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Inherent-state melting and the onset of glassy dynamics
in two-dimensional supercooled liquids
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Edited by Juan P. Garrahan, University of Nottingham, Nottingham, United Kingdom; received May 26, 2022; accepted February 18, 2023 by
Editorial Board Member Mehran Kardar

Below the onset temperature To, the equilibrium relaxation time of most glass-forming
liquids exhibits glassy dynamics characterized by a super-Arrhenius temperature
dependence. In this supercooled regime, the relaxation dynamics also proceeds through
localized elastic excitations corresponding to hopping events between inherent states,
i.e., potential-energy-minimizing configurations of the liquid. Despite its importance
in distinguishing the supercooled regime from the high-temperature regime, the
microscopic origin of To is not yet known. Here, we construct a theory for the onset
temperature in two dimensions and find that an inherent-state melting transition,
described by the binding–unbinding transition of dipolar elastic excitations, delineates
the supercooled regime from the high-temperature regime. The corresponding melting
transition temperature is in good agreement with the onset temperature found in
various two-dimensional (2D) atomistic models of glass formers and an experimental
binary colloidal system confined to a water–air interface. Additionally, we find the
predictions for the renormalized elastic moduli to agree with the experimentally
observed values for the latter 2D colloidal system. We further discuss the predictions of
our theory on the displacement and density correlations at supercooled conditions,
which are consistent with observations of the Mermin–Wagner fluctuations in
experiments and molecular simulations.

two-dimensional glassy dynamics | Kosterlitz–Thouless transition | excitations | geometric charges |
onset of glassy dynamics

The dynamics of glass-forming liquids slows down significantly below an onset
temperature To (1–4), as seen in the cross-over from Arrhenius (T > To) to super-
Arrhenius (T < To) growth of the equilibrium relaxation time τeq (Fig. 1A). The cross-
over is also observed in the mean squared displacement (MSD) (5), as shown in Fig. 1B.
Above To, the MSD is characterized only by the ballistic and diffusive regimes (6). For
T < To, however, a new intermediate (glassy) regime appears where the MSD exhibits
a plateau-like shape that is reminiscent of solids (7, 8). In two dimensions (2D), this
solid-like behavior manifests as Mermin–Wagner fluctuations (9, 10), which are long-
wavelength fluctuations typically associated with 2D elastic solids. Recent experiments
in 2D colloidal systems and molecular simulations have shown that such fluctuations
affect the finite-size scaling of the MSD and density autocorrelations (11–15).

The supercooled liquid, i.e., liquid below To, is further characterized by dynamical
heterogeneity (16), where particles initially move in sparse “mobile” regions that spread
over time (17, 18). These initial mobile regions are spatially localized and can be
classified as excitations (17, 19) that drive particle hopping dynamics, while the rest
of the system vibrates around its initial state (Fig. 1 B, Inset). The excitations correspond
to hopping events between neighboring inherent-state (IS) configurations, which are
the energy-minimized configurations in the potential energy landscape (20). This
excitation-based perspective is central to the dynamical facilitation (DF) theory (21),
one of the theories describing the super-Arrhenius relaxation behavior. In DF theory,
dynamical heterogeneity is understood in terms of excitations facilitating the formation
and relaxation of nearby excitations in a hierarchical manner (17, 22). For T > To,
however, particle motion occurs with little to no dynamical heterogeneity (Fig. 1 B,
Inset), suggesting a different relaxation mechanism.

While various theories (21, 23–26) have attempted to explain the dynamics of liquids
below the onset temperature To, none, so far, have identified the physical nature of this
cross-over, thereby determining the value of To itself. Taken together, the qualitative
differences on the dynamics above and below To raise the following questions: i) What is
the microscopic origin of To that distinguishes normal liquids from supercooled liquids?
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Fig. 1. (A) Equilibrium relaxation time �eq as a function of the inverse temperature. For T > To, �eq follows the classical Arrhenius behavior, while for T < To, it
has a super-Arrhenius temperature dependence. (B) Mean squared displacement vs. time for T > To (red line) and T < To (blue line). Inset: Inherent-state (IS)
particle displacement magnitude field showing the mobile regions at two different temperatures. At T < To, there exists an intermediate regime where only
few localized mobile regions are observed. At T > To, the system enters the diffusive regime immediately after the ballistic one, with mobile regions spanning
the entire system. Vertical dashed lines correspond to jump time 〈�jump〉 and relaxation time �eq under supercooled conditions. (C) A particle trajectory (blue
line) and its corresponding IS trajectory (red line) at t = �jump when an excitation occurs. Inset: The corresponding IS displacement vector field showing the
pure-shear deformation induced by the excitation. (D, i) Correspondence of a pure-shear transformation, shown in Inset of (C), with two bound elastic “dipoles”
of net zero dipole moment. (D, ii) Free energy of formation, 1Ff, of dipolar elastic excitations vs. system size R. For T < TKT (continuous red line), the formation
of free dipoles is not energetically favorable, indicating the formation of bound dipoles at these temperatures instead, as in (D, i). For T > TKT (dashed red line),
entropy changes the sign of 1Ff allowing the formation of free dipoles. In all cases, the parameters used correspond to the Poly-(12,0) model glass former
(SI Appendix, section 5.4).

ii) Does To signal a change in the relaxation mechanism between
these two regimes? And iii) how is To connected to the solid-like
nature of supercooled liquids at intermediate timescales?

