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Abstract

An efficient nonlinear multigrid method for a mixed finite element method of the Darcy-

Forchheimer model is constructed in this paper. A Peaceman-Rachford type iteration is used as a 

smoother to decouple the nonlinearity from the divergence constraint. The nonlinear equation can 

be solved element-wise with a closed formulae. The linear saddle point system for the constraint is 

reduced into a symmetric positive definite system of Poisson type. Furthermore an empirical 

choice of the parameter used in the splitting is proposed and the resulting multigrid method is 

robust to the so-called Forchheimer number which controls the strength of the nonlinearity. By 

comparing the number of iterations and CPU time of different solvers in several numerical 

experiments, our multigrid method is shown to convergent with a rate independent of the mesh 

size and the Forchheimer number and with a nearly linear computational cost.
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1 Introduction

Darcy’s law

with the permeability tensor K and the viscosity coefficient μ, describes the linear 

relationship between the velocity u of the creep flow and the gradient of the pressure p, 

which is valid when the Darcy velocity u is extremely small [4]. Forchheimer in [14] carried 

out flow experiments and pointed out that when the velocity is relatively high, Darcy’s law 
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should be replaced by the so-called Darcy-Forchheimer (DF) equation by adding a quadratic 

nonlinear term to the velocity, shown as follows:

(1.1)

where ρ and β represent the density of the fluid and its dynamic viscosity, respectively. The 

parameter β is also referred to as the Forchheimer number, which controls the strength of 

nonlinearity. A theoretical derivation of the Darcy-Forchheimer equation (1.1) can be found 

in [27]. Equation (1.1) coupled with the conservation law

(1.2)

are usually called Darcy-Forchheimer model.

In recent years, many numerical methods of the Darcy-Forchheimer model have been 

developed. Girault and Wheeler in [15] proved the existence and uniqueness of the solution 

of the Darcy-Forchheimer model (1.1)–(1.2) by proving the nonlinear operator 

 is monotone, coercive and hemi-continuous, and establishing an 

appropriate inf-sup condition. Then they considered mixed finite element methods by 

approximating the velocity and the pressure by piecewise constant and nonconforming 

Crouzeix-Raviart (CR) elements, respectively. They proved a discrete inf-sup condition and 

the convergence of the mixed finite element scheme. They also proposed a Peaceman-

Rachford (PR) type iterative method to solve the discretized nonlinear system and proved 

convergence of this iterative solver. In the PR iteration, the nonlinear equation can be 

decoupled with the divergence constraint and solved in a closed form; see Section 4 for 

details. López, Molina, and Salas in [17] carried out numerical tests of the methods proposed 

in [15], and made a comparative study between Newton’s method and the PR iterative 

method. They pointed out that Newton’s method is not competitive with the PR iteration. In 

each iteration, Newton’s method needs to evaluate a Jacobian and solves a linear saddle 

point system, but the PR iteration computes an intermediate solution for a decoupled 

nonlinear equation and then solves a simplified linear saddle point system. The cost of 

solving the decoupled nonlinear equation can be negligible in comparison with the Jacobian 

evaluation. Furthermore the PR iteration required fewer iterations to converge than Newton’s 

method with the same initial guess; see [17] for details.

Park in [21] developed a mixed finite element method with a semi-discrete scheme for the 

time dependent Darcy-Forchheimer model. Pan and Rui in [20] gave a mixed element 

method for the Darcy-Forchheimer model based on the Raviart-Thomas (RT) element or the 

Brezzi-Douglas-Marini (BDM) element approximation of the velocity and piecewise 

constant (P0) approximation of the pressure. Rui and Pan in [25] proposed a block-centered 

finite difference method for the Darcy-Forchheimer model, which was thought of as the 

lowest-order RT-P0 mixed element with proper quadrature formula. Rui, Zhao and Pan in 
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[26] presented a block-centered finite difference method for the Darcy-Forchheimer model 

with variable Forchheimer number β(x). Wang and Rui in [31] constructed a stabilized CR 

element for the Darcy-Forchheimer model. Rui and Liu in [24] introduced a two-grid block-

centered finite difference method for the Darcy-Forchheimer model. Salas, López, and 

Molina in [28] presented a theoretical study of the mixed finite element method proposed in 

[17], and showed the well-posedness and convergence.

