manifolds.

Let MK3 be the moduli space of hyperkähler metrics on a K3 surface of unit diameter,
up to isometries, equipped with the Gromov-Hausdorff topology. One can define a period
map

P : MK3 → Gr+/Γ
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by sending g to H+
g , the space of self-dual harmonic two forms(of dimension 3). Here Γ is the

automorphism group of the K3 lattice H2(K3,Z), Gr+ is the space of all positive 3-planes
in H2(K3,R).

Define

Gr+,◦ = Gr+\{H ∈ Gr+ : ∃δ.δ = −2 s.t.

∫
δ

h = 0,∀h ∈ H}.

We proved that

Theorem 1.0.6. The image of P is contained in Gr+,◦, and

P : MK3 → Gr+,◦/Γ

is a proper, open, surjective map.

Note that in complex geometry setting, the surjectivity part is refered to as Todorov’s
surjectivity result [49], and later Siu gave a simple proof [45]. Both of the proofs involve
Yau’s solution to the Calabi conjecture [50].

The main point in our proof is showing the period map P : MK3 → Gr+3
◦
/Γ is proper,

so one needs to show if a sequence of hyperkähler metrics is collapsing, then their periods
go to infinity in the locally symmetric space. To show this, we made use of the collapsing
theory of hyperkähler 4-manifolds by Sun-Zhang [46], as integrals of the period at specific
homology classes can be calculated.

Organization of the dissertation

In Chapter 2, we provide key ingredients in Riemannian geometry needed to prove our
main theorems. In Chapter 3, we discuss some known basics about hyperkähler 4-manifolds.
In Chapter 4, we prove the compactness results for hyperkähler 4-manifolds and Einstein
4-manifolds with boundary. In Chapter 5, we prove the convergence in triple settings and
the uniqueness. In Chapter 6, we prove the statement about the period map.

Disclaimer

This dissertation is based on 2 papers of the author [39, 40], except for Section 4.4.
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Notations

Rn
+ = {x ∈ Rn : xn ≥ 0},

Br = {x ∈ Rn : |x| < r},

B+
r = Br ∩ Rn

+,

B̃r = B+
r ∩ ∂Rn

+,

∂B̃r = {x ∈ Rn : |x| = r, xn = 0},

∂+B+
r = {x ∈ Rn : |x| = r, xn > 0},

Nr(∂M, g) = {x ∈M |d(x, ∂M) ≤ r}.
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Chapter 2

Riemannian geometry

2.1 Riemannian geometry for manifolds with

boundary

2.1.1 Evolution equations of hypersurfaces

We refer to [42] Section 3.2 and [35] for discussions in this section.
Let (M, g) be a Riemannian manifold, let ∇ denotes it’s Levi-Civita connection. Given

a smooth distance function f on M , i.e., |∇f | = 1 everywhere, so ∇∇f∇f = 0, in fact
∇∇f∇f is the gradient vector field of 1

2
|∇f |2. Note that the discussion below will apply

to Riemannian manifolds with boundary, with f the negative of distance function to the
boundary, but the discussions in this subsection is for a general smooth distance function f .

The (symmetric) (1, 1) tensor corresponds to Hessf = 1
2
L∇fg is

S(X) = ∇X∇f, (2.1)

and its trace is H = ∆f ∈ C∞(M).
Let Σ be a level set of f , i.e., Σ = f−1(a) for some a. Then S|TΣ is a section of

Γ(Hom(TΣ, TΣ)). In fact, since ∇ is a metric connection, for any X ∈ Γ(TM), we have
2⟨S(X),∇f⟩ = ∇X⟨∇f,∇f⟩ = 0. S|TΣ is usually refered to as the shape operator of Σ. The
second fundamental form of Σ with respect to the unit normal vector ∇f is defined as

II(X, Y ) := ⟨S(X), Y ⟩ = Hessf(X, Y ),

so H is the mean curvature of Σ. The mean curvature vector is defined by
−→
H = −H∇f . By

tensor calculations, we have evolution equations of second fundamental forms

Proposition 2.1.1.
L∇fS + S2 = −R(·,∇f)∇f, (2.2)

L∇fHessf − Hess2f = −Rm(·,∇f, ·,∇f), (2.3)
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where
Hess2f(X, Y ) = ⟨S2(X), Y ⟩ = ⟨S(X), S(Y )⟩.

Proof.
R(X,∇f)∇f = ∇X∇∇f∇f −∇∇f∇X∇f −∇[X,∇f ]∇f

= −∇∇f (S(X))− S([X,∇f ])
= −∇∇f (S(X))− S(∇X∇f −∇∇fX)

= −∇∇f (S(X))− S2(X) + S(∇∇fX)

= − (∇∇fS) (X)− S2(X).

Moreover, we have the equality
L∇fS = ∇∇fS. (2.4)

In fact,
(L∇f (S) (X)) = L∇fS(X)− S (L∇fX)

= [∇f, S(X)]− S (∇∇fX −∇X∇f))
= ∇∇fS(X)−∇S(X)∇f
− S (∇∇fX −∇X∇f)

= (∇∇fS)(X)− S2(X) + S2(X)

= (∇∇fS) (X),

which proves the first equality. For the second equality,

(L∇fHess f) (X,X) = L∇f (Hess f(X,X))− 2Hess f(L∇fX,X)

= L∇f (g(S(X), X))− 2 ⟨S (L∇fX) , X⟩
= (L∇fg)(S(X), X) + ⟨L∇f (S(X)), X⟩
+ ⟨S(X), L∇fX⟩ − 2 ⟨S(L∇fX), X⟩

= 2Hess f(S(X), X) + ⟨L∇f (S(X)), X⟩
+ ⟨X,S (L∇fX)⟩ − 2 ⟨S(L∇f )X,X⟩

= 2Hess f(S(X), X) + ⟨(L∇fS)(X), X⟩
+ ⟨X,S (L∇fX)⟩+ ⟨X,S(L∇fX)⟩ − 2 ⟨S(L∇fX), X⟩

= 2
〈
S2(X), X

〉
+
〈
−S2(X)−R(X,∇f)∇f,X

〉
=

〈
S2(X), X

〉
−Rm(X,∇f,X,∇f).

Take the trace of (2.2), and notice that taking the trace commutes with taking the Lie
derivative, we have

L∇fH = −|S|2 − Ric(∇f,∇f), (2.5)

where |S|2 := Tr(S2) is the norm square of the shape operator.
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Besides the evolution equations, the Gauss equations on Σ is given by

RmM(X,W, Y, Z) =RmΣ(X,W, Y, Z) + II(X,Z)II(W,Y )

− II(X, Y )II(W,Z).
(2.6)

Take the trace with respect to W,Z, we have

RicM = RicΣ +Hess2f −H · Hessf +RmM(·,∇f, ·,∇f), (2.7)

Take the trace again, we have

RM = RΣ + |S|2 −H2 + 2RicM(∇f,∇f), (2.8)

where R denote scalar curvatures. Use equations (2.3) and (2.7) to cancel the curvature
term involving the normal vector ∇f , we get

L∇fHessf = RicΣ − RicM + 2Hess2f −H · Hessf. (2.9)

One more formula we may need is the Laplace operator on a hypersurface:

Proposition 2.1.2. Let Σ ⊂M be a smooth hypersurface, h a smooth function on M ,N0 a
unit normal vector field of Σ, then

∆Σh = ∆h− Hess h(N0, N0) + ⟨∇h,
−→
HΣ⟩. (2.10)

Proof. Choose an orthonormal frame {e1, · · · , en+1} of TM , such that en+1 = N0, then

∆Σh =
n∑

i=1

(∇Σ)2ei,eih

=
n∑

i=1

(∇Σ
ei
∇Σ

ei
h−∇Σ

∇Σ
ei
ei
h)

=
n∑

i=1

(∇ei∇eih−∇∇eiei−⟨∇eiei,en+1⟩en+1h)

=
n∑

i=1

Hessh(ei, ei) +
n∑

i=1

⟨∇eiei, en+1⟩∇en+1h

=
n∑

i=1

Hessh(ei, ei)−
n∑

i=1

⟨ei,∇eien+1⟩∇en+1h

= ∆h− Hess h(en+1, en+1) + ⟨∇h,
−→
HΣ⟩.
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2.1.2 The boundary exponential map

Let (M, g) be a complete Riemannian manifold with boundary, which means the induced
metric space is complete, or equivalently, the induced distance function to some/any fixed
point is proper. Denote T⊥∂M the normal line bundle of ∂M , which is a trivialized by the
inward unit normal vector field N . We identify T⊥∂M with ∂M × R via this trivialization.
For p ∈ ∂M , denote γp(t) the geodesic such that γp(0) = p, γ′p(0) = Np. Denote

D(p) = inf{t > 0|γp(t) ∈ ∂M} ∈ (0,∞],

τ(p) = sup{t > 0|d(γp(t), ∂M) = t} ∈ (0,∞].

We have a subset of U∂M ⊂ T⊥∂M defined by

U∂M = {(p, tNp) ∈ T⊥∂M |0 ≤ t < D(p)},

which is the domain of the boundary exponential map

exp⊥ : U∂M →M, (p, s) 7→ γp(s), (2.11)

and define
V∂M = {(p, tNp) ∈ T⊥∂M |0 ≤ t < τ(p)} ⊂ U∂M .

There are some definitions, notations and terminologies related to the boundary expo-
nential map:

• The boundary injectivity radius ib is defined to be the supremum of s ≥ 0 such that
exp⊥ |∂M×[0,s) is a diffeomorphism onto its image. It characterize that to what time the
boundary can flow into the interior under geodesic flow without developing singuarities.

• A focal point q of ∂M is a critical value of the boundary exponential map (2.11). If q
lies in γp for some p ∈ ∂M , we say q is a focal point along γp.

• A foot point of q ∈M is a point p ∈ ∂M such that d(q, p) = d(q, ∂M).

• A cut point of ∂M is a point q ∈M such that there exists a foot point p of q such that
d(q, p) = τ(p). We also say q is a cut point of p.

• When we say a covariant tensor on M is written in geodesic gauge, we mean the pull
back of this tensor via exp⊥.

• For a subset B ⊂ ∂M , we use the notation

C(B, t1, t2) = exp⊥(B × [t1, t2))

to denote a metric cylinder with base B.

• Nr(∂M, g) := {x ∈M |d(x, ∂M) ≤ r}.



CHAPTER 2. RIEMANNIAN GEOMETRY 11

• Our convention is that: the (1, 1) tensor S in (2.1) is defined with respect to f =
−d(·, ∂M) near ∂M , so ∇f = −N on ∂M (Recall N is the unit inner normal vector
field) , and II ≥ 0 if ∂M is convex. For example, for the unit ball in Rn+1, f(x) =
|x| − 1, the mean curvature H = ∆(|x| − 1) = n > 0 on Sn.

Here are some remarks about some of these definitions:

• It is not hard to show, similar to the case for conjugate point of a point along some
geodesic starting at that point, that γp(s) is a focal point of along γp, if and only
if there exists a non-zero ∂M-Jacobi field V along γp (a Jacobi field with V (0) ∈
Tp∂M, V ′(0) + S(V (0)) ∈ T⊥

p ∂M) such that V (s) = 0. If there is no focal point along
γp|[0,l), then

I0(W,W ) =

∫ l

0

⟨W ′,W ′⟩ − ⟨R(W, γ′p)γ′p,W ⟩dt− ⟨S(W ),W ⟩(0) ≥ 0 (2.12)

for any piecewise smooth vector field W along γ with W (0) ∈ Tγ(0)∂M .

• By Lemma 3.2 in [43], τ defines a continuous map from ∂M to (0,∞]. It is well-known
that by a second variation argument, the first focal point along γp appears no later
than τ(p), and moreover one can argue by contradiction to get (See Lemma 3.6 in [43]),
which is similar to the case for cut locus of a point in complete Riemannian manifolds
without boundary.

Proposition 2.1.3. q ∈ M is a cut point of p if and only if at least one of the following
holds:

• q is the first focal point of γp ;

• q has at least two foot points.

From this, we conclude that exp⊥ |V∂M
is a diffeomorphism and

ib = inf
p∈∂M

τ(p).

It is worth noting that if M is embedded in some complete Riemannian manifold M ′

without boundary of the same dimension, then ∂M has two sides, hence ∂M can be viewed
as an embedded hypersurface ofM ′. In this case, one can define the focal point of ∂M inM ′

similarly. It may happen that a focal point of ∂M in M ′ lies outside M , for example, when
∂M is strictly concave at some point. However, our definition of focal point is intrinsic for
the Riemannian manifold with boundary M .

Note that for a complete Riemannian manifold (M, g) with boundary, besides boundary
injectivity radius ib, we have other two types of “injectivity radius”: the interior injectivity
radius injM , and the intrinsic injectivity radius of the boundary inj∂M . Since ∂M is a
complete Riemannian manifold without boundary, inj∂M is just defined as the injectivity
radius of ∂M . For injM , it is defined as infx∈M\∂M injx/min{1, d(x, ∂M)}, where
injx = sup{ρ > 0 | if d(x, ∂M) > ρ, then expx : TxM ⊃ Bρ(0) →M is a diffeomorphism}.
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2.1.3 Manifolds with mean convex boundary

In this subsection, we focus on manifolds with mean convex boundary. We will summarize
some known results and discuss a new result which is crucial for the proof of our main
theorems.

By second variation arguments, one can deduce topological restriction and geometric
estimates for manifolds with mean convex boundary, see [38, 20].

Proposition 2.1.4. [38, 20] Let (M, g) be a compact, connected Riemannian manifold with
boundary, RicM ≥ 0. Suppose ∂M has mean curvature H ≥ H0 > 0, then

π0(∂M) = 0,

π1(M,∂M) = 0,

sup
q∈M

d(q, ∂M) ≤ (n− 1)H−1
0 ,

vol(M) ≤ C(n)H−1
0 vol(∂M).

Proof. If π0(∂M) ̸= 0 or π1(M,∂M) ̸= 0, we claim that every non-trivial class contains a
non-trivial unit speed geodesic γ : [0, l] → M that minimizes the length of all curves in
its class. In the case when π0(M) ̸= 0, this is because the distance between two different
boundary components is positive. When π1(M,∂M) ̸= 0, we must show that the minimizer
exists and is a geodesic that only intersects ∂M at its end points. We can choose a sequence
of smooth curves γi in the same class whose length converges to the infimum of the length
of all smooth curves in the class. Reparameterizing γi to be smooth maps [0, 1] → M with
|γ′(t)| ≤ C, we can apply the Arzelà-Ascoli lemma and take a subsequential C0 limit of γi to
obtain a continuous curve γ∞ : [0, 1] →M . The end points of γ∞ are on ∂M and γ∞ is also
in the same class. Then γ∞ only intersects ∂M at end points, otherwise it can be homotoped
to have less length. Now we divide γ∞ to sufficiently many pieces such that every interval
is sufficiently small. We conclude each piece must be a geodesic, otherwise, one can replace
that piece with a length minimizing geodesic to get a curve with less length. Similarly, one
conclude γ∞ must be C1 at the break points. Hence γ∞ is a smooth geodesic.

From the first variation formula, γ intersects boundary perpendicularly at both end
points. Pick an orthonormal basis Vi, 1 ≤ i ≤ n− 1 of Tγ(0)∂M and parallel them transport
along γ to get Vi(t). Let γi,s(t) be a family of curves centered at γ with variation field Vi(t).
By second variational formula,

0 ≤
n−1∑
i=1

d2

ds2

∣∣∣
s=0

E(γi,s) =

∫ l

0

−Ric(Vi(t), Vi(t))dt−H(γ(0))−H(γ(l)) < 0,

which is a contradiction.
Now we prove the estimate for supq∈M d(q, ∂M). If for some q ∈ M , l̃ := d(q, ∂M) >

(n − 1)H−1
0 . Let p be a foot point of q. Let V̄i, 1 ≤ i ≤ n − 1 be an orthonormal basis
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of Tp∂M and parallel them transport along γp to get V̄i(t), and denote Ṽi(t) = (l̃ − t)V̄i(t),
γ̃i,s(t) a family of curves centered at γp with variation field Ṽi(t), then

0 ≤
n−1∑
i=1

d2

ds2

∣∣∣
s=0

E(γ̃i,s) = (n− 1)l̃ −
∫ l̃

0

Ric(tV̄i(t), tV̄i(t))dt− l̃2H(γ(0)) < 0,

which is a contradiction. The volume upper bound is by volume comparison, see [31].

Remark 2.1.5. Note that whenM is connected, π1(M,∂M) = 0 is equivalent to that ∂M is
connected and the natural map π1(∂M) → π1(M) is surjective, the latter of which means that
fix a point p0 ∈ ∂M , then for any closed path x(t) : 0 ≤ t ≤ 1 in M with x(0) = x(1) = p0,
there exists a homotopy Fs(t) : 0 ≤ s, t ≤ 1 with Fs(0) = Fs(1) = p0, F0(t) = x(t) such that
F1(t) ∈ ∂M .

The following result is well-known, see Lemma 6.3 of [34].

Proposition 2.1.6. [34] Let M be a complete Riemannian manifold with nonempty compact
boundary. If there are no focal points whose distance to ∂M equals ib, then there exists a
smooth geodesic of length 2ib that is perpendicular to ∂M at both endpoints.

Proof. ib = inf
p∈∂M

τ(p) > 0. Suppose the infimum is achieved at p1 ∈ ∂M . Then by assump-

tion and Proposition 2.1.3 γp1(ib) has another foot point p2. We claim γ′p1(ib) = −γ′p2(ib),
so γp1 : [0, 2ib] → M is the smooth geodesic we want. By assumption, we can find
smooth distance functions h1, h2 extending d(·, ∂M) near γp1|[0,ib], γp2 |[0,ib], respectively.
Consider the smooth hypersurface Σ = (h1 − h2)

−1(0) near q := γp1(ib) = γp2(ib). Then
v = ∇h1(q) +∇h2(q) ∈ TqΣ. If it is non-zero, then ⟨∇h1(q) +∇h2(q), v⟩ > 0. Without loss
of generality, assume ⟨∇h1, v⟩ > 0. Then in the direction of −v in Σ, we have some point
q′ ∈ Σ with h1(q

′) < h1(q). Hence q
′ has two foot points and d(q′, ∂M) = h1(q

′) < ib, which
is a contradiction.

It is worth noting that in this proof, Kodani used the first order variation of h1 on Σ
to lead a contradiction. We can also investigate the second order variation of h1 on Σ and
prove the following:

Proposition 2.1.7. Let M be a compact Riemannian manifold with mean convex boundary,
RicM ≥ 0, then there exists a focal point of ∂M whose distance to ∂M is equal to ib.

Proof. Suppose not, by Proposition 2.1.6, we have a smooth geodesic of length 2ib which is
perpendicular to ∂M at both end points. We use the notations p1, p2, q, h1, h2, and Σ as given
there. We claim ∆Σh1(q) < 0, so we get another point q′′ ∈ Σ near p with h1(q

′′) < h1(q) = ib
and get a contradiction. Denote N0 = ∇h1(q) = −∇h2(q),Σ1 = h−1

1 (ib),Σ2 = h−1
2 (ib), then

N0 is a common unit normal vector for Σ,Σ1,Σ2 at q. A graph visualization is depicted in
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Figure 2.1. Let IIΣ, IIΣ1 , IIΣ2 be second fundamental forms with respect to N0 at q. Then
at q,

IIΣ =
1

|∇(h1 − h2)|
Hess(h1 − h2) =

1

2
Hess(h1 − h2) =

1

2
(IIΣ1 + IIΣ2),

hence

HΣ =
1

2
(HΣ1 +HΣ2),

−→
HΣ =

1

2
(
−→
HΣ1 +

−→
HΣ2).

From the formula of Laplace operator on a hypersurface (2.10), we know that at q,

∆Σh1 = ∆h1 − Hessh1(N0, N0) + ⟨∇h1,
−→
HΣ⟩,

∆Σ1h1 = ∆h1 − Hessh1(N0, N0) + ⟨∇h1,
−→
HΣ1⟩.

Since h1 is a constant on Σ1, ∆Σ1h1 = 0, hence

∆Σh1 = ∆Σh1 −∆Σ1h1 = ⟨∇h1,
−→
HΣ −

−→
HΣ1⟩ = ⟨∇h1,

1

2
(
−→
HΣ2 −

−→
HΣ1)⟩

= −1

2
(HΣ2 −HΣ1).

(2.13)

Since ∂M is mean convex, RicM ≥ 0, by the evolution equation of mean curvature (2.5),
we have −HΣ1(q) > H∂M(p1) > 0, HΣ2(q) > H∂M(p2) > 0. Hence ∆Σh1(p) < 0, which
completes the proof.

Σ = (h1 − h2)
−1(0)

Σ1 = h−1
1 (ib)

Σ2 = h−1
2 (ib)

q

p1

p2

h1

h2

ib

ib

∂M

MN0

Figure 2.1: Existence of a focal point

A moment thought about the arguments in the end of the previous proof yields that
RicM ≥ 0 is not so necessary, since we can make use of the evolution equation (2.5) to get
an ordinary differential inequality for the mean curvature.