In this work, we address these questions related to 2D
supercooled liquids by constructing a theory where the origin
of To lies within the statistical mechanics of excitation events.
To demonstrate this, we focus on the time evolution of particles
within the intermediate timescales of

τvib(T )� t ∼ 〈τjump(T )〉 � τeq(T ), [1]

where τvib(T ) is the characteristic vibrational timescale, and
〈τjump(T )〉 corresponds to the average time needed for a particle
to hop to its next position; Fig. 1C . The particle dynamics at these
timescales are characterized by the instantaneous IS positions
Rα(t). The IS trajectory coarse-grains the vibrational motion,
and hopping in particle motions is reflected as jumps in the
IS positions at t = τjump (27). Within the perspective of DF
theory (17, 21), recent work (19) indicates that jumps between
inherent states correspond to excitation events, which induce
localized pure-shear deformations (19, 28) (Fig. 1 C , Inset).
One of the main ideas of the present work is that, analogous
to electrostatics, an excitation in 2D can be modeled as two
bound elastic “dipoles” (29, 30); Fig. 1 D, i and SI Appendix,
section 2.2. This physical picture of excitations is distinct from
other works in amorphous media, which utilize the notion of
quasi-localized excitations (31–33). If dipoles are considered to
be the fundamental units of excitations, then an energy–entropy
argument for their formation hints toward a transition tempera-
ture TKT (Fig. 1 D, ii and SI Appendix, section 3.1) that governs
the unbinding of localized excitations into free dipoles and thus
leads to a change in relaxation mechanism. Furthermore, the

binding–unbinding transition is analogous to the one described
by the Kosterlitz–Thouless–Halperin–Nelson–Young (KTHNY)
theory (34–39) of dislocation-mediated melting. This, in turn,
provides an alternative picture of the transition in terms of
inherent states “melting” into a high-temperature fluid, with the
transition temperature being the onset temperature.

Theory

To establish a thermodynamic framework for understanding
the onset temperature To via excitation events, we begin by
constructing an isoconfigurational ensemble (40) that corre-
sponds to jumps between a given IS and its neighboring
states in the potential energy landscape. Conceptually, such a
construction is understood through Fig. 1C , where a single
trajectory provides one sample realization of a single jump that
takes the system from its initial IS configuration {Rα0 } to one
of its neighboring ISs at t = τjump, where τjump is a random
variable (SI Appendix, section 1.1). The isoconfigurational
ensemble can then be built by initiating multiple trajectories
from {Rα0 } that eventually visit all possible neighboring ISs
(Fig. 2 A, i). The set of all neighboring ISs of {Rα0 }, B({R0}),
sampled by the isoconfigurational ensemble, forms a basis for
an ensemble of excitation configurations. Given the energy
landscape complexity, not all neighboring ISs are visited with
the same frequency. Under the main assumptions of transition
state theory (41, 42), i.e., equilibrium between the reactant (the
initial inherent state) and transition states as well as no recrossing
at the transition state, we can define the conditional probability to
visit a neighboring IS as piso = e−β1U ‡

/Qiso({Rα0 }) (Fig. 2 A, ii
and SI Appendix, section 1.1). Here,1U ‡ is the potential energy

2 of 9 https://doi.org/10.1073/pnas.2209144120 pnas.org

https://www.pnas.org/lookup/doi/10.1073/pnas.2209144120#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2209144120#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2209144120#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2209144120#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2209144120#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2209144120#supplementary-materials


A

B

(i) (ii)

reaction coordinate

Fig. 2. (A)–(i) Illustration of inherent-state (IS) jumps in configuration space
obtained using the isoconfigurational ensemble. (A)–(ii) Potential energy
landscape that defines the conditional probability, piso, for visiting state
R starting from R0 in terms of the transition state energy barrier 1U‡.
(B) Schematic of the subsets of the set of all possible nearest-neighboring
inherent states B organized in terms of the excitation number. In this
schematic, excitations lead to localized pure-shear transformations in the
medium, consistent with refs. 19 and 28.

barrier, β = 1/kBT with kB being the Boltzmann constant,
and Qiso({Rα0 }) =

∑
{Rα}∈B({Rα0 })

e−β1U ‡
is the normalization

constant. Note that Qiso({Rα0 }) defines the isoconfigurational
partition function that can be used to study the statistics of IS
jumps from all possible initial ISs upon averaging it over the IS
ensemble (SI Appendix, sections 1.1 and 1.2). This procedure
leads to the IS-averaged partition function

Q̄iso =

〈 ∑
{Rα}∈B({Rα0 })

e−β1U ‡

〉
IS

, [2]

where Q̄iso = 〈Qiso({Rα0 })〉IS, and 〈. . .〉IS is an ensemble average
over all possible ISs.

An IS jump can lead to the formation of multiple excitations in
space. Thus, we can express B as a union of subsets that contain
Nexc excitations, B =

⋃Nd
Nexc=1 BNexc , where Nd is the maximum

number of excitations bounded by the total number of particles
(Fig. 2B). This representation allows us to consider excitations
as quasi-particles described by their positions {qµ} and internal
degrees of freedom {sµ}. As a result, we derive from Eq. 2 a grand
canonical partition function for a thermodynamic ensemble of
excitations (SI Appendix, section 1.2).

4̄exc = 1 + Q̄iso =
Nd∑

Nexc=0

ZNexc ỹ
Nexc [3a]

ZNexc =
1

Nexc!

