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EXECUTIVE SUMMARY

Development of a universal freeway incident detection algorithm is a task
that remains unfulfilled despite the promising approaches that have been
recently explored. Incident detection researchers are now realizing that an
operationally successful incident detection framework needs to fulfill all
components of a set of recognized needs. In this research we introduce and
define a universal incident detection framework on the basis of one such set
of needs. Among other requirements, a freeway incident detection algorithm
needs to be operationally accurate and automatically transferable. In this
research we introduce an algorithm that has the potential to fulfill the
defined universality requirements. The algorithm is a modified form of the
Bayesian-based Probabilistic Neural Network (PNN) that utilizes the concept
of statistical distance. The report is divided into three main sections. The
first section is a detailed definition of the attributes and capabilities that a
potentially universal freeway incident detection framework should possess.
The second section discusses the training and testing of the PNN. In the
third section, we evaluate the PNN relative to the universality template
previously defined. In addition to a large set of simulated incidents, we
utilize a fairly large real incident database from the 1-880 freeway in
California to comparatively evaluate the performance and transferability of
different algorithms including the PNN. Experimental results indicate that
the new PNN-based algorithm is competitive with the Multi Layer Feed
Forward (MLF) architecture which was found in previous studies to yield
superior incident detection performance. The PNN performance was
competitive with the MLF in terms of Detection Rate (DR), False Alarm Rate

(FAR), and average Time To Detection (TTD). In addition, results also point



to the possibility of utilizing the real-time learning capability of this new
architecture to produce a transferable incident detection algorithm without
the need for explicit off-line retraining in the new site. In this important
respect, and unlike existing algorithms, the PNN has been found to markedly
improve in performance with time in service. Moreover, the PNN-based
framework  possesses the remaining attributes that would make it

potentially “universal”.
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1. INTRODUCTION

Proper freeway incident detection and management are now well
recognized key components of any potentially successful Advanced Traffic
Management System (ATMS). Unfortunately, the performance of published
conventional approaches to automatic freeway incident detection has proven
inadequate for every day use at Traffic Management Centers (TMCs).
Inadequacy stems from three main sources: first is the less-than-perfect
performance at the original site that the algorithm was developed for, second
is the lack of transferability to any new site, and third is the inability of the
algorithm to consider important but often neglected issues such as the prior
(predicted) probability of occurrence of incidents, posterior probability of an
incident after an alarm, and the unequal costs of misclassifying a traffic
pattern as an incident or non-incident. More advanced algorithms have been
recently proposed and developed by different researchers using approaches
such as neural networks (Cheu and Ritchie, 1996), filtering techniques
(Stephanedes and Hourdakis, 1996) and catastrophe theory (Hall et al, 1991).
In our view, the neural network approach has shown the greatest promise.
However, all algorithms lack the universality that the incident detection
community has been and still is waiting for. Very recent research plans have
been made (Payne and Thompson 1996) to consolidate the benefits of the
different promising incident detection approaches into a modular structure.
However, to date there is no single stand alone algorithm that has shown
sufficient promise to fulfill all the universality expectations simultaneously.
In this research, we introduce a candidate universal approach that is
expected to fulfill one such set of universality requirements, that we will
define shortly. This new approach in based on a modified form of the
Bayesian-based Probabilistic Neural Network (PNN) that utilizes the concept
of statistical distance (Abdulhai and Ritchie, 1995).

2. UNIVERSALITY REQUIREMENTS

By combining TMC survey results, theoretical reasoning, intuition, and
experience, we have concluded that for a freeway incident detection
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algorithm to be universal, it needs to possess the following set of capabilities
and attributes:

High Performance: in terms of high Detection Rate (DR%), low False
Alarm Rate (FAR%) and short mean Time To Detection (TTD). High
performance could only be achieved through careful selection of distinctive
input features, a powerful pattern recognition logic, and training data
that represents all possible scenarios. Acceptable limits on the above
performance indicators or variables (DR, FAR, and TTD) can be defined
by Traffic Management Centers as will be detailed later.

Fast Training/Calibration: training of the algorithm should not be
tedious and time consuming. In fact, there are no known limits on what a
reasonable training time would be. However, the faster the
training/retraining processes, the higher the potential for on-site real-time
retraining, all other attributes being equal.

Reasonable TMC implementation requirements: in terms of having
no recalibration requirements of the TMC that would require skilled
system developers.

Transferable logic: the logic or theory on which the algorithm is built
should not be constrained spatially, temporally or in other respects that
would limit transferability to other locations.

Transferable training/calibration parameters: an algorithm trained
on one site should be usable in other new environments with as little
performance deterioration as possible. A new environment could be
defined as any freeway site that has significantly different statistics. Site
statistics change, of course from site to site, and less evidently at the same
site over time. The less the performance deterioration after
transferability, the easier the subsequent process of on-site real-time
updating of the knowledge content of the algorithm, in order to adapt to
the new site.

