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Abstract 
In natural languages, closed-class items predict open-class 
items but not the other way around. For example, in English, if 
there is a determiner there will be a noun, but nouns can occur 
with or without determiners. Here, we asked whether language 
learners’ computations are also asymmetrical. In three 
experiments we exposed adults to a miniature language with 
the one-way dependency “if X then Y”: if X was present, Y 
was also present, but X could occur without Y. We created 
different versions of the language in order to ask whether 
learning depended on which of these categories was an open or 
closed class. In one condition, X was a closed class and Y was 
an open class; in a contrasting condition, X was an open class 
and Y was a closed class. Learning was significantly better 
with closed-class X, even though learners’ exposure was 
otherwise identical. Additional experiments demonstrated that 
the perceptual distinctiveness of closed-class items drives 
learners to analyze them differently; and, crucially, that the 
primary determinant of learning is the mathematical 
relationship between closed- and open-class items and not their 
linear order. These results suggest that learners privilege 
computations in which closed-class items are predictive of, 
rather than predicted by, open-class items. We suggest that the 
distributional asymmetries of closed-class items in natural 
languages may arise in part from this learning bias. 

Keywords: language acquisition; statistical learning; 
computational mechanisms; morphosyntax; function words; 
closed-class items 

Introduction 
In natural languages an important contrast is between open 
class lexical items—for example, nouns or verbs—and closed 
class or function items—for example, is or the.1 Open class 
categories like noun or verb contain many members and 
typically carry the important lexical content of the sentence. 
In contrast, closed class items, which are used to mark 
grammatical functions of other words, are typically very 
short, few in number, are each used with high frequency, and 
occur in predictable positions in their phrases. For example, 
English marks definiteness with the article the, which is one 
of the most frequent words in the language and always occurs 
before its noun. There is wide variation in the distribution of 
functional items across languages: in contrast to English, 
definiteness in Amharic is marked on lexical items in a 
particular structural position and can attach to nouns, 
adjectives, numerals, or even verbs depending on sentence 

                                                        
1 The terms ‘functional item’ and ‘closed class’ are often used 

interchangeably. We adopt the terminology of closed and open 

structure (Kramer, 2010). The distribution of closed-class 
items is always predictable in certain ways, but learners must 
do a substantial amount of distributional analysis in order to 
learn the particular patterning of closed-class items in their 
language. The goal of the present paper is to explore the 
computational mechanisms that enable language learners to 
do this. 

From previous research we know that closed-class items 
draw special attention from language learners. Infants can 
identify them on the basis of correlated distinctive 
phonological, prosodic and distributional properties such as 
short duration, light syllable structure, and high frequency 
(Shi, Morgan, & Allopenna, 1998; Shi, Werker, & Morgan, 
1999), and children begin to represent these items long before 
producing them (Shafer, Shucard, Shucard, & Gerken, 1998; 
Shi, Werker, & Cutler, 2006). Early attention to closed-class 
items could facilitate other aspects of language acquisition. 
For example, since these items often occur at grammatically 
important parts of the sentence (e.g., phrase boundaries), 
focusing on them could help learners acquire grammatical 
structure. There is substantial empirical support for this idea, 
known as the Anchoring Hypothesis (Mintz, 2006; Morgan, 
Meier, & Newport, 1987; Valian & Coulson, 1988; Zhang, 
Shi, & Li, 2015).  

However, it is not yet clear what computational 
mechanisms underlie learners’ distributional analyses, once 
they have noticed closed-class items. The literature on 
statistical learning has not focused particularly on closed-
class items; and only a few studies identify specific statistical 
computations that learners might draw on. These studies have 
revealed, for example, that learners can compute transitional 
probabilities to find word boundaries (Aslin, Saffran, & 
Newport, 1998; Saffran, Aslin, & Newport, 1996; Saffran, 
Newport, & Aslin, 1996) and to acquire grammatical phrases 
(Thompson & Newport 2007). Despite this progress, we are 
only beginning to identify the computational mechanisms 
underlying many aspects of language acquisition. It thus 
remains a mystery how learners manage to sort out patterns 
as complicated as (for example) Amharic definiteness. What 
kind of computations would a learner need to perform in 
order to acquire this type of pattern? 

