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Abstract

Biological networks can substantially boost power to identify disease genes in genome-wide 

association studies. To explore different network GWAS methods, we challenged students of a UC 

San Diego graduate level bioinformatics course, Network Biology and Biomedicine, to explore 

and improve such algorithms during a four-week-long classroom competition. Here, we report the 

many creative solutions and share our experiences in conducting classroom crowd science as both 

a research and pedagogical tool.

Introduction

Genome-wide association studies (GWAS) analyze genotypes from a population of 

individuals to identify genetic variants associated with a disease or other phenotypic trait. 

Such variants implicate genes that are potentially causal for the phenotype, elucidating 

disease mechanisms and suggesting new routes for disease diagnosis or therapy. Thus far, 

GWAS has identified numerous loci relevant to a wide range of diseases such as coronary 

artery disease (Lu et al., 2012), diabetes (Zhao et al., 2010), and cancer (Chang et al., 2014). 

A long-standing challenge of GWAS is that the statistical power to find gene-disease 

associations can be greatly limited by the millions of genetic loci tested in a genome-wide 

study (Sham and Purcell 2014). This large number of loci requires that each individual locus 

test passes a very strict significance threshold (typically, p < 5 × 10−8), resulting in 

potentially many disease genes that are missed (Lander and Kruglyak 1995). In addition, 

causal variants may act in genetic epistasis with other variants, and the linear models 

typically used in GWAS do not capture these nonlinear interactions (Visscher et al., 2017). 

Moreover, subsequent interpretation of the significant variants is made difficult when the 

associated variants lie in non-coding regions of the genome, as is typically the case for 

common variants (Hou and Zhao 2013). These factors often lead to an incomplete set of 

candidate variants, obscuring the ability to infer the mechanistic basis of a trait.
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Networks of known or suspected gene-gene and protein-protein interactions, captured in a 

growing community of molecular network databases, can be used to at least partially address 

these problems. For instance, the methods of genome-wide association boosting (GWAB) 

(Lee et al., 2011) and network-wide association studies (NetWAS) (Greene et al., 2015) both 

use networks to analyze GWAS summary statistics to prioritize the top genetic variants 

associated with a disease. GWAB aims to detect weakly implicated disease-associated genes 

by their proximity to other strongly implicated genes in a molecular network using a naive 

Bayes guilt-by-association approach. NetWAS first constructs functional tissue-specific 

networks from correlations in mRNA expression, where edges are weighted based on a 

tissue-specific Bayesian method. These edge weights are then used as features in a support 

vector machine (SVM) classifier for which positive and negative sets are chosen based on 

their association to a disease using GWAS data. In addition to molecular networks, gene sets 

provide another way to summarize higher order pathway effects. For instance, MAGENTA 

(meta-analysis gene-set enrichment of variant associations) detects enrichment of 

functionally related gene sets when performing a meta-analysis of multiple GWAS data 

collected for the same disease (Segrè et al., 2010). Conversely, predicted gene functions can 

help select which genes at an associated locus are causal, as demonstrated by DEPICT (data-

driven expression prioritized integration for complex traits) (Pers et al., 2015).

Given this nascent field of network GWAS approaches, we considered that a very timely 

research activity would be to survey and synthesize the recent developments and to explore 

methodological alternatives. Here, we describe such a research project, conducted not in any 

individual laboratory but in the context of a university classroom.

The Class Competition

In spring 2018, we conducted a biological networks class at the University of California San 

Diego, entitled Network Biology and Biomedicine (BNFO286/MED283), intended to 

introduce network concepts to graduate students from various backgrounds. The course 

taught an understanding of the types, roles, and uses of networks in the biomedical sciences 

by covering theory and practice of network analysis, and it culminated in a final class 

competition that required students to apply network fundamentals to an ongoing area of 

biomedical research. In particular, students were presented with the general problem of 

deriving a ranked list of 100 disease-relevant genes from a schizophrenia GWAS 

(Schizophrenia Psychiatric Genome-Wide Association Study (GWAS) Consortium, 2011). 

