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Abstract 
We investigated whether the representation of relational 
categories is different from that of featural categories. Earlier 
work has suggested an extreme-value hypothesis: when a 
category is defined in terms of a relation, exemplars with 
exaggerated values along this stimulus dimension are judged 
as better members of the category. Featural categories, on the 
other hand, are not exaggerated. To test this hypothesis, we 
trained participants to categorize two fictional diseases defined 
either by a deterministic relation or a deterministic feature. 
After the categorization task was mastered up to a predefined 
learning criterion, we provided a graphical user interface that 
enabled participants to construct good examples of the 
acquired categories by adjusting the stimulus attributes. We 
constructed a novel index of relational exaggeration based on 
residual deviations from a non-exaggerated response strategy. 
These results supported the extreme-value hypothesis. This 
replicates and extends an earlier quasi-experimental study (Du 
et al., 2021). 

Keywords: Category learning; relations; typicality; extreme-
value hypothesis 

Introduction 
One can extract information in both featural and relational 
ways from the same scene. When Ava was chasing her cat 
while her cat was chasing a squirrel, she had no problem 
extracting the featural information and categorizing the 
animals into one group based on their fur coats: furry(squirrel) 
and furry(cat)). Once she is above a certain age, Ava would 
also be able to extract the relational information and 
categorize the two chasers into one group based on the same 
role: chase (Ava, cat) and chase (cat, squirrel). Nevertheless, 
the information extracted from the same scene might be 
represented differently. The features are more likely to be 
perceivable and constant – the cat’s fur coat, for example, 
produces a characteristic texture pattern on the retina that is 
visible across many scenes. The relations, on the other hand, 
require dynamic processing as objects have to be bound with 
different roles that tend to change rapidly from one scene to 
the next. 

The differences in the representational format for featural 
and relational information would follow naturally if featural 
and relational categories were acquired via different 
mechanisms. It is well established that featural categories can 
be acquired by associative learning among category labels 
and a set of featural attributes. This type of learning is 

captured well by purely connectionist models. On the other 
hand, relational categories are more likely to be acquired by 
structure mapping (Gentner, 1983) or schema induction 
(Doumas et al., 2008; Hummel & Holyoak, 2003). Modeling 
this kind of learning requires more sophisticated models that 
combine connectionist and symbol-processing mechanisms 
(Doumas et al., 2008; Hummel & Holyoak, 2003; Kokinov & 
Petrov, 2001).  

Empirical studies have also found supports for distinct 
representations of different types of categories. In order to 
examine whether both common taxonomic and goal-derived 
categories follow graded structure, Barsalou (1985) asked 
participants to judge the goodness, central tendency, and 
ideality of exemplars of these categories. He found that good 
exemplars of common taxonomic categories are of their 
central tendencies (e.g., robin in birds), while good 
exemplars of goal-derived categories are more of their ideal 
members that instantiate the goal (e.g., food with zero 
calories in diet food). Following Barsalou (1985), distinct 
representative exemplars in featural and relational categories 
were observed in many studies (Goldwater et al., 2011; Kittur 
et al., 2006; Lynch et al., 2000; Rein et al., 2010). Among 
them, Kittur et al. (2006) trained participants on artificial 
categories to avoid influence of prior knowledge and 
explored what would be judged as better exemplars of 
acquired relational categories. In their task, relational 
categories were defined by the relative size or darkness 
between an octagon and a square on each trial. After training, 
Kittur et al. manipulated whether defining relations and 
features were consistent with the trained exemplars in a 
following transfer task (i.e., whether relative size/darkness 
preserved, and whether the absolute size/darkness were 
within the range presented during training). Surprisingly, 
Kittur et al. (2006) found that exemplars with consistent 
relations and inconsistent features were judged as better 
exemplars of the categories than exemplars with both 
consistent relations and features. In other words, extreme 
relations were found more illustrative of the relational 
categories even at the sacrifice of familiar features. These 
studies, taken together, suggested that a good member of at 
least some relational categories is not close to the prototypes, 
but it instantiates extreme values of the encoded relations. We 
refer to this idea as the extreme-value hypothesis.  
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One limitation of the previous studies was that the 
dependent measures that they used were poorly suited for 
testing the extreme-value hypothesis. Rather than measuring 
the degree of exaggeration of the represented features and 
relations, most previous studies measured the goodness of a 
given set of extreme/ideal exemplars. This experimental 
design does not make clear whether participants represented 
relational categories by extreme exemplars initially, or just 
found out that extreme exemplars were good after seeing the 
given exemplars. To measure directly the degree of 
representational exaggeration, we created a novel task in 
which participants were asked to reconstruct good members 
of given categories (Du et al., 2021).  

