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SUMMARY

Animals must discern important stimuli and place them onto their cognitive map of their 

environment. The neocortex conveys general representations of sensory events to the 

hippocampus, and the hippocampus is thought to classify and sharpen the distinctions between 

these events. We recorded populations of dentate gyrus granule cells (DG GCs) and lateral 

entorhinal cortex (LEC) neurons across days to understand how sensory representations are 

modified by experience. We found representations of odors in DG GCs that required synaptic 

input from the LEC. Odor classification accuracy in DG GCs correlated with future behavioral 
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discrimination. In associative learning, DG GCs, more so than LEC neurons, changed their 

responses to odor stimuli, increasing the distance in neural representations between stimuli, 

responding more to the conditioned and less to the unconditioned odorant. Thus, with learning, 

DG GCs amplify the decodability of cortical representations of important stimuli, which may 

facilitate information storage to guide behavior.

In Brief

Animals use cues in their environments to guide behavior and, with experience, modify internal 

representations of these cues to guide future behavior. Woods, Stefanini, et al. use high-resolution 

calcium imaging to show that dentate gyrus granule cells encode and discriminate olfactory 

information and these representations are enhanced by associative learning.

INTRODUCTION

Animals have a cognitive map of their surroundings that is constantly updated to optimize 

behavior (McNaughton et al., 2006; Olton et al., 1979). Any given element of their 

surroundings may not carry immediate meaning, but with reinforcement, animals will learn 

to approach or avoid cues that predict salient outcomes and ignore others. How the brain 

discerns stimuli and transforms an initially irrelevant stimulus into something meaningful 

that can be retrieved for future action remains largely unclear. One way that neural 

populations may implement this form of encoding is by increasing the distance between 

neural representations of cues through the process of learning, effectively “separating” a 

salient from a non-salient stimulus.

One potential locus of this computation may be the hippocampus (HPC), which not only 

contributes to spatial navigation and memory (Eichenbaum et al., 2007; Olton et al., 1979; 

Tulving and Markowitsch, 1998) but also encodes non-spatial stimuli and the relationship 

between these behaviorally relevant variables (Aronov et al., 2017; Igarashi et al., 2014; Li 

et al., 2017; MacDonald et al., 2013; Martin et al., 2007). However, how experience can 

impact the representations of non-spatial stimuli in the HPC has remained largely 

unexplored. Here, we turned to olfactory stimuli to investigate how dentate gyrus granule 

cells (DG GCs) encode and separate incoming sensory information. Early anatomists noted 

the extensive connectivity and proximate location of the hippocampus with other parts of the 

olfactory system and accordingly included the hippocampus as a central node in the 

rhinencephalon or “nose brain” (Broca, 1878; Eichenbaum and Otto, 1992). Subsequent 

electrophysiological studies revealed that odorants were uniquely capable as sensory stimuli 

in eliciting a burst of activity in the DG; however, technical constraints limited a more 

complete understanding of how the DG encodes and processes this information (Vanderwolf, 

1992; Wilson and Steward, 1978). Extensive work has elucidated how olfactory information 

is represented at initial sensory-processing centers, such as the olfactory bulb and piriform 

cortex (Bathellier et al., 2008; Bolding and Franks, 2017; Iurilli and Datta, 2017; Meister 

and Bonhoeffer, 2001; Roland et al., 2017; Sosulski et al., 2011; Stettler and Axel, 2009; 

Uchida and Mainen, 2003; Xu and Wilson, 2012), yet little is known of the logic by which 

odorant stimuli are represented or learned within the DG. Anatomical studies suggest odor-

related information is transmitted to the DG via inputs from the lateral entorhinal cortex 
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(LEC) (Eichenbaum et al., 2007; Hargreaves et al., 2005; Leitner et al., 2016; Witter et al., 

2017), which itself receives olfactory inputs via both direct projections from the olfactory 

bulb and afferents originating in the piriform cortex and cortical amygdala (Heale and 

Vanderwolf, 1994, 1999; Krettek and Price, 1977; Leitner et al., 2016; Room et al., 1984; 

Shipley and Adamek, 1984; Vanderwolf, 1992; Wilson and Steward, 1978). In addition, the 

DG has been hypothesized to disambiguate cortical representation of sensory stimuli, so as 

to create less or non-overlapping outputs to the downstream CA3 subfield of the HPC 

(Aimone et al., 2011; Knierim and Neunuebel, 2016; Yassa and Stark, 2011). However, how 

learning impacts this process, and whether olfactory representations are separated at the 

level of DG neural activity, remains largely unknown.

In order to understand how the DG classifies cortical representations of salient olfactory 

stimuli, we performed in vivo chronic two-photon imaging of the LEC and DG. We 

investigated (1) how DG GCs and LEC neurons represent olfactory stimuli, (2) whether LEC 

is the main input for olfactory information to DG, and (3) how DG GCs and LEC neurons 

change their responses with learning. We found that odor identity is robustly represented in 

the DG and that the degree to which the DG classified odorants was directly related to 

discrimination of these cues during context recall. Odors were more accurately classified in 

populations of cells within the DG than LEC, and with learning, the DG GCs flexibly 

changed their representations of odor stimuli more so than LEC neurons, increasing the 

distance in neural representation between stimuli and responding more to the conditioned 

odorant. These data reveal that DG GCs are a key node of the extended network that 

represents the olfactory world and for learning the associations between olfactory stimuli 

and behaviorally relevant outcomes.

RESULTS

Representations of Olfactory Stimuli in LEC and DG

To determine whether odor information is represented in the DG, we performed chronic 

high-resolution, two-photon calcium imaging of DG GCs in awake, head-fixed mice 

(Danielson et al., 2016). We visualized GC activity by injecting AAV-DJ-CaMKII- 

GCaMP6f into the DG and imaged fields of view (FOVs) within the DG granule cell layer 

(GCL) (Figures 1A and 1B; Video S1). To characterize baseline responses to odorants, mice 

were imaged during delivery of a panel of diverse monomolecular odorants (Figure 1A). 

Olfactory stimuli evoked robust responses in a fraction of GCs (Figures 1C, S1D, S1G, S2B, 

and S2C) that remained stable across multiple trials (Figure 1D). As is also the case for 

odor-evoked responses in upstream piriform cortex (Roland et al., 2017; Stettler and Axel, 

2009), which innervates LEC (Heale and Vanderwolf, 1994, 1999; Krettek and Price, 1977; 

Leitner et al., 2016; Room et al., 1984; Shipley and Adamek, 1984; Vanderwolf, 1992; 

Wilson and Steward, 1978), odor-modulated GCs were distributed across the FOV without 

apparent spatial clustering (Figures 1E, S1F, and S2A). In order to understand how odor 

information may be differentially represented in the DG and its upstream input, LEC, we 

developed a method for two-photon imaging of GCaMP6f-expressing LEC neurons in 

awake, head-fixed mice (Figure 2B; Video S2). As in DG, a subset of LEC neurons showed 
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time-locked responses to odor delivery, with no discernable spatial clustering of modulated 

cells (Figures 2A–2C, S1E, S2B, and S2C).

We next sought to compare odor responses in LEC neurons, DG GCs, and DG GCs in which 

input from LEC was inhibited. In our six-odor delivery design, we imaged DG GCs, LEC 

neurons, and DG GCs from mice in which we silenced LEC-DG synaptic transmission using 

tetanus toxin light chain (LEC-DG TeLC) (see STAR Methods; Figures 3A and S1C). The 

identity of presented odorants could be accurately decoded using linear decoders (Bishop, 

2006) from the population activity of DG GCs and LEC neurons, but not from LEC-DG 

TeLC mice (Figures 3B, 3C, and S2D–S2F; see STAR Methods), suggesting the LEC is the 

major source of odor input to the DG. By comparing decoding accuracies in LEC and DG, 

we found that a decoder trained on DG GC data could more accurately classify odor identity 

than one trained on LEC activities, suggesting that odor identity is more reliably represented 

in DG than LEC (Figure 3C). This was true both in experiments using a six-odor panel and a 

three-odor panel (Figures S2D and S2E). We obtained complementary results by 

constructing population vectors of DG GCs or LEC activity during odor presentations and 

measuring trial by trial similarity; we found responses across odors were less correlated in 

DG when compared to LEC (Figures 3E, S2G, and S2H), indicating that distinct odor 

representations are decorrelated in DG compared to LEC and that odor correlations were 

disrupted in LEC-DG TeLC mice (Figure 3E). Finally, we constructed a model based on 

random connectivity (Schaffer et al., 2018) between LEC and the target GCs (see STAR 

Methods) to determine whether this could recapitulate the high decoding accuracy in DG 

GCs seen in our data. The property of random connectivity in the model maintained 

correlations in odor representations within the input structure (LEC) and enabled expansion 

of the dimensionality of patterns onto its output structure (DG) via a non-linear 

transformation, which in general can be beneficial for decoding (Rigotti et al., 2010). 

