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Abstract
Compactness theorems on hyperkahler 4-manifolds
by
Hongyi Liu
Doctor of Philosophy in Mathematics
University of California, Berkeley

Professor Song Sun, Chair

Hyperkahler manifolds are one of the simplest examples of Einstein manifolds. They are
Ricci-flat Riemannian manifolds with special holonomy. In dimension 4, hyperkahler 4-
manifolds can be purely be describled by a triple of symplectic 2-forms that satisfy the
pointwise orthonormal condition with respect to the wedge product.

In this dissertation, we proved the compactness of a set of hyperkahler 4-manifolds with
boundary under Cheeger-Gromov topology, where we assume only geometric control on the
boundary and topological conditions. We showed that our proof can be extended to Einstein
4-manifolds with boundary by assuming only additional topological conditions.

Furthermore, we discuss about the period map for K3 surfaces in a differential geometric
setting. We gave a simple proof for the surjectivity of the period map, without invoking
Yau’s theorem on the Calabi conjecture and any algebraic geometry. The key is to show
when a sequence of hyperkahler metrics has bounded period in some sense, then the sequence
have a convergent subsequence under Cheeger-Gromov topology.
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Chapter 1

Introduction

A Riemannian metric g on a 4-manifold is called hyperkahler if its holonomy group Hol(g)
is contained in Sp(1) = SU(2). A closed hyperkéhler 4-manifold is diffeomorphic to either
a torus or the K3 manifold, and the moduli space of all hyperkédhler metrics are described
by Torelli theorems. There have been extensive recent studies on the Gromov-Hausdorft
compactification of these moduli spaces, see for example [41, 46].

Hyperkahler metrics in dimension 4 are the simplest models for Riemannian metrics with
special holonomy. Little general existence theory is developed for the latter in dimensions
greater than 4, except for Calabi-Yau manifolds. Recently Donaldson [19] proposes to study
special holonomy metrics on manifolds with boundary and set up suitable elliptic bound-
ary value problems. To make further progress in this direction, it is clear that we need a
compactness theory.

In this dissertation, we study the boundary value problem for hyperkéahler 4-manifolds,
which serves as the first step towards Donaldson’s program. We follow the general set-up by
Fine-Lotay-Singer [24] in terms of hyperkdhler triples. A hyperkdhler triple on an oriented
smooth 4-manifold X is a triple of symplectic forms w = (wy,ws, ws) satisfying the following
pointwise condition

1
W; A Wy = §5lj(wf +w§ +W§)

It is well-known that a hyperkahler triple w uniquely determines a compatible hyperkahler
metric g, such that for each i, w? = 2dvol,, and w; is parallel with respect to the Levi-Civita
connection. Conversely, given a hyperkahler metric g on X, one can choose an orientation
and find a compatible hyperkéhler triple w, which is unique up to a constant O(3) rotation.

Now let X be a compact oriented smooth 4-manifold with boundary 0X. Note 90X has
an induced orientation defined by contracting a volume form of X with an outward vector
field. If w is a hyperkéhler triple on X, then its restriction to 90X is a closed framing < on
0X. The following is a natural filling problem, proposed by [24].

Question 1.0.1. Given a closed framing v on 0X, does there exist a hyperkdhler triple w
on X extending v ¢



CHAPTER 1. INTRODUCTION 2

Notice a framing -« defines a Riemannian metric g, on 0.X as follows: first, there exists a
unique dual coframe 1 = (11,72, 73) such that v; = 16%n; A, and such that g Ans A is
compatible with the orientation of X then the Riemannian metric g, is defined by setting
1 to be orthonormal. When there is no ambiguity, we always use 1 to denote the dual
coframe of « defined in this way and denote the Hodge star operator of the Riemannian
metric by *, = *,. It is well-known that if w is a hyperkahler triple, then g,|sx = g; more
importantly Bryant [10] observed that the second fundamental form of 0X is determined
intrinsically by « via the matrix *,(n; A dn;). In particular, the mean curvature H, is given
by one half of the trace of this matrix, i.e., H, = % *n (M A dnh).

There are some previous works on Question 1.0.1. Bryant [10] studied the local “thick-
ening” problem and obtained both positive and negative results. It was shown that any real
analytic closed framing on a closed oriented 3-manifold Y can be extended to a hyperkahler
triple on Y x (—¢,€) for some € > 0, and the extension is essentially unique. On the other
hand, there exists a smooth closed framing on an open ball B> C R? that cannot be ex-
tended to a hyperkahler triple on B3 x (—¢,¢) for any € > 0. Fine-Lotay-Singer[24] studied
the local deformation theory for Question 1.0.1 and showed that the boundary framings must
deform in certain directions. Roughly speaking, let X = B* for simplicity, suppose w is a
hyperkéhler triple such that X has positive mean curvature, and w’ is a nearby hyperkéhler
triple, then after moduling out diffeomorphisms of 0.X, the dual coframe of w’|sx must be
a small pertubation of that of w|sx in the direction of negative frenquency of the boundary
Dirac operator defined by g, |ax-

Our main result is the following closedness result for Question 1.0.1 :

Theorem 1.0.2. Let X be a compact oriented smooth 4-manifold with boundary, such that
there does not exist C € Hy(X,Z) with self intersection C* = —2. Let w; be a sequence of
smooth hyperkdhler triples on X. Suppose wilox converges in Cheeger-Gromov sense to a
closed framing v on 0X such that Hy > 0, then there exists a smooth hyperkdahler triple w
on X with w|sgx = and w; converges in Cheeger-Gromov sense to w on X.

Here, a sequence of pairs of smooth covariant tensors (T}, --- ,7/™) on a compact man-
ifold M with empty or nonempty boundary is said to converge in Cheeger-Gromouv sense
to (T',---,T™) on M, if there exist diffeomorphisms f; : M — M such that f/T}! —
T - o ffT™ — T™ smoothly on M.

The proof of Theorem 1.0.2 includes two parts: the compactness and uniqueness. The
former is the main story of this dissertation, and the latter is a consequence of [9] or [5]
on unique continuation of Einstein metrics with prescribed boundary metric and second
fundamental form. It is worth noting that for the compactness part, no general Riemannian
convergence theory can be applied directly. The difficulty here is that we only have data on
the boundary, and a priori we do not know anything near the boundary or in the interior.
Specifically, we worry about the following three bad geometric behaviours: curvature blow-
up, volume collapsing and boundary touching. These things are entangled, making it difficult
to rule out any of them. However, we are able to separate these bad behaviours and rule
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them out. We will also give examples to demonstrate that the assumptions in Theorem 1.0.2
are essential, see Remark 4.2.4 and 4.2.5.

Such C' in the assumption of Theorem 1.0.2 is usually called a “—2 curve” in X. It
appears in Kronheimer’s classification of hyperkéhler ALE spaces [36, 37]. By analyzing the
formation of hyperkédhler ALE spaces as bubble limits of volume-noncollapsed hyperkahler
4-manifolds, one can slightly weaken the “no —2 curve” condition. Let us start with the
definition of “enhancement”. Following [19, 22|, an enhancement of a closed framing ~ on
0X is an equivalent class in the set of triples of closed 2-forms on X extending ~, and the
equivalence relation is defined by 8 ~ 6 + da for some triple of smooth 1-forms @ on X
vanishing on 0X. From the de Rham cohomology exact sequence of the pair (X,0X),

H*(X,0X) = H*(X) — H2(0X) —» H'(X,0X),

we know ~ has at least one enhancement if and only if each ; lies in the kernel of H?(0X) —
H'(X,0X), and we know the set of all enhancements of 4 is an affine space over H?(X, 0X)®
R3. Let 4 be an enhancement of v. Now given a 2-cycle ¥ € Hy(X,Z) and 0 € ¥, [0 is
independent of the choice of @ and we denote this invariant by c5 s € R3.

The proof of Theorem 1.0.2 easily adapts to

Theorem 1.0.3. Let X be a compact oriented smooth 4-manifold with boundary. Let w; be
a sequence of smooth hyperkdhler triples on X, and 4; be the enhancement of v; = w;lox
where w; lie in. Let a > 0 be a positive number. Suppose for any C € Hy(X,Z) with self
intersection C* = =2, |5, c| > a and w;lax converges in Cheeger-Gromouv sense to a closed
framing v on 0X such that H, > 0. Then there exists a smooth hyperkahler triple w on X
with w|gx =7, and w; converges in Cheeger-Gromov sense to w on X.

It is worth noting that Question 1.0.1 is not an elliptic boundary value problem, observed
by [24]. This can also be seen from the uniqueness result of [9] or [5]: the restriction of w
to any open boundary portion determines g, in the whole interior up to local isometries.
So, it is natural to consider larger class of closed triples of 2-forms on X in Question 1.0.1
to obtain an elliptic boundary value problem. In [19], Donaldson studied the deformation
theory of torsion-free (G5 structures on compact oriented 7-manifolds with boundary and
set up an elliptic boundary value problem, which can be reduced to dimension 4(See [22]).
Hence, the “correct” class of triples in Question 1.0.1 should be those defining torsion free
G+ structures. Specifically, a triple of two forms w = (w;,ws,ws) on X is called torsion-free
hypersymplectic if the 3-form ¢ on X x T° defined by

¢=dt' Ndt* Ndt® —wy Adth —wy Adt? — wy Adt? (1.1)

is a torsion-free (G5 structure. Locally, this is a weaker condition than being hyperkahler,
and there are examples in [22] or [25].

Similar to the hyperkéhler case, a torsion-free hypersymplectic triple w defines a Rie-
mannian metric g,, and a positive definite SL(3,R)-valued function @ = (Q;;) such that

w; N\ Wy = QQZ'jdVOIQM
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We denote Q' the restriction of Q to 0X. When there is ambiguity, we use notations Q.,,
Q. to denote their dependence on w. One can show that the mean curvature of X has an
explicit expression in terms of v, Q’, and we denote this explicit expression by H q. Note
that on X, v, Q' are subject to the constraints dvy = 0,d(y(Q')™!) = 0.

We have the following analogue of Theorem 1.0.3:

Theorem 1.0.4. Let X be a compact oriented smooth 4-manifold with boundary. Let w; be
a sequence of smooth torsion-free hypersymplectic triples on X, and 4; be the enhancement
of vi = wi|ax where w; lie in. Let a > 0 be a positive number. Suppose for any C' € Hy(X,Z)
with self intersection C* = =2, |cs, ¢ > a, and (v, Q}) converges in Cheeger-Gromov sense
to some pair (7v,Q") on 0X, such that v is a framing, Q' is positive definite and H, g > 0.
Then there exists a smooth torsion-free hypersymplectic triple w on X with w|sx = =,
Q., = Q', and w; converges in Cheeger-Gromov sense to w.

Note that Theorem 1.0.4 includes the previous two versions.
We also showed that our techniques to prove compactness results can be generalized to
Einstein manifolds, and we get the following:

Theorem 1.0.5. Let M be the set of pointed compact oriented Einstein 4-manifolds (M, g, p)
with boundary such that |Ric| < 3, Hy(M,Z) = H,(M,Z) =0, OM s diffeomorphic to S3,

volar (OM) < C,|S| < O, | Ve Rman| < C,|VETLH| < Clingaar > do, H > Hy > 0,Yk >0
d(p,0M) < K.

Then M s precompact in pointed Cheeger-Gromouv topology, and an element in OM 1is a
complete Einstein orbifold with smooth boundary.

Similar results have been obtained for conformally compact Einstein(CCE) 4-manifolds
in [11, 12], however, there they need a priori L? bound for the Weyl curvature. Our result
only imposes geometric control on the boundary, and we face essentially different difficulties
from [11, 12].

In the last part of the dissertation, we considered the period map of K3 surface in a
differential geometric setting. A K3 surface is a simply connected complex surface with
vanishing first Chern class. Hence, they are simply connected oriented smooth 4-manifolds
with signature (3,19). It is well-known that all complex K3 surfaces are diffeomorphic, and
their moduli space can be described by period maps.

There are a lot of studies on the moduli space of K3 surface, especially the Torelli
theorems. However, they invoke a lot of algebraic geometry, complex geometry and their
proofs are complicated. The motivation of our study is that our approach could possibly be
generalized to studying period maps in higher dimensions, or hypersymplectic 4-manifolds.

Let M k3 be the moduli space of hyperkahler metrics on a K3 surface of unit diameter,
up to isometries, equipped with the Gromov-Hausdorff topology. One can define a period
map

P: Mgz — Grt/T
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by sending g to H;, the space of self-dual harmonic two forms(of dimension 3). Here I is the
automorphism group of the K3 lattice H*(K3,Z), Gr* is the space of all positive 3-planes
in H*(K3,R).

Define

Grt°=Gr"\{H € Gr* :30.0 = -2 s.t. /h =0,Yh € H}.
5

We proved that

Theorem 1.0.6. The image of P is contained in Gr™°, and
B : MKg — G7”+’O/F
18 @ proper, open, surjective map.

Note that in complex geometry setting, the surjectivity part is refered to as Todorov’s
surjectivity result [49], and later Siu gave a simple proof [45]. Both of the proofs involve
Yau’s solution to the Calabi conjecture [50].

The main point in our proof is showing the period map P : Mgz — Gry°/T is proper,
so one needs to show if a sequence of hyperkéahler metrics is collapsing, then their periods
go to infinity in the locally symmetric space. To show this, we made use of the collapsing
theory of hyperkédhler 4-manifolds by Sun-Zhang [46], as integrals of the period at specific
homology classes can be calculated.

Organization of the dissertation

In Chapter 2, we provide key ingredients in Riemannian geometry needed to prove our
main theorems. In Chapter 3, we discuss some known basics about hyperkahler 4-manifolds.
In Chapter 4, we prove the compactness results for hyperkahler 4-manifolds and Einstein
4-manifolds with boundary. In Chapter 5, we prove the convergence in triple settings and
the uniqueness. In Chapter 6, we prove the statement about the period map.

Disclaimer

This dissertation is based on 2 papers of the author [39, 40], except for Section 4.4.
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Notations

RY = {z e R": 2" > 0},
B, ={z eR": |z] <71},
B} =B, NRY,
B, = B NoR",
OB, = {z € R": |z| = r, 2" = 0},
OTBf ={r e R": |z| =r, 2" > 0},
N,.(0M,g) = {x € M|d(z,0M) < r}.



Chapter 2

Riemannian geometry

2.1 Riemannian geometry for manifolds with
boundary

2.1.1 Evolution equations of hypersurfaces

We refer to [42] Section 3.2 and [35] for discussions in this section.

Let (M, g) be a Riemannian manifold, let V denotes it’s Levi-Civita connection. Given
a smooth distance function f on M, ie., |[Vf| = 1 everywhere, so Vy;Vf = 0, in fact
VvV is the gradient vector field of 1|V f|?. Note that the discussion below will apply
to Riemannian manifolds with boundary, with f the negative of distance function to the
boundary, but the discussions in this subsection is for a general smooth distance function f.

The (symmetric) (1,1) tensor corresponds to Hessf = 3 Ly yg is

S(X)=VxV/f, (2.1)

and its trace is H = Af € C®(M).

Let ¥ be a level set of f, i.e., ¥ = f~'(a) for some a. Then S|rx is a section of
['(Hom(7T%,T%)). In fact, since V is a metric connection, for any X € I'(T'M), we have
2(S(X),Vf) =Vx(Vf,Vf)=0. S|ry is usually refered to as the shape operator of 3. The
second fundamental form of ¥ with respect to the unit normal vector V f is defined as

II(X,Y) :=(S(X),Y) =Hessf(X,Y),

so H is the mean curvature of 3. The mean curvature vector is defined by ﬁ =—HVf. By
tensor calculations, we have evolution equations of second fundamental forms

Proposition 2.1.1.
LyiS+S*=—R(-,Vf)VF, (2.2)

LyjHessf — Hess’f = —Rm(-,V £,V f), (2.3)
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where
Hess’ f(X,Y) = (S*(X),Y) = (S(X), S(Y)).
Proof.
R(X,VAVf=VxVyVf-Vu;VxVf—-VixvnVf
= —Vv(S(X)) = S(IX, Vf])
= TS0) - SVAV ~ T )
= —Vys(S(X)) = $*(X) + 8(Vy;X)
— (Vys8) (X) = $*(X).
Moreover, we have the equality
Ly¢S = Vy;S. (2.4)
In fact,
(Lvs(9) (X)) = LysS(X) — S (LvsX)
=[Vf,5(X)] =S (Vv X —VxVf))
= VysS(X) = Vsx) VS
— S (VyrX — VxVY)
= (VorS)(X) — S*(X) + 5*(X)
= (Vv;S) (X),
which proves the first equality. For the second equality,

(LvsHess f) (X, X) = Lys(Hess f(X, X)) —2Hess f(Lv;X, X)
= Lys(9(5(X), X)) = 2(5 (LvsX), X)
= (Lvrg)(S(X), X) + (Lv;(5(X)), X)
+(S(X), Ly X) = 2(5(LvX), X)
= 2Hess f(S(X), X) + (Lv;(5(X)), X)
+ (X, 5 (LypX)) = 2(S(Lvy) X, X)
= 2Hess f(S(X), X) + ((LvS5)(X), X)
+ (X, 5 (Lys X)) + (X, S(Lvs X)) = 2(S(LvsX), X)
=2(5*(X),X) + (=S*(X) - R(X,V)V[, X)
= (S*(X), X) — Rm(X,Vf, X, Vf).

]

Take the trace of (2.2), and notice that taking the trace commutes with taking the Lie
derivative, we have

LysH = —|S]? = Ric(V£, V), (2.5)

where |S|? := Tr(S?) is the norm square of the shape operator.
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Besides the evolution equations, the Gauss equations on ¥ is given by

Rmay (X, W,Y, Z) =Rms(X,W,Y, Z) + I1(X, Z)II(W,Y)

—II(X,Y)II(W,2Z). (2:6)
Take the trace with respect to W, Z, we have
Ricys = Ricyg + Hess>f — H - Hessf + Rmy (-, V f,-, V f), (2.7)
Take the trace again, we have
Ry = Ry + |S|? — H? + 2Ricy (VF, V), (2.8)

where R denote scalar curvatures. Use equations (2.3) and (2.7) to cancel the curvature
term involving the normal vector V f, we get

LyHessf = Ricy — Ricys + 2Hess>f — H - Hessf. (2.9)
One more formula we may need is the Laplace operator on a hypersurface:

Proposition 2.1.2. Let X C M be a smooth hypersurface, h a smooth function on M ,Ny a
unit normal vector field of X2, then

Ash = Ah — Hess h(No, No) + (Vh, Hy). (2.10)

Proof. Choose an orthonormal frame {ej, -+ ,e,1} of TM, such that e, 3 = Ny, then

Agh = Z(Vzﬁi,eih
=1
=Y (VEVEh = Vs h)
=1
= (Ve Veh = V9 e (eerenintenss D)

i=1

= Z Hessh(ei, 62‘) + Z(veieia €n+1>v€n+1h
=1 =1

= Z Hessh(ei, ei) — Z<€Z’, Vei€n+1>ven+1h
i=1

=1

= Ah — Hess h(eni1,en41) + (Vh, ﬁz)
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2.1.2 The boundary exponential map

Let (M, g) be a complete Riemannian manifold with boundary, which means the induced
metric space is complete, or equivalently, the induced distance function to some/any fixed
point is proper. Denote T+0M the normal line bundle of M, which is a trivialized by the
inward unit normal vector field N. We identify T-0M with M x R via this trivialization.
For p € OM, denote 7,(t) the geodesic such that 4,(0) = p, v,(0) = N,. Denote

D(p) = inf{t > 0|,(t) € IM} € (0, 0],
7(p) = sup{t > 0|d(~,(t),0M) =t} € (0, c0].
We have a subset of Uy C T+OM defined by
Uant = {(p.tN,) € T*OM|0 < t < D(p)},
which is the domain of the boundary exponential map
exp” : Usns — M, (p, s) = 7,(s), (2.11)

and define
Vo = {(p, tN,) € THOM|0 <t < 7(p)} C Usps.