Consider the statistical information about closed-class 
items that is present in learners’ input. As already noted, these 
items generally do not independently contribute semantic 

classes because these terms more readily apply to our miniature 
languages. 
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meaning; rather, they specify the grammatical properties of 
the meaning-bearing elements (the lexical categories). This 
role gives closed-class items a highly predictable syntactic 
context. For example, the indicates that its noun refers to a 
specific referent identifiable in context and therefore must 
appear with a corresponding noun, never alone. In statistical 
terms, the probability of seeing a noun, given that there is a 
determiner, is 100%. The reverse is not true, however, since 
nouns can occur in a variety of grammatical contexts, with or 
without determiners.2  

The statistical asymmetry in the distribution of closed- and 
open-class items is especially interesting in light of the recent 
emphasis in syntactic theory on the role of functional 
categories in sentence structure (see Rizzi & Cinque, 2016 
for discussion and historical context). Increasingly, linguists 
have argued that properties of closed-class items determine 
the behavior of other words in the sentence. This extends 
beyond the presence of certain open-class categories to their 
positions in the sentence as well. To illustrate, consider the 
pattern of verb placement in French. Lexical verbs such as 
“eat” (mang-) can either precede or follow the negative 
marker (pas) depending on whether the verb is 
morphologically finite, as in tu manges pas? (“You’re not 
eating?), or non-finite as in tu vas pas manger? (“You aren’t 
going to eat?”). Linguists capture this contingency between 
finiteness and verb position by positing that the abstract 
features of finite and non-finite morphemes are represented 
in different positions in the sentence. If there is finite 
morphology, there will be a verb and that verb will occur in 
the “finite” position (pre-negation). In this way the presence 
and location of verbs is determined by the kind of 
morphology that occurs in the sentence. 

Of course, linguists’ analyses are intended to be formal 
mathematical descriptions of sentence structure, and not 
necessarily claims about the psychological representation of 
sentences. However, this kind of analysis demonstrates an 
important empirical point: regularities of word order and 
word form can be stated as restrictions on the distribution of 
closed-class items. Consider now the problem of 
distributional learning. One way to begin learning, given this 
view from syntactic theory, would be to identify closed-class 
items (for example, based on their salient perceptual 
properties) and then proceed to learn their distribution. 
Because this distribution is asymmetrical—closed-class 
categories always predict but are not predicted by open-class 
categories—the computations that learners perform could 
also be asymmetrical. Learners need to learn what a closed-
class item predicts—the presence of other categories, the 

                                                        
2 In some cases, predictiveness goes both ways (e.g., in French, 

all non-proper nouns require determiners). Nonetheless, computing 
how often determiners are accompanied by nouns will always reveal 
a pattern, whereas the reverse computation only sometimes will. 
Thus analyzing closed-class items as predictive of open-class items 
is the most effective way to discover linguistic patterns.  

3 Of course closed-class items do not appear randomly in 
sentences. Their presence is determined by the semantic meaning 
that the speaker wishes to express. The learner does eventually need 

placement of words, and so on—but they need not expend 
any effort finding distributional patterns that a closed-class 
item is predicted by, because there are none.3 

Here we explored the possibility that learners privilege 
computations in which closed-class items are predictive of 
open-class items over computations in which they are 
predicted by open-class items. In Experiment 1 we exposed 
adult learners to a miniature language containing a one-way 
grammatical dependency between two form-class categories, 
X and Y. When an X word was present, a Y word always had 
to be present as well, but Y words could occur with or without 
X words (“if X then Y”). This is mathematically like the 
relationship between determiners and nouns in English. In 
two contrasting conditions, we assigned different types of 
words to the X and Y categories. In one condition the 
predictive category (X) was a closed class (short, 
monosyllabic, and containing only one item, ka), while in the 
other condition the predictive category was an open class 
(mono or disyllabic and containing three possible lexical 
items). Learning was better when X was closed-class, 
suggesting that learners’ computations are biased: they 
identify patterns where closed-class items are predictive of 
open-class items more readily than the reverse. Additional 
experiments demonstrated that learners analyze closed-class 
items differently because they are perceptually distinctive 
(Experiment 2) and that learning outcomes are driven by the 
mathematical relationship between closed- and open-class 
items and not their linear order (Experiment 3). Together, the 
results suggest that learners analyze closed-class items in 
certain biased ways, searching preferentially for the kinds of 
patterns that exist in natural languages. In the Discussion we 
return to the question of why learners should be biased in this 
way. We do not mean to suggest that they know in advance 
about languages in particular, but rather that their 
computational biases may shape languages to be structured in 
this way. 