Our previous experiment (Du et al., 2021) trained 
participants in artificial categories whose structure was 
similar to that used in an earlier study by Kittur et al. (2006). 
Participants learned to categorize two fictional diseases, 
defined either by a feature or a relation. Each exemplar was 
depicted by two kinds of artificial cells that varied in four 
dimensions such as the number of hairs on the surface of the 
cell or the number of organelles inside it. Each dimension 
could be acquired as a relation (between two kinds of cells) 
or a feature (of the more salient kind of cells). As depicted in 
Figure 1, our previous experiment started with a training 
phase in which a single deterministic attribute (either a 
feature or a relation, counterbalanced across the space of 
eight stimulus attributes) was 100% diagnostic of the correct 
diagnosis. The other seven attributes were also informative 
(i.e., 75% diagnostic) of the correct diagnosis, and a perfect 
accuracy could still be achieved by pooling the information 
over these partially informative attributes. In such category 
structure it is possible to achieve perfect accuracy by 
following multiple distinct strategies. The simplest strategy 
was to identify the single deterministic attribute and rely on 
it for classification, ignoring the other attributes. But more 
complex strategies that “took a majority vote” across several 
features and/or relations were viable as well. Therefore, our 
previous experiment included a transfer phase in an attempt 
to classify the participants according to the type of strategies 
they adopted (Fig. 1). The experimental session concluded 
with a novel reconstruction task that measured the degree of 
exaggeration of good exemplars from the central tendency of 
training exemplars. As predicted by the extreme-value 
hypothesis, we found that the encoded relations would tend 
to be exaggerated in comparison to the encoded features (Du 
et al., 2021). Nevertheless, we acknowledge the limitation of 
the quasi-experimental design of our earlier study – the 
participants sorted themselves into groups depending on the 
strategies they spontaneously adopted. Because there was no 
random assignment, it was difficult to draw inferences about 
causality.  

The present study employs a true experimental design that 
complements and extends the quasi-experimental design of 
the study of Du et al. (2021). The similarities and differences 
across the two designs are depicted schematically in Figure 1. 
In both studies, participants were also asked to categorize two 
fictional diseases, and one (counterbalanced) attribute was 

100% diagnostic of the correct diagnosis. However, no other 
stimulus attribute has any diagnostic value at all in the present 
study, whereas many attributes were partially diagnostic in 
the study of Du et al. (2021). The goal is to constrain the 
resulting representation, leaving little room for alternative 
strategies. In the new, fully deterministic category structure 
the only way for a participant to achieve near-perfect 
accuracy during the training phase is to identify the task-
relevant attribute. This obviates the need for a separate 
transfer phase. The new experimental design proceeds 
straight to the reconstruction phase that measures the degree 
of exaggeration in encoded attributes (Fig. 1).  
 

 
Figure 1: Schematic depiction of our earlier experiment 

(Du et al., 2021) and the present experiments that 
complements and extends it. The experimental phases are 

depicted as white boxes, and hypothesized cognitive 
structures as shaded ovals. Solid arrows indicate causal 

links, whereas the dashed line only suggests correlations. 
 