CHAPTER 2. RIEMANNIAN GEOMETRY 15

Proposition 2.1.8. If in Proposition 2.1.7 we assume instead RicM ≥ −(n− 1)c for some

c > 0, and H ≥ H0 > 0. If ib < − 1
2
√
c
ln
∣∣H0−(n−1)

√
c

H0+(n−1)
√
c

∣∣, then there exists a focal point of ∂M

whose distance to ∂M is equal to ib.

Proof. Suppose the conclusion is not true, follow the arguments of Proposition 2.1.7 except
for the last part. Let Si(X) = −∇X∇hi, Hi = TrSi = −∆hi, and identify a neighborhood
of γpi|[0,ib] with a subset of ∂M × R via exp⊥. Then by (2.5),

∂tHi = |Si|2 +Ric(∇hi,∇hi) ≥
1

n− 1
H2

i − (n− 1)c,

and H(pi, 0) ≥ H0. Let f solves the ODE on [0, ib]

f ′ =
1

n− 1
f 2 − (n− 1)c, (2.14)

and f(0) = H0, then by ODE comparison we have Hi(pi, t) ≥ f(t). In particular, Hi(pi, ib) ≥
f(ib) > 0, which leads to a contradiction as before.

We now show f(ib) > 0 in detail. The autonomous ordinary differential equation (2.14)
has two equilibrium solutions f = ±(n−1)

√
c. If H0 ≥ (n−1)

√
c, then f is increasing, hence

f(ib) > 0. If H0 < (n− 1)
√
c, then f is strictly decreasing with limt→∞ f(t) = −(n− 1)

√
c.

The solution of (2.14) is given by

1

2
√
c
ln
∣∣f(t)− (n− 1)

√
c

f(t) + (n− 1)
√
c

∣∣− 1

2
√
c
ln
∣∣H0 − (n− 1)

√
c

H0 + (n− 1)
√
c

∣∣ = t,

hence the unique zero point of f is given by − 1
2
√
c
ln
∣∣H0−(n−1)

√
c

H0+(n−1)
√
c

∣∣, so f(ib) > 0.

Proposition 2.1.7 implies

Corollary 2.1.9. Let (M, g) be a compact Riemannian manifold with boundary, K > 0, λ >
0 are constants. Suppose sec ≤ K, S ≤ λ, H > 0, RicM ≥ 0, then ib ≥ 1√

K
arccot λ√

K
.

Proof. By Proposition 2.1.7, there exists p ∈ ∂M such that γp(ib) is a focal point along γp.
If ib <

1√
K
arccot λ√

K
, from comparison theorem for Jacobi fields, we know γp(ib) cannot be a

focal point along γp, which is a contradiction.

Similarly, Proposition 2.1.8 implies

Corollary 2.1.10. Let (M, g) be a compact Riemannian manifold with boundary. Suppose
|Rm| ≤ C, |S| ≤ C, H ≥ H0 > 0, then we can find i0 depending explicitly on C,H0 such
that ib ≥ i0.

Remark 2.1.11. In the previous two corollaries, if the sectional curvature and Ricci cur-
vature bounds only holds for N1(∂M, g), then we also have a ib lower bound. In the case of
Corollary 2.1.9, we have ib ≥ min{ 1√

K
arccot λ√

K
, 1}.
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Remark 2.1.12. In the same setting as the previous two corollaries, [32] Lemma 2.2 claimed
to prove a lower bound for ib, using a similar method as [7] Lemma 2.4. In both papers, there
is a logic problem that they get a contradiction with an unjustified statement: Let M be a
Riemannian manifold with boundary, γ : [0, l] →M be a geodesic that is perpendicular to the
boundary at both end points, and suppose there is no focal point along γ for both boundary
portions, then I1(V, V ) ≥ 0 for any smooth vector field along γ with V (0), V (l) ∈ T∂M .
Here

I1(V, V ) =

∫ l

0

⟨V ′, V ′⟩ − ⟨R(V, γ′)γ′, V ⟩dt− ⟨S(V (0)), V (0)⟩ − ⟨S(V (l)), V (l)⟩.

In fact, this unjustified statement is not true, and one can easily think of an example: let

Σ1 = {(x′, xn) ∈ Rn
∣∣|x′|2 + (1− xn)2 = R2

1},

Σ2 = {(x′, xn) ∈ Rn
∣∣|x′|2 + (1 + xn)2 = R2

2},
R1, R2 > 2 and γ(t) = (0, 1− t), 0 ≤ t ≤ 2, then I1(V, V ) = − 1

R1
− 1

R2
< 0 for any unit-norm

parallel vector field along γ with V (0) ∈ Tγ(0)Σ1. In this case, there exist no focal points on
γ for both Σ1,Σ2.

In fact, focal points give crucial information for index form defined by one submanifold
and one point. However, as seen from the example, they do not fit well with the index form
defined for two submanifolds. Indeed, there is some notion of “conjugate point” defined for
two submanifolds, see [1].

It is easy to see focal points can “pass to the limit”, since they arise from kernels of
the differential of exponential maps. Though one can use Corollary 2.1.10 directly in many
situations, we point out this fact here, which may help in contradiction arguments.

Proposition 2.1.13. Let M be a manifold with boundary, gi be a sequence of Riemannian
metrics on M , and pi ∈ ∂M . Suppose gi converges to a Riemannian metric g∞ in C2 and
pi converges to p∞ ∈ ∂M , γpi is defined on [0, b] and γpi(ti) is a focal point along γpi with
0 < a ≤ ti ≤ b. Then for a subsequence, γpi converges in C

2 to γp∞, ti → t∞ and γp∞(t∞) is
a focal point along γp∞.

Proof. γ′pi(0) ∈ TM is a bounded sequence, hence subconverges to some v ∈ TM , which
must equal to γ′p∞(0). Hence by ODE theories, γpi converges in C2 to γp∞ . Suppose for
a subsequence ti → t∞. Let Ji : [0, ti] → TM be ∂M -Jacobi fields along γi with Ji(ti) =
0, |J ′

i(ti)| = t∞
ti
. Normalize these geodesics and Jacobi-fields by γ̄i(t) = γi(

ti
t∞
t), J̄i(t) =

Ji(
ti
t∞
t), so γ̄i, J̄i are defined on the same interval [0, t∞], and

J̄ ′′
i (t) +Rgi(J̄i(t), γ̄

′
i(t))γ̄

′
i(t) = 0,

J̄i(t∞) = 0, |J̄ ′
i(t∞)| = 1.

(2.15)

For a subsequence J̄i
′
(t∞) → w with |w| = 1. Let J∞ be the non-trivial Jacobi-field along

γp∞ with J∞(t∞) = 0, J ′
∞(t∞) = w, then Ji converges in C

2 as maps [0, t∞] → TM to J∞ by
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ODE theories. Hence J∞ is a ∂M -Jacobi field, which implies γp∞(t∞) is a focal point along
γp∞ .

2.1.4 Volume estimates near boundary

In this subsection, we show some volume lower bounds near boundary under some geo-
metric control. These estimates can be found in [2] and [32].

Proposition 2.1.14. Let (M, g) is a Riemannian manifold with boundary, suppose Ric ≥
−(n−1)c for some c ≥ 0, and exp⊥ is an diffeomorphism in B× [0, T ) for some open subset
B of ∂M , then

sup
B×{t}

H ≤ max{(n− 1)
√
2c, 4(n− 1)−1T−1},

vol(C(B, t1, t2)) ≥ C(n, T, c)vol∂M(B)|t2 − t1|,
where 0 ≤ t, t1, t2 ≤ 1

2
T.

Proof. By the evolution equation (2.5),

∂tH = |S|2 +Ric(Nt, Nt), (2.16)

hence

∂tH ≥ 1

n− 1
H2 − (n− 1)c. (2.17)

If for some t0 ∈ [0, 1
2
T ], z0 ∈ B, we haveH(z0, t0) ≥ δ and δ ≥ (n−1)

√
2c, then ∂tH(z0, t) ≥ 0

and H(z0, t) ≥ (n− 1)
√
2c for t ∈ [t0, T ). Hence

∂tH(z0, t) ≥
1

2
(n− 1)−1H(z0, t)

2,

H−1(z0, t) ≤ H−1(z0, t0)−
1

2
(n− 1)(t− t0) ≤ δ−1 − 1

2
(n− 1)(t− 1

2
T ).

Then the continuity of H(z0, ·) in [0, T ) forces δ ≤ 4(n − 1)−1T−1, which proves the mean
curvature estimate.

For t ∈ [0, 1
2
T ], let Bt = exp⊥(B × {t}), then

d

dt
Hn−1(Bt) = −

∫
Bt

HdHn−1(Bt) ≥ −C1(n, T, c)Hn−1(Bt),

where Hn−1 denotes the (n− 1)-dimensional Hausdorff measure of M . Hence

Hn−1(Bt) ≥ e−C1(n,T,c)tvol∂M(B) ≥ e−
1
2
C1(n,T,c)Tvol∂M(B)

and when 0 ≤ t1 < t2 ≤ 1
2
T ,

vol(C(B, t1, t2)) =

∫ t2

t1

Hn−1(Bt)dt ≥ C(n, T, c)vol∂M(B)(t2 − t1).
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Proposition 2.1.15. Let M be a Riemannian manifold with boundary, p ∈ ∂M . Suppose
B(p, 2r0) has compact closure,

sup
B(p,2r0)

|Rm| ≤ C,

vol∂M(B∂M(p, r0)) ≥ v0,

exp⊥ is an diffeomorphism in B∂M(p, r0)× [0, r0), and on B∂M(p, r0)

Ric∂M ≥ −(n− 2)c0, |S| ≤ C,

then there exists r1 > 0, v1 > 0 depending on n,C, c0, r0, v0, such that for q = exp⊥(p, 2r1),
we have

vol(B(q, r1)) ≥ v1.

Proof. By definition C(B∂M(p, r0), 0, r0) ⊂ B(p, 2r0). We claim that there exists r2 > 0, C1 >
0 such that for any p1, p2 ∈ B∂M(p, r0),

dΣt(exp
⊥(p1, t), exp

⊥(p2, t)) ≤ C1d∂M(p1, p2)

when 0 ≤ t ≤ r2, where Σt is the image of B∂M(p, 2r0) under exp
⊥(·, t). In fact, by (2.2)(2.4),

∇∇tS = S2 +R(·,∇t)∇t,
hence

d

dt
|S| ≤ |S|2 + C.

Integrate the inequality, we have

arctan(
|S|√
C
)(x, t)− arctan(

|S|√
C
)(x, 0) ≤

√
Ct.

Hence there exist r2 > 0, C2 > 1 such that |S| ≤ logC2 when 0 ≤ t ≤ r2. Now let γ0(s) be a
smooth curve in B∂M(p, 2r0) that connects p1, p2, and let γt(s) = exp⊥(γ0(s), t) ∈ Σt, then
we have

d

dt
log |γ′t(s)| = −⟨SΣt(γ

′
t(s)), γ

′
t(s)⟩

⟨γ′t(s), γ′t(s)⟩
≤ |SΣt(γt(s))| ≤ logC2.

It follows that |γ′t(s)| ≤ C1|γ′0(s)| with C1 = Cr2
2 and the claim follows from integration.

Now take

r1 = min{2C1r0,
1

4
r2},

we have

C(B∂M(p,
r1
2C1

),
3r1
2
,
5r1
2

) ⊂ B(q, r1),

then we apply Proposition 2.1.14 and Bishop-Gromov volume comparison on ∂M to get the
desired conclusion.

Remark 2.1.16. It is easy to give a quantitative version of the lemma from the proof.
However, to the author’s knowledge, we cannot prove the last inclusion in the proof without
a control of curvature. It may be possible that a metric ball of the boundary becomes “long
and thin” under the flow of ∇d(·, ∂M), while maintains an area lower bound.
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2.2 Convergence theory of Riemannian manifolds

2.2.1 Gromov-Hausdorff convergence

This section is intended to summerize some results of Gromov-Hausdorff convergence for
Riemannian manifold without boundary.

Definition 2.2.1 (Gromov-Hausdorff distance). Let X, Y be two compact metric spaces,
the Gromov-Hausdorff distance between X, Y is defined to be

dGH(X, Y ) = inf{dZH(i(X), j(Y )) | ∃ a metric space Z and isometric embeddings

i : X ↪→ Z, j : Y ↪→ Z},

where dZH denotes the Hausdorff distance in Z, i.e.,

dZH(i(X), j(Y )) = max{ sup
x∈i(X)

d(x, j(Y )), sup
y∈j(Y )

d(y, i(X))}.

The Gromov-Hausdorff distance between X, Y measures how far X, Y are from being
isometric. It is easy to check that dGH is a metric on the set of all compact metric spaces,
say Mcms. The topology induced by dGH is refered to as Gromov-Hausdorff topology. It is
proved that

Theorem 2.2.2. (Mcms, dGH) is a complete metric space.

Theorem 2.2.3 (Gromov compactness theorem). If (Mi, gi) are compact Riemannian man-
ifolds, RicMi

≥ −(n − 1)c, diam(Mi, gi) ≤ C, then a subsequence converges in Gromov-
Hausdoff sense to a compact metric space (Z∞, d∞).

The point is that we have Bishop-Gromov volume comparison to conclude that for any
fixed ϵ > 0, we can cover each Mi by a uniform number of metric balls of radius ϵ. The set
of all limits (Z∞, d∞) are refered to as Ricci limit spaces.

Similarly, one can define the pointed Gromov-Hausdorff distance for pointed compact
metric spaces

dGH((X, p), (Y, q)) = inf{dZH(i(X), j(Y )) + dZ(i(p), j(q)) | ∃ a metric space Z

and isometric embeddings i : X ↪→ Z, j : Y ↪→ Z}.

In the case of point Riemannian manifolds(without boundary, not necessary complete)

Definition 2.2.4. A sequence of pointed Riemannian manifolds (Mi, gi, pi) is said to con-
verge in (pointed) Gromov-Hausdorff sense to a pointed complete metric space (Z∞, d∞, p∞),
if ∃Ri → ∞, such that B̄(pi, Ri) is compact and

dGH((B̄(pi, Ri), pi), (B̄(p∞, Ri), p∞)) → 0.



CHAPTER 2. RIEMANNIAN GEOMETRY 20

In general, Gromov-Hausdorff topology is a very weak topology: the limit space may be
bad, and convergence in Gromov-Hausdorff topology is not satisfactory in many contradiction
arguments. However, a general philosophy is that, if we impose geometry control in the
converging sequence, then we have regularity results on the limit space. If we assume the
regularity on the limit space, then the convergence can be improved to a stronger topology.
This is one of the key ideas in Cheeger-Colding theory.

Definition 2.2.5. A sequence of closed Riemannian manifold (Mi, gi) is said to converge
in Ck,α topology to a Ck,α Riemannian manifold (M∞, g∞), if there exists Ck+1,α diffeomor-

phisms φi :M∞ →Mi such that φ∗
i gi

Ck,α

−−→ g∞ as tensors on M∞.

It is proved by Anderson and Colding that

Theorem 2.2.6 ([3, 17]). If (Mi, gi) are closed Einstein manifolds, RicMi
= (n − 1)c

and (Mi, gi)
GH−→ (M∞, g∞) for some closed smooth Riemannian manifold (M∞, g∞), then

(Mi, gi)
Ck,α

−−→ (M∞, g∞), ∀k, α.

Definition 2.2.7. Suppose RicMi
≥ −(n − 1)c, and (Mi, gi, pi)

GH−−→ (X∞, d∞, p∞). If for

some λi → ∞, (Mi, λigi, pi)
GH−−→ (Z∞, q∞), then Z∞ is called a bubble limit assosciated to

the sequence. If for some µi → ∞, (X∞, µid∞, p∞)
GH−−→ (W∞, q

′
∞), then W∞ is a called a

tangent cone at p∞.

In application, we usually take λi to be the maximum of the curvature norm. If the
rescaled metric is volume non-collapsing, then our bubble limit will be a complete Rieman-
nian manifold of the same dimension. In fact, in this dissertation, we will encounter bubble
limits with maximum volume growth.

2.2.2 Harmonic radius and convergence theory

Convergence theory of Riemannian manifolds is a powerful tool to prove conclusions in
Riemannian geometry through contradiction arguments when explicit bounds is not required.
In this section, we will restate some results of [2], follow the proof there, and discuss some
direct corollaries. We note that while we discuss about manifold with boundary here, it
applies to manifolds without boundary (which is easier and was proved much earlier).

Let (M, g) be a Riemannian manifold with boundary, m ∈ N, 0 < α < 1, Q > 1.
For p ∈ M , define rm,α

h (p, g,Q) to be the supremum of ρ > 0 such that if d(p, ∂M) > ρ,
then there exists a neighborhood U of p in M and a interior coordinate chart φ : B ρ

2
→ U ,

φ(0) = p, and if d(p, ∂M) ≤ ρ, then there exists a neighborhood U of p inM and a boundary
coordinate chart φ : B+

4ρ → U , φ((0, d(p, ∂M))) = p, φ(B̃4ρ) = U ∩ ∂M , and in either B ρ
2
or

B+
4ρ, we have

∆Mφ
−1 = 0,

Q−2(δij) ≤ (gij) ≤ Q2(δij),
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ρm+α
∑
|β|=m

|∂βgij(x)− ∂βgij(y)| ≤ (Q− 1)|x− y|α.

We call such a coordinate chart a (ρ,Q,m, α)-harmonic coordinate chart centered at p.
Note that the second condition implies there exists r1, r2, depending on ρ,Q, such that
B(p, r1) ⊂ U ⊂ B(p, r2).

Definition 2.2.8. Fix an integer m ≥ 0, and 0 < α < 1. We say a sequence of Riemannian
manifold with boundary (Mi, gi, pi) converges in pointed Cm,α to (M∞, g∞, p∞) if there exists
precompact open subsets Ωi of Mi and Ω∞,i of M∞, and σi > ρi → ∞ such that B(pi, ρi) ⊂
Ω̄i ⊂ B(pi, σi), B(p∞, ρi) ⊂ Ω̄i ⊂ B(p∞, σi) and there exists diffeomorphisms Fi : Ω∞,i → Ωi,
Fi : Ω∞,i ∩ ∂Mi → Ωi ∩ ∂M∞ such that F ∗

i gi → g in Cm,α topology, and F−1
i (pi) → p∞. If

we replace Cm,α by C∞, we say the convergence is in pointed Cheeger-Gromov sense.

Remark 2.2.9. (M∞, g∞) is automatically a complete Cm,α or C∞ Riemannian manifold
with boundary from the definitions. Sometimes we only need that one metric ball converges,
so one can modify the definitions above: suppose B̄(pi, r) ⊂ Ωi for some precompact open
set Ωi ⊂ Mi and there exists a Riemannian manifold with boundary (Ω∞, g∞), a point
p∞ ∈ Ω∞, and diffeomorphisms Fi : Ω∞ → Ωi mapping ∂Ω∞ onto Ωi ∩ ∂Mi such that
F ∗
i gi → g∞ in Cm,α or C∞ topology and F−1

i (p∞) → pi, we say B(pi, r) converges in C
m,α

or Cheeger-Gromov sense to B(p∞, r).

The following theorem mentioned in [2] is well-known and is a fundamental theorem of
Riemannian convergence theory.

Proposition 2.2.10. [2] Let (Mi, gi) be a sequence of complete Riemannian manifold with
boundary, pi ∈ Mi. Suppose there exists some Q > 1, and a positive function r : (0,∞) →
(0,∞), such that rm,α

h (p, gi, Q) ≥ r(R) for any p ∈ B(pi, R), then for a subsequence,
(Mi, gi, pi) converges in pointed Cm,β sense to (M∞, g∞, p∞) for any 0 < β < α. If the
above assumption holds for only one R, then B(pi, R) converges in C

m,β sense to B(p∞, R).

Next, we discuss under what geometric control we can get a harmonic radius lower
bound. We state and prove the following local version of Theorem 3.2.1 in [2], with simplified
arguments in some parts, when derivative bounds is assumed.

Theorem 2.2.11. Fix m ≥ 1. Let (M, g) be a Riemannian manifold with boundary, and
Σ ⊂ ∂M be a boundary metric ball that has nonempty boundary and compact closure. Suppose
exp⊥ maps Σ× [0, i0) diffeomorphically onto its image Ω,

injΩ ≥ i0, injΣ ≥ i0, (2.18)

and in Ω,
|∇lRicM | ≤ Λ, 0 ≤ l ≤ m, (2.19)

on Σ
|∇l

∂MRic∂M | ≤ Λ, |∇l+1
∂MH| ≤ Λ, 0 ≤ l ≤ m. (2.20)
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Then for any Q > 1, α ∈ (0, 1), p ∈ Ω,

rm+1,α
h (p, g,Q) ≥ r0(i0,Λ,m, α,Q)d(p, ∂

+Ω), (2.21)

where ∂+Ω = Ω̄\(Ω ∪ ∂M).

Remark 2.2.12. Recall that injΩ ≥ i0 means that injx ≥ i0min{1, d(x,Ωc)},∀x ∈ Ω and
injΣ ≥ i0 means that inj∂M,y ≥ i0min{1, d∂M(y,Σc)},∀y ∈ Σ.