∫ Nexc∏
µ=1

ddqµ ddintsµ

(aexc)dNexc
e−H̃, [3b]

where aexc is the size of excitations, ỹ = e−Ẽc is the fugacity that
defines the concentration of excitations via their dimensionless

self-energy Ẽc = βĒc, and H̃ =
∑
〈µ,γ 〉 ṽ

µγ , with ṽµγ =
β v̄µγ , is the dimensionless total interaction energy of pairs of
excitations.

Eq. 3a allows us to find the equilibrium concentration of
noninteracting excitations as ceq(T ) ∼ e−βĒc (SI Appendix,
section 1.3). The same Arrhenius form of ceq(T ) is found in
kinetically constrained models (43, 44), as used by the DF theory,
to model hierarchical relaxation caused by excitations (21). It is
also consistent with the rate of particle-hopping events cσ (T ),
which is a proxy for ceq(T ) in molecular simulations for the DF
theory since cσ (T ) is empirically observed to be of the Arrhenius
form (17, 19).

The framework of geometric charges (29, 30) provides us a
way to describe the formation of excitations in glass formers.
Geometric monopoles, dipoles, quadrupoles, or higher-order
multipoles are therefore candidates for describing elementary
excitations*. To determine which geometric charges are ther-
modynamically admissible, we resort to their free energy of
formation in an elastic medium, 1Ff (SI Appendix, section 3.1).
For monopoles with charge m, we find 1Fmnpl

f ∼ mR2
≥ 0

for all R and T , where R is the size of the system. We therefore
conclude that geometric monopoles are not thermodynamically
favorable. For dipoles with dipole moment magnitude dc, the
free energy is1F dpl

f ∼
(
d2

c Y
8π − 2kBT

)
lnR, where Y is Young’s

modulus; Fig. 1 D, ii. When kBT < d2
c Y /16π , we find

1F dpl > 0 which implies that spontaneous formation of single
dipoles is not favored. For kBT > d2

c Y /16π , however, the
free energy becomes negative, 1F dpl

f < 0, and free dipole
formation is preferred. This qualitative change on the sign of
1F dpl

f at Tc = d2
c Y /16πkB hints toward a binding-unbinding

transition analogous to the KTHNY theory. For quadrupoles,
1F qdpl

f ∼ − lnR which leads to 1F qdpl
f < 0 for large R,

and thus, their formation is thermodynamically admissible for
all T . Quadrupoles consist of two bound dipoles in the limit
of infinitesimal separation (Fig. 1 D, i), and this motivates us
to investigate the binding-unbinding transition through similar
free-energy arguments. In particular, we find the temperature
for which two free dipoles are preferred when compared to the
bound dipole-pair state to be T ′c = d2

c Y /8πkB (SI Appendix,
section 3.1). The observation that this transition temperature
differs from that of the free-energy argument of a single dipole is
a result of neglecting interactions between the two dipoles. Thus,
a more complete picture that involves a grand canonical ensemble
of interacting dipolar excitations is required to understand the
binding-unbinding transition, which we proceed to analyze.

An ensemble of interacting dipoles is described by their
(dimensionless) self-energy Ẽc and interaction ṽµγ , which can
be derived following the use of geometric charge and dipole
moment conservation laws (SI Appendix, sections 2.3 and 2.4).
This yields,

Ẽc =
Ỹ IS

8π
(C̃ + 1) , [4a]

ṽµγ =
Ỹ IS

4π

(
d̃µi d̃

γ
i

(
1− ln

qµγ

adpl

)
−

d̃µi q
µγ
i d̃γj q

µγ
j

(qµγ )2

)
, [4b]

*SI Appendix, section 2.2 for a discussion of how geometric charges can be mapped to
classical defects in crystalline solids, such as disclinations, dislocations, and point defects.
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where Ỹ IS = βd2
c Y

IS, with Y IS being the IS Young’s modulus,
qµγi = qµi − qγi , adpl is the dipole size, d̃µi = dµi /dc is
the dimensionless dipole moment vector; SI Appendix, sec-
tions 3.2 and 3.4 for the derivation of Eq. 4a and b. We
determine the dipole moment magnitude dc and the constant
C̃ following the mapping between bound geometric dipoles
and localized pure-shear excitations (SI Appendix, section 3.3),
which were modeled previously via a force-dipole formalism
(19). This mapping ensures the equivalency between the average
energy barrier and the spatial stress distributions corresponding
to excitations and yields (SI Appendix, section 3.3)

dc =
2πRexcεc

νIS + 1
, C̃ =

3 + νIS

4
, [5]

where Rexc = adpl/
√

2, and the eigenstrain, εc is determined
from the knowledge of local structure; equations 34–35 in ref.
19.

Analogous to the KTHNY theory, we now study the dipole
binding-unbinding transition via its impact on the elastic
response of an IS in the presence of excitations. The dimensionless
stiffness tensor C̃R

ijkl governing this response can be written using
any combination of two elastic constants due to isotropy of glass
formers. Choosing Young’s (Y R) and shear (GR) moduli, a static
linear response theory yields (SI Appendix, sections 4.1 and 4.2)

1
G̃R

=
1
G̃IS

+
A0

d2
c

(
〈ε̂e

ij ε̂
e
ij〉 −

1
2
〈ε̂e

iiε̂
e
kk〉

)
, [6a]

1
Ỹ R

=
1
Ỹ IS

+
A0

4d2
c

(
〈ε̂e

ij ε̂
e
ij〉+

1
2
〈ε̂e

iiε̂
e
kk〉

)
, [6b]

where A0 is the area of the medium, ε̂e
ij is the area-averaged elastic

strain due to the presence of geometric dipoles, and 〈. . .〉 denotes
the grand canonical ensemble average. The transition is then
determined by locating the temperature above which G̃R = 0
and Ỹ R = 0 corresponding to the loss of elastic moduli as a result
of the dipole-mediated melting of ISs.