The new design raises an interesting methodological 

challenge. Because there are two deterministic categories, the 
overall training distribution of the relevant stimulus attribute 
is bimodal. Thus, the average value during training is not a 
good baseline for evaluating the exaggeration of the acquired 
category representations. Furthermore, the training averages 
also differed across the two experimental groups (featural 
versus relational). We propose a novel dependent variable 
designed to deal with these methodological complications. 
We defined a priori two specific strategies – one featural and 
one relational – that predict the responses of a hypothetical 
participant who is performing the task accurately but has zero 
exaggeration of the task-relevant attribute in their internal 
representation. The exaggeration of the responses that were 
produced by the actual participants can thus be estimated by 
calculating residuals. That is, by subtracting the theoretical 
prediction from the actual observed response.  

Overall, we predicted that participants would produce 
more exaggerated extreme values if the encoded attributes 
were relations and produce values close to the trained 
exemplars if the encoded attributes were features. 
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Method 

Participants, Groups, and Inclusion Criteria 
There were two main experimental groups - featural and 
relational - in which the to-be-learned categories were 
defined by either a feature (F) or a relation (R). Each main 
group had 3 subgroups counterbalancing the 3 stimulus 
dimensions. A total of 311 students from the Ohio State 
University participated in the experiment for course credits. 
Initially, 244 participants were randomly assigned to the 
resulting 6 subgroups. Following the predetermined inclusion 
criteria, we excluded participants who failed more than half 
of the attention checks, had a median response time less than 
0.3 sec, or pressed the same key or same pattern of keys 
repetitively. To maintain the number of participants in each 
subgroup comparable after exclusion, we further recruited 67 
additional participants. Of all 311 participants, 209 met the 
inclusion criteria. 

 
Figure 2: A “micrograph” sample was shown on each 

trial, containing two kinds of artificial cells that vary in 
number of cells, number of organelles within each cell, and 

number of hairs around each cell. 
 

Stimuli and Category Structure 
Participants were required to categorize two fictional 
diseases, Azolitis or Leporidis, based on the features or 
relations depicted in the “micrograph” on each trial. As 
Figure 2 shows, each micrograph includes two kinds of 
artificial cells, grey cells and pink cells, varying in (i) the 
overall number of cells, (ii) the number of organelles within 
each cell (shown as dots inside each cell), and (iii) the number 
of hairs on the surface of each cell (shown as lines). We 
referred to the grey cells as “healthy” cells and pink cells as 
“diseased” cells. Depending on the main condition, the 
diseases were characterized by the absolute features of 
diseased cells (F) or the relations between diseased and 
healthy cells (R). Either way, healthy cells were not 
informative by themselves. Although this rule had not been 
instructed explicitly, we made the healthy cells less salient in 
color. Also, the visual display was designed to make counting 
more efficient in the following ways: (i) the two kinds of cells 

were presented in pairs whenever possible, (ii) organelles and 
(iii) hairs were always presented from the center to the sides 
in groups of three.  

As mentioned above, the categories were defined by either 
the absolute features of diseased cells or the relations between 
diseased and healthy cells. For example, in the subgroup 
defined by the absolute number of diseased cells, any 
micrograph with four diseased cells should be diagnosed as 
Azolitis, while any micrograph with eight diseased cells 
should be diagnosed as Leporidis. When the subgroup was 
defined by the relative number of diseased and healthy cells, 
on the other hand, any micrograph with fewer diseased cells 
than healthy cells should be diagnosed as Azolitis, while any 
micrograph with more diseased cells than healthy cells 
should be diagnosed as Leporidis. In other words, in each 
condition, there was either a feature or a relation that was 
100% diagnostic of the correct diseases. Moreover, only this 
defining feature or relation was informative of the diseases. 
That is, the rest of the features and relations were made to be 
noninformative, as they would have equal chances of 
appearing in Azolitis and Leporidis. For instance, Table 1 
shows the exemplars presented in the subgroup defined by 
the relative number of diseased and healthy cells. 
Accordingly, only the relation in “#Cells” dimension is 100% 
diagnostic of the categories, while the other relations and 
features are not diagnostic (i.e., 50% = chance level). 
Moreover, since those noninformative features and relations 
were independent, they did not provide extra information 
even if multiple relations or features were considered 
together.     