However, random connectivity alone, at all tested DG sparsity levels in our model, was not 

sufficient to obtain the high decoding performance we observed in our DG recordings, using 

either the six-odor panel or the three-odor panel (Figures S2G and S2H). These data suggest 

that LEC input to DG is required for odor classification and that local circuit operations 

within the DG itself may enhance odor representations rather than arising solely from 

random connectivity between LEC and DG.

Odor Classification Accuracy in the DG Is Related to Behavioral Discrimination in an Odor-
Guided Contextual Memory Task

We next asked whether odor coding in the DG was related to the discrimination of odors 

when used as cues for contextual recall. In DG-dependent contextual fear discrimination/

generalization experiments, a main cue used to distinguish contexts is the ambient odor cue 

present in each context (Danielson et al., 2016; McHugh et al., 2007; Sahay et al., 2011). We 

thus asked whether the accuracy of odor classification in the DG was related to use of these 

cues for contextual recall. To test this, we developed an odor-guided contextual fear memory 

task where mice discriminated contexts that differed in the ambient odor present. We used 

two chemically similar odorants, ethyl butyrate (EB) and methyl butyrate (MB), and one 

distinct odorant, isoamyl acetate (IAA). On day 1, mice explored the three contexts in order 

to assess baseline levels of freezing. The next day, mice received mild footshocks in a novel 
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context (context d) infused with the MB odor from context b and, finally on day 3, were re-

exposed to the three pre-training contexts and tested for freezing in three contexts (Figure 

4A). Compared to control mice, LEC-DG TeLC mice showed lower levels of freezing in the 

context infused with the odor present during conditioning and did not differ in freezing 

levels across contexts (Figure 4A). This suggests that LEC-DG TeLC mice did not use the 

odor as a cue for memory recall of the conditioned context. This was consistent with a role 

for the DG in context encoding and for the LEC in integrating contextual representations 

with non-spatial stimulus representations (Basu et al., 2016; Danielson et al., 2016; 

Hargreaves et al., 2005; Kheirbek et al., 2013; Knierim et al., 2013; McHugh et al., 2007; 

Wilson et al., 2013).

As the odor present was likely the primary cue that elicited recall of the conditioning 

context, we asked whether odor decoding accuracy in DG or LEC was related to contextual 

discrimination post-conditioning. For this, we ran mice in the same protocol, except that we 

imaged odor responses before (pre) and after (post) conditioning with the footshock. 

Analysis of context discrimination scores after conditioning revealed considerable individual 

variability in discrimination of contexts a and b post-conditioning (but not b/c; see Figure 

S3B), due to the chemical similarity of the EB and MB odorants, as some mice generalized 

their fear across contexts, although others discriminated (Figures 4C–4E and S3B), similar 

to that seen in auditory fear discrimination (Likhtik et al., 2014). We thus asked whether 

behavioral discrimination was correlated with odor classification in the DG and LEC. We 

computed pairwise context discrimination scores on day 3 (see STAR Methods) to compare 

to odor decoding accuracy scores. In DG GC recordings, odor decoding accuracy for the 

similar a/b pair (EB/MB) of odorants before conditioning correlated with context a/b 

discrimination scores after conditioning, as the mice with lower decoding accuracy scores 

before conditioning generalized their freezing responses and the mice with the highest 

neural decoding scores went on to become the best behavioral discriminators (Figure 4D). A 

similar relationship between neuronal and behavioral discrimination was found when 

analyzing decoding scores after conditioning or when using similarity of population vectors 

as a neural readout of discrimination (Figures S3F and S3K). This relationship was only 

found for the similar a/b (EB/MB) odor pair, in which mice showed individual differences in 

the level of freezing in the contexts in which these odors were present, as mice were 

significantly better as a group at behaviorally discriminating the contexts where the distinct 

odors a/c (EB/IAA) were present. (Figures S3B, S3H, and S3I). This relationship between 

odor decoding accuracy and contextual discrimination was not seen in mice where 

recordings were taken from LEC neurons. Although LEC mice showed similar individual 

variability in the ability to behaviorally discriminate the a/b contexts (Figures 4E and S3B), 

this did not correlate with neural decoding accuracy scores from LEC before conditioning 

(Figure 4F). These results show for the first time that the neural discrimination of odor cues 

in the DG, but not LEC, is correlated with the use of these cues to drive discrimination 

between contexts.

Changes in Odor Representations in DG and LEC with Reward Learning

Next, we asked how odor representations in DG GCs and LEC change during associative 

reward learning. We trained mice in an appetitive conditioning task using the same three 
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odors that were used in our context fear discrimination experiment. Odors were delivered for 

4 s and then a sucrose reward was delivered after a 2-s trace period after presentation of one 

of the odorants (conditioned stimulus [CS+], odor b; Figure 5A). We assessed learning by 

measuring licking during the CS+/ odor/trace period (Figures 5B, 5C, and S4A) and 

recorded calcium dynamics in DG GCs, LEC neurons, and DG GCs with silenced input 

from LEC (LEC-DG TeLC mice; as in Figures 3 and 4). Unlike in fear conditioning, where 

aversive reinforcement is known to drive stimulus generalization (Fletcher and Wilson, 

2002; Ghosh and Chattarji, 2015; Likhtik et al., 2014; Pavesi et al., 2012; Resnik and Paz, 

2015), mice did not generalize the odor a/b pair, as all mice discriminated by day 3 (Figures 

5B, 5C, S5A, and S5B). The same cells in LEC and DG were imaged before learning (pre; 

day 1) and after odor learning (post; day 3; Figures 5D, 5E, and S4B). First, we found that, 

before learning, both in DG and LEC, neurons that responded to one odor also tended to 

respond to another odorant. However, after learning, DG GCs, but not LEC neurons, were 

less likely to respond to multiple odorants, reducing overlapping odor representations 

(Figures 5F, 5G, S4C, and S4D). In LEC-DG TeLC mice, in this experiment, we did not find 

cells that reached the statistical significance cutoff for odor responsivity, again supporting 

the role of this input in olfactory coding in the DG. In addition to reducing overlap, we 

found an increase in the proportion of DG GCs that were active during CS+ odor and a 

decrease in the number active during the CS (odor a; Figures 5H and S4E). This again was 

not observed in LEC neurons (Figure 5I). In LEC-DG TeLC mice, an increase in proportion 

of active cells was seen indiscriminately during both CS+ and CS odors (Figure 5J). In line 

with our results in the DG and LEC, by limiting our analysis to those cells that responded to 

each odor on day 1 (pre), we found that CS responsive DG GCs were more likely than LEC 

neurons to switch their response to the CS+ odor after learning (Figure 5K). In analysis of 

populations of DG GCs and LEC neurons, we found that, with learning, odor representations 

became sparser in the DG, but not LEC (Figure 5L). In addition, odor classification 

performance prominently increased in the DG, with a more modest increase in LEC (Figure 

5M). This again was not seen in LEC-DG TeLC mice, as although these mice could learn 

this simple association (Figure S4B), odor decoding accuracy in the DG was poor both 

before and after learning (Figure 5M). Finally, a cross-session decoder performed 

significantly worse in DG than in LEC (Figure 5N), indicating that the geometry of the 

population code for odor stimuli in the DG dynamically changes with associative learning. 