Most of work mentioned above mainly focus on the discretization of the Darcy-Forchheimer 

model. Except the PR iteration presented in [15], no other work concentrates on fast solvers 

of the discretized nonlinear saddle point system which will be the topic of this paper. 

Multigrid method is one of the most efficient methods on solving the linear and nonlinear 

elliptic systems. It should be clarified that for nonlinear problems we no longer have a 

simple linear residual equation, which is the most significant difference between linear and 

nonlinear systems. The multigrid scheme we used here is the most commonly used nonlinear 

version of multigrid. It is called the full approximation scheme (FAS) [8] because the 

problem in the coarse grid is solved for the full approximation rather than the correction; see 

Section 5 for details.

We shall use piecewise constant (P0) and continuous piecewise linear polynomial (P1) to 

discretize the velocity and the pressure, respectively. We refer to [28] for the convergence 

analysis of this scheme and focus on fast solvers in our study. We shall apply FAS to 

construct an efficient V-cycle multigrid method for the nonlinear Darcy-Forchheimer model 

and demonstrate the efficiency of our multigrid method. Similar application of FAS to a 

nonlinear saddle point system (for Cahn-Hillard type equations) can be found in [32,33]. 

Recall that the success of multigrid method relies on two ingredients: the high frequency can 

be damped efficiently by the smoother, and the low frequency can be well approximated by 

the coarse grid correction. Notice that for saddle point systems, both smoothing and coarse 

grid corrections can easily violate the constraint [10]. The main difficulty of developing 

robust and effective multigrid methods for the saddle point system is to design an effective 

smoother with the consideration of the constraint div u = g. We shall use the Peaceman-

Rachford iteration developed in [15] as a smoother since the nonlinearity can be handled 

efficiently and the constraint is always satisfied after solving a linear saddle point system. To 

enforce the constraint after the coarse grid correction, we also project the correction into the 

divergence free subspace. This is in the sprit of the B-S smoother developed in [6] for the 

Stokes equation except here we are dealing with a harder nonlinear equation instead of a 

linear Stokes equation.

The most relevant work is [17] and our improvement are:

1. We reduce the linear saddle point system into a SPD system and demonstrate the 

efficiency of our approach.

2. We report a better choice of the splitting parameter α for decoupling the 

nonlinearity from the constraint rather than the suggested value α = 1 in [17] for 

different values of the Forchheimer number β, and show the advantage of our 

choice by comparing the number of iterations and CPU time.
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3. We carry out some experiments to show the efficiency of our multigrid solver. 

Our method is convergent with a rate independent of the mesh size and the 

Forchheimer number and with a nearly linear computational cost. Notice that it is 

not easy to construct a fast solver robust to a critical parameter, see, for example, 

a linear Stokes-type equation [18,19].

The remainder of this article is organized as follows: The model problem is demonstrated in 

Section 2. The mixed weak formulation and the discrete weak formulation are presented in 

Section 3. The PR iteration and an efficient solver for the linear saddle point systems are 

posted in Section 4. We construct a V-cycle multigrid scheme by applying FAS for the 

nonlinear problem in Section 5. Some numerical experiments using our multigrid method 

are carried out in Section 6 to verify that the efficiency of our method in comparison with 

solving this nonliear problem using the other iterative methods. Finally, conclusions, and 

further ideas are presented in Section 7.

2 The Problem and Notation

We consider the steady Darcy-Forchheimer flow of a single phase fluid in a porous medium 

in a two-dimensional bounded domain Ω, with Lipschitz continuous boundary ∂Ω:

(2.1)

with the divergence constraint

(2.2)

and Neumann boundary condition,

(2.3)

where u and p are the velocity vector and the pressure, respectively; μ, ρ and β are given 

positive constants that represent the viscosity of the fluid, its density and its dynamic 

viscosity, respectively. |·| denotes the Euclidean vector norm |u|2 = u·u, n is the unit exterior 

normal vector to the boundary of the given domain Ω; K is the permeability tensor, assumed 

to be uniformly positive definite and bounded. According to the divergence theorem, g and 

gN are given functions satisfying the compatibility condition

(2.4)