There are some definitions, notations and terminologies related to the boundary expo-
nential map:

e The boundary injectivity radius 1, is defined to be the supremum of s > 0 such that
expt | aMx[0,s) 18 a diffeomorphism onto its image. It characterize that to what time the
boundary can flow into the interior under geodesic flow without developing singuarities.

e A focal point q of OM is a critical value of the boundary exponential map (2.11). If ¢
lies in v, for some p € M, we say ¢ is a focal point along ,.

e A foot point of ¢ € M is a point p € dM such that d(q,p) = d(q, OM).

e A cut point of OM is a point ¢ € M such that there exists a foot point p of ¢ such that
d(q,p) = 7(p). We also say ¢ is a cut point of p.

e When we say a covariant tensor on M is written in geodesic gauge, we mean the pull
back of this tensor via exp=.

e For a subset B C OM, we use the notation
C(B,tl,t2> = eXpL(B X [tl, tz))
to denote a metric cylinder with base B.

o N.(OM,qg):={x € M|d(x,0M) <r}.
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e Our convention is that: the (1,1) tensor S in (2.1) is defined with respect to f =
—d(-,0M) near OM, so Vf = —N on OM (Recall N is the unit inner normal vector
field) , and IT > 0 if OM is convex. For example, for the unit ball in R"™ f(z) =
|z| — 1, the mean curvature H = A(Jz| —1) =n > 0 on S™.

Here are some remarks about some of these definitions:

e [t is not hard to show, similar to the case for conjugate point of a point along some
geodesic starting at that point, that 7,(s) is a focal point of along ~,, if and only
if there exists a non-zero OM-Jacobi field V along =, (a Jacobi field with V(0) €
T,0M,V'(0) + S(V(0)) € T,;OM) such that V(s) = 0. If there is no focal point along
Yol then

Io(W, W) = / Z(W’, W'y = (R(W, A7, Wdt — (S(W), W)(0) > 0 (2.12)

for any piecewise smooth vector field W along v with W (0) € T’,y0M.

e By Lemma 3.2 in [43], 7 defines a continuous map from 0M to (0, oo]. It is well-known
that by a second variation argument, the first focal point along 7, appears no later
than 7(p), and moreover one can argue by contradiction to get (See Lemma 3.6 in [43]),
which is similar to the case for cut locus of a point in complete Riemannian manifolds
without boundary.

Proposition 2.1.3. ¢ € M 1is a cut point of p if and only if at least one of the following
holds:

e q is the first focal point of 7y, ;
e ¢ has at least two foot points.
From this, we conclude that exp™ |y;,, is a diffeomorphism and

S |
iy ngT@)

It is worth noting that if M is embedded in some complete Riemannian manifold M’
without boundary of the same dimension, then OM has two sides, hence OM can be viewed
as an embedded hypersurface of M’. In this case, one can define the focal point of M in M’
similarly. It may happen that a focal point of OM in M’ lies outside M, for example, when
OM is strictly concave at some point. However, our definition of focal point is intrinsic for
the Riemannian manifold with boundary M.

Note that for a complete Riemannian manifold (M, g) with boundary, besides boundary
injectivity radius 7;, we have other two types of “injectivity radius”: the interior injectivity
radius injy, and the intrinsic injectivity radius of the boundary injgas. Since OM is a
complete Riemannian manifold without boundary, injgy, is just defined as the injectivity
radius of OM. For injyy, it is defined as infycpnon ing,/min{l, d(z, OM)}, where

inj, =sup{p > 0| if d(z,0M) > p, then exp, : T,M D B,(0) — M is a diffeomorphism}.
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2.1.3 Manifolds with mean convex boundary

In this subsection, we focus on manifolds with mean convex boundary. We will summarize
some known results and discuss a new result which is crucial for the proof of our main
theorems.

By second variation arguments, one can deduce topological restriction and geometric
estimates for manifolds with mean convex boundary, see [38, 20].

Proposition 2.1.4. [38, 20] Let (M, g) be a compact, connected Riemannian manifold with
boundary, Ricy; > 0. Suppose OM has mean curvature H > Hy > 0, then

ﬂo(aM) = 0,

7T1(M,8M) = 0,

sup d(q, M) < (n— 1)Hy ',
qeM

vol(M) < C(n)Hy 'vol(OM).

Proof. If my(OM) # 0 or m(M,0M) # 0, we claim that every non-trivial class contains a
non-trivial unit speed geodesic v : [0,l] — M that minimizes the length of all curves in
its class. In the case when mo(M) # 0, this is because the distance between two different
boundary components is positive. When (M, 0M) # 0, we must show that the minimizer
exists and is a geodesic that only intersects M at its end points. We can choose a sequence
of smooth curves v; in the same class whose length converges to the infimum of the length
of all smooth curves in the class. Reparameterizing 7; to be smooth maps [0, 1] — M with
|7/(t)] < C, we can apply the Arzela-Ascoli lemma and take a subsequential C° limit of ~; to
obtain a continuous curve 7, : [0, 1] — M. The end points of 7., are on IM and 7, is also
in the same class. Then v, only intersects M at end points, otherwise it can be homotoped
to have less length. Now we divide 7., to sufficiently many pieces such that every interval
is sufficiently small. We conclude each piece must be a geodesic, otherwise, one can replace
that piece with a length minimizing geodesic to get a curve with less length. Similarly, one
conclude v, must be C! at the break points. Hence v, is a smooth geodesic.

From the first variation formula, ~ intersects boundary perpendicularly at both end
points. Pick an orthonormal basis V;,1 < ¢ <n — 1 of T,)OM and parallel them transport
along 7 to get V;(t). Let 7, 4(t) be a family of curves centered at v with variation field V;(t).
By second variational formula,

<>
— ds?
which is a contradiction.

Now we prove the estimate for sup,.,, d(q,0M). If for some ¢ € M, [ = d(q,0M) >
(n — 1)Hy'. Let p be a foot point of q. Let V;;1 < i < n — 1 be an orthonormal basis

Ely.) / Rie(Vi(t), Vi(t))dt — H(1(0)) — H(x(1)) < 0,
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of T,0M and parallel them transport along -, to get Vi(¢), and denote Vi(t) = (I — t)Vi(t),
¥i.s(t) a family of curves centered at -, with variation field V;(¢), then

—1
d?
er

which is a contradiction. The volume upper bound is by volume comparison, see [31]. O

%gzwwwﬁ—lﬁmm«mﬂamw—ﬁﬂwm»<a

Remark 2.1.5. Note that when M is connected, m (M, M) = 0 is equivalent to that O M is
connected and the natural map 71 (OM) — 71 (M) is surjective, the latter of which means that
fix a point py € OM, then for any closed path z(¢t) : 0 < ¢ <1 in M with z(0) = z(1) = po,
there exists a homotopy Fi(t) : 0 < s,t <1 with F,(0) = Fy(1) = po, Fo(t) = z(t) such that
Fi(t) € OM.

The following result is well-known, see Lemma 6.3 of [34].

Proposition 2.1.6. [34] Let M be a complete Riemannian manifold with nonempty compact
boundary. If there are no focal points whose distance to OM equals iy, then there exists a
smooth geodesic of length 2iy, that is perpendicular to OM at both endpoints.

Proof. i, = i%g/[ 7(p) > 0. Suppose the infimum is achieved at p; € dM. Then by assump-
pe

tion and Proposition 2.1.3 v,,(i;) has another foot point py. We claim ~;, (i) = —,,(is),
SO Yp, : [0,2i) — M is the smooth geodesic we want. By assumption, we can find
smooth distance functions hy, hy extending d(-,0M) near v, |jo,i,], Vpelj0,s], Tespectively.
Consider the smooth hypersurface ¥ = (h; — he)~'(0) near ¢ := ,,(is) = Yp,(ip). Then
v =Vhi(q) + Vha(q) € T,X. If it is non-zero, then (Vhi(q) + Vha(q),v) > 0. Without loss
of generality, assume (Vhy,v) > 0. Then in the direction of —v in 3, we have some point
¢ € ¥ with hy(¢") < hi(q). Hence ¢’ has two foot points and d(q¢’,0M) = hq(q") < ip, which
is a contradiction. O

It is worth noting that in this proof, Kodani used the first order variation of h; on X
to lead a contradiction. We can also investigate the second order variation of h; on ¥ and
prove the following:

Proposition 2.1.7. Let M be a compact Riemannian manifold with mean convex boundary,
Ricys > 0, then there exists a focal point of OM whose distance to OM is equal to iy.

Proof. Suppose not, by Proposition 2.1.6, we have a smooth geodesic of length 2i, which is
perpendicular to M at both end points. We use the notations p1, pa, q, hi, ho, and ¥ as given
there. We claim Axhi(q) < 0, so we get another point ¢” € ¥ near p with hq(¢”) < hi(q) = i
and get a contradiction. Denote Ny = Vhi(q) = —Vhy(q), X1 = hy'(ip), Xo = h5 (i), then
Ny is a common unit normal vector for X, 3, ¥ at ¢. A graph visualization is depicted in
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Figure 2.1. Let Iy, Ily,, Iy, be second fundamental forms with respect to Ny at g. Then
at q,

1 1
Iy, = Hess(hy — hy) = EHess(hl — hy) = 5(1[21 +I1y,),

|V(hy — hy)|
hence

HE - %(Hih + H22)7ﬁ2 = %(ﬁzl + ﬁ22>'

From the formula of Laplace operator on a hypersurface (2.10), we know that at g,
Aghl = Ahl — HeSShl(No, N()) -+ <Vh1, ﬁ2>,

As; hy = Ahy — Hesshy (No, No) + (Vhy, Hs,).

Since hy is a constant on ¥y, Ay, h; = 0, hence

1
Ashi = Aghy = A, by = (Vin, Hy = Hy,) = (Vhe, 5 (Hs, = Hy,))

1
- _5(H22 - H21)'

(2.13)

Since OM is mean convex, Ricy; > 0, by the evolution equation of mean curvature (2.5),
we have —Hy, (¢) > Hom(p1) > 0, Hs,(q) > Hop(p2) > 0. Hence Axhy(p) < 0, which
completes the proof.

m

Figure 2.1: Existence of a focal point

A moment thought about the arguments in the end of the previous proof yields that
Ricps > 0 is not so necessary, since we can make use of the evolution equation (2.5) to get
an ordinary differential inequality for the mean curvature.
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Proposition 2.1.8. If in Propositz’on 2.1. 7 we assume instead Ricyr > —(n — 1)c for some
c>0,and H> Hy>0. Ifi, < — , then there exists a focal point of OM
whose distance to OM s equal to ’Lb

Proof. Suppose the conclusion is not true, follow the arguments of Proposition 2.1.7 except
for the last part. Let S;(X) = —VxVh;, H; = TrS; = —Ah;, and identify a neighborhood
of Yp,|[0.4,) With a subset of 9M x R via exp’. Then by (2.5),

1

H; = |S;|* + Ric(Vh;, Vhy) > 1H3 —(n—1)c,
n—
and H(p;,0) > Hy. Let f solves the ODE on |0, i)
1
fr= — 1f2 — (n—1)c, (2.14)

and f(0) = Hy, then by ODE comparison we have H;(p;,t) > f(t). In particular, H;(p;, i) >
f(ip) > 0, which leads to a contradiction as before.

We now show f(i,) > 0 in detail. The autonomous ordinary differential equation (2.14)
has two equilibrium solutions f = £(n—1)+/c. If Hy > (n—1)4/c, then f is increasing, hence
f(ip) > 0. If Hy < (n — 1)4/c, then f is strictly decreasing with lim; ., f(t) = —(n — 1)\/c.
The solution of (2.14) is given by

1 ‘f ( ‘ _ ’HO —(n— ‘ — ¢
(n—1) \/_ 2\/_ Ho+ (n — 1
hence the unique zero point of f is given by —5 \[ In ‘H (i) > 0.

Proposition 2.1.7 implies

Corollary 2.1.9. Let (M, g) be a compact Riemannian manifold with boundary, K > 0, \ >
0 are constants. Suppose sec < K, S <\, H > 0, Ricy; > 0, then i, > \/—%arccot\/%.

Proof. By Proposition 2.1.7, there exists p € dM such that 7,(i) is a focal point along ,.
If i < \[—%arccot\/%, from CQmparison the(?rem for Jacobi fields, we know ~, (i) cannot be a
focal point along +,, which is a contradiction. O]

Similarly, Proposition 2.1.8 implies

Corollary 2.1.10. Let (M, g) be a compact Riemannian manifold with boundary. Suppose
|[Rm| < C, |S| < C, H> Hy > 0, then we can find iy depending explicitly on C, Hy such
that ib Z io.

Remark 2.1.11. In the previous two corollaries, if the sectional curvature and Ricci cur-
vature bounds only holds for N;(9M, g), then we also have a 7, lower bound. In the case of
Corollary 2.1.9, we have i, > min{\/%arccot\/%, 1}.
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Remark 2.1.12. In the same setting as the previous two corollaries, [32] Lemma 2.2 claimed
to prove a lower bound for 4y, using a similar method as [7] Lemma 2.4. In both papers, there
is a logic problem that they get a contradiction with an unjustified statement: Let M be a
Riemannian manifold with boundary, v : [0,[] — M be a geodesic that is perpendicular to the
boundary at both end points, and suppose there is no focal point along v for both boundary
portions, then I,(V,V) > 0 for any smooth vector field along v with V(0),V(l) € TOM.
Here

l
LV, V) = /O (VL V) = (R(V.A)Y, V)dt = (S(V(0)),V(0)) = (S(V(D)), V(1))

In fact, this unjustified statement is not true, and one can easily think of an example: let

5 ={(,2") e R*||«'|* + (1 — 2")* = R},
{( / l’ ERnHJJIP ( +l‘n)2 :RZ}
Ry, Ry > 2 and 7(t) = (O 1—t) <t <2, then [(V,V) = _R_l__ < 0 for any unit-norm
it

parallel vector field along v wi
v for both X, 3.

In fact, focal points give crucial information for index form defined by one submanifold
and one point. However, as seen from the example, they do not fit well with the index form
defined for two submanifolds. Indeed, there is some notion of “conjugate point” defined for
two submanifolds, see [1].

V(0) € Ty In this case, there exist no focal points on

It is easy to see focal points can “pass to the limit”, since they arise from kernels of
the differential of exponential maps. Though one can use Corollary 2.1.10 directly in many
situations, we point out this fact here, which may help in contradiction arguments.

Proposition 2.1.13. Let M be a manifold with boundary, g; be a sequence of Riemannian
metrics on M, and p; € OM. Suppose g; converges to a Riemannian metric g, in C* and
pi converges to p € OM, 7y, is defined on [0,b] and ,,(t;) is a focal point along ~,, with
0<a<t; <b. Then for a subsequence, v, converges in C?* to v, , t; = too and Y. (ts) 18
a focal point along 7, .

Proof. 7, (0) € TM is a bounded sequence, hence subconverges to some v € T'M, which
must equal to 7, (0). Hence by ODE theories, 7, converges in C? to 7,.. Suppose for
a subsequence t; — to. Let J; : [0,t;] — T'M be dM-Jacobi fields along ~; Wlth Ji(t;) =
0,JI(t;)] = ttﬁ Normalize these geodesics and Jacobi-fields by 7;(t) = (- 1), Ji(t) =
Ji(%t), S0 %;, J; are defined on the same interval [0,¢,], and

TH(t) + Ry (Ji(1), 0)740) = 0,
Jiltoe) = 0, (1) = 1.

For a subsequence J; (ts) — w with |w| = 1. Let J, be the non-trivial Jacobi-field along
Ypeo With Joo(too) = 0, J2 (ts) = w, then J; converges in C? as maps [0, too] — TM to Ju by

(2.15)
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ODE theories. Hence J is a 0M-Jacobi field, which implies 7, (t~) is a focal point along
f}/poo' D

2.1.4 Volume estimates near boundary

In this subsection, we show some volume lower bounds near boundary under some geo-
metric control. These estimates can be found in [2] and [32].

Proposition 2.1.14. Let (M, g) is a Riemannian manifold with boundary, suppose Ric >
—(n—1)c for some ¢ > 0, and exp* is an diffeomorphism in B x [0,T) for some open subset
B of OM, then

sup H < max{(n —1)v/2¢,4(n — 1)7'T71},

Bx{t}
vol(C(B, ty,t2)) > C(n, T, c)volgn (B)|ta — ti],
where 0 < t,ty,ty < %T.
Proof. By the evolution equation (2.5),
OH = |S|* + Ric(Ny, Ny), (2.16)
hence

1
OH > mfﬂ —(n—1)e. (2.17)

If for some to € [0, 477, z9 € B, we have H(zg,t9) > § and § > (n—1)v/2c, then 8,H (29, t) > 0
and H(zy,t) > (n — 1)y/2c for t € [to, T). Hence

1
Oy H (z0,t) > §(n — 1)_1H(z0,t)2,

1 1 1
H™ Y (20,t) < H (20,t0) — 5(n —D(t—ty) <5t — 5(n —1)(t - §T).
Then the continuity of H(z,-) in [0,T) forces § < 4(n — 1)7'T~!, which proves the mean
curvature estimate.
For t € (0,571, let B, = exp*(B x {t}), then

d
Eﬂn—l(Bt) =— [ HdH" (B> —-Ci(n,T,c)H" 1 (B,),
By

where H™"! denotes the (n — 1)-dimensional Hausdorff measure of M. Hence
anl (Bt) > 6701 (n’T’C)tVOL’jM(B) > 67%01 (n,T,c)TvolaM(B)

and when 0 < t; <ty < 1T,

to
vol(C(B, 1, 15)) = / H™Y(B,)dt > C(n, T, c)voloar(B)(ts — t1).
t1
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Proposition 2.1.15. Let M be a Riemannian manifold with boundary, p € OM. Suppose
B(p,2rq) has compact closure,

sup |Rm] < C,
B(p,2ro)

volaar(Ban (psm0)) = o,
expt is an diffeomorphism in Bay(p, 7o) X [0,70), and on Bap(p, o)
Ricgy > —(n — 2)co, |S] < C,
then there exists ry > 0,v1 > 0 depending on n, C, cy, 7o, vo, such that for ¢ = exp*(p,2r1),

we have
vol(B(q,71)) > v;.

Proof. By definition C(Bgys(p,70),0,70) C B(p,2r9). We claim that there exists ro > 0, Cy >
0 such that for any p1, p2 € Ban(p, o),
ds, (exp™ (p1, 1), exp™ (pa, 1)) < Crdons (p1, p2)
when 0 < t < 7y, where ¥; is the image of Bays(p, 2r0) under exp™ (-, t). In fact, by (2.2)(2.4),
VS = S* + R(-, Vt)Vt,
hence p
E|Sy <|SPP+C.

Integrate the inequality, we have

arctan(%)(m,t} - arctan(%)(x, 0) < VCt.

Hence there exist 7o > 0, Cy > 1 such that |S| <log Cy when 0 < ¢ < ry5. Now let vo(s) be a
smooth curve in Byys(p, 2r¢) that connects py, pe, and let v (s) = expt(vo(s),t) € ¥y, then

velwe (5, (34(), 71(5)
S Ve S) )5 Vel S
d—lOg"‘}é(S)‘ = - / ! / !
t (7i(s),7i(s))
It follows that |v;(s)] < Ci|v(s)| with C; = C3? and the claim follows from integration.
Now take

< |Ss, (7:(s))| < log Cy.