These differential changes in DG and LEC during learning were not due to differences in 

signal to noise in recordings or differences in lick-related, breathing-related, or reward-

related activity between the DG and LEC (Figures S4I–S4L). In addition, increasing the 

numbers of CS+ and CS odors generated a similar pattern of results in DG GC recordings, as 

odor decoding accuracy increased with learning (Figure S4H). Finally, we recorded DG GCs 

during extinction session, where reward was not delivered, and found that odor decoding 

accuracy was reduced as compared to the post-learning session, raising the intriguing 

possibility that learning generates new, odor-reward representations in the DG (Figure S4H). 

Taken together, these results suggest that, during associative learning, LEC provides 

relatively stable odor representations to DG, where these representations change or generate 

new odor-reward representations to amplify the contrast between a CS+ odorant and a CS− 

odorant.
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DISCUSSION

Here, we have used measures of olfactory coding to show how the DG transforms external 

sensory stimuli into internal neural representations. We demonstrate that DG GCs effectively 

encode odor stimulus identities, and this process is correlated with future contextual 

discrimination. We find that inhibition of input from the LEC impairs odor coding in DG 

GCs and the use of odor cues to guide contextual recall. By recording in both DG and LEC, 

we find that odor identity could be more accurately classified from DG GCs than from LEC 

neurons. In addition, we found that, during olfactory learning, odor representations were 

more flexible in DG than in LEC. Odor representations dynamically changed in DG, with 

odor learning inducing an increase in the proportion of cells responding to the CS+ odorant 

and a decrease in those responding to the CS odorant. This process of expanding the 

distance in representations with learning may serve as a substrate for memory formation 

within the DG and downstream HPC regions.

These findings expand upon recent work describing odor representations in upstream areas, 

such as piriform cortex and olfactory bulb (Bolding and Franks, 2017, 2018; Franks et al., 

2011; Iurilli and Datta, 2017; Sosulski et al., 2011; Stettler and Axel, 2009) and studies 

reporting non-spatial representations in downstream CA1 (Aronov et al., 2017; Hargreaves 

et al., 2005; Igarashi et al., 2014; McKenzie et al., 2016). Our studies support the hypothesis 

that every stage of processing along the OB to HPC stream applies some degree of pattern 

separation to decorrelate odor representations. We find that across odor correlations in DG 

and LEC are very low, and in some trials, correlations are less than zero, indicating that the 

LEC-DG circuit strongly separates different odor representations to a greater degree than 

previously found in OB and piriform cortex (Roland et al., 2017; Schaffer et al., 2018). In 

addition, we report key differences between odor representations in the DG and those in its 

primary input region, LEC. Although previous studies in anesthetized mice showed odor-

evoked responses in LEC neurons (Leitner et al., 2016), it remained unclear how these 

responses differ from DG and how they changed with learning. By recording activity in both 

LEC and DG using a tightly controlled odor-based experimental paradigm, we observed that 

odor decoding accuracy was better in DG GCs when compared to LEC neurons, which is in 

line with previous studies proposing a role of DG GCs for an expansion of dimensionality 

through sparsity (Rolls and Treves, 1998). However, we also found that a model of LEC-DG 

based on random projections alone was not sufficient to obtain comparable levels of 

decoding as true DG data. Exploration of other models with random projections that 

introduce additional non-linearities or ones that incorporate a rich heterogeneity of cell types 

and plasticity functions (Litwin-Kumar et al., 2017) may more accurately model the 

expansion of dimensionality and facilitation of associative learning we observe in the DG.

Using an odor-guided contextual fear memory task, we found that, in DG, but not LEC, odor 

decoding accuracy scores correlated with individual animals’ discrimination between 

contexts that differed in the presented odorant. Mice with the highest odor classification 

accuracies showed the best discrimination during context recall. In this task, mice use the 

odor cue for pattern completion: rapid recall of a full contextual representation from the 

partial cue. Recent studies have highlighted the role of mature DG GCs in pattern-

completion-mediated contextual recall (Nakashiba et al., 2012), and our work suggests that 
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LEC-DG input facilitates the use of olfactory information in this process. We found that 

silencing LEC-DG transmission with TeLC impaired use of the odor cues in a different 

context to recall the conditioning context, in line with a role for the LEC recognizing non-

spatial stimuli that have been experienced in a specific context (Wilson et al., 2013). 

Although the mechanism for this remains unclear, it may be the case that odor information is 

separated at the level of the DG and can drive distinct recurrent networks in CA3 to facilitate 

recall (McNaughton and Morris, 1987; Nakazawa et al., 2002). Thus, in a situation where 

odors are better separated in the DG, conditioning can drive a distinct CA3 recurrent 

network state that supports high-fidelity recall and thus effective context discrimination 

(O’Reilly and McClelland, 1994; Treves and Rolls, 1994). This may explain why odor 

decoding accuracies in LEC did not correlate with behavioral discrimination, as the added 

level of separation provided by the DG may be required for fine-tuning CA3 networks. 

However, future population level imaging studies in CA3 and in LEC-DG projection 

neurons in use-odor-guided contextual memory tasks that vary the balance between pattern 

completion and separation will lend further insight into this process. Silencing LEC-DG 

transmission, although impairing learning-induced changes in population activity in the DG, 

it did not worsen odor-reward learning in the multi-trial, head-fixed task used here. This 

would indicate that either the chronic nature of our silencing leads to compensation by other 

circuits or that other brain areas or neural circuits are sufficient to perform this kind of 

associative learning task (Abraham et al., 2012; Boisselier et al., 2014; Gschwend et al., 

2015; Han et al., 2018; Igarashi et al., 2014; Komiyama et al., 2010; Lepousez and Lledo, 

2013; Li et al., 2017, 2018; Liu et al., 2014; Otazu et al., 2015; Zhu et al., 2018). Use of 

more temporally precise silencing methods, or more complex behavioral designs, may 

provide new evidence for the role of LEC-DG in pure odor-reward associations.

We found that CS+-specific changes that occur in DG during associative learning are less 

prominent in LEC. The strengthening we observe in neural representations through learning 

may serve as a substrate for memory formation within the DG and downstream HPC 

regions. This phenomenon appears as an experience-dependent reduction of dimensionality 

in DG because the CS+ odor becomes over represented at the expense of the CS odor and 

odor representations become minimally overlapping, i.e., orthogonal. We did not observe 

similar changes in LEC, in line with other studies that describe cortical activities as a high-

dimensional computational substrate that is useful to flexibly learn new tasks (Fusi et al., 

2016; Rigotti et al., 2013). An alternative interpretation may be that, with learning, the DG 

may generate new odor-reward representations. Studies aimed at manipulating CS-US 

contingencies and recording LEC and DG population responses will shed light on these 

different scenarios. Taken together, our experiments have potentially identified a location in 

a cortex-to-HPC circuit where information is transformed into a format that is potentially 

behaviorally relevant to the animal. The odor code in the DG becomes more explicit, i.e., by 

orthogonalizing odor representations, perhaps to allow for easier recall by downstream areas, 

such as CA3 and CA1, to guide behavior. This may be via plasticity mechanisms at 

perforant path synapses, neuromodulatory effects on the excitability of DG GCs, or 

enhancement of local microcircuit function (such as recruitment of adult-generated GCs or 

local inhibitory/excitatory circuits) to optimize sparsity levels for classification (Drew et al., 

2016; Luna et al., 2019). Experiments identifying how any or all of these processes facilitate 
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learning will provide new insight into the ways in which the DG actively classifies odor 

representation as a consequence of appetitive conditioning. Identification of this process of 

separating cortical representations of sensory stimuli with learning may represent a novel 

population-level substrate for associative learning.