Before proceeding, it is important to clarify a component 
of our experimental design. The artificial language that we 
created for these experiments is not very language-like. The 
experiments are focused on a specific computational question 
about how learners analyze closed and open-class items. To 
test our hypothesis, it was necessary to design a language that 
could only be learned by computing the precise mathematical 
relationship between two specific terms (X and Y). Therefore 
X was the only category whose distribution with respect to 
other words was constrained; all other words in the language 
appeared and disappeared freely, which is unlike the more 
constrained sentence structure of natural languages. This 

to learn which meanings go with which forms, but this is a separate 
and somewhat uncorrelated problem. As the comparison between 
Amharic and English definiteness marking illustrates, learning that 
a given form means “definite” does not tell the learner where, 
distributionally, that form occurs, nor does learning the distribution 
of a form reveal its meaning (e.g., both definite and indefinite 
articles precede nouns in English). Both learning problems are 
important, but we are concerned here only with the distributional 
one. 
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experimental design allowed us to test empirically whether 
learners’ computational analyses are biased in a certain way. 
If the results of these experiments do reveal such a bias, this 
would be motivation to explore how this bias affects the 
acquisition of more naturally structured languages—a line of 
work that is in progress. 

Method 

Participants 
Three groups of sixteen adults from the Georgetown 
University community (age 18-28, mean=20.4) participated 
in this study. Two additional participants’ data did not save 
due to an error. 

Description of the miniature language 
The design of the language used in all three experiments is 
summarized in Figure 1. The word order was AXYBC, where 
each letter represents a form-class category. All categories 
were optional, with the constraint that only up to three 
categories could be omitted per sentence (i.e. sentences must 
each have at least two words). The fixed and consistent rule 
of the language was that if X was present, Y had to be present 
(“if X then Y”). Thus every sentence with X also contained 
Y, but sentences with Y did not have to contain X. Note that 
this dependency is defined in terms of the conditional 
relationship, not the linear order, of X and Y. In Experiment 
1, X preceded Y while in Experiment 3 X followed Y; this 
did not change the conditional relationship between the two 
terms. 

In each experiment we created different versions of the 
language in order to ask whether learning this conditional 
relationship between X and Y depended on which of these 
terms was a closed-class or an open-class category. None of 
the words had any meaning, so this contrast was defined by 
the number of words in each category and the phonological 
properties of those words. Each experiment had a condition 
where X was closed class and Y was open class (Closed X) 
and a contrasting condition where X was open class and Y 
was closed (Open X). Across experiments we varied the 
phonological properties of the closed-class item and the 
linear order of X and Y. 
 
Experiment 1 In this experiment the closed-class category 
contained a single item ka, which had several properties 
common to closed-class items in English: it was short, lacked 
a coda or consonant clusters, and was high frequency by 
virtue of being the only member of its form class. Each open-
class category contained three words that were a mixture of 
mono- and disyllabic forms. All words in the language, 
including the closed-class item, carried stress (i.e., ka was not 
prosodically dependent on any other item). In the Closed X 
condition, the X category contained ka and Y contained lapal, 
tombur, and zup. Thus the closed-class item ka predicted any 
of these three open-class items. In the contrasting Open X 
condition, X contained lapal, tombur, and zup and Y 

contained ka. Here the closed-class item ka is predicted by 
each of three open-class items.  