This GWAS consisted of 51,695 individuals; the original study had reported seven genomic 

loci associated with schizophrenia, five of which were novel at the time. Students were 

asked to self-assemble into small teams of up to three people to develop methods to improve 

a default workflow that utilizes networks to prioritize disease genes. This process led to 

creation of ten student teams in total, which we henceforth de-identify and reference as 

teams A–J (Table 1).

The default workflow involved three major steps: mapping variants to genes, selecting an 

appropriate network, and analyzing variants on the network (Figure 1). For each step, we 

either introduced a method or reminded students of relevant lecture topics while also making 

it clear that students should create and explore new alternatives. The first step of the default 
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workflow was to map genetic variants to genes. This step addressed a fundamental challenge 

in GWAS: how should the set of variants in and around a gene be used to assign a single 

score for prioritizing that gene’s likelihood of association with phenotype? As the default, 

we presented a simple approach of assigning each genetic variant to the nearest coding gene 

based on chromosomal distance (Lee et al., 2011). In the second step, students needed to 

select the appropriate network for the analysis. The fundamental challenge posed by this 

step was to select a network enriched for interactions that are highly relevant to the disease 

context. As a starting point, we reminded the students of a list of publicly available gene and 

protein networks discussed in class as well as the many other networks available on NDEx 

(Pratt et al., 2015), an online repository of networks. In the final step, students had to decide 

on how best to apply their chosen network to analyze the gene scores derived in step 1. The 

challenge of this step was to select a method that best leverages network knowledge to boost 

the priority of causal disease genes. We presented two default options based on network 

propagation methods discussed in class: random walk and heat diffusion. Both methods had 

been used with success in previous genomic tasks such as stratifying cancer patients (Hofree 

et al., 2013), identifying cancer relevant pathways (Leiserson et al., 2015; Paull et al., 2013), 

and evaluating network quality (Huang et al., 2018) but to our knowledge had not been 

applied to analyze GWAS results. Students were also free to explore any existing or novel 

algorithms that utilize networks to derive a ranked list of schizophrenia disease genes. Once 

again, we presented this workflow as a starting point only and challenged students to 

improve upon each of the above steps as they saw fit.

Submitted Approaches

Given this default template (Figure 1), students creatively altered and extended the workflow 

to arrive at a range of submitted approaches, often choosing to experiment on a specific 

point in the workflow (Table 1). In what follows, we survey methodologies implemented for 

each step by the student teams, grouping similar methodologies where appropriate.

The first step of the workflow saw the least innovation, with most teams choosing the default 

method of assigning variants to genes based on nearest genomic (chromosomal) distance. 

Team H deviated from this method, instead choosing to incorporate physical distances 

measured by high-resolution three-dimensional DNA contact maps of chromatin (Won et al., 

2016). In particular, genetic variants were mapped to the nearest gene within each 

topologically associated domain (TAD) identified by the contact map. TADs are segments of 

the genome that are highly enriched for DNA-DNA contacts within the segment; owing to 

this topological constraint, TADs are also thought to group variants with the genes they 

likely regulate. Any variants not associated with a TAD were mapped using the nearest 

genomic distance method.

For step 2, groups generally used one of two gene networks for their analyses (Table 1). 

These two networks were presented in early class lectures alongside a number of 

alternatives: the so-called parsimonious composite network (PCNet) (Huang et al., 2018) 

and the brain network from GIANT (genome-scale integrated analysis of gene networks in 

tissues) (Greene et al., 2015). PCNet is an amalgamation of 21 different networks where 

each edge is supported by more than 1 network. While this network is not tissue specific, it 
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had shown excellent performance in recovering literature gene sets of various diseases given 

only a subset of these disease genes, while being substantially smaller than most other 

publicly available networks (Huang et al., 2018). Other groups used the brain network from 

GIANT, arguing for the importance of tissue context in recovering disease-specific genes. 

PCNet and GIANT represent two very different approaches to network construction. On the 

one hand, PCNet is a composite of a broad range of networks, agnostic to cellular context, 

but it takes only those that are verified by multiple sources yielding a very compact network 

(19,781 nodes, 2.7 million edges, with density of 0.014). On the other hand, GIANT utilizes 

tissue-specific information across many different sources resulting in a substantially larger 

network (25,689 nodes, 42 million edges, with density of 0.126). Team F explored a third 

route, opting for a protein-protein interaction network and a co-expression network which 

were combined into a single interaction database.