Recent work has shown that place cell responses within GCs are stable over days and do not 

remap in response to global contextual changes (Hainmueller and Bartos, 2018). Thus, 

although overall spatial maps in the DG remain stable over time, representations of discrete 

elements of the environment, such as the odorant cues used here, may change with learning, 

providing downstream areas updated information on the saliency of non-spatial stimuli in 

the environment. This may reflect differences in the response properties of DG GCs to 

complex spatial contexts as opposed to specific discrete cues, which may arise from the 

distinct input pathways to the DG that are activated by spatial versus non-spatial 

information, with spatially tuned DG GCs relying on medial entorhinal inputs and odor-

responsive GCs relying on LEC inputs (Hafting et al., 2005; Hargreaves et al., 2005). In 

addition, recent work indicates that newly integrated GCs preferentially receive LEC inputs 

(Vivar et al., 2012; Woods et al., 2018), and this LEC-DG input was recently shown to 

directly increase the inhibition of mature GCs via adult-born GC activity (Luna et al., 2019), 

effectively enhancing the sparsity of activation in the DG. Thus, discrete stimuli that recruit 

LEC over MEC activity may distinctly modulate the activity of downstream mature GCs or 

selectively drive the highly plastic population of newly integrated GCs (Schmidt-Hieber et 

al., 2004).

Our findings offer insight to the population level and single-cell encoding properties of the 

healthy DG, and future studies can leverage these tools to understand how the DG becomes 

dysfunctional in diseases such as Alzheimer’s disease. The earliest aggregation of amyloid-

beta plaques in Alzheimer’s disease occurs specifically in lateral entorhinal cortex, and 

hypometabolic-associated cognitive impairment has been localized to the LEC-DG circuit in 

mouse models and human subjects (Braak and Braak, 1991; Khan et al., 2014). As the loss 

of sense of smell has been identified as a potent risk factor for development of Alzheimer’s 

disease (Conti et al., 2013; Lafaille-Magnan et al., 2017; Morgan et al., 1995; Vassilaki et 

al., 2017), it will be of interest to explore how LEC-DG olfactory coding circuits are 

impacted in early stages of disease progression in mouse models. Taken together, our results 

suggest that olfactory coding may represent a novel proxy to study memory formation in the 

hippocampus in health and in disease.

STAR ★ METHODS

Detailed methods are provided in the online version of this paper and include the following:

RESOURCE AVAILABILITY

Lead Contact—Further information and requests for resources and reagents should be 

directed to and will be fulfilled by the Lead Contact, Mazen Kheirbek 

(Mazen.Kheirbek@ucsf.edu).

Materials Availability—This study did not generate new unique reagents.
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Data and Code Availability—The datasets and analysis code supporting the current 

study are available from the lead contact on request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mice—All procedures were conducted in accordance with the U.S. NIH Guide for the Care 

and Use of Laboratory Animals and the institutional Animal Care and Use Committees at 

UCSF. Adult male C57BL/6J mice were supplied by Jackson Laboratory and were used 

beginning at 8–12 weeks of age. Mice were co-housed with litter mates (2–5 per cage). Mice 

were maintained with unrestricted access to food and water on a 12-hour light/dark cycle 

and experiments were conducted during the dark cycle portion.

Viral Constructs—For calcium imaging, AAVdj-CaMKII-GCaMP6f-WPRE-SV40 was 

packaged and supplied by Stanford Viral Vector Core at titer of 2.05 × 10^13 vg/ml. For 

tetanus toxin experiments, AAV-EF1a-DIO-TeLC-mCherry and AAV-EF1a-DIO-mCherry 

plasmids (Boehringer et al., 2017) were generously provided by Dr. Thomas McHugh 

(RIKEN) and packaged into AAVdj at Stanford Vector Core at a titer of 1.92 × 10^12 vg/ml 

and 6.34 × 10^12 vg/ml, respectively. AAV2retro-CAG-Cre was packaged and supplied by 

UNC Vector Core and injected at a titer of 2.8 × 10^12 vg/ml.

METHOD DETAILS

Surgery—Animals were 8–12 weeks of age at time of initial viral injection surgery. Mice 

were anesthetized with 1.5% isoflurane with an oxygen flow rate of ~1 L / min, and head-

fixed in a stereotactic frame (David Kopf, Tujunga, CA). Eyes were lubricated with an 

ophthalmic ointment, and body temperature was maintained at 34–37°C with a warm water 

re-circulator (Stryker, Kalamazoo, MI). Fur was shaved and incision site sterilized with 

isopropyl alcohol three times and betadine solution three times prior to beginning surgical 

procedures. Lidocaine HCl 2% solution was injected subcutaneously local to incision, and 

post-surgical analgesia was provided by meloxicam and slow-release buprenorphine. For 

calcium imaging experiments, viral injections preceded lens implantation by 2–3 weeks to 

allow viral expression. For stereotactic viral injections, a craniotomy was made at injection 

site with a round 0.5 mm drill bit (David Kopf, Tujunga, CA). A nanoject syringe 

(Drummond Scientific, Broomall, PA) was used with a pulled glass pipette (tip width 20–30 

microns) to inject a total of 483 nL of AAVdj-CaMKII-GCaMP6f-WPRE-SV40 into the 

dorsal dentate gyrus at coordinates of AP −2.15, ML ± 1.25, DV −2.3, −2.15, −2.05, all 

relative to bregma (Paxinos and Franklin’s, 4th edition). At each dorsal-ventral site of the 

dentate gyrus, 5 × 32.2nl pulses were delivered separated by 10 s. The needle was held in 

place for 5 minutes prior to moving to the next D/V coordinate, and remained in place for 10 

minutes following the final injection before being slowly withdrawn from the brain. For 

injections into lateral entorhinal cortex, the following coordinates were used: AP −3.6, ML ± 

4.4 (AP and ML coordinates from bregma), DV −2.6 (from medial brain surface at 

craniotomy site).

We modified a previously published procedure for imaging DG GCs, which has been shown 

to preserve DG structure, activity and DG-dependent behaviors (Danielson et al., 2016). 

Lens implantation surgery occurred 2–3 weeks following GCaMP6f virus injection. 30 
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minutes prior to anesthesia, dexamethasone was injected subcutaneously (0.2mg/kg 

dissolved in sterile saline). The animal was prepared on the stereotax as mentioned above. 

After making a longitudinal midline incision exposing the upper extent of the cranium, a no. 

15 scalpel blade was used to scrape periosteum from the skull surface, as well as most 

superficial (~0.5mm) of posterior neck muscles attaching to the dorsal portion of the caudal 

skull surface. The skull surface was wiped with hydrogen peroxide for 15 s to further 

remove residual periosteum, then rinsed 3x with saline. Finally, the skull was lightly scored 

with a scalpel blade in a crosshatched pattern to increase surface area contact for dental 

acrylic. A craniotomy approximating 1.1 mm in diameter was drilled by hand with a 

rounded drill bit centered on the same AP (−2.15) and ML (−1.25) coordinates as the 

GCaMP injection for DG. For LEC, the craniotomy was made at AP (−3.6) and ML (−4.4). 

Dura was removed with a fish-hooked 27 gauge needle, and a 30 gauge blunt end needle was 

used to aspirate neural tissue superficial of the dentate gyrus or lateral entorhinal cortex. For 

DG surgeries, the hippocampal fissure surface was used to determine proper aspiration 

depth. For LEC implantation, 1mm of cortex was aspirated above implant location, 

estimated by marked depth on aspiration needle. The cranial cavity was filled with saline 

and collagen he-mostat (Avitene) for 10 mins or until bleeding ceased when collagen plug 

was removed. The cavity was re-filled with saline, and a 1mm wide x 4.1mm long ProView 

GRIN lens (GLP-1042, Inscopix, Palo Alto, CA) was stereotactically implanted (AP −2.15, 

ML −1.25, DV −1.95) above the dentate gyrus,or LEC (AP −3.6, ML −4.4, DV −2 from 

skull surface at craniotomy). A miniaturized microscope (Inscopix) was used for visual 

guidance and fluorescence monitoring, and once placed, the lens was fixed to the skull with 

Metabond adhesive cement (Parkell, Edgewood, NY). The lens was lowered with an 

electronically controlled stereotax arm attachment (Scientifica, Uckfield, UK), and lowered 

at a rate of 0.2 mm per min until target depth was reached. Final depth was adjusted within 

0.1 mm of target depth based upon maximizing the quality of the visualized fluorescence 

signal. Animals without fluorescence visible thru the miniscope were not used and lenses 

were retrieved. A custom-made titanium headbar was then attached to the skull using dental 

cement (Dentsply Sinora, Philadelphia, PA). Finally, a protective cap over the lens was 

applied with Kwik-Sil silicone elastomer (World Precision Instruments, Sarasota, Fl), which 

was removed and re-applied for each imaging session. Mice were allowed to recover from 

lens implant surgery for at least 2 weeks prior to imaging experiments.