 

 
 

Figure 1: Design of the miniature languages used in 
Experiments 1-3. The critical feature of all languages is a 

one-way dependency between X and Y: every sentence with 
X also contained Y, but Y occurred without X. In 

Experiments 1 and 2, X came before Y (XY); in Experiment 
3, X came after Y (YX). Each experiment had a condition 

where X was closed class and Y was open (Closed X) and a 
contrasting condition where X was open class and Y was 
closed (Open X). If learners are biased to analyze closed-

class items as predictive, learning should always be better in 
the Closed X condition (marked with yellow stars).  

 
Other than the specific lexical items in the X and Y 

categories, the two languages were identical. In both 
languages, sentences with X must also contain Y, while 
sentences with Y may or may not contain X. Because either 
X or Y is ka, learners in both conditions had an “anchor” for 
their distributional analyses. In both conditions, the 
predictive category (X) comes before the category it predicts 
(Y); this linear order was like subjects’ native language, 
English, where (for example) determiners precede nouns. (In 
Experiment 3 we reversed the linear order such that the 
predictive category came last, as in languages like Japanese.) 
At a lexical level, in both conditions the dependency involved 
exactly one closed-class item and three open-class items; 
acquiring the dependency required computing exactly three 
word-level forward transitional probabilities (either X1-Y1, 
X1-Y2, X1-Y3 in the Closed X condition or X1-Y1, X2-Y1, 
X3-Y1 in the Open X condition). Our manipulation did of 
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course create different statistical patterns at the item level. In 
the Closed X condition, each of the three possible X-Y 
sequences had a transition probability of 0.33, whereas in the 
Open X condition each X-Y sequence had a transition 
probability of 1.0. Thus the item-level transition probabilities 
cued the XY unit more strongly in the Open X condition. 

Because these languages are structurally identical except 
for the closed-open class contrast for X and Y, learning 
outcomes will differ only if learners’ computational analyses 
treat closed-class and open-class items differently. If learners 
preferentially analyze closed-class items as predictive, they 
should easily learn “if X then Y” in the Closed X condition, 
where ka predicts an open-class category; but they should 
struggle in the Open X condition, where ka is predicted by an 
open-class category. Alternatively, if learners analyze closed-
class and open-class items similarly, learning outcomes will 
be equivalent across conditions.  

 
Experiment 2 Part of the hypothesis is that the 
distinctiveness of closed-class items drives learners to 
analyze them differently. In Experiment 2 we tested this by 
making the closed-class item less distinctive. Here the closed-
class item (daygin) was disyllabic, carried initial stress, and 
had a closed final syllable, making it phonologically like the 
open-class words in the language; its only distinguishing 
property is its high frequency. If distinctiveness of ka drove 
learning outcomes in Experiment 1, learning should be 
weakened in Experiment 2. 
 
Experiment 3 In Experiments 1 and 2 the Closed X condition 
was superficially like English: the closed-class item came 
before the open-class item (Figure 1). English does also have 
closed/open dependencies where the closed-class item comes 
last (e.g., walk + s), but only in morphology. Therefore better 
learning for Closed X in Experiments 1 and 2 could be due to 
a preference in native speakers of English for syntactic 
phrases where frequent words come first (cf. Gervain et al., 
2013). In Experiment 3 we changed the word order of the 
language so that Y preceded X. Now the Open X condition is 
superficially more like English (frequent word first), whereas 
the Closed X condition is superficially like Japanese 
(frequent word last). If learning outcomes in Experiments 1 
and 2 reflect superficial word order biases, then the results of 
Experiment 3 should be opposite to those of Experiment 1, 
with better learning for Open X. However, if learning 
outcomes depend on the structural relationship between 
closed-class and open-class items rather than superficial 
linear order, results should be similar to those of Experiment 
1: Closed X should learn “if X then Y” and Open X should 
fail. 

Materials 
We generated a 38-sentence exposure set by selecting two 
sentence types for each of the 19 structures. The sentence 
structures were always the same across conditions and 
experiments, but the actual sentence strings differed across 
conditions and experiments according to the lexical items in 

the X and Y categories and the linear order of X and Y. 
Sentence sound files were created by concatenating 
individually recorded words (spoken by a female native 
speaker of English) with 50 msec of intervening silence. The 
38-sentence exposure set was presented 16 times as part of a 
1-back task (see Procedure).  