In step 3, the network analysis step of the workflow, we saw the most diversity of 

approaches. Many teams (teams A, B, C, D, G, H and I) implemented and tested different 

variants of the two default network propagation methods, but teams explored different ways 

to place the initial gene scores on the network as well as to tune the restart probability 

parameter in random walk with restart. Three teams implemented network analysis 

methodologies very different from the above. Of these, team F decided to prioritize disease 

genes based on the sum of ranks across five different scoring schemes: gene-level p values, 

average protein levels in brain sample tissue derived from the Human Protein Atlas (Uhlén 

et al., 2015), network proximity to known GWAS genes, node centrality based on a protein-

protein interaction network, and node centrality based on a tissue co-expression network. 

This consensus ranking method thus integrated multiple networks and measurements and 

prioritized genes relevant across different contexts.

Two teams implemented deep learning methods, based on recurrent neural networks (team 

E) or word embedding (team J). Team E used a recurrent neural network supervised to 

recover a hold-out set of significant genes implicated by the GWAS summary statistics. They 

argued that each iteration of random walk can be approximated using two fully connected 

layers. The input of the recurrent neural network is identical to that of random walk with 

restart, a vector of initial node weights and the network’s adjacency matrix. The recurrent 

neural network attempts to create a more flexible model by allowing the model to learn a 

nonlinear representation of the input vectors and aggregate the information using a nonlinear 

function.

Team J devised a novel GWAS analysis using node embedding, network motifs, and network 

propagation. First, a node embedding algorithm (the skip-gram model) (Mikolov et al., 

2013) is used to learn a vector representation of each network node. Features used for this 

learning are a random collection of paths through that node, the number of network motifs in 

which that node participates, and its gene score. Second, disease nodes are prioritized by 

random walk over a graph of node similarities in the embedded space. Notably, both Teams 

E and J incorporated the topology of networks and attempted to derive associations in 

nonlinear ways. These deep learning methods were not introduced in class, but due to the 

freedom provided by the competition, students were able to creatively explore a wide range 

of alternatives.
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Evaluation Phase

We evaluated the performance of each team’s algorithm in two ways, based on comparison 

of the resulting network-prioritized gene list to (1) a literature-curated schizophrenia gene 

set or (2) genes validated by additional GWAS studies. For both evaluation methods, ranked 

gene sets from all teams were evaluated relative to each other as well as to a baseline 

ranking derived from the discovery schizophrenia GWAS prior to network analysis (baseline 

or BL). For this baseline ranking, we mapped genetic variants from the discovery GWAS to 

genes using a ±10 kb window and ranked the genes in increasing order of p value. These 

baseline results represented the “null” method where the GWAS results were returned 

without any transformation. The computational code used to evaluate all results is available 

online (https://github.com/shfong/2018NetBioEval).

The first method of evaluation considered each method’s ability to recover a previously 

documented set of 1,147 schizophrenia disease genes (Shim et al., 2017; Allen et al., 2008). 

We determined the number of these documented disease genes in each team’s top 100 

ranking and verified the statistical significance by a hypergeometric test. The winning entry 

according to this evaluation metric, by team A, employed random walk with restart to 

propagate gene association scores over the PCNet molecular network (Figure 2A). The team 

placed initial scores according to the negative log of the gene’s assigned p value of 

association using the 10 kb window described above. This simple approach outperformed all 

other methods and discovered 33 documented schizophrenia genes in the top 100 genes 

reported overall (hypergeometric test p < 10−27) (Figure 2A). This result represented a 

significant improvement over the baseline gene list, which recovered 9 schizophrenia genes 

(hypergeometric test p < 0.06). Notably, nearly all teams out-performed this baseline and 

yielded significant enrichment in their top 100 ranked gene lists (Figure 2A).