Minimal initial training data requirements: as is well known, real
incident data are not only very sparse but also very difficult to obtain. It
would be very time consuming, if not impractical to try to collect real
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incident data that is diverse enough to represent all possible scenarios,
and accurate enough to result in minimal calibration errors. It is easy to
realize that a serious limitation of most existing incident detection
algorithms is the quality of initial training due to the nature of the data
used for calibration. They are often calibrated using either a very limited
set of "real" incident data or a large set of artificially simulated data, with
attendant simulation limitations. This may limit the quality of the
resulting algorithms and perhaps also limit their transferability. Hence,
a successful algorithm should be capable of being up and running using
minimal incident data, and then automatically improve with time in
service as more data become available.

e Account for prior probabilities of incidents: the algorithm should
Incorporate into an incident alarm decision the predicted prior probability
of occurrence of an incident, based on such factors as weather condition,
traffic conditions, road surface conditions, and geometric features of the
freeway section.

e Account for the unequal costs of misclassifying traffic patterns:
Although a false alarm and a missed incident are both misclassifications,
their costs are not equal. One might be more expensive than the other
depending on several factors such as the location of the freeway section,
the time of the day, incident characteristics, resources deployed in
responding to incidents, and TMC size, capabilities and preferences.

e Capable of producing the posterior probability of an incident:
there usually are varying extents of uncertainty associated with
algorithm-generated incident alarms. The certainty of an alarm depends
among other things, on the quality of the algorithm itself, the prior
probability of an incident, and the number of preceding alarms (which
may be correlated to the elapsed time since the onset of the incident, and
the extent of closure and queue formation on the freeway). The algorithm
should be capable of producing a probabilistic estimate of the certainty
associated with an alarm.
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Estimate incident severity: a key requirement that helps prioritize the
allocation of TMC resources in response to several simultaneous incident
alarms.

Capture incident duration: key information required in order indicate
the restoration of normal traffic flow.

Statistically and theoretically well established with minimal site-
specific heuristics: the clarity and soundness of the theoretical basis of
the algorithm are key factors that underlie its acceptability. The fewer
the number of site-specific heuristics involved, the more general the
algorithm should be.

Additionally, there are four attributes that are not directly related to

the theory of the pattern recognition algorithm itself but rather are related to
the extracted features and formulation of the pattern space on which the
algorithm is to operate. These attributes are listed below for the sake of
completeness of the universality template. However, due to both their
extreme importance, and space limitations in this report, they will be
addressed in detail in a future report:

Flexibility in working with different surveillance system designs
and technologies: successful field implementation of the algorithm
should not be limited to specialized surveillance system designs, including
sensor technology, spacing and placement. For instance, some algorithms
require a special loop detector placement configuration within a funneling
freeway section (Lin, 1995). Such a requirement would limit the
applicability of the algorithm in the absence of the required configuration.

Immunity to minor traffic fluctuation effects: the algorithm should
not be affected by minor, and very short term traffic fluctuations which
tend to cause false alarms.

Immunity to bottleneck effects: the algorithm should be capable of
distinguishing between true incident patterns and incident-like patterns
due to physical bottlenecks that cause queuing patterns similar to an
incident. It should also be immune to virtual bottleneck effects caused by
abrupt geometry changes or demand changes at major on and off ramp
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locations. We call the latter scenario a virtual bottleneck because of the
associated sudden change in the traffic flow variables from the upstream
station to the downstream station of the freeway section, which is similar
to the effect of an incident and the effect of physical bottlenecks, despite
the absence of both.

e Immunity to consistent detector malfunctions or biases: the
algorithm should not be affected by consistent biases such as an upstream
station giving a consistently higher occupancy reading than the
downstream station for no obvious reasons. Such a situation has been
observed in field loop data.

The above template of requirements and attributes, if fulfilled, could yield a
complete, operationally successful incident detection algorithm. The
presence or absence of these attributes will be used to evaluate our proposed
framework as well as any other algorithm that might be used for comparative
purposes.

3. THE PROPOSED PROBABILISTIC-NEURAL-NET-BASED ALGORITHM

The Probabilistic Neural Network (PNN) is a neural network
implementation of the well established multivariate Bayesian classifier,
using Parzen estimators to construct the probability density functions of the
different classes.

3.1 Multivariate Bayesean Discrimination and the PNN

The objectives are to: [1] separate classes of objects, i.e. define the
boundaries between the existing classes, and [2] classify new objects to one
of the existing classes. An object is defined by a vector in a p-dimensional
input space, where p is the number of features or variables. In the following
sections the mathematics will be explained for the case of 2-classes in 2-
dimensions. Extension to higher cases can be done in a straight forward
manner without loss of generality.
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Let f,(x) and fy(x) be the probability density functions (PDFs) associated
with the p-dimensional input vector X for the populations n, and =,
respectively. A reasonable classification rule that minimizes the Expected
Cost of Misclassification (ECM) is to assign a new vector to either class m, or
class m, based on the density ratio, the misclassification cost ratio, and the
prior probability ratio as follows :

X belongs to:
m o if @ () /f,x) = { [ C(A]2)/C(2]1) ]~ [P,/P.]}
7, otherwise.
where :
- C(i]j) is the cost of misclassifying an object as belonging to population
n; while it belongs to population ;.