Since the fugacity ỹ is small (SI Appendix, Table S.1 and
section 5.1), Eq. 6a and b can be evaluated by a fugacity series
expansion around ỹ = 0; such a procedure, however, leads to di-
vergent expressions near the unbinding/melting transition. This
situation can be remedied via the renormalization group (RG)
procedure (38, 45, 46), which uses the initial fugacity expansion
to obtain the following set of RG equations for the fugacity,
Young’s and shear moduli (SI Appendix, sections 5.1 and 5.2)

dỹ
d`

=

(
2−

Ỹ
8π

)
ỹ + 2π ỹ2e

Ỹ
16π I0

(
Ỹ
8π

)
, [7a]

dỸ −1

d`
=
π2

4
ỹ2e

Ỹ
8π

(
2I0

(
Ỹ
8π

)
− I1

(
Ỹ
8π

))
, [7b]

dG̃−1

d`
= π2ỹ2e

Ỹ
8π I0

(
Ỹ
8π

)
, [7c]

where In(x) is the nth order modified Bessel function of the first
kind, and ` is associated with the logarithm of a lengthscale. The
renormalized elastic moduli are then obtained by integrating
Eq. 7a–c to the large-` limit with initial conditions given by
G̃(0) = G̃IS, Ỹ (0) = Ỹ IS, and ỹ(0) = e−Ẽc , where Ẽc is
provided by Eq. 4a.

Eq. 7a–c are very similar to the RG equations of the KTHNY
theory (38, 39), with the exception of the π2 factor in Eq. 7a
and b that replaces the usual factor of 3π . This difference stems
from the continuous orientability of dipoles in amorphous media
in contrast to crystalline solids where only discrete values are
allowed. Despite this, the difference yields only a minor change
in the critical exponent describing the vanishing elastic moduli
near TKT (SI Appendix, section 5.3). Nevertheless, from the RG
flow equations, we observe that working only with Ỹ and ỹ is
sufficient to understand the melting transition, given all flow
equations depend exclusively on these two variables.

Results

Theoretical Analysis and Predictions. We start by analyzing Eq.
7a and b in terms of their fixed points (ỹ∗, Ỹ ∗), where we find
the RG flow equations to be stationary for ỹ∗ = 0 and any
value of Ỹ ∗ (SI Appendix, section 5.3). This behavior is seen in
Fig. 3A, where we show the phase portrait for ỹ and 8π/Ỹ . We
observe that for any initial point starting within the region below
the separatrix (green dashed line), the flow converges toward the
locus of ỹ∗ = 0 and Ỹ ∗ 6= 0 (red line), indicating the existence
of a solid phase where a supercooled liquid behaves elastically at
intermediate timescales. For Ỹ ∗ ≤ 16π , however, the family of
fixed points becomes unstable to any infinitesimal perturbations
around ỹ∗ = 0 (SI Appendix, section 5.3), indicating the fluid
phase. This implies that the separatrix controls the location of the
melting point. Thus, the melting temperature TKT is obtained
by finding the initial conditions (Ỹ IS(TKT), ỹ(TKT)) that lie on
the separatrix so that the RG flow converges to the fixed point
(Ỹ R, ỹR) = (16π , 0). In Fig. 3A, we show in red dashed line a
set of initial conditions that terminates at the separatrix.

To validate our hypothesis that TKT corresponds to the onset
temperature for glassy dynamics To, we test the theory on seven
models of glass-forming liquids (SI Appendix, section 5.4). Here,
we take the perspective of DF theory for estimating To, which
is done by fitting the parabolic law, ln τeq ∼ J2(β − βo)2,
to the relaxation time data (3, 4), where βo = 1/kBTo, and
J is an effective energy scale. Estimation of To can also be
done via computation of the particle-hopping rate cσ (T ) from
coarse-grained particle trajectories. This quantity is empirically
observed to be Arrhenius at short-intermediate timescales and
T ≤ To, i.e., cσ (T ) ∼ e−Jσ (β−βo) with Jσ ∼ J , indicating
the onset of activated dynamics (17, 19). Both estimates have
been shown to agree with each other (17, 19) and delineate
the supercooled and high-temperature regimes. In this work, we
choose the parabolic law fitting for estimating To. We evaluate
the IS melting transition in two ways: 1) the approximate
estimate T app

KT = d2
c Y

IS/16πkB that assumes ỹ = 0, and thus,
no renormalization occurs on Young’s modulus, and 2) the
true estimate TKT based on the intersection of the separatrix
with the curve of initial conditions for different models, where
numerical integration of Eq. 7a and b is performed (SI Appendix,
section 5.4).