The second evaluation experiment tested the reproducibility of the results in comparison to 

another large schizophrenia GWAS published several years later (Schizophrenia Working 

Group of the Psychiatric Genomics Consortium, 2014). In addition, as schizophrenia and 

bipolar disorder are related diseases (Craddock et al., 2005), we expected that some genes 

linked to schizophrenia might also show linkage to bipolar disorder. Thus, we also tested 

how well each team’s algorithm could discover significantly altered genes from the bipolar 

study. For these GWAS validation sets, we evaluated a team’s algorithm by the number of 

genes in the top 100 ranking that were within 10 kb of a variant with significant association 

to the disease, with the significance threshold adjusted using Bonferroni correction for 100 

hypotheses (p < 5×10−4).

Unlike the first task, where almost all teams performed better than baseline, no team was 

able to recover more significant associations from the validation schizophrenia GWAS than 

the baseline (71 genes). Teams I and C came very close, with 70 and 69 genes, respectively, 

both of which had used very similar methodologies to team A (Figure 2B). Most of the 

teams identified genes which also had significant associations to bipolar disorder. None of 

the teams were able to beat the baseline recovery of bipolar genes, however, although teams 

I, F, and E came very close to this baseline.
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Based on the superior performance of team A in the first evaluation method, the team 

members were invited to work with the instructors to describe this winning method in a 

companion publication (Carlin et al., 2019).

General Conclusions across Methods

The evaluation results highlight several broad trends. First, random walk performs very well 

in prioritizing GWAS associations, as the top-performing methods in recovering literature 

curated schizophrenia genes and significantly associated GWAS genes both used a version 

of the algorithm. The random walk algorithm is simple to implement, and with only a single 

parameter, the restart probability, it performs well when considering the data in the form of 

summary statistics, perhaps because the simplicity of the approach matches that of the data. 

In contrast, deep learning methods performed less well. We speculate that the greater 

flexibility afforded by deep learning actually hurts performance here due to overtraining. In 

the future, and especially as network GWAS methods are applied at the level of an individual 

patient’s variants, we expect that more complex interactions between variants will be 

captured by more expressive models.

Second, despite the good performance of random walk generally, it shows significant 

variance in performance, ranging from recovering 33 literature genes (team A) to 9 literature 

genes (team I). These methods differed in how each gene in the network is assigned an 

initial score. The winning team A scaled the initial score proportionally to the gene’s 

significance by using a negative logarithm of the p value, while others binarized the 

significance using a threshold. The success of the former technique may owe to the fact that 

it transfers more information from the GWAS than the latter technique, by weighting more 

confident genes more heavily.

The baseline performed significantly better than network methods in recovering the 

validation GWAS; incorporating networks in this analysis thus appears to only degrade the 

signal (Figure 2B). One explanation is that the validation and discovery GWAS had some 

overlap in information; all three GWAS (the discovery and validation schizophrenia studies 

and the bipolar disorder study) used some of the same control individuals. Therefore, 

analysis of the second (validation) schizophrenia cohort was complicated by the overlapping 

control samples with the discovery set. Performance in recovering schizophrenia genes from 

the literature showed little correlation with ability to validate genes in the second 

schizophrenia GWAS (Spearman correlation of −0.28, p = 0.40) (Figure 2C). Rather, 

performance on the validation schizophrenia GWAS was far more correlated with the bipolar 

GWAS (Figure 2D), further highlighting the similarity between the two tasks (Spearman 

correlation of 0.91, p = 0.00), perhaps due to the use of the same control individuals.

Nevertheless, the additional case samples provided a valuable hold-out validation set to carry 

out a comparative evaluation of the methods. Notably, the top two teams in recovering 

significant associations in the validation GWAS, teams I and C, both thresholded the gene 

scores instead of using a quantitative transformation. However, in recovering schizophrenia 

genes from the literature, these two teams performed poorly, emerging among the bottom 

three teams of the class. This stark difference in performance caused by a seemingly small 
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change in input scores suggests that the manner in which these scores are handled can be 

quite consequential.

Finally, the high performance of network methods in the first evaluation task suggests that 

the underlying networks contain significant numbers of relevant interactions to 

schizophrenia. Genes implicated in schizophrenia tend to be well-studied, making 

interactions among these genes more likely to be identified in networks and subsequently 

discovered by network methods. Gene study bias may thus skew performance in favor of 

network methods. At the same time, network methods represent a systematic approach to 

incorporate the substantial prior knowledge present in multiple sources of evidence, 

including independent sample cohorts and gene expression.