- P; is the prior probability of occurrence of population ;

The key to using the above classification is the ability to estimate the
PDFs based on training patterns. Typically, the a priori probability can be
estimated, and the cost ratio requires subjective evaluation.

The accuracy of the decision boundaries and the subsequent
classification depends on the accuracy with which the underlying PDFs are
estimated. @A good feature of this approach and the related PNN
iImplementation is estimation consistency. Consistency implies that the error
in estimating the PDF from a limited sample gets smaller as the sample size
increases. The estimated PDF (the class estimator) collapses on the
unknown true PDF as more patterns in the sample become available.

An example of the Parzen estimation of the PDFs is given below for the
special case that the multivariate kernel is a product of the univariate
kernels. In the case of the Gaussian kernel, the multivariate estimates can
be expressed as:
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)=t 1iex{_(x—xki)(><—xki)

(27)"?c® mao 20°
where :
k = class or category
i = pattern number
m = total number of training patterns
Xki = ith training pattern from category or population 7«
o = smoothing parameter
p = dimensionality of feature (input) space.

Note that the estimated PDF for a given class, say f,(x) is the sum of
small multivariate Gaussian distributions centered at each training sample.
However, the sum is not limited to being Gaussian. It can in fact
approximate any smooth density function. The smoothing factor o can alter
the resulting PDF. Larger o causes a vector X to have about the same
probability of occurrence as the nearest training vector. The optimal o can
be easily found experimentally.

An interesting feature of the PNN approach is that the estimated PDFs
can be used not only for classification but also to estimate the posterior
probability that a vector X belongs to class, say m;. If the classes are
mutually exclusive, we have from Bayes theorem :

P,f,(X)
P f,(X)+ P, (X)

P[7Z1|X]=

Also the maximum of f;(x) and f,(x) is a measure of the density of the
training samples in the vicinity of X which can be used to indicate the
reliability of the classification.

For more details on the theory the reader is referred to Specht (1996),
NeuralWare (1993), and Johnson and Wichern (1992).

The original neural network implementation of the above theory (Specht
1996) is shown in Figure 1 for a 2-class problem. The input units are merely
distribution units that supply the same input values to all of the pattern
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Output Layer

Summation
Layer

Pattern
Layer

Input Layer

Figure 1. The Original Probabilistic Neural Network (PNN)
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units. Each pattern unit forms a dot product of the input pattern vector X
with the weight vector W; such that Z; = X.W;, and then performs a nonlinear
operation on Z; before outputting its activation level to the summation unit.
Instead of the sigmoid activation function commonly used for the MLF the
nonlinear operation used here is exp[(Z; - 1) /02]. Assuming that both X and
W, are normalized to a unit length, this is equivalent to using : exp[- (W, - X)t
(W;-X)/12c2].

Each summation unit simply sum the outputs from the pattern units
that correspond to one of the classes. The output, or decision units are two-
input neurons that produce binary outputs. They have only a single variable
weight C, :

C= { [CaIa)/C2I1) ] * [P/P.]1* [ni/n]}
where :
n, = number of training patterns for category =,

n, = number of training patterns for category =,

The network is trained by assigning a pattern unit for every training
pattern, and setting the W,; weight vectors in each one of the pattern units
equal to the corresponding X pattern in the training set, and then connecting
the pattern unit output to the appropriate summation unit.

3.2 Statistical Distance and The Proposed Modified PNN2

The PNN uses Euclidean distance as a measure of nearness of the
different patterns. Euclidean distance is unsatisfactory for some statistical
purposes because it doesn't account for differences in variations along the
axes nor the presence of correlation among the variables constituting the
pattern vector. The need to consider statistical rather than Euclidean
distance is illustrated heuristically in Figure 2 where the Euclidean distance
from a point such as P to the center of the cluster Q is larger than the
Euclidean distance from O to Q. However, P appears to belong to the cluster
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X2

Figure 2. Euclidean versus Statistical Distance
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more than O does. If we follow the procedure described above and use the
statistical distance instead, then Q will be closer to P than O (Johnson and
Wichern, 1992).

Two questions need to be answered in order to complete the discussion.
First, how to replace the employed Euclidean distance with the better
statistical distance alternative? Second, how to modify the PNN to account
for this distance measure ?.

The answer to the first question is to use principal components rather
than the original variables. Algebraically, principal components are
particular linear combinations of the original set of random variables.
Geometrically, these linear combinations represent a new coordinate system
of axes by rotating the original ones. The new rotated linear combinations
are uncorrelated and their variances are maximized. The following result
gives the principal components given the original variables and their
covariance matrix (Johnson and Wichern, 1992):

e Let > be the covariance matrix associated with the random vector X;

e Let have the eigenvalue - eigenvector pairs:

(1,,6),(4,,8),ceennn.n. L, &)

where

e The ith principal component is given by

Y= X=6 X+ ¢ X+.......... + £ KX i=1,2,........p
and

Var(Y)=€eXe=4 i =1,2,.......p

CouY, Y)= & =0

The original input vector X is transformed into the rotated vector Y
using the above relations. It should be emphasized that the original input

1
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vector is unchanged, but the coordinate system used for describing the vector
Is changed. The component variables of the vector in terms of the rotated
axes are then divided by their standard deviations ‘/7 to equalize the

variances. By this we obtained a new set of inputs free of the effects of
correlation and widely varying variances.