Procedure 
Participants learned the language through a computer game. 
A robot “Bot” instructed participants to listen as an alien 
named Zooma practiced saying sentences in an alien 
language. After each sentence, participants pressed a button 
to indicate whether Zooma had just repeated herself. After 
exposure, participants began the test. Bot explained that 
Zooma would try to say each sentence two different ways, 
and the participants’ job was to decide which one was better. 
The entire experiment lasted approximately 45 minutes. 

Test 
Learning was measured with a two-alternative forced-choice 
(2AFC) test. The structure of the test was identical across 
experiments. Specific test strings varied according to the 
vocabulary of the language. The target choice on each trial 
was always a grammatical complete sentence. The alternative 
was identical to the target except that either one word was 
changed, or the words were the same but in a different order. 
The test was designed to ask whether participants had 
acquired a very specific piece of knowledge: the precise 
conditional relationship between X and Y. In order to answer 
this question it was important to create test items on which 
all other distributional properties (e.g., bigram frequency) 
were controlled. Only two types of test items could be 
carefully controlled in this way, described below. Items with 
confounds (not scored) included four additional items testing 
XY constituency and 20 items testing the XY relationship 
within longer sentences. In addition, we included four items 
testing basic word order and six filler items in order to 
balance the frequency with which targets and foils for the 
critical XY trials appeared on the test. Results for these items 
are not described for space reasons, but they are generally 
consistent with the results here. 

There were two trials for each of the critical test item types. 
One item type served as a constituency test: XY was 
compared to YB (Experiments 1,2) or XB (Experiment 3). 
Both choices are legal two-word sequences (in Experiments 
1 and 2, both choices are also complete sentences). They have 
the same relative frequency in learners’ input, and are medial 
bigrams in the basic sentence structure (AXYBC 
(Experiments 1,2) or AYXBC (Experiment 3)). However, X 
and Y are related grammatically whereas the elements in the 
foil sequence are not. A preference for XY would indicate 
that participants represent this grammatical relationship. A 
second item type (AY vs. AX) tested whether participants 
learned that X predicts Y, but not the reverse. In Experiments 
1 and 2, both choices are legal two-word sequences and 
occurred in learners’ input with the same relative frequency; 
the two sequences had exactly the same forward transitional 
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probability (.36). However, only AY is a complete sentence. 
AX is a grammatical sequence but not a complete sentence, 
since it contains X but not Y. If participants have learned that 
X predicts Y (but not the reverse), they should prefer AY over 
AX. In Experiment 3, the foil was no longer a grammatical 
sequence in the language. Thus, it should be relatively easier 
in Experiment 3 than in Experiments 1 and 2 for both 
conditions to do well on these test items. Accuracy on the test 
was measured as choice of the target sequence. 

Results 
In Experiment 1 we asked whether learning of “if X then Y” 
would be different when X was a closed versus open class. 
Figure 2 illustrates that the answer is clearly yes. In the 
Closed X condition, learners chose the target item much more 
often than learners in the Open X condition (Closed X: 84%, 
Open X: 53%, t(14) = 3.16, p = .007). The grammatical 
coherence of XY as a unit was identical in these two 
conditions, since X always perfectly predicts Y. Yet learning 
outcomes differed across conditions, indicating that learners 
analyze closed-class items as predictive of open-class items 
more readily than the reverse. 

Part of our hypothesis was that learners analyze closed-
class items differently because these items are distinctive. In 
Experiment 2 we tested this by making the closed-class item 
less distinctive: here it was high frequency but 
phonologically like the open-class words in the language. 
Learning in the Closed X condition in this experiment was 
weaker than in Experiment 1 (Figure 2) and was no longer 
significantly better than the Open X condition (t(14) = 1.94, 
p = .07). This supports our hypothesis: closed-class items are 
analyzed differently because they are distinctive.  

 
Figure 2: Choice of the target item (darker colors) or foil 
(lighter colors) on the 2AFC test in Experiments 1 and 2. 
 