Post-mortem verification of imaging sites and histological analysis—DG and 

LEC imaging sites were verified in each animal included in final analysis (Figure S1). After 

imaging, mice were perfused trans-cardially with PBS followed by 4% PFA (both ~20 mL at 

a rate of 7–8ml per min). Entire mouse heads were placed in 4% PFA solution for 2–3 days 

to allow ample fixation of the area around the lens, allowing for dissection with the lens 

indent intact. Serial coronal sections (50 microns) around the lens site were collected and 

visualized and cross-registered with a mouse brain atlas.

For LEC-DG TeLC silencing experiments, animals were perfused as noted above, and a 1-

in-6 series of coronal sections (50 microns) were collected. TeLC-mCherry expressing cell 

counts in the lateral entorhinal cortex were assessed for each mouse by identifying the 

section nearest to the targeted stereotactic injection (AP −3.6) site based on cross-registering 
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with the Allen Brain Atlas, then counting the mCherry positive cells within the lateral 

entorhinal cortex to establish a total cell count for each animal, normalized by tissue area. 

An average count per mouse is provided and each mouse was verified for mCherry 

expression delimited to LEC cells projecting to DG (and not CA1) by visualizing mCherry 

positive terminals within the outer molecular layer of the dentate gyrus (Figure S1).

Odor-guided contextual fear memory task—Mice were run through a three day odor-

guided contextual fear memory paradigm, where on day 1 mice were exposed to 3 contexts 

(Pre-conditioning), day 2 were conditioned in a different context (Conditioning), and day 3 

tested in the same 3 contexts as day 1 (Post-conditioning). In imaging experiments, on Pre-

conditioning and Post-conditioning days, mice were exposed to the contexts in the AM, then 

imaged with 2-photon microscopy in the PM (three hours after last context exposure). On 

day 1 and 3 (Pre-conditioning and Post-conditioning), mice were placed in a standard fear 

conditioning box (MedAssociates, Fairfax VT) with the following contextual cues: acrylic 

floor and rounded walls, floor with alpha-dry bedding, lights off, fan off, and ambient white 

noise at 60 dB. Each preconditioning and post-conditioning context differed in the presence 

of the odors, one of 3 odors was present below the grid floor (odor a: ethyl butyrate, odor b: 

methyl butyrate, odor c: isoamyl acetate). Odors were applied directly to a clean cotton tip 

applicator for a few seconds until saturated, and placed under grating 1–2 minutes prior to an 

animals’ entry into the conditioning box. One hour separated each context exposure, and 

odorant was cleared from room with a charcoal vacuum filter, and order of exposure was 

randomized among mice. For pre and post conditioning, mice were allowed to explore the 

context for 5 mins before removal, and percent freezing was evaluated. On conditioning day, 

the mice were placed in the fear conditioning boxes with odor b (methyl butyrate) present, 

and the following contextual cues: (conditioning context (context d): bare metal grating 

floor, squared walls, lights on, fan on, room lights on). Mice were allowed to explore the 

context for 3 minutes prior to receiving three footshocks 60 s apart (2 s, 0.7mA). After the 

final shock, mice were immediately removed from the shock box. Behavioral freezing data 

was collected and analyzed using FreezeFrame video software (Actimetrics) with a freezing 

epoch threshold of 1 s, and automatic movement signal detection. Freezing percentages 

represent the entire 5 minutes of re-exposure and were performed with the experimenter 

blind to odor or experimental group. Context discrimination index for any context pair was 

calculated as (percent time freezing to context 1− percent time freezing to context 2)/

(percent time freezing to context 1+ percent time freezing to context 2).

Head-fixed odor delivery—Animals were handled and habituated to the experimenter, 

training environment and head-fixation setup for 30 mins a day for at least two days before 

imaging experiments were ran. On imaging days, monomolecular odors were delivered 

through a custom built 6 channel olfactometer equipped with a mass flow controller (Alicat 

Scientific, Tucson, AZ) that monitored and maintained air flow at 2 l per min and prevented 

momentary pressure changes from solenoid valve switches upstream of the controller. The 

olfactometer solenoids were triggered by an Arduino Mega with custom circuit boards 

(http://OpenMaze.org), and stimulus delivery recorded via CoolTerm software. One side of 

the nose cone had a tubing insert that delivered odors, the other side containing an outlet in 

which a gentle vacuum was applied to evacuate residual odor. Additionally, an ongoing 
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charcoal filter vacuum system (Hydrobuilders Inc.) was placed in the 2P isolation box to 

evacuate odors that leaked out of the nosecone apparatus. For all experiments, mice were 

habituated to the 2p head fixed setup for 10 mins prior to imaging, and imaged for 30 s at 

baseline before a structured trial of odors were delivered for 4 s with a 16 s ITI, presented in 

pseudo-randomized fashion. For 6 odor experiments, 20 trials were performed for each odor 

for a total continuous imaging session of ~30 mins. For 3 odor experiments, 30 presentations 

of each odor were performed in a session (30 mins). Several different odor panels were run 

on cohorts of imaged animals. For a 6 neutral odor panel (Figures 1, 2, and 3), we used: 

benzaldehyde (BA), eugenol (EU), heptanal (HEP), hexanal (HEX), alpha-pinene (PIN), and 

eucalyptol (EUC). For a 3 odor panel testing odor discrimination and learning (Figures 4 and 

5) we used methyl butyrate (MB) ethyl butyrate (EB) and isoamyl acetate (IAA). For mixed 

tone/odor experiments (Figure S1), mice were given 3 tones at 4, 9 and 10Khz, 4 s each with 

16 s ITI presented in a pseudorandom order, 30 presentations each, identical in trial design 

to the 3 odor experiment. Following tone trials (in the same session), the same FOV was 

recorded for 3 odor responses as above (EB, MB, IAA) so that we could directly compare 

overlapping tone/odor responses within the same population of neurons. For 4 odor 

associative learning experiments, we used: limonene, benzaldehyde, eugenol, and isoamyl 

acetate. For all associative or fear learning experiments, separate cohorts of mice were used.

2-photon imaging—2-photon imaging of the DG was performed using an Ultima IV laser 

scanning microscope (Bruker Nano, Middleton, WI) equipped with an 8Khz resonance 

galvanometer and high speed optics set, dual GaAsP PMTs (Hamamatsu model 7422PA-40), 

and motorized z focus (100nm step size). Approximately 30–90 mW of laser power (at 

920nm, from MaiTai DeepSee mode-locked Ti:Sapphire laser source (Spectra-Physics, 

Irvine, CA)) was used during imaging, with adjustments in power levels to accommodate 

varying window clarity. Once a given power level was established for an animal, identical 

power was used across experiments to increase reliability in fluorescence detection across 

sessions. To optimize light transmission, we adjusted the angle of the mouse’s head using 

two goniometers in the anterior-posterior and medial-lateral axis (Edmund Optics, +/10 

degree range) such that the GRIN lens was parallel to the objective. After focusing on the 

lens surface, optical viewing was switched to live view thru the 2-photon laser, and an FOV 

was located by moving the objective between ~50–300 microns upward. FOVs were chosen 

in the GCL, avoiding those FOVs where hilus was visible as previously shown (Danielson et 

al., 2016). Once an FOV was set for a given animal, each imaging session was manually 

aligned to approximate the same FOV across sessions. All images were acquired with a 

Nikon 20X NIR long working distance objective (0.45 NA, 8.3 mm WD). GCaMP6f signal 

was filtered through an ET-GFP (FITC/CY2) filter set. Acquisition speed was 30Hz for 512 

3 512 pixel images. Images were averaged online for every 8 frames, yielding a final 

acquisition rate of 3.7 frames per second.