Figure 3 shows our modified version of the PNN (referred to as PNN2)
that takes the above transformations into account.

The previous input layer of the PNN is replaced by two layers: an input
layer and a transformation layer. The weights between the input layer and
the transformation layer are the eigenvectors of the sample covariance
matrix. The transfer function in the units of the transformation layer simply
divides the weighted input to the unit by the standard deviations ‘/ﬂ_

Beyond this layer everything is identical to the original PNN described
before, only using the principal components instead of the original variables.

4. SEMI-CONDUCTOR PNN CHIP, AND ROAD SIDE INCIDENT DETECTION

The PNN family has several advantages (Specht 1996) that makes it
most suited for incident detection (Abdulhai and Ritchie 1995). These
advantages will be evident when we evaluate the PNN relative to the
universality template later in this report. However, an additional feature is
the possible chip implementation of a PNN-based AID framework. Unlike
many other neural networks such as the MLF, the PNN operates entirely in
parallel, without the need for feedback from individual neurons to the
preceding layer of neurons. For systems involving thousands of neurons that
can not fit in a single semiconductor chip, such feedback paths would quickly
exceed the number of pins available on the chip. With the PNN, any number
of chips could be connected in parallel to the same inputs, a design that has
already been implemented (Specht 1996). An important implication of this
is the possibility of incorporating incident detection chips in a road side
cabinet. All the necessary processing could hence be done on site and only
the resulting detection output transferred back to a TMC for further action.

12
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Output Layer
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Input Layer

X1 Xp

Figure 3. The Modified Probabilistic Neural Network
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This adds important flexibility to the incorporation of incident detection into
different Intelligent Transportation Systems (ITS) architectures.

5. TMC SURVEYS AND THE IDENTIFICATION OF PERFORMANCE CONSTRAINTS

As part of this research, operational constraints and criteria were
elicited from freeway operations personnel in order to assist in evaluating the
algorithms’ performance. A short survey was prepared and sent to 15 TMCs
all over the United States that we thought might be interested in automated
freeway incident detection. The actual survey form is shown in Figure 4.
The three questions in the survey targeted the identification of what might
be acceptable limits of DR and FAR. Seven replies have been received to
date.

Analysis of the different replies indicated that, on the average, TMC
personnel put more emphasis on a high DR, which is consistent with the
prime objective of incident detection. Out of the seven responses received,
four TMCs (57%) stated their preference for a high DR in response to
guestion #1 in the survey form. In response to question #2, four TMCs chose
system #1 which has a 100% DR despite a relatively high FAR of 5%. One
TMC picked system #2, one TMC picked system #3, and one TMC picked
alternative #4, rejecting the three systems. The response to the third
guestion, which involved an explicit statement of the acceptable boundaries
on DR and FAR, varied from one TMC to another with an average
requirement of the DR to be at least 88.3% and of the FAR to be at most
1.8%. The actual responses are listed in table 1.

Average Extreme

DR% at least: 80 | 95 | max® | 70 | 90 | 95 100 88.3% 100

FAR% at most: 1 5 0.25 2 | 05 2 min. 1.8% 0.25

* max attainable.
min attainable.

Table 1. DR and FAR Limits Extracted from TMCs’ Responses.

14
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(714) 8245989
FAX (714) 824-8333

Despite research attempts to deveiop the ‘perfect’ incident detection algorithm that
would yieid 100% Detection Rate (DR) and 0% Faise Alarm Rate (FAR), this uitimate
performance has not been reached yet. There exists a trade-off berween a low FAR and a
high DR. We define DR as the ratio of the number of incidents successiuily detacted to the
totai number of incidents that have occurred. Also the FAR is defined as the ratic of the
nurnoer of times the aigorithm faisely indicates an incident to the total number of times the
algonthm is appiied (usually once every 30 sec.). For instance, if 10 incidents occur, and the
algorithm detects only 8 of them, then the DR is 30%. The FAR computation is a little bit
more tricky. ‘For instance, in one hour the algorithm is applied 120 times at a given section.
If the aigorithm indicates an incident 3 times during this hour while there are no incidents in
the field, the FAR is 3/120 = 2.5%.

Please answer the following three questions reiated to DR and FAR:
« Which is more important to you? please do not answer ‘equally important’.

Low FAR
High DR

» If you have access to different incident detection algorithms with the following
performances, which algorithm would you be most likety to impiement?