Table 1 summarizes the results of our theory compared to
the estimated To for these models. In all cases, the true estimate
of the melting temperature TKT based on RG procedure is in
reasonable agreement with the observed onset temperature. On
the contrary, T app

KT typically overestimates the transition point,
which may be attributed to ignoring the renormalization of
Young’s modulus. Fig. 3B shows the bare Ỹ IS and renormalized
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Horizontal red line corresponds to the locus of fixed points terminating at
Ỹ = 16�. The separatrix (green dashed line), distinguishes the supercooled
regime from the high-temperature regime. Red dashed line is the possible
initial conditions for the RG flow. (B) The renormalized (bold line) and bare
(dashed line) values of the normalized Young’s Ỹ = �d2

c Y modulus vs. inverse
temperature 1/T . At T = TKT, Ỹ vanishes discontinuously after attaining the
universal value of 16� (37). (C) Bare,GIS, and renormalized,GR, shear modulus
vs. temperature. As T is increased, GIS shows a linear dependence in T until a
temperature where GIS reaches a plateau. Meanwhile, GR moves away from
GIS as T is increased and drops to zero at T = TKT, where the supercooled
liquid phase loses its rigidity. In (A–C) the parameters used correspond to the
Poly-(12,0) model glass former.

Ỹ R Young’s modulus as a function of temperature. We observe
that Ỹ R < Ỹ IS due to a softening effect caused by excitations
on the elastic stiffness of the inherent states. At T = TKT,
Ỹ R vanishes discontinuously once the universal value of 16π is
reached. For t̃ = 1 − T /TKT � 1, using perturbative analysis,
we can derive a power law form for the decay of Young’s modulus
as Ỹ R(T ) = 16π(1 + C̄ t̃ ν̄KT), where ν̄KT ' 0.372, and
C̄ is a nonuniversal constant (SI Appendix, section 5.3). This
discontinuous behavior also extends to the renormalized shear
modulus GR, as shown in Fig. 3C , with GR

→ GIS as T → 0.
Our theory also provides a way to study displacement

and density correlations of supercooled liquids at intermediate

Table 1. Comparison of the onset temperature To,
obtained through parabolic law fitting of �eq (3, 4),
with the predicted transition temperature TKT for the
binding-unbinding transition of dipolar elastic excita-
tions for seven model glass-forming liquids
Model To Tapp

KT TKT

Poly-(12,0), (" = 0.2) 0.25 0.38 0.27
Poly-(12,6), (" = 0.2) 0.17 0.16 0.11
Poly-(18,0), (" = 0.0) 1.10 2.00 1.40
Poly-(18,0), (" = 0.2) 0.39 0.51 0.35
Poly-(10,6), (" = 0.1) 0.17 0.35 0.24
Poly-(10,6), (" = 0.2) 0.14 0.15 0.10
2D Kob–Andersen (KA) 65:35 1.00 1.34 0.94

The predicted TKT is obtained by integrating the RG flow equation Eq. 7b and c. For
completeness, we also report the approximated transition temperatures Tapp

KT , which
assume that ỸR

≈ Ỹ IS . For further numerical details, SI Appendix, section 5.4.

timescales. In particular, our theory suggests that supercooled
liquids behave as solids at timescales t ' 〈τjump〉. We can
thus assume that their elastic response at intermediate timescales
can be described using a Gaussian field theory, with the elastic
constants being the renormalized ones obtained from the RG
flow equations. This idea is linked to the nature of the RG
flow which coarse-grains a solid with excitations into a “softer”
solid without excitations. The coarse-graining lengthscale is set
by ξ∗ and represents the average size of bound dipoles above
which the Gaussian field theory is valid. The value of ξ∗
increases with temperature and diverges near the critical point
TKT, where melting takes place. For temperatures deep in the
supercooled regime, ξ∗ ∼ O(adpl) ∼ O(σd), where σd is the
particle diameter (SI Appendix, section 5.5) corresponding to
tightly bound elastic dipoles. To understand the behavior of the
mean-squared displacement and density–density correlations in
renormalized 2D linear elastic solids, we use ξ∗ and the system
size R as the lower and upper cutoff lengths, respectively, in the
field theory. Following such an approach, we find the MSD to
be (SI Appendix, section 5.5)

〈
|u(〈τjump〉)|2

〉
' kBT

(3− νR)(1 + νR)
2πY R ln

R
ξ∗
. [8]

Eq. 8 is a signature of the Mermin–Wagner fluctuations in 2D
solids and is consistent with observations from experiments and
computer simulations of glass formers (11–15). In Fig. 4A, we
plot the logarithmic scaling, as predicted for the Poly-(12,0)
model glass former for two different temperatures.

The signatures of Mermin–Wagner fluctuations are also
reflected in the self-part of the intermediate scattering function
Fs(k, t), where the theory suggests (SI Appendix, section 5.5)

Fs(k, 〈τjump〉) '
(
R
ξ∗

)− σ(k,T)
2

, [9a]

σ (k, T ) = kBT
k2 (3− νR) (1 + νR)

4πY R , [9b]

which is valid for wavenumber k ∈ [0, 2π/ξ∗]. Since ξ∗ ∼
O(σd) as T → 0, Eq. 9a becomes valid at lengthscales in which
we typically measure relaxation dynamics, e.g., k = 2π/σd.
Thus, relaxation, as measured by Fs(k, t), proceeds faster with
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Fig. 4. Theoretical analysis and predictions from our theory applied to atomistic models of two-dimensional supercooled liquids. (A) Predicted mean squared
displacement (MSD) vs. system size R for the Poly-(12,0) model at two different temperatures below TKT. In two dimensions, the elastic nature of the supercooled
liquid in the glassy regime leads to a logarithmic system size dependence. (B) The power law exponent �(k, T) in Eq. 9b vs. temperature for the Poly-(12,0)
model for k = 2�. At low temperatures, it increases linearly as a result of YR