We use the standard notation of the Sobolev spaces and the associated norms, see e.g.[1].
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3 Weak Formulation

Following [15], we define the function spaces as follows:

where the zero mean value condition

is added because p is only defined by (2.1)–(2.3) up to an additive constant. Given f ∈ 

L3(Ω)2, , and , the variational formulation of (2.1)–(2.3) is: find a 

pair (u, p) in X × M such that

(3.1)

(3.2)

The variational formulation (3.1)–(3.2) and the original problem (2.1)–(2.3) are equivalent 

by using the Green’s formula:

(3.3)

where

In [15], Girault and Wheeler showed that if the given functions g and gN satisfy the 

compatibility condition (2.4), then the problem has a unique solution (u, p) in X × M.

Let Ω be a polygon in two dimensions which can be completely triangulated by triangles. 

Let  be a triangulation of Ω, and the triangulations  be obtained form  via 

regular subdivision, i.e. edge midpoints in are connected by new edges to form . 

Therefore,  is a family of conforming triangulations of ,
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The family  is shape regular in the sense of Ciarlet [12].

We discretize u and p in different finite element spaces. The velocity u is approximated in 

the following space:

(3.4)

and the pressure p is approximated in the following space:

(3.5)

where  denotes the space of polynomials of degree m, and Qk is the linear finite element 

space

With these spaces, we can have the k-th level discrete formulation of the problem (3.1)–

(3.2):

(3.6)

(3.7)

By our construction,

Note that  are nested meshes, and thus
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In [28], the authors demonstrated that the discrete problem (3.6)–(3.7) has a unique solution. 

Moreover, if  is shape regular with mesh size h and the solution u belongs to W 1,4(Ω) and 

p belongs to , then the following error estimations are obtained in [28, Theorem 

4.10]:

(3.8)

(3.9)

4 A Nonlinear Iteration

In this section, we present the Peaceman-Rachford (PR) iterative method developed in [15] 

to decouple the nonlinearity and the constraint.

First, choose an initial guess  by solving a linear Darcy system:

(4.1)

(4.2)

The linear Darcy system (4.1)–(4.2) can be rewritten in the matrix form as

(4.3)

where A is the symmetric and positive definite matrix associated to the term

B is the matrix corresponding to

and fd and w represent the right hand side of (4.1) and (4.2), respectively.
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Then, knowing, construct a sequence  for n ≥ 0 in two steps. Let α be a positive 

parameter chosen to enhance the convergence.

1. A nonlinear step without constraint: knowing  compute the inter-mediate 

velocity  by solving the following equation:

(4.4)

2.
A linear step with constraint: compute  with the known 

(4.5)

(4.6)

A key observation in [15] is that because the test functions φk, the solution , and 

are constant in each element T, the nonlinear step (4.4) can be solved in a closed-form:

(4.7)

where
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In the second step, the linear system (4.5)–(4.6) can be rewritten in the following matrix 

form:

(4.8)

where Aα is the matrix corresponding to the bilinear form

and  is the vector corresponding to

In [15], the authors proved that (4.1)–(4.2) and (4.5)–(4.6) have a unique solution. The PR 

iterative method is convergent for an arbitrary choice of the initial guess  and an 

arbitrary positive α. Numerically, different choices of α will affect the convergence rate of 

the nonlinear iteration. We shall report a choice of α in Section 6.

We can reduce the linear saddle point system into a SPD system when we implement the PR 

iteration. Because of A and Aα are symmetric positive definite operators, without loss of 

generality, we take (4.8) as an example to expound an idea as follows.

Eliminate u from the first equation of (4.8), i.e.

(4.9)

and then, substituting to the second equation of (4.8), we get

(4.10)

where , . After solving (4.10), we can get u by solving 

(4.9).
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Since Aα is block-diagonal,  can be formed easily. Indeed equation (4.10) is the linear 

finite element discretization of an elliptic equation in the primary formulation. The 

equivalence between (4.9)–(4.10) and (4.8) is obvious. Solving the SPD system (4.10) is 

much easier than the saddle point system (4.8) and many fast solvers are available. In our 

numerical experiments, we use the direct solver built in MATLAB© to solve (4.10). We 

could also use the multigrid solver, but due to the relative-small size of the linear SPD 

system we have tested, the direct solver is faster.