Proof. If not, we have a sequence (Mk, g̃k) and Σk, Ωk that satisfies the conditions, but there
exists pk ∈ Ωk with

rm+1,α
h (pk, g̃k, Q)

dg̃k(pk, ∂
+Ωk)

= inf
p∈Ωk

rm+1,α
h (pk, g̃k, Q)

dg̃k(p, ∂
+Ωk)

→ 0.

Rescale the metric gk = (rm+1,α
h (pk, g̃k, Q))

−2g̃k, so r
m+1,α
h (pk, gk, Q) = 1, then dgk(pk, ∂

+Ωk) →
∞, and rm+1,α

h (p, gk, Q) ≥ 1
2
if dgk(p, pk) ≤ R , k ≥ k(R). Fix any β ∈ (0, α). Then there are

two cases:
Case 1 dgk(pk,Σk) → ∞ for some subsequence.
Then for any β ∈ (0, α), a subsequence (Mk, gk, pk) converges in pointed Cm+1,β sense to

a complete Riemannian manifold (M∞, g∞, p∞). So RicM∞ = 0, injM∞ = ∞. By Cheeger-
Gromoll splitting theorem, (M∞, g∞) is isometric to flat Rn.

Hence for any L > 0, there exist a coordinate φ0,k : BL+5 → Uk ⊂Mk, φ0,k(0) = pk, such
that

∥gk,ij − δij∥Cm+1,β(BL+5) → 0, 1 ≤ i, j ≤ n.

We solve the Dirichlet problem for functions uνk, 1 ≤ ν ≤ n:

∆Mk
uνk = 0 in BL+5, u

ν
k|∂BL+5

= xν . (2.22)

Recall the formula

∆g = gij∂i∂j +
1√
|g|
∂i(

√
|g|gij)∂j, |g| = det(gij).

Then we have

∥uνk − xν∥Cm+2,β(BL+5) ≤ C∥∆Mk
(uνk − xν)∥Cm,β(BL+5) → 0.

Hence, we get a new coordinate system (u1k, · · · , unk) and we discard the original coordinate
system, and we use the same notation for tensors written in the new coordinate system, so
in the new coordinate system we have

∥gk,ij − δij∥Cm+1,β(BL+3) → 0.
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Now we want to improve the convergence of gk,ij from elliptic equations. We have a system
of equations

∆Mk
gk,ij +Bij(gk, ∂gk) = −2RicMk,ij.

where Bij(g, ∂g) are polynormials of g, ∂g and are quadratic in ∂g. From Wm+2,p estimates,
Morrey embeddings, and

|∇lRicMk
| → 0, 0 ≤ l ≤ m,

we have for 1 ≤ i, j ≤ n

∥gk,ij − δij∥Cm+1,α(BL+2) ≤C(∥∆Mk
(gk,ij − δij)∥Cm(BL+3)

+ ∥gk,ij − δij∥L∞(BL+3)) → 0.
(2.23)

Hence we get a (2(L + 2), Q,m + 1, α) harmonic coordinate chart centered at p′k, with
dgk(p

′
k, pk) → 0 , then rm,α

h (pk, gk, Q) ≥ 2(L+ 1) for large k, which is a contradiction.
Case 2 dgk(pk,Σk) ≤ K.
A subsequence (Mk, gk, pk) converges in pointed Cm+1,β sense to a complete Rieman-

nian manifold with boundary (M∞, g∞, p∞) and (∂Mk, gk, qk) converges in C
m+1,β sense to

(∂M∞, g∞|∂M∞ , q∞), where qk ∈ Σk is the unique foot point of pk in Σk. Then RicM∞ = 0,
Ric∂M∞ = 0, H∞ = 0, inj∂M∞ = ∞, ib,M∞ = ∞. Hence (∂M∞, g∞|∂M∞) is isometric to flat
Rn−1. By (2.8), we have S∞ = 0. Then by Lemma 4.1.6, (M∞, g∞) is a smooth Riemannian
manifold with boundary and RmM∞ = 0. Since also ib,M∞ = ∞, (M∞, g∞) is a isometric to
flat Rn

+.
Hence for any L > 2K+10, there exist a coordinate φ0,k : B

+
L+5 → Uk ⊂Mk, φ0,k(0) = qk,

φ0,k(B̃L+5) = Uk ∩ ∂Mk such that

∥gk,ij − δij∥Cm+1,β(B+
L+5)

→ 0, 1 ≤ i, j ≤ n.

First, we solve for functions vνk , 1 ≤ ν ≤ n− 1,

∆∂Mk
vνk = 0 in B̃L+5, v

ν
k |∂B̃L+5

= xν , (2.24)

Then we have

∥vνk − xν∥Cm+2,β(B̃L+5)
≤ C∥∆∂Mk

(vνk − xν)∥Cm,β(B̃L+5)
→ 0.

Next, we solve for 1 ≤ ν ≤ n− 1,

∆Mk
uνk = 0 in B+

L+5, u
ν
k|B̃L+5

= vνk , u
ν
k|∂+B+

L+5
= xν . (2.25)

Note that ∂B+
L+5 is not a C1-boundary, but it satisfies exterior sphere condition, so we

can solve the equations by Perron’s method to get a unique solution uνk ∈ C∞((B+
L+5)

◦) ∩
C0(B+

L+5). From definitions and the estimates above, we have

∥∆Mk
(uνk − xν)∥Cm,β(B+

L+5)
→ 0,
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∥uνk − xν∥Cm+2,β(B̃L+5)
→ 0,

∥uνk − xν∥L∞(∂B+
L+5)

→ 0,

then by maximum principle, we have

∥uνk − xν∥L∞(B+
L+5)

→ 0,

and by Schauder estimates

∥uνk − xν∥Cm+2,β(B+
L+4)

≤ C(∥∆Mk
(uνk − xν)∥Cm,β(B+

L+5)
+ ∥uνk − xν∥L∞(B+

L+5)

+ ∥uνk − xν∥Cm+2,β(B̃L+5)
) → 0.

(2.26)

Next, we construct unk by solving

∆Mk
unk = 0 in B+

L+5, u
n
k |∂B+

L+5
= xn.

We have

∥unk − xn∥Cm+2,β(B+
L+4)

≤C(∥∆Mk
(unk − xn)∥Cm,β(B+

L+5)

+ ∥unk − xn∥L∞(B+
L+5)

) → 0.
(2.27)

Hence we get a new coordinate system (u1k, · · · , unk) and we discard the original coordinate
system, and we use the same notation for tensors written in both coordinate systems, so in
the new coordinate system we have

∥gk,ij − δij∥Cm+1,β(B+
L+3)

→ 0. (2.28)

Now we want to improve the convergence of gk,ij from elliptic equations with Neumann
boundary conditions. We have equations

∆∂Mk
gk,ij + B̃ij(gk, ∂gk) = −2Ric∂Mk,ij (2.29)

∆Mk
gk,ij +Bij(gk, ∂gk) = −2RicMk,ij (2.30)

Fix θ ∈ (β, 1), p = n
1−θ

, from Wm+2,p estimates, Morrey embeddings, and

|∇l
∂Mk

Ric∂Mk
| → 0, 0 ≤ l ≤ m,

we have for 1 ≤ i, j ≤ n− 1,

∥gk,ij − δij∥Cm+1,θ(B̃+
L+2.5)

≤C(∥∆∂Mk
(gk,ij − δij)∥Cm(B̃+

L+3)

+ ∥gk,ij − δij∥L∞(B̃+
L+3)

) → 0.
(2.31)
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By Theorem 8.33 in [29],

∥gk,ij − δij∥Cm+1,θ(B+
L+2)

≤C(∥∆Mk
(gk,ij − δij)∥Cm(B̃+

L+2.5)

+ ∥gk,ij − δij∥L∞(B+
L+2.5)

+ ∥gk,ij − δij∥Cm+1,θ(B̃+
L+2.5)

) → 0.

(2.32)

Note that
Nkg

nn
k = −2(n− 1)Hkg

nn
k , (2.33)

Nkg
in
k = −(n− 1)Hkg

in
k +

1

2
√
gnnk

gijk ∂jg
nn
k , (2.34)

where Nk =
gjnk ∂j√

gnn
k

is the unit normal vector of ∂Mk, 1 ≤ i ≤ n− 1 and j sums from 1 to n,

then we have Neumann boundary conditions for (2.30). For simplicity, assume for a while
m = 0. Since

∥gk,ij − δij∥C1,β(B+
L+2)

→ 0,

|RicMk,ij|C0(B+
L+2)

→ 0, 1 ≤ i, j ≤ n,

|Hk|C1(B̃L+2)
→ 0,

we have

∥∆Mk
(gnnk − δnn)∥C0(B+

L+2)
→ 0, ∥Nkg

nn
k ∥C1(B̃L+2)

→ 0,

then by Morrey embeddings (together with extensions), and W 2,p estimates for Neumann
boundary problems (for example, see a priori estimate 2.3.1.1 in [30]),

∥gnnk − δnn∥C1,θ(B+
L+1.7)

≤C∥gnnk − δnn∥W 2,p(B+
L+1.8)

≤C(∥gnnk − δnn∥Lp(B+
L+2)

+ ∥∆Mk
(gnnk − δnn)∥Lp(B+

L+2)

+ ∥Nkg
nn
k ∥

W
1− 1

p ,p
(B̃L+2)

→ 0.

(2.35)

Now for 1 ≤ l ≤ n− 1, since

∥∆Mk
(glnk − δln)∥C0(B+

L+2)
→ 0,

and

∥Nkg
ln
k ∥

W
1− 1

p ,p
(B̃L+1.5)

≤ C(∥gnnk − δnn∥
W

2− 1
p ,p

(B̃L+1.5)
+ ∥Hk∥

W
1− 1

p ,p
(B̃L+1.5)

)

≤ C(∥gnnk − δnn∥W 2,p(B+
L+1.7)

+ ∥Hk∥C1(B̃L+1.7)
) → 0.

(2.36)
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Then

∥glnk − δln∥C1,θ(B+
L+1.1)

≤C∥glnk − δln∥W 2,p(B+
L+1.2)

≤C(∥glnk − δln∥Lp(B+
L+1.5)

+ ∥∆Mk
(glnk − δln)∥Lp(B+

L+1.5)

+ ∥Nkg
ln
k ∥

W
1− 1

p ,p
(B̃L+1.5)

) → 0.

(2.37)

Hence
∥gk,ij − δij∥C1,θ(B+

L+1.1)
→ 0, 1 ≤ i, j ≤ n.

For general m ≥ 1, take m-th derivatives of (2.30) and the Neumann boundary conditions
(2.33)(2.34), and note that

[∂i, Nk] = (
∂ig

jn
k√
gnnk

− gjnk ∂ig
nn
k

2
√
gnnk

3 )∂j,

so we get a system of second order elliptic equations with Neumann boundary conditions
in ∂γg

nn
k and ∂γg

ln
k , |γ| = m, 1 ≤ l ≤ m − 1, with other terms freezed. Apply the previous

estimates in the case m = 0 and use (2.28)(2.31), we get

∥gnnk − δnn∥Cm+1,θ(B+
L+1)

→ 0,

and then for 1 ≤ l ≤ n− 1,
∥glnk − δln∥Cm+1,θ(B+

L+1)
→ 0,

hence
∥gk,ij − δij∥Cm+1,θ(B+

L+1)
→ 0, 1 ≤ i, j ≤ n

In particular, take θ = α, one can we get a (L+1
4
, Q,m + 1, α) harmonic coordinate chart

centered at p′k , with dgk(p
′
k, pk) → 0. Then rm+1,α

h (pk, gk, Q) ≥ L
4
for large k, which is a

contradiction.

Remark 2.2.13. Note that the case m = 0 is also true, and one should be a little careful
with the geometric arguments in the proof. Actually, the arguments in [2] prove a Cm+2

∗
harmonic radius lower bound.

Remark 2.2.14. The proof also shows that ifM is complete, ib ≥ i0, injM ≥ i0, inj∂M ≥ i0
and (2.19)(2.20) hold, then for any p ∈M

rm+1,α
h (p, g,Q) ≥ r0(i0,Λ,m, α,Q). (2.38)

The following corollary is a version we will use often.
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Corollary 2.2.15. Let (Mi, gi) be a sequence of complete Einstein manifolds with boundary.
Suppose ib ≥ i0, inj∂M ≥ i0, |Rm| ≤ C, |S| ≤ C, |∇k

∂MRic∂M | ≤ Ck, |∇k+1
∂MH| ≤ Ck, ∀k ≥ 0.

Then for any pi ∈Mi, there exists some subsequence such that (Mi, gi, pi) converges in pointed
Cheeger-Gromov sense to a complete Einstein manifold with boundary (M∞, g∞, p∞). If the
bounds only hold for k = 0, 1, then the convergence is in C2,α.

Proof. By Proposition 2.1.15, |Rm| ≤ C, |S| ≤ C, ib ≥ i0, together imply volume lower
bounds of interiors balls of some fixed radius near boundary, hence also gives an interior
injectivity radius lower bound by the following lemma. Then use Remark 2.2.14 and Propo-
sition 2.2.10.

The following lemma is well-known, which is a qualitative version of Theorem 4.3 in [14]
and can also be easily proved by contradiction arguments. Remark that the proof of our
main theorems should be in this flavor.

Lemma 2.2.16. Let (M, g) be a Riemannian manifold, and B(p, r) be a metric ball that has
compact closure. Suppose

sup
B(p,r)

|Rm| ≤ C, vol(B(p, r)) ≥ v,

then there exists r0 > 0 depending on n,C, v, r such that expq : Br0(0) ⊂ TqM → B(q, r0) ⊂
M is a diffeomorphism for any q ∈ B(p, r

4
).

Proof. For q ∈ B(p, r/3), let injg,q denote the injectivity radius at q. We claim that for some
δ > 0,

injg,q/dg(q, ∂Bg(p,
r

3
)) ≥ δ.

Otherwise, we would have a sequence (Mi, gi, pi, qi) with qi achieving the maximum of
injgi,q/dgi(q, ∂Bgi(p,

r
3
)), which converges to 0. By Bishop-Gromov volume comparison,

volgi(Bgi(qi,
2
3
r)) ≥ volgi(Bgi(pi,

1
3
r)) ≥ v1. Let g̃i = inj−2

gi,qi
gi. Then dg̃i(qi, ∂Bgi(p,

r
3
)) → ∞,

and injg̃i,qi = 1, injg̃i,q ≥ 1
2
,∀q ∈ Bg̃i(qi, R), i ≥ i(R). By passing to a subsequence, we may

assume that (Mi, g̃i, qi) converges in pointed C1,α topology to (M∞, g̃∞, q∞). (M∞, g̃∞, q∞)
is a complete flat manifold of maximum volume growth; hence, it must be isometric to
Euclidean Rn, contradicting injg̃i,qi = 1.
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Chapter 3

Hyperkähler 4-manifolds and closed
framings

3.1 Hyperkähler triples

The discussions in this section are well-known facts about hyperkähler 4-manifolds.

3.1.1 Pointwise theory

Let V be an oriented 4-dimensional vector space, and let ω = (ω1, ω2, ω3) be a triple
of 2-forms on V , so that ω ∈ Λ2(V ) ⊗ R3. Suppose that ω is a definite triple, which
means that ω1, ω2, ω3 span a maximal positive subspace of Λ2(V ) with respect to the wedge
product. Then the triple ω defines a unique conformal structure on V by making each
2-form ωi self-dual. We fix a volume form µ0 on V that defines the orientation of V , and
we write ωi ∧ ωj = 2qijµ0. We define a matrix Q associated with the definite triple ω by
Qij =

qij

det(qij)
1
3
, which does not depend on the choice of µ0. We denote the inverse matrix of

Q by Q−1 = (Qij). If we write
ωi ∧ ωj = 2Qijµ,

then µ is a volume form that is intrinsically defined by ω. We define a unique metric ⟨, ⟩ω
on V in the conformal structure by choosing µ to be the volume form. More explicitly, this
metric is given by

⟨u, v⟩ω =
1

6

3∑
i,j,k=1

δijk
ιuωi ∧ ιvωj ∧ ωk

µ
.

Therefore, we have

⟨u, u⟩ω =
ιuω1 ∧ ιvω2 ∧ ω3

µ
.

We denote the Hodge star operator defined by this metric as ∗ω.
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Let W be an orientated 3-dimensional vector space, and γ = (γ1, γ2, γ3) be triple of
2-forms on W , so γ ∈ Λ2(W ∗) ⊗ R3. Suppose γ is a framing on W , i.e., {γ1, γ2, γ3} forms
a basis for Λ2W ∗. Then by elementary linear algebra, there exists a coframe η = (η1, η2, η3)
such that

γi =
1

2
δijkηj ∧ ηk. (3.1)

Such η is uniquely determined up to a sign and we choose η such that η1 ∧ η2 ∧ η3 defines
the orientation of W and we denote this volume form by volγ . There is a unique metric
on W , denoted by ⟨, ⟩γ , that makes η an orthonormal coframe. Denote ∗γ = ∗η by the
Hodge star operator of ⟨, ⟩γ . We denote ei ∈ W the dual vector of ηi, so ηi(ej) = δij. Then
e = (e1, e2, e3) is a frame ofW . Conversely, given a coframe η = (η1, η2, η3) onW compatible
with the orientation, one can define a framing γ = (γ1, γ2, γ3) via (3.1), and a volume form
volη = volγ , a metric ⟨, ⟩η = ⟨, ⟩γ , a Hodge star opertaor ∗η = ∗γ .

Now in the case W ⊂ V is a 3-dimensional subspace, the restriction of a definite triple
ω = (ω1, ω2, ω3) ∈ Λ2(V ∗) to W defines a triple of 2-forms on W , say γ = (γ1, γ2, γ3). Let
⟨, ⟩W be the restriction of the metric ⟨, ⟩ω on W , which defines a Riemannian volume form
volW and a Hodge star operator ∗W compatible with the orientation of W . Since ωi are
self-dual, we can write

ωi = ν∗ ∧ ∗Wγi + γi,

where ν∗ = ∗ωvolW , then we have

ωi ∧ ωj = 2ν∗ ∧ ∗Wγi ∧ γj = 2⟨γi, γj⟩Wν∗ ∧ volW = 2⟨γi, γj⟩Wµ.

Hence on W ,
Qij = ⟨γi, γj⟩W ,

Since det(Q) = 1, we conclude γ is a framing, and volγ = volW . If furthermore we assume
Qij = δij, i.e.,

ωi ∧ ωj =
1

3
δij(ω

2
1 + ω2

2 + ω2
3) (3.2)

then ⟨γi, γj⟩W = δij = ⟨γi, γj⟩γ . In this case, ⟨, ⟩γ = ⟨, ⟩W as an inner product on W = Λ1W ,
so in particular ∗W = ∗γ .

3.1.2 Hyperkähler triples

Now we move our pointwise discussions to manifolds. Let X be an oriented 4-manifold,
let ω = (ω1, ω2, ω3) be a smooth section in Γ(X,Λ2T ∗X⊗R3) such that it is a definite triple
pointwise. By the discussions above, ω defines a matrix valued function Q = (Qij) and a
volume form µ such that

detQ = 1,

ωi ∧ ωj = 2Qijµ,
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and ω defines a Riemannian metric gω which equals to ⟨, ⟩ω on the tangent spaces at each
point. We denote by ∇gω , ∇ω, or simply ∇, the Levi-Civita connection of gω.

Definition 3.1.1. Let ω be a definite triple of 2-forms.

• ω is a hypersymplectic triple if dωi = 0 for i = 1, 2, 3.

• ω is a torsion-free hypersymplectic triple if dωi = 0 for i = 1, 2, 3 and
∑3

j=1 d(Q
ijωj) =

0 for i = 1, 2, 3.

• ω is a hyperkähler triple if dωi = 0 for i = 1, 2, 3 and Qij = δij for i, j = 1, 2, 3.

We will discuss torsion-free hypersymplectic triples in detail later, but for now we focus
on hyperkähler triples.

It is well-known that

Proposition 3.1.2. If ω is a hyperkähler triple, then Hol(gω) ⊂ SU(2), in particular
Ricgω = 0. Conversely, if (M, g) is a Riemannian manifold with Hol(g) ⊂ SU(2), then
there exists a hyperkähler triple ω, which is unique up to a constant O(3) rotation, such that
g = gω.

Proof. For the first part, by elementary linear algebra, the almost complex structures I1, I2,
and I3 defined by ω1, ω2, ω3, and gω satisfy the quaternion relation, i.e., I21 = I22 = I23 = −1
and I1I2 = I3. By direct computation, one knows that ∇ωi = 0 for i = 1, 2, 3, where ∇ is the
Levi-Civita connection defined by gω. Hence, I1, I2, and I3 are also parallel, which implies
Hol(gω) ⊂ SU(2). With respect to I1, ω1 is Kähler, and Ω := ω2 + iω3 is a holomorphic
volume form satisfying the Calabi-Yau equation ω2

1 = 1
2
Ω ∧ Ω̄, so Ricgω = 0.