1
r1 = min{2Cr, ZTQ},
we have 3 &
1 1 I
C B say ) o 0 o C B ) 9
(Bow (p 201) 5 5 ) C Bla,m)
then we apply Proposition 2.1.14 and Bishop-Gromov volume comparison on dM to get the
desired conclusion. O

Remark 2.1.16. It is easy to give a quantitative version of the lemma from the proof.
However, to the author’s knowledge, we cannot prove the last inclusion in the proof without
a control of curvature. It may be possible that a metric ball of the boundary becomes “long
and thin” under the flow of Vd(-,0M), while maintains an area lower bound.
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2.2 Convergence theory of Riemannian manifolds

2.2.1 Gromov-Hausdorff convergence

This section is intended to summerize some results of Gromov-Hausdorff convergence for
Riemannian manifold without boundary.

Definition 2.2.1 (Gromov-Hausdorff distance). Let X, Y be two compact metric spaces,
the Gromov-Hausdorff distance between X, Y 1is defined to be

dar(X,Y) = inf{d%(i(X),(Y)) | 3 a metric space Z and isometric embeddings
i X—>Zj:Y <7}

where d% denotes the Hausdorff distance in Z, i.e.,

d(i(X), j(Y)) = max{ sup d(z,j(Y)), sup d(y,i(X))}.

z€i(X) y€j(Y)

The Gromov-Hausdorff distance between X, Y measures how far X, Y are from being
isometric. It is easy to check that dgy is a metric on the set of all compact metric spaces,
say Mms. The topology induced by dgy is refered to as Gromov-Hausdorff topology. It is
proved that

Theorem 2.2.2. (M5, dcn) is a complete metric space.

Theorem 2.2.3 (Gromov compactness theorem). If (M;, g;) are compact Riemannian man-
ifolds, Ricy, > —(n — 1)e, diam(M;,g;) < C, then a subsequence converges in Gromov-
Hausdoff sense to a compact metric space (Zs, doo)-

The point is that we have Bishop-Gromov volume comparison to conclude that for any
fixed € > 0, we can cover each M; by a uniform number of metric balls of radius e. The set
of all limits (Zw, ds) are refered to as Ricci limit spaces.

Similarly, one can define the pointed Gromov-Hausdorff distance for pointed compact
metric spaces

don((X,p), (Y, ) = inf{d5 (i(X), j(Y)) + d”(i(p), j(q)) | 3 a metric space Z
and isometric embeddings i : X — Z,j: Y — Z}.

In the case of point Riemannian manifolds(without boundary, not necessary complete)

Definition 2.2.4. A sequence of pointed Riemannian manifolds (M;, g;,p;) is said to con-
verge in (pointed) Gromov-Hausdorff sense to a pointed complete metric space (Zuo, doos Poo),
if AR; — o0, such that B(p;, R;) is compact and

dGH((B(pi> Ri>>pi)7 (B(pom Ri)va)) — 0.
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In general, Gromov-Hausdorff topology is a very weak topology: the limit space may be
bad, and convergence in Gromov-Hausdorff topology is not satisfactory in many contradiction
arguments. However, a general philosophy is that, if we impose geometry control in the
converging sequence, then we have regularity results on the limit space. If we assume the
regularity on the limit space, then the convergence can be improved to a stronger topology.
This is one of the key ideas in Cheeger-Colding theory.

Definition 2.2.5. A sequence of closed Riemannian manifold (M;, g;) is said to converge
in C* topology to a C** Riemannian manifold (My, gs), if there exists C**4 diffeomor-

k,a
phisms ¢; : M, — M; such that ¢} g; o Joo asS tensors on M.
It is proved by Anderson and Colding that

Theorem 2.2.6 ([3, 17]). If (M;,g;) are closed Einstein manifolds, Ricy, = (n — 1)c
and (M;, g;) S8, (M, goo) for some closed smooth Riemannian manifold (Mu, gso), then
(M;, g:) Ll (Mo, 9oo), Yk, av.

Definition 2.2.7. Suppose Ricy, > —(n — 1)e, and (M;, g;, pi) SN (Xoos doos Poo) - If for
some \; — 0o, (M;, \igi, pi) GH, (Zso,Goo), then Zy, is called a bubble limit assosciated to

the sequence. If for some p; — 00, (Xoo, iloo, Poo) GH, (Weo,dly), then Wy is a called a
tangent cone at Poo-

In application, we usually take \; to be the maximum of the curvature norm. If the
rescaled metric is volume non-collapsing, then our bubble limit will be a complete Rieman-
nian manifold of the same dimension. In fact, in this dissertation, we will encounter bubble
limits with maximum volume growth.

2.2.2 Harmonic radius and convergence theory

Convergence theory of Riemannian manifolds is a powerful tool to prove conclusions in
Riemannian geometry through contradiction arguments when explicit bounds is not required.
In this section, we will restate some results of [2], follow the proof there, and discuss some
direct corollaries. We note that while we discuss about manifold with boundary here, it
applies to manifolds without boundary (which is easier and was proved much earlier).

Let (M,g) be a Riemannian manifold with boundary, m € N, 0 < a < 1, @ > 1.
For p € M, define r,"*(p, g,Q) to be the supremum of p > 0 such that if d(p, OM) > p,
then there exists a neighborhood U of p in M and a interior coordinate chart ¢ : By = U,
©(0) = p, and if d(p, OM) < p, then there exists a neighborhood U of p in M and a boundary
coordinate chart ¢ : Bf, = U, ¢((0,d(p,0M))) = p, go(l-34p) =UNO9M, and in either Be or
B+

1, We have

AMQD_I = 07
Q%(6:5) < (9i5) < Q*(6),
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pre Z 059i5(x) — 959:j(y)| < (Q — V)| — y|*.
|Bl=m
We call such a coordinate chart a (p,Q, m,«)-harmonic coordinate chart centered at p.
Note that the second condition implies there exists 7,79, depending on p, @, such that
B(p,m) C U C B(p,rs).

Definition 2.2.8. Fiz an integer m > 0, and 0 < o < 1. We say a sequence of Riemannian
manifold with boundary (M;, g;, p;) converges in pointed C™* to (Moo, goo, Poo) if there exists
precompact open subsets Q; of M; and Qe ; of My, and o; > p; — 0o such that B(p;, p;) C
Qi C B(pi,0:), B(Poos pi) C Qi C B(poo, 05) and there exists diffeomorphisms F; : Qoo i — i,
Fi: Quoi N OM; — Q; N OM,, such that Fg; — g in C™ topology, and F, ' (p;) — peo- If
we replace C™ by C™, we say the convergence is in pointed Cheeger-Gromov sense.

Remark 2.2.9. (M, g) is automatically a complete C™® or C'*° Riemannian manifold
with boundary from the definitions. Sometimes we only need that one metric ball converges,
so one can modify the definitions above: suppose B(p;,7) C €; for some precompact open
set €; C M; and there exists a Riemannian manifold with boundary (Q,¢s), @ point
Poo € (s, and diffeomorphisms F; : Q. — €; mapping 0, onto §2; N dM; such that
F¥gi — goo in C™% or C*™ topology and F; (ps) — ps, we say B(p;,r) converges in O
or Cheeger-Gromov sense to B(pso, 7).

The following theorem mentioned in [2] is well-known and is a fundamental theorem of
Riemannian convergence theory.

Proposition 2.2.10. [2] Let (M;, g;) be a sequence of complete Riemannian manifold with
boundary, p; € M;. Suppose there exists some Q > 1, and a positive function r : (0,00) —
(0,00), such that r;,"*(p,9;,Q) > r(R) for any p € B(p;, R), then for a subsequence,
(M;, gi, p;) converges in pointed C™P sense to (Mo, goo, Poo) for any 0 < B < «a. If the
above assumption holds for only one R, then B(p;, R) converges in C™F sense to B(ps, R).

Next, we discuss under what geometric control we can get a harmonic radius lower
bound. We state and prove the following local version of Theorem 3.2.1 in [2], with simplified
arguments in some parts, when derivative bounds is assumed.

Theorem 2.2.11. Fiz m > 1. Let (M,g) be a Riemannian manifold with boundary, and
Y C OM be a boundary metric ball that has nonempty boundary and compact closure. Suppose
expt maps ¥ x [0,1g) diffeomorphically onto its image S,

injo > i, injs > io, (2.18)

and in €,
V! Ricy | < A,0< 1< m, (2.19)

on X
IV Ricon| < A IVELH| < A0<T<m. (2.20)
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Then for any @ > 1, a € (0,1), p € Q,

Thm—i_l’a(pa g, Q) Z TO(i07 A7 m,«, Q)d(p7 a+Q>7 (221)
where 0tQ = Q\(QUIM).

Remark 2.2.12. Recall that injq > ip means that inj, > io min{l,d(x,Q°)}, Ve € Q and
injs, > ip means that injon, > to min{l, doa(y, )}, Vy € 3.

Proof. 1f not, we have a sequence (My, gi) and Xy, €, that satisfies the conditions, but there
exists pi € Q. with

T}Tln+17a(pkagk7Q) — inf r}T+La(pk7§k7Q)

= — 0.
dg (pr, O pe%  dg, (p, 0+ 8Y,)

Rescale the metric gy = (7% (pk, Gr, @) 29k, s0 7 (pr, g, Q) = 1, then dy, (pi, O Q) —

oo, and 77" (p, gr, Q) > sif dg, (p,p) < R, k > k(R). Fix any 8 € (0, ). Then there are
two cases:

Case 1 d,, (px, Xx) — oo for some subsequence.

Then for any 3 € (0, a), a subsequence (M, gr, pr) converges in pointed C™*1# sense to
a complete Riemannian manifold (M, geo, Poo). S0 Ricp, = 0, injy,, = oco. By Cheeger-
Gromoll splitting theorem, (M, g ) is isometric to flat R™.

Hence for any L > 0, there exist a coordinate g : Bris — Ux C My, ©ox(0) = pg, such
that

lgrij — dijllom+re(,s) — 0,1 <i,5 <n.

We solve the Dirichlet problem for functions uy, 1 < v < n:

Apuy = 0in Brys, uilop, ,, = 27 . (2.22)

Recall the formula

3 1 3
Ay = g70;0; + —=0;(\/1919")0;, |9 = det(gs;).

Vldl

Then we have
[uf — ¥ llems288,.5) < CllAM, (up — 2¥)[[emsB,.5) — 0.

Hence, we get a new coordinate system (uj, -+ ,u}) and we discard the original coordinate
system, and we use the same notation for tensors written in the new coordinate system, so
in the new coordinate system we have

||gk,ij - 6ij||Cm+173(BL+3) — 0.
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Now we want to improve the convergence of g ;; from elliptic equations. We have a system
of equations

A, Grij + Bij(gk, Ogr) = —2Ricay, ;-
where B;;(g,dg) are polynormials of g,dg and are quadratic in dg. From W™*2? estimates,

Morrey embeddings, and
|V'Ricay,| — 0,0 <1< m,

we have for 1 <1i,5 <n

9r,ij — Gijllem+tas, .y SO AM (Gris — 0i)llom(BLs)

(2.23)
+ | 9r,ij — sl Lo (BL1s)) — 0.

Hence we get a (2(L + 2),Q,m + 1,a) harmonic coordinate chart centered at pj, with
dg, (Pis k) — 0, then 7" (pr, gk, Q) > 2(L + 1) for large k, which is a contradiction.

Case 2 dg, (p, k) < K.

A subsequence (M, g, pr) converges in pointed C™+1# sense to a complete Rieman-
nian manifold with boundary (M, oo, Poo) and (OMy, gr, qx) converges in O™+ sense to
(OM oo, Goolon, > @00 ), Where g € Xy is the unique foot point of py in . Then Ricy, = 0,
Ricon, = 0, Ho = 0, injonr, = 00, ipn,, = 00. Hence (OMw, goolons,, ) is isometric to flat
R"!. By (2.8), we have S,, = 0. Then by Lemma 4.1.6, (M, g ) is a smooth Riemannian
manifold with boundary and Rmy,_ = 0. Since also ij pr,, = 00, (Moo, §oo) is a isometric to
flat R7.

Hence for any L > 2K +10, there exist a coordinate ¢ : BZ“+5 — U, C My, ¢0x(0) = g,
QO(),]C(BL.%) = U, N OM,, such that

19k,i5 — (51'J'HC"L+1’5(Bj+5) —0,1<4,j <n.
First, we solve for functions v, 1 <v <n —1,
Aor vy =0 in Brys, vilsp, ., = 2", (2.24)
Then we have
v, — 17V||Cm+2ﬁ(BL+5) < Cl|Agar, (vy, — iUV)chﬁ(BL+5) — 0.
Next, we solve for 1 <v <n —1,
—0in Bt . _
Anuy =0in By suplg, . = UIZ7UZ‘8+BL5 =z, (2.25)

Note that 832;5 is not a C'-boundary, but it satisfies exterior sphere condition, so we
can solve the equations by Perron’s method to get a unique solution uj € C*°((Bjf,5)°) N

C°(B}f5). From definitions and the estimates above, we have

1w, (ke = 2| omos s, ) = 05
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||ulk/) - xl/||cm+276(BL+5) — 07
lui = 2"l .~ o5, ) = 0,

then by maximum principle, we have
14 14
Jup — = |‘L°°(BEL+5) — 0,

and by Schauder estimates

|uf — xV”Cm“’B(BZH) < O([[Ang (uf — xy)||0mﬁ(3+ y T |uk — xVHLoo(B+ )

L+5 L+5 (226)
+ |lu, — 2¥||gmrzs(p, ,5) = O
Next, we construct u} by solving
AMkUZ =01in BZ+57UZ|8BZ'+5 =",
We have
luk = 2" omizs sy, ) SCUAM (U = 2")loms s, ) (2.27)
+ fluk — $n||Loo(Bz+5)) — 0.
Hence we get a new coordinate system (ug,--- ,u}) and we discard the original coordinate

system, and we use the same notation for tensors written in both coordinate systems, so in
the new coordinate system we have

gk.i5 — 5ij||om+1,ﬁ(3g+3) — 0. (2.28)

Now we want to improve the convergence of g;,; from elliptic equations with Neumann
boundary conditions. We have equations

Aon, Gr,ij + Bij (g, Ogr) = —2Ricanr, ij (2.29)

Angk,ij + Bij(gk, 8gk) = —QRiCMij (230)
Fix § € (8,1),p = %5, from W™*?P estimates, Morrey embeddings, and

Vg, Ricoar,| — 0,0 <1< m,
we have for 1 <1i,5 <n—1,

gk — 5ij”cm+119(32+2,5 <C(|Aon, (gr,ij — 6ij)”Cm(Bz'+3) (2.31)
+ gkis = ijll Lo 7, ,)) = 0
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By Theorem 8.33 in [29],

19165 = ijllomirost ) SCUAM(Iri = di)llomsy,, o)

L+42.5

+l9kis = Gl e, ) (2.32)
+ | gr,ij — 5inCm+1,G(B{+2‘5)) — 0.
Note that
Nigp" = —2(n — 1) Hygy", (2.33)
A A 1 y
Nigy" = —(n — 1) Hpgy" + —mg”&g"”, (2.34)

ing.
where N, = % is the unit normal vector of OMy, 1 <i <n —1 and 7 sums from 1 to n,
k

then we have Neumann boundary conditions for (2.30). For simplicity, assume for a while
m = 0. Since

19k.i5 — 6iJ'HCL/3(Bz+2) — 0,
|RiCMk,z'j|CO(Bz-+2) —0,1<1,7<n,
|Hk|cl(BL+2) — 0,

we have

[FASYA (/e 5nn)HCO(BZ'+2) = 0, [Negi" ler sy, — 0

then by Morrey embeddings (together with extensions), and W?? estimates for Neumann
boundary problems (for example, see a priori estimate 2.3.1.1 in [30]),

lgg™ = 6™ llovost, ) <ClaE™ = ™ lwaost.,

L+1.8
<Clg" = 0™ luar, ) + 1D, 0" = sy, (2.35)
+ ||ngk] ||W17%YP(BL+2) — 0'
Now for 1 <1 <n —1, since
1A, (98" — 51”)”00(Bg+2) — 0,
and
N, In ) < C nn 5nn ) H }
” Kk HWP%’F'(BLHAs) - (”gk HI/‘/27%’17(13L4r1f>) + H kHWL%’p(BLHf’) (2.36)

< Cllge" = 0" llwewst,, ) + 1Hrllers,, ) = 0
7

L+1.
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Then
g — 51”“(11»0(1_?;“'1) <Cllg" — (SMHWZW(BEH.Z)
<CUg ™o,y + 180 (0 = e (2.37)
Ny.gl" i — 0.
+ H Kk HWli%’P(BLH.s))
Hence

Hgk’,ij — (Sincl,e(B;_lAl) — 0, 1 < Z,j g n.
For general m > 1, take m-th derivatives of (2.30) and the Neumann boundary conditions
(2.33)(2.34), and note that
digl" i Oigpm
/g]’rcm ) /—9an

so we get a system of second order elliptic equations with Neumann boundary conditions
in 9,g7™ and 0,g", |y| = m,1 <1 < m — 1, with other terms freezed. Apply the previous
estimates in the case m = 0 and use (2.28)(2.31), we get

(05 Ni] = (

)0,

lge™ — 5m||cm+1’9(3g+1) =0,

and then for 1 <[ <n —1,
loi" — 51"”0%%@(3{“) =0,

hence
1935 = dijllomiross, ) = 0,1 <5 <mn
Lt
4
centered at pj, , with d,, (p},pr) — 0. Then 7™ (p, gr, Q) > L for large k, which is a
contradiction.

In particular, take 6 = «, one can we get a ( @, m + 1,a) harmonic coordinate chart

]

Remark 2.2.13. Note that the case m = 0 is also true, and one should be a little careful
with the geometric arguments in the proof. Actually, the arguments in [2] prove a C72
harmonic radius lower bound.

Remark 2.2.14. The proof also shows that if M is complete, 1, > g, injyr > 1o, 1nJorr = to
and (2.19)(2.20) hold, then for any p € M

T}T+17a<p’ga Q) 2 TO(Z.OaAam7a7Q)' (238)

The following corollary is a version we will use often.
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Corollary 2.2.15. Let (M;, g;) be a sequence of complete Einstein manifolds with boundary.
Suppose iy, > ig, injorr > io, |Rm| < C, |S| < C, |Vh Ricon| < Cy, |VSJJ{/}H| < Cy, Vk > 0.
Then for any p; € M;, there exists some subsequence such that (M;, g;, p;) converges in pointed
Cheeger-Gromov sense to a complete Einstein manifold with boundary (Ms, g, Poo)- If the
bounds only hold for k = 0,1, then the convergence is in C*.

Proof. By Proposition 2.1.15, |Rm| < C, |S| < C, i, > g, together imply volume lower
bounds of interiors balls of some fixed radius near boundary, hence also gives an interior
injectivity radius lower bound by the following lemma. Then use Remark 2.2.14 and Propo-
sition 2.2.10. O

The following lemma is well-known, which is a qualitative version of Theorem 4.3 in [14]
and can also be easily proved by contradiction arguments. Remark that the proof of our
main theorems should be in this flavor.

Lemma 2.2.16. Let (M, g) be a Riemannian manifold, and B(p,r) be a metric ball that has
compact closure. Suppose

sup |Rm| < C,vol(B(p,r)) > v,
B(p,r)

then there exists ro > 0 depending on n,C,v,r such that exp, : By, (0) C T,M — B(q,r0) C
M s a diffeomorphism for any q € B(p, ).