Based on the well-defined relations and absolute features 
of the diseased cells, the absolute features of the healthy cells 
were then sampled in the following way: considering 
Weber’s law, the slopes of sampling boundaries (as shown in 
Figure 3) were 1.3 and 1/1.3 so that differences between 
diseased and healthy cells were easy to notice. At the same 
time, the sampling range was narrow as well so that 
differences were not too salient. Figure 3 shows the sampled 
absolute features of the healthy cells given the relations and 
absolute features of the diseased cells. Finally, the association 
between diseases (Azolitis and Leporidis”), relations and 
features were counterbalanced across participants. 
 

Table 1: Category structure of Azolitis and Leporidis 
from the subgroup defined by relative number of diseased 
and healthy cells. “>” and “<” stand for relations between 

healthy and diseased cells, while “4” and “8” stand for 
absolute features of diseased cells.  

Dimensions                 Exemplars of Azolitis 
#Cells >,4 >,4 >,4 >,4 >,8 >,8 >,8 >,8 
#Organ. >,4 >,8 <,4 <,8 >,8 >,4 <,8 <,4 
#Hairs <,8 <,4 >,8 >,4 >,8 >,4 <,8 <,4 
 Exemplars of Leporidis 
#Cells <,4 <,4 <,4 <,4 <,8 <,8 <,8 <,8 
#Organ. >,8 >,4 <,8 <,4 >,4 >,8 <,4 <,8 
#Hairs >,4 >,8 <,4 <,8 <,4 <,8 >,4 >,8 
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Procedure and Scoring 
Participants were instructed that there were two fictional 
diseases, Azolitis and Leporidis, and their task on each trial 
was to make a diagnosis based on the micrograph taken from 
an organ of a given patient with either Azolitis or Leporidis. 
Then, a micrograph was presented, and the participants were 
instructed that grey cells refer to healthy cells and the two 
diseases were characterized by the presence of diseased cells 
stained in pink. Moreover, the three stimulus dimensions that 
might be relevant to the diagnostic criteria were pointed out 
explicitly, while no hint was given on the defining feature or 
relation, or the general usefulness of relations vs. features.   
  

Figure 3: Illustration of sampling absolute features of 
healthy cells given pre-defined relations and absolute 

features of the diseased cells. Light pink and grey shades 
indicate the available ranges of diseased and heathy cells 

during reconstruction. 
 
After instruction, participants started the training phase, in 

which they were presented with a sequence of micrographs 
and asked to make a two-alternative forced choice by 
pressing A (for Azolitis) or L (for Leporidis) based on the 
micrograph on each trial. Feedback on whether the diagnosis 
is correct or not was given right after each choice. Since no 
hints were given on the defining feature or relation, 
participants had to make random guesses at first, but they 
learned from the feedback and gradually mastered the 
diagnostic criteria for each disease. Trials were organized in 
blocks of 16 exemplars (as listed in Table 1) in random order. 
Starting from the second block, participants were allowed to 
enter the reconstruction phase as long as they achieved the 
learning criterion, which required correctly diagnosing at 
least 15 out of 16 micrographs in a block for two consecutive 
blocks. Otherwise, participants would run through all 320 
trials to enter the reconstruction phase.  