Appetitive Odor Conditioning—For the appetitive odor conditioning task, water-

deprived mice were first habituated to the 2P setup with lick spout. Mice were given 50ul 

10% sucrose by volume reward 100× (reward following regular intervals every 15 trials) for 

3 days, or until mice successfully licked for reward < 1,000 times in under 10 minutes of 

head-fixation. After mice exhibited sufficient lick training, water-deprived mice were 
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imaged under pseudorandom presentation of a three neutral odor panel, EB, MB, IAA (see 

above), with a 2 s trace delay followed by 50ms reward delivery window following each MB 

(odor b, CS+) trial (in order to isolate odor responses distinct from reward delivery), 

simultaneously with 2-photon imaging, and a variable ITI of 12–16 s. Reward was delivered 

regardless of whether the animal licked during odor b (CS+, MB) trials, and no punishment 

or time outs were administered if mice licked during the CS- trials. Mice were run once a 

day for 3 days through this task. All mice used in this study showed highly accurate licking 

to the CS+ odor by the 3rd day as analyzed by lick rates to the odor/trace period. Respiration 

was monitored using a Honeywell Airflow Sensor (AWM3300V). In the 4 odor task, mice 

were run in the same manner as above, but with 2 odors acting as the CS+, and 2 odors as 

the CS-. Separate cohorts of mice were run in either the 3 odor or 4 odor associative learning 

experiment. As with the 3 odor associative learning task, a total of 30× odor trials were 

delivered in pseudorandom order with a 4 s odor delivery period, 2 s trace, and 50ms reward 

window for two CS+ odors, followed by variable ITI between 12–16 s. The odorant 

identities of CS+ or CS- were randomly assigned for each mouse. Odorants used were: 

limonene, benzaldehyde, eugenol and isoamyl acetate. In this 4 odor associative learning 

task, mice were run for a 4th day of imaging, in which the lick spout was removed from the 

head-fixed setup to image mice in the absence of reward delivery.

Calcium data processing—Videos were motion corrected offline with the TurboReg 

registration plugin in FIJI. An average intensity z-projection of the first 100 stable frames 

(assessed manually) was used as a template with the translation model of motion correction. 

Cell segmentation and calcium transient time series data were extracted using Constrained 

Non-negative Matrix Factorization for microEndoscopic data (CNMF-E), a semi-automated 

algorithm optimized for GRIN lens Ca2+ imaging to denoise, deconvolve and demix calcium 

imaging data (Zhou et al., 2018). Briefly, this software uses a non-negative matrix 

factorization algorithm to extract the putative denoised calcium signals and spatial 

footprints. Putative neurons were identified, and sorted by visible inspection for appropriate 

spatial configuration and Ca2+ dynamics as described above, and putative units were 

manually merged or split from visual inspection. We ran the CNMF-e algorithm on each 

recording session separately to extract denoised calcium traces, inferred calcium events and 

spatial footprints. For all plots, we used the inferred calcium events for analysis unless 

otherwise specified.

Registration of cells across pre and post-conditioning sessions imaged at the same FOV was 

achieved using probabilistic modeling of similarities between cell pairs across sessions 

(Sheintuch et al., 2017). Briefly, spatial footprint maps were generated for each session by 

projecting the spatial filter of each cell onto a single image. Spatial footprint images from 

sessions imaged at the same FOV were then aligned. The distribution of similarities between 

pairs of neighboring cells were subsequently modeled via centroid distance to obtain an 

estimation for their probability of being the same cell (Psame). Cells were then registered 

across pre and post sessions via a clustering procedure that utilizes the previously obtained 

probabilities, with a probability threshold of 0.8. The average Psame value for registered 

cells was 0.96.
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QUANTIFICATION AND STATISTICAL ANALYSIS

Odor responsivity—We defined cells as responsive to an odor by comparing the calcium 

events identified within all presentations of that odor with the events identified in the 

baseline period of 4 s preceding odor presentations. We used a two-sided Mann-Whitney-U 

test to assess if the difference in activity levels were statistically significant (**p < 0.01, *p < 

0.05 for all tests in manuscript, see Table S1). Then, a cell was considered responsive if the 

FDR-adjusted p value of the statistical test was lower than 0.05 for a given odor or 

combination of odors (i.e., responsive to more than one odor). For raster plots of odor 

responses, normalized Ca event magnitude was generated by dividing each event magnitude 

by the mean event magnitude across the session and average across trial.

In learning experiments where we computed the stability of odor responses across sessions, 

by pooling all cells across all the mice and identifying the same cells in the pre-(day 1) and 

post-conditioning (day 3) sessions through registration (see above). We considered cells that 

were responsive to one odor in the pre-conditioning session and their response profile in the 

post-conditioning session. We expressed the percentage of responsive cells in the post-

conditioning session with respect to the subgroup of cells considered in the pre-conditioning 

session.

We also determined whether activity of LEC or DG neurons were modulated by reward 

consumption or correlated with licking or breathing. For reward responsivity, we generated 

peristimulus time histograms of normalized Ca2+ activity (by dividing the event magnitude 

by the mean event magnitude across the session) centered at the first lick after reward 

availability. Activity was averaged across trials (10) and cells for each mouse, and averaged 

across mice. Lick rates were computed in each time bin and averaged across trials and across 

mice.

To look for a relationship between licking or breathing and neural activity, we regressed the 

lick rates or the breathing rates across the session against the calcium events. We fit a linear 

regression model to predict lick rates or breathing rates and used the explained variance (r2) 

as a measure goodness of fit to compare the results across animals and days. We divided 

each analyzed session in 10 time-contiguous blocks and computed the generalization 

performance of the model with 10-fold cross-validation over these blocks to avoid 

overfitting. Regression was performed with regular linear regression with L2 norm or with 

Lasso, and verified that the results are not qualitatively different in either case (we report the 

more stringent case of Lasso in Figure S4).

Modulation index—For each odor presentation, we first extracted the raw calcium trace in 

a window between 5 s prior to the odor onset and 10 s after odor offset. We then divided all 

the traces by their standard deviation computed across all presentations of that odor as 

normalization. Finally, the modulation index was computed as:

δf =
rs − rb

rb
× 100
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where rs is the mean calcium trace during odor presentation of a cell, averaged across trials, 

and rb is the same quantity but computed on the 4 s preceding odor presentation.

Decoding—We used a linear decoder to discriminate patterns of activity into two discrete 

categories (Bishop, 2006):

y(t) = θ(W r (t) + b)

where yi is the predicted label of the population activity pattern r  recorded at time t and 

takes two values corresponding to the two classes of patterns to decode (for instance, the two 

odor identities), W is the vector of weights assigned to each cell and b is a constant bias 

term. Decoding parameters were obtained through a supervised learning protocol on labeled 

data using a support-vector machine (SVM) with a linear kernel (python/scikit/linearSVC). 

Data is reported as the generalized performance of the decoder using cross-validation, a 

standard machine learning procedure to avoid data overfitting. When multiple categories 

were involved, i.e., more than two odors, multiple linear decoders were trained on pairs of 

discrete categories combined using majority-based error-correction codes.

For decoding odor identity, we used a linear decoder trained on the recorded population 

activities. For each odor presentation, we defined the patterns of calcium activity by 

computing the mean event rates during the 4 s of odor presentation. We then evaluated the 

ability of the decoder to predict the odor identity based on the calcium activity on 10-fold 

cross-validated data, unless specified otherwise. To deteFrmine differences in the ability of 

our decoder to discriminate between single odor pairs, we used only the trials corresponding 

to that odor pair and measured performance in this subset with cross validation. For 

reporting decoding performance for single animals, we compared to a distribution of chance 

decoding performances computed by training our decoder on data in which odor identities 

were randomly shuffled with respect to the population activity patterns (n = 100 datapoints). 