Al #2___ #__ none of them _ _
| Aleo®l | Algo#2 | Algo #3
DR% 100% | 70% | 50%
FAR % 3% 1% | 0.25%
Average number of faise alarms per hour per miie* 12 2.4 i 0.6

* based on igop stauons .3 mile apart and 30 sec apart appircations

¢ Please give percentages for the boundaries of DR and FAR that you believe are
acceptable. (For instance DR should be at least 90% and FAR should be at most 1%)

DR shouid be at {east: %
FAR shouid be at most: %
Traffic Management Center:
Contact Person Name & Title:
Signature: Date:

Figure 4. Survey Form Mailed to TMCs

15
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The above results indicate that a reasonable set of limits on DR and
FAR would be 88% and 1.8% respectively. A more stringent set of limits
could be obtained from using the extreme value limits of 100% and 0.25%
respectively as shown in Table 1. All incident detection algorithms under
consideration in this research will be evaluated against both the above two
sets of limits.

6. INCIDENT DETECTION USING THE MODIFIED PNN2

6.1 The Study Sites and The Data Sets

To be consistent with previous research (Cheu and Ritchie 1996) and to
enable comparison with the incident detection results from the MLF network
developed in that research, the original study site, the associated data sets,
and the performance measures were kept exactly the same. Also, the prior
probability and cost of misclassification ratios of the PNN were set to unity
as non of the other algorithms under investigation utilize them. To test the
transferability of the algorithms and the potential performance enhancement
from real-time on-line retraining, a new site from the 1-880 freeway with
associated new data sets, were prepared and used.

The original study site is a 5 mile section of the SR-91 Riverside
Freeway in Orange County, California, between the SR-57 and the Interstate
5 Freeways. Two data sets associated with the site were used. The first is a
large simulated data set, while the second is a limited real data set. The
simulated data set was prepared using the well known INTRAS (Integrated
Traffic Simulation) model, with which 1780 incidents were simulated. In
each case, 27 minutes of loop detector outputs were used which included an
incident that lasted for 10 minutes. For the real data from this site, nine
days of field data were used for testing purposes only without retraining.
The same data set was described and used by Cheu (1994) to test a collection
of algorithms, including the MLF. A total of 63 hours of traffic data were
available after removing the periods with missing data due to loop
malfunctioning. Each day of data contained one incident as recorded by the

16
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police or in the TMC incident log. Of the nine incidents, one was a minor
shoulder incident, one had no details, five involved one lane blocked, and two
resulted in multiple lane blockage.

A unique new loop and incident database from California was utilized in
this research for transferability evaluation, and for examining the real-time
on-line retraining after transferring the PNN2. This database is the result of
a comprehensive data collection effort on a fully instrumented section of the
1-880 (Nimitz Freeway) in Oakland. The selected section of the 1-880 freeway
Is 49700 feet in length between the Marina exit and Wipple exits. The
freeway section is instrumented with inductive loops in the pavement. The
instrumentation, however, is confined between the Lewelling and Industrial
exits. There are a total of 18 loop stations covering all lanes of the freeway
and selected on and off ramps. The spacing between the different loop
stations ranges from approximately 1000 feet to 3300 feet. On the main line
lanes the detectors are placed in pairs, but on the on and off ramps they are
single detectors. The data collected are vehicle counts, occupancy, speeds,
and loop on-times. Software specially developed as part of the data collection
effort was used for reading the binary loop data and converting it into
readable ASCII format. The same program was also used for running several
checks in order to fix any abnormalities in the loop database. Analysis of the
1-880 incident data revealed that it contains about 45 usable lane blocking
incidents. None of these lane blocking incidents, however, produced average
upstream occupancies beyond the 40-50% range. Since all the incident
detection algorithms in this research were trained on data from a completely
different site, testing them on this new data set would give one indication of
their transferability.

6.2 Direct Performance Measures

The performance measures used were the Detection Rate (DR), False
Alarm Rate (FAR) and Time to Detection (TTD). The DR is defined as

no. of detected incidents

= — - X 100%
total no. of incidents in the data set

17



Development, Testing and Evaluation of Advanced Techniques for Freeway Incident Detection Ritchie & Abdulhai

If the algorithm issues an incident warning for a freeway location at a
particular time, but in the absence of an actual incident in the field, a false
alarm is said to have occurred. The FAR is generally defined as

FAR = no. of false alarms % 100%

total na of applications of the algorithms

The TTD of an incident is the time in seconds between the actual
occurrence of the incident and the time it is detected by the algorithm. For
multiple incidents in the data set, the average TTD of the detected incidents
Is always used. For further details the reader is referred to (Cheu and
Ritchie, 1996; Cheu, 1994).

6.3 Implementation and Results Using Simulation Data

Both the PNN and the modified PNN2 were trained using the
simulation data to compare their performance with the results from the MLF
network previously developed. Several other conventional algorithms were
previously calibrated and tested on the same data set, but their performances
were reported to be inferior to that of the MLF (Cheu and Ritchie, 1996).
Hence the performance of the MLF is used here as an upper-end bench mark.