After the training phase, all participants entered the 
reconstruction phase. On each trial, they were asked to 
construct a micrograph as a good example of either Azolitis 
or Leporidis. There were 5 reconstruction trials for Azolitis 
and 5 trials for Leporidis. The first two trials included one for 
Azolitis and one for Leporidis, in a random order, and the rest 

 
1 Except for the overall number of cells dimension, where the 

range was from 1 to 14. 

eight trials were also presented in a random order. Each trial 
started with healthy cells presented in the micrograph only. 
Participants adjusted the absolute features of diseased cells 
using a graphical user interface with three sliders. The 
absolute features of healthy cells were sampled from 3 to 9 
(as shown in the first column in Table 2). The sliders defined 
a range from 0 to 14 for possible features of diseased cells1, 
as grey and pink shades shown in Figure 3. Before 
completing each trial, participants were forced to either move 
the sliders to produce the features or relations or click an 
“Ignore” button drawn next to each slider to indicate that the 
particular dimension was not included in their diagnosis 
criterion.     

 
Table 2: Illustration of ideal values of diseased (pink) 

cells, as zero degrees of exaggeration, given different 
presented values of healthy (grey) cells and attribute 

encoded (i.e., Relation or Feature). Values with asterisks in 
indicate that the values that were presented during training. 
Association between category labels and relative or absolute 

magnitudes were counterbalanced to be consistent with 
training.  

 Azolitis Leporidis 
#Grey #Pink-

Feature 
#Pink-
Relation 

#Pink-
Feature 

#Pink-
Relation 

3* 4* 2 8 4* 
4 4 3 8 5/6 
5* 4* 4* 8* 8* 
6* 4* 4* 8* 8* 
7 4 5 8 9 
8 4 6 8 10 
9 4 7 8 11 

 
In order to examine the degree of exaggeration, we compared 
the reconstructed values of diseased cells to the “ideal” values 
of diseased cells. Here, the “ideal” values were designed to 
have zero exaggeration relative to the values that were 
encountered during training. If there is no difference between 
reconstructed and ideal values, then we would conclude that 
there is zero degrees of exaggeration in the encoded 
representation. However, given that the trained features (i.e., 
absolute features of diseased cells) and the trained relations 
(i.e., relative differences between diseased and healthy cells) 
were different measures, we defined different ideal values for 
defining features and relations. Table 2 lists all possible 
values used to depict healthy cells during reconstruction, 
together with corresponding ideal values for encoded features 
and relations. The ideal values for encoded features were 
straightforward, as four and eight were the only values that 
participants had been trained on for each disease, they would 
serve as the ideal values for defining features. The ideal 
values for encoded relations, on the other hand, depend on the 
given healthy cells on each reconstruction trial as well as the 
trained differences between diseased and healthy cells. Here, 
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we quantified the differences by Michelson contrast2. Based 
on the given healthy cells and trained differences (from -.200 
to -.111 and from +.091 to +.231), the expected ideal values 
of diseased cells for encoded relations were calculated (i.e., 
“#Pink-Relation columns) so that the ideal differences were 
within the range of trained differences.  

Based on this a priori definition of lack of exaggeration, we 
defined the measure of our main interest: sign adjusted 
residuals, as the differences between reconstructed and ideal 
values. The sign of the residuals was adjusted so that positive 
residuals always indicate exaggeration in the direction that 
agrees with the encoded relations. Finally, we averaged the 
residuals across five reconstruction trials and two diseases to 
produce a single dependent measurement per participant.  

 

Results and Discussion 
Training Phase  
Seventy-one participants reached the learning criterion in the 
relational condition and 79 did so in the featural condition. In 
comparison with the previous study (Du et al., 2021) in which 
only half of the participants passed the learning criterion, 
more than two-thirds of participants passed it here. This 
suggests that a simplified environment with fewer 
informative distractors is more learnable. 

Following Kittur et al. (2006), we treated the participants 
who failed to achieve the learning criterion as if they had 
passed it on the last trial. With those participants included, no 
statistically significant difference was found in terms of the 
trials used to reach the learning criterion (t (204.42) = -.40, p 
= .69) between participants in the relational condition (M = 
160.78, SD = 118.56) and those in the featural condition (M 
= 167.09, SD = 109.03). This result is consistent with that for 
deterministic conditions in Kittur et al. (2004), suggesting 
that the features and relations are comparably learnable as 
long as both of them are deterministic. 