For the second part, one can define a triple ω from 3 parallel almost complex structures
I1, I2, and I3 satisfying the quaternion relation. Elementary linear algebra implies ω satisfies
the orthonormal condition (3.2). Since ∇I1 = 0, we know ω1 is Kähler with respect to I1,
so dω1 = 0, and similarly dω2 = dω3 = 0, so ω is hyperkähler. For the uniqueness part,
suppose we have two hyperkähler triples ω and ω′ which define the same Riemannian metric
g. Then, ∃ an O(3)-valued function A with ω′ = A.ω, and ∇gω′ = ∇gω = 0 imply A is a
constant matrix.

Proposition 3.1.3. Let M be an oriented 4-manifold admitting a hyperkähler triple, then
either

• M is diffeomorphic to a torus T 4.

• M is diffeomorphic to a K3 surface.

Proof. As in the previous proof, one can find a complex structure I1 such that (ω1, ω2 +
iω3) is Calabi-Yau, in particular, the canonical bundle KM is trivial and ω1 is Kähler. By
classifiation of complex surfaces we know (M, I1) is either a complex torus or a K3 surface.
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Remark 3.1.4. A K3 surface is a compact complex surface X such that H1(X,OX) = 0
and KX is trivial. It is well-known that all K3 surfaces are diffeomorphic, and we call
the underlying oriented smooth manifold the K3 manifold. It is simply connected, with
b+2 = 3, b−2 = 19. A Riemannian metric on the K3 manifold means a Riemannian metric
whose Riemannian volume form coincides with the orientation.

Proposition 3.1.5.

• If g is a Ricci-flat metric on T 4, then g is flat and hyperkähler;

• If g is a Ricci-flat metric on the K3 manifold, then g is hyperkähler.

Proof. For a closed oriented Riemannian 4-manifold X, we have the Chern-Gauss-Bonnet
formula and signature formula, since g is Ricci-flat, we have

1

8π2

∫
X

|W+|2 + |W−|2 = χ(X),

1

12π2

∫
X

|W+|2 − |W−|2 = τ(X),

where W+,W− denote the self-dual, anti-self-dual Weyl curvature, respectively, χ, τ denote
the Euler characteristic and signature, respectively.

When X is homeomorphic to T 4, χ(X) = τ(X) = 0, thus
∫
X
|W+|2 =

∫
X
|W−|2 = 0,

hence W+ = W− = 0, so g is flat and any orthonormal frame in Λ2
+ gives a hypekähler

triple.
When X is homeomorphic to the K3 manifold, χ(X) = 24 and τ(X) = −16, thus we

have
∫
X
|W+|2 = 0, hence W+ = 0. Since π1(X) = 0, we conclude that Λ2

+ is trivial and any
orthonormal frame in Λ2

+ gives a hyperkähler triple.

The moduli space of hyperkähler metrics on the K3 manifold is well understood. It is
characterized by the period map. See Chapter 6 some detailed discussions.

For complete non-compact hyperkähler manifolds, there have been intensive study on this
by assuming decaying conditions at infinity, for a survey, refer to [28]. In this dissertation,
we will only encounter complete Ricci-flat manifolds with maximum volume growth.

Definition 3.1.6. A complete Riemannian manifold (M, g) is called ALE(asymptotical lo-
cally Euclidean) of order τ > 0, if there exists a finite subgroup Γ of SO(n), acting freely on
Sn−1 and there exists R > 0, a compact set K ⊂M and a diffeomorphism π : (Rn\BR(0))/Γ →
M\K such that

|∇k(π∗g − gEuc)|gEuc
= O(|x|−k−τ ), ∀k ∈ N

It was proved by Bando-Kasue-Nakajima that
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Theorem 3.1.7. [8] If (M, g) is a complete, Ricci-flat 4-manifold such that∫
M

|Rm|2 <∞, (3.3)

and
∃p ∈M, c > 0 such that vol(B(p, r)) ≥ cr4,∀r > 0,

then (M, g) is an ALE of order 4.

Thus, in the 4d Ricci-flat case, we can simply call (M, g) is ALE if it satisfies the condi-
tions of the above theorem. We do not specify the order as it depends on the coordinate at
infinity.

Remark 3.1.8. Actually, Theorem 1.13 in [15] implies that one can remove the condition
(3.3) in Theorem 3.1.7 and reach the same conclusion, as other conditions in the Theorem
3.1.7 imply (3.3). However, we will not make use of this theorem of Cheeger-Naber, as
condition (3.3) arises natural in our settings.

In the case of 4-dimensional hyperkähler geometry, 4-dimensional hyperkähler ALE spaces
have been completely classified by Kronheimer [36, 37], which plays an important role in this
dissertation. In fact, we only need the topological classification.

Theorem 3.1.9 ([36, 37] Classification of hyperkähler ALE spaces).

• Let (X, g) be a 4 dimensional hyperkähler ALE space, then X is diffeomorphic to the
minimal resolution of C2/Γ, where Γ is a finite subgroup of SU(2).

• Let X be an oriented smooth manifold underlying the minimal resolution of C2/Γ, then
the image of the period map P : MALE → H2(X,R)⊗ R3 is equal to

{α = (α1, α2, α3) ∈ H2(X,R)⊗ R3 | ∀C ∈ H2(X,Z) such that C2 = −2,

∫
C

α ̸= 0},

where MALE is the space of all ALE hyperkähler triples on X, and P sends the triple to
its cohomology class. Moreover, if P(ω) = P(ω′), then ∃ diffeomorphism f : X → X
such that f ∗ω = ω′.

Remark 3.1.10. There is a one-to-one correspondene between non-trivial finite subgroups of
SU(2) and Dynkin diagrams of ADE type. In the minimal resolution of C2/Γ, the intersection
matrix of exceptional divisors is the negative of the corresponding Cartan matrix of Dynkin
diagrams. In particular, any non-flat hyperkähler ALE space has a homology class C ∈
H2(X,Z) with C2 = −2.
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3.1.3 Examples of hyperkähler 4-manifolds

There are various ways to construct hyperkähler 4-manifolds. One of the most basic idea
is using the Gibbons-Hawking ansatz (e.g., see [27]):

Gibbons-Hawking Ansatz

Let U ⊂ R3 be an open set in R3, and P is a principle S1 bundle over U , with a
connection 1-form θ. Suppose V is a positive harmonic function on U which solves the
monopole equation on U

∗dV = dθ, (3.4)

where ∗ is the standard Hodge star operator on R3, then one can construct 2-forms ω1, ω2, ω3

on P by

ω1 = V dx2 ∧ dx3 + dx1 ∧ θ,
ω2 = V dx3 ∧ dx1 + dx2 ∧ θ,
ω3 = V dx1 ∧ dx2 + dx3 ∧ θ.

(3.5)

It is direct to check ω = (ω1, ω2, ω3) is a hyperkähler triple. The corresponding Riemannian
metric on P is given by

g = V (dx21 + dx22 + dx23) + V −1θ2.

Hence, V −1/2 is the length of S1 fibers.
A typical choice is U = R3\{p1, · · · , pn} and

V = λ+
n∑

i=1

mi

2|x− pi|
,

for n ≥ 0,mi ∈ N∗, λ ≥ 0. In this case, one has 1
2π

∗ dV ∈ H2(U,Z), since its integral
on a sphere around each pi is an integer. Thus, one can find a principal S1 bundle P
and a connection 1-form θ that solves (3.4). This allows one to define the corresponding
hyperkähler triple via (3.5).

One can further compactify P (via metric completion) around pi by adding a point p̃i; as
points in U approach pi, the length of S1 fibers goes to 0. This yields a complete hyperkähler
orbifold P̄ . The unique tangent cone at each p̃i is flat R4/Zmi

.
In particular, when each mi = 1, P̄ is a complete hyperkähler 4-manifold. When λ = 0,

P̄ has the maximum volume growth rate and is therefore ALE. When λ > 0, P̄ has cubic
volume growth rate and is ALF.

Example 3.1.11. Take U = R3\{0}, V = 1
2|x| , then the principle S1 bundle is given

by the Hopf fibration π : R4\{0} → R3\{0}, which in complex coordinates is (z1, z2) →
(z1z̄2,

1
2
(|z1|2 − |z2|2)) and clearly extend to a smooth map R4 → R3. Here R4 = C2 and

R3 = C ⊕ R. After metric completion, we get the Euclidean metric on R4. If we take
V = 1 + 1

2|x| and take the metric completion, then we get the Taub-NUT metric on R4.
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Example 3.1.12. Take U = R3\{0, p}, V = 1
2|x| +

1
2|x−p| . After metric completion, we

get the Eguchi-Hanson spaces X̄p, which is diffeomorphic to T ∗S2(also diffeomorphic to the
minimal resolution of C2/Z2). Let Cp denotes the S

1 bundle over any path joining 0, p, which
is a sphere of self intersection −2. By direct computation,

∫
Cp

ω = |p|. As p approach 0,∫
Cp

ω → 0, and the (X̄p, 0̃) converges in pointed Gromov-Hausdorff sense to the flat orbifold

R4/Z2.

Conversely, given a free tri-Hamiltonian S1 action on a hyperkähler 4-manifold (X,ω =
(ω1, ω2, ω3)), the moment map µ defines a principle S1 bundle and reverses the Gibbons-
Hawking ansatz.

Recall that an S1 action on (X,ω) is tri-Hamiltonian if there exists a smooth map
µ = (µ1, µ2, µ3) : X → Lie(S1)∗ ⊗ R3 ∼= R3 such that

ιξωi = dµi,

where ξ(x) = d
dt
exp(it) · x is the vector field on X generated by the S1 action.

Now 3-components of µ give the coordinates x1, x2, x3. Define V := |ξ|−2, and define a
1-form θ on X by the metric dual of ξ, then ω1, ω2, ω3 is given by (3.5).

Next we discuss some known constructions for hyperkähler metrics on the K3 manifolds.

Kummer construction

Let T 4 be the flat torus defined by R4/Z4. Let (x1, x2, x3, x4) be the coordinates of R4.
The standard hyperkähler triple on T 4 is given by

ω1 = dx2 ∧ dx3 + dx1 ∧ dx4,
ω2 = dx3 ∧ dx1 + dx2 ∧ dx4,
ω3 = dx1 ∧ dx2 + dx3 ∧ dx4,

(3.6)

which gives rise to the flat metric

gflat = dx21 + dx22 + dx23 + dx24.

The antipodal map (x1, x2, x3, x4) 7→ (−x1,−x2,−x3,−x4) gives a Z2 action on T 4 with
16 fixed points defined by (±1

2
,±1

2
,±1

2
,±1

2
), say p1, p2, · · · , p16. The hyperkähler triple is

preserved by the Z2 action, so it descends to an orbifold hyperkähler triple on T 4/Z2. By
abuse of notation, we also denote pi by the orbifold points in the quotient. The tangent cones
at each pi is the flat cone R4/Z2. The idea of the Kummer construction is that, around each
point pi, one cuts out a small ball Bk,i of radius

1
k
and glues in a smooth, non-compact,

complete hyperkähler 4-manifold whose asymptotic geometry matches the geometry near
pi. So, in particular, the asymptotic cone of the non-compact manifold must be R4/Z2,
thus the correct choice is the Eguchi-Hanson space Yk,i. Denote the resulting smooth closed
4-manifold by Xk.
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By Mayer-Vietoris sequence, we know the Euler characteristic of Xk is given by

χ(Xk) = χ(T 4/Z2\ ∪16
i=1 Bk,i) +

16∑
i=1

χ(Yk,i)−
16∑
i=1

χ(RP3)

=
1

2
χ(T 4\ ∪16

i=1 B̃k,i) +
16∑
i=1

χ(Yk,i)−
16∑
i=1

χ(RP3)

=
1

2
(χ(T 4)−

16∑
i=1

χ(B̃k,i) +
16∑
i=1

χ(S3)) +
16∑
i=1

χ(Yk,i)−
16∑
i=1

χ(RP3)

=
1

2
(0− 16 ∗ 1 + 16 ∗ 0) + 16 ∗ 2− 16 ∗ 0

= 24

(3.7)

where B̃k,i ⊂ T 4 is the preimage of Bk,i under the Z2 quotient map.
The first analytic approach to making the Kummer construction precise is due to Don-

aldson in [21]. He developed an analytic method for gluing two Riemannian manifolds with
cylindrical ends (in the Kummer construction, the end of an Eguchi-Hanson space is dif-
feomorphic to RP3 × R). Actually, he carried out the Kummer construction in the Kähler
geometry setting. He viewed T 4 as C2/Z4, and the Eguchi-Hanson metric as the Ricci-flat
Kähler metric on the minimal resolution of C2/Z2. He constructed Kähler forms and holo-
morphic volume forms on Xk that are approximated solutions to the Calabi-Yau equation.
He then perturbed the Kähler form in the Kähler class to satisfy the genuine Calabi-Yau
equation. In particular, this argument involves linear analysis using the implicit function
theorem and does not require Yau’s solution to the Calabi conjecture.

In conclusion,

Theorem 3.1.13. [21] There exists hyperkähler triples ωk on Xk such that (Xk, gk) converges
in Gromov-Hausdorff sense to (T 4/Z2, gflat), and there exists Ck,i ∈ H2(Xk,Z), Ck,i.Ck,j =
−2δij, i, j = 1, 2, · · · , 16 such that

∫
Ck,i

ωk → 0, and the given 16 Eguchi-Hanson spaces

arise as bubble limits associated with the converging sequence.

In particular, since χ(Xk) = 24 and Xk admits a hyperkähler triple, Proposition 3.1.3
implies that Xk is diffeomorphic to the K3 manifold. In the Kummer construction, the hy-
perkähler manifolds Xk are volume non-collapsing, i.e., for some qk ∈ Xk, volgk(B(qk, gk)) ≥
v0.

There are also other gluing constructions to get hyperkähler metrics on the K3 manifold.
One is

Foscolo’s construction

In [27], Foscolo used a different construction for collapsing limits of hyperkähler metrics
on the K3 manifold. Consider T 3. There is a Z2 action on T 3 induced by the antipodal map,
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which has 8 fixed points (±1
2
,±1

2
,±1

2
), denoted by p1, p2, · · · , p8. Pick any n ≥ 0 distinct

points q1, · · · , qn ∈ T 3\{p1, p2, · · · , p8} and take integers ki > 0 and mj ≥ 0 (1 ≤ i ≤ n, 1 ≤
j ≤ 8) such that

n∑
i=1

ki +
8∑

j=1

mj = 16.

Denote by ρj and ρ±i the distance functions to pj and ±qi, respectively. The above
conditions guarantee that one can solve for a positive harmonic function V with prescribed
singularities at pj and qi:

V ∼ 2mj − 4

2ρj
around pj, V ∼ ki

2ρ±i
around ± qi,

and guarantee that ∗dV gives the curvature of some connection on some principal S1 bundle
P over T 3\{p1, · · · , p8,±q1, · · · ,±qn}. The Z2 action on T 3 induces a Z2 action on P by
simultaneously reversing the base and fibers. From P/Z2, one can rescale such that the
size of the base (T 3\{p1, · · · , p8,±q1, · · · ,±qn})/Z2 is almost fixed, and the length of the
S1 fiber shrinks to 0. And then one cuts off small neighborhoods of [pj], [±qi], and glues
in ALF -Dmj

, ALF -Aki−1 gravitational instantons, respectively, to get a closed 4-manifold
Xk. The gluing construction gives rise to hypersymplectic triples that are close to being
hyperkähler. By performing linear analysis on the hyperkähler triple equation, one can
perturb the approximate hyperkähler triple to a genuine hyperkähler triple.

As before, one can check that χ(Xk) = 24 using the Mayer-Vietoris sequence. Then Xk

admitting a hyperkähler triple implies Xk is diffeomorphic to the K3 manifold.
In sum, Foscolo proved

Theorem 3.1.14. [27] There exists hyperkähler metrics (Xk, gk) which converges in Gromov-
Hausdorff sense to T 3/Z2, such that away from [pj], [±qi], the collapsing happens with bounded
curvature, and the given ALF -Dmj

, ALF -Aki−1 type gravitational instantons arise as bubble
limits assosciated with the collapsing sequence.

Remark 3.1.15. It is worth noting that in Kummer construction, one can take T 4
ϵ = T 3×S1

ϵ ,
where S1

ϵ denotes a circle with radius ϵ and ϵ→ 0. One can do the Kummer construction to
each T 4

ϵ /Z2. By a diagonal argument, one can also get a sequence of hyperkähler manifolds
(Xk, gk) collapsing to T 3/Z2, and away from 8 orbifold points in T 3/Z2, the collapsing
happens with bounded curvature. However, one can only see Eguchi-Hanson space as bubble
limits. This is a essentially different construction from Foscolo’s.

For other types of gluing constructions, refer to Foscolo’s survey paper [28] for details
and references.
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3.2 Closed framings

In this section, we discuss the the geometry of the boundary framing of a hyperkähler
triple. This was originally due to Bryant [10].

Suppose (X,ω) is a hyperkähler 4-manifold with boundary. Denote γ = (γ1, γ2, γ3) the
restriction ω to ∂X. As in subsection 3.1.1, γ defines a dual coframe η = (η1, η2, η3) ∈
Ω1(∂X) ⊗ R3, and the dual frame is denoted by e = (e1, e2, e3) ∈ Γ(∂X, T∂X) ⊗ R3, such
that ηi(ej) = δij. This coincide with metric dual, by definition. Recall that the induced
boundary metric of gω|∂X coincide with the metric defined purely by γ in hyperkähler case.

Let ν be the outward unit normal vector field of ∂X. We are going to calculate the
second fundamental form of ∂X with respect to ν, say II(v, w) = ⟨∇vν, w⟩∂X . Let S ∈
Γ(∂X,End T∂X) be the shape operator, i.e., S(v) = ∇νv, so ⟨S(v), w⟩∂X = II(v, w).
Denote Γ = (Γij) the symmetric matrix

Γij =
1

2
⟨γi, d(∗γγj)⟩γ +

1

2
⟨γj, d(∗γγi)⟩γ =

1

2
∗η (ηi ∧ dηj + ηj ∧ dηi),

which is completely determined by γ. Denote the matrix II(ei, ej) by A and the mean
curvature is given by H = TrS = TrA.

Lemma 3.2.1. If ω is a hyperkähler triple, then

A =
1

2
(TrΓ)I − Γ,

In particular,

2H = ∗η(η ∧ dηT ) = ⟨γ1, d(∗γγ1)⟩γ + ⟨γ2, d(∗γγ2)⟩γ + ⟨γ3, d(∗γγ3)⟩γ ,

|S|2 = TrΓ2 −H2.

Proof. Fix a point p ∈ ∂X, choose a semi-geodesic coordinate system centered at p, say
(x1, x2, x3, t), such that a neighborhood of p is identified with {t ≥ 0} and its intersection
with ∂X is identified with {t = 0}. So (x1, x2, x3) is a coordinate system on ∂X and t-curves
are unit speed geodesics perpendicular to the boundary.

The hyperkähler triple can be written as

ω = −dt ∧ ∗γtγt + γt,

where γt is a smooth family of closed framings on ∂X such that γ0 = γ and because dω = 0,
γt satisfies the evolution eqution

∂γt

∂t
= −d(∗γtγt).
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We can further choose (x1, x2, x3) to be a normal coordinate system for ∂X at p of the
metric gω|∂X such that ei = ∂xi at p. Write ∂xi = aki (x, t)ek(x, t), where ek(x, t) =
(e1(x, t), e2(x, t), e3(x, t)) is the dual frame of ηt = ∗γtγt. Then at p,

II(ei, ej) = II(∂xi , ∂xj) = −1

2
∂tgij = −1

2
∂t(a

k
i a

k
j ) = −1

2
(∂ta

k
i + ∂ta

k
j ). (3.8)

Note that at p,
∂tηp = ∂ta

p
mdx

m = ∂ta
p
mηm,

then we have

⟨γi, d(∗γγj)⟩γ = −⟨γi, ∂tγj⟩γ

= −⟨1
2
δiklηk ∧ ηl,

1

2
∂t(δ

jpqηp ∧ ηq)⟩γ

= −1

4
δiklδjpq(∂ta

p
m⟨ηk ∧ ηl, ηm ∧ ηq⟩γ

+ ∂ta
q
n⟨ηk ∧ ηl, ηp ∧ ηn⟩γ)

= −1

4
δiklδjpq(∂ta

p
m(δ

kmδlq − δkqδlm) + ∂ta
q
n(δ

kpδln − δknδlp))

= −δij∂takk + ∂ta
i
j.

(3.9)

Combining (3.8) and (3.9), we have

Γ = (TrA)I − A,

so TrΓ = 2TrA, A = 1
2
(TrΓ)I − Γ.

This lemma says that the second fundamental form of ∂X is just in algebraic terms of η
and dη.
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Chapter 4

Convergence of hyperkähler
4-manifolds with boundary

4.1 Curvature estimates near the boundary

This section serves as a first step for the proof of our main theorem. For an Einstein
manifold with boundary, if the boundary intrinsic and extrinsic geometry are controlled well
and ib is bounded from below, we hope to control the interior geometry within ib. To the
author’s knowledge, we do not know any general statement. We will first state and prove a
version we need, and then discuss some lemmas needed in the proof.