In the continuous level, the Darcy-Forchheimer equation can be rewritten into a nonlinear 

primary formulation. For simplicity, we assume that the permeability is a scalar. Taking the 

norm of equation (2.1), we obtain

and can solve for |u|

and consequently u

Then substituting back to (2.2), we get the primary formulation of pressure p only

(4.11)

Its well-posedness can be found in [20].

In the discretization level, we could also eliminate the piecewise constant velocity and obtain 

an equivalent P1 discretization of (4.11). However, we only eliminate u of the linear system 

(4.8) in the PR iteration rather than that of the nonlinear equation (3.6) because we still need 

to solve the resulting nonlinear equation. The PR iteration corresponds to a variant of Picard 

iteration for solving (4.11). We stick to the mixed formulation as the convergence of the PR 

iteration has been rigorously proved in [15].
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5 Non-linear Multigrid Algorithm

In this section, we consider a generic system of nonlinear equations,

where z, s ∈ Rn. Suppose that v is an approximation to the exact solution z. Define the error 

e and the residual r:

Quantities in the k-th level will be denoted by a subscript k.

Because of the iterative nature, multigrid ideas should be effective on the nonlinear problem. 

The multigrid scheme here we used for this nonlinear problem is the most commonly used 

nonlinear version of multigrid. It is called the full approximation scheme (FAS) [8] because 

the problem in the coarse grid is solved for the full approximation 

rather than the error ek−1. A two-level FAS is described as follows.

Full Approximation Scheme (FAS)

1. Pre-smoothing: For 1 ≤ j ≤ m, relax m times with an initial guess v0 by vj = Rkvj

−1. The current approximation vk = vm.

2. Restrict the current approximation and its fine grid residual to the coarse grid: 

 and .

3. Solve the coarse grid problem: .

4. Compute the coarse grid approximation to the error: ek−1 = zk−1 − vk−1.

5. Interpolate the error approximation up to the fine grid and correct the current fine 

grid approximation: .

6. Post-smoothing: For m + 2 ≤ j ≤ 2m + 1, relax m times by vj = Rk′vj−1.

then we get the approximate solution v2m+1. Here m denotes the number of pre-smoothing 

and post-smoothing steps, Rk denotes the chosen relaxation method, and  is an intergrid 

transfer operator from the fine grid to the coarse grid. As usual, the V-cycle will be obtained 

by applying the two-level FAS to the solve the nonlinear equation in Step 3.

We choose the PR iteration (4.4)–(4.6) as the smoother Rk and the nonlinear solver in the 

coarsest grid. We switch the ordering of the linear and nonlinear steps of the PR iteration in 

the post-smoothing step in order to keep the symmetry of the V-cycle. It is worth pointing 

out that although the chosen finite element spaces are nested, the constrained subspaces are 
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non-nested when we interpolated the correction of the velocity, which was obtained in the 

coarser space, to the finer space. Namely, if we directly interpolated the correction obtained 

on the coarser grid to the finer grid, the approximation we got may not satisfy the divergence 

equation in this Darcy-Forchheimer model. Therefore we construct a L2 projection to map 

the correction obtained before into the constrained space in the fine grid which can be 

realized by solving a saddle point system:

(5.1)

where Aδ is the matrix corresponding to

δ, θ represent the error between the restriction of the approximation of velocity and pressure 

on the finer grid and their approximation obtained on the coarser grid, respectively, and eu is 

the prolonged correction to the fine space. For non-nested constrained subspaces, an 

additional projector is usually needed to preserve the constraint [6].

Again, (5.1) can be reduced to a SPD system. We can get  through the idea 

demonstrated in Section 4. Then we obtain a corrected approximation of velocity v = v − δ, 

which satisfies the divergence equation.