Each network was trained using a portion of the simulation data set,
titled set 1. Performance during training was monitored using another
subset of the simulation data, set 2. Finally, all the networks were tested
using another subset of the data, titled data set 3. The DR, FAR, and
average TTD were computed separately for single lane blocking incidents and
for multilane blocking incidents. Persistence tests of up to three intervals
were used to further reduce the FAR due to random fluctuations of traffic. A
persistence test of n-intervals means that an incident alarm is declared only
if the incident condition is found to persist for (n+1) consecutive applications
of the algorithm. Table 2 categorizes the performance measures for one lane
and multi-lane blocking incidents on data set 3. The measures computed
from these two categories were combined using weights of 0.9 and 0.1
respectively to produce a final weighted DR, FAR, and average TTD. This
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was based on a previous study in Los Angeles which found that for lane
blocking incidents, 90% were one lane blocking and 10% were multilane
blocking (see Guiliano 1989, Cheu 1994). The performance envelopes (DR
versus FAR using different persistence tests) are shown in Figure 5 for the
PNN, the modified PNN2 and the MLF networks. The results in Table 2 and
Figure 5 show that the performance of the original PNN is lower than that of
the MLF. However, using the modified PNN2 which incorporates the
statistical distance metric, the performance improves and becomes
competitive with the MLF.

One-Lane Incidents | Multi-Lane Incidents Combined
Network | P.l.2 DR FAR | TTD | DR FAR | TTD | DR FAR | TTD
0 97.0 | 14.00 | 35 | 100.0 | 3.00 70 97.3 | 129 39
PNN 1 72.5 2.40 | 147 | 97.6 0.96 105 | 75.0 | 2.26 | 143
2 67.0 160 | 176 | 96.3 0.34 | 137 | 70.0 | 147 | 172
3 555 | 0.84 | 222 | 95.9 0.14 | 173 | 595 | 0.77 | 217
0 100.0 | 4.80 73 | 100.0 | 4.50 44 | 100.0 | 4.77 70
PNN2 1 95.1 2.68 | 172 | 99.8 1.79 88 95.6 | 259 | 163
2 83.7 130 | 229 | 98.4 0.88 121 | 85.1 | 1.26 | 218
3 68.4 | 0.66 | 260 | 98.2 0.50 153 | 714 | 0.64 | 249.3
0 78.0 150 | 206 | 97.0 1.06 87 79.7 | 1.46 | 194
MLF 1 65.0 | 0.44 | 252 | 96.0 0.20 | 114 | 68.1 | 042 | 238
2 56.0 | 0.22 | 287 | 95.0 0.16 146 | 59.9 | 0.21 | 273
3 46.0 | 0.18 | 311 | 93.0 0.10 175 | 50.7 | 0.17 297

1. P.I. = Persistence Interval

Table 2. MLF, PNN, and PNN2 Testing on Data Set 3.

6.4 Evaluation Using Field Data

The real loop data previously described from the SR-91 freeway were
used in this testing phase. The loop data during and immediately around
each incident were used to compute both the DR and TTD, and the rest of the
incident-free data were used to compute the FAR. The detection performance
of the PNN2 and the MLF with up to three intervals of persistence is
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Figure 5. MLF, PNN, and PNN2 Performance
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summarized in Table 3. The PNN2 detected the nine incidents in the case of
no persistence test. With one or more persistence intervals, the shoulder
incident was missed due to its minor effect on the loop data. The PNN2 gave
relatively higher FAR in the absence of persistence intervals. However, the
FAR dropped significantly by using one or more persistence intervals. Based
on this limited data set, both the PNN2 and MLF have similar performance
in terms of DR, FAR, and TTD especially with 2 or more intervals of
persistence.

Combined

Network Persistence DR FAR TTD
0 100 0.39 22

PNN2 1 89 0.09 78
2 89 0.01 108

3 89 0.00 198

0 89 0.02 30

MLF 1 89 0.01 86

2 89 0.01 116

3 89 0.00 146

Table 3. MLF and PNN2 Testing on Field Data.

7. TRANSFERABILITY TESTING AND REAL-TIME PERFORMANCE
IMPROVEMENT

7.1 Transferability Testing and Evaluation

The real loop data and reported incidents from the 1-880 freeway in
Oakland California were used to test the developed algorithms which were
trained on simulation data from the SR-91 freeway in Orange County. The
loop data corresponding to the lane blocking incidents were extracted and
formatted for testing the algorithms. One hundred hours of incident-free loop
data were also randomly extracted to use for FAR testing.

Both the PNN2 and the MLF were tested on the prepared 1-880 incident
and normal data sets. Table 4 shows the testing results. The DR and TTD
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were obtained from testing on the incident data set and the FAR was
obtained from testing on the incident-free data set. Up to three intervals of
persistence were used.

Network Persistence DR FAR TTD
0 31 0.40 1080
PNN2 1 29 0.02 1188
2 29 0 1218

3 27 0 902

0 35 0 306

MLF 1 35 0 336

2 35 0 366

3 35 0 396

Table 4. Testing Results on the 1-880 Data Set.