Theorem 4.1.1. Let (M, g) be a complete hyperkähler 4-manifold with compact boundary.
Suppose |S| ≤ C, |∇j

∂MRm∂M | ≤ Cj, |∇j+1
∂MH| ≤ Cj, j = 0, 1, · · · , inj∂M ≥ i0, ib ≥ i0,∫

M
|Rm|2 ≤ C. Then for any r1 < i0, there exists C ′ > 0, depending on C,Cj, i0, r1, such

that sup
Nr1 (∂M,g)

|Rm| ≤ C ′.

Proof. Without loss of generality, assume i0 = 1. Denote α = r1, β = 1
4
(1−α). Suppose the

conclusion is not true, we have a sequence (Mi, gi) satisfying the conditions, but

sup
Nα(∂Mi,gi)

|Rmgi | → ∞.

Let pi ∈ Nα(∂Mi, gi) achieves this supremum. Note that the equations (2.6)(2.7) imply that
|Rmgi | is uniformly bounded on ∂Mi, so pi /∈ ∂Mi for large i.

Claim 1 There exists a subsequence such that

dgi(pi, ∂Mi)
2|Rmgi(pi)| → ∞. (4.1)

If this is not true, we have supi dgi(pi, ∂Mi)
2|Rmgi |(pi) <∞. Rescale g̃i = |Rmgi(pi)|gi, then

|Rmg̃i(pi)| = 1, and |Rmg̃i| ≤ 1 in N
α|Rm(pi)|

1
2
(∂Mi, g̃i), and supi dg̃i(pi, ∂Mi) < ∞, ib,g̃i ≥
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|Rmgi(pi)|
1
2 for all i. Hence by Corollary 2.2.15, (Mi, gi, pi) subconverges in pointed Cheeger-

Gromov sense to (M∞, g̃∞, p∞), which is a complete Ricci-flat 4-manifold with flat, totally
geodesic boundary, hence must be flat by Lemma 4.1.6. This contradicts that |Rmg̃∞(p∞)| =
1 and proves Claim 1.

Now rescale gi in another way, let g′i = dgi(pi, ∂Mi)
−2gi, so dg′i(pi, ∂Mi) = 1. Since

dgi(pi, ∂Mi) ≤ α, the rescaled metric g′i satisfies ib,g′i ≥ α−1 as well as all other conditions of
the assumptions of the theorem, but with different bounds, regardness of whether dgi(pi, ∂Mi)
is uniformly bounded from below or not. Moreover, (4.1) is equivalent to |Rmg′i

(pi)| → ∞.
By the ϵ-regularity Theorem 4.1.4, there exists a universal constant ϵ0 such that for

sufficiently large i, ∫
Bg′

i
(pi,β)

|Rmg′i
|2 ≥ ϵ0.

Claim 2 There exists a subsequence such that

sup
Nα(∂Mi,g′i)

|Rmg′i
| → ∞,

If not, we have sup
Nα(∂Mi,g′i)

|Rmg′i
| ≤ C. By Proposition 2.1.15 and Bishop-Gromov volume

comparison, vol(Bg′i
(pi, β)) ≥ v. Since Bg′i

(pi, β) ⊂ Nα−1(α+β)(∂Mi, g
′
i) ⊂ Nα+β(∂Mi, gi), and

the last one is diffeomorphic to ∂Mi×[0, α+β], we conclude that there is no integral homology
class of self-intersection −2 in Bg′i

(pi, β). By Proposition 4.1.5, |Rmg′i
(pi)| is bounded, which

is a contradiction to Claim 1 and finishes the proof of Claim 2. One can denote p′i by
the point in Nα(∂Mi, g

′
i) that achieves the supremum of |Rmg′i

|. A graph visualization is
presented in Figure 4.1.

pi

∂Mi

Nα(∂Mi, gi)

g′i = dgi(pi, ∂Mi)
−2gi

In the scale of gi In the scale of g′i

∂Mi

pi

p′i Nα(∂Mi, g
′
i)

|Rmgi(pi)| = sup
Nα(∂Mi,gi)

|Rmgi | → ∞ |Rmg′i
(p′i)| = sup

Nα(∂Mi,g′i)

|Rmg′i
| → ∞

1

Figure 4.1: Change of scale

Now Claim 2 enables us to obtain, by induction, for each fixed positive integer N , N
sequences of metrics g

(0)
i = gi, g

(1)
i = g′i, . . . , g

(N)
i , and points p

(j)
i ∈ Nα(∂Mi, g

(j)
i ) for 0 ≤
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j ≤ N − 1, p
(0)
i = pi, p

(1)
i = p′i, such that for 0 ≤ j ≤ N − 1, p

(j)
i achieves the supremum of

|Rm
g
(j)
i
| in Nα(∂Mi, g

(j)
i ), and

|Rm
g
(j)
i
(p

(j)
i )| → ∞,

g
(j+1)
i = d

g
(j)
i
(p

(j)
i , ∂Mi)

−2g
(j)
i ,

d
g
(j+1)
i

(p
(j)
i , ∂Mi) = 1,∫

B
g
(j+1)
i

(p
(j)
i ,β)

|Rm
g
(j+1)
i

|2 ≥ ϵ0,

B
g
(j+1)
i

(p
(j)
i , β) ⊂ Nα−1(α+β)(∂Mi, g

(j+1)
i ) ⊂ Nα+β(∂Mi, g

(j)
i ),

B
g
(j+1)
i

(p
(j)
i , β) ∩Nα+β(∂Mi, g

(j+1)
i ) = ∅.

It follows that for each fixed i,
⋃N−1

j=0 Bg
(j+1)
i

(p
(j)
i , β) is a disjoint union. Since

∫
Mi

|Rmgi|2 ≤
C, we have Nϵ0 ≤ C. This is a contradiction, since N can be any positive integer.

Remark 4.1.2. This theorem is purely local. In fact, by slightly modifying the proof, we
can show that if exp⊥ maps B∂M(p, r0)× [0, r1) diffeomorphically onto the metric cyclinder
C(B∂M(p, r0), 0, r1), and such that B∂M(p, r0) has compact closure. Assume all the bounds
hold on B∂M(p, r0) and assume a L2-curvature bound, then we have uniformly bounded
curvature in any interior metric cylinder C(B∂M(p, r′0), 0, r

′
1) with fixed r′0 < r0 and r′1 < r1.

In other words,

Theorem 4.1.3. Let (M, g) be a hyperkähler 4-manifolds with boundary (X, g0) . Assume
p ∈ X such that Bg0(p, 1) has compact closure, on which

|S| ≤ C, |∇j
g0
Rmg0 | ≤ Cj, |∇j+1

g0
H| ≤ Cj, j = 0, 1, injg0 ≥ i0

Suppose exp⊥ maps Bg(p, 1) × [0, 1) diffeomorphically onto its image in M which is also
denoted by Bg(p, 1)× [0, 1). If ∫

Bg0 (p.1)×[0,1)

|Rm|2 ≤ C,

then
sup

Bg0 (p,
1
2
)×[0, 1

2
)

|Rm| ≤ C ′.
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Proof. (Sketch) Note that we only need j = 0, 1 in the assumption to get C2,α convergence.
We need to show that the quantity

d(x, ∂+(Bg0(p, 1)× [0, 1)))2|Rm|(x)

is uniformly bounded in Bg0(p, 1) × [0, 1), where ∂+ is the “parabolic boundary”, i.e., the
topological boundary \ manifold boundary. We argue by contradiction. Suppose this is not
bounded, then we can find a sequence of manifolds and a point pi that achieves the maximum
of this quantity, and rescale the metric by |Rm(pi)| and d(pi, Xi)

−2 to get a contradiction,
as before.

Now we provide the lemmas that we used in the proof.
The following collapsing ϵ-regularity theorem is originally due to Cheeger-Tian in [16].

Recently, in the hyperkähler case, [46] gives a simple proof by a blow-up argument and
studying complete collapsing limits of hyperkähler 4-manifolds with bounded curvature.

Theorem 4.1.4. [16] There exists ϵ, c such that the following holds: Let (M4, g) be an
Einstein 4-manifold, |Ric| ≤ 3, r ≤ 1, and B(p, r) is a metric ball that has compact closure.
If ∫

B(p,r)

|Rm|2 ≤ ϵ,

then
sup

B(p, r
2
)

|Rm| ≤ cr−2.

The following proposition plays an important role. To avoid redundancy, we state it here
without proving, but we will prove a more general version later, see Proposition 5.2.1.

Proposition 4.1.5. Let (M, g) be an hyperkähler 4-manifold. Suppose B(p, 5) has compact
closure, B(p, 3) contains no integral homology class of self intersection −2, if

vol(B(p, 1)) ≥ v,∫
B(p,3)

|Rm|2 ≤ C,

then there exists C ′ > 0, depending on v, C such that

sup
B(p,1)

|Rm| ≤ C ′.

The following lemma originally dates back to Koiso in [35], and is an incredibly special
case of the result in [9, 5]. Since it plays an important role throughout the dissertation, we
provide a detailed proof here following [35]. Note that this is a one-sided version of Koiso’s.
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Lemma 4.1.6. Let (M, g) be a connected C2 Riemannian manifold with boundary. Suppose
RicM = 0 and for some open boundary portion T , S|T = 0 and Rm∂M |T = 0, then g is
smooth and RmM = 0.

Proof. Fix any point p in T . First, we show g can be extended across the boundary near
p. Choose a semi-geodesic coordinate system (x1, · · · , xn) near p, with ∂M identified with
{xn = 0}, and interior identified with {xn > 0}, ∇xn = ∂xn , and gij(x

′, 0) = δij, 1 ≤
i, j ≤ n − 1, where x′ = (x1, · · · , xn−1). We extend the metric tensor g by reflection across
{xn = 0}, i.e., set gij(x′, xn) = gij(x

′,−xn), 1 ≤ i, j ≤ n. Then g ∈ C0(B) ∩ C2(B+), where
B+ is the boundary coordinate ball and B is its extension after reflection. We need to show
g ∈ C2(B). In fact, S = 0 is equivalent to

∂gij
∂xn

+
(x′, 0) = 0, 1 ≤ i, j ≤ n− 1, then we also have

∂gij
∂xn

−
(x′, 0) = −∂gij

∂xn
+
(x′, 0) = 0, hence

∂gij
∂xn (x

′, 0) = 0 and gij ∈ C1(B). Since g ∈ C2(B+), we

have for 1 ≤ l ≤ n− 1,

∂

∂xn+

∂gij
∂xl

(x′, 0) =
∂

∂xl
∂gij
∂xn+

(x′, 0) =
∂

∂xl
0 = 0,

∂

∂xn−

∂gij
∂xl

(x′, 0) = − ∂

∂xn+

∂gij
∂xl

(x′, 0) = 0.

∂

∂xn−

∂gij
∂xn

(x′, 0) = lim
xn→0−

1

xn
∂gij
∂xn

(x′,−xn)

= lim
xn→0+

1

xn
∂gij
∂xn

(x′, xn) =
∂

∂xn+

∂gij
∂xn

(x′, 0).

(4.2)

Hence gij ∈ C2(B). Finally, we have gnn = 1, gln = gnl = 0, 1 ≤ l ≤ n− 1, hence g ∈ C2(B).
By elliptic regularity, all harmonic coordinate charts in B give rise to a real analytic

structure in B such that g is real analytic. Hence if t is a distance function such that ∂M
is defined by t−1(0) near p, then t is real analytic near p. Choose a real analytic coordinate
(z, t) near p. Since t−1(0) is totally geodesic, ∂g

∂t
(z, 0) = 0. The evolution equation (2.9) is

equivalent to the second order PDE

∂2g

∂t2
= 2ric g − 1

2
trg(

∂g

∂t
)
∂g

∂t
+ (

∂g

∂t
)2, (4.3)

where ric g is the Ricci tensor of level sets of t. By the uniqueness part of Cauchy-
Kovalevskaya theorem, we know g(z, t) = g(z, 0). Hence RmM = 0 near p. Since RmM

is real analytic in the interior of M , RmM = 0 in M .

4.2 Convergence of hyperkähler metrics

Now we state and prove our main theorem in the sense of Riemannian geometry.
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Theorem 4.2.1. Let (Xi, gi) be a sequence of compact, connected hyperkähler 4-manifold
with boundary, suppose on ∂Xi, we have

Hi ≥ H0 > 0, |Si| ≤ C, |∇j+1
∂Xi

H| ≤ Cj,

inj∂Xi
≥ i0, diamgi|∂Xi

(∂Xi) ≤ C, |∇j
∂Xi

Rm∂Xi
| ≤ Cj, ∀j ≥ 0,

and χ(Xi) ≤ C. Assuming there exists no C ∈ H2(Xi,Z) with C2 = −2, then there exists a
subsequence such that (Xi, gi) converges in Cheeger-Gromov sense to a compact, connected
hyperkähler 4-manifold with boundary (X∞, g∞).

Remark 4.2.2. By Chern-Gauss-Bonnet formula, our assumptions imply∫
Xi

|Rm|2 ≤ C.

Note that for a compact connected Einstein 4-manifold (M, g) with boundary, the Chern-
Gauss-Bonnet formula says

1

8π2

∫
M

|Rm|2 = χ(M)− 1

2π2

∫
∂M

3∏
i=1

λi −
1

8π2

∫
∂M

∑
σ∈S3

Kσ1σ2λσ3 .

Here λ1, λ2, λ3 are eigenvalues of the shape operator S of ∂M , Let ei be eigenvectors of
eigenvalue λi such that {e1, e2, e3} is an orthonormal basis, then Kij = sec(ei, ej). See for
example (1.16) in [6].

Remark 4.2.3. If we drop the condition diamgi|∂Xi
(∂Xi) ≤ C, and replace Hi ≥ H0 > 0

by Hi > 0, χ(Xi) ≤ C by
∫
Xi

|Rmgi |2 ≤ C, then for any point pi ∈ Xi with d(pi, ∂Xi) ≤
K, a subsequence of (Xi, gi, pi) converges in pointed Cheeger-Gromov sense to a complete
hyperkähler 4-manifolds with boundary (X∞, g∞, p∞).

Remark 4.2.4. The positive mean curvature condition is necessary. The following coun-
terexample is natural and was observed by Donaldson in [20]. Consider the standard unit
ball B4 inside Euclidean R4, “squeeze” the ball such that the north pole and the south pole
of the boundary S3 comes together, so we get a sequence of embedded B4 in R4 converging
in Hausdorff sense to a limit homeomorphic to the wedge sum of two B4, whose boundary is
an immersed S3 intersecting itself at one point. For this sequence, all other assumptions are
satisfied except for the positive mean curvature. Slightly modifying the process, one can also
have a sequence of B4 of dumbbell shape such that the middle cyclinder B3× [0, 1] collapses
to [0, 1], then they have a Hausdorff limit which is homeomorphic to two B4 joint by a line
segment.

In these types of examples, the curvatures are uniformly bounded, and the global volume
are non-collapsing before taking the limit.
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Remark 4.2.5. If we allow integral homology classes with self-intersection −2 and do not
assume the positive mean curvature condition, something worse will happen: consider the
Kummer construction (See also subsection 3.1.3 Theorem 3.1.13, Remark 3.1.15). Let T 4/Z2

be the flat 4-orbifold with 16 singularities, remove small neighborhoods of the 16 singularities,
and glue in 16 copies of T ∗S2. By varing the sizes of these glue-in regions and perturbing the
metrics, we get a sequence of hyperkähler 4-manifolds (Mi, hi), each of which is diffeomorphic
to the K3 manifold, such that (Mi, hi) converges in Gromov-Hausdorff sense to T 4/Z2, and
converges in Cheeger-Gromov sense away from these 16 singularities. Now let T 3/Z2 ⊂ T 4/Z2

be the flat 3-orbifold, such that the last coordinate equal to 0. Let X̃i ⊂ T 4/Z2 be the closure
of the tubular neighborhood of T 3/Z2 of width i−1, then ∂X̃i is connected, totally geodesic,
isometric to the same flat T 3. Now for each i, choose n(i) large enough such that one
can find Xi ⊂ Mn(i) which are compact domains with smooth boundary, dGH(Xi, X̃i) → 0,

|∇j
∂Xi

S∂Xi
| → 0, ∀j ≥ 0, ∂Xi converges in Cheeger-Gromov sense to flat T 3. Let gi = hn(i)|Xi

,
then (Xi, gi) converges in Gromov-Hausdorff sense to flat T 3/Z2. In this case, vol(Xi) → 0,
sup
Xi

|Rmgi | → ∞, and there is no interior ball in Xi of a uniform size.

Note that in this example ∂X̃i cannot be perturbed in flat T 4/Z2 to have positive mean
curvature. In fact, take a small tubular neighborhood of ∂X̃i of width less than i−1, whose
boundary has two totally geodesic connected components T1, T2. Suppose ∂X̃i can be per-
turbed to T ′ such that its mean curvature has a strict sign, say that its mean curvature
vector points towards T1. Then T

′, T1 bound a region W . By [20] Proposition 7, T ′ and T1
are isometric, so T ′ is totally geodesic, which is a contradiction. However, it is unknown
whether ∂Xi could have positive mean curvature or not.

The major step of the proof in Theorem 4.2.1 is to show that these Riemannian manifolds
have a nice neighborhood of definite size. We show that the boundary injectivity radius has
a lower bound, so that the interior geometry within the boundary injectivity radius is nicely
controlled by Theorem 4.1.1.

Proposition 4.2.6. There exists i1 > 0, depending on the constants in Theorem 4.2.1 such
that ib,gi ≥ i1.

Proof. Suppose not, we have a subsequence of hyperkähler metrics gi, with ib,gi → 0. Rescale
the metric g̃i = i−2

b,gi
gi, then ib,g̃i = 1. For any point pi ∈ ∂Xi, the restriction met-

ric (∂Xi, g̃i|∂Xi
, pi) converges in pointed Cheeger-Gromov sense to flat R3, |Sg̃i | → 0 and

|∇j+1
∂Xi

Hi| → 0 uniformly on ∂Xi. Consider sup
Bg̃i

(pi,4)

|Rmg̃i|. We have two cases

Case 1 sup
Bg̃i

(pi,4)

|Rmg̃i | ≤ C.

We have a subsequence (Bg̃i(pi, 3), g̃i) converges in Cheeger-Gromov sense to a Riemannian
manifold with boundary (B∞, g∞), so (B∞, g∞) is Ricci flat, and all boundary components
are flat, totally geodesic. By Lemma 4.1.6, (B∞, g∞) is flat. We need to choose good points
pi to lead to a contradiction. In fact, by Proposition 2.1.7, there exists pi ∈ ∂Xi such that
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γpi(1) is a focal point along γpi . Let p∞ be the limit of pi. By Proposition 2.1.13, we get a
limit geodesic γp∞ : [0, 1] → B∞, such that γp∞(1) is a focal point along γp∞ , contradiction.

Case 2 For some subsequence we have sup
Bg̃i

(pi,4)

|Rmg̃i | → ∞.

Then we can find points qi ∈ Bg̃i(pi, 4) such that |Rmg̃i(qi)| → ∞. By Theorem 4.1.1, we have
dg̃i(qi, ∂Xi) ≥ 1

2
for large i. By Theorem 4.1.1, Proposition 2.1.15, and the fact dg̃i(qi, ∂Xi) ≤

4, we have volg̃i(Bg̃i(qi,
r0
2
)) ≥ v0 for some r0, v0. Since there is no integral homology class in

Xi with self-intersection −2, then by Proposition 4.1.5, supBg̃i
(qi,

r0
10

) |Rmg̃i | ≤ C, which is a
contradiction.

Then we can finish the proof of Theorem 4.2.1 as follows: by Theorem 4.1.1, |Rmgi| is
uniformly bounded in N i1

2
(∂Xi, gi). By Proposition 2.1.15, there exist r1 <

i1
10
, v1, such that

volgi(Bgi(p, r1)) ≥ v1 for any p with dgi(p, ∂Xi) = 2r1. By Proposition 2.1.4, sup
q∈Xi

dgi(q, ∂Xi) ≤

3H−1
0 , hence diam(Xi, gi) ≤ C. Then from Bishop-Gromov volume comparison, we know

volgi(Bgi(p, r1)) ≥ v2 for any p with dgi(p, ∂Xi) ≥ 5r1. By Proposition 4.1.5, for these p,
|Rmgi(p)| is uniformly bounded, with the bound independent of i and p. Hence supX |Rmgi|
is uniformly bounded. Then by Corollary 2.2.15, a subsequence (Xi, gi) converges in Cheeger-
Gromov sense to a smooth Riemannian manifold with boundary (X, g), so g is a hyperkähler
metric.

Remark 4.2.7. It is also possible to prove Theorem 4.2.1 directly by rescaling the maximum
curvature norm to be 1. Suppose that the maximum curvature norm is achieved at point pi.
From Corollary 2.1.9, we know that for the rescaled metrics, ib ≥ i0. If the distance between
pi and the boundary ∂Xi is bounded, then the pointed Riemannian manifolds converge in
the pointed Cheeger-Gromov sense to a Ricci-flat manifold with flat and totally geodesic
boundary. Hence, the limit is flat by Lemma 4.1.6, which leads to a contradiction. If, on
the other hand, d(pi, ∂Xi) → ∞ for a subsequence, we rescale the metrics again such that
this distance is 1. However, it is not clear whether the curvature is bounded in a fixed-size
neighborhood of the boundary at this scale. Using the idea of Theorem 4.1.1, we can keep
rescaling until this happens at some point, possibly at different points p′i. This leads to a
contradiction, which is the same as the one in Case 2 of Proposition 4.2.6. Since volume
lower bounds can be passed within a finite distance, so by Proposition 4.1.5, the curvature
bounds can also be passed within a finite distance.