→ Y IS, while for T → TKT, it increases abruptly because the material loses its
rigidity. (C) Predicted spatial dependence of the correlation function Ck(x, 〈�jump〉) for the Poly-(12,0) model glass former. (D) Fitted MSD vs. R data for the
two-dimensional (2D) Kob–Andersen (KA) 65:35 model at T = 0.4 and t = 100 (47). (E) Fitted Fs (k, t) vs. R data for the 2D KA 65:35 model at T = 0.4 (47), where
k = 2�/�d, with �d = 1 and t = 100. Note that the scalings for the Poly-(12,0) model are predictions and are yet to be tested extensively through large-scale
molecular simulations.

increasing system size at deep supercooled conditions due to
Mermin–Wagner fluctuations alone.

In addition to finite-size effects, Mermin–Wagner fluctuations
can also be probed spatially. To this end, we introduce an order
parameter field ρk(x, t) = eik·u(x, t) based on the displacement
field u(x, t), which is computed from the particle displacement
uα(t). The spatial correlation function of ρk(x, t) at t ' 〈τjump〉
is then

Ck(x, 〈τjump〉) :=
〈
ρk
(
x, 〈τjump〉

)
ρ-k (0, 0)

〉
[10]

'

(
|x|
R

)−σ(k,T )

, [11]

SI Appendix, section 5.5. Eq. 11 implies that spatial fluctuations
of the order parameter field with respect to an initial inherent
state exhibit power law correlations at intermediate timescales,
thereby indicating quasi-long-range order reminiscent of 2D
crystalline solids (34, 35). Such power law decay is in contrast to
the exponential decay found in past studies of spatial correlations
in supercooled liquids (16, 48), where structural order parameters
were used to probe static correlations without reference to
an initial inherent state. The power law exponent σ (k, T ),
which also enters into the finite-size scaling in Eq. 9a, increases
with higher temperature, as seen in Fig. 4B for the predicted
σ (k, T ) of the Poly-(12,0) model glass former. This results in
a faster decay of correlations as T → TKT (Fig. 4C ), with an
expected exponential decay aboveTKT corresponding to the fluid
phase.

While Fig. 4 A–C show the predicted finite-size scalings for
the Poly-(12,0) model glass former that are yet to be tested, we
validate such scalings to available literature data. For instance,
the 2D Kob–Andersen (KA) model (49) has been studied in

large-scale molecular simulations (47), with data available for
both the MSD and Fs(k, t) at the same temperature (T = 0.4)
for various system sizes. Fig. 4 D and E show the expected
logarithmic and power law finite-size scalings of the MSD and
Fs(k, t), from Eqs. 8 and 9a, respectively, for the 2D KA model
when t ≈ 100 and k = 2π/σd. Note that these scalings
also hold for a range of intermediate time scales less than the
relaxation times. Furthermore, Eqs. 8 and 9b predict that the
exponents in both the MSD and Fs(k, t) should be related to
each other by a factor of k2/4. Indeed, the fitted slope for Fs(k, t)
is σ (k = 2π/σd, T )/2 ≈ 0.13 and quantitatively agrees with
the one obtained from the MSD, which is (1.26×10−2)k2/4 ≈
0.124, where σd = 1 (47). These results constitute a first step in
validating the theory in terms of the consequences for finite-size
effects at the level of MSD and density autocorrelations. Further
tests for temperature dependence of the exponents corresponding
to the finite-size effects are left for future work.

The MSD and Fs(k, t) can probe the emergence of solid-
like nature and Mermin–Wagner fluctuations of 2D supercooled
liquids. However, these results do not indicate the nature of
the melting transition as they are tested deep in the supercooled
regime. In what follows, we analyze the nature of the transition us-
ing experimental measurements obtained from a binary colloidal
two-dimensional system confined to a water–air interface (50).

Connection to Experiments in Confined Colloids. Unlike a
conventional melting transition, the IS melting is not a true
equilibrium phenomenon since it is mediated dynamically by
elastic excitations at short-intermediate timescales. Its signatures
may manifest just below the onset temperature To if we measure
the elastic moduli from displacement fluctuations at timescales
t ' 〈τjump〉 � τeq(T ) in the long-wavelength limit k → 0.
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Fig. 5. (A) Experimentally measured normalized Young’s Ỹexp = �d2
c Yexp (red 4) modulus for a binary colloidal system confined to a water–air interface (50).

The theoretically predicted renormalized Young’s ỸR modulus is shown in continuous lines, while we show with dashed line the bare Young’s modulus ỸT.
The vertical and horizontal dashed gray lines correspond to the universal value of 16� for Young’s modulus and the critical value of 0c predicted by the RG
calculation, respectively. (B) Magnified view of Young’s modulus near the transition point indicating the softening of the system due to bound dipole excitations.
Our RG analysis predicts vanishing moduli at 0c (` = ln(R/�d)) ' 200, close to the experimentally suggested value of 0exp

c = 195± 5. For infinite system sizes,
ỸR vanishes discontinuously at 0c (`→∞) ' 203, and the normalized Young’s modulus attains the universal value of 16� analogous to the KTHNY scenario
(34–39). The value of 0c allows us to distinguish the liquid (red area) from the supercooled liquid (blue area) regimes. The Insets provide illustrations of the
elastic excitations that would be present in these distinct regimes corresponding to free dipoles and bound dipole-pairs, respectively.