 

Figure 4: Average and individual number of trials used to 
reach the learning criterion in relational and featural 

conditions 

 
2 Michelson contrast is defined as (#pink - #grey) / (#pink + 

#grey). 

Reconstruction Phase 
The following analysis include both participants who reached 
the learning criterion and those who failed the learning 
criterion. 

The extreme-value hypothesis predicts that the learned 
relations would be exaggerated. In our study this translates 
into sign adjusted residuals that are significantly greater than 
zero. Meanwhile, we also predicted that the learned features 
would be close to the values observed during training. This 
translates into sign adjusted residuals that are not 
significantly different from zero. When the learning criterion 
was not reached, however, we predicted that the 
reconstructed values would be randomly selected within the 
range of 0 to 14. Under our scheme for calculating residuals, 
the sign adjusted residuals of participants who respond at 
random were predicted to be significantly smaller than zero. 

The results were consistent with the extreme-value 
hypothesis. The average sign adjusted residuals of encoded 
relations (M = .61, SD = 1.62) was significantly larger than 
zero (t (70) = 3.20, p = .001). This suggests that when a 
category representation is organized in terms of a relation, 
this relation tends to be exaggerated when the participant is 
asked to produce a new exemplar of the category. On the 
other hand, the average sign adjusted residuals of encoded 
features (M = .02, SD = 1.50) were not significantly different 
from zero (t (78) = .13, p = .45). This suggests that when a 
category representation is organized in terms of a feature and 
the participant is asked to produce a new exemplar, this 
feature will be set to the value that was typical during 
training. In addition, the average sign adjusted residuals of 
the participants who failed to reach the learning criterion (M 
= -2.35, SD = 1.48 in Relation; M = -1.76, SD = 1.78 for 
Feature) were both significantly smaller than zero (t (31) = -
8.99, p < .001 for Relation; t (26) = -5.15, p < .001 for 
Feature). 

 
 

Figure 5: Average sign adjusted residuals of encoded 
relations versus average sign adjusted residuals of encoded 

features. Error bars indicate the standard errors.  

3337



General Discussion 
We extended and complemented the quasi-experimental 

study of Du et al. (2021). The current study has a true 
experimental design that supports inferences about causality. 
The results of the new experiment replicate and reinforce our 
earlier results. Both correlational (Du et al., 2021) and causal 
evidence (present study) support the extreme-value 
hypothesis. Concretely, participants who spontaneously 
chose a relational categorization strategy (Du et al., 2021) or 
were experimentally induced to adopt one (present study) 
tended to exaggerate the task-relevant stimulus dimension. 
This exaggeration occurred only in the relational condition – 
whether it was adopted spontaneously or because of random 
assignment of participants into experimental groups. There 
was no evidence of analogous exaggeration of other stimulus 
attributes that were not relevant for the categorization task. 
Importantly, there was no evidence of exaggeration of any 
stimulus attribute in the featural condition. The selective 
nature of these exaggeration results makes them hard to 
account for in terms of alternative explanation involving 
opponent categories (e.g., Davis & Love, 2010). 

The evidence obtained using our novel reconstruction task 
adds to the literature suggesting that the representation of at 
least some relational categories is different from that of 
featural categories (Goldwater et al., 2011; Kittur et al., 2006; 
Rein et al., 2010). That is, while featural categories are 
represented as the central tendencies of the observed 
exemplars, relational categories are better represented as the 
extreme values that instantiate the relations.  

As a topic for future research, the reconstruction task can 
also be used to test the relational learning processes. For 
example, it is claimed that relational concepts can only be 
learned when they are deterministic (e.g., Kittur et al., 2004). 
However, relational learning can be achieved when a higher 
or lower level of deterministic relation is available (Jung & 
Hummel, 2015a, 2015b). A reconstruction task can help 
examine the representation adjustment through the learning 
process, like whether relations are treated as features 
somehow to acquire the probabilistic structure. 
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