Alternatively, one can prove Theorem 4.2.1 by rescaling the harmonic radius. All of these
methods eventually turn out to use essentially the same ingredient.

4.3 Local limits

Suppose X is a connected complete metric space, and there exists a finite set Σ =
{p1, · · · , pm},m ≥ 0 such that X\Σ is a smooth flat hyperkähler 4-manifold with nonempty
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boundary, and each boundary component Y1, · · · , Yn, n ≥ 1 is isometric to flat R3, X\∪n
i=1Yi

is a flat hyperkähler 4-orbifold such that Σ is the set of all orbifold points. Our goal is to
classify all such X.

The motivation of this problem is the following:

Proposition 4.3.1. Let (Xi, gi) be a sequence of compact hyperkähler 4-manifolds with
boundary, such that

ib,gi ≥ i0, and inj∂Xi
→ ∞,

|Si| → 0, |∇j+1
∂Xi

Hi| → 0, |∇j
∂Xi

Rm∂Xi
| → 0

uniformly on ∂Xi for all j ≥ 0, and ∫
Xi

|Rmgi |2 ≤ C.

Then for any pi ∈ Xi such that dgi(pi, ∂Xi) ≤ K, a subsequence of (Xi, gi, pi) converges in
the pointed Gromov Hausdorff sense to a complete metric space (X∞, d∞, p∞). The limit
(X∞, d∞) satisfies all the properties of X stated above.

By Theorem 4.1.1, the geometry near boundary is nicely controlled, so this theorem is a
consequence of [4, 8, 48] etc.

Remark 4.3.2. In Theorem 4.2.1, under the mean positive condition, if we allow homology
class of self-intersection -2 in Xi, then we are unable to show that ib,gi has a lower bound. In
fact, the bad case is that focal points are exactly those curvature blow-up points, and they
approach the boundary in a moderate rate. However, we can say something within the scale
of the boundary injectivity radius. Suppose ib,gi → 0, then we rescale the metric such that
the boundary injectivity radius becomes 1, then the rescaled metric satisfies the assumption
of Proposition 4.3.1.

Theorem 4.3.3. We must have (m,n) ∈ {(0, 1), (0, 2), (1, 1)} and X is isometric to one of
the following:

• (m=0, n=1) R4
+;

• (m=0, n=2) the region in R4 bounded by two parallel hyperplanes;

• (m=1, n=1) the connected component of 0 in (R4\H)/Z2, where H is a hyperplane
such that 0 /∈ H.

Proof. Consider another copy of X, glue them together along Y1, · · · , Yn, we get a complete
flat hyperkähler orbifold X̂ = X ⊔idX, id : ∪n

i=1Yi → ∪n
i=1Yi ⊂ X, which contains Y1, · · · , Yn

as smooth hypersurfaces. Then X̂ is a (SU(2),R4) orbifold in the sense of [47]. Let X̃ be
the universal covering orbifold of X̂, then we have a developing map D : X̃ → R4, and since
X̃ is a complete orbifold, D is a covering map. Hence X̃ is homeomorphic to R4, and X̂ is
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isometric to R4/Γ, where Γ is a discrete subgroup of R4 ⋊ SU(2). Let r be the projection
map to the second factor, then r(Γ) is a finite subgroup of SU(2), and we have a short exact
sequence

0 → Γ ∩ R4 → Γ → r(Γ) → 0.

Then rank(Γ∩R4) ≤ 1, since otherwise X̂ is a quotient of R2×T 2 and cannot contain a flat
R3 as a Riemannian submanifold.

If Γ∩R4 = {0}, then X̂ ∼= R4/r(Γ) and hence r(Γ) = {1}, since otherwise X̂ has exactly
one orbifold point, contradiction. Hence, m = 0, n = 1 and X is isometric to R4

+.
If Γ∩R4 = Za for some 0 ̸= a ∈ R4, let π : R4 → R4/Γ be the covering map, then π−1(Y1)

is a complete totally geodesic submanifold of R4, hence a countable disjoint union of parallel
hyperplanes. Pick one of them, denoted by Z, then π−1(Y1) is a disjoint union of γ.Z for
γ ∈ Γ. Suppose Z is defined by bTx+ c = 0, then γ−1.Z is defined by bT r(γ)x+ c′ = 0. Since
they are parallel to each other, bT = ±bT r(γ), and hence ±1 is an eigenvalue of r(γ), which
forces r(γ) = ±1, as r(γ) ∈ SU(2). Hence r(Γ) = {1} or r(Γ) = Z2. If r(Γ) = {1}, then Γ is
generated by x 7→ x+ a, so m = 0, n = 2 and X is isometric to the region in R4 bounded by
two parallel hyperplanes; If r(Γ) = Z2, then Γ is generated by x 7→ −x + d and x 7→ x + a
for some d ∈ R. Hence m = 1 and R4/Γ\{Y1, Y2, · · · , Yn} has n+ 1 connected components.
But from the gluing construction and that X is connected, we know X̂\{Y1, Y2, · · · , Yn} has
exactly two connected components. Hence n + 1 = 2, n = 1, and X is isometric to the last
case in the conclusion.

4.4 Einstein 4-manifolds with boundary

Our arguments for hyperkähler 4-manifolds can actually be generalized to Einstein 4-
manifolds.

Theorem 4.4.1. Let (M, g) be a compact, connected Einstein 4-manifold with boundary,
|Ric| ≤ 3. Suppose RP3 cannot be smoothly embedded in M\∂M , and for k = 0, 1,

|S| ≤ C, |∇k
∂MRm∂M | ≤ C, |∇k+1

∂MH| ≤ C,H ≥ H0 > 0, inj∂M ≥ i0, vol∂M(∂M) ≤ C,

χ(M) ≤ C. Then there exists i′0 such that ib ≥ i′0. If in addition Ric ≥ 0, then one can
replace H ≥ H0 > 0 by H > 0.

Proof. The Chern-Gauss-Bonnet formula together with equations (2.6) and (2.7) imply∫
M
|Rm|2 ≤ C. Suppose the conclusion is not true, then we can find a sequence (Mi, g̃i)

such that ib,g̃i → 0. In particular, ib,g̃i < −1
2
ln
∣∣H0−3
H0+3

∣∣, hence by Proposition 2.1.8, there ex-

ists focal points pi ∈Mi whose distance to ∂Mi is equal to ib,g̃i . Rescale the metric gi = i−2
b,g̃i
g̃i,

so that ib,gi = 1. From now on we are in the scale of gi.
Let q′′i be any point on ∂Mi. By Lemma 4.4.3 below and Corollary 2.2.15, we know

C(B∂Mi
(q′′i , 1), 0, 0.9999) converges in C

2,α sense to the flat product metric on B1×[0, 0.9999).
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It follows that vol(B(q′i, 0.01)) ≥ 0.4vol(B0.01) for any q′i with d(q′i, ∂Mi) ∈ [0.999, 1.001],
where B0.01 is the Euclidean ball of radius 0.01. Hence, by Proposition 4.4.4 we have
supB(pi,0.002)

|Rm| ≤ C. Let qi be a foot point of pi. Then C(B∂Mi
(qi, 0.0001), 0, 0.9999) ∪

B(pi, 0.001) converges in C
2,α sense to the a Ricci-flat metric with flat totally geodesic bound-

ary, hence the metric must be flat by Lemma 4.1.6, which contradicts the fact that pi is a
focal point of ∂Mi.

Remark 4.4.2. The point here is in the scale of gi, the volume of a metric ball near the focal
point pi have volume greater than Euclidean half ball of the same radius. Then nearly the
focal point, the worst case is that we get a R4/Z2 singularity in the limit, which is avoided
by the topological assumption.

The lemma presented below is analogous to Theorem 4.1.1, and the proof is very similar
except for the step of ruling out the bubbles, as integral homology class of self-intersection
−2 does not arise naturally in Einstein case.

Lemma 4.4.3. Let (Mi, gi) be a sequence of complete Einstein 4-manifold with compact
boundary, such that RP3 cannot be smoothly embedded in Ni0(∂Mi, gi). Suppose |Ricgi | → 0,

|Si| → 0, inj∂Mi
→ ∞, ib,gi ≥ i0, |∇k

∂Mi
Rm∂Mi

| → 0, |∇k+1
∂Mi

Hi|Lip(∂Mi) → 0, k = 0, 1,

and ∫
Mi

|Rmgi |2 ≤ C.

Then for any r1 < i0,
sup

Nr1 (∂M,gi)

|Rmgi | → 0.

Proof. Without loss of generality, assume i0 = 1 and r1 > 0.9999. Denote α = r1, β =
1
4
(1− α). It suffices to show

sup
Nα(∂M,gi)

|Rmgi | ≤ C ′. (4.4)

This implies sup
Nα−β(∂Mi,gi)

|Rmgi | → 0 and one can take a larger r1 to get the desired conclusion.

In fact, suppose sup
Nα−β(∂Mi,gi)

|Rmgi | is achieved at si ∈ Mi with dgi(si, ∂Mi) ≤ α − β, let

s′i ∈ ∂Mi be the foot point of si, then by Corollary 2.2.15 and Lemma 4.1.6 we know
(Bgi(s

′
i, α − 1

2
β), gi) converges in C2,α sense to Euclidean B+

α− 1
2
β
, so sup

Nα−β(∂Mi,gi)

|Rmgi| =

|Rmgi(si)| → 0.
Now we argue by contradiction to prove (4.4). Suppose this is not true, then by passing

to a subsequence we may assume

sup
Nα(∂Mi,gi)

|Rmgi | → ∞.
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Let pi ∈ Nα(∂Mi, gi) achieves this supremum, then pi /∈ ∂Mi.
Claim 1 There exists a subsequence such that

dgi(pi, ∂Mi)
2|Rmgi(pi)| → ∞. (4.5)

If this is not true, we have supi dgi(pi, ∂Mi)
2|Rmgi |(pi) <∞. Rescale g̃i = |Rmgi(pi)|gi, then

|Rmg̃i(pi)| = 1, and |Rmg̃i | ≤ 1 in N
α|Rmgi (pi)|

1
2
(∂Mi, g̃i), and supi dg̃i(pi, ∂Mi) < ∞, ib,g̃i ≥

|Rmgi(pi)|
1
2 for all i. Hence (Mi, gi, pi) subconverges in pointed C2,α sense to (M∞, g̃∞, p∞),

which is a complete Ricci-flat 4-manifold with flat, totally geodesic boundary, hence must
be flat by Lemma 4.1.6. This contradicts that |Rmg∞(p∞)| = 1 and proves Claim 1.

Now rescale gi in another way, let g′i = dgi(pi, ∂Mi)
−2gi, so dg′i(pi, ∂Mi) = 1. Since

dgi(pi, ∂Mi) ≤ α, the rescaled metric g′i satisfies ib,g′i ≥ α−1 as well as other conditions in this
lemma. Moreover, (4.5) is equivalent to |Rmg′i

(pi)| → ∞.
By the ϵ-regularity theorem of Cheeger-Tian [16], there exists a universal constant ϵ0

such that for sufficiently large i, ∫
Bg′

i
(pi,β)

|Rmg′i
|2 ≥ ϵ0.

Claim 2 There exists a subsequence such that

sup
Nα(∂Mi,g′i)

|Rmg′i
| → ∞,

If not, we have sup
Nα(∂Mi,g′i)

|Rmg′i
| ≤ C. Hence, we have sup

Nα−β(∂Mi,g′i)

|Rmg′i
| → 0, which follows

from the argument presented at the beginning of the lemma.
By Bishop-Gromov volume comparison and note that |Ricg′i | → 0, we have

vol(Bg′i
(qi, β))

vol(Bβ)
≥ 0.9

vol(Bg′i
(qi, 0.1))

vol(B0.1)
≥ 0.36

for any qi with dg′i(qi, ∂Mi) ∈ [1 − 5β, 1 + 5β]. Note that Bg′i
(pi, β) ⊂ Nα−1(α+β)(∂Mi, g

′
i) ⊂

Nα+β(∂Mi, gi). By Proposition 4.4.4, |Rmg′i
(pi)| is bounded, which is a contradiction to

Claim 1 and finishes the proof of Claim 2.
Now Claim 2 enables us to obtain, by induction, for each fixed positive integer N , N

sequences of metrics g
(0)
i = gi, g

(1)
i = g′i, . . . , g

(N)
i , and points p

(j)
i ∈ Nα(∂Mi, g

(j)
i ) for 0 ≤

j ≤ N − 1, p
(0)
i = pi, p

(1)
i = p′i, such that for 0 ≤ j ≤ N − 1, p

(j)
i achieves the supremum of

|Rm
g
(j)
i
| in Nα(∂Mi, g

(j)
i ), and

|Rm
g
(j)
i
(p

(j)
i )| → ∞,

g
(j+1)
i = d

g
(j)
i
(p

(j)
i , ∂Mi)

−2g
(j)
i ,
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d
g
(j+1)
i

(p
(j)
i , ∂Mi) = 1,∫

B
g
(j+1)
i

(p
(j)
i ,β)

|Rm
g
(j+1)
i

|2 ≥ ϵ0,

B
g
(j+1)
i

(p
(j)
i , β) ⊂ Nα−1(α+β)(∂Mi, g

(j+1)
i ) ⊂ Nα+β(∂Mi, g

(j)
i ),

B
g
(j+1)
i

(p
(j)
i , β) ∩Nα+β(∂Mi, g

(j+1)
i ) = ∅.

Consequently, for any fixed i, the union of the balls
⋃N−1

j=0 Bg
(j+1)
i

(p
(j)
i , β) consists of non-

overlapping balls. Additionally, since
∫
Mi

|Rmgi |2 ≤ C, we have Nϵ0 ≤ C. However, this
contradicts the fact that N can be any positive integer.

The Proposition below is used to rule out certain bubbles in Einstein manifolds.

Proposition 4.4.4. Let (M, g) be a Einstein 4-manifold with |Ric| ≤ 3. Suppose B(p, 5)
has compact closure, RP3 cannot be smoothly embedded in B(p, 5), and for any q ∈ B(p, 2),

vol(B(q, 1)) ≥ (
1

3
+ δ)vol(B1) (4.6)

Then there exists a constant C = C(δ) such that

sup
B(p,1)

|Rm| ≤ C.

Proof. Suppose the conclusion is not true, then we have a sequence (Mi, gi, pi) satisfies the
conditions, but there exists q′i ∈ B(pi, 1) with |Rmgi(q

′
i)| → ∞. By the following point

selection Lemma 4.4.5, we can find points qi ∈ B(pi, 2) such that |Rmgi(qi)| ≥ |Rmgi(q
′
i)|,

and
sup

Bgi (qi,|Rmgi (q
′
i)|

1
2 |Rmgi (qi)|

− 1
2 )

|Rmgi | ≤ 4|Rmgi(qi)|.

Rescale the metric g̃i = |Rmgi(qi)|gi. Then we have for large i,

sup
Bg̃i

(qi,|Rmgi (q
′
i)|

1
2 )

|Rmg̃i| ≤ 4,

|Rmg̃i(qi)| = 1,

volg̃i(Bg̃i(qi, r)) ≥ (
1

3
+
δ

2
)vol(Br),∀r ≤ |Rmgi(qi)|

1
2 ,

Hence, for a subsequence, (Mi, g̃i, qi) converges in pointed C2,α topology to a complete
non-flat Ricci-flat 4-manifold (M∞, g∞, q∞) with maximum volume growth. By Cheeger-
Naber [15] and Bando-Kasue-Nakajima [8], M∞ is a Ricci-flat ALE space whose tangent



CHAPTER 4. CONVERGENCE OF HYPERKÄHLER 4-MANIFOLDS WITH
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cone at infinity is R4/Z2, hence RP3 can be smoothly embedded into Bgi(pi, 5) for large i,
which contradicts our assumption.

The following point selection lemma is well-known and elementary. The argument holds
for any function in place of |Rm|.

Lemma 4.4.5. Let (M, g) be a Riemannian manifold. Suppose sup
B(p,2)

|Rm| <∞, |Rm(p)| ≠

0. Then there exists a point q ∈ B(p, 2) such that |Rm(q)| ≥ |Rm(p)|, and

sup
B(q,|Rm(p)|

1
2 |Rm(q)|−

1
2 )

|Rm| ≤ 4|Rm(q)|.

Proof. If this is not true, let A = |Rm(p)| 12 , then there exist q1 ∈ B(p, 2) such that
d(q1, p) < 1 and |Rm(q1)| > 4|Rm(p)| = 4A2. By induction, we can find a sequence of points

q0 = p, q1, q2, · · · with d(qj+1, qj) < |Rm(qj)|−
1
2A, d(qj+1, p) < 2 − 2−j and |Rm(qj+1)| >

4|Rm(qj)| ≥ 4j+1A2. This is an obvious contradiction since sup
B(p,2)

|Rm| <∞.

Condition (4.6) does not arise as natural for interior balls, as we cannot in general get
a precise volume estimate. To rule out interior bubbles for Einstein manifolds, we need
additional topological conditions, as indicated in [11].

Proposition 4.4.6. Let (M, g) be an oriented Einstein 4-manifold with |Ric| ≤ 3. Suppose
B(p, 5) has compact closure and embeds smoothly as an open subset of a homology 4-sphere,
H2(M,R) = 0 and for any q ∈ B(p, 2),

vol(B(q, 1)) ≥ v0.

Then there exists a constant C such that

sup
B(p,1)

|Rm| ≤ C.

Proof. This follows from the arguments in [11] and we refer there for details. If the curvature
blows up, the same arguments as in Proposition 4.4.4 imply that there exists a oriented
non-flat 4d Ricci-flat ALE space E that can be smoothly embedded in an open subset of
B(p, 5) ⊂ a homology 4-sphere, then a topological result of Crisp-Hillman [18] implies the
boundary at infinity of E is diffeomorphic to S3/Γ, where Γ is the group Q8 or the perfect
group. As the universal cover of E is also a Ricci-flat ALE space, we know E must have
finite fundamental group, hence H1(E,R) = 0. By our assumption H2(M,R) = 0 and the
Mayer-Vietoris sequence, we know H2(E,R) = 0. By a result of Shen-Sormani [44], we know
H3(E,Z) = 0. Since E is an open 4-manifold, H4(E,R) = 0, so χ(E) = 1. This contradicts
the Chern-Gauss-Bonnet formula and the signature formula applied to E by computing the
η-invariant of S3/Γ when Γ = Q8 or the perfect group.
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BOUNDARY 53

Now follow the proof of Theorem 4.1.1 we obtain the following:

Theorem 4.4.7. Let M be the set of pointed compact Einstein 4-manifolds (M, g, p) with
boundary such that |Ric| ≤ 3, RP3 cannot be smoothly embedded in M\∂M , ∂M is diffeo-
morphic to S3, for k = 0, 1,

vol∂M(∂M) ≤ C, |S| ≤ C, |∇k
∂MRm∂M | ≤ C, |∇k+1

∂MH| ≤ C, inj∂M ≥ i0, H ≥ H0 > 0,

d(p, ∂M) ≤ K,χ(M) ≤ C.

Then M is precompact in pointed Gromov-Hausdorff topology, and an element in ∂M is a
complete C2,α Einstein orbifold with smooth boundary, ∀α ∈ (0, 1), and the convergence to
the limit is C2,α away from finitely many orbifold points.

Proof. The Chern-Gauss-Bonnet formula imply
∫
M
|Rm|2 ≤ C. By Theorem 4.4.1, we know

ib ≥ i0. Hence N 2i0
3
(∂M, g) is diffeomorphic to S3 × [0, 1] ⊂ S4. Following the proof of

Theorem 4.1.1 we know that sup
N i0

2

(∂M,g)

|Rm| ≤ C, where we use Proposition 4.4.6 to rule out

Ricci-flat ALE bubbles. So by Proposition 2.1.15 and Bishop-Gromov volume comparisons,
we know that for any fixed R > 0, vol(B(q, d(q, ∂M))) ≥ vRd(q, ∂M)4 for any q ∈ M with
d(q, ∂M) ≤ R. Then the conclusion follows from Corollary 2.2.15 and [4, 8, 48].