From these measurements, we expect that Young’s modulus
reaches 16π before it vanishes to zero in a discontinuous manner
at T = To. When finite-size effects are present, the discontinuity
would turn into a smooth but steep transition.

Klix et al. (50–52) have performed such measurements in
experiments that involve a binary colloidal system confined to
a water–air interface, a setup specially designed for probing 2D
physics (53). Note that the single-component version of this
system has been originally used to validate the KTHNY theory
of 2D crystal melting (54), motivating the design of the binary
version to probe 2D glassy dynamics (55). In their experimental
setup, the particles are paramagnetic and interact repulsively upon
tuning the strength of the externally applied magnetic field H .
The interaction strength is controlled with respect to thermal
energy through a single dimensionless group 0 that scales as
0 ∼ βH2 (50, 52). In particular, by increasing H , they are able
to access the supercooled regime and probe the corresponding
elastic behavior at intermediate timescales. The shear Gexp and
bulk Bexp moduli are then computed through a set of fluctuation
formulas (46) (SI Appendix, section 5.6) that read as

lim
k→0

1
k2
〈
|û‖ (k) |2

〉 = β(Gexp + Bexp)σ 2
d , [12]

lim
k→0

1
k2
〈
|û⊥ (k) |2

〉 = βGexpσ
2
d , [13]

where σd is the mean interparticle distance, û (k) is the
Fourier-transformed displacement fields obtained via mi-
croscopy, û‖ (k) = k̂ · û (k) and û⊥ (k) = û (k) − û‖ (k) are
the longitudinal and transverse displacement, respectively, and
k̂ = k/k. Klix et al. (50–52) find that Gexp decreases abruptly
to values close to zero at approximately 0exp

c = 195 ± 5 (SI

Appendix, Fig. S.26) and observe that the dimensionless Young’s
modulus βYexpσ

2
d also reaches 16π (SI Appendix, Fig. S.27).

Thus, the transition point appears to distinguish the high-
temperature (low 0) from the supercooled regime (high 0) and
signal the loss of rigidity at intermediate timescales.

The experimental observations on the vanishing moduli at a
specific ‘inverse effective temperature’ 0exp

c suggest the relevance
of our theory to explain the emergence of rigidity at supercooled
conditions (0 > 0

exp
c ) and finite timescales. We test this

hypothesis by applying the RG equations (Eq. 7a and b) to
the confined binary colloidal system, a task that requires the
bare Young’s modulus and fugacity as input. For the bare
Young’s modulus YT, we use the experimentally observed values
in the supercooled regime (0 ≥ 232), where softening due to
excitations is assumed negligible, and extrapolate its trend to the
low-0 regime (SI Appendix, section 5.6). Estimating the bare
fugacity ỹ involves the dipole magnitude dc, which requires the
IS radial distribution function (RDF) as input. Since the IS RDF
is not available from the experiments, we instead use the RDF
of the big particles gbb(r) and small particles gss(r) obtained at
0 = 556 (56, 57) as proxies for the IS local structure. Assuming
that there are two kinds of excitations breaking a bond in a pair
of small and large particles, respectively, we estimate dc, and
thereby ỹ, following an application of the mixture rule similar to
DF theory (4) (SI Appendix, section 5.6).

Fig. 5 shows the dimensionless Young’s modulus from
experiments Ỹexp, the extrapolated bare values ỸT, and the
predicted Ỹ R based on the RG equations (Eq. 7a and b). Here,
we see two mechanisms responsible for the softening of the
system that leads to the experimentally observed transition. The
first softening mechanism is due to vibrational fluctuations, as
indicated by the linearity and nonzero intercept of ỸT (55, 58); SI
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Appendix, section 5.6. Approaching the transition, the predicted
Ỹ R deviates from this linear behavior, indicating the second
softening mechanism that results due to the existence of bound
dipole elastic excitations. Furthermore, Ỹ R follows closely the
experimental values Ỹexp, and the predicted transition point
0c ' 200 also agrees with the experimentally suggested value
0

exp
c = 195 ± 5. Taken together, these results highlight the

unbinding of bound elastic dipolar excitations as the leading
mechanism for the loss of rigidity. It is also notable that our
RG calculations capture the continuous but abrupt decrease of
Ỹ R instead of the discontinuous behavior previously shown in
Fig. 3B). This behavior is caused by finite-size effects, which
we account for by setting the upper limit of the integration of
the RG equations to ` = log(R/σd), where R = 20.5σd is the
experimental system size (50, 52).

Conclusions and Discussion

In summary, we construct a theory for the onset temperature
To of glassy dynamics in two dimensions (2D), starting
from the isoconfigurational ensemble (40) as a basis for the
statistical mechanics of excitations in supercooled liquids. The
resulting framework allows us to derive the Arrhenius form for
the rate/concentration of excitations, ceq(T ) ∼ e−βĒc , which
is empirically found in the DF theory when performing rate
calculations from molecular simulations (17, 19). To understand
the onset of glassy dynamics, excitations are represented as inter-
acting geometric dipoles, a description unique to the 2D nature
of the liquids. Analogous to the KTHNY theory (34–39), To can
be described as the temperature where the binding-unbinding
transition of dipolar elastic excitations, as well as melting of in-
herent states, occurs. The predictedTo is in reasonable agreement
with those observed across seven different model glass formers
(Table 1). Additionally, the proposed scenario of the binding-
unbinding transition of dipolar elastic excitations quantitatively
describes experimental observations on the vanishing elastic
moduli in two-dimensional binary colloidal glass formers (50).
The theory also enables studies on displacement and density
correlations, where the predicted finite-size scalings are consistent
with recent observations of Mermin–Wagner fluctuations from
simulations and experiments in 2D glass formers (11–15).