Proof. For g € B(p,r/3), let inj, , denote the injectivity radius at g. We claim that for some
0 >0,

.. T
mjg,q/dg@v (9Bg(p, g)) > 0.

Otherwise, we would have a sequence (M;,g;,pi,q;) with ¢; achieving the maximum of
iNjg,.q/dg;,(q,0Bg,(p, 5)), which converges to 0. By Bishop-Gromov volume comparison,
voly, (B, (gi, 37)) > volg, (By, (pi, 57)) > v1. Let g; = inj, % g;. Then dg,(¢;, 0B, (p, 5)) — oo,
and injg, . = 1,injz. 4 > %,‘v’q € Bj,(g;, R), i > i(R). By passing to a subsequence, we may
assume that (M;, g;,q;) converges in pointed C topology t0 (Muo, Joos @) (Moo Goos Goo)
is a complete flat manifold of maximum volume growth; hence, it must be isometric to
Euclidean R", contradicting injg, 4, = 1. []
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Chapter 3

Hyperkahler 4-manifolds and closed
framings

3.1 Hyperkahler triples

The discussions in this section are well-known facts about hyperkahler 4-manifolds.

3.1.1 Pointwise theory

Let V' be an oriented 4-dimensional vector space, and let w = (w;,wq,ws3) be a triple
of 2-forms on V, so that w € A*(V) ® R®. Suppose that w is a definite triple, which
means that wy,ws, ws span a maximal positive subspace of A?(V) with respect to the wedge
product. Then the triple w defines a unique conformal structure on V by making each
2-form w; self-dual. We fix a volume form pg on V' that defines the orientation of V', and
we write w; A wj = 2g;jp0. We define a matrix @Q associated with the definite triple w by

Qij = - f’”’ T which does not depend on the choice of pg. We denote the inverse matrix of
et(qij)3

Q by Q7' = (QY). If we write

wi A wj = 2Qu;(1,
then p is a volume form that is intrinsically defined by w. We define a unique metric (, ),
on V in the conformal structure by choosing i to be the volume form. More explicitly, this
metric is given by

3
1 o LyWi N LW N W
(w,0)0 == Y 5= AL

i k=1 H

Therefore, we have
LW N Ly N\ W3

I
We denote the Hodge star operator defined by this metric as ..

(u,u), =
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Let W be an orientated 3-dimensional vector space, and v = (71,72,73) be triple of
2-forms on W, so v € A2(W*) @ R®. Suppose = is a framing on W, i.e., {71,72, 73} forms
a basis for A2TW*. Then by elementary linear algebra, there exists a coframe n = (1,72, 13)
such that

1.
Vi = §5Jk77j A M- (3.1)

Such 7 is uniquely determined up to a sign and we choose 1 such that n; A 1o A 13 defines
the orientation of W and we denote this volume form by vol,. There is a unique metric
on W, denoted by (,), that makes i an orthonormal coframe. Denote %, = %, by the
Hodge star operator of (,),. We denote e; € W the dual vector of 7;, so n;(e;) = d;;. Then
e = (ey, e9,e3) is a frame of W. Conversely, given a coframe n = (11, 72,713) on W compatible
with the orientation, one can define a framing v = (71, 72,73) via (3.1), and a volume form
vol, = voly, a metric (, ), = (,), a Hodge star opertaor x,, = x,.

Now in the case W C V is a 3-dimensional subspace, the restriction of a definite triple
w = (wy,ws, w3) € A*(V*) to W defines a triple of 2-forms on W, say v = (71,72,73)- Let
(,)w be the restriction of the metric (,),, on W, which defines a Riemannian volume form
voly and a Hodge star operator xy, compatible with the orientation of W. Since w; are
self-dual, we can write

wi = V"N Fwyi + v,

where v* = x,voly,, then we have
wi Awj = 2" N sy Ay = 2075, 7)) wv Avolw = 2(vi, v;) w k.

Hence on W,

Qij = (Vi» Vi) w
Since det(Q) = 1, we conclude - is a framing, and vol, = volyy. If furthermore we assume
Qij = 5@'3'; i.e.,

1
w; N\ Wy = gél](wf -+ wg -+ wg) (32)

then (v;,v;)w = 6ij = (i, 7;j)~. In this case, (,)y = (,)w as an inner product on W = AW,
so in particular xy = *..

3.1.2 Hyperkahler triples

Now we move our pointwise discussions to manifolds. Let X be an oriented 4-manifold,
let w = (wy, wa,ws) be a smooth section in T'(X, A°T*X ® R?) such that it is a definite triple
pointwise. By the discussions above, w defines a matrix valued function Q = (Q;;) and a

volume form p such that
det@Q =1,

wi Awj = 2Q451,
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and w defines a Riemannian metric g, which equals to (,), on the tangent spaces at each
point. We denote by V9 V¢ or simply V, the Levi-Civita connection of g,,.

Definition 3.1.1. Let w be a definite triple of 2-forms.
e w is a hypersymplectic triple if dw; = 0 fori=1,2,3.

e w is a torsion-free hypersymplectic triple if dw; = 0 fori=1,2,3 and Z?Zl d(Q"w;) =
0 fori=1,2,3.

e w is a hyperkahler triple if dw; =0 fori=1,2,3 and Q;; = 0;; fori,j =1,2,3.

We will discuss torsion-free hypersymplectic triples in detail later, but for now we focus
on hyperkahler triples.
It is well-known that

Proposition 3.1.2. If w is a hyperkahler triple, then Hol(g,) C SU(2), in particular
Ric,, = 0. Conversely, if (M,g) is a Riemannian manifold with Hol(g) C SU(2), then
there exists a hyperkdhler triple w, which is unique up to a constant O(3) rotation, such that

9= Jw-

Proof. For the first part, by elementary linear algebra, the almost complex structures Iy, I,
and I3 defined by wy, wo, w3, and g,, satisfy the quaternion relation, i.e., I? = [Z = [2 = —1
and [, = I3. By direct computation, one knows that Vw; = 0 for i = 1,2, 3, where V is the
Levi-Civita connection defined by g,,. Hence, I, I, and I3 are also parallel, which implies
Hol(g,) € SU(2). With respect to I, wy is Kéhler, and Q := ws + iws is a holomorphic
volume form satisfying the Calabi-Yau equation w? = %Q A, so Ric,, = 0.

For the second part, one can define a triple w from 3 parallel almost complex structures
I, I, and I3 satisfying the quaternion relation. Elementary linear algebra implies w satisfies
the orthonormal condition (3.2). Since VI; = 0, we know w; is Kéhler with respect to I,
so dw; = 0, and similarly dws = dws = 0, so w is hyperkahler. For the uniqueness part,
suppose we have two hyperkéahler triples w and w’ which define the same Riemannian metric
g. Then, 3 an O(3)-valued function A with w’ = A.w, and V9w’ = V9w = 0 imply A is a
constant matrix. O

Proposition 3.1.3. Let M be an oriented 4-manifold admitting a hyperkdhler triple, then
either

e M is diffeomorphic to a torus T*.
e M s diffeomorphic to a K3 surface.

Proof. As in the previous proof, one can find a complex structure I; such that (wy,ws +
iws) is Calabi-Yau, in particular, the canonical bundle K, is trivial and w; is Kéhler. By
classifiation of complex surfaces we know (M, I;) is either a complex torus or a K3 surface.

O
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Remark 3.1.4. A K3 surface is a compact complex surface X such that H'(X,Ox) = 0
and Kx is trivial. It is well-known that all K3 surfaces are diffeomorphic, and we call
the underlying oriented smooth manifold the K3 manifold. It is simply connected, with
by = 3,b, = 19. A Riemannian metric on the K3 manifold means a Riemannian metric
whose Riemannian volume form coincides with the orientation.

Proposition 3.1.5.
e If g is a Ricci-flat metric on T*, then g is flat and hyperkdihler;
e [f g is a Ricci-flat metric on the K3 manifold, then g is hyperkdhler.

Proof. For a closed oriented Riemannian 4-manifold X, we have the Chern-Gauss-Bonnet
formula and signature formula, since ¢ is Ricci-flat, we have

1
872

/X WH? + WP = (X)),

1 _
o [ W = W = (),

where W, W~ denote the self-dual, anti-self-dual Weyl curvature, respectively, x, 7 denote
the Euler characteristic and signature, respectively.

When X is homeomorphic to 7%, x(X) = 7(X) = 0, thus [, [W*]? = [ [W~]* =0,
hence W+ = W~ = 0, so ¢ is flat and any orthonormal frame in A3 gives a hypekéhler
triple.

When X is homeomorphic to the K3 manifold, x(X) = 24 and 7(X) = —16, thus we
have [, [W*[> =0, hence W+ = 0. Since m(X) = 0, we conclude that A% is trivial and any
orthonormal frame in A% gives a hyperkéhler triple.

O

The moduli space of hyperkahler metrics on the K3 manifold is well understood. It is
characterized by the period map. See Chapter 6 some detailed discussions.

For complete non-compact hyperkéhler manifolds, there have been intensive study on this
by assuming decaying conditions at infinity, for a survey, refer to [28]. In this dissertation,
we will only encounter complete Ricci-flat manifolds with maximum volume growth.

Definition 3.1.6. A complete Riemannian manifold (M, g) is called ALE(asymptotical lo-
cally Euclidean) of order T > 0, if there exists a finite subgroup I' of SO(n), acting freely on
S™1 and there exists R > 0, a compact set K C M and a diffeomorphism 7 : (R"\ Bg(0))/T —
M\K such that

9¥(5°9 — grucdlypn. = O] ), Vi € N

It was proved by Bando-Kasue-Nakajima that
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Theorem 3.1.7. [8] If (M, g) is a complete, Ricci-flat 4-manifold such that

/ |Rm|* < oo, (3.3)
M

and
3p € M, c > 0 such that vol(B(p,r)) > cr*, Vr > 0,

then (M, g) is an ALE of order 4.

Thus, in the 4d Ricci-flat case, we can simply call (M, g) is ALE if it satisfies the condi-
tions of the above theorem. We do not specify the order as it depends on the coordinate at
infinity.

Remark 3.1.8. Actually, Theorem 1.13 in [15] implies that one can remove the condition
(3.3) in Theorem 3.1.7 and reach the same conclusion, as other conditions in the Theorem
3.1.7 imply (3.3). However, we will not make use of this theorem of Cheeger-Naber, as
condition (3.3) arises natural in our settings.

In the case of 4-dimensional hyperkahler geometry, 4-dimensional hyperkéahler ALE spaces
have been completely classified by Kronheimer [36, 37|, which plays an important role in this
dissertation. In fact, we only need the topological classification.

Theorem 3.1.9 ([36, 37] Classification of hyperkdhler ALE spaces).

o Let (X, g) be a 4 dimensional hyperkihler ALE space, then X is diffeomorphic to the
minimal resolution of C*/T, where T is a finite subgroup of SU(2).

o Let X be an oriented smooth manifold underlying the minimal resolution of C*/T, then
the image of the period map P : Marp — H*(X,R) ® R3 is equal to

{a = (a1, 09,03) € H*(X,R) @ R® | VC € Hy(X,Z) such that C* = —2,/ a # 0},
C

where M arg is the space of all ALE hyperkahler triples on X, and P sends the triple to
its cohomology class. Moreover, if P(w) = P(w'), then 3 diffeomorphism f: X — X
such that f*w = w'.

Remark 3.1.10. There is a one-to-one correspondene between non-trivial finite subgroups of
SU(2) and Dynkin diagrams of ADE type. In the minimal resolution of C?/T', the intersection
matrix of exceptional divisors is the negative of the corresponding Cartan matrix of Dynkin
diagrams. In particular, any non-flat hyperkahler ALE space has a homology class C' €
Hy(X,Z) with C? = —2.
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3.1.3 Examples of hyperkahler 4-manifolds

There are various ways to construct hyperkéahler 4-manifolds. One of the most basic idea
is using the Gibbons-Hawking ansatz (e.g., see [27]):

Gibbons-Hawking Ansatz

Let U C R3 be an open set in R3, and P is a principle S* bundle over U, with a
connection 1-form 6. Suppose V is a positive harmonic function on U which solves the
monopole equation on U

«dV = df, (3.4)

where * is the standard Hodge star operator on R, then one can construct 2-forms wy, wa, ws
on P by

w1 = le’g N dl‘g + dl’l N 9,
Wy = Vd[l?g N dl’l + dl’g N 0, (35)
W3 = Vd[L‘l A dIL‘Q + dlL‘g N6.

It is direct to check w = (wy,ws,ws) is a hyperkéhler triple. The corresponding Riemannian
metric on P is given by
g =V(dx} + das + dx3) + V0%

Hence, V /2 is the length of S! fibers.
A typical choice is U = R3\{py,- -+ ,p,} and

V=2 L
35t

for n > 0,m; € N*, A\ > 0. In this case, one has % x dV € H*(U,Z), since its integral
on a sphere around each p; is an integer. Thus, one can find a principal S* bundle P
and a connection 1-form 6 that solves (3.4). This allows one to define the corresponding
hyperkéhler triple via (3.5).

One can further compactify P (via metric completion) around p; by adding a point p;; as
points in U approach p;, the length of S! fibers goes to 0. This yields a complete hyperkiahler
orbifold P. The unique tangent cone at each p; is flat R*/Z,,,.

In particular, when each m; = 1, P is a complete hyperkihler 4-manifold. When \ = 0,
P has the maximum volume growth rate and is therefore ALE. When A > 0, P has cubic
volume growth rate and is ALF.

Example 3.1.11. Take U = R3\{0}, V = ﬁ, then the principle S' bundle is given
by the Hopf fibration = : R\{0} — R3\{0}, which in complex coordinates is (21, z9) —
(2122, 5(|21]? — |22/?)) and clearly extend to a smooth map R* — R®. Here R* = C* and
R3 = C @ R. After metric completion, we get the Euclidean metric on R*. If we take
V=1+ fc‘ and take the metric completion, then we get the Taub-NUT metric on R*.
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Example 3.1.12. Take U = R*\{0,p}, V = ﬁ + ﬁ. After metric completion, we
get the Equchi-Hanson spaces )_(p, which is diffeomorphic to T*S?(also diffeomorphic to the
minimal resolution of C*/Zs). Let C, denotes the S* bundle over any path joining 0, p, which

is a sphere of self intersection —2. By direct computation, fcpw = |p|. As p approach 0,
fcp w — 0, and the (X, 0) converges in pointed Gromov-Hausdorff sense to the flat orbifold
R*/Z,.

Conversely, given a free tri-Hamiltonian S! action on a hyperkihler 4-manifold (X, w =
(w1, ws,w3)), the moment map p defines a principle S! bundle and reverses the Gibbons-
Hawking ansatz.

Recall that an S' action on (X,w) is tri-Hamiltonian if there exists a smooth map
p= (1, o, 3) : X — Lie(S1)* ® R® = R? such that

leWi = dp,

where {(z) = £ exp(it) - z is the vector field on X generated by the S* action.

Now 3-components of u give the coordinates zy, zo, x3. Define V := |£|72, and define a
I-form 6 on X by the metric dual of &, then wy,ws,ws is given by (3.5).

Next we discuss some known constructions for hyperkahler metrics on the K3 manifolds.

Kummer construction

Let T* be the flat torus defined by R*/Z*. Let (1,9, x3,24) be the coordinates of R%.
The standard hyperkéhler triple on 7% is given by

wp = dxo N drs + dry A dxy,
wy = dxz N dxy + dre A dxy, (3.6)
W3 = dﬂfl N dﬂfz + dﬂfg A d334,

which gives rise to the flat metric
9flat = dx? + das + das + drj.

The antipodal map (z1, 2, 23, 14) — (=21, —T2, —T3, —x4) gives a Zy action on T? with
16 fixed points defined by (:I:%, :l:%, :I:%,:l:%), say p1,p2,- - ,P16. LThe hyperkahler triple is
preserved by the Z, action, so it descends to an orbifold hyperkihler triple on T*/Z,. By
abuse of notation, we also denote p; by the orbifold points in the quotient. The tangent cones
at each p; is the flat cone R*/Z,. The idea of the Kummer construction is that, around each
point p;, one cuts out a small ball By, of radius % and glues in a smooth, non-compact,
complete hyperkahler 4-manifold whose asymptotic geometry matches the geometry near
pi- So, in particular, the asymptotic cone of the non-compact manifold must be R*/Z,,
thus the correct choice is the Eguchi-Hanson space Y}, ;. Denote the resulting smooth closed

4-manifold by Xj.
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By Mayer-Vietoris sequence, we know the Euler characteristic of X} is given by
16 16
X(Xi) = X(T*/Zo\ U}S, Bri) + > x(Yis) — ) x(RP?)
i=1

=1

16 16
1 3
= SX(TNUE Bia) + 3 x(Yis) = Y x(RP)
i=1

=1

1 16 ~ 16 16 16 (37)
= 50T = Do x(Bra) + Y _x(5%) + D x(Vis) = Y x(RP)
=1 =1 =1 =1
1
= 5(0=16+1+16%0)+ 162~ 1640
_ 24

where Bk,i C T* is the preimage of By ; under the Zy quotient map.

The first analytic approach to making the Kummer construction precise is due to Don-
aldson in [21]. He developed an analytic method for gluing two Riemannian manifolds with
cylindrical ends (in the Kummer construction, the end of an Eguchi-Hanson space is dif-
feomorphic to RP? x R). Actually, he carried out the Kummer construction in the Kéhler
geometry setting. He viewed T as C?/Z*, and the Eguchi-Hanson metric as the Ricci-flat
Kahler metric on the minimal resolution of C?/Z,. He constructed Kihler forms and holo-
morphic volume forms on X}, that are approximated solutions to the Calabi-Yau equation.
He then perturbed the Kahler form in the Kahler class to satisfy the genuine Calabi-Yau
equation. In particular, this argument involves linear analysis using the implicit function
theorem and does not require Yau’s solution to the Calabi conjecture.

In conclusion,

Theorem 3.1.13. [21] There exists hyperkdhler triples wy on Xy such that (Xy, gx) converges
in Gromov-Hausdorff sense to (T*/Za, gpiat), and there exists Cy; € Ho(Xy,Z), Cri.Crj =
—20;5, 1,7 = 1,2,---,16 such that fc,”wk — 0, and the given 16 Eqguchi-Hanson spaces
arise as bubble limits associated with the converging sequence.

In particular, since x(Xj) = 24 and X}, admits a hyperkéhler triple, Proposition 3.1.3
implies that X, is diffeomorphic to the K3 manifold. In the Kummer construction, the hy-
perkéhler manifolds X}, are volume non-collapsing, i.e., for some ¢, € Xy, vol,, (B(qk, gx)) >
Vo-

There are also other gluing constructions to get hyperkahler metrics on the K3 manifold.
One is

Foscolo’s construction

In [27], Foscolo used a different construction for collapsing limits of hyperkéahler metrics
on the K3 manifold. Consider 7. There is a Zs action on 7° induced by the antipodal map,
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which has 8 fixed points (j:%, i%, j:%), denoted by pi,ps, -+ ,ps. Pick any n > 0 distinct
points g1, -+, qn € T°\{p1,p2, -+ ,ps} and take integers k; >0 and m; >0 (1 <i<n,1 <

j < 8) such that
n 8
> ki Y my=16.
i=1 =1

Denote by p; and pf the distance functions to p; and =+g;, respectively. The above
conditions guarantee that one can solve for a positive harmonic function V' with prescribed
singularities at p; and g;:

2m; — 4 k;
Vo~ M 72 around pj, V ~ Y= around =+ ¢;,

2p; Pi

and guarantee that *dV gives the curvature of some connection on some principal S' bundle
P over T3\{py,--- ,ps, £q1, -+ ,£q.}. The Zy action on T® induces a Z, action on P by
simultaneously reversing the base and fibers. From P/Z,, one can rescale such that the
size of the base (T°\{p1, - ,ps, a1, -, +aq,})/Zs is almost fixed, and the length of the
S* fiber shrinks to 0. And then one cuts off small neighborhoods of [p;], [+¢], and glues
in ALF-D,,;, ALF-Ay, ; gravitational instantons, respectively, to get a closed 4-manifold
Xk. The gluing construction gives rise to hypersymplectic triples that are close to being
hyperkahler. By performing linear analysis on the hyperkahler triple equation, one can
perturb the approximate hyperkahler triple to a genuine hyperkahler triple.