Also, we are ready to prove the Theorem 1.0.5 listed in the introduction:

Proof. Topologically glue two identical copies of M along ∂M , we get a homology 4-sphere
by Mayer-Vietoris sequence. Then follow the proof of Theorem 4.4.7 and use Proposition
4.4.6.
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Chapter 5

Convergence of triples

5.1 Moduli space formulation

Now we turn to the setting of Theorem 1.0.2. X will denote a compact oriented 4-
manifold with boundary ∂X = Y . Let N+ be the set of closed framings γ = (γ1, γ2, γ3) on
Y that satisfies the “positive mean curvature” condition

3∑
i=1

⟨γi, d(∗γγi)⟩γ > 0. (5.1)

Let M+ be the set of smooth hyperkähler triples ω = (ω1, ω2, ω3) whose restriction to the
boundary lies in N+, so we have a restriction map p0 : M+ → N+, which induces a map

p : M+/GX → N+/GY . (5.2)

Here M+, N+ are equipped with Fréchet topology defined by smooth convergence, GX ,GY

are orientation preserving diffeomorphism groups of X, Y , respectively. It is obvious that p0,
p are continuous. Then the compactness part of Theorem 1.0.2 is equivalent to:

Theorem 5.1.1. When there is no C ∈ H2(X,Z) with C2 = −2, the map p : M+/GX →
N+/GY is proper.

Proof. Suppose that for some ϕi ∈ GY , and γi ∈ N+, we have ϕ∗
iγi → γ ∈ N+ and there

exist ωi ∈ M+ with ωi|Y = γi. We want to show that there exists ψi ∈ GX and ω ∈ M+ such
that ψ∗

iωi → ω. Let gi be the Riemannian metric defined by ωi. By the assumptions, we
have a uniform positive lower bound for the mean curvature Hi of Y for the metric gi = gωi

,
and bounds for |∇l

Y Si| for all l ≥ 0. Moreover, (Y, gi|Y ) converges in the Cheeger-Gromov
sense. Hence, (X, gi) satisfies all conditions in Theorem 4.2.1. Then, for a subsequence,
there exists a diffeomorphism ψi : X → X such that ψ∗

i gi → g smoothly as tensors. One can
assume that ψi is orientation-preserving; otherwise, for a subsequence, compose them with
a fixed orientation-reversing diffeomorphism of X. Since |ψ∗

iωi|2 = 3, ψ∗
iωi is parallel. We

conclude that for some subsequence, ψ∗
iωi → ω smoothly, and ω ∈ M+.
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5.2 Enhancements

For the proof of the compactness part of Theorem 1.0.3, one only needs the following
proposition in place of Proposition 4.1.5. Then we argue in the same way as the proof of
Theorem 1.0.2.

Proposition 5.2.1. Let (M, g,ω) be a hyperkähler 4-manifold. Suppose B(p, 5) has compact
closure, and for any homology class Σ of self intersection −2 in B(p, 3),∣∣∣ ∫

Σ

ω
∣∣∣ ≥ a > 0,

vol(B(p, 1)) ≥ v,∫
B(p,3)

|Rm|2 ≤ C.

Then there exists C ′ > 0, depending on a, v, C such that

sup
B(p,1)

|Rm| ≤ C ′.

Proof. For all q ∈ B(p, 2), by volume comparison, we have

vol(B(q, 1)) ≥ 3−4vol(B(q, 3)) ≥ 3−4vol(B(p, 1)) ≥ 3−4v.

Suppose the conclusion is not true. Then we have a sequence (Mi, gi, pi) that satisfies the
conditions, but there exists q′i ∈ B(pi, 1) with |Rmgi(q

′
i)| → ∞. By the point selection

Lemma 4.4.5, we can find points qi ∈ B(pi, 2) such that |Rmgi(qi)| ≥ |Rmgi(q
′
i)|, and

sup
Bgi (qi,|Rmgi (q

′
i)|

1
2 |Rmgi (qi)|

− 1
2 )

|Rmgi | ≤ 4|Rmgi(qi)|.

We rescale the metric g̃i = |Rmgi(qi)|gi and ω̃i = |Rmgi(qi)|ωi, so ω̃i defines g̃i. Then we
have

sup
Bg̃i

(qi,|Rmgi (q
′
i)|

1
2 )

|Rmg̃i| ≤ 4,

|Rmg̃i(qi)| = 1,

volg̃i(Bg̃i(qi, r)) ≥ 3−4vrn, ∀r ≤ |Rmgi(qi)|
1
2 ,

and ∫
Bg̃i

(qi,|Rmgi (qi)|
1
2 )

|Rmg̃i |2 ≤
∫
Bg̃i

(pi,3|Rmgi (qi)|
1
2 )

|Rmg̃i |2 ≤ C.
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Hence, for a subsequence, (Mi, g̃i, qi) converges in Cheeger-Gromov topology to a complete
non-flat hyperkähler 4-manifold (M∞, g∞, q∞) with maximum volume growth and∫

M∞

|Rmg∞|2 ≤ C.

Since ω̃i are parallel, and |ω̃i|2 = 6, ω̃i also subconverges to a hyperkähler triple ω∞ that
defines g∞. By [8], (M∞, g∞) is a hyperkähler ALE space of order 4. Hence, from Kron-
heimer’s classification [37, 36], there exists a smooth 2-sphere C∞ of self intersection −2 in
Bg∞(q∞, R) for some R > 0. Let ϕi : Bg∞(q∞, R) → Vi ⊂ Mi be diffeomorphisms, such that
ϕ∗
i ω̃i → ω∞ smoothly. Let Ci = (ϕi)∗C∞, then Ci is a homology class of self-intersection −2

in Bgi(pi, 3) for large i and∫
Ci

ωi = |Rmgi(qi)|−1

∫
Ci

ω̃i = |Rmgi(qi)|−1

∫
C∞

ϕ∗
i ω̃i → 0,

which contradicts our assumption.

5.3 Uniqueness

It is natural to ask whether a subsequential limit ω is unique(up to a diffeomorphism)
in Theorem 1.0.2, Theorem 1.0.3. The answer is yes. In fact, both [9] and [5] proved
a unique continuation theorem for Einstein metrics with prescribed boundary metric and
second fundamental form, which implied uniqueness in our case.

Biquard proved

Theorem 5.3.1. [9] Let M be a compact smooth manifold with boundary. Let g, h be two
smooth Riemannian metrics on M such that g|∂M = h|∂M and IIg = IIh on ∂M , then
gexp⊥g0 (x,t)

= hexp⊥(x,t) as pointwise inner products for (x, t) ∈ ∂M × [0,min{ib,g, ib,h}).

Proposition 5.3.2. Let X be a connected oriented 4-manifold with boundary. Suppose ω1

and ω2 are two smooth hyperkähler triples on X. If ω1|∂X = ω2|∂X , then in the geodesic
gauges of gω1 and gω2, we have ω1 = ω2 near ∂X.

Proof. We have gω1|∂X = gω2|∂X and IIgω1
= IIgω2

on ∂X. By Theorem 5.3.1, in the geodesic

gauges provided by exp⊥, we have gω1 = gω2 := g. Since ω1 and ω2 are parallel, we have
∇g|ω1 − ω2|2g = 0, since ω1 = ω2 on ∂X. Therefore, ω1 = ω2 everywhere near ∂X.

Now the following global uniqueness result follows from an analytic continuation argu-
ment (See [33] Chapter VI, Section 6):

Theorem 5.3.3. Let X be a connected 4-manifold with boundary such that π1(X, ∂X) =
0. Suppose ω1,ω2 are two smooth hyperkähler triples on X, and ϕ0 : ∂X → ∂X is a
diffeomorphism, such that ω1|∂X = ϕ∗

0(ω2|∂X), then there exists a diffeomorphism ϕ : X →
X, ϕ|∂X = ϕ0 such that ω1 = ϕ∗ω2 on X.
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Remark 5.3.4. This theorem implies that the map p : M+/GX → N+/GY defined in
section 5 is injective, provided that M+ is nonempty, so one must have π1(X, ∂X) = 0 by
Proposition 2.1.4.

Proof. By the Proposition 5.3.2, there exists a collar neighborhood U of ∂X and a diffeomor-
phism ϕ1 : U → V ⊂ X such that gω1 = ϕ∗

1gω2 , ϕ1|∂X = ϕ0. Since gω1 , gω2 are real analytic,
ϕ1 is real analytic. Fix p0 ∈ U and a small neighborhood U0 of p0 in X. For any p ∈ X\∂X,
choose a path x(t), 0 ≤ t ≤ 1 such that x(0) = p0, x(1) = p, x(t) ∈ X\∂X, then an analytic
continuation of the isometry ϕ1|U0 along x(t) gives rise to an isometry defined near p. We
claim that if we have two paths and two analytic continuations, then they define the same
germ at p. In fact, one only needs to show that for the closed path y0(t) formed by con-
catenating these two paths, the isometry near p0 given by an analytic continuation of ϕ1|U0

along y0(t) has the same germ as ϕ1|U0 at p0. Since π1(X, ∂X) = 0, y0(t) can be homotoped
to a path y1(t) contained in U via paths ys(t) in X\∂X, such that ys(0) = ys(1) = p0. Since
ϕ1 : U → V is a globally defined isometry, by uniqueness of analytic continuation, we know
that any analytic continuation of ϕ1|U0 along y1(t) must coincide with ϕ1, which finishes the
proof of the claim by invariance of analytic continuation via homotopy. This shows that
ϕ1 : U → V can be extended to a global isometry ϕ : X → X by analytic continuation.
Hence ω1 = ϕ∗ω2.

Given the compactness result Theorem 5.1.1, Theorem 5.3.3, together with the theorem
of Ebin-Palais on properness of diffeomorphism group action on the space of Riemannian
metrics on a closed manifold (See [23]), one can complete the proof of Theorem 1.0.2, The-
orem 1.0.3 as follows:

Suppose we have two sequences of diffeomorphism ϕi, ψi of X such that ϕ∗
iωi → ω,

ψ∗
iωi → ω′, then (ϕi|∂X)∗γi → ω|∂X , (ψi|∂X)∗γi → ω′|∂X , where γi = ωi|∂X . Since γi

converges to γ in Cheeger-Gromov sense, there exists diffeomorphisms ui : ∂X → ∂X such
that u∗iγi → γ. By the theorem of Ebin-Palais, we have for a subsequence (ϕi|∂X)−1 ◦
ui, (ψi|∂X)−1 ◦ ui converge to some diffeomorphisms u, u′ on ∂X, respectively(because their
inverses converge). Hence we also have u∗iγi → u∗ω|∂X , u∗iγi → (u′)∗ω′|∂X , so ω|∂X =
(u′◦u−1)∗ω′|∂X . Note that the positive mean curvature condition implies that π1(X, ∂X) = 0
(See Proposition 2.1.4), then by Theorem 5.3.3, there exists a diffeomorphism φ on X with
ω′ = φ∗ω.
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5.4 Torsion-free hypersymplectic manifolds with

boundary

5.4.1 Preliminaries

Recall that a hypersymplectic triple ω = (ω1, ω2, ω3) on an oriented 4-manifold X with
boundary is a definite triple of symplectic forms. Write

ωi ∧ ωj = 2Qijµ.

Denote Q = (Qij), Q
−1 = (Qij), and g = gω the Riemannian metric. Recall that ω is called

torsion-free if for each i,
d(Qijωj) = 0, (5.3)

which is equivalent to
dQij ∧ ωj = 0. (5.4)

Let us begin with some arguments and results in [25]. Let Sym>0 denotes the set of
symmetric positive-definite 3 by 3 matrices. There are two Riemannian metrics on Sym>0:
the first one is the Euclidean metric

⟨A,B⟩ = Tr(AB), (5.5)

and the second one is the symmetric space metric, which has non-positive sectional curvature

⟨A,B⟩Q = Tr(Q−1AQ−1B) (5.6)

at each point Q ∈ Sym>0.
Then Q can be regarded as a map Q : X → Sym>0. Let ∆Q, ∆̂Q denote the harmonic

Laplacian of this map with respect to (5.5),(5.6), respectively. Explicitly, their components
are related by

(∆̂Q)ij = ∆Qij −Qkm⟨dQik, dQmj⟩, (5.7)

For a hypersymplectic triple ω, the calculations in [26] showed that the torsion-free
condition is equivalent to

∆̂Q = 0, Ric =
1

4
⟨dQ⊗ dQ⟩Q, (5.8)

where ⟨dQ⊗ dQ⟩Q(u, v) = ⟨∇uQ,∇vQ⟩Q. Hence if ω is torsion-free, then Q is a harmonic
map with respect to (5.6) and Ric ≥ 0. Then the scalar curvature R of g is

R =
1

4
|dQ|2Q ≥ 0,

which is a multiple of the energy density of the harmonic map Q. Take the trace of (5.7),
we get

∆TrQ = Qpq⟨dQkp, dQqk⟩ ≥ 0. (5.9)
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Moreover, [25] showed that the function R satisfies the inequality

R∆R ≥ 1

2
|∇R|2 + 1

2
R3, (5.10)

hence a contradiction argument implies that everywhere

∆R ≥ 0. (5.11)

Then they used standard geometric analysis arguments for inequality (5.10) and the fact
Ric ≥ 0 to conclude

Theorem 5.4.1. [25] Suppose (X, g,ω) is a torsion-free hypersymplectic manifold, B(p, r) ⊂
X has compact closure, and ∂B(p, r) ̸= ∅, then R(p) ≤ 32

r2
. In particular, if g is complete,

then there exists a constant matrix B ∈ SL(3,R) such that ωB is a hyperkähler triple.

5.4.2 Compactness for the boundary value problem

Now suppose X is an oriented 4-manifold with compact boundary Y = ∂X, then through
the boundary exponential map, a neighborhood U of Y is diffeomorphic to Y × [0, a). Let
t denote the distance function d(·, Y ), i.e., the projection Y × [0, a) → [0, a), then in U , ω
can be written as

ω = −dt ∧ ∗Ytγt + γt.

where Yt = Y × {t} and ∗Yt is the Hodge star operator of g|Yt . ω being closed is equivalent
to

dYtγt = 0, (5.12)

∂γt

∂t
= −dYt(∗Ytγt). (5.13)

(5.4) is equivalent to

dYtQ
ij ∧ ∗Ytγt,j +

∂Qij

∂t
γt,j = 0, (5.14)

dYtQ
ij ∧ γt,j = 0. (5.15)

Note that (5.14) is equivalent to

∂Qij

∂t
=
dYtQ

ik ∧ ηt,j ∧ ∗Ytγk
volt

, (5.16)

where volt = ηt,1 ∧ ηt,2 ∧ ηt,3 and equals to the Riemannian volume form of g|Yt . From
calculations in Lemma 3.2.1 and (5.13), (5.16) , it is easy to see that the second fundamental
form II(ei, ej) is in algebraic terms of η, d∂Xη,Q, d∂XQ.

Now let us try to prove Theorem 1.0.4, starting with basic observations. In Theorem
1.0.4, suppose ωi|∂X ,Qi converge in Cheeger-Gromov sense to the limit, then we have
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diam(∂X, gi|∂X) ≤ C, volgi(∂X) ≤ C, inj∂X,gi|∂X ≥ i0, |∇j
∂XRm∂X,gi | ≤ Cj, |∇j

∂XSi| ≤ Cj.
By (5.11) and maximum principle, Ri is uniformly bounded on X, so |Ricgi | is uniformly
bounded on X since Ricgi is non-negative and its trace is uniformly bounded. Due to
the uniform mean positive curvature condition, and Ricgi ≥ 0, we have an upper bound of
sup
p∈X

dgi(p, ∂X), volgi(X) by Proposition 2.1.4, and in particular an upper bound of diam(X, gi).

The Chern-Gauss-Bonnet formula thus gives an upper bound of
∫
X
|Rmgi |2. Also, by (5.9)

and maximum principle, TrQi is uniformly bounded on X, so Qi is uniformly bounded on
X and then |dQi| is uniformly bounded on X.

Given these conclusions, we need to verify that all propositions that were used to prove
Theorem 1.0.3 adapt to the torsion-free hypersymplectic setting. Firstly, we digress to discuss
elliptic regularity for torsion-free equations (5.8). In harmonic coordinates in B2 or B

+
2 , view

g as a 4 by 4 matrix of functions, then we have a system of PDEs in g,Q:

∆gQkl −Qpq⟨dQkp, dQql⟩g = 0, (5.17)

∆ggij +Bij(g, ∂g) = −1

2
QabQcd∂iQbc∂jQda. (5.18)

From this, by a boostrapping argument, one sees interior regularity: fix β ∈ (0, 1). If Q is
C1 bounded, g is C1,β bounded, and they are uniform positive on B2, then all derivatives
of Q and g are bounded. For boundary regularity, there is no techinical difficulty to get
the following version from Neumann boundary conditions (2.33),(2.34): if all tangential
derivatives of Q, g, H are bounded on B̃2, and Q is C1 bounded, g is C1,β bounded, and
they are uniformly positive on B+

2 , then all derivatives of Q and g are bounded in B+
1 . If in

both cases, we also assume g is Ck,β close to identity in B2 or B+
2 , then similarly, g is Ck,α

close to identity for any α ∈ (β, 1).
Following the proof of Theorem 2.2.11, we get the following two propositions.

Proposition 5.4.2. Let (X, g,ω) be a torsion-free hypersymplectic manifold and B(p, r) is
a metric ball that has compact closure, ∂B(p, r) ̸= ∅. Suppose for any q ∈ B(p, r),

injq ≥ cd(q, ∂B(p, r)),

T rQ, R ≤ C.

Fix Λ > 1, 0 < α < 1, then for any k ≥ 0, q ∈ B(p, r),

rk,αh (q, g,Λ) ≥ C ′
kd(q, ∂B(p, r)).

In particular, |∇kQ| ≤ C ′′
k in B(p, r

2
).

Proposition 5.4.3. Let (X, g,ω) be a compact torsion-free hypersymplectic manifold with
boundary. Suppose

ib ≥ i0, injX ≥ i0, inj∂X ≥ i0,
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On ∂X we have

TrQ, R ≤ C, |∇j
∂XRm∂X | ≤ Cj, |∇k

∂XS| ≤ Cj, |∇j
∂XQ| ≤ Cj,∀j ≥ 0.

Fix Λ > 1, 0 < α < 1, then for any k ≥ 0, q ∈ X,

rk,αh (q, g,Λ) ≥ C ′′′
k .

From this we conclude Proposition 5.2.1 holds for torsion-free hypersymplectic manifolds
(X, g,ω), provided an upper bound of TrQ in B(p, 5).

Proposition 5.4.4. Let (M, g,ω) be a torsion-free hypersymplectic manifold. Suppose
B(p, 5) has compact closure, and for any homology class Σ of self intersection −2 in B(p, 3),∣∣∣ ∫

Σ

ω
∣∣∣ ≥ a > 0,

vol(B(p, 1)) ≥ v,∫
B(p,3)

|Rm|2 ≤ C1,

sup
B(p,5)

TrQ ≤ C2.

Then there exists C ′ > 0, depending on a, v, C1, C2 such that

sup
B(p,1)

|Rm| ≤ C ′.

Proof. The proof is almost the same as there. Let us list the ingredients here:

• We have Bishop-Gromov volume comparison, since Ricgi ≥ 0,

• Before rescaling, Ri, |Ricgi | are automatically bounded by Theorem 5.4.1.

• For the rescaled metric g̃i, the curvature bound and the volume non-collapsing con-
dition imply injectivity radius lower bound on compact sets, hence by Proposition
5.4.2, we have harmonic radius lower bounds as well as bounds for derivatives of Qi

on compact sets, so we have pointed Cheeger-Gromov convergence of a subsequence
(Mi, gi,ωi, qi).

• The limit ω∞ is a hyperkähler triple up to a constant SL(3,R) rotation, because g∞
is scalar flat, or because of Theorem 5.4.1.

So, we get the contradiction in the same way as in Proposition 5.2.1.
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With the above three Propositions as tools and ϵ-regularity, argue the same way as in
Theorem 4.1.1, one gets an analogous version of Theorem 4.1.1, i.e., curvature control within
ib, assuming ib ≥ i0.

Now one can finish the proof of compactness part of Theorem 1.0.4 by the same arguments
as the proof of 1.0.3 . Note that Ric ≥ 0, H > 0 is enough for the focal point argument.

Remark 5.4.5. We make a remark about the proof of ϵ-regularity for torsion-free hyper-
symplectic manifolds here. Firstly, the proof in [46] Theorem 3.21 directly applies to this
case by using Theorem 5.4.1. Alternatively, we can apply Remark 8.22 in [16] to conclude
that g has C1,α bounded covering geometry when curvature L2 norm is small. By (5.8), we
have |∇Ric| ≤ C, hence g has C2,α bounded covering geometry and |Rm| is bounded.

For the convenience of the reader, we provide some details based on Sun-Zhang’s proof
of ϵ-regularity [46] on hyperkähler 4-manifolds.

Lemma 5.4.6. (ϵ-regularity) Given K > 0, there exists constants ϵ0, C depending on K such
that if (M, g,ω) is a torsion-free hypersymplectic manifold and B(p, 5) has compact closure,

sup
B(p,5)

R ≤ K,

∫
B(p,5)

|Rm|2 < ϵ0,

then
sup
B(p,1)

|Rm| ≤ C.

Proof. Suppose this is not true, then we can find a sequence (Mi, gi,ωi, pi) with

sup
Bgi (pi,5)

Rgi ≤ K,

∫
Bgi (pi,5)

|Rmgi |2 → 0,

but
sup

Bgi (pi,1)

|Rmgi | → ∞.