Lessons Learned for Instructors

Since the fundamental idea of a class competition is to involve students in the scientific 

process, both instructors and students benefit from treating the competition with the same 

rigor needed to craft a typical scientific research project. This rigor includes baseline 

controls and quantifiable results to enable appropriate comparisons across different student 

methods. Due to the very strict time constraints of a class in comparison to an open-ended 

research study, the project topic needs to be limited in scope and the deliverables very 

specific. Students should also be encouraged to employ or develop algorithms that run 

quickly so they can be iteratively improved throughout the competition.

This time limitation creates extraordinary pressure on students to simultaneously learn the 

course materials and accomplish a large research project. Such pressure can be mitigated by 

providing students with a complete baseline model which they are required to improve over 

the course of the project. Use of a baseline model ensures (and assures) that the task can in 

fact be completed as planned, and it outlines the necessary data-processing steps. On the 

other hand, while a default model can be quite beneficial in orienting students to a challenge, 

it may limit the diversity of methods that the students produce. Such limitation can be offset 

by early checkpoints and active engagement with students to guide student teams toward 

novel solutions.

Finally, for classroom competitions involving GWAS, we note that some students may 

request information on each individual’s genetic variants, on the premise that GWAS data 

are best integrated with molecular networks patient-by-patient. However, patient-level data 

typically requires privileged access, which is not easy to provide in a classroom 

environment. This point extends beyond GWAS to any challenge involving clinical data.

Coda

In this class competition, we took an unorthodox approach to bioinformatics research in 

which we invited an entire classroom to collaboratively advance a common research topic. 

This process produced a wide range of different methods. Class competition prompts 

students to think critically about the course materials, encouraging them to gain mastery 

over key concepts they will need to best compete. Rather than accepting algorithms taught in 

class as absolutes, they begin to think about the relative strengths and weaknesses of these 

algorithms and are motivated to improve upon them. More generally, engaging many 
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different teams to explore a spectrum of methods to solve a common problem is the epitome 

of crowd science. Carefully studying how methods succeed and fail can yield surprising 

insights into algorithms in ways not readily achievable through more conventional means.
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Figure 1. Workflow of the Network GWAS Challenge
This figure describes major steps in the class challenge. Student teams are responsible for 

developing the algorithm to analyze GWAS associations (first three steps) while the 

instructors evaluate these algorithms (final step), as follows: (1), GWAS summary statistics 

of associations between phenotype and genetic variants are assigned to genes. (2) Students 

select the appropriate network for the analysis. (3) Each gene’s assigned associations are 

projected to scores on nodes in a molecular network and analyzed using any algorithm the 

students see fit. Each group produces a ranking of top 100 genes most associated with the 

target disease, schizophrenia. (4) Instructors evaluate these rankings in comparison to 

literature-derived schizophrenia genes (Literature), another schizophrenia GWAS acting as a 

validation set (SZ GWAS), and a bipolar GWAS (BP GWAS).
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Figure 2. Comparison of Algorithm Performance
(A) The performance of each team (A–J) in recovering the schizophrenia literature curated 

gene set (1,147 genes total) among their top 100 prioritized genes, with significance 

evaluated using the hypergeometric test. Stars denote significant p values less than 0.05. BL 

refers to the baseline method which maps variant significance to the nearest coding gene 

within a 10kb window and ranks genes in increasing p value.

(B) Each team’s performance in the validation schizophrenia and bipolar studies, again 

using the top 100 prioritized genes as in (A).

(C) Scatterplot of performance in GWAS validation (x axis) versus performance in recovery 

of literature-derived disease genes (y axis), shown for schizophrenia. The plot shows no 

significant correlation between these two validation tasks.

(D) Scatterplot of schizophrenia validation performance (x axis) versus bipolar disorder 

validation performance (y axis). Good performance on the schizophrenia GWAS correlates 

strongly with good performance on the bipolar GWAS (rho = 0.77, p value = 0.006).
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