As before, one can check that x(Xj) = 24 using the Mayer-Vietoris sequence. Then Xj,
admitting a hyperkahler triple implies X}, is diffeomorphic to the K3 manifold.

In sum, Foscolo proved

Theorem 3.1.14. [27] There exists hyperkdihler metrics (Xg, gx) which converges in Gromov-
Hausdorff sense to T® |7, such that away from [p;], [£¢:], the collapsing happens with bounded
curvature, and the given ALF-Dy,., ALF-Ay, 1 type gravitational instantons arise as bubble
limits assosciated with the collapsing sequence.

Remark 3.1.15. It is worth noting that in Kummer construction, one can take T4 = T3 x S!,
where S! denotes a circle with radius € and € — 0. One can do the Kummer construction to
each T*/Z,. By a diagonal argument, one can also get a sequence of hyperkéahler manifolds
(Xy, gr) collapsing to T%/Z,y, and away from 8 orbifold points in T°/Z,, the collapsing
happens with bounded curvature. However, one can only see Eguchi-Hanson space as bubble
limits. This is a essentially different construction from Foscolo’s.

For other types of gluing constructions, refer to Foscolo’s survey paper [28] for details
and references.
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3.2 Closed framings

In this section, we discuss the the geometry of the boundary framing of a hyperkahler
triple. This was originally due to Bryant [10].

Suppose (X, w) is a hyperkéhler 4-manifold with boundary. Denote v = (71,72, 73) the
restriction w to 0X. As in subsection 3.1.1, « defines a dual coframe n = (9y,72,713) €
Q10X) ® R3, and the dual frame is denoted by e = (ey, e9,e3) € T'(0X,TIX) ® R?, such
that n;(e;) = ¢;;. This coincide with metric dual, by definition. Recall that the induced
boundary metric of g,|gox coincide with the metric defined purely by « in hyperkéhler case.

Let v be the outward unit normal vector field of 0X. We are going to calculate the
second fundamental form of 0X with respect to v, say I1(v,w) = (V,v,w)gx. Let S €
['(0X,End TOX) be the shape operator, i.e., S(v) = V,v, so (S(v),w)sx = 1I(v,w).
Denote I = (I';;) the symmetric matrix

1 1 1
Ly = 5(% d(*47;))y + §<% d(*4%i))y = 3 *n (s A dnj +m; A dn;),

which is completely determined by 5. Denote the matrix //(e;,e;) by A and the mean
curvature is given by H =TrS = TrA.

Lemma 3.2.1. If w is a hyperkdhler triple, then
1
A= §(TTF)[ —-T,
In particular,

2H = sy(n Adn") = (71, d(sy71))y + (72, d(5472))y + (13, d(%473) )~
|S|? = Trl? — H*.

Proof. Fix a point p € 0X, choose a semi-geodesic coordinate system centered at p, say
(x!, 2% 23,t), such that a neighborhood of p is identified with {¢ > 0} and its intersection
with 0X is identified with {¢t = 0}. So (z1, z2, z3) is a coordinate system on 0X and t-curves
are unit speed geodesics perpendicular to the boundary.

The hyperkahler triple can be written as

w = _dt /\ *.Yt'yt + 'Yt,

where 7, is a smooth family of closed framings on 0.X such that vy = < and because dw = 0,
~,; satisfies the evolution eqution

%
a_tt = _d(*7t7t)'
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We can further choose (z!, 22 2%) to be a normal coordinate system for X at p of the

metric g,lox such that e¢; = 0, at p. Write 0,y = af(x,t)ex(x,t), where ey(x,t) =
(e1(x,t), ea(x,t), e3(x,t)) is the dual frame of 1, = *4,7,. Then at p,

1 1 1
]](61‘, ej) = II(@IZ, 8:63) = —§6tgij = —5615(@?(1?) = —5(615@? + (‘9,:@?). (38)

Note that at p,
omyp = 0al dz™ = 0yal

then we have

(i dCe373))y = = (0 05y
{50 A, SO, A1)
= ié’“qu(a aby (1 A s T A\ 1) (39)
+ Oeag (e A 1 1y A 1))
= —iéikléqu(ﬁtapm(ékmélq — §*5!™) + Opald (5P — §FnSIPY)
—6Y0yay, + Oyl
Combining (3.8) and (3.9), we have
= (TrA)I — A,
so Trl = 2TrA, A= 3(Tr[)I —T.
[

This lemma says that the second fundamental form of 0.X is just in algebraic terms of n
and dn.
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Chapter 4

Convergence of hyperkahler
4-manifolds with boundary

4.1 Curvature estimates near the boundary

This section serves as a first step for the proof of our main theorem. For an Einstein
manifold with boundary, if the boundary intrinsic and extrinsic geometry are controlled well
and 7 is bounded from below, we hope to control the interior geometry within 4,. To the
author’s knowledge, we do not know any general statement. We will first state and prove a
version we need, and then discuss some lemmas needed in the proof.

Theorem 4.1.1. Let (M, g) be a complete hyperkihler 4-manifold with compact boundary.
Suppose |S| < C, |V, Rmon| < Cj, [V H| < Cjj = 0,1, injorr > i, i > o,
fM |Rm|? < C. Then for any r1 < ig, there exists C' > 0, depending on C,Cj,ig,r1, such

that sup |Rm| <C(".
Nry (0M.,g)

Proof. Without loss of generality, assume 75 = 1. Denote a = ry, § = %1(1 — ). Suppose the
conclusion is not true, we have a sequence (M;, g;) satisfying the conditions, but

sup  |Rmyg,| — oo.

Na(0M;,g:)

Let p; € N,(OM;, g;) achieves this supremum. Note that the equations (2.6)(2.7) imply that
|Rmy,| is uniformly bounded on 0M;, so p; ¢ OM; for large i.
Claim 1 There exists a subsequence such that

dy,(pi; OM;)*| Ry, (pi)] — oo. (4.1)

If this is not true, we have sup; dg, (pi, OM;)?*| Rmy,|(p;) < oo. Rescale §; = |[Rmy,(p;)|g:, then

|Rmg,(p;)| = 1, and |Rm;| < 1 in Na‘Rm(pi)‘%(aMi,gi), and sup, dg, (p;, OM;) < 00, ipg, >
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|Rmy, (pi)|2 for all i. Hence by Corollary 2.2.15, (M;, g;, p;) subconverges in pointed Cheeger-
Gromov sense t0 (My, Joos Pso), Which is a complete Ricci-flat 4-manifold with flat, totally
geodesic boundary, hence must be flat by Lemma 4.1.6. This contradicts that |Rmg_ (pso)| =
1 and proves Claim 1.

Now rescale g; in another way, let gi = dg,(pi, 0M;)"%gi, so dy/(pi;,0M;) = 1. Since
dg,(pi, OM;) < «, the rescaled metric g; satisfies 4, > " as well as all other conditions of
the assumptions of the theorem, but with different bounds, regardness of whether d, (p;, OM;)
is uniformly bounded from below or not. Moreover, (4.1) is equivalent to |Rmg (p;)| — oo.

By the e-regularity Theorem 4.1.4, there exists a universal constant ¢, such that for

sufficiently large i,
/ ’ng; ’2 2 €0.
B/ (pi,B)

/
93

Claim 2 There exists a subsequence such that

sup  |Rmy| — oo,
Na(aMivg;)

If not, we have sup |Rmgy| < C. By Proposition 2.1.15 and Bishop-Gromov volume
Na(0M;,g;)

comparison, vol(By (pi, 3)) > v. Since By (pi; 8) C Na-1(atp)(OM;, g;) C Nays(OM;, g;), and
the last one is diffeomorphic to 0M; x [0, a+ (], we conclude that there is no integral homology
class of self-intersection —2 in By (p;, 3). By Proposition 4.1.5, [Rmg (p;)| is bounded, which
is a contradiction to Claim 1 and finishes the proof of Claim 2. One can denote p; by
the point in N,(9M;, g;) that achieves the supremum of |[Rmy|. A graph visualization is
presented in Figure 4.1.

In the scale of g; In the scale of g;
OM;
/r_§ g; = d!]i (piv aMi)_Qgi
e Na(0M;, gi)
Di
|[Rmg,(pi)| = sup  |Rmy,| — o0 [Rmg (pi)| = sup  [Rmg| — o0
Na(aMi,gi) Na(athZ/')

Figure 4.1: Change of scale

Now Claim 2 enables us to obtain, by induction, for each fixed positive integer N, N

sequences of metrics gfo) = 9i, gzm =g ... ,gZ(N), and points pgj) € Na(aMi,gi(J)) for 0 <



CHAPTER 4. CONVERGENCE OF HYPERKAHLER 4-MANIFOLDS WITH
BOUNDARY 41

j<N-—1, p(o) = pi,pﬁl) = p;, such that for 0 < j < N —1, p(j) achieves the supremum of

7 7

|ngg)| in Na(ﬁMi,gl(j)), and

|Bm_o) (pi")| = o0,
gi(jﬂ) = dggj>(p§j), 3Mi)72gi(j)a

dg(j‘*'l)(pz(‘])v aMl) =1,
/ = Bm g P = e,
Bg(j+1)(pgj)ﬁ) ¢

Bg§”1>(p§j)v B) C Na*l(aﬂa)(aMi,ngl)) C Na+5(8Mi’g§j))’

BQQ*U (pz(j)v ﬁ) N NaJrﬁ(aMi’ gi(jJrl)) = @
It follows that for each fixed i, U;\[;()l B i+ (pgj ), $3) is a disjoint union. Since [ a, | B, 2 <
C, we have Ne¢y < (. This is a contradiction, since N can be any positive integer. O

Remark 4.1.2. This theorem is purely local. In fact, by slightly modifying the proof, we
can show that if exp™ maps Baas(p, o) x [0,71) diffeomorphically onto the metric cyclinder
C(Ban(p,r0),0,71), and such that Byys(p,ro) has compact closure. Assume all the bounds
hold on Bpy(p,m9) and assume a L2-curvature bound, then we have uniformly bounded
curvature in any interior metric cylinder C'(Bgas(p,rg), 0, 7)) with fixed vy < ro and 7} < ry.

In other words,

Theorem 4.1.3. Let (M, g) be a hyperkihler 4-manifolds with boundary (X, go) . Assume
p € X such that B, (p,1) has compact closure, on which

S| < C, Vg, RBimg,| < Cj, [Vir H| < Cj, 5 = 0, 1,004, > i

Suppose expt maps By(p,1) x [0,1) diffeomorphically onto its image in M which is also
denoted by B,(p,1) x [0,1). If

/ |Rm|? < C,
Bgq (p-1)x[0,1)

sup  |Rm| < C".
By (p,3)%[0,3)

then
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Proof. (Sketch) Note that we only need 7 = 0,1 in the assumption to get C*“ convergence.
We need to show that the quantity

d(,0" (Byy(p, 1) x [0,1)))*| Rm|(x)

is uniformly bounded in By, (p,1) x [0,1), where 0T is the “parabolic boundary”, i.e., the
topological boundary \ manifold boundary. We argue by contradiction. Suppose this is not
bounded, then we can find a sequence of manifolds and a point p; that achieves the maximum
of this quantity, and rescale the metric by |Rm(p;)| and d(p;, X;)~2 to get a contradiction,
as before. O]

Now we provide the lemmas that we used in the proof.

The following collapsing e-regularity theorem is originally due to Cheeger-Tian in [16].
Recently, in the hyperkéhler case, [46] gives a simple proof by a blow-up argument and
studying complete collapsing limits of hyperkéhler 4-manifolds with bounded curvature.

Theorem 4.1.4. [16] There exists €,c such that the following holds: Let (M*, g) be an
Finstein 4-manifold, |Ric| < 3, r <1, and B(p,r) is a metric ball that has compact closure.

If
/ |[Rm|* <,
B(p,r)

sup |Rm| < er 2.

B(p,3)

then

The following proposition plays an important role. To avoid redundancy, we state it here
without proving, but we will prove a more general version later, see Proposition 5.2.1.

Proposition 4.1.5. Let (M, g) be an hyperkihler 4-manifold. Suppose B(p,5) has compact
closure, B(p,3) contains no integral homology class of self intersection —2, if

vol(B(p,1)) > v,

/ |Rm|* < C,
B(p,3)

then there exists C' > 0, depending on v, C such that

sup |[Rm| < C'".
B(p,1)

The following lemma originally dates back to Koiso in [35], and is an incredibly special
case of the result in [9, 5]. Since it plays an important role throughout the dissertation, we
provide a detailed proof here following [35]. Note that this is a one-sided version of Koiso’s.
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Lemma 4.1.6. Let (M, g) be a connected C* Riemannian manifold with boundary. Suppose
Ricys = 0 and for some open boundary portion T, S|r = 0 and Rmay|r = 0, then g is
smooth and Rmy; = 0.

Proof. Fix any point p in 7. First, we show g can be extended across the boundary near
p. Choose a semi-geodesic coordinate system (x!,--- ™) near p, with M identified with
{z™ = 0}, and interior identified with {z" > 0}, Va™ = 0=, and g¢;;(2/,0) = §;;,1 <
i,7 <n—1, where 2’ = (z!,--- ,2"1). We extend the metric tensor g by reflection across
{z" = 0}, ie., set g;;(a/,2") = gij(a', —2™),1 < i,j <n. Then g € C°(B) N C*(B*), where
BT is the boundary coordinate ball and B is its extension after reflection. We need to show

g € C?(B). In fact, S = 0 is equivalent to gg’,z (2/,0) = 0,1 <i,j <n—1, then we also have

gi” (2/,0) = ggii (2/,0) = 0, hence gg—l,i(x 0) = 0 and g;; € C*(B). Since g € C*(B"), we
haveforlglgn—l,

9 Jgij 0 99, , 0O
dx"t Ox! (#',0) = dxt Oz (#',0) = 81’10 0
0 59” . 0 agij _
ox™ Ox! (2/,0) = ozt Ot (2,0) =0
0 09i5, y o v 1095, ,
ox™ ax”( 7,0) = zgl—%* ﬁ@m”( ")

(4.2)

. 1095, , n 0 0gij, ,
N xilg(; " Oxn (2, 2%) = ozt Oz, («/,0).
Hence g;; € C*(B). Finally, we have g, = 1,91 = g = 0,1 <1 <n —1, hence g € C*(B).
By elliptic regularity, all harmonic coordinate charts in B give rise to a real analytic
structure in B such that g is real analytic. Hence if ¢ is a distance function such that oM
is defined by ¢~!(0) near p, then ¢ is real analytic near p. Choose a real analytic coordinate
(z,t) near p. Since t~1(0) is totally geodesic, 2(z,0) = 0. The evolution equation (2.9) is

' Ot
equivalent to the second order PDE
&g 1, 99,09 09,
=2 —t — 4.3
gz = 2ric g = ot )5 + ) (4:3)

where ric g is the Ricci tensor of level sets of t. By the uniqueness part of Cauchy-
Kovalevskaya theorem, we know ¢(z,t) = ¢(2,0). Hence Rmjy = 0 near p. Since Rmy
is real analytic in the interior of M, Rmjy; = 0 in M.

O

4.2 Convergence of hyperkahler metrics

Now we state and prove our main theorem in the sense of Riemannian geometry.
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Theorem 4.2.1. Let (X, g;) be a sequence of compact, connected hyperkdhler 4-manifold
with boundary, suppose on 0X;, we have

H; > Hy>0,|S| < C, |V H| < Cj,

Z?’LJ@X2 Z ig,diamgdaxi ((9Xz) < It
and x(X;) < C. Assuming there exists no C € Ho(X;,Z) with C? = —2, then there exists a
subsequence such that (X;, g;) converges in Cheeger-Gromov sense to a compact, connected

hyperkdhler 4-manifold with boundary (Xoso, goo)-

Remark 4.2.2. By Chern-Gauss-Bonnet formula, our assumptions imply

/|RmP§O.
X;

Note that for a compact connected Einstein 4-manifold (M, g) with boundary, the Chern-
Gauss-Bonnet formula says

- R 2 _ Ko‘(r

Here Ai, A2, A3 are eigenvalues of the shape operator S of OM, Let e; be eigenvectors of
eigenvalue \; such that {e1, es, €3} is an orthonormal basis, then K;; = sec(e;, e;). See for
example (1.16) in [6].

Remark 4.2.3. If we drop the condition diamgibxi (0X;) < C, and replace H; > Hy > 0
by H; > 0, x(X;) < C by in |Rm,,|> < C, then for any point p; € X; with d(p;, 0X;) <
K, a subsequence of (X;,g;,p;) converges in pointed Cheeger-Gromov sense to a complete
hyperkahler 4-manifolds with boundary (X, goo, Poo)-

Remark 4.2.4. The positive mean curvature condition is necessary. The following coun-
terexample is natural and was observed by Donaldson in [20]. Consider the standard unit
ball B* inside Euclidean R*, “squeeze” the ball such that the north pole and the south pole
of the boundary S® comes together, so we get a sequence of embedded B* in R* converging
in Hausdorff sense to a limit homeomorphic to the wedge sum of two B*, whose boundary is
an immersed S? intersecting itself at one point. For this sequence, all other assumptions are
satisfied except for the positive mean curvature. Slightly modifying the process, one can also
have a sequence of B* of dumbbell shape such that the middle cyclinder B3 x [0, 1] collapses
to [0, 1], then they have a Hausdorff limit which is homeomorphic to two B* joint by a line
segment.

In these types of examples, the curvatures are uniformly bounded, and the global volume
are non-collapsing before taking the limit.
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Remark 4.2.5. If we allow integral homology classes with self-intersection —2 and do not
assume the positive mean curvature condition, something worse will happen: consider the
Kummer construction (See also subsection 3.1.3 Theorem 3.1.13, Remark 3.1.15). Let T*/Z,
be the flat 4-orbifold with 16 singularities, remove small neighborhoods of the 16 singularities,
and glue in 16 copies of T*S%. By varing the sizes of these glue-in regions and perturbing the
metrics, we get a sequence of hyperkahler 4-manifolds (M;, h;), each of which is diffeomorphic
to the K3 manifold, such that (M, h;) converges in Gromov-Hausdorff sense to T*/Z,, and
converges in Cheeger-Gromov sense away from these 16 singularities. Now let 7% /Z, C T*/Z,
be the flat 3-orbifold, such that the last coordinate equal to 0. Let X; C T /Zs be the closure
of the tubular neighborhood of T?/Z, of width =1, then 90X, is connected, totally geodesic,
isometric to the same flat 73. Now for each 7, choose n(i) large enough such that one
can find X; C M,; which are compact domains with smooth boundary, dgm(X;, XZ) — 0,
|V§Xi Sax,| = 0,Vj > 0, 0X; converges in Cheeger-Gromov sense to flat T%. Let g; = hy|x,,
then (X;, g;) converges in Gromov-Hausdorff sense to flat 7% /Z,. In this case, vol(X;) — 0,
sup |Rmy,| — oo, and there is no interior ball in X; of a uniform size.

k3

Note that in this example dX; cannot be perturbed in flat T /Zs to have positive mean
curvature. In fact, take a small tubular neighborhood of dX; of width less than i~!, whose
boundary has two totally geodesic connected components 71, Ty. Suppose dX; can be per-
turbed to 7" such that its mean curvature has a strict sign, say that its mean curvature
vector points towards 77. Then 7", T} bound a region W. By [20] Proposition 7, 7" and T}
are isometric, so T” is totally geodesic, which is a contradiction. However, it is unknown
whether 0.X; could have positive mean curvature or not.