In Experiment 3 we asked: did the Closed X condition 
perform better because their language was superficially like 
English (the frequent item came first)? In this experiment Y 
came before X, but X still predicted Y. Thus the Open X 
condition was superficially like English. However, the Open 
X learners still struggled to learn “if X then Y” (59% correct, 
not significantly different from chance: t(7)=2.05, p = .08). 
In contrast, the Closed X condition continued to perform well 
above chance (72% correct, t(7)=2.97, p = .02), even though 
their language was superficially unlike English and more like 
an unfamiliar language, Japanese. These results demonstrate 
that the primary determinant of learning is the mathematical 

relationship between closed-class and open-class items and 
not their linear order.  

The results just reported are collapsed across two types of 
items: the constituency test (YX vs. XB) and the predictive 
direction test (AY vs. AX). Based on these collapsed results, 
learning in the Open X condition appears to be slightly better 
than expected. Although learners were not significantly 
above chance, the difference was marginal, and accuracy was 
numerically higher than in Experiment 1 (59% vs. 53%). An 
analysis of results for the two different test item types 
provides some insight. In Experiments 1 and 2, results were 
equivalent across item types. However, the Open X condition 
in Experiment 3 showed a different pattern (Figure 3): 
learners passed the constituency test (88% correct), but were 
numerically below chance on the predictive direction test 
(33% correct). A 2-way mixed ANOVA over condition and 
trial type confirmed this impression statistically: there was no 
main effect of condition (F(1) = 2.07, p = .17), but there was 
a significant main effect of test item type (F(1) = 4.77, p = 
.047), and—importantly—a significant interaction between 
condition and test item type (F(1) = 7.45, p = .02), driven by 
a preference in the Open X condition for the ungrammatical 
sequence *AX over AY. 

Why would the Open X condition perform so poorly on the 
AY/*AX items? Based on the raw statistical properties of 
learners’ input, these items should be easy: *AX is not a 
complete sentence or even a legal sequence, whereas AY is 
both. In fact, an explanation for these results is provided by 
our hypothesis: that learners attend to (or search for) some 
statistical patterns over others, prioritizing patterns in which 
closed-class items are predictive. Such a bias would lead 
learners in the Open X condition to initially analyze their 
closed-class item Y as predictive of another item. 
Statistically, the item that Y best predicts is X (the probability 
that a sentence contains X, given that it contains Y, is .53). 
Thus, a preference for *AX could reflect an incorrect 
hypothesis that the conditional relationship between X and Y 
is reversed (“if Y then X”). This generalization is not 
consistent with learners’ input, but it is consistent with the 
patterning of closed-class items in natural languages.  
 

 
Figure 3: Choice of the target item (darker colors) or foil 

(lighter colors) on the two item types of the 2AFC test in 
Experiment 3. Participants in Closed X still learned, even 
though the linear order was opposite English. In contrast, 
participants in Open X succeeded on the constituency test 
(YX/XB) but not the predictive direction test (AY/AX), 

apparently having incorrectly analyzed Y as predictive of X. 
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Discussion 
In three experiments, we showed that adults easily acquire a 
grammatical dependency “if X then Y” when X is a closed-
class, but fail to acquire the same dependency when X is an 
open class (Experiment 1). Successful learning of “if X then 
Y” is facilitated by the distinctive perceptual properties and 
high frequency of the closed-class item (Experiment 2). 
Importantly, the primary determinant of learning is the 
mathematical relationship between closed-class and open-
class items and not their linear order (Experiment 3). These 
results suggest that learners privilege computations in which 
closed-class items are predictive of open classes—the same 
computations that are most relevant for natural language 
dependencies. 