When combining animals to compute average decoding performance of a group, we 

computed mean performance for each animal across different choices of training and test 

data (cross-validation) and performed a tests for significance from chance or between 

groups. When comparing decoding performance between neural populations of different 

size, we trained our decoder on a subsample of randomly chosen cells from the more 

numerous population equal to that of the smaller population. We repeated the operation 100 

times and then combined the cross-validated decoding accuracies of all random choices 

together to get a single sample of decoding accuracies. In conditions where we pooled cells 

across animals, we generated pseudo-population recordings by combining cells across 

multiple FOVs. For decoding odor identity from the pseudo-population, we divided the 

dataset in two. Then, from one of the two halves, we generated odor patterns of each odor by 

choosing the activation level of every neuron independently from a random trial, within that 

half, corresponding to that odor. We then generated test data in the same way but from the 

remaining half of the data to evaluate the decoder’s generalization performance. We repeated 

the procedure to generate pseudo-population and cells subsampling 1000 times to perform 

statistical comparisons across groups and against chance decoding performance.
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To decode odor identity around stimulus onset, we first averaged the event rates in 1 s long 

time bins between 3 s before odor presentation onset and 6 s after offset. We then trained a 

separate decoder for each time bin separately and assessed its performance on 5-fold cross-

validated data.

For the DG model, we determined whether a model based upon random connectivity could 

generate the observed increase decoding performance in DG with respect to LEC. We first 

generated pseudopopulation data as explained above. We calibrated the sparsity in the 

model, i.e., the fraction of cells with a larger than zero calcium activity for any pattern, 

based on the training half of the pseudo-simultaneous population data Then we equalized the 

number of cells across different groups to compare decoder performances by subsampling at 

random from the population of cells in a number equal to the minimum number of cells 

available across groups. We repeated the procedure to generate pseudo-population and cells 

subsampling 1000 times to perform statistical comparisons.

In the model, each LEC cell is connected through a synaptic matrix W to a fixed number of 

DG cells (n = 10) (Abusaad et al., 1999) with weights drawn from a Gaussian distribution of 

zero mean and unitary variance. DG cells are modeled as threshold-linear units, therefore the 

activity pattern in DG in the model r DG is obtained from the activity pattern of LEC cells 

r LEC as follows:

r DG = θ W r LEC − b

where θ= 0 is its argument is lower than zero and b is a threshold. The sparsity of activations 

in DG is regulated by the threshold b which is adjusted to match the sparsity levels across 

patterns of each odor in the DG data.

Ensemble similarity—To compute pattern similarities (McKenzie et al., 2016), we 

computed the mean event rates during each odor presentation in a session as well as the 

patterns during 4 s prior to odor onset as baseline. We then computed the mean cosine 

similarities (Pearson correlation) between every two pairs of patterns as:

s = 1
N ∑

ij ≠ i

N r i r j
r i r j

where r i and r j are the patterns of population activities for trial i and j and N is the total 

number of pairs of patterns. The similarity values where then pooled to verify for statistical 

differences across categories of stimuli, for instance patterns of same odors versus patterns 

different odors, or patterns from the same session versus patterns from different sessions.

Overlaps—In order to compute overlapping responses, we determined the number of cells 

that showed statistically significant responses to two odors (or 3 odors for 3 odor overlap) 

(See Odor responsivity above). To assess statistical significance, we pooled together cells 

from all mice in each region to generate pseudo-simultaneous recordings. To generate 
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chance distributions, we randomly assigned odor responses to all cells for each of the two 

odors (or 3 odors for 3 odor overlap) with probabilities that matched the proportion of 

responsive cells for each odor as in the real data. We computed the overlap for each random 

assignment and repeated the procedure 10000 times to obtain a chance distribution. We 

finally assessed the statistical significance of the actual overlap between the two (or 3) odors 

by computing the probability of obtaining that value from the chance distribution assuming a 

normal distribution of estimated mean and variance.

Lifetime sparseness—We computed lifetime sparseness by:

S = 1 − A
1 − 1

N

where N is number of odor stimuli and A is the activity fraction (Rolls and Tovee, 1995):

A =
∑i

ri
N

2

∑i
ri2

N

The activity fraction is computed on the average activity pattern ri for each odor i (Vinje and 

Gallant, 2000):

ri = 1
M ∑

j
ri
j

where j = 1, …, M and M is the total number of trials.

Signal to noise (SNR)—We computed the Signal-to-Noise ratio by:

SNR = S 2

S − Sraw
2

Where S is the convolved calcium trace and Sraw is the raw calcium trace.
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Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Odor identities are represented in the population activity of DG GCs

• Synaptic input from LEC is required for odor coding in DG GCs

• Odor classification accuracy in DG is correlated with behavioral 

discrimination

• Learning modifies odor representations in DG GCs
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Figure 1. Odor Responses in DG GCs
(A) Experimental design. GCaMP6f is expressed in DG GCs for two-photon microscopy 

imaging of odor responses in DG GCs in awake-behaving mice.

(B) Standard deviation projection of in vivo two-photon image from a representative DG 

FOV. Scale bar: 50 μm.

(C) Odor-evoked neural responses in 9 example DG GCs, spatial footprints of identified 

ROIs on left, with denoised calcium traces on right (odor delivery periods indicated with 

shading).

(D) Normalized calcium events and cell maps from DG GC FOVs. Example cell responses 

during exposure to a six-odor panel (20 trials). Normalized Ca event magnitude was 

generated by dividing each event magnitude by the mean event magnitude across the session 

and average across trial. 4-s odor delivery times noted below raster, with average responses 

in above trace (mean [black] plus SEM [gray]).

(E) Odor responses are sparse and randomly distributed in the FOV. Spatial footprints shown 

are from an example mouse, with overlaid modulation index for eachcell (see STAR 

Methods).
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Figure 2. Odor Responses in LEC
(A) Experimental design. GCaMP6f is expressed in LEC neurons for two-photon 

microscopy imaging of odor responses in awake-behaving mice.

(B) Standard deviation projection of in vivo two-photon image from a representative LEC 

FOV. Scale bar: 50 μm.

(C) Odor-evoked neural responses in 9 example LEC neurons, spatial footprints of identified 

ROIs on left, with denoised calcium traces on right (odor delivery periods indicated with 

shading).

(D) Normalized calcium events and cell maps from LEC FOVs. Example cell responses 

during exposure to a six-odor panel (20 trials). Normalized Ca event magnitude was 

generated by dividing each event magnitude by the mean event magnitude across the session 

and average across trial. 4-s odor delivery times are noted below raster, with average 

responses in above trace (mean [black] plus SEM [gray]).

(E) Odor responses are sparse and randomly distributed in the FOV. Spatial footprints shown 

are from an example mouse, with overlaid modulation index for each cell (see STAR 

Methods).
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Figure 3. Neural Representations of Olfactory Stimuli in DG, LEC, and LEC-DG TeLC Mice
(A) Experimental cohorts for imaging DG, LEC, and the DG of LEC-DG TeLC mice (see 

STAR Methods).

(B) Confusion matrix for decoding of six odors (1, benzaldehyde; 2, eugenol; 3, heptanal; 4, 

hexanal; 5, pinene; 6, eucalyptol) from LEC neurons, DG GCs, and DG GCs from LEC-DG 

TeLC mice.

(C) Quantification of odor decoding accuracies. Odor decoding accuracy was significantly 

better in DG GCs than LEC neurons, and decoding accuracy was significantly reduced in 

LEC-DG TeLC DG GCs (linear support-vector machine [SVM] classifier with matched 

number of cells in DG, LEC, and LEC-DG TeLC mice n = 189 cells [n-matched] from 8 

DG, 7 LEC, and 3 LEC-DG TeLC mice; Mann-Whitney U test; **p < 0.01).

(D) Trial-by-trial similarity matrix for same six odors as in (B) from recordings of LEC 

neurons, DG GCs, and DG GCs from LEC-DG TeLC mice.