The major step of the proof in Theorem 4.2.1 is to show that these Riemannian manifolds
have a nice neighborhood of definite size. We show that the boundary injectivity radius has
a lower bound, so that the interior geometry within the boundary injectivity radius is nicely
controlled by Theorem 4.1.1.

Proposition 4.2.6. There exists i1 > 0, depending on the constants in Theorem 4.2.1 such
that ib,gi Z 7;1.

Proof. Suppose not, we have a subsequence of hyperkahler metrics g;, with ¢, 5, — 0. Rescale
the metric g, = zb_j gi, then 4,5 = 1. For any point p; € 0X,, the restriction met-
ric (0X;, §ilox,,pi) converges in pointed Cheeger-Gromov sense to flat R?, [S;| — 0 and
|V§;Hi| — 0 uniformly on 0X;. Consider sup |Rmg|. We have two cases
By, (pi,4)
Case 1 sup |Rmy| <C.
Bg, (pir4)
We have a subsequence (Bj,(p;,3), ;) converges in Cheeger-Gromov sense to a Riemannian
manifold with boundary (Bu, 9o ), S0 (Bs, goo) is Ricci flat, and all boundary components
are flat, totally geodesic. By Lemma 4.1.6, (B, o) is flat. We need to choose good points

p; to lead to a contradiction. In fact, by Proposition 2.1.7, there exists p; € dX; such that
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Yp: (1) is a focal point along 7,,. Let ps be the limit of p;. By Proposition 2.1.13, we get a
limit geodesic v, : [0, 1] = B, such that v, (1) is a focal point along +,_, contradiction.
Case 2 For some subsequence we have sup |Rmg,| — oc.
Bg, (pi4)

Then we can find points ¢; € By, (pi,4) such that |Rmg,(¢;)| — co. By Theorem 4.1.1, we have
dg,(q;,0X;) > % for large i. By Theorem 4.1.1, Proposition 2.1.15, and the fact dg, (¢;, 0X;) <
4, we have voly, (Bj, (gi, %)) > vo for some rg, vy. Since there is no integral homology class in
X; with self-intersection —2, then by Proposition 4.1.5, SUDp, (g;,18) |Rmg,| < C, which is a
contradiction.

]

Then we can finish the proof of Theorem 4.2.1 as follows: by Theorem 4.1.1, |Rmy,| is

uniformly bounded in N3, (0X;, ;). By Proposition 2.1.15, there exist r; < {5, v1, such that
2

voly, (By,(p,r1)) > vy for any p with d,, (p, 0X;) = 2r;. By Proposition 2.1.4, sup d,(q, 0X;) <
qeX;

3H, ', hence diam(X;, ;) < C. Then from Bishop-Gromov volume comparison, we know
voly, (By,(p,71)) > ve for any p with dg,(p,0X;) > 5r1. By Proposition 4.1.5, for these p,
|Rm, (p)| is uniformly bounded, with the bound independent of i and p. Hence supy |Rm,,|
is uniformly bounded. Then by Corollary 2.2.15, a subsequence (X}, g;) converges in Cheeger-
Gromov sense to a smooth Riemannian manifold with boundary (X, g), so ¢ is a hyperkéhler
metric.

Remark 4.2.7. It is also possible to prove Theorem 4.2.1 directly by rescaling the maximum
curvature norm to be 1. Suppose that the maximum curvature norm is achieved at point p;.
From Corollary 2.1.9, we know that for the rescaled metrics, 7, > ig. If the distance between
p; and the boundary 0X; is bounded, then the pointed Riemannian manifolds converge in
the pointed Cheeger-Gromov sense to a Ricci-flat manifold with flat and totally geodesic
boundary. Hence, the limit is flat by Lemma 4.1.6, which leads to a contradiction. If, on
the other hand, d(p;, 0X;) — oo for a subsequence, we rescale the metrics again such that
this distance is 1. However, it is not clear whether the curvature is bounded in a fixed-size
neighborhood of the boundary at this scale. Using the idea of Theorem 4.1.1, we can keep
rescaling until this happens at some point, possibly at different points p;. This leads to a
contradiction, which is the same as the one in Case 2 of Proposition 4.2.6. Since volume
lower bounds can be passed within a finite distance, so by Proposition 4.1.5, the curvature
bounds can also be passed within a finite distance.

Alternatively, one can prove Theorem 4.2.1 by rescaling the harmonic radius. All of these
methods eventually turn out to use essentially the same ingredient.

4.3 Local limits

Suppose X is a connected complete metric space, and there exists a finite set ¥ =
{p1,*+* ,Pm},m > 0 such that X'\ is a smooth flat hyperkéhler 4-manifold with nonempty
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boundary, and each boundary component Y7, - -+ ,Y,, n > 1 is isometric to flat R?, X\ U, Y]
is a flat hyperkahler 4-orbifold such that > is the set of all orbifold points. Our goal is to
classify all such X.

The motivation of this problem is the following:

Proposition 4.3.1. Let (X, g;) be a sequence of compact hyperkdhler 4-manifolds with
boundary, such that
g, = 0, and injpx, — 00,

[Si] =0, [Vox,Hi| =0, |V,
uniformly on 0X; for all j > 0, and

[ 1, <c
X;

Then for any p; € X; such that dg,(p;, 0X;) < K, a subsequence of (Xi, gi,pi) converges in
the pointed Gromov Hausdorff sense to a complete metric space (Xo,doo, Poo). The limit
(Xoo, doo) satisfies all the properties of X stated above.

By Theorem 4.1.1, the geometry near boundary is nicely controlled, so this theorem is a
consequence of [4, 8, 48] etc.

Remark 4.3.2. In Theorem 4.2.1, under the mean positive condition, if we allow homology
class of self-intersection -2 in X, then we are unable to show that i, 4, has a lower bound. In
fact, the bad case is that focal points are exactly those curvature blow-up points, and they
approach the boundary in a moderate rate. However, we can say something within the scale
of the boundary injectivity radius. Suppose 7,4 — 0, then we rescale the metric such that
the boundary injectivity radius becomes 1, then the rescaled metric satisfies the assumption
of Proposition 4.3.1.

Theorem 4.3.3. We must have (m,n) € {(0,1),(0,2),(1,1)} and X is isometric to one of
the following:

e (m=0, n=1) R%;
e (m=0, n=2) the region in R* bounded by two parallel hyperplanes;

e (m=1, n=1) the connected component of 0 in (R*\ H)/Zo, where H is a hyperplane
such that 0 ¢ H.

Proof. Consider another copy of X, glue them together along Y1,--- ,Y,, we get a complete
flat hyperkahler orbifold X = X Uia X,0d - UL Y, — UL Y; C X, Wh1ch contains Yi,---,Y,
as smooth hypersurfaces. Then X is a (SU(2),R*) orbifold in the sense of [47]. Let X be
the universal covering orbifold of X then we have a developing map D : X — R*, and since
X is a complete orbifold, D is a covering map. Hence X is homeomorphic to R4 and X is
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isometric to R*/T", where I is a discrete subgroup of R* x SU(2). Let r be the projection
map to the second factor, then r(I") is a finite subgroup of SU(2), and we have a short exact

sequence
0—-TNR*—=T — () —0.

Then rank(I' NR*) < 1, since otherwise X is a quotient of R? x T and cannot contain a flat
R3 as a Riemannian submanifold.

If TNR* = {0}, then X = R*/r(I") and hence (') = {1}, since otherwise X has exactly
one orbifold point, contradiction. Hence, m = 0,n = 1 and X is isometric to ]Ri.

If TNR* = Za for some 0 # a € R*, let 7 : R* — R*/T" be the covering map, then 7*(Y})
is a complete totally geodesic submanifold of R*, hence a countable disjoint union of parallel
hyperplanes. Pick one of them, denoted by Z, then 7=*(Y}) is a disjoint union of v.Z for
v € T'. Suppose Z is defined by b’z +c = 0, then y~1.Z is defined by b'r(y)x +¢ = 0. Since
they are parallel to each other, b© = £b7r(~), and hence #1 is an eigenvalue of 7(v), which
forces r(y) = £1, as r(y) € SU(2). Hence r(I') = {1} or 7(I') = Z,. If r(I') = {1}, then I is
generated by z +— x +a, so m = 0,n = 2 and X is isometric to the region in R* bounded by
two parallel hyperplanes; If 7(I") = Zy, then I" is generated by z +— —x +d and x — = + a
for some d € R. Hence m = 1 and R*/T'\{Y1,Y,,---,Y,} has n + 1 connected components.
But from the gluing construction and that X is connected, we know X \{Y1,Ys, -+, Y,} has
exactly two connected components. Hence n +1 = 2,n = 1, and X is isometric to the last
case in the conclusion.

]

4.4 Einstein 4-manifolds with boundary

Our arguments for hyperkahler 4-manifolds can actually be generalized to Einstein 4-
manifolds.

Theorem 4.4.1. Let (M, g) be a compact, connected Einstein 4-manifold with boundary,
|Ric| < 3. Suppose RP* cannot be smoothly embedded in M\OM, and for k = 0,1,

S| < C,|Vhy Rman| < C,|VESH| < O H > Hy > 0, ingyy, > do, volgpr(0M) < C,

X(M) < C. Then there exists i, such that i, > ij. If in addition Ric > 0, then one can
replace H > Hy >0 by H > 0.

Proof. The Chern-Gauss-Bonnet formula together with equations (2.6) and (2.7) imply
[y IRm|*> < C. Suppose the conclusion is not true, then we can find a sequence (M;, g;)

such that i, 5 — 0. In particular, ¢ 5, < —% In ’gg;g!, hence by Proposition 2.1.8, there ex-

ists focal points p; € M; whose distance to OM; is equal to 4 5,. Rescale the metric g; = zb_; Ji,
so that ¢4, = 1. From now on we are in the scale of g;.

Let ¢ be any point on dM;. By Lemma 4.4.3 below and Corollary 2.2.15, we know
C(Ba,(q!,1),0,0.9999) converges in C?< sense to the flat product metric on By x [0, 0.9999).
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It follows that vol(B(q},0.01)) > 0.4vol(Bo1) for any ¢, with d(q;,0M;) € [0.999,1.001],
where By is the Euclidean ball of radius 0.01. Hence, by Proposition 4.4.4 we have
SUPp(p;,0002) | Bm| < C. Let ¢; be a foot point of p;. Then C(Baar(g:,0.0001),0,0.9999) U
B(p;,0.001) converges in C* sense to the a Ricci-flat metric with flat totally geodesic bound-
ary, hence the metric must be flat by Lemma 4.1.6, which contradicts the fact that p; is a
focal point of OM;.

[

Remark 4.4.2. The point here is in the scale of g;, the volume of a metric ball near the focal
point p; have volume greater than Euclidean half ball of the same radius. Then nearly the
focal point, the worst case is that we get a R*/Z, singularity in the limit, which is avoided
by the topological assumption.

The lemma presented below is analogous to Theorem 4.1.1, and the proof is very similar
except for the step of ruling out the bubbles, as integral homology class of self-intersection
—2 does not arise naturally in Einstein case.

Lemma 4.4.3. Let (M;,g;) be a sequence of complete Einstein J-manifold with compact
boundary, such that RP* cannot be smoothly embedded in N;,(OM;, ;). Suppose |Ricg,| — 0,

.. . . L ka1l
1Si| = 0, injons, — 00,1pg, > o, |Von, Rmans| — 0, |V8j\'/[in-|Lip(aMi) —0,k=0,1,

and

| Rm,p<c
M;

Then for any r1 < ig,
— 0.

sup |Rmy,
er (BM,gi)

Proof. Without loss of generality, assume i = 1 and r; > 0.9999. Denote a = r, 8 =
%(1 — a). It suffices to show

sup |Rmy,| < C". (4.4)
No(0M,g;)
This implies sup |Rmy,| — 0 and one can take a larger r; to get the desired conclusion.

No—p(0M;,g:)

In fact, suppose sup  |Rmy,| is achieved at s; € M; with dg,(s;,0M;) < o — 3, let
No—p(0M;,g:)

si € OM; be the foot point of s;, then by Corollary 2.2.15 and Lemma 4.1.6 we know
(By, (i, o0 — 1), 9;) converges in C** sense to Euclidean B;r_lﬁ, SO sup  |Rmyg,| =
2 Na—p(0Mi,g:)
|Rmy,(s;)] — 0.
Now we argue by contradiction to prove (4.4). Suppose this is not true, then by passing
to a subsequence we may assume

sup  |Rmyg,| — oo.
Na(aMiygi)
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Let p; € N,(OM;, g;) achieves this supremum, then p; ¢ dM,;.
Claim 1 There exists a subsequence such that

dq, (pi, OM;)* | Ry, (pi)| — oo. (4.5)

If this is not true, we have sup; dg, (p;, OM;)?|Rmy,|(p;) < co. Rescale §; = |Rmy, (p:)|gi, then

|Rmg,(pi)| = 1, and |Rmg,| <1 in Na|ngv(pi)|%(8Mi,§,~), and sup; dg, (p;, 0M;) < 00, i3 >

|Rmy, (p:)|2 for all i. Hence (M;, g;, p;) subconverges in pointed C%* sense t0 (Moo, foos Poc ),
which is a complete Ricci-flat 4-manifold with flat, totally geodesic boundary, hence must
be flat by Lemma 4.1.6. This contradicts that |Rmg_ (pso)| = 1 and proves Claim 1.

Now rescale g; in another way, let gi = dg,(pi, 0M;)?gi, so dy/(p;,0M;) = 1. Since
dg, (pi, OM;) < «, the rescaled metric g; satisfies iy, > a1 as well as other conditions in this
lemma. Moreover, (4.5) is equivalent to |Rm, (p;)| — oo.

By the e-regularity theorem of Cheeger-Tian [16], there exists a universal constant ey
such that for sufficiently large 7,

/ |[Rmg [ > e.
By (pi,f)

9;
Claim 2 There exists a subsequence such that

sup |Rmg| — oo,
No(0Mi,g!) ‘

If not, we have sup |Rmy| < C. Hence, we have ~ sup  [Rmgy| — 0, which follows
Nae(aMing Na—,B(aMivgg)

from the argument presented at the beginning of the lemma.
By Bishop-Gromov volume comparison and note that |Ricy| — 0, we have

vol(By; (g, 5)) vol(By(g;, 0.1))
wol(Bs) = Y vol(Boy)

> 0.36

for any q; with dg (g, 0M;) € [1 — 58,1+ 58]. Note that By (pi, 3) C Na-1(asp)(0M;, g;) C
Noyp(OM;, gi). By Proposition 4.4.4, |Rmy (p;)| is bounded, which is a contradiction to
Claim 1 and finishes the proof of Claim 2.

Now Claim 2 enables us to obtain, by induction, for each fixed positive integer N, N
sequences of metrics gl-(o) = Yi 91-(1) =4q,... ,ng), and points pgj) € Na(aMi,g(j)) for 0 <

jJ<N-—-1, p(o) = pi,pgl) = p;, such that for 0 < j < N —1, p(j) achieves the supremum of

7 7

|ng(j)| in Na((‘?Mi,gl(])), and

[Rm ) (pi)| = o,

gz(jﬂ) =d o (Pl(j), 3Mi)729§j)a
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d o (p,0M;) = 1,

2
/ " [Bm i+ ]" > €,
Bg(j+1)(P¢J 75) ‘

B §j+1)(p§j)75) C Nafl(a_i_ﬁ)(aMi’gZ(j-&-l)) C Na+5(aMi’g§j))’

g

BQQ*U (pz(j)v ﬁ) N NaJrﬁ(aMi’ gi(j+1)> = @

Consequently, for any fixed 7, the union of the balls ij;()l Bg(j+1) (pl(j ), B) consists of non-
overlapping balls. Additionally, since [,, |Rmg,|* < C, we have Ney < C. However, this
contradicts the fact that N can be any positive integer. O]

The Proposition below is used to rule out certain bubbles in Einstein manifolds.

Proposition 4.4.4. Let (M, g) be a Einstein 4-manifold with |Ric| < 3. Suppose B(p,5)
has compact closure, RP® cannot be smoothly embedded in B(p,5), and for any q € B(p,2),

vol(B(g,1)) > (% 4 6)vol( By) (4.6)

Then there ezists a constant C' = C(§) such that

sup |Rm| < C.
B(p,1)

Proof. Suppose the conclusion is not true, then we have a sequence (M;, g;, p;) satisfies the
conditions, but there exists ¢, € B(p;,1) with |Rmy,(¢;)] — oo. By the following point
selection Lemma 4.4.5, we can find points ¢; € B(p;,2) such that |[Rmy,(¢:;)| > |Rmy,(q})],
and
Sup ) [Rmg,| < 4[Rmyg,(q;)]-
By, (qi,|Rmg, (q;)|2 |[Rmg, (¢:)| ™ 2)

Rescale the metric g; = |Rmy,(g:)|g;- Then we have for large 1,

sup |Rmg,| < 4,
B, (i, Rmy, ()] 2)

1 9 1
volg (B, (a0, 7) 2 (5 + $)vol(By), ¥r < |Rimy, (0|2,

Hence, for a subsequence, (M;, g;,q;) converges in pointed C** topology to a complete
non-flat Ricci-flat 4-manifold (My, goo, Goo) With maximum volume growth. By Cheeger-
Naber [15] and Bando-Kasue-Nakajima [8], M., is a Ricci-flat ALE space whose tangent
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cone at infinity is R*/Zs, hence RP? can be smoothly embedded into By, (pi, 5) for large 1,
which contradicts our assumption.
]

The following point selection lemma is well-known and elementary. The argument holds
for any function in place of |Rm)|.

Lemma 4.4.5. Let (M, g) be a Riemannian manifold. Suppose sup |Rm| < oo, |[Rm(p)| #
B(p,2)
0. Then there ezists a point ¢ € B(p,2) such that |Rm(q)| > |Rm(p)|, and

sup |Rm| < 4|Rm(q)|.
B(g,|Rm(p)| 2 |Rm(q)| " 2)

Proof. If this is not true, let A = \Rm(p)ﬁ, then there exist ¢y € B(p,2) such that
d(q1,p) < 1 and |[Rm(q)| > 4|Rm(p)| = 4A%. By induction, we can find a sequence of points
: _i iy
Qo = P, q1: G, -+ With d(gji,q5) < |Rm(g;)["2 A, d(gj41,p) < 2 —277 and |Rm(gj)| >

4|Rm(q;)] > 471 A%, This is an obvious contradiction since sup |Rm| < oo. O
B(p,2)

Condition (4.6) does not arise as natural for interior balls, as we cannot in general get
a precise volume estimate. To rule out interior bubbles for Einstein manifolds, we need
additional topological conditions, as indicated in [11].