Remark 1—When RT or BDM element is used to discretize the velocity and the pressure is 

piecewise constant, we may use patch-wise smoothers designed for H(div) problems; see 

[2,3]. The constraint can be preserved in these smoothers. A rigorous proof for the 

convergence of a multigrid method using constrained smoothers for linear saddle point 

systems can be found in [10,11]. Note that in this paper, we consider continuous pressure 

discretization and nonlinear saddle point systems and thus neither the constrained smoother 

nor the convergence proof can be applied. □

A convergence proof of a variant of FAS for a class of monotone nonlinear elliptic problems 

is given by Hackbusch in [16] and Reusken in [23]. They proved convergence by linearising 

the FAS iteration and used the convergence theory for linear two-grid methods for 

symmetric elliptic problems as in [5]. Their proof was rigorous but requiring restrictive 

assumptions (the initial guess is close enough to the solution). Tai and Xu in [29,30] gave 

some uniform convergence estimates for a class of subspace correction methods applied to 

some nonlinear unconstrained and constraint convex optimization problems. But their 

methods is built upon nested finite element spaces and slightly expensive than FAS. Yavneh 

and Dardyk in [34] employed a simplified scalar analogy to provide an insight to the reason 

why FAS works but a rigorous proof is lacking. None of these theoretical work can be 

applied directly to our problem. We are investigating the convergence theory of FAS in 

different perspectives and will report our finding somewhere else.
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6 Numerical Experiments

In this section, some numerical results are presented to illustrate the efficiency of our 

multigrid method for the Darcy-Forchheimer model (2.1)–(2.3). The following test problems 

are taken from [17]. All of our experiments are implemented based on the MATLAB© 

software package iFEM [9]. They were run on a laptop with a Inter i7-4720HQ 2.60GHz 

CPU and 16.0GB RAM.

We choose μ = 1, ρ = 1, K = I, and Ω ⊂ ℝ2 as the square (−1, 1)2. We use the uniform 

triangulation of Ω.

• Problem 1:

• Problem 2:
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Numerically Problem 2 is harder to solve. Probably it is due to the fact that the initial guess, 

which is obtained by solving a linear Darcy system, is further away from the true solution.

For all above test problems, g = 0. The chosen termination criterion is

where

We first use the accuracy test to confirm that our nonlinear multigrid iteration will 

convergent to an approximation of the problem of consideration. In the following 

experiments, the letter N stands for ‘Number of unknowns of p’, which is the same as 

‘Numbers of vertices’, so , which represents the discretization mesh size in one 

direction. Numerical results, see Fig. 1(a), 2(a), confirmed the convergence order for 

 and  are O (h) = O(N1/2). The accuracy of the pressure 

approximations, however, is not as good as that of velocity. Meanwhile, in consideration of 

the computation cost, the sufficiently accurate results were achieved when tol = 10−6 for 

Problem 1 and 2. The stopping tolerance can be varying in different levels to further reduce 

the cost. A guide line is below the truncation error [7]. The authors in [17], however, use tol 
= 1:95h, which is only enough for the L2-norm approximation for velocity. We shall use tol 
= 10−6 in the remaining numerical experiments.

For all tests, the iteration steps and CPU time of each solver are listed in tables. We are 

aware that the CPU time depends on the implementation and testing environment: the 

programming language, optimization of codes, and the hardware (memory and cache), etc. 

Our code has been optimized using vectorization technique and all results were measured 

and compared in the same test environment so that the CPU time could be a good indicator 

of the efficiency. The CPU time will be also used to find the asymptotic time complexity of 

each method; see Fig. 1(b), 2(b).

As it is proved in [15], the PR nonlinear iteration converges for any α > 0. Its rate of 

convergence, however, is very sensitive to the choice of this parameter. From the 

convergence proof of the PR iteration in [15], we inferred that the choices of α depends on 

the Forchheimer number β which controls the magnitude of the nonlinearity as ρ is fixed. 

We give an empirical choice of parameter α = 1/β and compared with the choice α = 1 

suggested in [17] in Table 1 and 2. As shown in Table 1 and 2, this choice of the parameter α 
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is much better than the fixed selection for different values of β. Therefore, this choice of α 
will be used in the remaining numerical experiments.