The above results indicate the following:

1. Based on the performance limits established earlier, neither of the
algorithms showed acceptable performance.

2. The nature of the incidents in the 1-880 database probably caused this
obviously low performance. This is due to the fact mentioned earlier that the
upstream occupancies were consistently low and did not exceed the 40-50%
range. On the other hand, the SR-91 data used for training showed more
pronounced effect of the incidents, as the upstream occupancies were as high
as 80-100%. The large difference between the characteristics of the training
SR-91 data and the testing 1-880 data is the prime cause of the common low
performance amongst all algorithms.

3. Since the statistics of the traffic in the new testing site are significantly
different from the training site as explained in “2” above, recalibration or
retraining on data from the new site is necessary for the algorithms to show
acceptable performance after they are transferred. However, retraining or
recalibrating an incident detection algorithm for each and every new site is
usually not a trivial task. This problem motivated us to utilize the
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instantaneous learning capability of the PNN class of networks to counter
balance the severe drop in performance due to transferability.

7.2 On-Site Real-Time Performance Improvement

As was briefly discussed earlier, the PNN family of neural networks
uses the training patterns as connection weights to represent the knowledge
content of the network. Since the performance of the network deteriorates
after transferability, it will detect less than 100% of the incidents that occur
in the field. How much less than 100% the DR will be depends on how
different is the new site and how far or close are the estimated PDFs during
initial training relative to the actual unknown PDFs from the new site.
Nevertheless, the algorithm will detect some incidents. If the traffic patterns
for detected incidents in the new location are used to update the knowledge
content of the network by overwriting the older patterns in real time, the
performance would gradually improve as more and more incidents are
detected with time in service. Updating the non-incident patterns is not a
problem as such traffic data are always available.

To verify this theoretical hypothesis, the detected incidents from the I-
880 incident database were isolated and used to update the weights of the
PNN2 (about one third of the available lane blocking incident data). The
same was repeated for the correctly classified non-incident patterns. After
the network was instantly retrained with the 1-880 data that it managed to
correctly recognize in the first round of testing, a second round of testing was
performed on the entire database in order to assess the improvements. As
shown in Table 5 below, the retraining or updating process resulted in
significant improvement in the performance of the network. The DR
improved from only 30% to 98% and the FAR dropped to 0%. Similar
significant improvement in the TTD was also evident.
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PNN2
Before Patterns Update After Patterns Update
Persistence DR FAR TTD DR FAR TTD
0 31 0.40 1080 100 0.5 15
1 29 0.02 1188 98 0 79
2 29 0 1218 98 0 112
3 27 0 902 98 0 142

Table 5. Performance Improvements After Real-Time Updating of the
Training Patterns.

7.3 Discussion
The following several points should be noted:

1. The amount of incident data needed from the new 1-880 site is less than
one third of the actual number of incidents in a two month period. Thus, had
the updating process been implemented on line, the network would have
taken only two months to improve its performance from a totally
unacceptable level of performance to almost an ideal performance of 100%
DR and 0% FAR.

2. Testing the PNNZ2 algorithm on the 1-880 data set was a fairly harsh test
since the effects of the incidents on traffic conditions were not severe, and
hence were less detectable. In an average case, we would expect the drop in
performance due to transferability to be less than that for the 1-880 test. The
on-line time required for the PNN2 to achieve ideal performance could then
also be less than 2 months, assuming a similar rate of incident occurrence.

3. No other algorithm or network that we know of can achieve a similar “on-
line” improvement in performance. This is due to the nature of the training
process. The MLF, for instance, uses the training patterns to develop
connection weights using an error minimization technique. When new
patterns become available at the new site, the network has to be retrained
off-line, presumably by a user TMC, to reach a new set of weights that
minimize the error given the new conditions. In fact, the MLF, when trained
off-line on the same data, achieved similar optimal performance to the PNN2.
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However, the intensive process of off-line re-training or re-calibration at each
and every new site is what we are trying to avoid, so long as there is not a
significant difference in the ultimate performance.

4. The “real-time” learning capability of the PNN should not be confused
with clustering algoritms and related unsupervised ANN'’s, which might
create new classes during learning in real time. The PNN improves in
classifying the given classes (e.g. incident versus non-incident traffic) without
creating or even proposing new classes.

5. As false alarms are possible, one might correctly argue that the detected
incidents should not be used directly to update the training patterns without
incident verification. If incident verification is a necessary step then the
updating process could only take place in “pseudo-real time”, delayed by the
amount of time required to verify the truth of an incident alarm, and perhaps
conditioned upon an “update permission” by a TMC operator. However, it
might be possible to avoid conditioning the update process on incident
verification. This could be achieved by utilizing the “cost of misclassification
ratio” discussed earlier which could be set in such a way that a 0% FAR is
favored over a high DR. This way, the network would have a 0% FAR right
after transferability at the expense of an initially low DR. As the network
started to detect a few true incidents and update its weights, the DR would
start to improve gradually with time in service.