Proposition 4.4.6. Let (M, g) be an oriented Einstein 4-manifold with |Ric| < 3. Suppose
B(p,5) has compact closure and embeds smoothly as an open subset of a homology 4-sphere,
Hy(M,R) =0 and for any q € B(p,2),

vol(B(q,1)) > vp.
Then there exists a constant C' such that

sup |Rm| < C.
B(p,1)

Proof. This follows from the arguments in [11] and we refer there for details. If the curvature
blows up, the same arguments as in Proposition 4.4.4 imply that there exists a oriented
non-flat 4d Ricci-flat ALE space E that can be smoothly embedded in an open subset of
B(p,5) C a homology 4-sphere, then a topological result of Crisp-Hillman [18] implies the
boundary at infinity of F is diffeomorphic to S3/T", where I is the group Qg or the perfect
group. As the universal cover of E is also a Ricci-flat ALE space, we know E must have
finite fundamental group, hence H;(E,R) = 0. By our assumption Hy(M,R) = 0 and the
Mayer-Vietoris sequence, we know Hs(FE,R) = 0. By a result of Shen-Sormani [44], we know
H3(E,Z) = 0. Since E is an open 4-manifold, Hy(E,R) = 0, so x(£) = 1. This contradicts
the Chern-Gauss-Bonnet formula and the signature formula applied to E by computing the
n-invariant of S3/T" when I = Qg or the perfect group. O
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Now follow the proof of Theorem 4.1.1 we obtain the following:

Theorem 4.4.7. Let M be the set of pointed compact Einstein 4-manifolds (M, g,p) with
boundary such that |Ric| < 3, RP® cannot be smoothly embedded in M\OM, OM is diffeo-
morphic to S®, for k =0, 1,

UOlaM(aM) S C, |S‘ S C, |V5MRmaM| S C, ]V(’;JJ(}H] S C, injaM Z io, H Z H() > 0,

Then M is precompact in pointed Gromov-Hausdorff topology, and an element in OM is a
complete C*“ FEinstein orbifold with smooth boundary, Vo € (0,1), and the convergence to
the limit is C** away from finitely many orbifold points.

Proof. The Chern-Gauss-Bonnet formula imply [, [Rm[*> < C. By Theorem 4.4.1, we know

iy > ig. Hence Nz (OM, g) is diffeomorphic to S* x [0,1] C S*. Following the proof of

Theorem 4.1.1 we k3now that sup |Rm| < C, where we use Proposition 4.4.6 to rule out
Nig (97M.9)

Ricci-flat ALE bubbles. So by Proposition 2.1.15 and Bishop-Gromov volume comparisons,

we know that for any fixed R > 0, vol(B(q, d(q,0M))) > vrd(q,0M)* for any ¢ € M with

d(q,0M) < R. Then the conclusion follows from Corollary 2.2.15 and [4, 8, 48]. O

Also, we are ready to prove the Theorem 1.0.5 listed in the introduction:

Proof. Topologically glue two identical copies of M along OM, we get a homology 4-sphere
by Mayer-Vietoris sequence. Then follow the proof of Theorem 4.4.7 and use Proposition
4.4.6. O
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Chapter 5

Convergence of triples

5.1 Moduli space formulation

Now we turn to the setting of Theorem 1.0.2. X will denote a compact oriented 4-
manifold with boundary 0X =Y. Let N be the set of closed framings v = (71,72,73) on
Y that satisfies the “positive mean curvature” condition

3
Z<%‘7 d(%47%i))~ > 0. (5.1)
i=1

Let M™ be the set of smooth hyperkéhler triples w = (w;, wq,w3) whose restriction to the

boundary lies in N'*, so we have a restriction map py : M+ — N+, which induces a map

p:M"/Gx = NT/Gy. (5.2)

Here M™, Nt are equipped with Fréchet topology defined by smooth convergence, Gx, Gy
are orientation preserving diffeomorphism groups of X, Y, respectively. It is obvious that p,
p are continuous. Then the compactness part of Theorem 1.0.2 is equivalent to:

Theorem 5.1.1. When there is no C € Hy(X,Z) with C* = —2, the map p : M /Gx —
N7 /Gy is proper.

Proof. Suppose that for some ¢; € Gy, and v; € N, we have ¢fv; — v € Nt and there
exist w; € M™ with w;|y = «;. We want to show that there exists ¢); € Gx and w € M™ such
that ¥fw; = w. Let g; be the Riemannian metric defined by w;. By the assumptions, we
have a uniform positive lower bound for the mean curvature H; of Y for the metric ¢; = g,
and bounds for |V4.S;| for all [ > 0. Moreover, (Y, g;ly) converges in the Cheeger-Gromov
sense. Hence, (X, g;) satisfies all conditions in Theorem 4.2.1. Then, for a subsequence,
there exists a diffeomorphism 1, : X — X such that 1} g; — ¢g smoothly as tensors. One can
assume that ; is orientation-preserving; otherwise, for a subsequence, compose them with
a fixed orientation-reversing diffeomorphism of X. Since [1fw;|? = 3, fw; is parallel. We
conclude that for some subsequence, ¥fw; — w smoothly, and w € M™.
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5.2 Enhancements

For the proof of the compactness part of Theorem 1.0.3, one only needs the following
proposition in place of Proposition 4.1.5. Then we argue in the same way as the proof of
Theorem 1.0.2.

Proposition 5.2.1. Let (M, g,w) be a hyperkihler 4-manifold. Suppose B(p,5) has compact
closure, and for any homology class X of self intersection —2 in B(p, 3),

‘/w‘2a>0,
by

vol(B(p,1)) = v,

/ Rml? < C.
B(p,3)

Then there exists C' > 0, depending on a,v,C such that

sup |Rm| < C'.
B(p,1)

Proof. For all ¢ € B(p,2), by volume comparison, we have
vol(B(q,1)) > 3~*vol(B(q,3)) > 3 *vol(B(p, 1)) > 3~ *v.

Suppose the conclusion is not true. Then we have a sequence (M;, g;,p;) that satisfies the
conditions, but there exists ¢, € B(p;, 1) with |[Rmy,(¢.)] — oo. By the point selection
Lemma 4.4.5, we can find points ¢; € B(p;, 2) such that |Rmy, (¢;)| > |Rmy,(¢})|, and

SUIl) L |ngz| S 4|ngz(Qz)|
By, (gi;|Rmg, (a;)| 2 |Rmg, (:)|~ 2)

We rescale the metric §; = |Rmy,(¢;)|g; and @; = |Rmyg,(¢;)|w;, so @; defines g;. Then we
have

sup |Rmg,| < 4,
By, (ai,| Rmg, (a))?)
‘ngz(%ﬂ - 17

V01§i<B§i(Qi7T)) > 3_4UTH,\V’T < |ngl(ql)|%7

/ 1 ‘ngi ? S/
By, (qi,|Rmg; (:)|2) Bg, (pi,3|Rmyg; (g:)

and
2< .

’ ngi

NI

)
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Hence, for a subsequence, (M;, §;, ¢;) converges in Cheeger-Gromov topology to a complete
non-flat hyperkéhler 4-manifold (M, goo, §oo) With maximum volume growth and

/ |Rmy,__|* < C.
Moo

Since w; are parallel, and |@;|* = 6, @; also subconverges to a hyperkéhler triple w,, that
defines go. By [8], (M, gs) is a hyperkdhler ALE space of order 4. Hence, from Kron-
heimer’s classification [37, 36|, there exists a smooth 2-sphere C, of self intersection —2 in
By (goo, R) for some R > 0. Let ¢; : By (¢oo, R) — V; C M; be diffeomorphisms, such that
Pf@; = ws smoothly. Let C; = (¢;).Cx, then C; is a homology class of self-intersection —2
in By, (p;, 3) for large ¢ and

[ wi= B @) [ = By [ oo
C; C; Coo

which contradicts our assumption.

|2

5.3 Uniqueness

It is natural to ask whether a subsequential limit w is unique(up to a diffeomorphism)
in Theorem 1.0.2, Theorem 1.0.3. The answer is yes. In fact, both [9] and [5] proved
a unique continuation theorem for Einstein metrics with prescribed boundary metric and
second fundamental form, which implied uniqueness in our case.

Biquard proved

Theorem 5.3.1. [9] Let M be a compact smooth manifold with boundary. Let g,h be two
smooth Riemannian metrics on M such that gloyy = hlom and 11, = 11, on OM, then
exvk (at) = Pexp(z,4) @S pointwise inner products for (z,t) € OM x [0, min{iyg, ipn}).

Proposition 5.3.2. Let X be a connected oriented 4-manifold with boundary. Suppose w;
and wy are two smooth hyperkihler triples on X. If wilox = walox, then in the geodesic
gauges of g, and g.,, we have wy = wsy near 0X.

Proof. We have g, |ox = gu,lox and Iy, = Iy, on 0X. By Theorem 5.3.1, in the geodesic
gauges provided by expt, we have g,, = g, := ¢. Since w; and w, are parallel, we have
VI wy — w2|§ = 0, since w; = ws on 0X. Therefore, w; = wy everywhere near 0.X. O

Now the following global uniqueness result follows from an analytic continuation argu-
ment (See [33] Chapter VI, Section 6):

Theorem 5.3.3. Let X be a connected 4-manifold with boundary such that m(X,0X) =
0. Suppose wi,ws are two smooth hyperkahler triples on X, and ¢g : 0X — 0X is a
diffeomorphism, such that wi|ox = ¢§(walax), then there exists a diffeomorphism ¢ : X —
X, ¢lox = ¢o such that w; = ¢*wy on X.
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Remark 5.3.4. This theorem implies that the map p : M*/Gx — N*1/Gy defined in
section 5 is injective, provided that M™ is nonempty, so one must have 71 (X,0X) = 0 by
Proposition 2.1.4.

Proof. By the Proposition 5.3.2, there exists a collar neighborhood U of 0.X and a diffeomor-
phism ¢; : U — V C X such that g, = ¢gw,, ¢1lox = ¢o. Since gu,, gu, are real analytic,
¢1 is real analytic. Fix pg € U and a small neighborhood Uj of py in X. For any p € X\0X,
choose a path x(t),0 <t < 1 such that z(0) = po, (1) = p,z(t) € X\0X, then an analytic
continuation of the isometry ¢y, along x(t) gives rise to an isometry defined near p. We
claim that if we have two paths and two analytic continuations, then they define the same
germ at p. In fact, one only needs to show that for the closed path yo(t) formed by con-
catenating these two paths, the isometry near py given by an analytic continuation of ¢y,
along yo(t) has the same germ as ¢ |y, at po. Since m (X, 0X) = 0, yo(t) can be homotoped
to a path y;(t) contained in U via paths ys(¢) in X\0X, such that y,(0) = ys(1) = po. Since
¢1 : U — V is a globally defined isometry, by uniqueness of analytic continuation, we know
that any analytic continuation of ¢4y, along y;(¢) must coincide with ¢;, which finishes the
proof of the claim by invariance of analytic continuation via homotopy. This shows that
¢1 : U — V can be extended to a global isometry ¢ : X — X by analytic continuation.
Hence w; = ¢*ws. O

Given the compactness result Theorem 5.1.1, Theorem 5.3.3, together with the theorem
of Ebin-Palais on properness of diffeomorphism group action on the space of Riemannian
metrics on a closed manifold (See [23]), one can complete the proof of Theorem 1.0.2, The-
orem 1.0.3 as follows:

Suppose we have two sequences of diffeomorphism ¢;,1; of X such that ¢jw;, — w,
Yiw; — W' then (¢ilox)™vi — wlox, (Yilox)™y: — Ww'lox, where v; = wilox. Since ~;
converges to 7 in Cheeger-Gromov sense, there exists diffeomorphisms u; : 0X — 90X such
that ulvy; — ~. By the theorem of Ebin-Palais, we have for a subsequence (¢;|ox)! o
ui, (Vi]ox) ! o u; converge to some diffeomorphisms u,u’ on X, respectively(because their
inverses converge). Hence we also have uvy;, — w'wl|ox, ufv — (¢')'W'|ox, so wlox =
(v ou)*w'|sx. Note that the positive mean curvature condition implies that (X, 9X) = 0
(See Proposition 2.1.4), then by Theorem 5.3.3, there exists a diffeomorphism ¢ on X with
W' = prw.
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5.4 Torsion-free hypersymplectic manifolds with
boundary

5.4.1 Preliminaries

Recall that a hypersymplectic triple w = (w;, w2, ws) on an oriented 4-manifold X with
boundary is a definite triple of symplectic forms. Write

Ws VAN Wy = QQZJM

Denote Q = (Qy5), @' = (QY), and g = g,, the Riemannian metric. Recall that w is called
torsion-free if for each 1, B

AQ ;) =0, (53)
which is equivalent to B

dQV Nw; = 0. (5.4)

Let us begin with some arguments and results in [25]. Let Sym-o denotes the set of
symmetric positive-definite 3 by 3 matrices. There are two Riemannian metrics on Sym-~:
the first one is the Euclidean metric

(A, B) = Tr(AB), (5.5)

and the second one is the symmetric space metric, which has non-positive sectional curvature
(A,B)o =Tr(Q™'AQ™'B) (5.6)

at each point () € Sym-.

Then Q can be regarded as a map Q : X — Sym~g. Let AQ, AQ denote the harmonic
Laplacian of this map with respect to (5.5),(5.6), respectively. Explicitly, their components
are related by

(AQ)y; = AQi; — Q¥™(dQir, dQuj), (5.7)

For a hypersymplectic triple w, the calculations in [26] showed that the torsion-free
condition is equivalent to

A 1

AQ =0, Ric = Z<dQ ® dQ)q, (5.8)
where (dQ ® dQ)q(u,v) = (V,Q,V,Q)q. Hence if w is torsion-free, then Q is a harmonic
map with respect to (5.6) and Ric > 0. Then the scalar curvature R of g is

1
= Z'dQlZ) > 0,

which is a multiple of the energy density of the harmonic map Q. Take the trace of (5.7),
we get
ATrQ = Q"(dQxp, dQqr) > 0. (5.9)
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Moreover, [25] showed that the function R satisfies the inequality
1 5 1 4
RAR > §|VR| + §R , (5.10)
hence a contradiction argument implies that everywhere

AR > 0. (5.11)

Then they used standard geometric analysis arguments for inequality (5.10) and the fact
Ric > 0 to conclude

Theorem 5.4.1. [25] Suppose (X, g, w) is a torsion-free hypersymplectic manifold, B(p,r) C
X has compact closure, and OB(p,r) # 0, then R(p) < % In particular, if g is complete,
then there exists a constant matriv B € SL(3,R) such that wB is a hyperkdhler triple.

5.4.2 Compactness for the boundary value problem

Now suppose X is an oriented 4-manifold with compact boundary Y = 0.X, then through
the boundary exponential map, a neighborhood U of Y is diffeomorphic to Y x [0,a). Let
t denote the distance function d(-,Y), i.e., the projection Y x [0,a) — [0,a), then in U, w
can be written as

w = —dt A\ xy, 7y + V.

where Y; =Y x {t} and %y, is the Hodge star operator of g|y,. w being closed is equivalent
to

dy,ye =0, (5.12)
0
% = —dy, (*v,"e)- (5.13)
(5.4) is equivalent to
ij 0QV
dy, Q7 N *y,yej + W'Yt,j =0, (5.14)
dy,Q” N = 0. (5.15)

Note that (5.14) is equivalent to

0Q" _ dy, Q™ Ny N sy,
825 VOlt

, (5.16)

where vol; = m:1 A ma A s and equals to the Riemannian volume form of gly,. From
calculations in Lemma 3.2.1 and (5.13), (5.16) , it is easy to see that the second fundamental
form I1(e;,e;) is in algebraic terms of n, doxm, Q, dox Q.

Now let us try to prove Theorem 1.0.4, starting with basic observations. In Theorem
1.0.4, suppose w;|ox,Q; converge in Cheeger-Gromov sense to the limit, then we have
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diam(aX7 gi|<9X) < C, VOlgi(aX) < C, injaX»QibX > 1o, |vg9XRmaX7gi| < Oj’ |vg9XSZ| < Cj'
By (5.11) and maximum principle, R; is uniformly bounded on X, so |Ricg,| is uniformly
bounded on X since Ric, is non-negative and its trace is uniformly bounded. Due to
the uniform mean positive curvature condition, and Ricgy, > 0, we have an upper bound of
sup dg, (p, 0X), vol,, (X) by Proposition 2.1.4, and in particular an upper bound of diam(X, g;).
peX

The Chern-Gauss-Bonnet formula thus gives an upper bound of [, [Rmy,|*. Also, by (5.9)
and maximum principle, TrQ); is uniformly bounded on X, so Q; is uniformly bounded on
X and then |dQ;| is uniformly bounded on X.

Given these conclusions, we need to verify that all propositions that were used to prove
Theorem 1.0.3 adapt to the torsion-free hypersymplectic setting. Firstly, we digress to discuss
elliptic regularity for torsion-free equations (5.8). In harmonic coordinates in By or By, view
g as a 4 by 4 matrix of functions, then we have a system of PDEs in ¢, Q:

AyQr — QP(dQpp, dQq)g = 0, (5.17)

1
Dggij + Bij(9,09) = —5Q"Q"0,Qnc0;Qua (5.18)

From this, by a boostrapping argument, one sees interior regularity: fix € (0,1). If Q is
C"' bounded, ¢ is C'* bounded, and they are uniform positive on Bs, then all derivatives
of Q and ¢ are bounded. For boundary regularity, there is no techinical difficulty to get
the following version from Neumann boundary conditions (2.33),(2.34): if all tangential
derivatives of Q, g, H are bounded on B,, and Q is C! bounded, ¢ is C** bounded, and
they are uniformly positive on By, then all derivatives of @ and g are bounded in B;". If in
both cases, we also assume g is C*# close to identity in B, or By, then similarly, g is C*
close to identity for any « € (53, 1).
Following the proof of Theorem 2.2.11, we get the following two propositions.

Proposition 5.4.2. Let (X, g,w) be a torsion-free hypersymplectic manifold and B(p,r) is
a metric ball that has compact closure, B (p,r) # 0. Suppose for any q € B(p,r),

injq = cd(q,0B(p,r)),
TrQ,R < C.
Fix A > 1,0 < a <1, then for any k >0, q € B(p,r),
" (¢,9,A) = Cid(q, 9B(p, 7).
In particular, |V*Q| < C} in B(p, %).

Proposition 5.4.3. Let (X, g,w) be a compact torsion-free hypersymplectic manifold with
boundary. Suppose
iy > 1o, iNJx = o, iNjox = o,
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On 0X we have
TrQ, R < C,|Vhx Rmox| < Cy, [VixS| < C;, Vi Q| < C;,Vj > 0.
Fix A>1,0<a<1, then forany k >0, g € X,
(a0, 9,A) > O

From this we conclude Proposition 5.2.1 holds for torsion-free hypersymplectic manifolds
(X, g,w), provided an upper bound of TrQ in B(p,5).

Proposition 5.4.4. Let (M,g,w) be a torsion-free hypersymplectic manifold. Suppose
B(p,5) has compact closure, and for any homology class ¥ of self intersection —2 in B(p, 3),

‘/w‘2a>0,
by

vol(B(p,1)) > v,

/ Rm[2 < Oy,
B(p,3)

sup TrQ < Cs.
B(p,5)

Then there exists C' > 0, depending on a,v,Cy,Cy such that

sup |Rm| < C'.
B(p,1)

Proof. The proof is almost the same as there. Let us list the ingredients here:

e We have Bishop-Gromov volume comparison, since Ricy, > 0,
e Before rescaling, R;, |Ricg,| are automatically bounded by Theorem 5.4.1.

e For the rescaled metric g;, the curvature bound and the volume non-collapsing con-
dition imply injectivity radius lower bound on compact sets, hence by Proposition
5.4.2, we have harmonic radius lower bounds as well as bounds for derivatives of Q;
on compact sets, so we have pointed Cheeger-Gromov convergence of a subsequence

(Mia i, Wi, qi)'

e The limit w,, is a hyperkéhler triple up to a constant SL(3,R) rotation, because gu.
is scalar flat, or because of Theorem 5.4.1.