(E) Quantification of Pearson correlation coefficients revealed lower across odor correlations 

in DG GCs as compared to LEC neurons. No significant difference was found between, 

within, and across odor correlations in DG GCs from LEC-DG TeLC mice; n = 8 DG, 7 

LEC, and 3 LEC-DG TeLC mice; t test; *p < 0.05; **p < 0.01. Error bars represent ± SEM. 

For exact p values, see Table S1.
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Figure 4. Odor Classification in the DG, but Not LEC, Correlates with Discrimination of Odors 
for Contextual Recall
(A) LEC-DG TeLC and control mice were pre-exposed to three contexts that differed in the 

infused odor (context a, ethyl butyrate; b, methyl butyrate; c, isoamyl acetate) to assess pre-

conditioning freezing (see Figure S2). The next day, mice were given foot shocks in a novel 

context infused with the odor from context b (methyl butyrate). 24 h later, mice were re-

exposed to contexts a–c and freezing measured. Right: LEC-DG TeLC showed reduced 

freezing in the context infused with the odor from the conditioning context (n = 8 LEC-DG 
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TeLC; 7 control; repeated-measures ANOVA with post hoc t test with Holm-Sidak 

correction; **p < 0.01) Error bars represent ± SEM.

(B) Experimental design for imaging. Design was identical as in (A), except that mice were 

imaged on pre-conditioning and post-conditioning days. Error bars represent ± SEM.

(C) Percent freezing in the DG imaging mice three contexts post-conditioning (n = 7 DG 

mice; t test with Holm-Sidak correction; *p < 0.05). Error bars represent ± SEM.

(D) A context fear discrimination index (context a versus context b) was calculated based on 

freezing scores for each animal and plotted against the decoding accuracy obtained from 2P 

imaging pre-conditioning (Pearson’s correlation; r = 0.95; n = 7 mice; linear fit with solid 

line; 95% confidence interval in dashed lines; p < 0.001; error bars represent ± SEM for 30 

cross validations of the decoder; see STAR Methods).

(E) Percent freezing in the LEC imaging mice in the three contexts postconditioning (n = 7 

LEC mice t test with Holm-Sidak correction; *p < 0.05).

(F) Context discrimination indices (context a versus context b) plotted against the decoding 

accuracies obtained from LEC imaging pre-conditioning. Pearson’s correlation; r = −0.24; n 

= 7 mice; linear fit with solid line; 95% confidence interval in dashed lines; p = 0.3.

Error bars represent ± SEM for 30 cross validations of the decoder (see STAR Methods). For 

exact p values, see Table S1.
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Figure 5. Associative Learning Amplifies Cortical Representations of Salient Stimuli in DG GCs
(A) Experimental schematic for associative odor conditioning. A sucrose reward was 

delivered on CS+ trials.

(B) Lick rasters showing behavioral performance on day 1 (pre) and day 3 (post) of learning.

(C) Average lick rates during the odor and trace period on day 1 (pre) and day 3 (post; 

Mann-Whitney U test; **p < 0.01; n = 3 DG mice).

(D) Cell registration across days in the same FOV. Circled cells are examples of registered 

neurons (see STAR Methods and Figure S5 for cell registration approach).
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(E) Example rasters and normalized activity for cross registered, odor responsive DG (left) 

and LEC (right) cells.

(F and G) In the DG (F), odor overlaps for CS+/CS odors fall to levels comparable to the 

shuffled distribution after learning, but in LEC (G), neurons overlaps remain stable across 

learning (level of significance for 10,000 shufflings **p < 0.01; *p < 0.05; n = 359 DG cells; 

n = 182 LEC cells).

(H–J) Comparison of proportion of active cells during odor presentation in pre and post 

(pseudo-simultaneous recordings across multiple FOVs, where each bin represents the 

proportion of odor trials in which we found a given percentage of active cells). Proportion 

active is significantly increased in the post session for the CS+ odor and decreased for the 

CS odor in DG (H), but not in LEC (I), and increased to both CS+ and CS odors in (J) LEC-

DG TeLC mice (t test; **p < 0.01; n = 3 DG mice; n = 3 LEC mice; n = 2 LEC-DG mice).

(K) Odor responses in post for cross-session registered cells. Cells were classified as odor 

responsive in pre and then their responses were determined in post. Compared to LEC 

neurons, odor a responsive DG GCs were more likely to become responsive to odor b (CS+ 

odor) after learning. (n = 3 DG mice, 359 cells; n = 3 LEC mice, 182 cells; X2 test; p < 

0.01).

(L)Lifetime sparsity increases in DG, but not LEC, across learning (Mann-Whitney; p < 

0.01; n = 3 DG mice; n = 3 LEC mice).

(M) Odor decoding accuracy improved across learning in both DG and LEC, but not LEC-

DG TeLC mice (Mann-Whitney; **p < 0.01; *p < 0.05; n = 3 DG mice; n = 3 LEC mice; 2 

LEC-DG mice).

(N) Across-session odor decoding accuracy (training on pre data and testing on post data) 

was significantly higher in LEC compared to DG, indicating greater stability in 

representations within LEC across learning (n = 3 pre group; Mann-Whitney; **p < 0.01).

Error bars represent ± SEM. For exact p values, see Table S1.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Bacterial and Virus Strains

AAVdj-EF1a-DIO-TeLC-mCherry Boehringer et al., 2017 N/A

AAVdj-EF1a-DIO-mCherry Boehringer et al., 2017 N/A

AAV-DJ CamKIIa-GCaMP 6f Stanford Vector Core Cat# GVVC-AAV-90

AAV2retro-CAG-Cre UNC Vector Core https://www.med.unc.edu/genetherapy/jvl.htm

Experimental Models: Organisms/Strains

C57BL/6J mice Jackson Laboratory Cat#000664; RRID:SCR_004633; http://www.jax.org/

Software and Algorithms

MATLAB Mathworks https://www.mathworks.com/products/matlab.html; RRID:SCR_001622

CNMF-E GitHub https://github.com/zhoupc/CNMF_E

FreezeFrame Coulbourn Instruments Cat#ACT-100A; RRID:SCR_014429; https://www.actimetrics.com/products/
freezeframe/

Prism 8 GraphPad https://www.graphpad.com/scientificsoftware/prism/

Illustrator Adobe https://www.adobe.com/products/illustrator.html; RRID:SCR_010279

Python Jupyter https://jupyter.org/

Neuron. Author manuscript; available in PMC 2021 July 08.

https://www.med.unc.edu/genetherapy/jvl.htm
http://www.jax.org/
https://www.mathworks.com/products/matlab.html
https://github.com/zhoupc/CNMF_E
https://www.actimetrics.com/products/freezeframe/
https://www.actimetrics.com/products/freezeframe/
https://www.graphpad.com/scientificsoftware/prism/
https://www.adobe.com/products/illustrator.html
https://jupyter.org/

	SUMMARY
	In Brief
	INTRODUCTION
	RESULTS
	Representations of Olfactory Stimuli in LEC and DG
	Odor Classification Accuracy in the DG Is Related to Behavioral Discrimination in an Odor-Guided Contextual Memory Task
	Changes in Odor Representations in DG and LEC with Reward Learning

	DISCUSSION
	STAR ★ METHODS
	RESOURCE AVAILABILITY
	Lead Contact
	Materials Availability
	Data and Code Availability

	EXPERIMENTAL MODEL AND SUBJECT DETAILS
	Mice
	Viral Constructs

	METHOD DETAILS
	Surgery
	Post-mortem verification of imaging sites and histological analysis
	Odor-guided contextual fear memory task
	Head-fixed odor delivery
	2-photon imaging
	Appetitive Odor Conditioning
	Calcium data processing

	QUANTIFICATION AND STATISTICAL ANALYSIS
	Odor responsivity
	Modulation index
	Decoding
	Ensemble similarity
	Overlaps
	Lifetime sparseness
	Signal to noise (SNR)


	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Figure 5.
	Table T1