We then compare the FAS multigrid method using PR as smoother with the PR iterative 

method for solving this nonlinear system. Here we choose m = 3 for all the following tests. 

It means that we apply three PR iterations in the pre-smoothing step and post-smoothing 

step, respectively. Each V-cycle step is approximately 9 PR iterations (6 for the finest level 

and 3 for iterations in all coarser levels as the size of the system is reduced by 1/4) in terms 

of complexity. In order to keep the symmetry of the V-cycle, we switch the ordering of the 

linear and nonlinear steps of the PR iteration in the post-smoothing step. We set h = 1/16 as 

the coarsest mesh and solve the nonlinear problem in the coarsest mesh using PR iteration.

The PR solver is denoted by pr, whereas the multigrid solver is denoted by mg. I - number of 

iterations, and CPU - CPU time. ‘s1’ represents that we solve these linear saddle point 

systems (4.8) directly in each step, ‘s2’ is that we solve the primal SPD system (4.10) 

mentioned in Section 4 rather than solving the saddle point system. ‘mg’ stands for our 

multigrid solver, in which the PR iteration is constructed based on ‘s2’. In all examples we 

achieve optimal order convergence of  and . Compared with the PR 

iteration, we can obtain the same accuracy by using our multigrid method with less 

iterations. We can get similar results for different values of the Forchheimer number β.

Since our focus is on the efficiency of solvers, we mainly report the comparison of the 

number of iterations and CPU time by using different solvers. Numerical tests were 

performed for several cases of different values of the Forchheimer number β for Problem 1 

and 2, and the behavior of these experiments is similar for all chosen cases. All problems are 

becoming harder to solve as the Forchheimer number β increases, mainly because β 
enhances the nonlinearity. Therefore, without loss of critical substance and clarity, here we 

only show the results for β = 30 to demonstrate the merits of our method.

It can be observed that our multigrid solver required significantly fewer iterations and CPU 

time than the other two solvers in Table 3 and 5. More importantly, iteration steps are 

uniformly stable with respect to h and the time complexity of our multigrid solver is nearly 

linear, i.e., O(N), shown in Fig. 1 and 2. In contrast, for the PR methods, iteration steps 

increase as h decreases and the time complexity seems to be more than linear. For the largest 

size we have tested, our multigrid solver is more than 40 times faster than the original PR 

iteration. In Table 4 and 6, the number of iterations are compared for different values of β 
and it is demonstrated that our multigrid method is also robust to both mesh size h and the 

Forchheimer number β while PR iteration is not, see Table 1 and 2. It is worth noting that 

even for a linear Stokes type equation, construct a solver robust to a critical parameter is not 

easy [18,19].

7 Conclusions

In this paper, we constructed a nonlinear multigrid method for a mixed finite element 

method of the two-dimensional Darcy-Forchheimer model. We presented a comparative 

study between the multigrid solver and the PR iterative solver, at the same time compared 
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CPU time of the efficient solver of solving the SPD systems with that obtained by solving 

the linear saddle point systems directly. We took into account the pressure accuracy when we 

set the termination criterion, and chose a better value of the stopping criterion tol. In 

comparison with the authors in [17] always chose α = 1 for different values of the 

Forchheimer number β, we reported a better choice and compared with the previous choice 

through comparing the number of iterations and CPU time. The results obtained from our 

tests indicate that the multigrid solver is very efficient for numerically solving this nonlinear 

elliptic equation. The number of iterations and CPU time for using multigrid solver are 

shown to be significantly less than that obtained by using the PR iteration alone.

In the future work, we shall extend our results to three directions. One is that we would like 

to find a better smoother, which is used in the pre-smoothing and post-smoothing step, to 

further reduce CPU time and make the multigrid solver more efficient. Another is that we 

intend to carry out some studies on the three-dimensional Darcy-Forchheimer problem and 

the real application in a porous medium. We shall also investigate the theoretical study of the 

convergence proof of FAS.
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Fig. 1. 
Convergence rate by using multigrid solver and time complexity by using different solvers 

for Problem 1 with β = 30.
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Fig. 2. 
Convergence rate by using multigrid solver and time complexity by using different solvers 

for Problem 2 with β = 30.
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