Denote Ai = sup
Bgi (pi,1)

|Rmgi |
1
2 and suppose this supremum is achieved at p′i. By the point

selection Lemma 4.4.5 we can find points qi ∈ Bgi(p
′
i, 2) such that |Rmgi(qi)| ≥ A2

i → ∞ and

sup
Bgi (qi,Ai|Rmgi (qi)|

− 1
2 )

|Rmgi | ≤ 4|Rmgi(qi)|.
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Then rescale the metric g̃i = |Rmgi(qi)|gi we have

|Rmg̃i(qi)| = 1,

sup
Bg̃i

(qi,Ai)

|Rmg̃i | ≤ 4,

sup
Bg̃i

(qi,Ai)

Rg̃i → 0,∫
Bg̃i

(qi,Ai)

|Rmg̃i |2 → 0.

For a subsequence one can take pointed Gromov-Hausdorff limit of (Mi, gi, qi) to a complete
metric space (X∞, d∞, q∞).

If dimX∞ = 4, the sequence is volume non-collapsing and the limit (X∞, d∞, q∞) is
a complete hyperkähler 4-manifold with |Rmg̃i(qi)| = 1 and

∫
X∞

|Rmg̃i |2 = 0, which is a
contradiction.

If dimX∞ = 1, 2, or 3, then the sequence is collapsing with bounded curvature and
Cheeger-Fukaya-Gromov theory [13] together with its improvement for hyperkähler 4-manifolds
developed in Section 3 [46] applies. It is easy to see that Proposition 3.1 in [46] is still true,
since we only need the limit geometry of the local universal cover to be hyperkähler. There-
fore, X∞ is a smooth, complete Riemannian manifold endowed with some additional global
structure. Certain types of Liouville theorems imply that X∞ is flat. Moreover, the explicit
expression for hyperkähler triples with nilpotent symmetry implies that the limit geometry
of the local universal cover is flat, which contradicts |Rmg̃i(qi)| = 1.

5.4.3 Uniqueness

Finally, we prove the uniqueness part of Theorem 1.0.4.

Proposition 5.4.7. Let ω1,ω2 be two torsion-free hypersymplectic triples on an oriented
4-manifold X with compact boundary. Suppose γ1 = γ2,Q1 = Q2 on ∂X, then ω1 = ω2 in
geodesic gauges of gωi

near ∂X.

Proof. ωi defines a torsion-free G2 structure ϕi on X×T 3 via (1.1), which defines a warpped
product metric

gϕi
= gωi

+Qijdt
idtj. (5.19)

In the geodesic gauge of gωi
, write

ωi = −dt ∧ ∗Ytγt + γt,

where t is the distance function dgωi
(·, ∂X), Yt is the level set of t. Hence

ϕi = −dt ∧ θt,i + ρt,i, (5.20)
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where
ρt,i = dt1 ∧ dt2 ∧ dt3 − γ1i ∧ dt1 − γ2i ∧ dt2 − γ3i ∧ dt3,

θt,i = − ∗Yt γ
1
t,i ∧ dt1 − ∗Ytγ

2
t,i ∧ dt2 − ∗Ytγ

3
t,i ∧ dt3.

By (5.19), t can also be viewed as dgϕi (·, ∂X × T 3), so (5.20) is written in the geodesic
gauge of gϕi

. By the calculations in [20] Section 2.2, for i = 1, 2, both gϕi
|∂X×T 3 and the

second fundamental forms of ∂X × T 3 are equal to each other, since they are explicitly in
terms of θ0.i, ρ0,i, which are in terms of γi,Qi. Since gϕi

are Ricci-flat, by [9] Theorem 4,
gϕ1 = gϕ2 := g. Since ∇g|ϕ1 − ϕ2|2 = 0 and ϕ1 − ϕ2 = 0 at one point, we have ϕ1 = ϕ2,
ω1 = ω2.

Note that for a torsion-free hypersymplectic triple ω, the metric gω is real analytic with
respect to the analytic structure defined by harmonic coordinates, due to elliptic regularity
of (5.17)(5.18), so the arguments in Section 5.3 shows global uniqueness:

Theorem 5.4.8. Let X be a connected 4-manifold with boundary such that π1(X, ∂X) = 0.
Suppose ω1,ω2 are two smooth torsion-free hypersymplectic triples on X, and φ0 : ∂X → ∂X
is a diffeomorphism, such that ω1|∂X = φ∗

0(ω2|∂X), Q1|∂X = φ∗
0Q2|∂X , then there exists a

diffeomorphism φ : X → X, φ|∂X = φ0, such that ω1 = φ∗ω2 on X.
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Chapter 6

Period map of the K3 manifold

6.1 Surjectivity

In this chapter, we give a simple proof of the Todorov’s surjectivity result [49] on the
period map of K3 surfaces in a differential geometric setting. Our proof makes use of col-
lasping geometry of hyperkähler 4-manifolds developped by Sun-Zhang in [46], and does not
rely on the solution to the Calabi conjecture.

On an oriented smooth 4-manifold, a hyperkähler metric g is a Riemannian metric with
holonomy contained in SU(2). This is equivalent to saying that the bundle of self-dual
forms is flat and trivial, which implies that there is a triple ω = (ω1, ω2, ω3) of closed 2-forms
satisfying ωα ∧ ωβ = 2δαβdVolg. Such a triple is often referred to as a hyperkähler triple.

Let K be the K3 manifold, which is by definition the unique oriented smooth 4-manifold
underlying a complex K3 surface. It is simply connected and the intersection form on
Λ ≡ H2(K;Z) has signature (3, 19). Denote by N the set of all hyperkähler metrics on K
with diameter 1. Given g ∈ N , the space H+

g of self-dual harmonic 2-forms with respect to
g is a 3-dimensional subspace in ΛR ≡ H2(K;R) which is positive definite with respect to
the intersection form. Indeed, any choice of a hyperkähler triple gives rise to a basis of H+

g ,
and they are up to a constant O(3) rotation.

Define the positive Grassmannian Gr+ to be the space of all 3-dimensional positive
definite subspaces of ΛR. It is an open subset in the standard Grassmannian Gr(3,ΛR). We
define the period map

P : N → Gr+; g 7→ H+
g .

The diffeomorphism group Diff(K) acts on N by φ.g = φ∗g, which induces a homomorphism
Φ : Diff(K) → Aut(Λ), where Γ := Aut(Λ) is the automorphism group of the lattice Λ
preserving the intersection form. There is a natural action of Γ on Gr+, hence P induces a
map

P : M = N /Diff(K) → D ≡ Gr+/Γ. (6.1)

The left-hand side is the set of isometry classes of hyperkähler metrics on K. It is endowed
with a natural Cheeger-Gromov topology. A sequence [gj] converges to [g∞] if there are
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φj ∈ Diff(K) such that φ∗
jgj converges smoothly to g∞. Since hyperkähler metrics are

Ricci-flat, it follows from the Cheeger-Colding theory that this topology coincides with the
Gromov-Hausdorff topology. We also endow the period domainD with the quotient topology.
One can check that P is continuous, and the Γ action on Gr+ is properly discontinous.

For any homology class δ ∈ H2(K;Z) ∼= H2(K;Z) = Λ with δ.δ = −2, we define ξ⊥ to be
subspace in Gr+ consisting of hyperkähler metrics g such that

∫
δ
ξ = 0 for all ξ ∈ H+

g . We
denote

Gr+,◦ = Gr+ \
⋃

δ∈Λ,δ.δ=−2

δ⊥

and D◦ = Gr+,◦/Γ.

Theorem 6.1.1. The image of P is D◦.

We prove Theorem 6.1.1 in a few steps.

Step 1. We show that the image of P is contained in Gr+,◦. In particular, the image of
P is contained in D◦.

The proof that we know uses some complex geometry. Suppose there is a g ∈ N and
0 ̸= δ ∈ H2(K;Z) such that δ.δ ≥ −2 and

∫
δ
ξ = 0 for all ξ ∈ H+

g . Choose a hyperkähler
triple ω = (ω1, ω2, ω3) for g. Then with respect to a compatible complex structure J we see
ω1 is a Kähler form, and Ω = ω2 +

√
−1ω3 is a holomorphic volume form. By the Hodge

decomposition it follows that δ is a (1, 1) class with respect to J . So δ = c1(L) for some
non-trivial holomorphic line bundle L. By the Hirzebruch-Riemann-Roch theorem it follows
that h0(K, L) + h0(K, L−1) = h1(K, L) + 2 + 1

2
δ2 > 0. Without loss of generality we assume

L has a non-zero holomorphic section S. Its zero set is a complex curve dual to δ. It follows
that

∫
δ
ω > 0. Contradiction.

Step 2: We show that P is an open map. In particular, the image of P is open.

This follows from the standard deformation theory. The arguments below follows from
[46]. Suppose g ∈ N . We fix a hyperkähler triple ω associated to g. In the following, we
will often identify an element in Ω2

+ ⊗ R3 (i.e., a triple of self-dual 2-forms) with a 3×3
matrix-valued function in Ω0 ⊗ R3×3: η ∈ Ω2

+ ⊗ R3 corresponds to A = (Aαβ) ∈ Ω0 ⊗ R3×3

if ηα =
∑3

β=1Aαβωβ, or concisely η = A.ω. We claim that for any fixed small triple of

anti-self-dual harmonic 2-forms h− ∈ H−
g ⊗ R3, ω′ := ω + h− + h+ + dd∗(f .ω) defines a

hyperkähler triple for some small (h+,f) ∈ H+
g ⊗ R3 ⊕ C2,γ(Ω2

+ ⊗ R3).
Denote S0(R3) the set of trace-free 3 × 3 symmetric matrices, and F the inverse of the

map S0(R3) → S0(R3), A 7→ tf(A+AT +AAT ) near 0, where tf(B) = B − 1
3
Tr(B). Let A

be the self-dual part of ω′ −ω and θ− be the anti-self-dual part of ω′ −ω, the hyperkähler



CHAPTER 6. PERIOD MAP OF THE K3 MANIFOLD 67

condition for ω′ is equivalent to

tf(A+AT +AAT ) = tf(−I3 − Sθ−),

where Sθ− = (θ−α ∧ θ−β /2dVolg). If we require A to be symmetric trace-free, then this is
equivalent to

A = (tf(−Sθ−)).

Denote A ⊂ C2,γ(Ω2
+ ⊗ R3), B ⊂ Cγ(Ω2

+ ⊗ R3), C ⊂ H+
g ⊗ R3 denote the subspace

consisting of trace-free symmetric matrices, respectively. For u = (h+,f) ∈ C ⊕ A, define
F : C⊕ A → B by

F (u) := h+ + d+d∗(f .ω)− F(−tf(Sh−+d−d∗(f .ω))).

Then the condition ω′ being hyperkähler is equivalent to the equation

F (u) = 0.

To solve the equation, we write F (u) = L (u)+N (u), where L (u) = h++d+d∗(f .ω) =
h+ + (∆gf).ω, N (u) = −F(−tf(Sh−+d−d∗(f .ω))). Then by standard elliptic theory that L
is a bounded linear map which is surjective with a bounded right inverse, and ∥N (u) −
N (v)∥ ≤ C(∥h−∥ + ∥u∥ + ∥v∥)(∥u − v∥). Then the following implicit function theorem
Lemma 6.1.2 implies that there exists a δ > 0 such that for any ∥h−∥ < δ, F (u) = 0
has a solution u with ∥u∥ < C(δ), which finishes the proof of the claim. Now the map
Ψ : H−

g ⊗ R3 → Gr+, h− 7→ span{ω + h−} defines a homeomorphism from a neighborhood
of 0 to a neighborhood of P(g), and span{ω + h−} = span{ω + h− + h+ + dd∗(f .ω)}
as elements in Gr+, it follows that the image of a neighborhood of g under P contains a
neighborhood of P(g), hence P is an open map.

The following version of implicit function theorem is well-known and is used in [46]. For
completeness, we provide the proof here.

Lemma 6.1.2. Let (X, ∥ · ∥)), (Y, ∥ · ∥) be two Banach spaces, Bδ(0) ⊂ X, F : Bδ(0) → Y
is a map with F (0) = 0. Suppose one can write F = L+N such that L : X → Y a bounded
linear map with a bounded right-inverse R, i.e., L ◦ R = idY , ∥R∥ ≤ M . If furthermore
∥N(x)−N(y)∥ ≤ (2M)−1∥x−y∥. Then for any c ∈ Y, ∥c∥ < (2M)−1δ, the equation F (u) = c
has a solution with ∥u∥ ≤ 2M∥c∥.

Proof. For fixed c ∈ Y , define Tc(w) = w−(F (R(w))−c) = −N(R(w))+c for w ∈ Y, ∥w∥ <
M−1δ. Then

∥Tc(w)− Tc(w
′)∥ ≤ 1

2
∥w − w′∥.

In particular

∥Tc(w)− Tc(0)| ≤
1

2
∥w∥,
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then

∥Tc(w)∥ ≤ ∥c∥+ 1

2
∥w∥.

Hence Tc is a contraction map from B̄∥2c∥(0) to B̄∥2c∥(0). By Banach fixed point theorem
we know Tc(w) = w has a solution with ∥w∥ ≤ 2∥c∥. Let u = R(w), then F (u) = c and
∥u∥ ≤ 2M∥c∥.

Step 3. We show that P : M → D◦ is a proper map.

Suppose otherwise, then we can find a sequence of hyperkähler metrics gj ∈ N which do
not converge smoothly modulo Diff(K), but there exist γj ∈ Γ such that γj.P(gj) con-
verges to a positive 3-dimensional subspace P∞ in Gr+,◦. Choose a hyperkähler triple
ωj = (ωj,1, ωj,2, ωj,3) for gj. Denote v4j = 2Vol(gj). We define the renormalized triple

ω̃j = v−2
j ωj, then

∫
K ω̃j,α ∧ ω̃j,β = δαβ.

Now we fix an norm ∥ ·∥ on ΛR. By abusing notation we also denote by ∥ ·∥ the standard
norm on R3, or the induced norm on ΛR ⊗ R3.

Lemma 6.1.3. ∥γj.[ω̃j]∥ is uniformly bounded.

Proof. Otherwise, by passing to a subsequence and O(3) rotations we may assume only the
first component of γj.[ω̃j] is non-zero and ∥γj.[ω̃j]∥ = λj → ∞. Denote ζj = λ−1

j γj.[ω̃j],
then passing to a subsequence we may assume ζj converges to an element ζ∞ in ΛR with
∥ζ∞∥ = 1 and with ζ∞ ∪ ζ∞ = 0. But the line spanned by ζ∞ is contained in P∞ which is
positive definite with respect to the intersection form. Contradiction.

Given the Lemma, by passing to a subsequence we may assume γj.[ω̃j] converges to a
limit η∞ in ΛR ⊗ R3. Notice [η∞,α] ∪ [η∞,β] = δαβ, so η∞ forms a basis for P∞.

Proposition 6.1.4. Passing to a subsequence, for j large, there exists a non-zero homology
class Cj ∈ H2(K,Z) satisfying Cj.Cj ∈ {0,−2}, and ∥

∫
Cj

ω̃j∥ → 0.

Proof. Passing to a subsequence we may assume (K, gj) converges to a Gromov-Hausdorff
limit X∞, which is a compact metric space.

If vj ≥ ϵ > 0 for all j, then it follows from the classical results ([4, 8, 48]) that X∞ is
a hyperkähler orbifold. Let pj ∈ K be such that λj := maxK |Rm(gj)| is achieved at pj.
By assumption λj → ∞. Then passing to a subsequence we can take a pointed Gromov-

Hausdorff limit of (K, pj, λ1/2j gj) to get a complete ALE hyperkähler 4-manifold Z. By
Kronheimer’s classification [36] we know Z must contain a homology class C∞ with C∞.C∞ =
−2. This gives rise to a sequence of−2 class Cj inK such that ∥

∫
Cj

ωj∥ → 0, so ∥
∫
Cj

ω̃j∥ → 0

as well. Notice here we only need the topological classification in Kronheimer’s result.
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If vj → 0, then the conclusion follows from the results of Sun-Zhang [46]. The point is
that away from finitely many points, the hyperkähler triple ωj(up to O(3) rotations) has
almost local nilpotent symmetry, and it can be perturbed to a new hyperkähler triple ω′

j

such that ω′
j has local nilpotent symmetry and ωj−ω′

j is exact. In particular, ω′
j has explicit

expression and the integration of ω′
j over a cycle is the same as the integration of ωj over

that cycle. We divide into 3 cases. The first two cases only use the analysis over the regular
region in [46].

• dimX∞ = 2. In this case ω′
j is locally T 2-invariant. Take Cj to be the class of a T 2

fiber. Then we get
∫
Cj
ωj,1 =

∫
Cj
ωj,2 = 0 and

∫
Cj
ωj,3 ∼ v4j . We get ∥

∫
Cj

ω̃j∥ ∼ v2j → 0.

• dimX∞ = 1. Locally there are two cases, either there is a T 3 symmetry or a Heisenberg
symmetry. In the former case the metric corresponding to ω′

j is locally a flat product
S1(rj,1)×S1(rj,2)×S1(rj,3)×I, where I is an open interval and we assume rj,1 ≤ rj,2 ≤
rj,3, then we take Cj to be the homology class of S1(rj,1) × S1(rj,2), then

∫
Cj
ωj,1 =∫

Cj
ωj,2 = 0 and 0 <

∫
Cj
ωj,3 = rj,1rj,2 whereas v4j ∼ rj,1rj,2rj,3. So ∥

∫
Cj

ω̃j∥ ∼
r
1/2
j,1 r

1/2
j2
r
−1/2
j,3 → 0. In the latter case the metric corresponding to ω′

j is locally given by
the Gibbons-Hawking ansatz applied to a nonconstant linear function on T 2× I. Take
Cj to be the homology class of the 2-torus given by the total space of the corresponding
circle bundle over a circle S1 in T 2×I, then one can arrange that

∫
Cj
ωj,1 =

∫
Cj
ωj,2 = 0

and 0 <
∫
Cj
ωj,3 ∼ rj,1rj,2, where rj,1 is the size of the S

1 fiber in the Gibbons-Hawking

construction, and rj,2 is the size of the flat T 2 base. Notice the volume v4j ∼ rj,1r
2
j,2.

So ∥
∫
Cj

ω̃j∥ ∼ r
1/2
j,1 → 0.

• dimX∞ = 3. Here we need some global result from [46]. It is proved there that X∞
must be a flat orbifold T 3/Z2 and ω′

j is given by Gibbons-Hawking construction on
the complement of a small neighborhood of the 8 orbifold points. After hyperkähler
rotations, one can write

ω′
j,1 = V dx2 ∧ dx3 + dx1 ∧ θ,

ω′
j,2 = V dx3 ∧ dx1 + dx2 ∧ θ,

ω′
j,3 = V dx1 ∧ dx2 + dx3 ∧ θ,

where V is given by a positive constant. Let Cj be given by the circle bundle over
the the closed geodesic x3 = ±ϵ, then we have

∫
Cj
ω′
j,1 =

∫
Cj
ω′
j,2 = 0 and

∫
Cj
ω′
j,3 =∫

Cj
dx3 ∧ θ = rj ∼ v4j So ∥

∫
Cj

ω̃j∥ ∼ r
1/2
j → 0.

Now we derive a contradiction. Denote C ′
j = γ−1

j .Cj. Since C ′
j is integral and non-zero,

we know ∥C ′
j∥ has a uniform positive lower bound. By passing to a subsequence we may
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assume ∥C ′
j∥−1C ′

j converges to a limit C ′
∞ ∈ ΛR with ∥C ′

∞∥ = 1. First suppose Cj.Cj = 0,
then C ′

∞.C
′
∞ = 0 and∫

C′
∞

η∞ = lim
j→∞

∥C ′
j∥−1

∫
C′

j

η∞ = lim
j→∞

∥C ′
j∥−1

∫
C′

j

γj.[ω̃j] = lim
j→∞

∥C ′
j∥−1

∫
Cj

ω̃j = 0. (6.2)

This contradicts the fact that the intersection form on ΛR has signature (3, 19). Now suppose
Cj.Cj = −2. If ∥C ′

j∥ is unbounded, then C ′
∞.C

′
∞ = 0, and we have

∫
C′

∞
η∞ = 0 as in (6.2),

hence we obtain a contradiction in the same way. If ∥C ′
j∥ is bounded, by passing to a

further subsequence we may assume C ′
j converges to a limit C ′′

∞ ∈ Λ with C ′′
∞.C

′′
∞ = −2 and∫

C′′
∞
η∞ = 0. This contradicts to P∞ ∈ Gr+,◦ and finishes the proof of Step 3.

Finally, it is worth mentioning that M is non-empty. Hyperkähler metrics in dimension
4 can be constructed by various ways(twistor methods, moduli space of monopoles, Yau’s
theorem, gluing constructions etc ). For a survey, refer to [28]. See Section 3.1.3 for some
discussion gluing constructions. In particular, one does not need to invoke Yau’s theorem to
show M is nonempty.

Now, P : M → D◦ being proper and D◦ being locally compact, Hausdorff imply P :
M → D◦ is a closed map. Together with the image of P being open, non-empty, D◦ being
connected, we conclude P : M → D◦ is surjective.
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