Given the reasonable agreement between the theoretical
predictions for To and the renormalized elastic moduli with
molecular simulations and experiments (Table 1 and Fig. 5), the
observed transition can also be interpreted as the onset of glassy
dynamics. Since our theory governs the nature of hopping pro-
cesses or IS jumps, we find that belowTKT ≈ To localized mobile
regions are intimately linked to bound dipole-pair excitations that
are sparsely distributed across the elastic medium (19, 28) and
soften the underlying solid. Additionally, within the supercooled
regime, localized excitation events drive the relaxation of the
material, which occurs by cascading excitations that appear in a
hierarchical manner, i.e., dynamical facilitation (17, 18). Once
the temperature is increased above To, the liquid is able to relax
upon the first IS jump through the formation of free dipolar
excitations, allowing the system to behave as a fluid. Thus,
To signals a change in the relaxation mechanism between the
supercooled and high-temperature regimes; Fig. 5, Insets.

In the proposed theory, the origin of To lies within the
isoconfigurational ensemble, and thus the inherent-state melting
transition is a hidden transition that may not be observable

directly from the liquid thermodynamic properties. Furthermore,
analyzing this transition may be difficult upon noting the required
separation of timescales Eq. 1, which may limit the range of
applicability of our theory near To. However, the reasonable
agreement between the predicted and observed To, as well as the
RG calculation with experimental observations of a 2D binary
colloidal system (Fig. 5), suggests that the theory is useful in
interpreting the emergence of glassy dynamics at To as the onset
of inherent-state stability against excitation fluctuations. This
understanding of inherent-state stability should be contrasted
to the one obtained from mean-field approaches (23, 25).
These theories predict another transition temperature, namely
the dynamic transition temperature Td, where the system loses
its rigidity due to fluctuations that are independent from
any type of activated processes, including excitation events.
The exact nature of the transition in mean-field approaches
remains an open question (25) with some analyses predicting
a discontinuous transition (24, 59), e.g., the shear modulus is
described as G(T ) = G(Td) + C (Td − T )1/2 for T < Td,
while other ones (60, 61) based on the replica theory (62)
predict a continuous transition instead. Nevertheless, the onset
temperature To is understood to be distinct from Td (25) since
τeq(T ) has non-Arrhenius behavior at Td < T < To (23, 24).
Thus, while our theory and the mean-field approaches share
a similar premise, the present proposal constitutes an alternative
perspective to understand the emergence of rigidity and relaxation
of supercooled liquids, with elastic dipole-pair excitations as the
underlying mechanism.

Further tests need to be performed through simulations using
the isoconfigurational ensemble (40) and in particular on the
temperature dependence of the MSD and spatial correlations in
density fluctuations. Experiments through (quasi-)2D colloidal
systems (13, 14, 50) also provide an additional platform to test
the theory through finite-size effects. Last, even though our
work sheds light on the onset temperature in 2D, the nature of
the onset temperature in three dimensions (3D) remains an open
question. The corresponding 3D theory may require an extension
of the elastic dipolar excitations to physical objects similar to
dislocation loops (63, 64). Consequently, we hypothesize that the
corresponding theory in 3D also involves inherent-state melting
that may now be mediated by loop excitations. We leave the
possibility of such a theory for future work.

Materials and Methods

The derivation steps of the theory and the relevant computational methods in this
work are detailed in SI Appendix. SI Appendix, section 1 describes the statistical
mechanics framework of excitations, leading to the final grand canonical partition
function in Eq. 3a and b. SI Appendix, section 2 reviews the geometric charges
framework (29, 30) for modeling elastic excitations proposed in this work.
SI Appendix, sections 3 and 5.1–5.3 contain the energy–entropy arguments and
the renormalization group (RG) procedure, respectively, that lead toward the
calculation of onset temperature To. SI Appendix, section 5.4 provides details on
computer simulations of the continuous polydisperse glass formers (65) used
in this work. These computational details include the molecular dynamics and
Monte Carlo simulations as well as the procedures to generate the data for the
relaxation time (i.e., Fig. 1A), mean squared displacement (i.e., Fig. 1B), the bare
and renormalized inherent-state (IS) elastic constants (i.e., Fig. 3B), as well as
the RG calculations (i.e., Fig. 3A) for predicting the onset temperature (i.e., Table
1). SI Appendix, section 5.5 includes the derivations for the Mermin–Wagner
finite-size scalings and power laws presented in Fig. 5 C–E and Eqs. 8–11.
Last, SI Appendix, section 5.6 includes details on how the RG equations Eq. 7a
and b are applied to predict the elastic moduli of an experimental colloidal
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system involving paramagnetic particles confined to a water–air interface
(50, 52).

Data, Materials, and Software Availability. All study data are included
in the article and/or SI Appendix. Data generating the figures are also
deposited in our GitHub repo, https://github.com/mandadapu-group/pnas-
inherent-melting (66).
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