8. POTENTIAL UNIVERSALITY OF THE PNN FOR INCIDENT DETECTION

In the following section, we evaluate the proposed framework relative to
the universality template defined earlier on the basis of both the theoretical
aspects of the PNN and the obtained results. Only the algorithm-related
universality attributes will be discussed and not the four feature-extraction-
related attributes, the discussion of which is beyond the scope of the present
report. The attributes will be discussed in the same order as in the
universality template.
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e High Performance: Results from testing the PNN2 on both the real SR-
91 data and the real 1-880 data indicate that the performance of the
network satisfies the TMC requirements established from TMC surveys.

e Fast Training / Calibration: Specht (1990) reported that, in one
particular application, the PNN paradigm was 200,000 times faster than
the MLF. In our particular incident detection application, the PNN
learned 35,000 training vectors in less than one minute of CPU time on a
SUN SPARCstation IPX. The MLF on the other hand took approximately
13 hours of CPU time on the same machine. The training of the PNN, in
this particular application, was approximately 1000 times faster than the
MLF.

e Reasonable TMC implementation requirements: As was hopefully
obvious from the discussion of the real-time on-line retraining of the PNN
and the instantaneous nature of the training process, the additional
demands placed on TMC personnel to participate in training of the
algorithm are minimal or non-existent.

e Transferable logic: The theory of the PNN relies on the estimation of
the generic PDFs of the different pattern classes, and hence it is not
limited to particular distributions. Whatever the actual probabilistic
distributions are, the PNN generates statistically consistent estimates for
them.

e Transferable training/calibration parameters: As was found in the
above results, and as expected, all algorithms including the PNN can
suffer significant performance deterioration after transferability.
However, the on-line retraining results of the PNN show its great
potential to solve the transferability problem.

e Minimal initial training data requirements: Consistency of the
estimated PDFs allows the PNN to perform as soon as one pattern
representing each category has been observed. The network can begin to
generalize to new patterns. As additional incident and incident-free
patterns are observed and stored in the network, the generalization will
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consistently improve and the decision boundary can become more
complex.

e Account for prior probabilities of incidents: the PNN uses the prior
probabilities to alter the decision accordingly. Although the utilization of
the prior probabilities is an integrated component of the PNN, the actual
computation of the prior probabilities of incidents is beyond the algorithm.
Existing incident prediction algorithms could be readily “plugged in” to
the PNN framework to supply the required prior probabilities (see for
instance Madanat, 1995).

e Account for the cost of misclassifying traffic patterns: the PNN
uses the relative costs of misclassification to alter the decision
accordingly. The actual relative cost values are in fact TMC-dependent,
and the PNN allows these to be set by the user TMC.

e Capable of producing the posterior probability of an incident: the
actual output of the PNN takes the form of probabilistic estimates of an
incident or incident-free situation. i.e. the algorithm does not require any
modification to produce probabilistic outputs. On the contrary, if the user
needs a binary incident/incident-free output then the actual probabilistic
output has to be converted to a binary decision.

e Estimate incident severity: the probabilistic output of the PNN can be
interpreted as an estimate of the severity of the detected incident. Severe
incidents cause more pronounced freeway blockage and the PNN would
consequently produce higher probabilities.

e Capture incident duration: the duration of the detected incident could
be estimated directly from the time-profile of the probabilistic output of
the PNN. The duration of the incident would be from the time the
incident probabilities start rising to the time the incident probabilities
start falling. The concept could be extended in a straight forward manner
to capture the return of traffic conditions to normal.

e Statistically and theoretically well established with minimal
heuristics: the PNN is based on the well known and accepted Bayes
theorem, and also the well known Parzen windows concept. Both Bayes
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theory and Parzen windows have been used for decades and are treated in
length in a variety of statistical text books.

9. CONCLUSIONS

In this research we introduced a new potentially universal freeway
incident detection framework. A number of attributes for an incident
detection algorithm to be universal were defined, based on TMC
requirements and our own experience. The core algorithm is based on the
Probabilistic Neural Network modified to utilize the concept of statistical
distance. The algorithm has several peripheral attributes that complement
the potential universal applicability of the overall framework. Results using
both simulation and real incident data demonstrated its competitiveness with
the best neural network incident detection algorithm developed previously,
namely the MLF algorithm. The PNN was competitive with the MLF in
initial classification accuracy in terms of DR, FAR, and TTD. In addition, the
theory of the PNN shows its capability to learn in real time by overwriting
the older patterns stored in the connections weights by newer patterns
reflecting the updated situation. The updated situation could reflect changes
in the site or a completely new site. The correctness of this theoretical
hypothesis was demonstrated using transferability testing on a real incident
data set from the 1-880 freeway in Hayward, California. The obtained results
indicated a very promising and relatively effortless improvement in
performance. Thus, the PNN is transferable to new sites without the need for
explicit off-line retraining, as its performance improves with time in service.
Moreover, the algorithm was shown to fulfill the entire set of universality
conditions previously defined. Continued research is geared toward more
extensive testing of the framework on real data sets from other locations.
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