We emphasize that, within each experiment, the Closed X 
and Open X conditions had exactly the same statistical 
evidence for the rule “if X then Y”: class X always perfectly 
predicted class Y. Furthermore, learners in contrasting 
conditions were always exposed to the same number of 
lexical items, sentence structures, and sentence types. To 
acquire the XY rule, learners needed to compute exactly three 
transitional probabilities, and contrasting conditions within 
each experiment always contained the same linear direction 
of the X-Y relationship (forward for Experiments 1 and 2, 
backward for Experiment 3). Despite this mathematical 
equivalence, learning was always better when X was a closed 
class. If participants were computing statistics over items 
rather than classes, the results are even more striking: in that 
case, participants learned three low-probability dependencies 
with a predictive closed-class item (kaàlapal, kaàtombur, 
kaàzup) more easily than three high-probability 
dependencies with a predictive open-class item (lapalàka, 
tomburàka, zupàka).  

These results indicate that—whether learners computed 
statistics over classes or items—their distributional analyses 
are biased. Rather than tracking all possible pairwise 
transitional probabilities involving a closed-class item, 
learners apparently analyze closed-class items 
asymmetrically, more easily learning patterns in which a 
closed-class item is predictive of another element than 
patterns in which it is predicted by another element. 

Conclusion 
The original idea of the Anchoring Hypothesis (Valian & 
Coulson, 1988) was that, because closed-class items tend to 
occur at grammatically important points in the sentence, 
focusing on them could help learners acquire grammatical 
structure. Our results add a computational component to this 
approach. Our hypothesis is that, because closed-class items 
are noticed first, due to their distinctive phonological 
properties and their high frequency, these will be the constant 
terms in learners’ computations; other patterns are learned 
and represented relative to them.  

A learning mechanism that operates in this way would 
ultimately represent a broad range of language patterns in 
terms of the distribution of a small set of closed-class items. 
As we pointed out in the Introduction, this is increasingly the 

way that language patterns are described by modern syntactic 
theory as well. The results of our experiments suggest that 
human languages may acquire this type of structure at least 
in part as a consequence of computational biases in the 
human language learner. This account is appealing because, 
if correct, it would explain the privileged role of closed-class 
items in human linguistic representations without positing 
that these representations are innate. However, it is important 
to note that in all three experiments, learners’ preferred 
conditional relationship had the same abstract structure 
(though not always the same linear order) as the closed/open 
dependencies in all natural languages, including English. It is 
difficult to rule out the possibility that learning was affected 
by participants’ experience with this abstract property of 
natural languages; even infants have experience with closed-
class items (cf. Shi et al., 1998). Studies of learning in a non-
linguistic domain could be informative (cf. Saffran, Johnson, 
Aslin, & Newport, 1999).  

Our results raise several other important questions. First, 
what about closed-class items that behave differently? Our 
claim is that learners analyze closed-class items as predictive 
of open-class items, and that this approach is useful because 
it matches the abstract structure of grammatical dependencies 
in natural languages. However, there are exceptions to this 
pattern. For example, pronouns like him do not depend on 
open-class items the same way that articles do. Interestingly, 
pronouns are also special in other ways (Chomsky, 1980). 
The proposed computation could be useful not only for 
discovering predictive dependencies, but also—when this 
analysis fails to uncover a dependency—for flagging 
elements with a more complex grammatical distribution. 
Second, we must also ask whether this computational bias is 
present in children, who are the real natural language 
learners. Our results in ongoing work with child participants 
suggest that they do share this bias. This in turn raises a 
puzzle: if children organize their languages around closed-
class items, why do they not produce these words in their own 
speech for several years? The available evidence suggests 
that children do indeed process closed-class items early, 
despite omitting them in production (Gerken et al., 1990; Shi 
et al., 2006; Zhang et al., 2015). Future work is required to 
understand the discrepancy between what children represent 
and what they initially produce. Finally, we need to test our 
predictions on materials that are more like natural languages 
than what we have studied here. In order to test our 
computational predictions most cleanly, the languages in 
these experiments were unlike natural languages in several 
ways: all of the categories other than X and Y were optional, 
there was only a single grammatical phrase (XY), and none 
of the words had any meaning.  We are in the process of 
testing whether learners privilege the same types of 
computations in the acquisition of miniature languages that 
are more natural. If so, we can ask what kinds of natural 
language patterns can be acquired and represented using 
these privileged computational mechanisms, and to what 
extent these learning mechanisms explain why these patterns 
come to exist in languages of the world. 
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