So, we get the contradiction in the same way as in Proposition 5.2.1. O]
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With the above three Propositions as tools and e-regularity, argue the same way as in
Theorem 4.1.1, one gets an analogous version of Theorem 4.1.1, i.e., curvature control within
1p, assuming , > .

Now one can finish the proof of compactness part of Theorem 1.0.4 by the same arguments
as the proof of 1.0.3 . Note that Ric > 0, H > 0 is enough for the focal point argument.

Remark 5.4.5. We make a remark about the proof of e-regularity for torsion-free hyper-
symplectic manifolds here. Firstly, the proof in [46] Theorem 3.21 directly applies to this
case by using Theorem 5.4.1. Alternatively, we can apply Remark 8.22 in [16] to conclude
that g has C'® bounded covering geometry when curvature L? norm is small. By (5.8), we
have |VRic| < C, hence g has C** bounded covering geometry and | Rm| is bounded.

For the convenience of the reader, we provide some details based on Sun-Zhang’s proof
of e-regularity [46] on hyperkéhler 4-manifolds.

Lemma 5.4.6. (e-reqularity) Given K > 0, there exists constants €y, C' depending on K such
that if (M, g,w) is a torsion-free hypersymplectic manifold and B(p,5) has compact closure,

sup R < K,
B(p,5)

/ (Rm? < e,
B(p,5)

sup |Rm| < C.
B(p,1)

then

Proof. Suppose this is not true, then we can find a sequence (M;, g;, w;, p;) with

sup R, < K,
Bgz(plv5)

/ | Rmy,
Bgi (pi75)

sup |Rmyg,| — oo.
B‘h(phl)

250,

but

Denote A; = sup |ng¢|é and suppose this supremum is achieved at p}. By the point
Bgi(pi,l)
selection Lemma 4.4.5 we can find points ¢; € B, (p}, 2) such that |[Rmy,(¢;)| > A? — oo and

sup L |Rm91| S 4|ngz(Q’L)|
By, (qi,Ai|Rmg; (¢:)|” 2)
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Then rescale the metric §; = |[Rmy,(g;)|g; we have
|Rmg,(q:)| = 1,

sup |Rmg,| < 4,
Bg, (g:,A:)
sup R — 0,
By, (9i,4:)

/ ’Rm?h
By, (gi,A:)

For a subsequence one can take pointed Gromov-Hausdorff limit of (M;, g;, ¢;) to a complete
metric space (Xoo, doo, Goo)-

If dim X, = 4, the sequence is volume non-collapsing and the limit (X, doo, Goo) 18
a complete hyperkéhler 4-manifold with |Rmg,(¢;)| = 1 and [y |Rmg[* = 0, which is a
contradiction.

If dim X, = 1,2, or 3, then the sequence is collapsing with bounded curvature and
Cheeger-Fukaya-Gromov theory [13] together with its improvement for hyperkahler 4-manifolds
developed in Section 3 [46] applies. It is easy to see that Proposition 3.1 in [46] is still true,
since we only need the limit geometry of the local universal cover to be hyperkahler. There-
fore, X, is a smooth, complete Riemannian manifold endowed with some additional global
structure. Certain types of Liouville theorems imply that X, is flat. Moreover, the explicit
expression for hyperkahler triples with nilpotent symmetry implies that the limit geometry
of the local universal cover is flat, which contradicts |Rmg,(¢;)| = 1.

2 50.

[]

5.4.3 Uniqueness
Finally, we prove the uniqueness part of Theorem 1.0.4.

Proposition 5.4.7. Let wy,wy be two torsion-free hypersymplectic triples on an oriented
4-manifold X with compact boundary. Suppose y1 = 2, Q1 = Q2 on 0X, then w; = wy in
geodesic gauges of g., near 0X.

Proof. w; defines a torsion-free Gy structure ¢; on X x T2 via (1.1), which defines a warpped
product metric

9¢; = Gu; T Qz’jdtidtj' (519)

In the geodesic gauge of g, , write
w; = —dt N xy,ve + 7,
where ¢ is the distance function dy,, (-,0X), Y} is the level set of ¢. Hence

¢i = —dt N O + pr, (5.20)
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where
pri=dt' NdtP At — ] Ndtt — 2 A dEE — ) AdE,

Ori = — %y, Yy A dt' — sy g2 AdE? — syl A de.

By (5.19), t can also be viewed as dg, (-,0X x T?), so (5.20) is written in the geodesic
gauge of gs,. By the calculations in [20] Section 2.2, for i = 1,2, both g4,|axx7rs and the
second fundamental forms of X x T are equal to each other, since they are explicitly in
terms of 6, po;, which are in terms of ~;, Q;. Since gy, are Ricci-flat, by [9] Theorem 4,
9é = Gs, = g. Since VI|p1 — ¢o|> = 0 and ¢ — ¢ = 0 at one point, we have ¢ = ¢,
w1 = ws.

]

Note that for a torsion-free hypersymplectic triple w, the metric g, is real analytic with
respect to the analytic structure defined by harmonic coordinates, due to elliptic regularity
of (5.17)(5.18), so the arguments in Section 5.3 shows global uniqueness:

Theorem 5.4.8. Let X be a connected 4-manifold with boundary such that m (X,0X) = 0.
Suppose w1, wy are two smooth torsion-free hypersymplectic triples on X, and ¢y : 0X — 0X
is a diffeomorphism, such that wilox = ©(walox), Qilox = ©§Q2lax, then there exists a
diffeomorphism ¢ : X — X, ¢lox = o, such that w; = p*wy on X.
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Chapter 6

Period map of the K3 manifold

6.1 Surjectivity

In this chapter, we give a simple proof of the Todorov’s surjectivity result [49] on the
period map of K3 surfaces in a differential geometric setting. Our proof makes use of col-
lasping geometry of hyperkahler 4-manifolds developped by Sun-Zhang in [46], and does not
rely on the solution to the Calabi conjecture.

On an oriented smooth 4-manifold, a hyperkahler metric ¢ is a Riemannian metric with
holonomy contained in SU(2). This is equivalent to saying that the bundle of self-dual
forms is flat and trivial, which implies that there is a triple w = (w1, ws, ws) of closed 2-forms
satisfying we A wg = 20,3dVol,. Such a triple is often referred to as a hyperkéahler triple.

Let K be the K3 manifold, which is by definition the unique oriented smooth 4-manifold
underlying a complex K3 surface. It is simply connected and the intersection form on
A = H?*(K;Z) has signature (3,19). Denote by N the set of all hyperkéhler metrics on K
with diameter 1. Given g € N, the space H; of self-dual harmonic 2-forms with respect to
g is a 3-dimensional subspace in Ag = H?(K;R) which is positive definite with respect to
the intersection form. Indeed, any choice of a hyperkahler triple gives rise to a basis of H;,
and they are up to a constant O(3) rotation.

Define the positive Grassmannian Gr' to be the space of all 3-dimensional positive
definite subspaces of Ag. It is an open subset in the standard Grassmannian Gr(3, Ag). We
define the period map

P:N—>Gr+;g»—>H;.
The diffeomorphism group Diff(K) acts on N by ¢.g = ¢*g, which induces a homomorphism
¢ : Diff(K) — Aut(A), where I' := Aut(A) is the automorphism group of the lattice A
preserving the intersection form. There is a natural action of I' on Gr*, hence P induces a

map
P: M=N/Diff(K) - D= Grt/T. (6.1)

The left-hand side is the set of isometry classes of hyperkahler metrics on K. It is endowed
with a natural Cheeger-Gromov topology. A sequence [g;] converges to [gs] if there are
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p; € DIiff(K) such that ¢7g; converges smoothly to g... Since hyperkdhler metrics are
Ricci-flat, it follows from the Cheeger-Colding theory that this topology coincides with the
Gromov-Hausdorff topology. We also endow the period domain D with the quotient topology.
One can check that P is continuous, and the I' action on Gr* is properly discontinous.

For any homology class § € Ho(K;Z) = H*(K;Z) = A with 6.6 = —2, we define £+ to be
subspace in Gr* consisting of hyperkihler metrics g such that [;& = 0 for all £ € HI. We
denote

Gre=art\ ) ot

SEA5.5=—2
and D° = Grt°/T.

Theorem 6.1.1. The image of P is D°.

We prove Theorem 6.1.1 in a few steps.

Step 1. We show that the image of P is contained in Gr*°. In particular, the image of
P is contained in D°.

The proof that we know uses some complex geometry. Suppose there is a ¢ € N and
0 # 0 € Hy(K;Z) such that 6.6 > —2 and [;§ = 0 for all £ € Hf. Choose a hyperkéhler
triple w = (wy,wsy,ws) for g. Then with respect to a compatible complex structure J we see
w; is a Kahler form, and = w, + v/—1lws is a holomorphic volume form. By the Hodge
decomposition it follows that ¢ is a (1,1) class with respect to J. So § = ¢;(L) for some
non-trivial holomorphic line bundle L. By the Hirzebruch-Riemann-Roch theorem it follows
that RO(K, L) + h°(K, L) = h* (K, L) + 2 + 36% > 0. Without loss of generality we assume
L has a non-zero holomorphic section S. Its zero set is a complex curve dual to d. It follows
that f(sw > (. Contradiction.

Step 2: We show that P is an open map. In particular, the image of P is open.

This follows from the standard deformation theory. The arguments below follows from
[46]. Suppose g € N. We fix a hyperkéhler triple w associated to g. In the following, we
will often identify an element in Q3 ® R® (ie., a triple of self-dual 2-forms) with a 3x3
matrix-valued function in Q° ® R**3: 5 € OF @ R? corresponds to A = (A,5) € QY @ R¥*?
if n, = 22:1 Anpwp, or concisely n = A.w. We claim that for any fixed small triple of
anti-self-dual harmonic 2-forms h~ € H, ® R?, o' := w + h~ + h" + dd*(f.w) defines a
hyperkahler triple for some small (b, f) € H @ R® @ C*7(Q7 @ R?).

Denote #(R?) the set of trace-free 3 x 3 symmetric matrices, and § the inverse of the
map 7(R?) = S (R?), A — tf(A+ AT + AAT) near 0, where tf(B) = B — 3 Tr(B). Let A
be the self-dual part of w’ — w and 6~ be the anti-self-dual part of w’ — w, the hyperkéahler
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condition for w’ is equivalent to
tf(A+ AT + AAT) = tf(—13 — Sg-),

where Sp- = (6, A 0;/2dVoly). If we require A to be symmetric trace-free, then this is
equivalent to

A= (t(=S5)).

Denote 20 € C*7(Q7 @ R?), B € C"'(N ® R?), € C HY ® R?® denote the subspace
consisting of trace-free symmetric matrices, respectively. For u = (h', f) € € ® A, define
F:CHA— B by

y(u) = h+ + d+d*(fUJ) — S<_tf(5h_+d—d*(f.w)>>~
Then the condition w’ being hyperkéhler is equivalent to the equation
F(u) =0.

To solve the equation, we write .7 (u) = £ (u)+.4 (u), where £ (u) = h™+d*d*(f.w) =
h* + (Ayf)w, A (u) = =F(—tf(Sh-4a-d+(fw)))- Then by standard elliptic theory that &
is a bounded linear map which is surjective with a bounded right inverse, and ||.4"(u) —
A ()] < C(|h~ || + ||| + ||v|))(Jlw = v||). Then the following implicit function theorem
Lemma 6.1.2 implies that there exists a 6 > 0 such that for any ||h~ | < §, F(u) =0
has a solution w with ||u| < C(¢), which finishes the proof of the claim. Now the map
v H, ® R3 — Gr™, h™ + span{w + h™} defines a homeomorphism from a neighborhood
of 0 to a neighborhood of P(g), and span{w + h™} = span{w + h~ + h" + dd*(f.w)}
as elements in Gr', it follows that the image of a neighborhood of g under P contains a
neighborhood of P(g), hence P is an open map.

The following version of implicit function theorem is well-known and is used in [46]. For
completeness, we provide the proof here.

Lemma 6.1.2. Let (X, |- |))), (Y, - ) be two Banach spaces, Bs(0) C X, F : Bs(0) = Y
is a map with F(0) = 0. Suppose one can write F'= L+ N such that L : X — Y a bounded
linear map with a bounded right-inverse R, i.e., Lo R = idy, ||R| < M. If furthermore
IN(z)—=Ny)|| < M) Y x—yl||. Then for anyc €Y, |c|| < (2M)~'4, the equation F(u) = ¢
has a solution with ||u|| < 2M||c||.

Proof. For fixed ¢ € Y, define T,.(w) = w— (F(R(w)) —¢) = =N (R(w)) +c forw € Y, ||w]| <
M~'6. Then

I1Te(w) = Te(uw)]] < Sllw — w'l].

DN | —

In particular
1
[Te(w) = Te(0)] < 5 lwll,
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then .
| Te(w)| < le]| + §Hw||-

Hence T, is a contraction map from BHQC”(O) to BHQCH(O). By Banach fixed point theorem
we know T,.(w) = w has a solution with ||w| < 2||¢||. Let u = R(w), then F(u) = ¢ and
Jul| < 2M|c|. O

Step 3. We show that P : M — D° is a proper map.

Suppose otherwise, then we can find a sequence of hyperkéhler metrics g; € N' which do
not converge smoothly modulo Diff(K), but there exist 7; € I' such that 7;.P(g;) con-
verges to a positive 3-dimensional subspace P, in Grt°. Choose a hyperkahler triple
w;j = (wj1,wj2,w;3) for g;. Denote v] = 2Vol(g;). We define the renormalized triple
@j = v; 2wy, then [ Gja AWjp = dap.

Now we fix an norm || -|| on Ag. By abusing notation we also denote by || - || the standard
norm on R?, or the induced norm on Agr ® R3.

Lemma 6.1.3. ||v;.[w;]|| is uniformly bounded.

Proof. Otherwise, by passing to a subsequence and O(3) rotations we may assume only the
first component of v;.[w,| is non-zero and ||v,.[w;]|| = A\; = oco. Denote (; = )\j_l’yj.[&?j],
then passing to a subsequence we may assume (; converges to an element (, in Ag with
|¢ooll = 1 and with (, U (,, = 0. But the line spanned by (., is contained in P,, which is
positive definite with respect to the intersection form. Contradiction. O]

Given the Lemma, by passing to a subsequence we may assume 7;.[w;] converges to a
limit e in Ag ® R?. Notice [1)oo.a] U [1oo,5] = dag, SO Moo forms a basis for Pu.

Proposition 6.1.4. Passing to a subsequence, for j large, there exists a non-zero homology
class C; € Hy(K,Z) satisfying C;.C; € {0, =2}, and || [, @;|| — 0.
J

Proof. Passing to a subsequence we may assume (K, g;) converges to a Gromov-Hausdorff
limit X, which is a compact metric space.

If v; > € > 0 for all j, then it follows from the classical results ([4, 8, 48]) that X is
a hyperkahler orbifold. Let p; € K be such that \; := maxx |[Rm(g;)| is achieved at p;.
By assumption \; — oo. Then passing to a subsequence we can take a pointed Gromov-

Hausdorff limit of (lC,pj,A;/ ng) to get a complete ALE hyperkédhler 4-manifold Z. By
Kronheimer’s classification [36] we know Z must contain a homology class Cy, with Cy,.Cy =
—2. This gives rise to a sequence of —2 class C; in K such that || fcj w;|| =0, s0 || fcj w;|| =0
as well. Notice here we only need the topological classification in Kronheimer’s result.



CHAPTER 6. PERIOD MAP OF THE K3 MANIFOLD 69

If v; — 0, then the conclusion follows from the results of Sun-Zhang [46]. The point is
that away from finitely many points, the hyperkéhler triple w;(up to O(3) rotations) has
almost local nilpotent symmetry, and it can be perturbed to a new hyperkéhler triple w;
such that w’ has local nilpotent symmetry and w; —wj is exact. In particular, w} has explicit
expression and the integration of w’ over a cycle is the same as the integration of w; over
that cycle. We divide into 3 cases. The first two cases only use the analysis over the regular
region in [46].

e dim X, = 2. In this case w’ is locally T?-invariant. Take C; to be the class of a T*
fiber. Then we get foj wj1 = foj wja = 0 and foj wjz ~ vj. We get || foj ;|| ~ v} = 0.

e dim X = 1. Locally there are two cases, either there is a 7% symmetry or a Heisenberg
symmetry. In the former case the metric corresponding to w is locally a flat product
St(rja) x SY(rj2) x S*(r;3) x I, where I is an open interval and we assume 7;1 < rj5 <
rj3, then we take C; to be the homology class of S'(r;1) x S'(r;2), then [, wj; =

J
fcj wj2 = 0 and 0 < fcj wj3 = TjiTj2 Whereas vi ~ 1j170m55. So || fcj |
7“;’/127"]1-2/ 2r;31 /2 5 0. In the latter case the metric corresponding to w’ is locally given by
the Gibbons-Hawking ansatz applied to a nonconstant linear function on 72 x I. Take
C; to be the homology class of the 2-torus given by the total space of the corresponding
circle bundle over a circle St in T2 x I, then one can arrange that ij wj1 = ij wjo =0
and 0 < [, wj3 ~ 1j17j2, where r;; is the size of the S* fiber in the Gibbons-Hawking
J
construction, and ;5 is the size of the flat T base. Notice the volume v} ~ 7;177,.

~ 1/2
So || fo, @l ~ rji* = 0.

e dim X, = 3. Here we need some global result from [46]. It is proved there that X,
must be a flat orbifold 73/Z, and wj is given by Gibbons-Hawking construction on
the complement of a small neighborhood of the 8 orbifold points. After hyperkahler
rotations, one can write

(.U;-,l = VdZL‘Q A d!L’g + dl‘l A 9,

Wig = Vdrsz A dry + dry A,
w;-’g = le'l N dl’g + dl’g A 9,

where V' is given by a positive constant. Let C; be given by the circle bundle over
the the closed geodesic x3 = ¢, then we have fcj Wiy = fcj wj, = 0 and fcj Wig =

~ 1/2
foj drzs N0 =1; ~ v} So chj w;|| Nrj/ — 0.
[

Now we derive a contradiction. Denote ' = ~; I.Cj. Since C7 is integral and non-zero,
we know [|C7|| has a uniform positive lower bound. By passing to a subsequence we may
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assume [|C}[| 7' C} converges to a limit C7,, € Ag with ||CL || = 1. First suppose C;.C; = 0,
then C/_.C =0 and

J

This contradicts the fact that the intersection form on Ag has signature (3,19). Now suppose
C;.Cj = =2. If ||C]] is unbounded, then C7 .C. = 0, and we have fCéo Moo = 0 as in (6.2),
hence we obtain a contradiction in the same way. If ||| is bounded, by passing to a
further subsequence we may assume C; converges to a limit C7, € A with C.C7, = —2 and
fc,, Nso = 0. This contradicts to P, € Gr*° and finishes the proof of Step 3.

ooFinally, it is worth mentioning that M is non-empty. Hyperkahler metrics in dimension
4 can be constructed by various ways(twistor methods, moduli space of monopoles, Yau'’s
theorem, gluing constructions etc ). For a survey, refer to [28]. See Section 3.1.3 for some
discussion gluing constructions. In particular, one does not need to invoke Yau’s theorem to
show M is nonempty.

Now, P : M — D° being proper and D° being locally compact, Hausdorff imply P :

M — D° is a closed map. Together with the image of P being open, non-empty, D° being
connected, we conclude P : M — D° is surjective.

T -1 RT -1 ~ 1 1: —1 ~
o = Jim G5 = Ji ] / 18] = Jim 1] [ @=0 ©2

’ .
o J
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